Thèse soutenue

Bascules à impulsion robustes en technologie 28nm FDSOI pour circuits numériques basse consommation à très large gamme de tension d'alimentation

FR  |  
EN
Auteur / Autrice : Sébastien Bernard
Direction : Marc BellevilleJean-Didier LegatAlexandre ValentianDavid Bol
Type : Thèse de doctorat
Discipline(s) : Nanoélectronique et nanotechnologie
Date : Soutenance le 07/10/2014
Etablissement(s) : Grenoble en cotutelle avec Université catholique de Louvain (1970-....)
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'électronique et de technologie de l'information (Grenoble ; 1967-....)
Jury : Président / Présidente : Lionel Torres
Examinateurs / Examinatrices : Marc Belleville, Jean-Didier Legat, Alexandre Valentian, David Bol
Rapporteurs / Rapporteuses : Andrei Vladimirescu, Wim Dehaene

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Avec l'explosion du marché des applications portables et le paradigme de l'Internet des objets, la demande pour les circuits à très haute efficacité énergétique ne cesse de croître. Afin de repousser les limites de la loi de Moore, une nouvelle technologie est apparue très récemment dans les procédés industriels afin de remplacer la technologie en substrat massif ; elle est nommée fully-depleted silicon on insulator ou FDSOI. Dans les circuits numériques synchrones modernes, une grande portion de la consommation totale du circuit provient de l'arbre d'horloge, et en particulier son extrémité : les bascules. Dès lors, l'architecture adéquate de bascules est un choix crucial pour atteindre les contraintes de vitesse et d'énergie des applications basse-consommation. Après un large aperçu de l'état de l'art, les bascules à impulsion explicite sont reconnues les plus prometteuses pour les systèmes demandant une haute performance et une basse consommation. Cependant, cette architecture est pour l'instant fortement utilisée dans les circuits à haute performance et pratiquement absente des circuits à basse tension d'alimentation, principalement à cause de sa faible robustesse face aux variations.Dans ce travail, la conception d'architecture de bascule à impulsion explicite est étudiée dans le but d'améliorer la robustesse et l'efficacité énergétique. Un large panel d'architectures de bascule, avec les fonctions reset et scan, a été comparé dans le domaine énergie-délais, à haute et basse tension d'alimentation, grâce à une méthodologie de dimensionnement des transistors. Il a été montré que la technique dite de « back bias », l'un des principaux avantages de la technologie FDSOI, permettait des meilleures performances en énergie et délais que la méthodologie de dimensionnement. Ensuite, comme le générateur d'impulsion est la principale raison de dysfonctionnement, nous avons proposé une nouvelle architecture qui permet un très bon compromis entre robustesse à faible tension et consommation énergétique. Une topologie de bascule à impulsion explicite a été choisie pour être implémentée dans un banc de registres et, comparé aux bascules maître-esclave, elle présente une plus grande vitesse, une plus faible consommation énergétique et une plus petite surface.