Thèse soutenue

Potentialité de phytoremédiation de matrices polluées par des organochlorés : fonctionnalité de la rhizosphère
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Claire Blondel
Direction : Muriel Raveton
Type : Thèse de doctorat
Discipline(s) : Modèles, Méthodes et Algorithmes en biologie, santé et environnement (MBS)
Date : Soutenance le 15/12/2014
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale ingénierie pour la santé, la cognition, l'environnement (Grenoble ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'écologie alpine (Grenoble)
Jury : Examinateurs / Examinatrices : Christian Mougin, Valérie Bert, François Laurent
Rapporteurs / Rapporteuses : Michel Couderchet, Bruno Combourieu

Résumé

FR  |  
EN

L'activité humaine est responsable de pollutions diffuses des sols entrainant des dommages sur l'écosystème. Afin d'éviter des déséquilibres importants comme la diminution de la biodiversité ou bien la contamination des chaînes trophiques par des polluants, il est nécessaire de restaurer les écosystèmes. Les différentes techniques utilisées à l'heure actuelle sont couteuses, diminuent la fertilité du sol et ont un effet négatif sur la fonctionnalité des écosystèmes. A contrario, la phytoremédiation ou dépollution grâce aux plantes, apparaît comme une solution digne d'intérêt. Néanmoins, elle nécessite d'être améliorée puisque de nombreux mécanismes restent inexpliqués. L'originalité de notre travail est d'étudier la fonctionnalité de la rhizosphère du maïs (Zea mays) exposée à des pesticides organochlorés (OCPs), le lindane et la chlordécone, interdits respectivement en 1998 et 1993 et persistants dans l'environnement. Cette étude a été réalisée en présence ou absence de microorganismes afin de préciser les mécanismes mis en jeux par les microorganismes et les matrices végétales. Ce travail a mis en évidence les mécanismes impliqués dans la phytotoxicité des deux organochlorés sur les cellules racinaires. Les réponses cellulaires sont dose-dépendantes et montrent un effet des OCPs sur le cycle cellulaire (induction de l'endoréplication et de la ploïdie) et la mort cellulaire (induction de ROS, du calcium cytosolique, des caspase-3-like, de l'apoptose) lors d'expositions extrêmes (correspondant à des cas particuliers comme les friches industrielles). A de plus faibles expositions ayant une réalité environnementale, les racines exposées montrent une perturbation importante de leur métabolome primaire. Ces modifications mesurées sur la production des sucres, des acides organiques, des acides aminées et des lipides peuvent être induites par le stress oxydant produit par les OCPs. Par ailleurs, de tels changements dans le métabolome peuvent provoquer une modification de la composition des exsudats racinaires, jouant sur la relation plante/microorganismes de la rhizosphère. Nos résultats montrent que la fonctionnalité globale de la rhizosphère (allocation des ressources en carbone et azote, catabolisme des microorganismes) n'est pas modifiée sur le long terme en présence des OCPs. Enfin, nous avons démontré l'implication de la rhizosphère (rétention/métabolisation des OCPs) sur l'absorption des OCPs par Zea mays. Le lindane semble être en partie minéralisé par la microflore rhizosphèrique puis les métabolites libérés sont absorbés par les racines, où ils sont majoritairement bioconcentrés. Ces connaissances fondamentales mettent en évidence l'adaptation de la rhizosphère à la pression chimique des OCPs et montrent que la rhizosphère reste fonctionnelle en présence de matrices contaminées par les OCPs.