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Résumé

Détection Multidimensionnelle au Test Paramétrique avec Recherche

Automatique des Causes

Ali HAJJ HASSAN

Aujourd’hui, le controle des procédés de fabrication est une tache essentielle pour assurer
une production de haute qualité. A la fin du processus de fabrication en semi-conducteur,
un test électrique, appelé test paramétrique (PT), est effectué. PT vise a détecter les
plaques dont le comportement électrique est anormal, en se basant sur un ensemble de
parameétres électriques statiques mesurées sur plusieurs sites de chaque plaque. Le but
de ce travail est de mettre en place un systéme de détection en temps réel au niveau
de PT, pour détecter les plaques anormales & partir d’un historique récent de mesures
électriques. Pour cela, nous développons un modéle de détection dynamique basé sur
une technique de réapprentissage optimisée, ot le modeéle de détection est mis & jour
a travers une fenétre temporelle glissante. Notre modéle de détection est basé sur les
machines & vecteurs supports a une classe (1-SVM), une variante de l'algorithme d’ap-
prentissage statistique SVM, introduit dans le cadre des problémes de classification a
une classe pour la détection d’anomalies. Pour améliorer la performance prédictive de
I’algorithme de classification 1-SVM, deux méthodes de sélection de variables ont été
développées. La premiére méthode de type filtrage est basée sur un score calculé avec la
méthode MAD,, une approche robuste pour la détection univariée des valeurs aberrantes.
La deuxiéme méthode de type wrapper est une adaptation & l'algorithme 1-SVM de la
méthode d’élimination récursive des variables avec SVM (SVM-RFE). Pour les plaques
anormales détectées, nous proposons une méthode permettant de déterminer leurs si-
gnatures multidimensionnelles afin d’identifier les parameétres électriques responsables de
I’anomalie. Finalement, nous évaluons notre systéme proposé sur des jeux de données
réels de STMicroelectronics, et nous le comparons au systéme de détection basé sur le
test de T2 de Hotelling, un des systémes de détection les plus connus dans la littéra-
ture. Les résultats obtenus montrent que notre systéme est performant et peut fournir

un moyen efficient pour la détection en temps réel.

Mots clés : détction d’anomalies, Machines a Vecteurs Supports, sélection de variables,

Test Paramétrique, détection en temps réel, signature multidimensionnelle.






Abstract

Multidimensional Detection at Parametric Test with automatic diagnosis

by Ali HAJJ HASSAN

Nowadays, control of manufacturing process is an essential task to ensure production of
high quality. At the end of the semiconductor manufacturing process, an electric test,
called Parametric Test (PT), is performed. The PT aims at detecting wafers whose
electrical behavior is abnormal, based on a set of static electrical parameters measured
on multiple sites of each wafer. The purpose of this thesis is to develop a dynamic
detection system at PT level to detect abnormal wafers from a recent history of electrical
measurements. For this, we develop a real time detection system based on an optimized
learning technique, where training data and detection model are updated through a
moving temporal window. The detection scheme is based on one class Support Vector
Machines (1-SVM), a variant of the statistical learning algorithm SVM widely used for
binary classification. 1-SVM was introduced in the context of one class classification
problems for anomaly detection. In order to improve the predictive performance of the
1-SVM classification algorithm, two variable selection methods are developed. The first
one is a filter method based on a calculated score with MADe filter, a robust approach
for univariate outlier detection. The second one is of wrapper type that adapts the
SVM Recursive Feature Elimination method (SVM-RFE) to the 1-SVM algorithm. For
detected abnormal wafers, we propose a method to determine their multidimensional
signatures to identify the electrical parameters respounsible for the anomaly. Finally, we
evaluate our proposed system on real datasets of STMicroelecronics and compare it to the
detection system based on Hotelling’s T? test, one of the most known detection systems
in the literature. The results show that our system yields very good performance and

can provide an efficient way for real-time detection.

Keywords : anomaly detection, Support Vector Machines, variable selection, Parametric

Test, real-time detection, multidimensional signature.
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Présentation de STMicroelectronics

Présentation générale

Le groupe ST a été créé en juin 1987 a la suite du regroupement de Thomson Semicon-
ducteurs (France) et de SGS Microelectronica (Italie). En mai 1998, SGS-THOMSON

Microelectronics devient STMicroelectronics.

STMicroelectronics est une multinationale qui congoit, développe, fabrique et commer-
cialise une vaste gamme de circuits intégrés et de composants discrets utilisés dans de
nombreuses applications. STMicroelectronics est le numéro 1 européen dans le secteur

des semi-conducteurs.

Depuis sa création, la société a considérablement étendu et enrichi sa gamme de produits
et de technologies, et renforcé son réseau de distribution et de fabrication en Europe, en
Ameérique du Nord et dans la région Asie-Pacifique. Ce processus d’expansion permanent
se poursuit avec l'amélioration des sites existants et la construction de nouvelles usines

de fabrication 300 mm submicroniques (taille inférieure au micron).

Activités

ST recoit des plaques de silicium vierges qui serviront de base & la fabrication des puces
microélectroniques. Ces puces interviennent dans plusieurs utilisations quotidiennes. En
effet, chaque personne utilise chaque jour environ 250 circuits électroniques. Des exemples

de ces utilisations sont données dans la Figure 1.

Les plaques de silicium vont suivre un long cheminement dans la salle blanche via les
nombreux ateliers. La fabrication de circuits intégrés se divise en deux grandes parties

comme le montre la Figure 2.

Front-End Cette activité consiste & produire des puces sur des plaques de silicium et

d’en tester la fonctionnalité. Pour parvenir & une performance de pointe, les équipements

1
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40 ailleurs:
Distributeur de
billets, Téléphone

80 a la maison :
machine a laver,

mobile, PDA’s... CD, TV, DVD...
Une
personne
40 au travail : “tl“S‘_’—‘
Imprimantes, chaque jour
scanners, PC... ~250 circuits

électroniques

1 milliard de
transistors utilisés

par personne et par 70 en voiture :
jour en 2008 ouverture de portes,
GPS, ABS, Air Bag, Radio...

Ficure 1 — Utilisation quotidienne des circuits électroniques.

Puces électroniques Produits

Plaques de Si vierge

FIGURE 2 — Principales étapes de fabrication d’un Circuit Intégré

utilisés en salle blanche mettent en oeuvre les technologies les plus avancées afin de

réaliser des motifs submicrométriques sur les plaquettes.

Back-End Les puces achevées dans les usines du Front-End sont envoyées dans les
usines de Back-End pour étre assemblées dans des boitiers. Pour ce faire, les puces de la
plaque sont découpées puis collées sur un support. Des fils sont ensuite soudés afin de
relier la puce aux connections du boitier avant de mouler le tout dans de la résine. Les
circuits intégrés sont ensuite testés, marqués, emballés, puis expédiés aux clients qui les

assembleront sur des circuits imprimeés.

Secteurs d’application et clients

STMicroelectronics dispose de centres de recherche, de centres de conception, de sites de
production et de bureaux de vente dans de nombreux pays. Son portefeuille d’applications

couvre un grand nombre de secteurs :
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Communication

Distribution

Industriel

Automobile

_ Grand public
Informatique

FIGURE 3 — Secteurs de vente du premier trimestre 2010

e Grand public : téléviseurs, lecteurs DVD, lecteurs MP3, LCD, ...
e (Cartes a puce.
e Automobile : commandes de moteurs, injection électronique, multimédia, freinage,

ABS, ...

e Communication : téléphones portables, circuits ADSL, bluetooth, modem WiFi, ...

Périphériques informatiques : ordinateurs, disques durs, moniteurs, webcams, ...

La Figure 3 montre la distribution des secteurs de vente de STMicroelectronics pendant
le premier semestre de ’année 2010. La société travaille avec plus de 1500 clients dont
les principaux sont Samsung, Nokia, Delta, Philips, Thomson, Sony, Nintendo, Alcatel,
Motorola, Ericsson, Siemens, Hewlett Packard, Seagate, Western Digital, IBM, Bosch,
Ford, Daimler Chrysler.

Le site de Crolles

STMicroelectronics Crolles (cf. Figure 4) est situé & 15km au nord-est de Grenoble, au
pied de la Dent de Crolles, dans la vallée séparant les deux chaines de montagnes : la

Chartreuse et Belledonne.

Crolles 1 (Crolles 200mm) Le site STMicroelectronics de Crolles congu en 1989
a été inauguré en 1993. Ce nouveau site comporte alors deux divisions : la division
chargée de la production de composants hautement complexes et la division Recherche et
Développement (R&D). La production de puces électroniques est réalisée sur des plaques
de silicium de 8 pouces (200mm de diamétre). La longueur de la grille du transistor
varie de 350nm a 120nm. La capacité de production de Crolles 200mm est de 7200

plaques/semaine.
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FIGURE 4 — Le site de Crolles

Crolles 2 (Crolles 300mm) FEn 2002, I'association entre STMicroelectronics, NXP
(Philips Semiconductors) et Freescale (Motorola Semiconductors) meéne & la création de
I’Alliance Crolles 2 avec la construction d’une nouvelle salle blanche de 5000m?. Cette
nouvelle unité de production plus moderne permet la fabrication de puces électroniques
a partir de plaques de silicium de 12 pouces (300mm de diameétre). L’évolution techno-
logique apportée par rapport & Crolles 1 est double : la taille des plaques sur lesquelles
sont gravées les puces augmentent de 200mm & 300mm tandis que la longueur de la grille
diminue (de 110nm jusqu’a 15nm). A la fin de Pannée 2007, l'alliance Crolles 2 (ST-
Microelectronics, NXP, Freescale) prend fin et la salle blanche de Crolles 2 est rachetée
entiérement par STMicroelectronics. La capacité de production de Crolles 300mm est de

3200 plaques/semaine.

Les salles blanches du site ST Crolles

Dans la salle blanche, on réalise différentes opérations technologiques sur des plaques de
silicium pour fabriquer des puces. Lorsque ces puces sont mises en boitier, on parle de
circuits intégrés. Les éléments qui constituent la puce sont trés petits (500 a 600 fois plus

petit qu’un cheveu), les dimensions sont inférieures au micron (um).

La présence de particules sur la plaquette de silicium au cours de la fabrication peut
entrainer des problémes de fonctionnement : puces hors service ou non fiables. Il faut
donc protéger la plaquette des contaminants, c¢’est pourquoi on fabrique les puces dans

une salle blanche.
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Les contaminants sont générés par tout ce qui nous entoure. Il faut donc limiter ’accés
4 la salle blanche aux seuls éléments indispensables & la fabrication des puces, c’est-a-
dire : les machines, les matiéres premiéres et les hommes. Mais comme tout génére des
particules, il va aussi falloir limiter les apports de contaminations par les éléments entrant

en salle blanches et par la salle blanche elle-méme.

La salle blanche se compose de trois grandes parties distinctes (cf figure 5) :

— le plénum : partie supérieure de la salle blanche par laquelle se fait I'injection d’air.
L’air étant prélevé a l'extérieur, il est préalablement traité pour étre amené aux ca-
ractéristiques voulues ; taux d’empoussiérement (classe : nombre de particules de taille
équivalente 4 0.1 um, contenu dans un volume d’l m? d’air), humidité (40% + 2%),
température (21oC' 4+ 0.5 0 C).

— la salle blanche : lieu o sont effectués les procédés. Cette salle est balayée par un
flux laminaire verticale de 0,45m/s qui chasse les particules vers les bas et se trouve
en surpression par rapport a Uextérieur (15 Pa) afin de maintenir un environnement
ultra propre en évitant que 'air extérieur ne rentre dans la salle lors de l'ouverture
d’une porte. Les cloisons de la salle blanche sont lisses et fabriquées d’une matiére non
contaminante : c’est de "aluminium alvéolé revétu d’une peinture époxy enrichie en
carbone. Le carbone est conducteur et permet I’évacuation de I’électricité statique vers
la terre. Cela évite que les murs attirent les particules.

— le basement : partie inférieure de la salle o se trouvent toutes les infrastructures
qui n’ont pas besoin d’étre en salle blanche et qui sont susceptibles de générer de la
contamination (particulaire ou volatile). C’est 1a ot sont regroupés les pompes (pour
éviter les vibrations en salle) qui aspirent 'air de la salle ainsi que tous les circuits

d’alimentations en produits chimiques, liquides ou gazeux.

Les étapes de la fabrication des puces

Les plaques de silicium vont subir environ 200 opérations pendant les 2 mois que dure
la fabrication des puces. Elles vont faire de nombreux allers et retours dans les différents

ateliers de la salle blanche.

Atelier Photolithographie la photolithographie permet de dessiner a la surface de
la plaque la géométrie des composants. Elle définit des zones permettant les opérations

technologiques suivantes.

Atelier Gravure Séche / Etch : la gravure séche permet d’enlever sélectivement la

matiére & l'aide de plasma. Elle intervient le plus souvent aprés la photolithographie.



Présentation de STMicroelectronics 6

Silencieux

Plenum  hauteur: 5m Hauteur de la salle blanche : 3 m
Basement hauteur: 7m 800 Piliers d'une profondeur de 20~25m

FIGURE 5 — Représentation schématique de la salle blanche

FIGURE 6 — Vue de la salle blanche

Atelier Gravures Humides / Wet : la gravure humide permet d’enlever sélective-
ment de la matiére avec des produits chimiques liquides. Elle intervient principalement

pour les nettoyages.

Atelier Implantation : réalisation d’implantations ioniques d’atomes spécifiques dans

le silicium afin d’améliorer la conductivité.

Atelier CMP (Chemical Mechanical Polishing) : polissage mécano-chimique de

la plaquette afin de réduire ’épaisseur des dépots et de planariser les couches.

Traitement Thermiques : fabrication de couches isolantes sur la plaque par dépot

ou par oxydation dans des fours & trés hautes températures.
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Dépot CVD (Chemical Vapor Deposition) / Diélectrique : dépot de matiéres
isolantes a la surface de la plaquette par méthode CVD a haute température pour l’iso-

lation des couches métalliques et inter-métalliques.

Meétal : dépot de couches conductrices qui permettront de relier les composants entre

eux pour assurer les fonctions électriques voulues.

Mise a Epaisseur : rabotage mécanique pour enlever la matiére en face arriére, en
fin de process, afin d’amincir la plaque avant le découpage des puces en vue de la mise

en boitier.

Test paramétrique : mesures électriques statiques permettant de valider les para-

meétres physiques des circuits réalisés (transistors, résistance, capacité).

Tri Electrique des Plaques (Electrical wafer Sorting) : vérification de la fonc-

tionnalité de chaque puce. Les mauvaises puces sont encrées.

Qualité : controle qualité des plaques & certains niveaux de la création du circuit

intégré.

Caractérisation : étude des défauts & différents niveaux du circuit par coupe ou «de-
processing» (élimination progressive des empilements de matériaux afin d’identifier les

défauts généres lors de la fabrication).

Meétrologie : mesure physique de différents parameétres physiques en cours de process

(épaisseur, contamination...).






Introduction générale

Contexte et problématique

Aujourd’hui, le controle des procédés de fabrication est une tache essentielle pour assurer
le bon fonctionnement des processus et garantir par la suite une production de haute qua-
lité. Ceci est un défi particulier lorsque les processus ont un grand nombre d’opérations
et systémes complexes, ce qui est le cas dans le processus de fabrication de dispositifs a
semi-conducteurs et des circuits intégrés. En effet, les progrés permanents réalisés dans
le domaine de l'intégration en microélectronique aboutissent & une complexification des
circuits et & la réduction des tailles des puces. Ceci est dans le but de proposer sur le

marché des composants compacts et plus performants.

La détection précoce et précise des défauts sur ces composants est alors nécessaire pour le
maintien d’un processus dans sa condition optimale et réduire les cotits de fabrication. Sur
les systémes actuels (circuits comprenant des millions de transistors, cartes électroniques
multicouches), les activités de test et de diagnostic prennent également de plus en plus

d’importance tout en étant de plus en plus difficiles & réaliser.

Le processus de fabrication de puces électroniques regroupées en wafers (matériaux semi-
conducteur utilisés dans la fabrication des puces) est un processus long et complexe. 11
nécessite un contréle de qualité répondant & des spécifications bien particuliéres. A la
fin du processus de fabrication, un test électrique, appelé test paramétrique, est effectué.
Ce test permet de faire un premier tri en sortie de production. La procédure PT vise
& détecter les wafers dont le comportement électrique est anormal, en se basant sur
un ensemble de paramétres électriques statiques (résistivité, conductivité, etc) mesurés
avec des structures de test placées sur plusieurs sites du wafer. Par exemple, en 300mm
(wafer dont le diamétre est de 300 mm), ces parameétres sont mesurés sur tous les lots et
tous les wafers en neuf sites (emplacements sur chaque wafer) : un site a proximité du
centre du wafer et huit sites répartis sur le wafer dont au moins cinq de ces huit sites
qui doivent étre & proximité du bord du wafer (cf. Figure 7). Le bon fonctionnement

du wafer est vérifié en testant si les paramétres électriques mesurés ne s’écartent d’une

9
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F1GURE 7 — Position des structures de test placées en 9 sites du wafer pour effectuer les
mesures des parameétres électriques statiques en 300mm.

valeur cible (Target) située entre la valeur de spécification minimale (Lower Specification
Limit LSL) et la valeur maximale (Upper Specification Limit USL). Ces deux valeurs
s’appellent limites de spécification des paramétres électriques. La méthode de détection
actuelle du test paramétrique est basée sur des regles d’arrét consistant a l’évaluation
de chaque paramétre individuel par rapport & ses propres limites de spécification pour

identifier les wafers anormaux.

Pendant la procédure de test, les wafers passent par deux phases successives :

1. La phase qualifiée de “hold” consiste & écarter tous les lots (un lot est un groupe-
ment de 25 wafers qui ont parcouru ensemble toutes les étapes du processus) dont
certains paramétres spécifiques mesurés sur chaque wafer composant ces lots sortent
du domaine de spécifications. Ces wafers sont alors re-analysés par les ingénieurs
au Test Paramétrique pour confirmer le mauvais fonctionnement du/des wafer(s)
ou attribuer l'alerte & un probléme de test. Ensuite, un “full test” (tests complé-
mentaires) est réalisé en cas d’anomalie confirmée du/des wafer(s) en retirant ces

derniers de la ligne de production afin d’y appliquer des tests plus spécifiques.

2. La deuxiéme phase vise a tester la fonctionnalité de chaque puce a 'aide du test
EWS (Electrical Wafer Sort) pour garantir le bon fonctionnement selon des spéci-

fications données.

La méthode de détection actuelle au PT est une approche univariée avec une efficience
limitée : le taux d’arrét (hold) peut aller jusqu'a 50% alors que le taux de rejet réel
(scrap) est inférieur & 1%. De plus, les ingénieurs PT ne regardent que les parameétres
électriques de type “Gated”, car parmi tous les paramétres électriques mesurés, ils sont les

seuls parameétres pour lesquels les limites de spécification sont parfaitement définies. Ces
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parameétres peuvent étre des paramétres de type qualité (Quality Q), ou des parameétres
de type fiablité (Reliability R).

Objectifs de la thése

Notre travail porte donc sur ’analyse des données issues du test paramétrique pour
prédire ’état de fonctionnement des puces électroniques afin d’éliminer les piéces défec-
tueuses en sortie de la chaine de production. Nous envisageons, dans le but d’améliorer
les gains de productivité, de trouver un moyen permettant de reconnaitre le mauvais
fonctionnement des puces dés la premiére phase de tests sans passer par des tests com-
plémentaires, et sans attendre les tests finaux qui sont plus approfondis et trés cotliteux

(comme le test EWS).

Notre but est de réduire au maximum le taux de d’arrét et éventuellement de le ramener
au taux de rejet. Autrement dit, notre travail consiste & proposer un systéme capable de
détecter dés la premiére phase de mesure les wafers anormaux en minimisant conjointe-
ment le nombre de wafers incorrectement rejetés (réellement bons, ils sont appelés dans

ce cas des fausses alarmes) et le nombre de wafers anormaux non détectés.

Pour cela, 'objectif principal de la thése est de développer une approche de détection

multivariée basée sur 'apprentissage statistique permettant :

1. d’améliorer la qualité et l'efficience de détection : identifier automatiquement les

wafers anormaux en réduisant le temps d’analyse.

2. de pouvoir détecter des wafers atypiques hors population mais dans les limites de

spécifications.

3. de fournir les signatures multidimensionnelles de ces wafers anormaux pour pouvoir

remonter & la cause de 'anomalie.

Concernant le deuxiéme point, le but est d’identifier des wafers qui ne ressemblent pas
a la population normale, mais qui ne peuvent pas étre détectés avec I’approche actuelle
chez ST car les paramétres électriques sont dans les limites de spécifications. La détec-
tion rapide de ce type de wafers permet d’anticiper d’éventuels problémes de rendement

rencontrés au test final EWS.

Notre approche multivariée utilise une méthode de classification pour détecter les wafers
anormaux et une méthode de sélection de variables qui permet d’améliorer la performance
de détection en réduisant la dimension de 'espace de variables, et de sélectionner les

parameétres électriques mis en cause.
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Les approches multivariées sont plus adéquates pour le suivi d’'un processus complexe.
Elles sont donc utilisées pour traiter les données multivariables dans le but d’en ex-
traire les informations pertinentes nécessaires pour prendre des décisons critiques. Leur
principal avantage, par rapport aux approches univariées, est la prise en compte de la

corrélation qui peut exister entre les variables.

Enfin nous envisageons exploiter 'approche de détection multivariée que nous avons
développée dans le cadre d’une application industrielle. D’ol1 1a nécessité d’implémenter
un modéle de detection en temps réel qui détecte les wafers anormaux a partir d’une

fenétre temporelle glissante de mesures électriques.

Etat de Dart

Les approches statistiques multivariées ont été utilisées avec succés pour la surveillance
des processus industriels [20, 50, 51, 97|. L’Analyse en Composantes Principales (ACP)
est une approche multivariée qui a regu une attention particuliére et a été largement
utilisée pour la détection de défauts dans les processus industriels. C’est I'une des tech-
niques linéaires de compression les plus largement utilisées pour extraire des informations
pertinentes & partir de données de grande dimension. Le but de I'ACP est de réduire la
dimension des données originelles en les projetant dans un sous-espace de dimension
réduite, minimisant la déformation du nuage de points initial. Aprés avoir réduit la di-
mension, la variabilité d’un processus est capturée par le suivi de la statistique 72 de
Hotelling ou de la surveillance des résidus (@ chart)[35]. Dans le cas des processus non
linéaires, une analyse en composantes principales non-linéaire KPCA (Kernel PCA) a

été utilisée pour traiter la non-linéarité a I’aide des fonctions noyaux [56] .

L’ACP a été utilisée pour développer respectivement un modéle statique (test hors ligne)
et un modele dynamique (détection en temps-réel) pour la détection de défauts dans les
installations de traitement biologique des eaux usées [7, 35|. Elle a été aussi utilisée
pour la détection de défauts dans un procédé de gravure en taille-douce sur une plaque
meétallique (etch process) [97]. Des modéles statiques de détection basés sur 'ACP ont
aussi été construits pour la détection d’anomalies dans les processus industriels des semi-
conducteurs au niveau SPC (Statistical Process Control) [61] et au Test Paramétrique
(PT) [65].

Une méthode alternative basée sur 'apprentissage statistique est les Machines & Vecteurs
Supports & une classe (1-SVM) [76], une variante du SVM classique [92]. 1-SVM est une
des méthodes de classification a une classe les plus connues pour la détection d’anomalies.

Un modéle statique de détection basé sur 1-SVM a été utilisé pour la détection de défauts
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dans un procédé de gravure en semi-conducteur, et dans un probléme de simulation de
génie chimique [61]. Il a été démontré que la méthode 1-SVM est performante dans
les deux applications considérées. De plus, cette méthode est plus performante que la
technique de détection basée sur ’ACP. Méme dans les cas non-linéaires, des expériences
de simulation ont montré que la technique 1-SVM détecte mieux que la méthode d’ACP
non-linéaire KPCA.

La méthode 1-SVM a été appliquée avec succés dans d’autres domaines comme la méde-

cine, la sécurité, I'informatique, etc. Nous citons quelques d’exemples d’application :

— la détection des tumeurs cérébrales par segmentation des images IRM (Imagerie par
Résonance Magnétique) [101].

— la détection des infections nosocomiales [21].

— La détection des accés anormaux & la base de registre utilisée par le systéme d’exploi-
tation Windows [41].

— la détection des activités anormales ou suspectes sur la cible analysée (un réseau in-
formatique pae exemple) par un systéme de détection d’intrusion [96].

— la classification d’images de télédétection [67].

Contributions

Dans ce travail, nous considérons le probléme de la détection automatique des wafers dont
le comportement électrique est atypique, un probléme devenant de plus en plus important
dans l'industrie des semi-conducteurs. Nous développons un modéle de détection basé
sur 'algorithme de classification a une classe 1-SVM. Comme les wafers sont décrits par
plusieurs centaines de paramétres électriques, une sélection de parameétres pertinents est
nécessaire. Pour accomplir la tache de sélection de variables, nous avons développé une
nouvelle méthode de “ranking” de type filtrage qui utilise le score de valeurs aberrantes
dans chaque variable pour obtenir une hiérarchie des variables. Ce score est calculé avec
le filtre MAD,, une technique robuste de détection univariée des valeurs aberrantes. Une
deuxiéme méthode de “ranking” pour la sélection de variables est présentée. C’est une
méthode de type wrapper basée sur un score calculé a partir de 'algorithme 1-SVM. Ce
score représente la variation du vecteur de poids dans cet algorithme. Cette méthode
est une adaptation a l'algorithme 1-SVM de la méthode SVM-RFE (Recursive Feature
Elimination with SVM), une méthode d’élimination récursive des variables basée sur un

score calculé avec les méthodes SVM.
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Le modeéle de détection en temps réel exploite une technique de réapprentissage dyna-
mique optimisée consistant en une mise a jour du modéle de détection (une des méthodes

de sélection de variables et ’algorithme 1-SVM) sur un historique glissant de données.

Apres avoir détecté les wafers anormaux, nous souhaitons définir les signatures multi-
dimensionnelles de ces wafers pour pouvoir remonter & la cause. Pour cela nous avons
proposé une méthode permettant d’identifier les paramétres électriques qui ont déclenché
I’anomalie. Ceci se fait en déterminant la distance normalisée par rapport a la population

normale, des parameétres retenus par la méthode de sélection de variables utilisée.

D’ott nos principales contributions réalisées pendant cette thése sont :

— Le développement des méthodes de sélection de variables appropriées a l'algorithmne
1-SVM.

— Le choix optimal des paramétres de ’algorithme 1-SVM et des méthodes de sélection
de variables associées.

— Le développement d’un modéle de détection en temps réel exploitant la méthode 1-
SVM avec une méthode de sélection de variables suivant une technique de réappren-
tissage dynamique.

— L’optimisation du scénario de réapprentissage dynamique.

— La définition de la signature multidimensionnelle des wafers anormaux.

A notre connaissance, notre travail est le premier qui implémente un systéme de détection
en temps réel dans le domaine des semi-conducteurs, et en méme temps le premier qui
développe un modéle dynamique basé sur la méthode 1-SVM. 11 est aussi le premier
travail qui traite la sélection de variables avec la méthode 1-SVM. En effet, nos données
contiennent des centaines de variables, alors que les travaux existants sur la détection
de défauts dans les procédés industriels ont traité des données avec quelques dizaines de

variables.

Organisation de la thése

Ce manuscrit est constitué d’une introduction générale, de cing chapitres principaux et

une conclusion générale.

Chapitre 1 : Détection d’anomalies.
Nous commencons ce chapitre par une présentation générale du contexte de la dé-
tection d’anomalies introduite dans le cadre d’un probléme de classification & une
classe. Puis nous parlons de différents aspects ainsi que les difficultés rencontrées

dans un probléme de détection d’anomalies. Ensuite nous décrivons les techniques
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basées sur la classification et nous nous intéressons en particulier aux méthodes de
machines & vecteurs support (SVM), considérées parmi les méthodes les plus répan-
dues en apprentissage automatique introduites initialement pour la classification
binaire. Les méthodes SVM ont été appliquées pour la détection d’anomalies en
les adaptant aux techniques de classification & une classe. Nous argumentons ainsi
I'utilisation de ces méthodes comme un choix principal dans notre travail consis-
tant & détecter les wafers anormaux dans le domaine des semi-conducteurs. Nous
présentons aussi des techniques basées sur la distance, notamment le clustering,
les voisins les plus proches et le T2 de Hotelling. Nous choisissons cette derniére
technique, fréquemment utilisée en milieu industriel, comme une méthode de dé-
tection alternative aux méthodes SVM. A la fin de ce chapitre sont présentées les

techniques statistiques et leurs limitations.

Chapitre 2 : Machines & Vecteurs Supports (SVM).
Dans la premiére partie de ce chapitre, nous présentons en détail les machines & vec-
teurs supports dans le cadre de la classification binaire. L’objectif des SVM est de
déterminer un hyperplan linéaire qui donne une séparation otpimale des données
d’apprentissage provenant de deux classes distinctes. Nous formulons alors deux
algorithmes SVM : le premier déterminant un hyperplan & marge maximale, et le
deuxiéme déterminant un hyperplan & marge souple (C-SVM) afin de permettre
a quelques observations d’étre mal classées dans le cas ol les données ne sont pas
séparables. FEnsuite nous montrons comment les méthodes SVM peuvent traiter
le probléme de séparation non-linéaire grace aux fonctions noyaux. Afin d’obtenir
un modéle peformant, nous considérons le probléme de sélection des paramétres du
modéle ainsi que le choix du noyau. Ensuite, nous donnons une autre reformulation
du probléme de 'hyperplan & marge souple (v-SVM) en substituant le parameétre C'
dans la fonction objective d’optimisation par un parameétre v ayant une meilleure
interprétation en terme de vecteurs de support et des erreurs d’apprentissage. Dans
la deuxiéme partie de ce chapitre, nous présentons les machines a vecteurs supports
a une classe (1-SVM), la méthode de détection principale dans notre travail. La mé-
thode 1-SVM, qui est une variante de ’algorithme v-SVM, est parmi les méthodes
de classification & une classe les plus connues pour la détection d’anomalies. L’idée
de base est de créer un hyperplan séparant la majorité des données d’apprentissage
de 'origine avec une marge maximale. Des démonstrations théoriques relatives a

Palgorithme 1-SVM sont données & la fin du chapitre.

Chapitre 3 : Réduction de dimension.
Dans le cas ou la dimension de I'espace des variables est élevée, une réduction
de la dimensionalité est indispensable pour améliorer les performances prédictives

des méthodes de détection utilisées. Cette réduction peut étre réalisée avec une
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compression ou une sélection de variables. Les approches de type compression de
variables transforment les données d’un espace de grande dimension dans un espace
de dimension plus petite. Nous présentons dans ce cadre ’analyse en composantes
principales (ACP). Puis nous considérons les approches de sélection de variables qui
essaient de trouver un sous-ensemble optimal des variables originelles. Nous nous
intéressons aux approches appropriées aux méthodes de classification & une classe,
et a 'algorithme 1-SVM en particulier. Nous décrivons tout d’abord notre méthode
de filtrage basée sur le filtre MAD,, puis une autre méthode de type wrapper que
nous avons adaptée a l'algorithme 1-SVM de la méthode SVM-RFE.

Chapitre 4 : Quelques résultats de la détection avec 1-SVM en mode statique.

Nous commencons tout d’abord par introduire les modeéles qui vont servir a la dé-
tection d’anomalies dans notre étude. Nous présentons les mesures de performance
utilisées pour évaluer ces modeéles. Puis nous parlons de la phase de prétraitement
des données nécessaires pour appliquer le modéle de détection comprenant essen-
tiellement la transposition des données et le traitement des mesures hors limites
de validité. Ensuite nous donnons une description détaillée de deux jeux de don-
nées réels de STMicroelectronics exploités dans notre étude, avant de présenter
quelques résultats de détection en mode statique. L’influence de I’hyperparameétre
~ du noyau gaussien sur la performance de I'algorithme 1-SVM est étudiée, ainsi
que 'importance de la sélection de variables pour améliorer la pertinence de détec-
tion avec cet algorithme. Enfin, nous étudions I'influence de la présence d’anomalies

dans I'étape d’apprentissage de 1-SVM.

Chapitre 5 : Détection en temps réel basée sur 1-SVM.
Ce dernier chapitre constitue une application industrielle des systémes de détection
développés. Nous commencons par décrire notre systéme de détection en temps
réel basé sur un modéle dynamique de 1-SVM avec 'une des deux méthodes de
sélection de variables spécifiquement développées. Nous décrivons également les
deux scénarios de mise & jour de la fenétre mobile de ce systéme, et nous expliquons
le choix des hyperparameétres optimaux. Ce systéme est ensuite appliqué aux deux
jeux de données réels de STMicroelectronics. Ce systéme est comparé a un systéme
alternatif basé sur le test de T2 de Hotelling qui est trés connu dans le domaine
de détection de défauts en industrie. Enfin, les signatures multidimensionnelles des
wafers anormaux détectés par notre systéme sont déterminées afin d’identifier le

ou les parametre(s) électrique(s) responsable(s) de ’anomalie.

Nous concluons cette thése en exposant les points forts de nos contributions et les pers-

pectives de recherche dans ce domaine.
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Chapitre 1

Détection d’anomalies

1.1 Classification & une classe

La classification multiclasse est un concept trés important en apprentissage automatique
et en fouille de données (data mining). En général, 'objectif des algorithmes de classifica-
tion multi-classe consiste a classifier un objet inconnu parmi plusieurs classes prédéfinies.
Cependant, parfois il n’est pas nécessaire de classer les objets dans deux ou plusieurs
classes. Dans de nombreuses applications, les modéles d’apprentissage construits pour la
classification visent a détecter des observations peu fréquentes considérées comme aty-
piques parmi une grande majorité des observations appartenant a une classe cible. Dans
ce cas, Une classification binaire (& deux classes) peut conduire & une situation ou Iap-
prentissage est déséquilibré : les observations de la classe cible sont en sur-apprentissage
et les observations atypiques en sous-apprentissage. Dans de telles situations, le probléme
de classification & une classe (ou monoclasse) peut étre considéré afin de construire un

classifieur approprié.

Le probléme de classification & une classe se caractérise donc par la présence d’une classe
cible. on suppose que seules les données de cette classe sont disponibles pour ’appren-
tissage du classifieur, alors que I'ensemble de test comprend des exemples positifs (classe
cible) et négatifs (classes d’anomalies). Un classifieur monoclasse cherche a décrire la dis-
tribution des exemples positifs et de traiter les exemples négatifs comme des anomalies

qui peuvent étre détectées sans avoir a apprendre explicitement leur apparition.

Une classification & une classe est aussi connue comme une détection des objets aber-
rants (outlier detection [8, 98]), une détection de la nouveauté (novelty detection [59])
ou une détection d’anomalies (anomaly detection [70]). La détection d’anomalies se ré-

fére au probléme de trouver les observations dans les données qui ne sont pas conformes

19
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au comportement normal prévu. Une anomalie est donc une observation qui est consi-
dérablement différente, divergente, dissemblable ou distincte, du reste des données. Le
probléme est alors de définir cette dissimilarité entre objets. Typiquement, celle-ci est
estimée par une fonction calculant la distance entre objets, la tache suivante consiste a
déterminer les objets les plus éloignés de la masse. Ces objets anormaux sont souvent ap-
pelés des anomalies, des observations aberrantes (outliers), des observations discordantes,
des exceptions, des défauts, des erreurs ou des nouveautés dans différents domaines d’ap-

plication.

La détection d’anomalies a été largement étudiée et utilisée dans une grande variété de
domaines d’application tels que la détection des défauts dans les processus industriels
[30, 61, 80, 84] qui est notre domaine d’intérét, la détection de la fraude a la carte bancaire
[11, 68] et dans ’assurance [11, 94], la détection d’intrusion [54], la santé publique [58, 85],

la reconnaissance des paroles [4] et de nombreux autres domaines.

L’importance de la détection d’anomalies est due au fait que les anomalies traduisent
des informations importantes (et souvent critiques) dans une grande variété de domaines
d’application. Par exemple, les anomalies dans les données de transaction de cartes de
crédit pourraient indiquer le vol de carte de crédit. De méme, les anomalies dans les
données de santé publique sont largement utilisés pour détecter les tendances anormales
dans les dossiers médicaux des patients qui pourraient étre des symptémes d’une nou-
velle maladie. Les anomalies dans notre étude correspopndent & des éventuels wafers
défectueux, et leur détection nous permet de gagner en terme de temps et de cott de

production.

L’application de la détection d’anomalies dans un grand nombre de domaines a donné
lieu a une grande diversité de techniques de détection d’anomalies. Un grand nombre de
ces techniques a été développé pour résoudre des problémes ciblés se rapportant & un
domaine d’application particulier, tandis que d’autres ont été développé de facon plus

générique.

Dans la suite de ce chapitre, nous parlerons des défis rencontrés dans un probléme de
détection d’anomalies ainsi que des différents aspects de ce probléme. Puis nous présen-

terons les différentes techniques utilisées pour détecter les anomalies.

1.2 Défis

Comme nous avons mentionné précédemment, une anomalie peut étre définie comme une
observation qui n’est pas conforme & un comportement normal attendu. Une approche

directe sera de caractériser la classe cible (comportement normal) et de déclarer toute
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observation dans les données n’appartenant pas a cette classe comme une anomalie. Mais

plusieurs facteurs rendent cette approche apparemment simple trés difficile :

— La définition d’une région normale, comprenant tous les comportements normaux pos-
sibles, est trés difficile. Souvent, un comportement normal ne cesse d’évoluer et une
notion existante d’un comportement normal pourrait ne pas étre suffisamment repré-
sentatif dans ['avenir.

— La limite entre un comportement normal et un autre, anormal, n’est souvent pas
précise. Ainsi, une anomalie qui se trouve preés de la frontiére peut étre une observation
normale et vice-versa.

— La disponibilité des étiquettes des données pour 'apprentissage et la validation est
souvent un probléme majeur pour le développement d’une technique de détection des

anomalies.

En présence des défis énumérés ci-dessus, une formulation généralisée du probléme de
la détection d’anomalies basée sur la définition abstraite d’anomalies n’est pas facile &
résoudre. En fait, la plupart des techniques existantes simplifie le probléme en se concen-
trant sur une formulation spécifique. La formulation est induite par des facteurs différents
tels que la nature des données, la nature des anomalies & détecter, etc. Dans plusieurs
cas, ces facteurs dépendent du domaine d’application dans lequel la technique est & ap-
pliquer. Ainsi, il y a de nombreuses formulations différentes du probléme de la détection
d’anomalies qui ont été explorées dans diverses disciplines telles que les statistiques,
I’apprentissage automatique, la fouille de données, la théorie de l'information. Comme
Iillustre la Figure 1.1, une technique de détection des anomalies posséde les éléments

suivants :

1. Nature des données, nature des anomalies, les contraintes et les hypothéses qui

constituent le probléme de reformulation.
2. Le domaine d’application dans lequel la technique est & appliquer.

3. Le concept et les idées utilisées & partir d’une ou plusieurs disciplines.

Pour une meilleure compréhension de ce qui suit, nous introduisons la terminologie sui-
vante : un probléme de détection d’anomalies se référe a la tache d’identifier les obser-
vations anormales dans des données selon une définition particuliére du comportement
anormal. Les anomalies se référent a ces observations anormales. Une technique de dé-
tection d’anomalies est une solution spécifique & un probléme de détection d’anomalies.

Une observation normale se référe & une observation dans les données qui n’est pas une
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FIGURE 1.1 — Une conception générale d’une technique de détection d’anomalies (Source

[17]).

anomalie. Les sorties d’une technique de détection d’anomalies pourraient étre des ob-
servations étiquettées (anormale ou normale). Certaines techniques attribuent également
un score & chaque observation basé sur la mesure dans laquelle ’obsrvation est considérée

comme anomalie.

1.3 Les différents aspects d’un probléme de détection d’ano-

malies

Les données

Les éléments clés de toute technique de détection d’anomalies sont les données d’entrée
dans lesquelles les anomalies résident. Il s’agit d’une collection des instances de données
(également appelés vecteurs, points, obesrvations, entités). Chaque instance peut étre
décrite par un ensemble des attributs (également désignés sous le nom de variables, ca-
ractéristiques). Les instances de données peuvent étre de différentes types tels que binaire,
catégorique ou continue. Chaque instance peut consister en un seul attribut (univariée)
ou un ensemble d’attributs (multivariée).

Une observation importante est que les variables utilisées par toute technique de dé-
tection d’anomalies ne se référent pas nécessairement aux variables observées dans les
données d’entrée. Plusieurs techniques utilisent par exemple la compression des variables
[2], ou construisent des variables plus complexes & partir des variables initiales [28]. Ces

méthodes donc consistent & travailler avec un ensemble de variables qui sont les plus
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susceptibles de discriminer entre les observations normales et les anomalies dans les don-
nées. Un défi majeur pour toute technique de détection d’anomalies consiste & identifier
un ensemble optimal de variables qui peuvent permettre a l'algorithme de donner les

meilleurs résultats en terme de précision ainsi que d’efficacité de calcul [99].

Types de supervision

Outre les données d’entrée (ou observations), un algorithme de détection d’anomalies
peut aussi avoir quelques informations supplémentaires & sa disposition. La présence
des étiquettes pour les données d’apprentissage est une telle information qui a été lar-
gement utilisée (surtout par les techniques basées sur des concepts de ’apprentissage
automatique et la théorie de 'apprentissage statistique [93]). Les étiquettes de données
indiquent la classe des instances de données, par exemple, les instances normales peuvent
étre étiquetées par +1 et les instances anormales par —1. Selon la disponibilité des éti-
quettes, les techniques de détection d’anomalies peuvent étre divisées en trois catégories :

supervisées, semi-supervisées et non supervisées [17].

Techniques supervisées

Dans ces techniques, nous disposons des étiquettes des données d’apprentissage. L’échan-
tillon d’apprentissage est alors constitué des instances appartenant & deux classes clai-
rement identifiées. Le but est de modéliser & la fois la normalité et 'anormalité & partir
de cet échantillon étiqueté. Les techniques supervisées de détection d’anomalies ont une
notion explicite des comportements normal et anormal. D’ou des modéles précis peuvent
étre construits. L’inconvénient de cette méthode est que 'obtention d’une grande quan-
tité de données d’apprentissage étiquetées avec précision est un processus lent, puisque
I’étiquetage est normalement effectué par un expert humain. Il peut également étre trés
difficile d’obtenir un ensemble de données d’apprentissage qui couvre tous les types d’ano-
malie possibles. Un autre inconvénient des techniques supervisées est que, souvent, les
instances de données anormales sont beaucoup moins nombreuses que les cas de données
normales. Certaines techniques injectent artificiellement des anomalies dans un ensemble
d’observations normales pour obtenir un échantillon d’apprentissage étiqueté et appliquer

par suite des techniques supervisées de détection d’anomalies [1].

Techniques semi-supervisées

Dans ces techniques, nous disposons des étiquettes des instances normales seulement.

L’échantillon d’apprentissage est alors constitué uniquement des observations de la classe
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cible. L’approche typique de ces techniques est de modéliser la classe des instances nor-
males et d’attribuer toute observation qui ne correspond pas & ce modéle & la classe
d’anomalies. Les techniques qui modélisent les observations normales durant la phase
d’apprentissage sont trés connues. Les étiquettes des observations normales sont rela-
tivement faciles & obtenir. En outre, un comportement normal est bien défini et par
conséquent il est plus facile de construire un modéle caractérisant un comportement

normal & partir des données d’apprentissage.

Techniques non supervisées

La troisiéme catégorie de techniques ne fait aucune hypothése quant & la disponibilité
des étiquettes des données d’apprentissage. Donc le but est de déterminer les anomalies
sans aucune connaissance a priori sur les données. Ainsi, ces techniques sont largement
les plus appliquées. Les techniques de cette catégorie font d’autres hypothéses sur les
données. Par exemple, les techniques statistiques paramétriques supposent une distribu-
tion paramétrique d’une ou de deux classes des observations. Un inconvénient majeur
des techniques non supervisées est le taux élevé de fausses alarmes, & cause du manque
de connaissances a priori sur les données, ce qui ne permet pas de définir explicitement

le comportement normal et/ou le comportement anormal.

La disponibilité des étiquettes détermine le choix d’'un des modes de fonctionnement
ci-dessus. Généralement, les techniques semi-supervisées et non supervisées sont plus
utilisées que les techniques supervisées supposant la disponibilité des anomalies dans les
données d’apprentissage. Une des raisons est que 'obtention des observations considé-
rées comme anomalies et couvrant tous les types possibles du comportement anormal
est difficile. En effet, de nouveaux types d’anomalies pourraient surgir, pour lesquels il

n’existe pas de données d’apprentissage étiquetées.

Types d’anomalies

Il est important, pour une technique de détection des anomalies de définir 'anomalie
qu’on souhaite détecter par cette technique. Les anomalies peuvent étre classées en trois
catégories en fonction de sa composition et sa relation avec les autres données. Les
exemples des types d’anomalies cités dans la suite sont adaptés de ’étude de Chandola
et al. [17].
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Anomalies individuelles

C’est le type le plus simple d’anomalie, et fait objet de la majorité des techniques exis-
tantes pour la détection d’anomalies. Une observation est une anomalie individuelle
lorsque une ou plusieurs valeurs de ses attributs ne ressemblent pas aux valeurs prises par
les observations considérées comme normales. Les techniques qui détectent les anomalies
individuelles analysent la relation de chaque exemple individuellement avec le reste des

exemples.

Par exemple, dans la détection de la fraude de carte de crédit, chacune des données
représente généralement une transaction par carte de crédit. Nous supposons, pour une
raison de simplicité, que les données sont définies en utilisant seulement deux attributs :
heure de la journée et le montant dépensé. La Figure 1.2 montre une représentation de
données en deux dimensions. La sphére représente la région normale pour les instances
de données. Les deux transactions A et B se situent en dehors des limites de la région
normale et sont donc considérées comme des anomalies individuelles. A est une tran-
saction frauduleuse qui est une anomalie car elle se produit & un moment anormal et le
montant dépensé est anormalement élevé. B est une anomalie qui a un montant dépensé

exceptionnellement élevé, méme si le temps de transaction est normal.

Anomalies contextuelles

Elles sont également appelées des anomalies conditionnelles [83]. Ces anomalies sont dues
a la survenue d’un exemple de données dans un contexte spécifique dans les données
fournies. Elles sont aussi des anomalies individuelles mais la différence avec le premier
type d’anomalies est que les anomalies contextuelles pourraient ne pas étre des anomalies
dans un contexte différent. Donc ces anomalies sont définies dans un contexte. La notion
du contexte est induite par la structure dans I’ensemble des données et doit étre spécifiée

comme une partie de la reformulation du probléme.

Les anomalies contextuelles satisfont deux propriétés :

1. Les données ont un caractére spatial/séquentiel. Chaque instance de données est
définie avec deux ensembles d’attributs : attributs contextuels et attributs com-
portementaux. Les attributs contextuels définissent la position d’une instance et
sont utilisés pour déterminer le contexte pour cette instance. Par exemple, dans
les séries chronologiques, le temps est un attribut contextuel qui détermine la po-
sition de l'instance dans la séquence entiére. Les attributs comportementaux sont

les attributs non contextuels d’une instance.



Chapitre 1. Détection d’anomalies 26

Montant dépense

ry
300¢ ”

250 o

200€
T NOTMa!

150€

100€

SO .I-‘\DH_ N ) //

0000 06:00 12:00 13:00 24:00

Heure de la journée

FIGURE 1.2 — Anomalies individuelles dans un jeu de données de transactions de carte
de crédit & deux dimensions.

2. Le comportement anormal est déterminé en utilisant les valeurs des attributs com-

portementaux dans un contexte spécifique.

Les anomalies contextuelles ont été les plus couramment étudiées dans les données tem-
porelles [74] et les données spatiales [24]. La Figure 1.3 montre un exemple d'une série
temporelle de la température qui indique la température menseulle d’'un domaine au
cours des derniéres années. Une température de 2 degrés Celsius peut étre normal pen-
dant I’hiver (au temps ¢1) a cet endroit, mais la méme valeur au cours de I’été (au temps

t9) serait une anomalie.

Anomalies collectives

Ces anomalies se produisent car un sous-ensemble des données est divergent du reste des
données. Les exemples de ce type des anomalies ne sont pas des anomalies par eux-mémes,
mais leur présence ensemble comme une sous-structure est anormale. Ce type d’anomalies
est significatif seulement quand les données ont un caractére spatial ou séquentiel. Ces
anomalies sont des sous-graphes ou sous-séquences anormales se produisant dans les

données.

La Figure 1.4 illustre une anomalie collective dans les données d’une série chronologique.
Le signal est une onde sinusoidale mais il y a au milieu des fréquences anormales par

rapport au reste du signal.
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FIGURE 1.4 — Anomalies collectives dans une onde sinusoidale.

Sorties d’une technique de détection d’anomalies

La nature des anomalies mentionnées ci-dessus impose une exigence sur la structure des
anomalies détectées par la technique. Une autre exigence pour toute technique de détec-
tion d’anomalies est la maniére dont les anomalies sont signalées. D’une facon générale,

ces techniques tombent dans I'une des deux catégories suivantes

Etiquettes

Les techniques de cette catégorie attribuent une étiquette a chaque exemple testé. Ainsi,
elles se comportent comme un algorithme de classification. L’avantage de ces techniques
est qu’elles fournissent un ensemble exacte d’anomalies pour les analystes. L’incovénient
de ces techniques est qu’elles ne différencient pas entre les anomalies ; le clagsement entre

les anomalies n’est pas fourni. Souvent, un niveau de confiance est associé pour décider
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de la nature d’un exemple. Dans ce cas, une décision binaire n’est pas possible, ce qui

motive la nécessité des techniques de type Scores décrites ci-dessous.

Scores

Ces techniques attribuent & chaque exemple un score en fonction de la mesure dans
laquelle cet exemple est considéré comme une anomalie. Ainsi, la sortie de ces tech-
niques est une liste de classement d’anomalies. Un analyste peut choisir soit d’analyser
les anomalies les plus “anormales”, ou d’utiliser un seuil pour sélectionner un ensemble

d’anomalies. Souvent, le choix de ce seuil n’est pas simple et doit étre fait arbitrairement.

Outre la définition de la nature des données et des anomalies, le domaine d’application
peut également imposer certaines contraintes, telles que le niveau souhaité de précision
et Defficacité de calcul. Par exemple dans notre étude, il faut faire un compromis entre
la qualité de détection des wafers anormaux et le taux de fausses alarmes suivant des
contraintes définies a priori. Plus précisement, nous pouvons nous décider de choisir
une technique de détection avec un taux de détection optimal en permettant au taux
de fausses alarmes d’aller jusqu'a 30%, ou d’obtenir un taux de détection moins élevé
afin de réduire le taux de fausses alarmes a une valeur plus petite (inférieur & 15% par

exemple).

Techniques de détection d’anomalies

Le probléme de détection d’anomalies peut étre reformulé de différentes facons selon les
entrées, les exigences et les contraintes. Les techniques décrites dans les sections suivantes
traitent principalement les anomalies individuelles. Plusieurs de ces techniques peuvent

étre étendues pour gérer les autres types d’anomalies.

Les techniques de détection d’anomalies peuvent étre divisées en quatre catégories : les
techniques basées sur la classification, les techniques basées sur la distance, les techniques

statistiques et les autres techniques.

1.4 Techniques basées sur la classification

L’objectif principal de la classification est de construire un modéle de classification en se
servant des étiquettes des données d’apprentissage et par suite classer les observations

& venir selon leurs classes d’appartencance en utilisant le modéle appris. Le probléme
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F1GURE 1.5 — Approche basée sur la classification pour la détection d’anomalies.

de détection d’anomalies est parfois traité comme un probléme de classification & deux

classes :

— une classe cible dont les données sont disponibles.

— une autre classe (classe d’anomalie) dont les données sont difficiles & obtenir.

Le principe général des méthodes proposées dans ce cadre consistent & générer artifi-
ciellement |1, 88] les données de la classe négative puis a employer des algortithmes
traditionnels d’apprentissage & deux classes. Ces techniques se situent dans le cadre des

techniques de détection d’anomalies supervisées.

D’autre part, les méthodes de classification a une classe visent & caractériser une classe des
objets normaux et identifier tous les objets qui ne ressemblent pas a cette classe. Ces tech-
niques se situent dans le cadre de techniques de détection d’anomalies semi-supervisées,
puisqu’elles exigent la connaissance de la classe normale seulement. Le probléme de clas-
sification est modélisé comme un probléme binaire oil les exemples qui n’appartiennent

pas & la classe normale sont des anomalies.

La Figure 1.5 montre comment les techniques de classification peuvent étre utilisées pour
la détection d’anomalies. En mode supervisé, le classifieur est construit pour séparer les
deux classes. La phase de test consiste & attribuer un exemple de test & une des deux
classes. En mode semi-supervisé, on construit une région autour des exemples normaux et
tout exemple en dehors de cette région est considéré comme une anomalie. Les avantages
et les inconvénients des techniques de classification supervisée et semi-supervisée sont

présentés dans le Tableau 1.1.

Les machines a vecteurs supports (SVM) [22] sont parmi les techniques de détection
d’anomalies basées sur la classification les plus connues. Le choix des SVM comme mé-

thode de détection dans notre travail sera justifié dans la section suivante.
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Classification | Avantages Inconvénients

Besoin des étiquettes des
exemples de deux classes
Ces techniques ont | Ces techniques ne peuvent
une trés  bonne | pas détecter les anomalies
qualité de détection | différentes de celles vues en
de plusieurs types | apprentissage

d’anomalies déja
vues

Supervisée

Besoin des étiquettes des
exemples de la classe nor-
male

Le comportement | Des nouveaux exemples
normal peut étre | normaux inédits en appren-
appris avec précision | tissage peuvent étre recon-
nus comme des anomalies,
ce qui donne un taux de
fausses alarmes élevé

Semi-supervisée

TABLE 1.1 — Avantages et inconvénients des techniques de classification supervisée et
semi-supervisée.

1.4.1 Machines & Vecteurs Support (SVM)

Les Machines & vecteurs support (Support Vector Machines SVM) sont des algorithmes
d’apprentissage statistique utilisés principalement pour la classification binaire. Un al-
gorithme SVM sépare les données appartenant a deux classes différentes en déterminant

un hyperplan qui donne une séparation maximale.

Les SVM ont été appliquées pour la détection d’anomalies en les adaptant aux techniques
de classification & une classe (apprentissage semi-supervisé)[72]. Ainsi, une technique
intuitive serait de déterminer la plus petite hypersphére [87] contenant tous les exemples
appartenant & la classe normale. La phase de test consisterait & déterminer de quel coté
de cet hypersphére se situe I’'exemple de test. Une autre variante de l'approche ci-dessus
|75], appelée machines & vecteurs support a une classe (1-SVM), consiste & déterminer
une région de volume minimum contenant la plupart des données et ceci en séparant les

observations de la classe normale de l'origine avec une marge maximale.

1.4.2 Choix des SVM pour la détection d’anomalies

Nous avons choisi 1-SVM comme une technique de classification a une classe pour la
détection d’anomalies. La raison du choix d’une classification & une classe est que les

données n’ont pas suffisamment d’anomalies par rapport aux observations normales. En
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effet, au test paramétrique le pourcentage des wafers anormaux n’est qu'une fraction de

pourcent.

D’autre part, 'avantage principal de 1-SVM par rapport aux autres méthodes de clas-
sification mono-classe est qu’il se concentre uniquement sur I’estimation de ’enveloppe
d’une région contenant les observations de la classe cible plutét que sur I’estimation de sa
densité de probabilité. D’autres avantages menant au choix de 1-SVM pour la détection

des wafers anormaux dans le domaine des semi-conducteurs sont les suivants :

1. Les SVM fournissent un temps d’apprentissage satisfaisant et des résultats de clas-

sification de bonne précision [44].

2. Les SVM sont des algorithmes d’apprentissage automatique qui, avec l'utilisation
des fonctions noyaux, permettent de capturer et modéliser la non-linéarité dans les

données.

3. Ces algorithmes ne supposent aucune hypothése sur la distribution des données (la

normalité par exemple).

4. L’existance de LIBSVM [18], une bibliothéque de programmation implémentant les

machines & vecteurs support et d’utilisation simple.
5. Les résultats obtenus avec 1-SVM ont été trés prometteurs |6, 36, 102].

Le Chapitre 2 sera consacré a présenter en détails les machines a vecteurs support biclasse,
et la variante développée dans le cadre de la classification a une classe pour la détection

d’anomalies.

1.5 Clustering

Le clustering est une technique d’apprentissage non-supervisée utilisée pour la classifi-
cation de données. Les données sont divisées en groupes appelés “clusters” en se basant
sur une distance ou une fonction de dissimilarité. Les données du méme cluster ont un
comportement similaire. Des techniques de détection d’anomalies basées sur le clustering
ont été développées. L’idée principale est que les instances normales appartiennent aux
clusters denses. Dans ces techniques, les anomalies vérfifient une des trois hypothéses

suivantes :

1. elles n’appartiennent & aucun cluster car elles sont trés peu nombreuses et diffé-

rentes des instances normales.
2. elles appartiennent & un petit cluster ou ils sont trés différentes des autres instances.

3. elles appartiennent & des clusters peu denses ot elles sont loins des autres instances

situées dans le méme cluster (anomalies locales).
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Nous citons par exemple les algorithmes FindOut [100] et CBLOF (Cluster Based Local
Outlier Factor) [40].

Ces techniques sont par contre cotiteuses en temps de calcul avec une complexité de
Iordre O(n?). De plus, si les données de la classe normale ne forment aucun cluster ou
forment des clusters non significatifs, ces techniques peuvent échouer. Finalement, dans
le cas ol on dispose de données de grande dimension, les individus ont plus de chance
d’étre eloignés les uns des autres au moins sur un sous-ensemble d’attributs, d’ou la

distance devient une mesure inappropriée.

1.6 Plus proches voisins

Les plus proches voisins est une approche largement utilisée en apprentissage automatique
et fouille de données. Dans ces méthodes, un objet est analysé par rapport a ses voisins
les plus proches. Cette aproche a été appliquée dans la classification, le clustering et la
détection d’anomalies. En détection d’anomalies, les méthodes des plus proches voisins
sont caractérisées par le fait qu’elles ont une notion explicite de proximité, définie sous
la forme d’une mesure de distance ou de similarité pour toute paire des instances de
données. Alors que le clustering a une vision globale des données, les méthodes des plus
proches voisins analysent chaque objet par rapport a son voisinage local. I’idée de base
est que les observations normales ont des voisins proches, tandis que les anomalies sont

situées loin des autres observations.

Ces techniques sont divisées en deux catégories. Des méthodes sont basées sur la distance
ol les anomalies sont les observations les plus distantes des autres observations. Nous
citons dans ce cadre la méthode des k plus proches voisins (k-Nearest Neighbors k-
NN) [48]. Les autres méthodes sont basées sur la densité ot les anomalies sont des
observations situées dans des régions moins denses que les autres. Les algorithmes LOF
(Local Outlier Factor) [14] et COF (Connectivity Outlier Factor) [86] sont des exemples

de ces méthodes.

[’avantage des techniques des plus proches voisins est qu’elles peuvent étre utilisées
dans un mode non-supervisé ou semi-supervisé. De plus, elles sont des méthodes non-
paramétriques qui ne font aucune hypotheése sur la distribution des données. Les incové-

nients sont les suivants :

— Si les observations normales n’ont pas le nombre suffisant de voisins, ces techniques
peuvent échouer.
~ La complexité de calcul des distances entre toutes les observations est de 'ordre O(n?).

La plupart de ces techniques requiert le calcul de la distance aux plus proches voisins
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de chaque observation. D’oll ces techniques, comme en Clustering, sont cotteuses du
point de vue computationnelle.
— En grande dimension, et comme en clustering, la distance devient aussi une mesure

inappropriée. Par suite, la notion de voisinage perd de sa signification.

1.7 Techniques statistiques

Les techniques statistiques peuvent étre considérées comme la détermination du modéle
probabiliste génératif (ou l'estimation de la fonction de distribution de probabilité des
données), puis de tester si une instance est engendrée par ce modeéle ou non. Ces tech-
niques estiment donc un modéle statistique qui capte la distribution des données, et les
instances sont évaluées par rapport & la fagcon dont elles s’adaptent au modéle. Si la
probabilité qu’une instance devant étre générée par ce modeéle est trés faible, I'instance

est considérée comme une anomalie.

Comme les techniques basées sur la classification, ces techniques fonctionnent générale-
ment en deux phases : la phase d’apprentissage qui comprend l’estimation du modéle
statistique (estimation des paramétres de la distribution), et la phase de test ou une
instance de test est comparée au modéle afin de déterminer si elle est une anomalie ou
non. La technique permet d’estimer la densité de probabilité soit pour les cas normaux,
soit pour les cas anormaux (techniques semi-supervisées), en fonction des étiquettes dis-
ponibles. Une technique non supervisée détermine un modéle statistique qui correspond
a la majorité des observations, et toute observation qui se situe dans une région de faible

probabilité est déclarée comme une anomalie.

1.7.1 Techniques paramétriques vs techniques non-paramétriques

Les techniques statistiques comprennent les techniques paramétriques et les techniques
non-paramétriques. Les techniques paramétriques supposent que les données de la classe
normale (et peut-étre anormale) sont générées a partir d’une distribution paramétrique
sous-jacente. Ainsi, la phase d’apprentissage consiste & estimer les paramétres de la dis-
tribution de I’échantillon donné. Ensuite, la probabilité d’occurence qu’une instance de
test soit générée a partir de cette distribution est déterminée. Si cette probabilité est trés
faible, I'instance de test est considérée comme une anomalie. Concernant la distribution
sous-jacente des données, plusieurs tests statistiques supposent une distribution gaus-
sienne. Pour les données avec des variables catégorielles, une distribution multinomiale

pourrait étre supposée. De méme, plusieurs techniques supposent une distribution d’une
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chaine de Markov lors de la modélisation des données séquentielles [63]. Dans des scéna-
rios réels, une seule distribution ne capture pas effectivement la distribution réelle des
données. D’ot1 plusieurs techniques supposent que les données proviennent d'un mélange
de distributions [29], et par conséquent la phase d’apprentissage consiste a estimer les

parameétres du modele de mélange (modéle de mélanges gaussiens par exemple).

Les techniques non-paramétriqus ne supposent pas la connaissance de la distribution des
données. Ces techniques utilisent les méthodes non-paramétriques pour apprendre une
distribution. Une des techniques les plus connues pour estimer une densité de probabilité
multidimensionnelle est [’estimateur ¢ noyau de Parzen ou encore appelée méthode de

Parzen-Rozenblatt (Parzen windows) [25].

1.7.2 T? de Hotelling

La technique de détection basée sur la statistique de T2 de Hotelling est une des tech-
niques statistiques paramétriques les plus utilisées. Cette statistique, proposée en 1947
par Hotelling [42], permet d’établir une carte de controle multivariée afin d’analyser un
systéme de variables corrélées. Cette statistique permet de résumer en une seule variable
I’état de controle du procédé. Elle tient compte de la valeur cible des différentes variables,

de leurs variances respectives et également des corrélations qui les lient.

Les données sont stockées dans une matrice X, «,, ot chacune des n lignes représente un

wafer décrit par p parameétres électriques. X s’écrit comme suit :
X=[z1...zi...xn] =[x1...05...2))

ou T = [Ti1 ... Tij - . .:Eip]T, = [T1j.. . 2. .:Enj]T et AT désigne le transposé d’une

matrice A.

Le principe de cette méthode est simple : une carte de controle est construite en se basant
sur la distance (élevée au carré) entre une observation définie par les valeurs prises par
les p grandeurs observées et la valeur centrale de ces p grandeurs lorsque le processus
est en fonctionnement normal. Puis cette distance est comparée a une limite de controle
supérieure notée UCL. Si la statistique Tf de la iéme observation est inférieur a UCL,
on considérera que 1'observation (le wafer dans notre cas) est sous-contrdle statistique et
donc elle est normale (le wafer est sain). Par contre, si Tf dépasse la limite de contrdle

UCL, on dira que 'observation n’est plus sous-controle (le wafer est anormal).

Une hypothése fondamentale dans la construction de 'indice T2 de Hotelling est que les

vecteurs d’observations sont issues d’une distribution normale mutlidimensionnelle. Pour
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calculer la statistique de Hotelling d’une observation quelconque x;, deux cas peuvent

se présenter :

1. Sile vecteur (z.1,22,...,2,)" suit une distribution normale N(uP,¥?), ott uP =

(1., ,up]T représente le vecteur des espérances des p variables, et X2 est la ma-

trice de covariance de dimension p X p, on peut montrer que la statistique

T = (zi. — 1")T (82 @i — 1P) (1.1)
suit une loi Chi-deux X2 & p degrés de liberté. La limite de controle supérieure
UCL est déterminée alors en se basant sur cette distribution. Plus précisement,
UCL est le quantile d’ordre 1 — a de la loi Chi-deux X2 & p degrés de liberté tel
que

P(X%(p) >UCL) = «

2. Si pP et X2 ne sont pas connus, la matrice de covariance X2 est estimée par la
matrice de covariance empirique 232, et le vecteur p? est estimé par le vecteur des
moyennes empiriques pP = [, . . . fij ... fip]T. Liexpression de la statistique T2 est
donnée par :

T2 = (w5, — i) (22) " (@i, — pP) (1.2)

(2

La limite de contréle supérieure est donnée par la distribution de Fisher comme

suit :
pn —1)(n + 1)

n(n —p)

UCL = F(p,n—p) (1.3)

ou F(p,n — p) est le quantile de la distribution de Fisher & p et n — p degrés de
liberté tel que :
P(F(p,n—p)>UCL) =«

1.8 Techniques et domaines d’application

Comme nous avons vu, les techniques statistiques pour la détection d’anomalies utilisent
des méthodes de modélisation statistique existantes pour modéliser les différentes types
de distribution. Cependant, quand la dimension de l'espace des variables est élevée,
Pestimation des distributions devient un probléme NP-difficile. De plus, les hypothéses

parameétriques ne sont souvent pas validées pour des jeux de données réels.

D’autres techniques de détection d’anomalies sont basées sur, par exemple, la théorie de
I'information ou de la théorie spectrale [17]. Le tableau 1.2 illustre quelques domaines

d’application ou différentes techniques de détection d’anomalies peuvent étre utilisées.
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Méthodes | Méthodes | Méthodes | Autres
de classi- | basées statis- mé-
fication sur la | tiques thodes
distance
Détection d’intrusion | * * * *
Détection des fraudes | * * *
Détection des défauts | * * *
dans les unités méca-
niques
Détection de dom- | * *
mages structurels
Domaine de traite- | * * * *
ment d’image
Les réseaux de cap- | * * * *
teurs

TABLE 1.2 — Techniques et domaines d’application de la détection d’anomalies.

On peut constater que la classification et les méthodes statistiques peuvent étre utilisées
dans de nombreux domaines différents. Les informations contenues dans le Tableau 1.2

sont adaptées de [17].

Toutes les techniques de détection d’anomalies ont leurs points forts et leurs points faibles
et aucune d’entre elles ne peut étre utilisée dans toutes les situations. Par exemple, les
techniques basées sur la distance ne fonctionnent pas bien avec des données en grande di-
mension, et les méthodes de classification supervisée ont besoin des étiquettes de I’échan-
tillon d’apprentissage. Certains problémes peuvent étre résolus avec des techniques de
classification & une classe tandis que d’autres nécessitent des méthodes de classification

multi-classes.



Chapitre 2

Machines a Vecteurs Supports
(SVM)

2.1 Apprentissage statitique et SVM

Depuis quelques années, de nouvelles méthodes d’apprentissage se développent sur la base
de la Theéorie de I’ Apprentissage Statistique (Statistical Learning Theory) de Vapnick et
Chervonenkis [93]. L’une de ces méthodes, appelée Machine & Vecteur de Support ou
SVM (Support Vector Machine) [22], permet de réaliser des estimations en classification

(& deux classes ou plus) [15] ou en régression [82].

Les machines & vecteurs supports sont une classe d’algorithmes basés sur le principe de
minimisation du “risque structurel”, décrit par la théorie de l'apprentisage statistique
de Vapnick et Chervonenkis [93]. Ce principe représente la dépendance entre 'erreur de
généralisation du modéle d’apprentissage et la famille de fonctions utilisée pour apprendre

le modéle. Une courte description de ce principe sera donnée dans la Section 2.3.1.

Les méthodes SVM sont largement répandues en apprentissage statistique et ont eu
beaucoup de succés dans quasiment tous les domaines ou elles ont été appliquées. Ces
méthodes ont rapidement été adoptées pour leur capacité a travailler avec des données
de grandes dimensions, le faible nombre d’hyperparamétres, leurs garanties théoriques,

et leurs bons résultats en pratique.

Les machines & vecteurs supports exploitent les concepts relatifs & la théorie de ’ap-
prentissage statistique pour aborder d’une facon nouvelle la question du dilemme biais-
variance. Le compromis entre la capacité d’apprentissage (adéquation aux données) et

la capacité de généralisation (complexité du modéele et capacité & donner des prédictions

37
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avec une précision élevée pour les futurs observations) de ces méthodes est respective-
ment accompli en minimisant ’erreur empirique et dans le méme temps, en essayant de
maximiser la distance entre les deux classes. La justification intuitive de cette méthode
d’apprentissage est la suivante : si I’échantillon d’apprentissage est linéairement sépa-
rable, il semble naturel de séparer parfaitement les éléments des deux classes de telle

sorte qu’ils soient le plus loin possible de la frontiére choisie.

L’idée de base des SVM est de trouver un hyperplan qui donne une séparation optimale
entre des observations appartenant & deux classes distinctes. La premiére version de
SVM était capable de classifier seulement les données séparables, ce qu’on appelle SVM
a “marge maximale” (hard margin SVM). Puis une variante de cette version, appelée
SVM a “marge souple” (soft margin SVM), a été introduite pour classifier les données

dans le cas non séparable [22].

Dans ce chapitre nous parlons tout d’abord du probléme de la classification linéaire.
Puis nous présentons la théorie des méthodes SVM et comment séparer linéairement les
données dans les cas séparable et non séparable. Nous expliquons ensuite comment les
méthodes SVM peuvent étre utilisées pour une séparation non linéaire des données . A
la fin du chapitre, nous donnons une description détaillée de la méthode SVM & une
classe, une variante des SVM classiques, introduite dans le cadre d’une classification a

une classe pour la détection d’anomalies.

2.2 Probléme de la classification linéaire

Le probléme de la discrimination linéaire remonte aux années 1930 quand Fisher a pro-
posé la premiére procédure de classification binaire. Entre les années 1960 et 1980 les
statistiques ont connu une révolution menée par I’apparition de la théorie de I’apprentis-
sage statistique. Et depuis 1992, les machines & vecteurs supports en sont le plus grand

succes.

2.2.1 Formalisation du probléme

Le probléme de classification rentre dans le cadre de ’apprentissage statistique supervisé.
Le but est de prévoir la classe d’appartenance notée y d’un vecteur p-dimensionnel x en
se basant sur les mesures des variables qui ’expliquent avec pour seule information celle

contenue dans 'echantillon d’apprentissage S.

Dans le cadre la discrimination biclasse, on considére un couple (M, Y) de variables

aléatoires a valeurs dans X x ), ou X désigne l'espace des variables explicatives souvent
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pris dans RP, Y = {—1,+1}. L’échantillon d’apprentissage S est ainsi une collection
de n réalisations indépendantes et identiquement distribuées (i.7.d.) du couple aléatoire
(M, Y) dont sa distribution jointe est fixe mais inconnue. Cet ensemble est souvent noté
par :

S ={(My, Y1),(My, Ya),...,(M,, Y,)}.

Le but est de construire une fonction h : X — Y telle que P(h(M) # Y') soit minimale.
h est appelée classifieur. L’appartenance d’une observation m; € RP (une réalisation de
la variable aléatoire M;) a une classe ou a une autre dépend de la valeur -1 ou 1 prise
par y; = h(m;). Dans la suite, et pour raison de conformité avec les notations introduites

dans le Chapitre 1, nous désignons par z;=x; € RP I’observation m;.

2.2.2 Approche générale

Généralement, la classification binaire est accomplie au moyen d’une fonction & valeurs
réelles f : X CRP — R. La fonction h introduite dans le paragraphe précédent est telle
que h(z) = Sgn(f(w)), i.e. toute observation x; est affectée & la classe qui correspond
au signe de f(x;) : si f(x;) > 0, z; est affecté a la classe positive (h(z;) = +1) sinon
elle sera dans la classe négative (h(z;) = —1). En classification linéaire la fonction f est

linéaire en x; et elle prend la forme générale suivante,

ot (w,b) € RP xR sont les paramétres & estimer de la fonction f et I'opérateur () désigne
le produit scalaire usuel dans RP. La régle de décision est donc donnée par sgn ( f (:Ul))
Comme nous sommes dans un cadre de classification par apprentissage, ’estimation des

parameétres de f s’effectue en se basant sur ’échantillon d’apprentissage S.

Géomeétriquement, le classifieur A divise ’espace des variables explicatives X' en deux
demi-espaces correspondant chacun & une classe. Cette séparation est réalisée par I’hy-
perplan H, ;) défini par I"équation (w, ) +b =0 ot w est un vecteur normal & ’hyper-
plan de séparation qu’on appelle vecteur de poids, tandis que la variation du parameétre
b, appelé biais, engendre une simple translation de ’hyperplan séparateur. Il est donc
nécessaire d’employer une représentation & (p + 1) paramétres de liberté pour parcourir

I’ensemble de tous les hyperplans de RP.

L’objectif de la discrimination linéaire est de trouver la bonne (En terme de capacité de
géneralisation) fonction f dans la classe de toutes les fonctions linéaires de X' dans R que
nous noterons Fr. La classe de tous les hyperplans qui en decoule sera notée H. Cette

forme simple de classifieur a été énormement utilisée dans la classification binaire. Les
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termes “vecteur de poids” pour le vecteur w et “biais” pour le paramétre b sont empruntés

de la litterature des reseaux de neurones.

Plusieurs algorithmes itératifs simples motivés par 'optimisation de différentes fonctions
de cofits ont été introduits dans les années 1960 pour séparer linéairement des observa-
tions issues de deux populations différentes. Les machines & vecteurs supports cherchent
plutdt & séparer parfaitement les deux classes de telle sorte que leurs élements soient le
plus loin possible de 'hyperplan trouvé. C’est pour définir cette notion de “plus loin” que

I’on introduit la “marge”.

2.2.3 Définitions de base

Dans ce paragraphe nous introduisons la notion de marge pour la classe des fonctions
linéaires F. Cette grandeur est au coeur des SVM et elle jouera un réle important tout

au long de la suite de cette partie.

Définition 2.2.1 (Marge biclasse). Soit f une fonction de F,. La marge d’une obser-

vation (z;,y;) € S relativement a la fonction f est définie par A; = y; f(x;).

Cette marge peut prendre une valeur négative. Elle dépend de la fonction f et non du
classifieur sgn( f ()) Si g est un multiple de f , les classifieurs pour ces deux fonctions

sont les mémes mais leurs marges sont différentes.

La valeur absolue de ~; est proportionnelle & la distance euclidienne séparant le point x;
de 'hyperplan H(,, ;) associé a f :
[(w, zi) + 0] _ [f@i] _ |yif(@a)] _ [Ad]

_ - = 12l (2.1)
[Jwll [[w]| [Jwll [[wl|

d(xia H(w7b)) -

Ces deux quantités ne coincident que lorsque ||w|| = 1, dans ce cas nous parlons de la
marge euclidienne. Enfin, 'observation x; est bien classée par f si et seulement si A; > 0.

Apres avoir introduit la notion de la marge, nous définissons ensuite :

— La distribution de marges d’un hyperplan H(,, ;) par rapport a ’échantillon d’appren-

tissage S est définie par :
Ms(Hu) = {8 = gil(w, @) +b);5i =1, 2,..., n}

— La marge de l’hyperplan H,, ) par rapport & I’échantillon d’apprentissage S est définie
par :
ms(Hyp) = min Ms(Hyp))

1<i<n
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Si nous normalisons w, notre hyperplan aura comme équation :

w b
H, ST, x> +— =0
(4 m2r) <uwr ]

Les hyperplans H,, 3 et H (;w_ by sont les mémes mais ils donnent lieu & des marges

[l [l

différentes. Dans ce cas, la valeur absolue de la marge d’un point x; est égale & la

distance euclidienne entre ce point et 'hyperplan H( w o by (cf. équation 2.1 avec

[l lw]|

|lw|| = 1). Ainsi, c’est la métrique euclidienne que nous utilisons en calculant les

marges plus tard. Ce changement d’échelle va jouer un role important dans la formula-
tion des problémes de maximisation de la marge, au sens euclidien, pour les machines

a vecteurs supports.

— Finalement, on définit sur S la marge de I’échantillon d’apprentissage mgs comme étant

le maximum de la marge euclidienne sur ’ensemble des hyperplans normalisés H s ol :

HN:{H( b):(w,b)ER'xR},

et

ms = max min MS H w > } :
Ha {1<i<n ( (lel’m)

L’hyperplan qui réalise ce maximum est appelé 'hyperplan & marge maximale et la va-
leur de sa marge sera positive dans le cas oit S est linéairement séparable. Dans le cas
ol I’échantillon d’apprentissage est non-linéairement séparable, un tel hyperplan n’existe
pas. En pratique, 'hypothése que I’échantillon S est linéairement séparable est assez
forte. De ce fait, d’autres mesures plus flexibles ont été utilisées afin d’autoriser quelques
violations de la marge et pour prendre en compte des propriétés plus générales de ’échan-

tillon d’apprentissage (cf. Section 2.3.3).

2.3 Machines a Vecteurs Supports biclasses

Au cours de cette section nous allons présenter les principaux problémes et résultats
de Papprentissage des machines & vecteurs supports dans le cadre de la classification
binaire. Tous les algorithmes qui seront exposés sont motivés par la théorie des bornes
developpée par Vapnik et Chervonenkis [93]. Cette théorie propose différents majorants
de 'erreur de généralisation. Par exemple nous pouvons nous intéresser & I'optimisation
de la marge, la marge relaxée par 'introduction des variables d’écarts &; ou le nombre des

vecteurs supports,. . .etc. Dans ce paragraphe nous allons mettre en lumiére la formulation



Chapitre 2. Machines & Vecteurs Supports (SVM) 42

la plus utilisée qui transforme le probléme de recherche de I'hyperplan séparateur en la

minimisation de la norme de son vecteur de poids w.

2.3.1 Minimisation du risque structurel

Dans les méthodes d’apprentissage, deux échantillons de données principaux sont géné-
ralement utilisés : I’échantillon d’apprentisage et I’échantillon de test. L’échantillon d’ap-
prentisage représente la part des données utilisée pour apprendre le modéle, et I’échan-
tillon de test est I’autre partie, non exploitée dans la phase d’apprentissage, utilisée pour
évaluer les performances de généralisation du modéle. La qualité de ce modéle est alors
jugée A sa capacité a réduire 'erreur de test ou de “généralisation”. Cependant, comme
le modele n’est pas construit en utilisant ’échantillon de test, l’erreur de généralisation
ne peut pas étre évaluée exactement car elle dépend de la distribution de probabilité des

données :

Mﬂzfmmmuw (2.2)

ou @ est la fonction d’erreur, x est le vecteur d’entrée, et ) est la distribution des données

(qui nous est inconnue).

La seule information dont nous disposons comme évaluation de ’erreur est I'erreur d’ap-

prentissage (ou le risque empirique) :

Remplf) = - Qlao) 2:3)

Cette information n’est pas suffisante. En effet, on peut facilement trouver un modéle
minimisant 'erreur d’apprentissage mais pour lequel l'erreur de généralisation sera trés
grande. Un exemple simple est la régression de données linéaires bruitées au moyen d’une
fonction polynomiale : plus le degré du polynome sera grand, plus 'erreur d’apprentissage
sera faible, mais plus l'erreur de généralisation sera élevée. On peut donc comprendre
que cette derniére est aussi liée a la famille de fonction utilisée comme modéle. Cette

dépendance est nommeée “risque structurel”.

Dans leur Théorie de I’Apprentissage Statistique, Vapnik et Chervonenkis ont prouvé
qu’il est possible de définir une majoration du risque structurel en fonction de la famille
de fonction utilisée pour le modéle. L'une de ces majorations peut étre calculée en utili-
sant la dimension de Vapnik-Chervonenkis (dimension VC) qui représente le plus grand
nombre d’observations pouvant étre séparées de toutes les facons possibles par une fonc-
tion appartenant a ’ensemble de fonctions linéaires F,. La borne VC est alors définie

ainsi : si la dimension VC, notée v, de la famille de fonctions utilisées est inférieure a la
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FIGURE 2.1 — Hyperplan linéaire pour des données séparables.

taille de I’échantillon d’apprentissage n, alors avec une probabilité d’au moins 1 — (, on

a .

R[f] < Remplf] + \/U (log () J;l) ~ log(3) (2.4)
Cette derniére équation nous donne une borne sur le risque structurel de f aprés calcul de
son risque empirique. L’utilité pratique de la borne donnée par I’'Equation (2.4) dépend
de la taille n de I’échantillon d’apprentissage et de la dim VC de la classe de fonctions
Fr. Avec une confiance 1 — ¢ donnée, le risque de 'une des fonctions qui minimisent le
risque empirique se rapproche du minimum sur F, du risque structurel lorsque la taille
de ’échantillon d’apprentissage augmente, et ce, d’autant plus vite que la dimension VC
de F, est faible. Ainsi, Vapnik considére que la taille n d’un échantillon d’apprentissage

S est faible pour estimer une fonction dans une classe de dimension v si le rapport n/v

est petit, soit n/v < 20.

2.3.2 Hyperplan a “marge maximale”

L’hyperplan & marge maximale est le modéle le plus simple des machines & vecteurs
supports et il constitue le point de départ pour d’autres algorithmes plus complexes. C’est
le cas de classification le plus simple ou il y a seulement deux classes et cet hyperplan ne
peut étre construit que si les exemples d’apprentissage sont séparables (cf. Fgure 2.1).
L’idée des SVM est de déterminer un hyperplan séparateur qui sépare les deux classes et
de maximiser la distance entre '’hyperplan séparateur et les observations les plus proches

de chaque classe.

Il est évident qu’il existe une multitude d’hyperplan valide mais la propriété remarquable
des SVM est que cet hyperplan est optimal. Nous allons chercher parmi les hyperplans

valides, celui qui passe “au milieu” des points de deux classes d’exemples. Formellement,
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FIGURE 2.2 — Hyperplan optimal & marge maximale pour les données séparables.

cela revient & chercher un hyperplan dont la distance minimale aux données d’apprentis-
sage est maximale. On appelle cette distance la marge entre ’hyperplan et les exemples.
L’hyperplan séparateur optimal est celui qui maximise cette marge. La Figure 2.2 illustre

les notions “hyperplan optimal” et “marge maximale” présentées dans ce paragraphe.

L’estimation des parametres (w*,b*) de cet hyperplan se fait donc en résolvant le pro-

bléme d’optimisation suivant :
(w*,0") = arg maz {man [y;((w, z;) + )], [[w]| = 1}. (2.5)

Par conséquent ce que nous optimisons dans le probléme (2.5) est la marge au sens de
la norme euclidienne vu que nous imposons la contrainte [|w|| = 1. Cette contrainte

n’implique aucune restriction sur ’ensemble des hyperplans H de RP. En effet :

H = {h/h(z) =sgn((w, z) +b)} (2.6)

= el = oo () + )y

= {h/h(x) = sgn((w, x) + b); |lw] = 1}.

Dire que les deux classes de ’échantillon d’apprentissage S sont linéairement séparables
est équivalent a dire qu’il existe des paramétres (w*, b*) € RP x R tels que l'on a pour

tout i € {1,..., n}:

(w*, ;) +b° > 0siy; = +1
(W, ;) +b° < 0siy; = —1

ce qui est équivalent & :

yi((w*, x;) +0") > 0 Vie {1,..., n}.
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Les paramétres (w*, b*) sont normalisés par min; [y;((w*, ;) + b*)], pour obtenir (0, b)
tels que :
yi((W, &) +b) > 1 Vie {1,...,n}. (2.7)

Ainsi la marge de I’hyperplan H (@,5) notée Ay est la distance entre les hyperplans d’équa-
tions (w, )+ b= 1let (W, )+ b= —1 qui sont paralléles & H(w ) ©t lui sont équidistants.
Soient T et 2~ deux points vérifiant respectivement les deux équations précédentes, nous

écrivons alors :

Ay = (”“E’,x*‘)—(?},x_)
" T T 2.8)

Comme notre but est de maximiser cette marge, cela revient alors & minimiser la norme
du vecteur de poids ||w|. L’hyperplan & marge maximale est la solution du probléme
primal d’optimisation suivant portant sur les parameétres w et b :

Minimisery, 1, 5 lwll”

2.9
sous les contraintes y; ((w, ;) +0) > 1, i=1,2,. .., n. (29)

Nous nous retrouvons ainsi face & un probléme d’optimisation quadratique convexe sous
contraintes linéaires.
Pour résoudre le probléme (2.9), on construit le lagrangien L qui est la somme de la

fonction objective et d’une combinaison linéaire des contraintes du probléme (2.9). Ce

lagrangien posséde un unique point-selle pour ce genre de problémes. Soit alors :

1 n
L(w, b, ) = 5 lw]|* — 2 a; [yi((w, z;) +b) — 1], (2.10)
1=
oules oy, 1 = 1,..., n, sont des réels positifs désignant les multiplicateurs de Lagrange ou

variables duales associées aux contraintes du probléme (2.9). Le coefficient % qui apparait

ici est rajouté pour simplifier les calculs de dérivée qui vont suivre.

Le probléme primal et sa formulation duale ont la méme solution qui correspond & un
point-selle du lagrangien. Pour trouver ce point selle, on est appelé & minimiser L par
rapport aux variables primaires w et b et le maximiser par rapport aux variables duales
«;. Le point selle doit donc satisfaire les conditions nécessaires dites de stationnarité, i.e

la dérivée du Lagrangien par rapport aux variables primaires doit s’annuler :

OL(w, b, a) =
OL(w, b, a) - B
Plw-b0) s Y= 0 (2.12)

=1
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En substituant (2.11) et (2.12) dans (2.10), on élimine les variables primaires et ’on ob-
tient la forme duale du probléme d’optimisation. C’est un probléme quadratique consis-

tant & trouver les multiplicateurs de Lagrange a; > 0 tels que :

Maximiser,, Wa)=> " o — %Z?J:l Yy (s, xj),
sousles contraintes Y " yia; =0, (2.13)
a;>0, i=1,2,... n

Ce dernier probléme peut étre résolu en utilisant des méthodes standards de program-
mation quadratique [34]. Une fois la solution optimale o* = (af,..., aj,) du probléme

(2.13) obtenue, le vecteur de poids de ’hyperplan a marge maximale recherché s’écrit :
n
w* = Z Q5 Yi ;. (2.14)
i=1
Il est & noter que les conditions de Karush-Kuhn-Tucker (KKT) [53],
o [yi((w*, z) +0%) =1 =0, i=1,2,...,n (2.15)

qui expriment le fait qu’a 'optimum le produit des variables duales et des contraintes
associées doit étre nul, nous donnent une information trés utile sur la structure de la
solution. Ces conditions (2.15) impliquent que seuls les points qui sont sur les hyperplans
frontiére (x;, w)+b = %1 jouent un role, car les multiplicateurs de Lagrange o sont non
nuls pour ces seuls points. Ces points sont appelés vecteurs supports (SVs). L’ensemble

des indices des vecteurs supports est noté sv :

sv={ie{l,2,...,n}; af #0}

Compte tenu des conditions de KKT, ces vecteurs définissent & eux seuls la solution du
probléme (2.9). Ils constituent donc la partie active de ’échantillon d’apprentissage. Si
un vecteur non support est supprimé de ’echantillon d’apprentissage, nous retrouvons
toujours le méme hyperplan séparateur,i.e. la solution du probléme (2.9) reste la méme.
Cette proprieté rend les machines & vecteurs supports trés attractives car elles permettent

d’extraire les élements representatifs de 1’échantillon d’apprentissage.

Enfin, la fonction linéaire correspondante a ’hyperplan solution peut alors étre écrite :

flz) = (w*, z) +b" = Z a;yi(xi, x) + b, (2.16)

1ESV

o b* est obtenue en utilisant n’'importe quel vecteur support (x;, y;)iesy dans 'équation
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FIGURE 2.3 — Hyperplan optimal & marge souple pour des données non-séparables.

(2.15). On remarque que 'hyperplan solution ne requiert que le calcul des produits sca-
laires (x, z;) entre des vecteurs de 'espace d’entrée X'. On remarque aussi que la solution
ne dépend plus de la dimension p de ’espace d’entrée, mais de la taille n de ’échantillon

d’apprentissage et méme du nombre de vecteurs supports qui est bien inférieur a n.

La regle de classification d’une nouvelle observation x basée sur 'hyperplan a marge

maximale est donnée par :

hz) = sgn (f(z)) = sgn (Z o7 yi(Ti, =) + b*> : (2.17)

1ESV

2.3.3 Hyperplan a “marge souple” : C-SVM

L’hypothése que les données soient séparables conditionne beaucoup la résolution du
probléme (2.9). En effet, il suffit qu'une observation des deux classes viole la contrainte

(2.3) pour que ce probléme n’ait plus de solution.

Comme indiqué précédemment, la premiére version de SVM (SVM a marge maximale)
peut seulement classifier les données séparables. Alors, comment pouvons-nous générali-

ser cette version pour gérer les données non-séparables 7

Cette généralisation de ’hyperplan a marge maximale & été proposée par [22] en intro-
duisant les variables d’écart a la marge (§)1<i<n (cf. Figure 2.3). Les SVM qui sont
capables de séparer les donnés non-séparables sont appelés SVM & marge souple. Les
SVM a marge souple cherchent un hyperplan séparateur comme dans les SVM & marge
maximale, tout en permettant a quelques observations d’étre mal classées. L’idée consiste
a relacher les contraintes (2.7) dans le but d’autoriser quelques erreurs de classification.
Les SVM a marge souple essayent de minimiser la somme des variables d’écart & la marge
&; des erreurs d’apprentissage et de maximiser la marge entre les classes. Notons que la

valeur de &; est égale & zéro si x; est classée correctement.
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Une premiére réalisation pour déterminer un hyperplan a marge souple est appelée C-
SVM (C-Support Vectors Machines). Cette approche utilise le parametre de pénalisation
C' qui contrdle le compromis entre la maximisation de la marge et la permission a quelques

observations d’étre mal classés. Le probléeme (2.9) devient alors :

sous les contraintes  y;({(w, z;) +b) > 1—¢; (2.18)
& >0, i=1,2,...,n.

Autrement dit, on cherche & maximiser la marge en s’autorisant pour chaque contrainte
une erreur positive & la plus petite possible. Le paramétre supplémentaire C' qui apparait
ici est un hyperparamétre fixé par I'utilisateur et doit étre calibré en fonction de données.
Il permet de controler I'importance de 'erreur que I'on s’autorise par rapport a la taille

de la marge. Plus C' est important, moins d’erreurs sont autorisées.

En suivant la méme démarche du Lagrangien que précédemment, nous aboutissons a la

forme duale

Maximiser,, Wia)=>" o — %ZZ]’:I Yy (T, T5),
sous les contraintes > ; yia; = 0, (2.19)
0<a;<C, i=1,2.. n

La seule différence par rapport au probléme (2.13) est la majoration des a; par C. On
peut montrer que si S est séparable et quand C est suffisamment grand, les problémes

(2.13) et (2.19) deviennent équivalents. Le choix de C sera discuté dans la Section 2.3.5.

2.3.4 SVM non linéaires

Comment les algorithmes de SVM ci-dessus peuvent étre généralisés au cas oul la fonction
de décision n’est pas une fonction linéaire de données? Est-il possible de construire un

hyperplan linéaire qui sépare les données non linéaires 7

L’extension de SVM pour traiter les données non linéaires est basée sur une transforma-
tion de ces données dans un espace de dimension plus grande ( un espace de Hilbert de
dimension finie ou infinie). Puis une classification linéaire est effectuée dans cet espace

transformé (cf. Figure 2.4).

En remarquant que dans la résolution des problémes (2.13) et (2.19), seuls les produits
scalaires (x;, xj) sont nécessaires, les SVM peuvent étre étendues pour traiter le cas

non-linéaire. [’astuce qui fait la force des SVM repose sur les noyaux autoreproduisants
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Espace transformé i y
Espace d’entrée Espace d’entrée

FIGURE 2.4 — Séparation non linéaire des données.

[5]. L'idée de Boser et al. [12] est de transformer les observations z; dans un espace de

Hilbert H de dimension plus élevé, a ’aide d’une fonction non-linéaire ¢ : RP — H.

L’espace H ainsi obtenu est appelé espace de redescription ou aussi espace transformé.
Tout ce qu’il nous reste a faire c’est de résoudre le probléme (2.13) ou (2.19) dans l’espace
H, en remplacant (z;, ;) par (¢(x;), ¢(x;)). Cependant, il peut étre parfois possible de
ne pas avoir i effectuer explicitement ces produits scalaires dans H grace & I'utilisation
de fonctions noyaux. C’est ce qu’on appelle Iastuce de noyauz (kernel trick [3]). En effet,

si on peut trouver une “fonction noyau” K telle que

K(zi, 25) = (¢(xi), d(x5)), (2.20)

nous aurons alors seulement besoin d’utiliser K dans l’algorithme d’apprentissage, sans
jamais avoir besoin de connaitre explicitement ¢. Un exemple de cette fonction est le
noyau gaussien

K(z, z) :exp(fvﬂxszZ). (2.21)

Nous donnons maintenant un exemple simple pour un noyau, pour lequel nous pouvons
construire la fonction ¢. Supposons que les données sont des vecteurs dans R?, et que
nous choisissons K (z;, ;) = ({4, ;1:]->)2. Il est facile de trouver un espace H, et une
fonction ¢ de R? dans H, telle que ((z, y))? = (#(z), ¢(y)) : nous choisissons H = R? et
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Notons que ni la fonction ¢ ni ’espace H sont uniques pour un noyau donné. Nous

pourrions également trouver une deuxiéme fonction ¢ : R? — R3

2 2
Ly — X3

1
o(z) = 5 2712

x%—kx%

ou aussi une troixiéme fonction ¢ : R? — R*

telles que ((z, y))2 = (d(z), d(y))-

Pour quels noyaux existe-t-il une paire {H, ¢}, avec les propriétés décrites ci-dessus?
Jusqu’a présent, le seul critére que nous avons énoncé pour savoir si une fonction sy-
métrique K : X x X — R est une fonction noyau était celui d’exhiber un espace de
redescritpion H et de vérifier que K correspond a un produit scalaire dans . Nous
cherchons maintenant & caractériser les fonctions noyaux sans passer explicitement par

I’espace de redescription.

Etant donné I’ensemble d’apprentissage S, nous pouvons calculer la matrice de Gram
(ou matrice noyau) G dont les éléments sont : G;; = K (i, =;)1<i j<n. Une matrice réelle
G de dimension n x n vérifiant la forme quadratique Q(v) = vT Gv > 0 pour tout vecteur
v € R™ est dite semi-définie positive. Si Q(v) = 0 seulement quand v = 0, alors la
matrice G est dite définie positive. De maniére équivalente, une matrice symétrique est

semi-définie positive si et seulement si toutes ses valeurs propres sont positives.

Dans la pratique on choisit un noyau K qui satisfait la condition de Mercer ([23, 64])
afin de garantir la décomposition (2.20). Une fonction K : X x X — R est une fonction
noyau si et seulement si elle est symétrique et semi-définie positive. Ceci est équivaut a

dire que, pour toute fonction u telle que

/u(:p)zdx (2.22)

est fini (i.e. u € Ly(X), on a

/K(w, y)u(z)u(y)de dy > 0. (2.23)
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De maniére équivalente, une fonction noyau définissant une matrice de Gram semi-définie

positive pour tout ensemble d’apprentissage S est semi-définie postive.

Notons que dans certains cas, il est difficile de vérifier si les conditions de Mercer sont
satisfaites, puisque la relation (2.23) doit étre valable pour toute fonction u satisfaisante

léquation (2.22).

Les premiers noyaux basiques utilisés dans les problémes de reconnaissance de forme, et

en SVM notamment, ont été les suivants :

linéaire : K(z, z) = (z, 2).

— polynomial : K (z, 2) = (v(z, z) + T)T], v > 0.
— gaussien : k(K, z) = exp(— v |lz — z|)? ), v > 0.
— sigmoide : K (z, z) = tanh(y(z, z) + 7).

Pour plus de détails sur les méthodes de noyaux, le lecteur pourrait se référer a |79]

2.3.5 Choix du noyau et des hyperparamétres

L’implémentation d’un algorithme de SVM biclasse exige les spécifications suivantes :
la fonction noyau, les hyperparamétres du noyau et le paramétre C' dans C-SVM ou v
dans v-SVM. Le réglage de ces paramétres est une étape cruciale pour obtenir un modéle
performant. Il n’existe pas une méthode automatique pour spécifier les paramétres du

modéle construit.

Choix du noyau

Le fait d’utiliser différents types de noyau avec différents réglages de leurs hyperpara-
métres aboutit & des configurations géométriques qui correspondent & une variété d’esti-

mateurs non linéaires dans ’espace de redescription.

En général, le noyau gaussien est un choix raisonnable. Empiriquement, il fournit les
meilleures performances en classification [62]. Contrairement au noyau linéaire, ce noyau
peut gérer la séparation des données non linéaires. En outre, le noyau linéaire est un cas
particulier du noyau gaussien, puisque le noyau linéaire avec un paramétre de pénali-
sation C' a la méme performance qu'un noyau gaussien avec certains paramétres (C, )
[47]. De plus, le noyau sigmoide se comporte comme le noyau gaussien pour certains

hyperparamétres [57].
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Une deuxiéme raison justifiant le choix du noyau gaussien est le nombre des hyperpara-
métres a régler. Ce noyau présente 'avantage de n’avoir qu’un hyperparamétre a fixer ()

contre trois pour les noyaux polynomiaux (v, 7 et 1) et deux pour les noyaux sigmoides

(v et 7).

Enfin, le noyau gaussien a moins de difficultés numériques. Un point clé pour ces noyaux
est que 0 < K(x, z) < 1 contrairement aux noyaux polynomiaux avec lequels les valeurs
peuvent aller a I'infini (’y(:z:, zy+ 71> 1) ou zéro (’y(x, 2y +71< 1) quand le degré n est
large. Par ailleurs, il faut noter que le noyau sigmoide n’est pas valide (i.e. le produit

scalaire de deux vecteurs) sous certains parameétres [93].

Vu les multiples avantages du noyau gaussien par rapport aux autres noyaux, nous avons
décidé de choisir ce noyau lors d'une construction d’'un modéle SVM. L’hyperparameétre
v controle la largeur du noyau gaussien. Selon Vapnick [92], le choix de la valeur de ~
dépend de la dimension de l'espace de description auquel les SVM sont appliqués, et

celui-ci préconise de choisir v = %.

Choix de C et v

Pour le choix de C, comme pour le choix de 7, on ne sait pas & ’avance quels sont les
meilleurs réglages pour un probleme donné. Par conséquent une sorte de sélection de
modele (choix de paramétres) doit étre effectuée. L’objectif est d’identifier les valeurs
idéales de (C,~) de sorte que le classifieur donne la meilleure prédiction des futurs ob-
servations. Une stratégie commune consiste & séparer I’échantillon dont on dispose en
deux parties : un ensemble d’apprentissage pour construire le modéle et un ensemble de
validation afin d’obtenir le meilleur réglage de paramétres. La qualité de prédiction obte-
nue sur ’ensemble de validation reflete plus précisement la performance de classification
sur un ensemble indépendant (i.e. qui n’a pas servi dans la phase d’apprentissage). En
pratique, les jeux de données sont rarement suffisamment grands pour que l'erreur de
test calculée sur ’ensemble de validation estime correctement ’erreur de prédiction du
modéle. Une version améliorée de cette procédure est la validation croisée, qui est une

alternative trés utilisée pour gérer la parcimonie des données.

Dans une validation croisée, nous divisons tout d’abord I’échantillon d’apprentissage en V'
sous-ensembles de méme taille. Séquentiellement, un sous-ensemble est testé en utilisant
le clagsifieur appris sur les V — 1 sous-ensembles restants. Ainsi, chaque instance de
données a été testé une seule fois, par suite la précision de la validation croisée est le

pourcentage des données qui sont correctement classées.

Nous expliquons maintenant comment trouver les meilleurs paramétres C' et v & utiliger.

La méthode consiste & mettre en place une “grille de recherche” (grid-search) pour C et
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~v qui va utiliser la validation croisée ou I'ensemble de validation. Différentes paires de
(C,~) sont constituées, et celle avec la meilleure précision obtenue a partir d’une de deux
procédures est retenue. Il a été constaté dans [43] qu’essayer des séquences de croissances
exponentielles de C' et v est une méthode pratique pour identifier les bons paramétres

15 9=13 . 23). Aprés avoir identifié une

(par exemple, C' = 275,273 . 215 4 = 2~
meilleure région sur la grille, une recherche de grille plus fine sur cette région peut
étre effectuée pour trouver un couple (C,7) qui donne une meilleure précision avec la
procédure utilisée. Aprés avoir trouvé le meilleur couple, nous apprenons le classifieur

final & partir de I’échantillon d’apprentissage tout entier.

2.3.6 Hyperplan a “marge souple” : »-SVM

Dans plusieurs méthodes d’apprentissage statistique, un reparamétrage de ’algorithme
original est utile afin de simplifier son utilisation. Dans P'algorithme C-SVM, le seul
parameétre dont on dispose est la constante de régularisation C. Rappelons que C est
une constante positive controlant le compromis entre la maximisation de la marge et la
permission & quelques données d’apprentissage d’étre mal classées. Comme nous avons
vu dans la Section 2.3.5 (choix de C et 7), il n’est pas facile de sélectionner une valeur
appropriée pour C. Pour le substituer par un paramétre avec une interprétation inté-
ressante, une autre réalisation pour déterminer un hyperplan optimal & marge souple,

appelée v-SVM, a été introduite par Scholkopf et al. [78].

Le nouveau paramétre introduit v € [0,1] permet de contrdler le nombre de vecteurs
supports et le nombre des erreurs de la marge (observations mal classés ou situés dans la
marge). Plus précisement, Scholkopf et al. ont démontré que v est une borne inférieure
de la fraction de vecteurs supports, et une borne supérieure de la fraction des erreurs de
la marge (2.38).

Comme un probléme primal pour cette approche, nous considérons

Minimiserybpe 3 llwl|” —vo+ 5 30 &,
sous les contraintes  y;((w, ¢(x;)) +b) > p—&; (2.24)
£ >0,i=1,2,...,n, p> 0.

Notons que la constante C' n’apparait plus dans cette formulation. Elle a été substi-
tuée par un parameétre v, et également par une variable supplémentaire p a optimiser.
Pour comprendre le role de p, notons que pour £ = 0, la contrainte dans (2.24) indique

simplement que les deux classes sont séparées par la marge 2p/ ||w]|.
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Pour former le dual de ’algorithme v-SVM, nous considérons le lagrangien

L(w7§7b7107a7575): %HWHZ_VP‘F%Z?:lfz
=30 (ai(yi((w, ¢(z:)) +b) — p+ &) + Bi&s) (2.25)
_6p7

en utilisant les multiplicateurs «;, B;, 6 > 0. Cette fonction doit étre minimisée par
rapport aux variables primales w, &, b, p, et maximisée par rapport aux variables duales
a, B, 6. Nous calculons les dérivées partielles correspondantes, et en les posant égales &

0 nous obtenons les conditions suivantes :

aL(w,ﬁ,g,j,a,ﬁ,ﬁs) =0 = w= izn;aiyigb(xi), (2.26)
OL(w,¢, I(;,ép,a,ﬁﬁ) _0 e i fi= % (2.27)
aL(w,g,l;bp,a,ﬁ,é) PN ZZ”;%%:O, (2.28)
OL(w, €, z;,pp,aﬁﬁ) L e Z”;a e (2.29)

En substituant (2.26) et (2.27) dans L, sachant que «a;, £;, § > 0, cela nous améne au

probléme d’optimisation quadratique suivant :

Maximiser, W(a) = —4 X0, gigjeaes (0(zi), 6(z;))  (2:30)

sous les contraintes 0<aq; <2, (2.31)
> iy Yic =0, (2.32)

Dy i > (2.33)

La fonction de décision résultante est la suivante :

h(z) = sgn (Z yio; K (5, 2) + b) : (2.34)
=

Comparée avec le dual de C-SVM (2.19), il y a deux différences. Premiérement, il existe

une contrainte additionnelle (2.33). Deuxiément, le terme linéaire ;" | o n’apparait

plus dans la fonction objective (2.30). Ceci a une conséquence intéressante : la fonction

objective dans (2.30) est quadratique homogene en «. Il est facile de vérifier que la méme

fonction de décision est obtenue si nous commencons avec la fonction primale

1 1
5wl + O(—up+n;&), (2.35)
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(i.e., si nous utilisons C). La seule différence étant que les contraintes (2.31) et (2.33)
auraient un facteur supplémentaire C sur le coté droit. Dans ce cas, en raison de I’homo-
génité, la solution du dual serait normalisée par C, mais il est facile de voir que la fonction

de décision correspondante ne sera pas changée. Nous pouvons donc poser C = 1.

Pour déterminer b et p, nous considérons deux ensembles Sy, de méme taille s > 0,
contenant des vecteurs de suport x; avec 0 < a; < 1 et y; = +1 respectivement. Puis
suite aux conditions KKT, la contrainte dans (2.24) devient une égalité avec & = 0. Par

conséquent,

b:_%s Z ZajyjK(x,:vj), (2.36)

TeESLUS_ j

p= 2%( Z ZajyjK($>ij) - Z Zjajyj (x,:cj)). (2.37)

TE€ESL J reS_

Nous présentons maintenant la Proposition (2.3.1) dans laquelle nous donnons la dé-
mounstration établie par Schélkopf et al. de leur interprétation du paramétre v. En effet,
définissons tout d’abord le terme erreurs de la marge. Les erreurs de la marge repré-
sentent toutes les observations d’apprentissage qui sont soit mal classées ou situées dans

la marge(i.e. & > 0). La fraction des erreurs de la marge est alors

RElf o= 21 i f i) < pl, (2.39)

ou f est utilisé pour dénoter 'argument du signe de la fonction décisive (2.34), tel que

h = sign o f.

Proposition 2.3.1. [78|[propriétés de v|

(i) v est une borne supérieure de la fraction des erreurs de la marge.

(ii) v est une borne inférieure de la fraction des vecteurs supports.

Preuve. (i). D’apres les conditions KKT, p > 0 implique § = 0. Par suite I'inégalité
(2.33) devient une égalité (cf. Equation 2.29). Ainsi, au plus une fraction v des obser-
vations justifient a; = L. (ii). Les vecteurs supports (SVs) pour lesquels les o; sont
strictement positifs peuvent chacun contribuer au plus avec % (cf. Equation 2.31) au
terme a gauche de Iinéquation (2.33). Donc il faut au moins vn de ces vecteurs pour

satisfaire cette inéquation.
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2.4 Machines a Vecteurs Supports & une classe (1-SVM)

Dans le contexte de la détection d’anomalies, le probléme de déséquilibre de classes
observé dans de nombreuses applications réelles est aussi présent dans le domaine des
semi-conducteurs. En effet, la part des wafers anormaux ne constituent qu’une fraction
de pourcent de I’ensemble de wafers. Dans ce cas, une classification & deux classes peut
conduire & une situation ot I’apprentissage est déséquilibré : les données normales peuvent

étre en sur-apprentissage et les données anormales en sous-apprentissage.

Afin de résoudre ce genre de probléme, les méthodes de classification & une classe peuvent
étre utilisées. Elles possédent la particularité de caractériser une classe cible plutot que
de discriminer deux classes. Dans un sens probabiliste, une classification & une classe
est équivalente & déterminer si une observation de test est produite par la distribution

sous-jacente qui correspond a l’échantillon d’apprentissage des données normales.

Une des méthodes de classification & une classe les plus connues pour la détection d’ano-
malies est les machines & vecteurs supports & une classe [76]. Cette méthode, notée 1-SVM
(One Class Support Vectors Machines), est une extension des SVM biclasses permettant
Papprentissage d'un classifieur en absence des observations de la classe négative (les ano-
malies) dans les données. L’approche 1-SVM est implémentée dans La librairie LIBSVM,
disponible dans les logiciels R et MATLAB.

La principale différence entre 1-SVM et le SVM classique est que, pour construire un
clagsifieur, le premier ne nécessite que les données normales dans la phase d’apprentissage

tandis que le deuxiéme nécessite des données issues des classes normale et anormale .

Etant donné un échantillon d’apprentissage constitué des observations normales, 1-SVM
détermine le support ou la région contenant la plupart des données d’apprentissage. Ceci
constitue la phase d’apprentissage. Si un point de test se situe dans cette région, il est

classée comme normal, sinon il est considéré comme anormal.

1-SVM estime une région R dans X de volume minimum contenant au moins (1 — v)n
données, v déterminant asymptotiquement la proportion de données hors volume. Comme
dans le cas du SVM biclasse, la frontiére de R est recherchée dans un espace transformé
‘H de plus grande dimension. Puis un classifeur linéaire est construit dans le nouvel
espace. Ceci est équivalent & construire un classifeur non linéaire dans ’espace d’entrée

des données X.

Dans 1-SVM, une hypothése inhérente est que l'origine de ’espace de redescription ap-
partient & la classe d’anomalies. Par conséquent I'objectif est de faire la séparation entre

lorigine et les observations de la classe cible dans un espace de dimension plus grande
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avec une marge maximale. Pour résumer, 1-SVM développe un hyperplan dans un espace
transformé qui retourne une valeur positive pour les observations normales et une valeur
négative pour les anomalies, en se basant sur la maximisation de la distance perpendi-

culaire de cet hyperplan a l’origine.

2.4.1 Algorithmes

Nous considérons toujours I’échantillon d’apprentissage S et supposons que les observa-
tions sont distribuées suivant une distribution de probabilité sous-jacente inconnue €.
Nous souhaitons savoir si une nouvelle observation est issue de 2 ou non. Cela peut étre
fait en déterminant une région R dans ’espace d’entrées X telle que la probabilité qu’une
nouvelle observation générée suivant ) et n’appartenant pas a R soit majorée par une
valeur v € (0, 1) spécifiée a priori. Ce probléme est résolu en estimant une fonction de

décision f qui est positive sur R et négative ailleurs.

Une fonction non linéaire ¢ : X — H transforme les observations d’apprentissage de
I'espace d’entrées X' dans un espace de Hilbert . Dans ce nouvel espace, les données
d’apprentissage suivent une distribution sous-jacente €’ et le probléme sera de déterminer
une région R’ de H qui contient la majorité des observations de cette distribution. Un

hyperplan H (w, p) est construit dans l'espace transformé et est défini par

H(w,p) = (w,¢(x)) — p (2.39)

ou w est le vecteur de poids qui est un vecteur normal & H, p est le biais et p/ ||w|| spécifie
la distance de I’hyperplan a lorigine (la marge). Notons que nous avons remplacé le biais
b des hyperplans considérés dans les SVM biclasses par le biais p afin de permettre la
comparaison avec v-SVM. En effet, la marge dans 1-SVM est égale a p/ ||w||, alors que
celle de v-SVM est égale a 2p/ ||w]||. Le biais p, ajouté dans la fonction objective (2.41),
permet d’obtenir également comme pour le paramétre supplémentaire p introduit dans

v-SVM les mémes propriétés de v (Proposition 2.3.1).

Pour obtenir une séparation maximale entre I’hyperplan et 1’origine, on cherche a maxi-
miser la marge donc & minimiser ||w]|. Ceci revient & résoudre le probléme d’optimisation
quadratique suivant
Minimiser 1w
w,p 2

(2.40)

sous les contraintes (w, ¢(x;)) > p, i =1,..., n.

Cependant, il n’est pas toujours possible de séparer parfaitement les observations de la
classe cible de 'origine dans I’espace de redescription. Pour de tels cas, ’algorithme résol-

vant le probléme d’optimisation (2.40) ne converge pas vers une solution finie. Pour tenir
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compte de ce probléme, on définit un parameétre v € (0, 1) et des variables d’écart & pour
relécher les contraintes. v correspond a la fraction maximale des erreurs d’apprentissage,
i.e. les observations situées entre ’hyperplan et l'origine. Les variables &; sont utilisées
pour pénaliser la fonction objective en permettant & certaines observations d’étre mal
classées. Le probléme d’optimisation modifié peut étre écrit :
Minimisery.g, p % lJwl]]® + # Yo &Gi—p

2.41
sousles contraintes (w,¢(x;)) >p—&, & >0,i=1,...,n. ( )

D’ou si w et p sont solutions du probléme (2.41), nous nous attendons alors a ce que la

fonction de décision
h(z) = sgn ((w.6(x)) — p) (2.42)

soit positive pour la plupart des données d’apprentissage x; alors que le terme ||w]|| reste
petit. Le compromis entre ces deux objectifs est controlé par v. Plus précisement, v
contréle le compromis entre maximiser la distance & 1’origine et contenir la plupart des
observations dans la région construite par 'hyperplan. Scholkopf et al. [75] ont démontré
que v est une borne supérieure de la fraction des erreurs d’apprentissage (données d’ap-
prentissage situées entre I’hyperplan et ’origine), et une borne inférieure de la fraction

des vecteurs supports (cf. Proposition 2.4.3 de la section 2.4.3).

La Figure 2.5 représente un schéma 2D d’un classifieur 1-SVM. Le noyau gaussien trans-
forme les données sur une hypersphére, et 1-SVM vise & trouver un hyperplan dans cet
espace transformé séparant la majorité des données de l'origine avec une marge maximale,

tout en permettant a quelques observations d’étre mal classées.

En utilisant les multiplicateurs de Lagrange «;, 3; > 0, nous introduisons le Lagrangien
(2.43), puis les dérivées partielles du Lagrangien par rapport aux variables primaires
w, &, b sont annulées (2.44-2.46).

L(w,& p,e, f) = gllwl®+ 5 2:& —p

=220 ((w, d(2) — p+ &) (2.43)
— 22 Bii,
OL(w,&, p, ax, B) -
w =0 — w= ;OW(%), (2.44)
aL(w7£?p7a7ﬁ)_ _ii . i
BT =0 = a=_—-fi<_— (2.45)
8L(w7€7p7a75) -
dp =0 = > ai=1 (2.46)

=1
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En substituant (2.44) et (2.45) dans (2.43), et en utilisant un noyau approprié (2.20), la

solution du probléme est équivalente & la solution de la forme duale

Minimisery 1 Zij (e71e7 K (z, xj)

sous les contraintes 0 < a; < -1 (2.47)

Ziai =1.

Dans (2.44), toutes les observations x; telles que «; > 0 sont appelées vecteurs supports.
En effet parmi les données d’apprentissage, les vecteurs supports determinent uniquement

Ihyperplan séparateur. En utilisant (2.20) et (2.44) la fonction de décision (2.42) devient

x) = sgn <Z o; K (z;,x) — p> . (2.48)
1€ESV

On peut montrer que, a 'otpimum, les deux contraintes d’inégalité dans (2.41) deviennent

des égalités si a; et (5; sont non nuls, i.e. si 0 < a; < # Par suite, nous pouvons déter-

miner p en exploitant que, pour de tels «;, les observations x; correspondants satisfont
p = (w,p(x;)) Zal (2, xi). (2.49)

Les propriétés de base du SVM & une classe ont été présentées et démontrées dans
[75]. Le résultat le plus important est Uinterprétation de v a la fois comme la fraction

asymptotique des outliers, et la fraction des vecteurs support retournés par ’algorithme.

Comme nous ’avons vu, les SVM & une classe et les SVM biclasses sont trés similaires.
Les SVM biclasses déterminent un hyperplan de séparation en maximisant la distance
entre les deux classes, alors que les SVM & une classe séparent les données d’apprentissage

de l'origine avec une marge maximale.

2.4.2 Choix du noyau et des hyperparamétres

Pour les raisons citées dans la Section 2.3.5, nous avons décidé de choisir le noyau gaus-
sien pour apprendre le modéle 1-SVM. Par conséquent, deux hyperparamétres de ce
modéle sont & régler : v et v. Dans la Section 4.3 du Chapitre 4, nous montrons que
lalgorithme 1-SVM n’est pas sensible au hyperparamétre v du noyau gaussien. Ainsi
une petite plage de valeurs est suffisante pour déterminer une valeur optimale pour cet
hyperparamétre. La méthode basée sur la “grille de recherche” (grid-search) pour C' et

introduite dans la Section 2.3.5 peut étre également appliquée pour choisir la meilleure
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Y Hyperplan séparateur

Le noyau Gaussien

transpose les données \

sur une hyperspheére

Origine
Observations normales

classifiées comme
anormales

FIGURE 2.5 — Schéma d’un classifieur 1-SVM dans R2.

paire (v,7). Différentes paires de (v,7) sont constituées, et celle avec la meilleure pré-
cision obtenue & partir de la procédure basée sur la validation croisée ou la procédure
basée sur ’ensemble de validation est retenue. On peut par exemple prendre v = 1/mp
avec m € {1, 2, 3, 4, 5}, et v € {0.01, 0.02,..., 0.15}.

2.4.3 Résultats théoriques

Dans cette section (extraite des résultats théoriques de [76]), l'algorithme 1-SVM est
analysé théoriquement. On commence par 'unicité de ’hyperplan (Proposition 2.4.1).
Ensuite une liaison avec la classification binaire sera établie (Proposition 2.4.2). Enfin, on
démontre que le paramétre v caractérise les fractions des vecteurs support et des erreurs

de la marge (Proposition 2.4.3).

Définition 2.4.1. Un jeu de données
T1y..., Tp (2.50)

est dit séparable de l'origine s’il existe un vecteur w € H tel que (w, ¢(z;)) > 0 pour
ie{l,..., n}.

Si on utilise un noyau gaussien, alors n’importe quel jeu de données est séparable aprés
avoir transformé les données dans ’espace de Hilbert H. En effet, notons tout d’abord
que K(z;, zj) > 0 pour tout ¢, j, donc le produit scalaire entre toutes les données dans
I’espace transformé est positif, ce qui implique que toutes les données se trouvent dans
le méme orthant. De plus, comme K (z;, x;) = 1 pour tout 4, les données ont toutes une

norme égale & 1. D’ou elles sont séparables de 'origine.
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Proposition 2.4.1. [76] [hyperplan support|

Si le jeu de données (2.50) est séparable, alors il existe un unique hyperlan support avec
les propriétés suivantes : (i) il sépare toutes les observations de l'origine, et (ii) sa distance

a Porigine est maximale parmi tous ces hyperplans. Pour tout p > 0, il est défini par

1
min - Jwl|*  sous (w, ¢(x;)) > p, i € {1,..., n} (2.51)
we

Preuve. Pour une raison de séparabilité, ’enveloppe convexe des données ne contient pas
Porigine. L’existence et I'unicité de I’hyperplan résulte alors du théoréme de I’hyperplan
support (e.g. [9]). En outre, la séparabilité implique qu'il existe effectivement un p > 0
et w € H tels que (w, ¢(z;)) > p pour ¢ € {1,..., n}. La distance de 'hyperplan
{z €H : (w, z) = p} alorigine est égale & p/ |[w||. Par conséquent I’hyperplan optimal

est obtenu en minimisant ||w|| sous ces contraintes, i.e. par la solution de (2.51).

Le résultat suivant illustre la liaison entre la classification a une classe et la classification

binaire.

Proposition 2.4.2. |76][liaison avec reconnaissance de formes |

(i) Supposons que (w, p) soient les paramétres de I'hyperplan support des données
(2.50). Alors (w,0) paramétrise ’hyperplan séparateur optimal des données étique-
tées

{(z1, 1),..., (¥n, 1), (=21, =1),..., (=2, —1)} (2.52)

(ii) Supposons que (w,0) soient les paramétres de ’hyperplan séparateur otpimal pas-

sant par l'origine, des données étiquettées

{(3717 y1)7 S ($n7 yn)}v (yz € {:l:l}pOUT 1€ {13 SEEE) ’I’L}),

telles que (w, ¢(z;)) est positif si y; = 1. Supposons de plus que p/ ||w| est la
marge de 'hyperplan optimal. Alors (w, p) constituent les paramétres de ’hyperplan

séparateur otpimal des données non étiquettées
{yiz1, .oy Ynn} (2.53)

Preuve. (i). Par construction, la séparation de (2.52) est un probléme de points symé-
triques. D’ott 'hyperplan séparateur optimal passe par ’origine, car sinon nous pouvons

obtenir un autre hyperplan séparateur optimal en construisant I’hyperplan symétrique
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du premier hyperplan par rapport & 'origine. Ce serait en contradiction avec 'unicité de
I’hyperplan séparateur optimal de Vapnick [93].

Ensuite, observons que (—w, p) paramétrise ’hyperplan support des données symétriques
par rapport a Uorigine, et qu’il est paralléle & 'hyperplan paramétré par (w, p).Ceci four-
nit une séparation optimale de deux ensembles de données, avec une distance 2p, et un
hyperplan séparateur paramétré par (w,0).

(ii). Par hypotheése, w est le vecteur minimal (minimisant la norme euclidienne) satisfai-
sant y;(w, ¢(x;)) > p (notons que le biais est égal & 0). Ainsi, de maniére équivalente, il

est le vecteur minimal satisfaisant (w, y;¢(x;)) > p pour i € {1,..., n}).

Notons que la relation est similaire dans le cas des données non séparables. Dans ce cas,
les observations mal classées en classification binaire (i.e. observations qui sont soit sur
le mauvais coté de ’hyperplan séparateur ou qui se situent dans la marge) s’interprétent
comme des anomalies dans la classification & une classe , i.e. en des observations qui se
situent entre 'hyperplan séparateur et ’origine.

L’utilité de la Proposition 2.4.2 réside dans le fait qu’elle nous permet de réutiliser cer-
tains résultats démontrés en classification binaire (|78]). La proposition suivante expli-

quant I'importance du paramétre v, est un tel cas.

Proposition 2.4.3. [76][propriétés de v|

(i) v est une borne supérieure de la fraction des erreurs d’apprentissage.

(ii) v est une borne inférieure de la fraction des vecteurs supports.

Preuve. Les parties (i) et (ii) résultent directement de la Proposition 2.4.2 et le fait
que les erreurs d’apprentissage sont traitées de la méme maniére que dans le probléme
d’optimisation pour la classification binaire [78]|. L’idée de base est que 'inégalité en
(2.45) impose des contraintes sur la fraction des données qui pourrait avoir a; = 1/(vl),
i.e. la borne supérieure de la fraction des erreurs d’apprentissage, et sur la fraction des

données qui devraient avoir a; > 0, i.e. les vecteurs supports. O



Chapitre 3

Réduction de dimension

3.1 Compression et sélection de variables

Dans notre travail, nous disposons de données de dimension élevée, puisque les wafers sont
décrits par plusieurs centaines de paramétres électriques. Par conséquent une réduction
de dimension nous parait indispensable afin d’améliorer la performance prédictive de

I’algorithme de classification utilisé.

En apprentissage automatique et en statistique, la réduction de dimension est le proces-
sus de réduction du nombre de variables de 1’étude considérée [73]. Il existe deux types
d’approches : la compression de variables et la sélection de variables [69]. Les approches
de sélection de variables essaient de trouver un sous-ensemble optimal des variables afin
d’améliorer la qualité de prédiction du modéle d’apprentissage. Les approches de com-
pression de variables transforment les données d’un espace de grande dimension dans
un espace de dimension plus petite. La transformation de données peut étre linéaire,
comme 'analyse en composantes principales (ACP), mais de nombreuses techniques de
réduction de dimensionnalité non linéaires existent également [26]. Par exemple, PACP a
noyau (kernel PCA) [77] est une généralisation de ’ACP linéaire permettant une réduc-
tion de dimensionnalité non lineaire. Comme dans la méthode SVM (cf. Section 2.3.4), la
fonction noyau permet de projeter les données dans un espace de plus grande dimension

de sorte que la varieté devienne linéaire et d’effectuer P ACP dans cet espace.

Dans ce chapitre, nous présenterons une des techniques les plus connues pour la com-
pression de variables : analyse en composantes principales (ACP). I’ACP réalise une
transformation linéaire des données dans un nouvel espace de dimension inférieure, de
telle fagcon que la variance des données dans cet espace soit maximisée. Nous montrons
comment une ACP contribue a la détection d’anomalies. Enuite nous parlerons des dif-

férentes catégories de sélection de variables, et nous présenterons en particulier deux

63
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méthodes que nous avons spécifiquement dévelopées pour une meilleure performance de
détection avec 'algorithme 1-SVM. La premiére méthode de type filtrage est basée sur un
score calculé avec le filtre MADe, une approche robuste pour la détection univariée des
valeurs aberrantes. La deuxiéme méthode de type wrapper est une adaptation a 1’algo-
rithme 1-SVM de la méthode d’élimination récursive des variables basée sur la variation

du vecteur de poids de ’algorithme SVM.

3.2 Compression de variables : Analyse en Composantes
Principales (ACP)

L’analyse en composantes principales est une méthode de statistique exploratoire per-
mettant de décrire un grand tableau de données de type individus / variables. L'intérét
majeur d'une ACP est d’offrir une meilleure visualisation possible des données multi-
variées, en identifiant les hyperplans dans lesquels la dispersion est maximale, mettant
en évidence avec le maximum de précision les relations de proximité et d’éloignement
entre les variables [55].Une ACP permet donc de fournir une représentation graphique
“optimale” des observations projetées dans un sous-espace de dimension réduite (d < p),

minimisant la déformation du nuage de points initial.

Mathématiquement, ’ACP correspond a ’approximation de la matrice de données X par
une matrice 7' de méme dimension (n, p) mais de rang d < p. Ceci est réalisé a travers une
projection orthogonale linéaire qui projette les observations multidimensionnelles repré-
sentées dans un sous-espace de dimension p dans un sous-espace de dimension inférieure
d en maximisant la variance des projections. La solution de ce probléme de maximisa-
tion est basée sur le calcul des valeurs et vecteurs propres de la matrice de covariance
des données, puisqu’on analyse essentiellement la dispersion des données considérées.
Cette solution définit a la fois la projection du sous-espace de dimension p dans le sous-
espace de dimension d et la projection inverse permettant de reconstruire les données
observées. L’ACP peut étre donc considérée comme une technique de minimisation de
I’erreur quadratique de reconstruction ou une technique de maximisation de la variance

des projections (il faut noter que ces deux critéres sont équivalents).

3.2.1 Minimisation d’erreur/maximisation variance

L’objectif d’'une ACP étant de trouver un sous-espace de dimension d < p qui permet
d’avoir une représentation réduite de X, cette méthode consiste a trouver une nouvelle
base dans laquelle la projection du nuage de points initial est la plus fidéle possible. Cette

nouvelle base est obtenue par combinaison linéaire de la base originelle. C’est donc tout
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simplement un probléme de changement de base. Soit P une matrice de changement
de base de dimension p x p telle que P = [p1...pj...ppl, ot p; = (p1j,..., ppj)T.
Un nombre d des colonnes de P vont former les vecteurs de base orthonormés d’un
sous-espace R? de représentation réduite des données. Ces vecteurs sont orthogonaux
242 (e p.j;-p,k = 0si j # k) et de norme égale a 1 (i.e. p_q;»p_j = 1). La matrice
T = [t1...t; ...ty )T = [t1. ..tj...tp] des scores des observations dans la nouvelle

base est telle que T'= X P.

Au sens de ’ACP, on construit P de sorte que la représentation réduite minimise ’erreur
de reconstruction de X. Autrement dit, la projection & travers P est optimale si le
critere d’erreur quadratique moyenne MSE(P) (Mean Square Error) d’approximation

des {7 }(i=1,..,n) & 'aide des d premiéres colonnes de cette matrice est minimale.

Sous la contrainte d’orthogonalité de P, et sous 'hypothése de la nullité de la moyenne

d’une observation z;, le critére MSE(P) est égal a :
MSE(P) = trace(%2) — trace(PT2P), (3.1)

ou X2 est la matrice de covariance empirique des variables de terme général E?k =
cov (zj, T k), cov (x5, x ) étant la covariance entre les variables x ; et z . Quand X est

centrée, cette matrice carré symétrique d’ordre p est égale &
. 1 r
Y2 =-X"X. (3.2)
n

Comme la matrice de covariance %2 est indépendante de P, minimiser M SE(P) revient
a maximiser le second terme de son expression dans 'Equation (3.1) que nous notons
Jy(P) . Ainsi, la minimisation de l'erreur quadratique d’approximation est équivalente a

la maximisation de la variance des projections des données :

P, = arg m]%'nMSE(P) =arg mlgszv(P). (3.3)

3.2.2 Axes factoriels et optimisation

Avant de résoudre ce probléme d’optimisation, nous introduisons les notions “axes fac-
toriels” et “composantes principales”. On appelle premier axe factoriel de X le vecteur
p.1 (premiére colonne de la matrice P) sur lequel le nuage se déforme le moins possible
en projection, donc c’est le vecteur p; tel que la variance de Xp 1 est maximale. Le vec-
teur t1 = Xp est appelé premiére composante principale. D’une fagon plus générale,

Le kiéme axe factoriel de X est le vecteur pj unitaire tel que la variance de la kiéme
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composante principale ¢, = Xpj soit maximale et que pj soit orthogonal aux k — 1

premiers axes factoriels.

Notre objectif maintenant est de chercher un sous-espace de dimension 1 engendré par
p.1 avec comme contrainte p?{p,l = 1. La maximisation de la variance de projection sur
p.1, sous condition de norme unité du vecteur p 1, est donc un probléme d’optimisation
sous contraintes d’égalité qui peut étre résolu avec la méthode des multiplicateurs de

Lagrange. Le probléme d’optimisation est le suivant :

Maximiserp, Jo(P) = PlTZAQPl,

(3.4)
sous la contrainte PlT P =1.

La résolution du probléme (3.4) montre que le premier axe factoriel p; est le vecteur
propre associé a A1, la plus grande valeur propre de 2. De fagon plus générale, le kiéme
axe factoriel est le vecteur propre pj associé a A, la kiéme plus grande valeur propre
de ¥2. Rappelons que les valeurs propres de 32 sont positives car 32 est une matrice

semi-définie positive.

En outre, les valeurs propres de la matrice de covariance 32 représentent les variances des
projections des données sur les directions représentées par les vecteurs propres p; (j =
1, ..., p). Les p vecteurs propres unitaires p ; représentent les p directions orthogonales
de I'espace des données suivant lesquelles les variances des projections des données sont

maximales.

Le sous-espace vectoriel de dimension d qui assure une dispersion maximale des obser-
vations est donc défini par une base orthonormée formée des d vecteurs propres corres-
pondant aux d plus grandes valeurs propres de la matrice ¥2. Ce sous-espace constitue

donc un espace de représentation optimale des données.

3.2.3 Réduction de la dimensionalité

Nous avons vu qu'une ACP permet de caractériser les directions orthogonales d’un es-
pace de données porteuses du maximum d’information au sens de la maximisation des
variances de projections. I’amplitude des valeurs propres de la matrice de covariance Y2

des données quantifie pour chacune de ces directions la quantité d’information encodée.

Une approximation x; de ’observation x; par 'intermédiaire des d composantes princi-

pales t;1, ..., t;q présentant les plus fortes variances est donnée par

d
fz = Ztijp_j. (3.5)
7=1
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La perte d’'information induite par la réduction de dimension de représentation de chaque

x;. est mesurée par la différence e entre ses représentations exacte et approchée :

p
e=mi — % = > typ; (3-6)
jmdr1

L’erreur d’approximation sur un sous-espace vectoriel de dimension d est :

1 ¢ i L
Eq = nz; i — 2> = > A
1=

k=d+1
Les p — d composantes principales t; (j = d + 1, ..., p)) & partir desquelles I'erreur
d’estimation e est évaluée, sont associées aux plus faibles valeurs propres Agy1, ..., Ap.

Il est par conséquent bien évident que la compression de données préserve d’autant mieux

d’information que ces valeurs propres sont faibles.

3.2.4 Choix de dimension

Pour une reconstruction optimale de données, le choix du nombre de composantes prin-
cipales a retenir d est crucial dans une méthode ACP. Toutefois dans le cadre de Iap-
plication de PACP a la détection d’anomalies (cf. Chapitre 4, Section 3.3), le nombre de
composantes a un impact significatif sur la qualité de détection. Si trop peu de compo-
santes sont utilisées, on risque de perdre des informations contenues dans les données de
départ. Si par contre trop de composantes sont utilisées, il y a le risque d’avoir des com-
posantes retenues (les composantes correspondantes aux valeurs propres les plus faibles

parmi celles retenues dans le modéle) qui sont porteuses de bruit ce qui est indésirable.

De nombreuses régles ont été proposées dans la littérature [33, 91]. Dans la suite nous

allons présenter quelques critéres utilisés pour le choix optimal de d.

Pourcentage cumulé de la variance totale (PCV) Le pourcentage de variance
(ou la part d’inertie) expliquée par un sous-espace d’ordre d engendré par les d premiers

axes est donné par :

d
POV/(d) = k=1 (3.7)
k=1 Ak

Le nombre de composantes a retenir est le plus petit nombre d pour lequel au moins une

fraction v (prédéfinie par I'utilisateur) de la variance totale soit expliquée.

d=arg min {PCV(U) > 7/}}
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Par exemple, si nous prenons ¢ = 0.8, nous retenons le nombre minimal de composantes

qui préserve 80% de l'information contenue dans les données originelles.

Régle de Kaiser Cette régle consiste & ne prendre en considération que les com-
posantes pour lesquelles 'inertie est supérieure a 'inertie moyenne. En ACP normée,
I'inertie totale est tmce(ﬁz) = p. On ne retiendra donc que les composantes associées &
des variances supérieures a 'unité. Ce critére, utilisé implicitement par SAS, a tendance

& surestimer le nombre de composantes pertinentes.

Eboulis L’éboulis est un graphique présentant la décroissance des valeurs propres. Le
principe consiste & rechercher, g’il existe, un “coude” suivi d’'une décroissance réguliére.
On sélectionne les axes se situant avant le coude. Les axes qui suivent ce coude semblent
former une ligne droite horizontale, i.e. la variation des valeurs propres correspondant
A n’importe quel deux axes consécutifs situés apreés le coude est trop faible par rapport
aux variations observées avant le coude. L’'information ajoutée par les axes qui suivent

le coude est donc peu pertinente.

3.3 ACP et détection d’anomalies

Les méthodes de détection d’anomalies reposant sur I’analyse en composantes principales
linéaires (ACP) ont recu une attention particuliére et ont été largement utilisées pour la
surveillance des processus industriels ([60, 66, 81, 90]). Le principe de cette approche est
d’utiliser 'analyse en composantes principales pour une compression de variables, et puis
de déterminer le 72 de Hotteling & partir des scores de données obtenues et le comparer

& un seuil prédéfini.

Aprés avoir établi le modéle ACP, une observation z; est projetée sur le modéle et

la statistique 72 de Hotteling (cf. Section 1.7.2) peut étre déterminée & partir des d

premiéres composantes principales t;, = (t;1,..., ti) :
2 _ T ighoy—17
TP =t (33) . (3.8)
oll 23 = diag(A1, A2,...,\q) est une matrice diagonale contenant les d plus grandes

valeurs propres de la matrice de covariance des données. La statitique de Hotteling peut

alors s’écrire sous la forme suivante :

d 42
2 Y
o= ZA]-
Jj=1
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Le seuil approprié pour l'indice T2 pour un risque a peut étre déterminé comme dans
IEquation (1.3) de la Section 1.7.2, en remplacant p par d. Une observation est considérée

anormale si son 72 de Hotteling dépasse le seuil, et normale sinon.

Puisque lindice T2 n’est pas affectée par le bruit, qui est représenté par les derniéres
valeurs propres, théoriquement elle est capable de représenter le comportement normal
du processus. L’indice T? peut étre interprété comme la mesure des variations normales
du processus, et la violation du seuil de détection de cette statistique indique que ces
variations sont en dehors des limites de contréle et correspondent & un fonctionnement

anormal.

Pour le choix de nombre de composantes d a retenir, nous utilisons la méthode de Pour-

centage cumulé de la variance totale (PCV) (cf. Section 3.2.4).

3.4 Sélection de variables

Le probléme de sélection de variables est crucial dans le domaine de ’apprentissage statis-
tique et plus particuliérement dans le cadre de la classification supervisée. La complexité
de nombreuses techniques de classification dépend fortement du nombre des variables
décrivant les instances de données. La sélection de variables joue un réle important en
clagsification lorsqu’un grand nombre p de variables sont disponibles. Certaines variables
pouvent étre peu significatives, redondantes ou non pertinentes au regard de I’application
considérée. Les méthodes de sélection de variables consistent a retenir un sous-ensemble
optimal de m variables parmi les p >> m variables disponibles qui améliore les perfor-

mances de l'algorithme de classification .

Généralement, une méthode de sélection de variables repose principalement sur les trois

composantes suivantes :

— Un algorithme de recherche permettant d’explorer l’espace des combinaisons de va-
riables.

— Un critére d’évaluation pour mesurer la pertinence des sous-ensembles potentiels de
variables.

— Une condition d’arrét pour arréter la procédure de recherche.

Dans la sélection de variables, nous nous intéressons a la réduction de la dimension de
I'espace des variables explicatives, sans pour autant transformer ses composantes comme

dans les méthodes d’analyse factorielle (compression de variables).

D’un point de vue industriel, la sélection des variables (les paramétres électriques per-

tinents) devrait permettre d’effectuer un diagnostic des wafers anormaux. Ce diagnostic
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a pour but d’apporter plus de connaissances sur la raison de ’anomalie en définissant
des signatures de ces wafers basées sur les paramétres électriques les plus pertinents. La
détermination de la source ou raison d’anomalie (localisation de défauts) nous permet
de remonter a la cause (root cause) et ensuite remettre le processus dans un état de

fonctionnement normal aprés avoir effectué un correctif adapté.

D’un point de vue statistique, la sélection d’un sous-ensemble de variables pertinentes
permettrait d’améliorer la performance de détection des méthodes de classification, d’ac-
célérer le temps de calcul de ces méthodes et enfin de comprendre le processus sous-jacent
ayant géneéré ces données [37|. Nous améliorons ainsi notre connaissance du phénomeéne
de causalité entre les descripteurs (les paramétres électriques) et la variable & prédire
(Iétat de fonctionnement des wafers), ce qui est fondamental si nous voulons interpréter

les résultats pour en assurer la reproductibilité.

Dans la littérature du Machine Learning, trois catégories de méthodes existantes pour la
sélection de variables sont considérées et présentées dans les revues bibliographiques de
[10, 37, 49] :

1. les méthodes de filtrage,
2. les méthodes de type wrapper,
3. les méthodes de type embedded.

Chaque méthode de sélection de variables est répartie dans une de ces trois catégories
selon le type du critére de sélection et la facon dont il est pris en compte dans la procédure

de classification.

Les méthodes de filtrage

Les méthodes de filtrage utilisent les propriétés statistiques des variables afin de filtrer les
variables non informatives. Ces méthodes sélectionnent des sous-ensemble de variables
comme une étape de pré-traitement, indépendamment du prédicteur choisi. Dans ce
type de méthodes, les critéres d’évaluation sont fondés uniquement sur les données et
sont donc totalement indépendants du discriminateur utilisé. Les variables alors sont
filtrées avant le processus d’apprentissage et de classification. Différentes fonctions sont
utilisées pour définir les critéres d’évaluation. Certaines sont basées sur des mesures
de distance probabilistes (ex : distance de Mahalanobis), d’autres sont fondées sur les
mesures d’information (ex : entropie) ou de dépendance (ex : coefficient de corrélation

de Pearson, information mutuelle, score de Fisher).

Le principal avantage des méthodes de filtrage est leur efficacité calculatoire et leur ro-

bustesse face au surapprentissage (ou surajustement). Malheureusement, ces méthodes
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ne tiennent pas compte des interactions qui peuvent exister entre les variables et tendent
& sélectionner des variables comportant de I'information redondante plutét que complé-
mentaire [37]. De plus, elles ne tiennent pas compte de la performance des méthodes de

classification appliquées dans une deuxiéme étape.

Les méthodes de type wrapper

Les méthodes de type wrapper consistent en I’évaluation de la performance de sous-
ensembles de variables de maniére successive, prenant ainsi en compte les interactions
entre variables. Ainsi, I'algorithme de sélection “entoure” (wrapp) la méthode de clas-
sification qui évalue la performance. En fait, la machine d’apprentissage est considérée
comme une boite noire et la méthode de sélection se préte a 'utilisation de cette machine.
Plus précisement, Ces méthodes consistent & utiliser les résultats de prédiction de la mé-
thode d’apprentissage afin d’évaluer ['utilité relative des sous-ensembles de variables. Par
exemple, la méthode SVM-RFE (Recursive Feature Elimination with SVM) [38] est une

méthode wrapper basée sur un score calculé a partir de 'algorithme SVM.

La recherche d’un tel sous-ensemble de variables optimal requiert certaines définitions au
préalable [37] : comment rechercher dans I'espace des variables tous les sous-ensembles
possibles, comment évaluer la performance de prédiction d'une méthode d’apprentissage
pour guider la recherche, quand arréter ’algorithme. Bien entendu, une recherche ex-
haustive est un probléeme NP-difficile et incalculable lorsque p est grand ; il nécessite des
approximations des calculs d’optimisation. Le risque de surapprentissage est grand si le
nombre d’observations n est insuffisant et le nombre de variables & sélectionner doit étre
choisi par l'utilisateur. Enfin, le plus grand désavantage de ces méthodes est le temps de

calcul qui devient vite important dés que p est grand.

John et al. [46] prétendent que la stratégie wrapper est supérieure a la stratégie filtre
en terme de performance de classification, puisqu’elle utilise les performances prédictives
de T'algorithme de classification comme critére d’évaluation de la pertinence du sous-

ensemble de variables.

Les méthodes de type embedded

Les méthodes de type embedded incorporent la sélection de variables lors du processus
d’apprentissage, sans étape de validation, pour maximiser la qualité de 'ajustement et
minimiser le nombre de variables. Fan and Li [31, 32| ont démontré qu’on pourrait ga-

rantir une meilleur performance de Ialgorithme d’apprentissage en faisant la sélection
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des variables et ’estimation du modéle simultanément. Ces méthodes consistent géné-
ralement & pénaliser la fonction objective du probléme d’optimisation de I'algorithme
d’apprentissage. On cite par exemple les méthodes de minimisation avec une pénalité
de type Lj qui ont attiré beaucoup d’attention. Tibshirani [89] a proposé le lasso (least
absolute shrinkage and selection operator), une méthode de moindres carrés pénalisée
par la norme L, pour la sélection des variables dans les modéles linéaires et les mo-
deéles linéaires généralisés. Les SVM pénalisés par la norme Li (1-norm SVM) ont été

considérés pour accomplir la tache de sélection des variables dans SVM [13, 103] .

En utilisant la méthode d’apprentissage comme une boite noire, les méthodes de type
wrapper sont remarquablement universelles et simples. Mais les méthodes de type embed-
ded peuvent étre plus efficaces & plusieurs égards. Tout d’abord ils feraient un meilleur
usage des données disponibles en n’ayant pas besoin de partager les données d’appren-
tissage en un échantillon d’apprentissage et un échantillon de validation. Ensuite ces
méthodes seraient bien plus avantageuses en terme de temps de calcul que les méthodes
de type wrapper car elles évitent le réapprentissage du prédicteur pour tout sous-ensemble
de variables sélectionné. Finalement, elles seraient robustes face au probléme de surajus-

tement.

3.5 Sélection de variables et 1-SVM

Dans cette section, nous considérons le probléme de la sélection de variables dans le
cadre de la détection d’anomalies basée sur ’algorithme de classification semi-supervisée
1-SVM. A notre connaissance, et contrairement a l’algorithme de classification super-
visée SVM, il n’existe pas des méthodes de sélection de variables pouvant améliorer la
performance de détection pour l'algorithme 1-SVM. Dans les travaux existants, la mé-
thode 1-SVM a été appliquée sans sélection de variables sur des données dont I’espace
de variables est relativement petit (quelques dizaines de variables) [21, 41, 95, 101], ou

avec une compression de variables en utilisant une ACP [61].

Dans la littérature, on peut trouver plusieurs méthodes de sélection de variables qui ont
été développées pour améliorer la performance prédictive de 'algorithme de classification
supervisée SVM. On peut citer par exemple la méthode de filtrage basée sur le score de
Fisher [19], la méthode wrapper d’élimination récursive des variables SVM-RFE | ou
aussi la méthode embedded des SVM pénalisés par la norme L; (1-norm SVM) [103].

Le score de Fisher et la méthode SVM-RFE sont des méthodes de ranking permettant

d’établir une hiérarchie des variables. Ces méthodes consistent & attribuer une “valeur
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d’importance” a chaque variable puis les classer par ordre décroissant en fonction de leur

importance.

Le score de Fisher d’une certaine variable utilise les moyennes et les variances respectives
de cette variable dans chacune des deux classes (classe positive et classe négative). Donc
ce score mesure la corrélation entre une variable et les étiquettes a prédire. Le score de

Fisher pour un SVM linéaire est calculé de la fagon suivante :

g - |Zj,+1 — Zj—1]

= o]
52 + 52
J,+1 J,—1

ol Z;1 (respectivement Z;_1) est la moyenne empirique de la j*me

variable dans la
o). . L . 2 2 . .
classe positive (respectivement la classe négative), s G+ et s i—1 sont les variances empi-

riques de cette variable dans chacune des deux classes.

Donc cette méthode de filtrage est spécifique & un probléme de classification binaire
supervisé, ou on nécessite la connaissance des étiquettes des observations appartenant
a D’échantillon d’apprentissage. Ce qui n’est pas le cas dans notre travail, ot on utilise
la. méthode de classification semi-supervisée 1-SVM qui apprend le modéle de détection
a partir d’un échantillon d’apprentissage disposant seulement des observations normales

(une seule classe).

Pour cela, nous avons développé une méthode de filtrage appropriée au classifieur 1-SVM,
et plus généralement aux méthodes de classification & une classe. En effet cette méthode
ne nécessite pas la connaissance des étiquettes des données d’apprentissage. C’est une
méthode de ranking basée sur un score indépendant de I’algorithme 1-SVM, calculé en se
basant sur une approche robuste de détection univariée des valeurs aberrantes. Ce score
est le pourcentage de valeurs aberrantes dans chaque variable déterminée avec le filtre
MAD.. Ce score est donc indépendant des étiquettes & prédire. Une description détaillée
de cette méthode, appelée MAD..FS (MAD, for Feature Selection), est donnée dans la

Section 3.5.1.

Une deuxiéme méthode est une adaptation a l'algorithme 1-SVM de la méthode SVM-
RFE [38] initialement introduite avec l'algorithme SVM. C’est une méthode de ranking
basée sur un score calculé & partir de I'algorithme 1-SVM. Elle évalue 'importance d’une
variable en calculant la variation du vecteur de poids ||w||* de algorithme 1-SVM aprés
I’élimination de cette variable de I’échantillon d’apprentissage. Cette méthode sera décrite
dans la Section 3.5.2. On s’attend a ce que cette méthode soit plus performante que la
méthode MAD,.FS puisque la premiére intégre les performances prédictives du classifier

1-SVM alors que la deuxiéme est basée sur un score indépendant du classifieur 1-SVM.
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3.5.1 Notre méthode de filtrage MAD..FS

Dans cette section, nous présentons notre méthode de filtrage que nous avons développée
pour sélectionner les variables les plus pertinentes afin d’améliorer la performance de
détection de l'algorithme 1-SVM. Le choix d'une méthode de filtrage est justifié par le
temps de calcul rapide de ce type de méthodes. Une autre justification convaincante est
que les méthodes de filtrage permettent de réduire la dimension de I'espace de variables

avant ’apprentissage du modéle, ce qui permet d’éviter le sur-ajustement.

L’idée principale est d’utiliser une méthode de détection univariée pour déterminer le
pourcentage de valeurs aberrantes dans chaque variable. Puis les variables avec un pour-
centage des valeurs aberrantes supérieur a un certain seuil prédéfini seront de potentielles
variables discriminantes, tandis que les variables ayant un pourcentage non significatif
des valeurs aberrantes seront considérées comme non pertinentes. Un avantage important
de cette méthode est qu’elle ne nécessite pas les étiquettes des observations pour faire la

sélection.

Comme approche univariée robuste de détection des valeurs aberrantes, nous avons uti-
lisé la méthode M AD, [16] basée sur des estimateurs robustes de la position et la dis-
persion . Pour mieux comprendre le mot robuste, nous introduisons la notion point de
rupture (breakdown point)[27] d’un estimateur qui correspond a la proportion maximale
admissible de valeurs abérrantes dans les données avant que cette estimation soit complé-
tement corrompue. Par exemple, ’estimateur classique de la moyenne et de 1’écart-type
possédent un point de rupture de 0%, ce qui signifie que la présence d’une seule valeur
abérrante est suffisante pour que leur estimation soit complétement erronée. Alors que
la médiane et I’écart absolu & la médiane (Median Absolute Deviation MAD) [39] ont un

point de rupture égale a 50% [45].

Donc la robustesse de la méthode M AD, provient du fait qu’elle utilise la. médiane et
I’écart absolu a la médiane comme estimateurs respectifs de la position et la dispersion.
En effet ces deux estimateurs ont un point de rupture élevé, et contrairement & la moyenne
et Pecart-type, les écarts d’un petit nombre (pouvant aller jusqu’a la moitié de la taille
de I’échantillon) de valeurs aberrantes ne sont pas pertinents dans le calcul de ces deux

estimateurs.

3.5.1.1 Ecart absolu a la médiane

En statistique, I’écart absolu a la médiane MAD est une statistique robuste qui mesure
la dispersion d’un échantillon univarié de données. Elle est plus résistante aux valeurs

aberrantes que l'écart-type. Cette statistique est définie étant la médiane des écarts
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absolus & la médiane des observations d’une variable z ; :

MAD(j) = mediane; (|x;; — mediane;(x ;)|) . (3.9)

Dans le but d’utiliser le MAD comme un estimateur consistant & pour l'estimation de

Pécart-type o (i.e. E(6) = o, on E(0) est 'espérance de ), on prend
6=kxMAD, (3.10)

ol k est un facteur de normalisation constant qui dépend de la distribution des données.

Pour des données suivant une loi normale, k£ est pris approximativement égal & 1.4826.
Expliquons maintenant le choix de cette valeur. Soit T = (T, ..., Tn)T une variable
aléatoire suivant une loi normale N(u, 02) d’espérance u et de variance o2, alors la
variable aléatoire Z = % suit la loi normale N (0, 1). La médiane de T converge vers
w quand n tend vers l'infini, et ensuite la probabilite P (|7 — u| < M AD) converge vers
P(|T — p| < mediane(|T — p|)) = 5. Dot :

(3.11)

3 = PUT-ul<yap) = p (12 < 22

MAD

o

= 2F(

)—1 (3.12)

ou F' est la fonction de répartition d’une distribution normale centrée réduite N (0, 1).
Soit @ l'inverse de F, i.e. @ est la fonction quantile de la loi N (0, 1). L’égalité établie
dans (3.11) implique :

MAD
o

MAD _ 13y Z g3, (3.13)

F
( o 4

)=t =
4

Finalement, ’Equation (3.10) et I’'Equation (3.13) permettent d’établir :

g

k:MAD:Wg)

~ 1.4826 (3.14)

L’équation (3.14) montre que MAD converge vers o/1.4826 lorsque n tend vers l'infini,
ce qui est équivaut & dire que 6 = 1.4826 x M AD converge vers o. Autrement dit,
I’espérance de & pour les grands échantillons distribués suivant une loi normale est ap-
proximativement égale & 1’écart-type o de la population. D’ol le facteur k£ = 1.4826
calibre & dans I’équation (3.10) de sorte qu’il soit un estimateur consistant de o.

Dans la suite, nous remplagons & par M AD, pour désigner I'estimateur de o obtenu en
utilisant le MAD. On a donc :

MAD, =1.4826 x M AD.
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3.5.1.2 Description de la méthode MAD_..FS

La méthode MAD, définit pour un parameétre électrique x ; une limite inférieure LL;
(Lower Limit) et une limite supérieure UL; (Upper Limit) telles que toutes les valeurs
situées a l'extérieur de l'intervalle [LL;;UL;] sont considérées comme aberrantes. Les

limites sont calculées de la fagon suivante :

LL; = mediane(z j) —3 x MAD.(j)
UL; = mediane(x ;) + 3 x MAD.(j)

ot MAD,(j) = 1.483 x MAD(j).

Cette approche est similaire a la méthode SD (Standard Deviation) qui considere les
valeurs situées a extérieur de Uintervalle [ + 3. SD] comme aberrantes, ou = et SD
sont respectivement la moyenne et l'ecart-type empiriques de ’échantillon univarié (le
paramétre z ;). Cependant, la moyenne et 'écart-type sont remplacés respectivement par
la médiane et le M AD.. Puisque cette approche utilise deux estimateurs robustes ayant
un point de rupture élevé, elle ne sera pas affectée par les valeurs aberrantes contrairement

a la méthode SD.

Le pourcentage de valeurs aberrantes OOL; (Out Of Limit) du parameétre électrique x ;

est donné par :
card ({i; xi; ¢ [LL;; UL;J})
n

OOL(j) = 100 x %,

ou card() représente le cardinal d’un ensemble.

Avec notre méthode MAD..FS, le sous-ensemble S des paramétres électriques pertinents
sélectionnés est constitué des parameétres électriques dont le pourcentage de valeurs aber-
rantes dépasse un seuil 6, ot , est le quantile du vecteur OOL = (OOL(1), ..., OOL(p))
d’ordre g,

$ = {wj; OOL(j) > ,}.

Par exemple si nous posons ¢ = 0.75 (i.e. 0, est le troixiéme quartile), nous décidons
alors de retenir le quart des parameétres électriques qui ont le plus grand pourcentage de
valeurs aberrantes. D’une facon plus générale, et pour une valeur g €]0, 1], les 100(1—q)%
des paramétres les plus aberrants sont considérés commme pertinents et discriminatifs

pour notre méthode de filtrage.
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3.5.2 Elimination récursive des variables avec 1-SVM (1-SVM-RFE)

Dans cette section, nous présentons une méthode de sélection de variables de type wrap-
per intégrant les pouvoirs prédictifs du classifieur 1-SVM. C’est une méthode de ranking
exploitant le principe d’élimination récursive des variables et basée sur un score calculé
a partir de la méthode 1-SVM. Cette méthode, appelée 1-SVM-RFE est une adaptation
de la méthode SVM-RFE & l'algorithme 1-SVM.

Nous rappelons tout d’abord la méthode SVM-RFE puis nous présentons notre algo-
rithme 1-SVM-RFE.

3.5.2.1 Elimination récursive des variables avec SVM (SVM-RFE)

L’algorithme RFE-SVM a été proposé par Guyon et al. [38] pour sélectionner des génes
qui sont pertinents pour un probléme de classification du cancer. La méthode est basée
sur une sélection séquentielle descendante (backward sequential selection) et exploitant
les SVM, de facon récursive pour sélectionner un sous-ensemble de variables optimal.
Ce sous-ensemble optimal est constitué par les r parmi p variables (r < p) qui maxi-
misent la performance du prédicteur. Cet algorithme intégre le filtrage dans le processus
d’apprentissage SVM dans le but d’évaluer chaque sous-ensemble grace a un classifieur
SVM mais aussi pour avoir des informations sur la contribution de chaque variable sur

la construction de ’hyperplan séparateur.

On part de I’ensemble complet des variables, on élimine progressivement la variable

la moins pertinente jusqu’a avoir laissé r variables. La variable éliminée est celle dont

son élimination minimise la variation de ||w||”. Ainsi le critére de classement (ranking

criterion) R, pour une variable j est :

2l1 . ()l A
‘||w||2 — Hw(])H ’ =5 ZaiakyiykK(xi,:Uk) — Zai(J)ak(j)yiykK(])(:Ui,xk) (3.15)

ot KU )(a:i, xy) est I'élément correspondant a la iéme ligne, kiéme colonne de la matrice
de Gram G (cf. Section 2.3.4) des données d’apprentissage obtenue aprés I'élimination
de la variable j

KO (as,ap) = G = (6(a)), 6(a))
() est 1a solution de la duale de I’algorithme SVM. Pour une raison de simplicité et
(7)

*
et oy,

4 . A k 4 N N
afin de réduire la complexité de calcul, les auteurs supposent que a; "’ est égal a o, méme
si une variable a été éliminée. Les auteurs ont également indiqué qu’une normalisation

des données est nécessaire pour le bon fonctionnement de RFE.
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De ’Equation (3.15), on peut considérer que la variable éliminée est celle qui a le moins
d’influence sur la norme du vecteur de poids. En effet, la mesure |w||* est une mesure
de pouvoir prédictif. L’idée est que les variables, qui correspondent & des directions de
I’espace selon lesquelles le vecteur w admet une faible énergie, ne sont pas aussi utiles
au probléme que les autres variables (puisqu’ils contribuent faiblement & la définition de
I'hyperplan optimal). Donc, a chaque récursion de lalgorithme SVM-RFE, la variable
possédant le score R, le plus faible est éliminée. Le processus est arrété lorsque le critére
d’arrét est atteint. Ce critére correspond au nombre r de variables a retenir. Autrement
dit, le processus est arrété quand le sous-ensemble sélectionné récursivement par SVM-
RFE ne contient que r variables & classer. Le choix optimal de r sera discuté a la fin de

cette section.

L’algorithme SVM-RFE de base est donné dans I’Algorithme 1.

Algorithm 1 SVM-RFE
1. Initialisation :
Var =11,...,p]
r : nombre de variables fixé
2. Tant que card(Var) > r Faire
(a) Apprentissage du SVM sur toutes les données d’apprentissage et les variables Var

(b) Pour toutes les variables dans Var, Faire évaluer le critére R.(j) de la variable j
Fin Pour
(c) Déterminer la variable minimisant le critére R, : f = m‘gn R.(3)

eVar

(d) Eliminer la variable f de I’ensemble de variables Var : Var = {Var}\f
Fin Tant que

3. S=Var

4. Retourner S : 'ensemble solution

Avec la version originale de RFE ou une variable est éliminée par itération, le temps
d’exécution de lalgorithme SVM-RFE est extrémement cotteux. Pour surmonter cet
inconvénient, les auteurs de [38], et en raison du grand nombre de génes, proposent
d’éliminer plusieurs variables simultanément en une itération; il s’agit dans ce cas de
ceux ayant le R, le plus faible. Pour accélérer le temps de calcul de la procédure de
sélection de variables, Rakotomamonjy [71] propose d’éliminer la moitié des variables
pour les itérations initiales ol le nombre de variables utilisées est grand, jusqu’a ce que

100 variables restent & étre classées. Ensuite une variable est retirée a chaque itération.

Notons qu’éliminer plusieurs variables & la fois peut affecter la performance de classifica-
tion. Dans ce cas-1a, on n’obtient pas un critére de rang sur des variables, mais un critére
de rang sur des sous-ensembles de variables qui sont imbriqués les uns dans les autres. Si
les variables sont éliminées une & une comme le propose ’algorithme initial, les auteurs

dans [38| mettent en garde sur la pertinence des variables du plus haut rang : seul le
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sous-ensemble de variables sélectionné est optimal, et pas les variables de plus haut rang
considérées individuellement. En effet, RFE est une méthode de type “wrapper” qui va
avoir tendance & sélectionner des variables contenant de 'information complémentaire,
améliorant ainsi la tache de classification. Les variables considérées une & une dans la

sélection ne contiennent que peu d’information pertinente.

Un autre inconvénient de l'algorithme SVM-RFE est que la variable ou le sous-ensemble
de variables éliminé ne peut plus jamais revenir dans le sous-ensemble sélectionné, ce qui

pourrait biaiser la recherche.

1l est important de noter que RFE ne s’intéresse pas & la recherche du sous-ensemble de
taille optimale, mais donne une mesure d’importance sur chaque variable ou groupe de
variables. Rakotomamonjy [71] a proposé plusieurs solutions possibles afin de répondre
a la question suivante : combien de variables sélectionnées par lalgorithme SVM-RFE

doivent étre fournies au prédicteur ¢

Ces solutions ont été testées dans [71] sur un jeu de données non-linéaire. La méthode
basée sur 'erreur de validation était la meilleure. Cette méthode consiste & utiliser une
procédure de leave-one-out ou un ensemble de validation pour estimer l'erreur de gé-
néralisation en fonction du nombre de variables sélectionnées et de choisir le nombre
de variables qui minimise ’erreur de test. Cette solution est simple, cependant elle est

coluiteuse en terme de calcul.

3.5.2.2 L’algorithme 1-SVM-RFE

Similairement & la méthode SVM-RFE, la méthode 1-SVM-RFE est basée sur une sé-
lection séquentielle descendante (backward sequential selection) et exploitant 1-SVM de
fagon récursive pour sélectionner un sous-ensemble de variables optimal maximisant la

performance du prédicteur.

La mesure du pouvoir prédictif est toujours ||wl||®. A chaque itération, la variable éliminée
est celle dont son élimination minimise la variation de ||w||? de la méthode 1-SVM. Ainsi

le critére de classement (ranking criterion) R, pour une variable j est :
NP
‘Hw”2 - Hw(J)H ’ Za ar K (x;, xy) Za KW (24, 1) (3.16)

ol az(j) est la solution de la duale de ’algorithme 1-SVM.

L’algorithme 1-SVM-RFE de base est donné dans 1’Algorithme 2.
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Algorithm 2 1-SVM-RFE
1. Initialisation :
Var =11,...,p]
r : nombre de variables fixé
2. Tant que card(Var) > r Faire
(a) Apprentissage du 1-SVM sur toutes les données d’apprentissage et les variables
Var
(b) Pour toutes les variables dans Var, Faire évaluer le critére R.(j) de la variable j
Fin Pour

(c) Déterminer la variable minimisant le critére R, : f = m‘}n R.(3)
JjeVar

(d) Eliminer la variable f de l’ensemble de variables Var : Var = {Var}\f
Fin Tant que

3. S=Var

4. Retourner S : 'ensemble solution

Pour accélérer le temps de calcul, nous proposons d’éliminer la moitié des variables &
la premiére itération, puis 5% des variables aux itérations suivantes jusqu’a ce que la
taille du sous-ensemble a sélectionner sera égale & r. Afin de gagner encore en temps
de calcul, nous définissons un hyperparameétre ¢ qui permet de déterminer le nombre r
de variables & retenir par 'algorithme 1-SVM-RFE. Identiquement & notre méthode de
filtrage, et pour une valeur de ¢ €]0, 1], le nombre de variables & retenir r correspond a
la fraction (1 — ¢) du nombre de variables initiales p. Le choix optimal de ¢ peut étre
accompli selon la solution proposée par Rakotomamonji [71], déja mentionnée a la fin
de la section précédente. Par exemple, une plage de valeurs de ¢ dans [0.5; 1] et avec un
pas de 0.05 nous permet d’éviter de parcourir de nombreuses valeurs de r, et par suite

réduire le cott de calcul.



Chapitre 4

Quelques résultats de la détection

avec 1-SVM en mode statique

Dans ce chapitre, nous introduisons tout d’abord deux modéles de détection que nous
avons développés pendant notre étude. Ils sont basés sur les deux méthodes de sélection
de variables que nous venons de présenter dans le Chapitre 3, et sur l'algorithme de
détection 1-SVM. Les deux modeéles peuvent étre appliqués en mode statique ou en

mode dynamique selon qu’on prend en compte ou non 'ordre chronologique des wafers.

Nous présentons quelques résultats de la détection avec 1-SVM en mode statique. Nous
commencons par étudier I'influence de I’hyperparamétre v du noyau gaussien sur la per-
formance de 1-SVM, et nous allons voir qu’il n’est pas nécessaire de faire un réglage
extrémement fin pour cet hyperparamétre. Ensuite nous montrons I'importance de I’ap-
plication de nos méthodes de sélection de variables avec 'algorithme 1-SVM, révélée par
des améliorations significatives de la performance de détection de cet algorithme. Puis
nous étudions l'influence de la présence d’anomalies dans la phase d’apprentissage du
modeéle 1-SVM. Ceci va servir dans I'interprétation des résultats de comparaison de deux
scénarios de mise a jour de notre systéme de détection en temps réel (cf. Section 5.4 du
Chapitre 5).

Avant de présenter ces résultats, nous introduisons les mesures de performances permet-
tant d’évaluer les capacités de détection des modéles utilisés, ainsi que les différentes
étapes de prétraitement de données, et nous décrivons les jeux de données réels de ST

qui vont servir pour évaluer les différents modéles de détection.

81
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4.1 Modéles de détection

Le but de notre travail était de développer une approche statistique multivariée pour
détecter les anomalies dans le domaine des semi-conducteurs. Ces anomalies représentent
des wafers dont le comportement électrique est anormal. Cette approche multivariée vise
donc a détecter les wafers anormaux en regardant les mesures des paramétres électriques

statiques obtenues a l'issu du Test Paramétrique (PT).

Dans les chapitres précédents, nous avons présenté la méthode 1-SVM pour la détection
d’anomalies. Nous avons présenté également deux techniques de réduction de dimension :

la méthode de type filtrage MAD..FS, et la méthode de type wrapper 1-SVM-RFE.

Ainsi nous introduisons deux modéles de détection :

1. I-SVM.MAD:. : ce modéle utilise tout d’abord notre méthode MAD..F'S pour sélec-
tionner les paramétres électriques pertinents, puis 'algorithme 1-SVM est appliqué

sur le sous-ensemble de parameétres sélectionnés pour détecter les wafers anormaux.

2. 1-SVM.RFE : dans ce modéle, la sélection de variables est effectuée en utilisant la
méthode de type wrapper 1-SVM-RFE, puis un classifieur 1-SVM est construit &

partir des paramétres retenus.

Ces deux modeles ont été testés suivant deux modes de fonctionnement : un mode statique

et un mode dynamique.

— Mode statique : les modéles sont figés. Ils ne prennent pas en considération l'ordre
chronologique des wafers et 1’évolution temporelle des mesures de paramétres éléc-
triques.

— Mode dynamique : Le modéle dynamique exploite les modéles de détection développés
tout en considérant le facteur “temps”. Le but étant de réaliser une détection en temps
réel dans le contexte d’une application industrielle. I’idée est d’appliquer les modéles
de détection dans un cadre temporel ou ’ordre chronologique des wafers est respecté.
En mode dynamique, les wafers mavericks sont détectés a partir d’un historique récent
des mesures électriques a ’aide d’une fenétre temporelle glissante. Pour ce faire, deux

conditions sont nécessaires :
1. Les mesures doivent etre triées par ordre chronologique.

2. L’historique disponible doit étre suffisament long pour pouvoir construire le mo-
déle sur un échantillon d’apprentissage représentatif contenant une grande variété

des mesures électriques.
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Modeéle
anomalie | normal
PT anomalie TN FN
normal FP TP

TABLE 4.1 — Résultats possibles lors d’'une application d’un modéle de détection.

4.2 Evaluation de Performance et jeux de données

Puisque 'hypothése construite par un algorithme d’apprentissage peut étre comprise
comme une approximation de la fonction cible, la qualité de cette approximation, appelée
performance, est d’un grand intérét. Il s’agit d’une mesure de la capacité de généralisation

des hypothéses.

D’une part, ’évaluation de performance est importante pour faire le réglage des para-
meétres de 'algorithme d’apprentissage ou pour trouver un sous-ensemble optimal des
variables dans le cadre d’une sélection de variables. D’autre part, elle est utilisée pour
comparer et évaluer les différents algorithmes d’apprentissage utilisés. De cette facon,

I’algorithme optimal pour un probléme spécifique peut étre étudié.

4.2.1 Mesures de Performance

Le terme “mesure de performance” spécifie la maniére dont la performance de ’algo-
rithme est déterminée. Le tableau 4.1 montre les différents résultats possibles lors d’une

application d’un modéle de détection :

1. TN : le nombre de vrais négatifs(True Negative), i.e. le nombre de wafers considérés

comme anormaux au PT et détectés par le modéle.

2. FN : le nombre de faux négatifs (False Negative), i.e. le nombre de wafers considérés

comme anormaux au PT et non détectés par le modéle.

3. FP : le nobmre de faux positifs (False Positive), i.e. le nombre de wafers considérés

comme normaux au PT et détectés par le modéle.

4. TP : le nombre de vrais positifs (True Positive), i.e. le nombre de wafers considérés

comme normaux au PT et non détectés par le modéle.

Par suite nous pouvons calculer la sensibilité et la spécificité. La sensibilité (4.1) repré-
sente le taux de vrais négatifs, i.e la précision de détection des observations anormales.
La spécificité (4.2) représente le taux de vrais positifs, i.e la précision de détection des

observations normales.
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TN
bilité = 100 ——rx— 4.1
sensibilité = 100 TN FN % (4.1)
TP
Sct ficité = 100 ——— 4.2
spéci ficité = 100 TP L FP % (4.2)

En se basant sur ces deux mesures, nous définissons deux mesures de performance : le
taux de détection (Detection Rate DR) et le taux de fausses alarmes (False Alarms Rate
FAR). Le taux de détection (sensibilité) est le pourcentage de wafers anormaux détectés
par notre modéle tandis que le taux de fausses alarmes (100-spécificité) est le pourcentage

des wafers normaux considérés comme des anomalies par notre modéle.

Une mesure de performance largement utilisée dans la classification est la précision (accu-
racy), qui représente la fraction d’observations correctement classées dans I’ensemble de
test. Nos jeux de données sont constitués presque entiérement d’observations normales
alors que les anomalies sont rares. Alors les probabilités a priori des classes sont trés
différentes, d’otl cette mesure n’est pas adaptée a notre étude. Par exemple, sur un en-
semble de données avec une distribution de 98% — 2% des classes, il est facile d’atteindre
98% de précision en attribuant simplement chaque nouveau cas a la classe cible (wafers
normaux). Une telle mesure est inappropriée pour la détection des wafers anormaux,

comme le classificateur aurait échoué de reconnaitre un wafer anormal.

Pour surmonter ce probléme, nous avons choisi la métrique G-means (4.3) présentée dans

[52].

G — means = +/sensitivité x spécificité = /DR x (100 — FAR) (4.3)

L’idée de base de G-means est de maximiser les valeurs de la sensibilité et de la spécificité
et de garder le taux de détection et le taux de fausses alarmes en équilibre. Des valeurs

élevées de cette mesure indique une bonne qualité du modéle de classification.

4.2.2 Courbes FAR-DR

Une fagon plus avancée et fréquemment utilisée pour I’évaluation de la performance des
modéles d’apprentissage automatique est fournie par ce qu’on appelle la courbe FAR-DR.
Cette courbe fournit un moyen approprié pour ’évaluation de classificateurs en intégrant
leur performance sur une gamme de seuils de décision. Par exemple, cette gamme peut
étre de différentes valeurs d’un paramétre libre du modéle d’apprentissage comme le
parameétre v dans les SVM & une classe. La courbe FAR-DR montre donc la relation
ou le compromis entre le taux de détection et le taux de fausses alarmes en faisant
varier une condition ou un parameétre libre du modéle utilisé. Pour chaque élément de

cette gamme, un point de la courbe FAR-DR est déterminé. Un point parfait dans cette
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courbe présenterait un taux de détection de 100% avec un taux de fausses alarmes de
0%. Par conséquent, les chercheurs essaient de pousser la courbe vers ce point idéal, i.e

vers la partie haute gauche.

La courbe FAR-DR est inspirée de la courbe ROC. Cette derniére montre aussi le compro-
mis entre le taux de détection et le taux de fausses alarmes en faisant varier un paramétre
libre du modéle utilisé. La seule différence entre les deux courbes est la gamine de valeurs
de ce paramétre exploitée par ces courbes. Avec la courbe ROC, on fait varier le para-
meétre v du 1-SVM pour différentes valeurs appartenant a ]0, 1], alors qu’avec la courbe
FAR-DR on peut se contenter de varier ce parameétre sur un sous-ensemble de ]0, 1].
Dans notre étude, les courbes FAR-DR sont tracées en faisant varier v sur [0.01, 0.2]

avec un pas de 0.01.

4.2.3 Prétraitement des données

Les données collectées sur Crolles 300 (mesures des parameétres, limites de validité) sont
extraites a partir de la base de données avec le logiciel PT ANALYSIS II. Cet outil
a été développé & STMicroelectronics, sur le site de Crolles, pour visualiser et analyser
toutes les données du PT (boites & moustaches, histogrammes, indicateurs statistiques,

mapping des wafers ...).

Les paramétres PT

Les parameétres collectés sont les parametres de type “Gated”. Ce sont tous les parameétres
électriques définis dans le programme du test paramétrique pour I'acceptation des lots
et des wafers. Ces paramétres comprennent les paramétres “clés”, un sous-ensemble de
paramétres de fiabilité et de qualité considérés comme majeurs pour la technologie et

doivent étre garantis aux clients.
Les paramétres Gated sont classés en deux catégories :

— Les paramétres de fiabilité : paramétres potentiellement liés & des problémes de fiabi-
lité, en raison du processus de fabrication, et qui peuvent avoir un impact sur la durée
de vie du circuit. Nous citons par exemple les paramétres “VBD AREA PN 17 et
“VBD AREA PN 27 qui mesurent la tension de claquage de deux structures de test
différentes.

— Les paramétres de qualité : parameétres qui caractérisent le rendement de fabrication
du produit. Nous citons par exemple le paramétre “NIOFF03028TG14” qui mesure le
courant résiduel du transistor fermé, le parameétre clé “NVT(02044RST14” qui mesure la

tension seuil d’un transistor caractérisé par une longuer et une largeur bien spécifique,
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et le parameétre “NIDS0205RD14” mesurant le courant de saturation d’un transistor

caractérisé par une longuer et une largeur bien spécifique.

Comme nous avons déja vu dans la Figure 7, ces parameétres sont mesurés sur tous les

lots et tous les wafers en neuf sites (emplacements) de chaque wafer.

Transposition des données

Les fichiers contenant les données sont sous forme d’une matrice : chaque colonne re-
présente un indicateur du wafer (identifiant du lot, numéro du wafer dans le lot, nom
du produit, position (location), date de prise des mesures, ...) ou un paramétre PT, et

chaque ligne, une observation (un site d’'un wafer d’un lot) (Tableau 4.2).

Au début, nous avons résumé les neuf sites de mesures de chaque paramétre électrique par
leur moyenne et leur écart-type. Ceci nous amené a une perte d’information importante et
a réduit la pertinence de la détection. Pour cela, un code a été réalisé dans le logiciel pour
garder toutes les valeurs correspondantes aux neuf sites de mesure, mais dans un format
exploitable. Ce code transpose les “raw data” d’un wafer (9 lignes correspondant aux 9
sites du wafer) en colonnes, donc chaque wafer d’un lot sera représenté par une ligne et
décrit par 9 mesures de chaque parameétre en colonnes (Tableau 4.3). Donc la dimension
de 'espace de variables est égale & neuf fois le nombre de paramétres électriques mesurés,
puisque chaque site de mesure d'un paramétre va & son tour constituer un nouveau

parametre.

Le Tableau 4.2 montre un exemple de fichier de données extrait de la base de données de
ST, ot chaque wafer est décrit par neuf lignes, chaque ligne correspond aux mesures d’un
site de mesures de 'ensemble de parameétres électriques. Avec le code de transposition
développé, nous obtenons dans le Tableau 4.3 le format exploitable en analyse de données,
ou chaque wafer est décrit par une seule ligne, et le facteur site figure en colonnes et pas
en ligne (BYNWPWI11 1,..., BVUNWPWI1 9).

Traitement des mesures hors limites de validité

Outre les limites de spécifications, les ingénieurs PT définissent aussi des limites de vali-
dité pour les paramétres électriques, qui sont bien éloignées des limites de spécification.
Une mesure hors validité peut étre dtie & un défaut de fabrication ou un probléme de
mesure. Les mesures hors validité qui s’écartent trop des autres mesures pourraient af-
fecter le bon fonctionnement des méthodes statistiques utilisées. Par exemple, on peut

trouver une mesure égale a 102! pour un paramétre électrique causée par un probléme
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lot lotwaf site BVNWPW11 W_MAX
QI02YAK | QI02YAK 1 1 STD 8.806 e 1.08
Q102YAK | QLO2YAK 1 | 9 | STD 8.784 . 1.35
Q102'YAK QlOQYAK_25 1 ST.‘D 8.885 .- 1.17
QI02YAK | Q102YAK 25| 9 | STD 8.915 e 0.96
Q131MWH | 13IMWH _25 | 1 | STD 9.7.68 e O.éQ
Q131MWH | 13IMWH 25 | 9 | STD 9.879 . 0.75

TABLE 4.2 — Exemple de fichier de données extrait a partir de la base de données

lot lotwafer BVNWPWI11 1 BVNWPWI11 9 W_MAX 9
Q102YAK QL02YAK 1 8.806 8.784 1.35
Q102YAK | Ql02YAK 25 8.885 8.915 0.96
QI31MWH | Q131MWH _25 9.768 9.879 0.75

TABLE 4.3 — Transposition en colonnes des “Raw data” du Tableau 4.2

de mesure. Par conséquent, il est nécessaire de filtrer ce type de mesures non représenta-
tives du procédé de fabrication. Pour cela, nous classifions suite aux avis des ingénieurs
PT les paramétres électriques en deux catégories définissant si les mesures hors validité
ont une signification physique (un défaut de fabrication) ou non (un probléme de mesure).
Nous construisons alors un fichier contenant les paramétres électriques et leur catégorie
constituée de deux modalités :

— Categorie (' : une meure hors validité a une signification physique.

— Categorie (5 : une meure hors validité n’a pas une signification physique.

Le logiciel PT _ANALYSIS II permet avec l'option “Exclude Out of Validity” (exclure
les mesures hors validité) de remplacer automatiquement dans les fichiers extraits les

mesures hors validité par des données manquantes.

Ensuite, pour traiter les données manquantes qui correspondent & des valeurs hors vali-
dité, un programme a été créé avec le logiciel R. Ce programme prend en entrée un fichier

de données contenant les mesures des paramétres et un autre contenant les catégories de
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ces parameétres. Le programme parcourt tout le fichier de données et dés qu'une valeur

manquante est détectée, il procéde & une de deux actions suivantes :

— si la donnée manquante correspond & un parameétre de “Catégorie C”, nous la rempla-
cons par la limite de validité la plus proche (supérieure ou inférieure) du paramétre
électrique correspondant.

— si la donnée manquante correspond & un paramétre de “Catégorie C3”, nous la rempla-
cons par la moyenne des mesures valides du méme paramétre électrique et méme site

de mesure des wafers du méme lot.

4.2.4 Description des jeux de données

Nous avons décidé de travailler sur la technologie “IMAGER 140”7 (1140). Elle fait partie
des technologies les plus avancées & Crolles. De plus, elle présente un volume de produc-
tion important ce qui est un avantage pour la collecte des données et la pertinence des

analyses.

Cette technologie consiste a fabriquer des capteurs d’images. Ces capteurs sont des dispo-
sitifs qui permettent de transcrire une scéne observée en un signal électronique a travers
une optique de focalisation. Autrement dit, ils permettent de transformer une image
réelle en signal numérique. Nous en utilisons au quotidien & travers des photocopieurs,

appareils photo, caméras numériques, lecteurs code barres et téléphones portables.

Les différentes techniques de détection ont été testées sur deux jeux de données réelles
de ST : dataset 1 et dataset 2. Ces deux jeux de données sont décrits dans le Tableau
4.4. Chaque jeu de données consiste en un produit de la technologie 1140 avec plusieurs

mois de production.

dataset 1 | dataset 2

Produit P Py

Période de production 4 mois 2 mois

Nb de wafers 2550 1600
Nb de wafers scrapés au PT 12 23

% de wafers scrapés au PT 0.47 1.44
Nb de parameétres électriques 118 84
Dimension de ’espace de variables 1062 756

TABLE 4.4 — Description des jeux de donnéees réelles de ST utilisées dans notre étude.

Le dataset 1 est composé de 2550 wafers décrits chacun par 118 paramétres électriques

mesurés en neuf sites ce qui fait un espace de variables de dimension égale & 1062 (9x 118).
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Il contient 12 wafers considérés comme anormaux au PT. Le dataset 2 est composé de
1600 wafers dont 23 sont considérés comme anormaux au PT. Chaque wafer est décrit par
84 parameétres électriques mesurés également en neuf sites, d’ot1 la dimension de I’espace
de variables est égale a 756 (9 x 84). Les wafers anormaux du dataset 1 ont des profils
trés atypiques et sont donc faciles & détecter par les trois modéles de détection que nous
allons utilisés contrairement aux wafers anormaux du dataset 2. Des taux de détection
trés élevés peuvent étre obtenus avec les trois modéles utilisés et sur les deux jeux de
données, mais avec des taux de fausses alarmes dans le dataset 1 beaucoup plus petits
que dans le dataset 2. Alors nous pouvons dire que le dataset 1 est un jeu de données
idéal ol tous les modeéles sont capables de réaliser une détection performante, tandis que
le dataset 2 représente un défi pour les modeéles de détection et va permettre de choisir

le modéle le plus performant.

4.3 Influence de ’hyperparamétre v sur la performance de
1-SVM

Dans la Section 2.4.2, et pour les raisons citées dans la Section 2.3.5, nous avons vu
que le noyau gaussien représente le meilleur choix en tant qu’une fonction noyau pour
les algorithmes SVM et 1-SVM. Pour cela nous avons commencé par étudier I'influence
de I’hyperparamétre v du noyau gaussien sur la performance de l’algorithme 1-SVM

appliqué sans sélection de variables.

Selon Vapnik [92], le choix de la valeur de « dépend de la dimension de l'espace de

variables auquel les SVM sont appliqués, et celui-ci préconise de choisir v = 1/p.

Toutefois, comme on peut le constater sur la Figure 4.3 cette valeur n’est pas toujours
optimale (ici la valeur préconisée par Vapnik correspond a l'abscisse 1, pour laquelle la
performance de 1-SVM n’est pas optimale). C’est pourquoi nous avons utilisé un parcours

d’un ensemble de valeurs de v discrétes réelles définies par

1
m X p

’7:

avecm € {3, 4, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5,5}.

Les bornes supérieures et inférieures de cet intervalle ont été définies de facon empirique

afin de couvrir une plage de valeur suffisamment large autour de la valeur recommandée

v=1/p.

L’influence de 'hyperparamétre + a été étudiée sur les deux jeux de données en mode

statique. Nous avons partitionné le jeu de données en un ensemble d’apprentissage et
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FIGURE 4.1 — Dataset 1 : variation de la mesure de performance G-means de ’algorithme
1-SVM en fonction de différentes valeurs de m, pour v = 0.05.
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FI1GURE 4.2 — Dataset 1 : variation de la mesure de performance G-means de ’algorithme
1-SVM en fonction de différentes valeurs de m, pour v = 0.1.
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FIGURE 4.3 — Dataset 2 : variation de la mesure de performance G-means de ’algorithme
1-SVM en fonction de différentes valeurs de m, pour v = 0.1.
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FI1GURE 4.4 — Dataset 2 : variation de la mesure de performance G-means de ’algorithme
1-SVM en fonction de différentes valeurs de m, pour v = 0.15.



Chapitre 4. Quelques résultats de la détection avec 1-SVM en mode statlique 92

un ensemble test avec des proportions respectives de 2/3 et 1/3. Ensuite nous avons
appris le modeéle 1-SVM sur I'échantillon d’apprentissage ne contenant que des wafers
considérés comme normaux au PT, et nous avons déterminé les taux de détection et
de fausses alarmes obtenus suite a 'application du modéle sur ’échantillon de test. Ce
scénario est répéeté 100 fois (100 partitionnements aléatoires du jeu de données suivant les
proportions 2/3;1/3). Pour chaque valeur de m, la moyenne et l’écart-type de la mesure

de performance G-means sont calculés sur les 100 répétitions aléatoires.

Les Figures 4.1 et 4.2 (resp. Figures 4.3 et 4.4) montrent les variations de la mesure de
performance G-means en fonction de différentes valeurs de m dans le dataset 1 (resp.
dataset 2), pour v = 0.05 et ¥ = 0.1 (resp. v = 0.1 et v = 0.15) . Des barres d’erreurs ont
été ajoutées pour représenter les écarts-type de G-means. Comme on peut le constater,
les quatre courbes présentent une assez large plage (m > 1) pour laquelle la mesure G-
means est élevée et peu variable, avec aussi une légére variabilité observée au niveau de
chaque valeur de m (des petites barres d’erreur). L’algorithme 1-SVM montre alors une

performance quasiment stable, et Le choix de m dans cette plage n’est donc pas critique.

Ces résultats montrent alors que 1-SVM n’est pas sensible au hyperparamétre v du noyau
gaussien. Donc il n’est pas nécessaire de faire un réglage précis pour cet hyperparamétre.
Pour la suite, nous avons décidé de retenir la valeur v = 1/3p (m = 3). Toutefois, nous
pouvons, en présence d’un échantillon de validation, choisir une valeur optimale de v dans

la plage de valeurs proposée dans cette section en se basant sur 'erreur de validation.

4.4 Importance de la sélection de variables dans 1-SVM

Dans cette section, nous montrons 'importance de l'utilisation de deux méthodes de
sélection de variables dans 'amélioration de la performance de détection de I’algorithme
1-SVM. Nous avons considéré les deux jeux de données et nous avons testé les modéles
1-SVM, 1-SVM.MAD, et 1-SVM.RFE en mode statique selon le méme scénario d’ap-
prentissage et de test de la section précédente. L’hyperparameétre « est posé égal a 1/3p.
Dans les modéles 1-SVM.MAD, et 1-SVM.RFE, p représente le nombre de parameétres
électriques retenus aprés la sélection de variables. Nous avons considéré 20 valeurs de v
telles que v € {0.01, 0.02,..., 0.2}. L’hyperparamétre g des méthodes de sélection de
variables est pris égal & 0.75 (i.e. nous avons retenu le quart des paramétres électriques

les plus pertinents avec chaque méthode).

Nous donnons dans les Tableaux 4.5 et 4.6 des illustrations numériques de ’amélioration
de la performance de détection aprés avoir utilisé chacune des méthodes de sélection de

variables respectivement dans le dataset 1 et le dataset 2. Nous avons choisi 6 valeurs
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, 1-SVM 1-SVM.MAD, 1-SVM.RFE
DR FAR DR FAR DR FAR
0.03 | 77.50 (5.85) | 4.19 (0.71) | 80.15 (3.24) | 3.65 (1.15) | 81.12 (2.05) | 3.37 (0.98)
0.04 | 83.61 (1.52) | 5.40 (0.91) | 84.35 (2.45) | 4.87 (0.82) | 84.73 (3.21) | 4.41 (0.85)
0.05 | 84.72 (3.16) | 6.13 (0.98) | 86.07 (2.15) | 5.89 (0.71) | 87.11 (2.66) | 4.99 (0.71)
0.06 | 89.44 (3.75) | 7.06 (0.96) | 90.55 (1.49) | 6.77 (1.21) | 90.72 (1.26) | 6.29 (1.15)
0.07 | 91.39 (1.52) | 8.30 (1.02) | 91.66 (0) | 8.23 (1.02) | 91.66 (0) | 8.46 (0.82)
0.08 | 91.66 (0) | 9.11 (1.66) | 91.66 (0) | 8.71 (1.16) | 91.66 (0) | 8.55 (1.35)

TABLE 4.5 — Dataset 1 : ilustration numérique de ’amélioration de la performance de
détection avec les méthodes de sélection de variables pour ¢ = 0.75.

) 1-SVM 1-SVM.MAD, I-SVM.RFE
DR FAR DR FAR DR FAR
0.05 | 52.52 (6.93) | 5.78 (1.28) | 79.45 (8.79) | 5.28 (1.13) | 93.57 (5.29) | 5.96 (1.2
0.06 | 62.22 (8.44) | 6.89 (1.52) | 89.30 (5.43) | 7.22 (1.33) | 95.65 (0) | 6.43 (1.19
0.07 | 71.22 (7.79) | 8.12 (1.57) | 93.30 (3.54) | 7.84 (1.23) | 95.65 (0) | 7.78 (1.29)
0.10 | 88.65 (5.13) | 10.96 (1.76) | 95.65 (0) | 10.63 (1.42) | 95.65 (0) | 10.55 (1.35)
)

(
(1. (
0.12 | 94 (2.88) | 12.92 (1.75) | 95.65 (0) | 12.29 (1.64) | 95.65 (0
0.15 | 95.65 (0) | 15.86 (2.0 (

12.93 (1.93)
3) | 95.65(0) | 1557 (2.26) | 95.65 (0) | 15.53 (1.79)

TABLE 4.6 — Dataset 2 : ilustration numérique de ’amélioration de la performance de
détection avec les méthodes de sélection de variables pour ¢ = 0.75.

de v représentatives de cette amélioration. Pour chaque valeur de v, nous donnons la
moyenne et I’écart-type (entre paranthése) de deux mesures de performance DR et FAR
obtenus sur les 100 répétitions aléatoires avec chacun de trois modéles de détection.
Dans le Tableau 4.5, une ameélioration de deux mesures de performance a été observée
en appliquant les méthodes de sélection de variables, surtout pour les premiéres valeurs
de v (v € {0.03, 0.04, 0.05}). Les méthodes 1-SVM-RFE et MAD,.FS ont montré des
performances similaires, avec des légéres augmentations de DR et réductions de FAR
apportées par la méthode 1-SVM-RFE par rapport a la méthode MAD,.FS. Cette légére
amélioration de performance de détection est die & la facilité de détection des wafers
anormaux dans ce jeu de données (cf. Section 4.2.4). Il suffit de voir que le modéele 1-
SVM fournit une bonne performance de détection pour toutes les valeurs de v, et ceci
sans appliquer une sélection de variables. Nous nous attendons & une amélioration plus
significative de la performance de détection dans le dataset 2 aprés avoir sélectionné
les parameétres électriques pertinents. Dans le Tableau 4.6, nous voyons clairement les
améliorations significatives dans la performance de détection, apportées par chacune des
deux méthodes de sélection de variables. En effet, pour une méme valeur de v, nous
observons des FAR similaires et peu variables (petits écarts-type) mais des améliorations
importantes et moins variables des DR avec les modéles 1-SVM.MAD, et 1-SVM.RFE

par rappot au modéle 1-SVM. Par exemple, pour v = 0.05, nous notons en moyenne
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, 1-SVM 1-SVM.MAD, 1-SVM.RFE
DR FAR DR FAR DR FAR
0.05 | 52.52 (6.93) | 5.78 (1.28) | 66.17 (14.23) | 542 (1.14) | 88.43 (4.36) | 5.96 (1.25)
0.06 | 62.22 (8.44) | 6.89 (1.52) | 72.70 (14.11) | 6.55 (1.35) | 91.04 (1.36) | 6.41 (1.28)
0.07 | 71.22 (7.79) | 8.12 (1.57) | 77.30 (13.76) | 7.10 (1.23) | 91.30 (0) | 7.91 (1.41)
)

0.10 | 88.65 (5.13) | 10.96

0.15 | 95.65(0) | 15.86

(1.76) | 88.52 (7.28) | 10.19 (1.52) | 92.87 (2.11) | 10.53 (1.65)
0.12 | 94 (2.88) |12.92 (1.75) | 91.04 (6.24) | 11.85 (1.84) | 95.57 (0.61) | 12.41 (1.71)
(2.03) | 94.35 (3.07) | 14.96 (1.94) | 95.65 (0) | 15.73 (1.64)

TABLE 4.7 — Dataset 2 : ilustration numérique de ’amélioration de la performance de
détection avec les méthodes de sélection de variables pour ¢ = 0.9.

des augmentations respectives de DR d’environ 27% et 41%, puis d’environ 22% et
24% pour v = 0.07. Ensuite, le taux de détection a atteint 94% avec le modeéle 1-
SVM (pour v = 0.12). Des taux de détection trés proches ont été obtenus en appliquant
les modeles 1-SVM.MAD, (93.3%, v = 0.07) et 1-SVM.RFE (93.57%, v = 0.05), mais
avec des réductions significatives des fausses alarmes respectivement égales & 5 et 7%
environ. Pour un taux de détection égal a 95.65% obtenu sans sélection de variables
(v = 0.15), les méthodes de filtrage (v = 0.10) et de wrapper (v = 0.06) ont abouti a ce
méme taux mais avec des réductions respectives de fausses alarmes de 5 et 9% environ.
De plus, ces résultats montrent que le modéle 1-SVM.RFE est plus performant que le
modéle 1-SVM.MAD,. Ce résultat était attendu vu que le premier modéle utilise une
méthode wrapper qui intégre les performances prédictives du classifieur 1-SVM alors que
le deuxiéme utilise une méthode de filtrage basée sur un score indépendant du classifieur
1-SVM.

Le Tableau 4.7 montre aussi 'amélioration de la performance de détection apportée par
les méthodes 1-SVM.MAD, et 1-SVM.RFE par rapport au 1-SVM, avec g pris égal a
0.9. Le modéle 1-SVM.RFE est toujours plus performant que le modéle 1-SVM.MAD.,.
Cependant, et en comparant pour les mémes valeurs de v, ce tableau au Tableau 4.6,
nous remarquons une diminution respective des DR et FAR des modéles 1-SVM.MAD,
et 1-SVM.RFE. Avec ¢ = 0.90, nous observons une dégradation significative de la per-
formance du modéle 1-SVM.MAD, par rapport & ¢ = 0.75, et ceci pour les 6 valeurs
de v. De plus, pour v € {0.10, 0.12, 0.15}, le modeéle 1-SVM a donné des DR plus
élevés et moins variables que le modéle 1-SVM.MAD,. Ceci peut étre di a ’élimination
d’une ou plusieurs variables discriminatives par la méthode de filtage. Concernant le
modeéle 1-SVM.RFE, une légére dégradation de performance est soulignée pour quelques
valeurs de v (v € {0.05, 0.06, 0.07, 0.1}). I-SVM.RFE a donc été moins affecté par
Paugmentation de ¢ que 1-SVM.MAD,. Ceci peut s’expliquer par le fait que la méthode
de sélection de type wrapper a pu garder les parameétres électriques discriminants dans

les 10% parametres sélectionnés (¢ = 0.9) contrairement & la méthode de type filtrage.
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L’augmentation de ¢ de 0.75 & 0.90 a abouti & une baisse de performance des méthodes

de sélection de variables.

Pour résumer, les résultats des Tableaux 4.5 et 4.6 ont montré I'importance d’applica-
tion d’une méthode de sélection de variables pour une détection plus performante avec
la méthode 1-SVM. Ces deux jeux de données ont montré aussi la supériorité du mo-
dele 1-SVM.RFE par rapport au modéle 1-SVM.MAD,. D’autre part, la comparaison des
Tableaux 4.7 et 4.6 montre que le choix de I’hyperparamétre g est sensible. Il est donc im-
portant de faire un choix optimal de cet hyperparamétre afin d’optimiser la performance
de détection de la méthode 1-SVM.

4.5 Influence de la présence d’anomalies dans ’étape d’ap-

prentissage de 1-SVM

1-SVM est une méthode d’apprentissage semi-supervisée oil le modeéle de classification
est construit sur un échantillon d’apprentissage constitué des observations normales.
Donc l'idée d’avoir des anomalies dans I’échantillon d’apprentissage n’est pas tout &
fait réaliste. Cependant, il est important d’étudier ce cas afin de mieux interpréter les
résultats de comparaisons de deux scénarios de mise & jour de notre systéme de détection
en temps réel dans le Chapitre 5. De plus, il se peut qu’il existe un ou plusiers wafers
dans ’échantillon d’apprentissage considérés comme normaux par les ingénieurs PT et

qu’ils soient réellement anormaux.

Ceci nous ameéne & se poser la question suivante : que se passe-t-il si ’échantillon d’ap-
prentissage contient une trés petite fraction d’anomalies 7 Rappelons tout d’abord que le
parameétre v de cette méthode est une borne supérieure de la fraction des erreurs d’ap-
prentissage et permet alors de maximiser la marge de séparation en classant quelques
observations normales comme anomalies. Intuitivement, nous pouvons nous attendre &
ce que ces anomalies, avec une valeur appropriée de v, vont étre situées entre ['hyper-
plan séparateur et l'origine et par suite leur présence ne va pas affecter fortement la
performance prédictive du classifieur 1-SVM. Cependant, et pour une méme valeur de v,
la marge du classifieur 1-SVM est plus large en absence d’anomalies dans ’échantillon
d’apprentissage et par conséquent la présence d’anomalies dans la phase d’apprentissage

peut réduire la capacité de généralisation du classifieur 1-SVM.

Nous étudions donc, dans cette section, l'influence de la présence d’anomalies dans la
phase d’apprentissage du modéle 1-SVM sur sa performance de détection. Cette condi-
tion est testée sur les deux jeux de données en mode statique. Nous avons considéré deux

types d’échantillons d’apprentissage : un échantillon non contaminé ne contenant que
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y Sans anomalies Avec anomalies
DR FAR DR FAR
0.06 | 67.92 (14.19) | 6.04 (0.84) | 64.58 (14.34) | 5.94 (0.83)
0,08 | 72.08 (13.80) | 8.28 (1.22) | 70.83 (14.06) | 8.12 (1.23)
0,10 | 75.42 (15.91) | 10.43 (1.48) | 72.08 (16.64) | 10.22 (1.46)
0,12 | 75.83 (14.28) | 12.35 (1.41) | 73.33 (14.58) | 12.25 (1.44)

TABLE 4.8 — Dataset 1 : influence de la présence d’anomalies dans I'échantillon d’appren-
tissage sur la performance du modeéle de détection 1-SVM.MAD,, avec ¢ = 0.75.

Sans anomalies Avec anomalies
DR FAR DR FAR
0.06 | 89.50 (8.39) | 7.23 (1.53) | 68.50 (12.74) | 6.53 (1.48)
0,08 | 93.33 (5.32) | 9.24 (1.56) | 85.33 (9.31) | 8.39 (1.68)
0,10 | 95.33 (4.18) | 10.87 (1.82) | 93.83 (5.27) | 9.89 (1.65)
0,12 | 96.83 (4.08) | 12.96 (1.69) | 96.67 (4.12) | 12.01 (1.63)

14

TABLE 4.9 — Dataset 2 : influence de la présence d’anomalies dans 1’échantillon d’appren-
tissage sur la performance du modéle de détection 1-SVM.MAD,, avec ¢ = 0.75.

des wafers normaux, et un échantillon contaminé contenant quelques wafers anormaux.
Les échantillons d’apprentissage du dataset 1 sont constitués de 1700 wafers (2/3) dont
4 wafers sont anormaux dans les échantillons contaminés ce qui représente une fraction
de 0.24% environ. Les échantillons d’apprentissage du dataset 2 sont constitués de 1077
wafers (2/3) dont 11 wafers sont anormaux dans les échantillons contaminés ce qui repré-
sente une fraction de 1% environ. L’écart significatif des fractions d’anomalies injectées
dans les échantillons d’apprentissage est di au faible nombre des wafers anormaux dans
le dataset 1. Les échantillons de test correspondant a chacun des deux types des échan-
tillons d’apprentissage sont les mémes, et ils contiennent les 12 (resp. 8) wafers anormaux
non injectés dans les échantillons d’apprentissage contaminés du dataset 1 (resp. dataset
2). Nous avons procédé a 100 répétitions aléatoires des wafers normaux et anormaux

dans les échantillons d’apprentissage.

Dans cette section, nous avons uniquement utilisé le modéle 1-SVM.MAD, qui est beau-
coup plus rapide en terme de temps de calcul que le modéle 1-SVM.RFE, 'objectif es-
sentiel étant d’étudier le comportement du modéle de détection 1-SVM avec la présence
d’anomalies dans ’échantillon d’apprentissage et non pas comparer les performances des
modeéles de détection. Nous aurions pu choisir 1-SVM sans sélection de variables dans
cette section, mais nous avons préféré séléctionner les parameétres électriques pertinents
avec la méthode de filtrage pour améliorer la performance prédictive de ce modéle et
réduire le temps de calcul. L’hyperparamétre ¢ est pris égal a 0.75 dans les deux jeux de

données.



Chapitre 4. Quelques résultats de la détection avec 1-SVM en mode statlique 97

Les Tableaux 4.8 et 4.9 montrent respectivement les résultats de comparaison de la per-
formance de deux modéles de détection dans le dataset 1 et le dataset 2, construits
respectivement sur des échantillons non contaminés (Sans anomalies) et sur des échan-
tillons contaminés (Avec anomalies), et ceci pour quatre valeurs illustratives de v choisies
parmi les 20 valeurs introduites dans la section précédente. Nous remarquons que pour
toutes les valeurs de v, les taux de détection sont plus élevés et moins variables en absence
d’anomalies dans les échantillons d’apprentissage, tandis que les taux de fausses alarmes
sont légérement inférieurs dans les échantillons contaminés. Le modele 1-SVM construit
& partir d’un échantillon non contaminé tend alors & détecter plus rapidement les anoma-
lies qu’un modéle construit & partir d’un échantillon contaminé. Notons finalement que
la présence d’anomalies dans I’échantillon d’apprentissage du modéle 1-SVM n’affecte
pas fortement sa performance de détection. Regardons par exemple dans le dataset 1
(resp. dataset 2) les résultats du cas “Avec anomalies” pour v > 0.08, ou les taux de
détection dépassent 70% (resp. 85%) avec une réduction moyenne d’environ 0.15% (resp.
1%) de fausses alarmes par rapport au cas “Sans anomalies”. La réduction de fausses
alarmes peut étre expliquée par le fait que la région des observations normales devient
plus grande en présence d’anomalies puisque la marge du classifieur 1-SVM est moins

large dans ce cas.

Nous constatons que la différence de performance de détection entre le cas “Sans ano-
malies” et le cas “Avec anomalies” est moins significative dans le dataset 1 que dans le
dataset 2. Ceci est di a la faible fraction de contamination dans les échantillons d’ap-
prentissage du dataset 1, qui est cing fois inférieur a la fraction de contamination dans

les échantillons d’apprentissage du dataset 2.

Notons que ’écart observé au niveau des taux de détection entre les deux jeux de données
ne veut absolument pas dire que le modéle 1-SVM.MAD, est moins performant dans le
dataset 1 que dans le dataset 2. Nous rappelons qu’il y a 8 wafers anormaux dans les
échantillons de test du dataset 1. Ainsi, un taux de détection égal a 75% représente
6 wafers anormaux détectés parmi 8. De plus, il y a un wafer dans ce jeu de données
impossible & détecter, le profil de ce wafer sera présenté dans la Section 5.5. Le fait que ce
wafer figure dans 1’échantillon de test ou non, explique les écart-type élevés des taux de
détection obtenus avec ce jeu de données et dans les deux cas d’étude, puisque un wafer
sur huit représente un pourcentage de 12.5 %. Finalement, il se peut que la valeur choisie
de ¢ (0.75) est plus appropriée au dataset 2 qu’au dataset 1, puisque la dimension de ce
dernier est bien supérieure A celle du premier et par suite il faut peut étre augmenter la

valeur de ¢ dans le dataset 2 pour obtenir une meilleure performance.






Chapitre 5

Détection en temps réel basée sur
1-SVM

Ce dernier chapitre constitue une application industrielle des systémes de détection déve-
loppés. Nous commencons par décrire notre systéme de détection en temps réel basé sur
un modeéle dynamique de 1-SVM avec une des deux méthodes de sélection de variables
spécifiquement développées. Ce systéme est ensuite appliqué sur les deux jeux de données
réels de STMicroelectronics. Ce systéme est comparé a un systéme alternatif basé sur le
test de T2 de Hotelling qui est trés connu dans le domaine de détection de défauts en
industrie. Ce systéme, que nous le dénotons par T2.PCA, consiste en une compression
de variables effectuée avec une ACP, puis la statistique 72 de Hotelling est déterminée

sur les scores de données obtenues et comparée & un seuil prédéfini.

A la fin de ce chapitre, les signatures multidimensionnelles des wafers anormaux détectés
par notre systéme sont déterminées afin d’identifier le ou les parameétre(s) électrique(s)

responsable(s) de "anomalie.

5.1 Notre systéme de détection en temps réel

L’idée derriére le développement d’un systéme de détection en temps réel était d’exploi-
ter nos deux modeéles de détection développés 1-SVM.MAD, et 1-SVM.RFE en mode
dynamique afin de tester en ligne de production (in-line testing) I'état électrique des
wafers (normal ou anormal). Ce systéme vise donc & détecter en temps réel les wafers
anormaux en se basant sur un historique récent de mesures électriques. Dans ce qui suit,

et afin de simplifier la lecture, nous notons notre modéle de sélection de variables et de

99
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classification par 1-SVM.FS (one-class SVM with Feature Selection). Ce modéle peut
représenter 1-SVM.MAD, ou 1-SVM.RFE.

5.1.1 Description du systéme

Notre systéme de détection est basé sur trois étapes principales :

1. La sélection d’un jeu de données de référence, représentant le comportement de

fonctionnement normal.

2. Une mise & jour des données d’apprentissage par une fenétre mobile, pour obtenir

une procédure en temps réel.
3. Application du modéle 1-SVM.F'S aux données d’apprentissage mises a jour.

Donc nous définisssons d’abord un jeu de données de référence, représentant un état de
fonctionnement normal. Pour cela, nous sélectionnons dans la base de données historique,
un ensemble de wafers normaux correspondant & un état nominal de processus. En ce
qui concerne la taille des données de référence, un grand ensemble des données augmente
la fiabilité de détection. Ainsi la taille des données de référence doit étre suffisamment
grande, nous permettant de définir une région normale qui englobe une grande variété

des wafers normaux.

Le jeu de données de référence va servir en tant qu’échantillon d’apprentissage pour
construire un modeéle caractérisant le comportement normal du processus. Quand un
nouveau lot (un groupement de 25 wafers qui parcourent ensemble toutes les étapes du
processus) arrive, le modeéle 1-SVM.FS construit sur le jeu de données de référence est
utilisé pour tester si chacun des 25 wafers est normal ou anormal. Le lot testé joint
I’échantillon d’apprentissage initial, tandis que le lot le plus ancien dans cet échantillon
sera retiré ou entretenu selon les scénarios choisis que nous allons décrire ci-dessous. Ainsi,
un nouvel échantillon d’apprentissage est formé. Le modéle 1-SVM.F'S est reconstruit sur
ce nouvel échantillon et sera utilisé pour prédire ’état de fonctionnement des 25 wafers
suivants. Cette procédure est répétée avec l'arrivée de chaque nouveau lot. Une vue

générale de notre systéme de détection est présentée dans la Figure 5.1.

5.1.2 Deux scénarios de mise a jour

Comme nous avons vu, la dynamicité du modéle 1-SVM.FS est assurée au moyen d’une
fenétre temporelle mobile. Nous considérons 2 scénarios reflétant deux modes de mise a

jour de cette fenétre :

— Scénario 1 (taille croissante) : dans ce scénario, le lot testé a chaque itération est

ajouté a l’échantillon d’apprentissage existant sans éliminer les anciennces données.
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FiquRE 5.1 — Schéma fonctionnel de notre systéme de détection en temps réel basé sur
le modéle dynamique 1-SVM.FS.
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F1GURE 5.2 — Fenétre mobile du systéme de détection en temps réel suivant le scénario
1.

Alors le modéle 1-SVML.FS est mis & jour suivant une fenétre mobile de taille croissante.
Comme le comportement normal ne cesse pas d’évoluer, nous avons décidé d’éliminer &
la fois des anciennes données de I'ensemble d’apprentissage existant aprés une période
prédéfinie At. At dépend du volume de production du produit considére.

— Scénario 2 (taille fixe) : pendant l'opération de détection en temps réel, la fenétre
mobile conserve la méme taille que celle de ’échantillon d’apprentissage initial (ou le
jeu de données de référence), et fonctionne selon la procédure “First-IN-First-Out”, en
ajoutant le nouveau lot déja testé dans la base d’apprentissage et éliminant le lot le

plus ancien de cette base.

Les deux scénarios sont illustrés respectivement dans les Figures 5.2 et 5.3. Finalement,
notons que les méthodes de sélection de variables sont appliquées & chaque mise & jour des
données d’apprentissage, ce qui permet le suivi en temps réel d’éventuels changements

des paramétres électriques discriminants responsables de ’anomalie des wafers.
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F1GURE 5.3 — Fenétre mobile du systéme de détection en temps réel suivant le scénario
2.

5.1.3 Choix optimal de g et v

Le modele 1-SVM.FS nécessite le réglage du paramétre v (le seuil de détection dans
Palgorithme 1-SVM) et de ’hyperparamétre ¢ des méthodes de sélection de variables.
Rappelons que 'hyperparamétre ¢ représente la fraction des paramétres retenus pour

chacune de ces deux méthodes.

Par conséquent, un choix optimal de v et ¢ doit étre fait. Pour accomplir cette téache,
nous utilisons la procédure basée sur I’ensemble de validation, expliquée dans la Section
2.3.5 du Chapitre 2. Pour cela, nous constituons & partir de la base de données un
ensemble de validation contenant des wafers normaux contaminé par la présence de
quelques wafers anormaux. Cet ensemble est utilisé pour identifier la meilleure paire
(g, v) afin que le classifieur 1-SVM puisse prédire avec la meilleure précision les données
de test (les nouveaux wafers qui arrivent). Une recherche sur une grille de valeurs de ¢
et v est effectuée. Le modeéle 1-SVM.FS est construit sur le jeu de données de référence
en utilisant les différentes paires (¢, v). Pour chaque paire, les données de I’ensemble de
validation sont testées avec le modéle 1-SVM.FS construit. Le taux de détection (DR)
et le taux de fausses alarmes (FAR) sont ensuite calculés. La paire qui optimise ces
deux mesures de performance est choisie. Plus précisément, la meilleure paire (g, v) est
celle qui donne le meilleur compromis entre la maximisation du taux de détection et la
minimisation du taux de fausses alarmes. La paire choisie est utilisée a chaque mise &
jour du modele 1-SVM.FS. L’optimum selon les deux mesures de performance n’est pas
toujours unique. Il se peut que nous obtenons par exemple un DR de 100% et un FAR
de 15% avec une paire, et un DR de 90% et un FAR de 5% avec une autre paire, dans
ce cas laquelle des deux paires choisissons-nous ? Nous décidons alors de choisir la paire

qui maximise la mesure G-means.

Dans notre étude, le calibrage de v et ¢ pour notre systéme de détection en temps réel
est fait seulement une fois au début sur le jeu de données de référence et ’ensemble

de validation. Plus précisément, ce calibrage n’est pas fait dans chaque fenétre mobile
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ou l’échantillon d’apprentissage et le modele 1-SVM.FS sont mis a jour. Ceci n’est pas
possible car nous ne pouvons pas nous disposer d’un nouvel ensemble de validation
pour chaque fenétre mobile. Une seule possibilité est alors de considérer chaque nouveau
lot testé comme un ensemble de validation avec les wafers détectés par notre systéme
comme wafers anormaux, et nous pouvons ensuite appliquer la procédure basée sur cet
ensemble de validation pour choisir la meilleure paire (g, v). Cependant, les wafers consi-

dérés comme anormaux par notre systéme peuvent réellement étre des fausses alarmes.

Nous pourrons d’ailleurs mettre & jour ces hyperparamétres au retour des résultats du
test électrique final ol un nouveau ensemble de validation contenant quelques wafers
anormaux est constitué. Cette mise & jour pourra étre faite tous les deux mois, une

période qui correspond au temps de cycle de production.

5.2 Taille du jeu de données de référence

Nous commencons par étudier 'influence de la taille du jeu de données de référence, que
nous dénotons par n,.y, sur la performance de nos modeles dynamiques. Pour cela nous
avons testé en temps réel les modéles 1-SVM.MAD, et 1-SVM.RFE sur les deux jeux de
données, suivant les deux scénarios et pour des valeurs de n,..r égales & 400 et 600 (resp.

300 et 400) pour le dataset 1 (resp. dataset 2).

Le Tableau 5.1 représente une illustration numérique pour certaines valeurs de v de
la, comparaison de performance de détection réalisée sur le dataset 1 avec le modéle 1-
SVM.MAD, suivant le scénario 1. En augmentant n,..y de 400 & 600, les taux de détection

restent les mémes alors que les taux de fausses alarmes sont légérement inférieurs.

Dans la Figure 5.4, des courbes FAR-DR de la détection en temps réel sur le dataset
2 avec le modeéle 1-SVML.MAD, suivant le scénario 1 et pour les deux valeurs de n,qy
sont obtenues en faisant varier v (v € {0.01, 0.02,..., 0.19, 0.2}). Malgré les légéres
améliorations en terme de taux de détection et de fausses alarmes obtenues pour quelques

valeurs de v, les deux courbes sont similaires.

Ensuite, des illustrations numériques pour certaines valeurs de v de la comparaison de
performance de détection réalisée sur le dataset 1 et le dataset 2 avec le modéle 1-
SVM.RFE suivant le scénario 1 sont données respectivement dans les Tableaux 5.2 et 5.3
. D’apreés ces tableaux, 'augmentation de n,.y aboutit aux mémes résultats observés avec
le modele 1-SVM.MAD, appliqué avec le méme scénario (scénario 1). En effet, les taux
de détection sont constants, avec des petites réductions en fausses alarmes (sauf pour
v = 0.04 dans le dataset 2, le taux de fausses alarmes était supérieur). Nous pouvons

donc constater que 'augmentation de la taille du jeu de données de référence n’affecte pas
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Nyef = 400 | 1o = 600
DR | FAR | DR | FAR
0.03 [ 70 | 5.66 | 70 | 4.40
0.04 | 80 | 6.79 | 80 | 6.50
0.05 | 80 | 854 | 80 | 6.61
0.09 | 90 | 15.38 | 90 | 14.21

v

TABLE 5.1 — Dataset 1 : illustration numérique comparant la détection en temps réel
avec le modele 1-SVM.MAD, suivant le scénario 1 pour n,.y = 400 et n,.y = 600, en
faisant variant v et pour ¢ = 0.75.
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F1GURE 5.4 — Dataset 2 : courbes FAR-DR de la détection en temps réel avec le modéle
1-SVM.MAD, suivant le scénario 1 pour n,.; = 300 et n,.y = 400, en faisant variant v
et pour ¢ = 0.75.

significativement la performance de détection de 1-SVM.MAD, et 1-SVM.RFE appliqués
suivant le scénario 1. Ceci est di a la taille croissante de la fenétre mobile du scénario
1 qui permet 'augmentation au fur et & mesure de la taille des données d’apprentissage
puisque chaque lot testé rejoint ’échantillon d’apprentissage mis & jour & chaque fenétre
sans éliminer le lot le plus ancien de cet échantillon. La taille croissante de la fenétre
mobile du scénario 1 aboutit donc & une détection pertinente sans nécessiter une taille
nyes assez élevée. Cependant, la taille du jeu de données de référence joue un role im-
portant en effectuant une détection suivant le scénario 2 avec le modeéle 1-SVM.MAD.,.
Ceci est illustré dans le Tableau 5.4 et la Figure 5.5. Les résultats obtenus dans le Ta-

bleau 5.4 sur le dataset 1 montrent que I'augmentation de la taille du jeu de données de
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Nyef = 300 | nyop = 400
DR | FAR | DR | FAR
0.03 [ 80 | 412 | 80 | 4.03
0.04 | 80 | 6.32 | 80 | 6.21
0.05 | 80 | 840 | 90 | 6.53
0.09 | 90 | 15.91 | 90 | 12.04

v

TABLE 5.2 — Dataset 1 : illustration numérique comparant la détection en temps réel
avec le modele 1-SVM.RFE suivant le scénario 1 pour n,.y = 400 et n,..; = 600, en
faisant variant v et pour ¢ = 0.75.

Nyef =300 | 7yer = 400
DR | FAR | DR | FAR
0.04 | 70.59 | 4.12 | 70.59 | 6.03
0.05 | 82.35 | 6.32 | 82.35 | 6.21
0.06 | 88.24 | 8.40 | 88.24 | 6.53
0.12 | 94.12 | 15.91 | 94.12 | 12.04

v

TABLE 5.3 — Dataset 2 : illustration numérique comparant la détection en temps réel
avec le modele 1-SVM.RFE suivant le scénario 1 pour n,.y = 300 et n,..; = 400, en
faisant variant v et pour ¢ = 0.75.

Nref = 400 Npef = 600
DR | FAR | DR | FAR
0.03 | 70 | 9.66 | 80 | 5.65
0.04 | 70 | 11.03 | 80 | 6.31
0.06 | 80 | 13.81 | 90 | 9.29
0.09 | 90 | 22,56 | 90 | 15.22

v

TABLE 5.4 — Dataset 1 : illustration numérique comparant la détection en temps réel
avec le modele 1-SVM.MAD, suivant le scénario 2 pour n,.y = 400 et n,.; = 600, en
faisant variant v et pour ¢ = 0.75.

référence aboutit & une amélioration significative dans la détection : les taux de détection
augmentent (sauf pour v = 0.09 ou ce taux est le méme dans les deux cas, sachant que
c’est le taux maximum qu’on peut obtenir sur le dataset 1), suivis de réductions impor-
tantes en terme de fausses alarmes. Les améliorations significatives des deux mesures de
performance sont observées également pour toutes les valeurs de v dans la Figure 5.5,
ol nous avons tracé les courbes FAR-DR de la détection en temps réel sur le dataset
2 avec le modeéle 1-SVM.MAD, suivant le scénario 2 et avec les deux valeurs de ng.y.
Comme la taille de la fenétre mobile dans le scénario 2 est constante, augmenter la taille
du jeu de données de référence aboutit & I'amélioration de la performance de détection
du modeéle 1-SVM.MAD,. En effet, la méthode 1-SVM nécessite de nombreuses données
d’apprentissage pour donner une frontiére de décision de bonne précision parce que ses

vecteurs supports ne proviennent essentiellement que des données de la classe positive
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F1GURE 5.5 — Dataset 2 : courbes FAR-DR de la détection en temps réel avec le modéle
1-SVM.MAD, suivant le scénario 2 pour n,.; = 300 et , en faisant variant v
et pour ¢ = 0.75.

(wafers normaux).

L’influence de la taille du jeu de données de référence sur la performance du modéle
1-SVM.RFE appliqué suivant le scénario 2 a été aussi étudié sur les deux jeux de don-
nées. Des illustrations numériques de cette étude sont présentées respectivement dans les
Tableaux 5.5 et 5.6, ol sont présentés les résultats de comparaison pour certaines valeurs
de v. Des améliorations importantes des deux mesures de performance sont observées en
augmentant la taille n,.¢ dans le dataset 1 (cf Tableau 5.5). Dans le Tableau 5.6, nous
remarquons que les taux de détection n’ont pas évolué avec l'augmentation de n,.r, vu
que ces taux sont déja trés élevés dés les premiéres valeurs de v, et pour les deux valeurs
de n,er. Concernant les fausses alarmes, nous avons observé de légeres réductions au
niveau des quatre premiéres valeurs de v, puis des réductions significatives pour v égal

a 0.12 et 0.16.

Pour conclure, la taille du jeu de données de référence est un facteur important pour
une détection pertinente avec le scénario 2. Nous avons vu que généralement les taux
de détection augmentent et les taux de fausses alarmes diminuent en augmentant cette

taille. Contrairement au scénario 2, le scénario 1 ne dépend pas visiblement de ce facteur.
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Nyef = 300 | nyop = 400
DR | FAR | DR | FAR
0.03 ] 80 | 6.89 | 80 | 4.91
0.04 | 80 | 8.14 | 90 | 5.62
0.05 | 80 | 12.71 | 90 | 8.64
0.09 | 90 | 21.16 | 90 | 14.05

v

TABLE 5.5 — Dataset 1 : illustration numérique comparant la détection en temps réel
avec le modele 1-SVM.RFE suivant le scénario 2 pour n,.y = 400 et n,..; = 600, en
faisant variant v et pour ¢ = 0.75.

Nyef =300 | 7yer = 400
DR | FAR | DR | FAR
0.04 | 8824 | 7.98 | 83.24 | 7.34
0.05 | 94.12 | 9.14 | 94.12 | 8.48
0.06 | 94.12 | 10.90 | 94.12 | 10.42
0.12 | 94.12 | 20.66 | 94.12 | 16.47

v

TABLE 5.6 — Dataset 2 : illustration numérique comparant la détection en temps réel
avec le modele 1-SVM.RFE suivant le scénario 2 pour n,.y = 300 et n,..; = 400, en
faisant variant v et pour ¢ = 0.75.

5.3 Exemples de performance des systémes de détection en

temps réel

Notre objectif expérimental était d’évaluer la capacité de nos systémes de détection pour
détecter automatiquement les wafers anormaux. Il est également important de réduire
au minimum le taux de fausses alarmes car ils provoquent 'interruption injustifiée dans

le cycle de production.

Les systémes de détection basés sur les modéles dynamiques 1-SVM.MAD,, 1-SVM.RFE
et T2.PCA sont testés suivant les deux scénarios de mise & jour sur les deux jeux de
données réels de STMicroelectronics, afin de prouver Uefficacité et la supériorité de nos
systémes de détection. Idéalement, nous voulons un haut DR (pour détecter la majorité
des wafers anormaux) et un faible taux de fausses alarmes (pour éviter de classer les

wafers normaux comime anormaux).

5.3.1 Dataset 1

Le dataset 1 est composé de 2550 wafers du produit P; de la technologie 1140, et corres-
pond a une période de production de 4 mois. 12 wafers sont considérés comme anormaux

au PT dans ce jeu de données. Dans cette expérience, nous avons défini un jeu de données
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de référence contenant 600 wafers normaux. L’ensemble de validation consiste en 100 wa-
fers dont 2 sont anormaux. Par conséquent, il reste 1850 wafers a tester (74 lots) dont
10 sont anormaux. Nous avons construit les modeles de détection sur le jeu de données
de référence avec plusieurs paires de ’hyperparamétre ¢ et le seuil de détection v. Nous

considérons respectivement 9 et 20 valeurs de q et v :

q € {0.25,0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9},
v € {0.01, 0.02,..., 0.19, 0.2}.

Les étiquettes des wafers de I’ensemble de validation sont ensuite prédites en utilisant
chacun de 180 (9 x 20) modéles construits. Les taux de détection et de fausses alarmes
sont calculés pour chaque modeéle de prédiction. Nous sélectionnons la paire de valeurs
qui optimise simultanément ces deux mesures de performance (i.e qui optimise la mesure
de performance G-means). Pour le modele 1-SVM.MAD,, nous avons retenu g = 0.8 et
v = 0.04 ot nous avons détecté tous les wafers anormaux de l’ensemble de validation
(DR= 100%) pour un FAR égal a 4.35% (G-means= 97.8). Pour le modeéle 1-SVM.RFE,
nous avons retenu g = 0.85 et ¥ = 0.03 ou nous avons aussi détecté tous les wafers

anormaux de I’ensemble de validation pour un FAR égal & 3.25% (G-means= 98.36).

D’une facon similaire, nous avons sélectionné la meilleure paire (¢, a) (cf. Section 3.3)
du modeéle T2.PCA en prenant ¢ € {0.75, 0.8, 0.85, 0.9} et considérant la méme plage de
valeurs de v pour a. La performance optimale est obtenue pour ¥ = 0.85 and « = 0.01,

ou DR et FAR sont respectivement égaux a 100% et 2.75% (G-means= 98.62).

Pour le scénario 1, At corespond & la période pour laquelle nous aurions testé la moitié
des lots. Plus précisément, la taille de la base d’apprentissage croit & chaque itération
correspondante & un test d’un lot, jusqu’a avoir testé la moitié des lots. Ensuite les
anciens wafers sont éliminés de la base de sorte que nous gardons seulement un nombre

de wafers égal & celui du jeu de données de référence.

Apres avoir défini le jeu de données de référence et sélectionné les hyperparamétres
otpimaux pour les trois modeéles de détection, nous procédons maintenant & la détection
en temps réel en appliquant chacun des trois modéles sur les données. 74 fenétres mobiles
sont considérées pour mettre & jour les modéles de détection, puisque nous nous disposons
de 74 lots & tester. Les mises & jour suivant une fenétre mobile des données d’apprentissage
et des modéles de détection & l'arrivée de chaque nouveau lot testé permettent ainsi
d’obtenir une procédure en temps réel. Ces mises & jour suivent un des deux scénarios

déja définis : scénario 1 (taille croissante) et scénario 2 (taille fixe).

Le Tableau 5.7 montre une comparaison de performance des trois systémes de détection

en temps réel suivant les deux scénarios de mise & jour des fenétres mobiles. Notons que
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’ Fenétre mobile ‘ Systéme ‘ DR ‘ FAR ‘
1-SVM.MAD, | 80 | 5.64
Scénario 1 1-SVM.RFE | 90 | 3.05

T2.PCA 80 | 6.21
1-SVM.MAD, | 90 | 6.11
Scénario 2 1-SVM.RFE | 90 | 5.75
T2 PCA 90 | 7.36

TABLE 5.7 — Dataset 1 : comparaison de la performance de détection des systémes 1-
SVM.MAD,, 1-SVM.RFE et T?.PCA.

le taux de détection DR représente le pourcentage de wafers anormaux détectés par le
systéme utilisé parmi tous les wafers anormaux présents dans les 74 fenétres (ici il y a 10),
et le taux de fausses alarmes FAR représente la moyenne des fausses alarmes obtenues
sur I’ensemble de 74 fenétres. Les résultats révélent une similarité de performance entre
les trois systémes. Une haute performance a été obtenue avec les trois systémes. Ils ont
détecté 9 parmi 10 wafers anormaux en utilisant le scénario 2 et 8 parmi 10 avec le
scénario 1 ( sauf pour 1-SVM.RFE qui a détecté 9 parmi 10). Avec les deux scénarios,
1-SVM.RFE a réduit les fausses alarmes par rappot aux deux autres systémes, qui a leur

tour avaient des taux trés proches.

5.3.2 Dataset 2

Le dataset 2 est composé de 1600 wafers du produit P» de la technologie 1140, dont 23
sont considérés comme anormaux au PT. Dans cette expérience, nous avons construit
un jeu de données de référence contenant 400 wafers normaux. L’ensemble de validation
congiste en 100 wafers dont 6 sont anormaux. Par conséquent, il reste 1100 wafers a
tester (44 lots) dont 17 sont anormaux. Comparé au dataset 1, ce jeu de données a une
dimension d’espace de variables plus petite et un pourcentage de wafers anormaux plus

grand.

En suivant la méme procédure utilisée dans le dataset 1 pour sélectionner les hyperpara-
meétres optimaux, nous avons retenu ¢ = 0.75 et v = 0.13 pour le modéle 1I-SVM.MAD,
ot nous avons détecté tous les wafers anormaux de ’ensemble de validation (DR= 100%)
pour un FAR égal a 11.37% (G-means= 94.14). Pour le modéle 1-SVM.RFE, nous avons
retenu ¢ = 0.8 et ¥ = 0.06 ot nous avons aussi détecté tous les wafers anormaux de
Pensemble de validation pour un FAR égal a 6.19% (G-means= 96.86). Pour le modéle
T2 .PCA, la performance optimale sur I’ensemble de validation est obtenue pour 1) = 0.75
and a = 0.18, ou DR et FAR sont respectivement égaux a 66.67% (4 sur 6 wafers anor-
maux) et 15.89% (G-means= 74.88).
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’ Fenétre mobile ‘ Systéme ‘ DR ‘ FAR ‘
1-SVM.MAD, | 94.12 | 9.38
Scénario 1 1-SVM.RFE | 88.24 | 6.53

T2.PCA 64.71 | 11.56
1-SVM.MAD, | 94.12 | 13.23
Scénario 2 1I-SVM.RFE | 94.12 | 10.42
T2 PCA 70.59 | 15.89

TABLE 5.8 — Dataset 2 : comparaison de la performance de détection des systémes 1-
SVM.MAD,, 1-SVM.RFE et T?.PCA.

44 fenétres mobiles sont considérées pour mettre & jour les modeéles de détection. Les
mises a jour des modeéles de détection se font selon le scénario 1 (taille croissante) et le
scénario 2 (taille fixe). Comme dans le dataset 1, le taux de détection DR représente le
pourcentage de wafers anormaux détectés par le systéme utilisé parmi tous les wafers
anormaux présents dans les 44 fenétres (ici il y a 17), et le taux de fausses alarmes FAR

représente la moyenne des fausses alarmes obtenues sur ’ensemble de 44 fenétres.

Les résultats de comparaison sont donnés dans le Tableau 5.8. Avec les deux scénarios,
le systéme de T2 de Hotelling basé sur le modéle dynamique 72.PCA montre une faible
performance dans la détection des wafers anormaux (DR respectivement égal a 64.71
et70.59%). Tandis que le systéme basé sur le modele I-SVM.MAD, a été capable de
détecter 94.12% des wafers anormaux avec les deux scénarios. De plus, avec ce systéme
nous avons obtenu des taux de fausses alarmes inférieurs par rapport au systéme bagé sur
T2 PCA, mais supérieurs par rapport au systéme basé sur 1-SVM.RFE avec lequel les
taux de détection selon les deux scénarios ont été respectivement égaux a 88.24 et 94.12%.
Avec les trois systémes de détection, le scénario 1 a réduit le taux de fausses alarmes par
rapport au scénario 2. Concernant nos deux systémes, une réduction de fausses alarmes
de 2.85 et 2.81 sont obtenues avec 1-SVM.RFE par rapport & 1-SVM.MAD, en utilisant
respectivement les scénarios 1 et 2. Notons que dans ce jeu de données considérant
seulement deux mois de production, nous n’avons pas éliminé les anciennes données de
la base d’apprentissage existante aprés une période At pour le scénario 1, comme il a
été recommandé dans la Section 5.1.2. Cette action a eu lieu seulement dans la premiére

expérience considérant quatre mois de production, ot le nombre de wafers est grand.

Temps de calcul

Nous nous intéressons maintenant a la comparaison de temps de calcul des trois systémes
de détection en temps réel. Pour cela, nous considérons le critére de performance “Temps”.

Ce critére représente le temps moyen, en secondes, émis par un systéme pour prédire I’état
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. Temps (sec)
Systéme Dataset 1 | Dataset 2
1-SVM.MAD, 1.44 1.05
1-SVM.RFE 1412.71 912.62
T2.PCA 7.49 4.40

TABLE 5.9 — Temps moyen émis par un systéme de détection pour tester un nouveau
lot selon le scénario 2.

des wafers d’un nouveau lot a tester selon le scénario 2 caractérisé par une fenétre mobile

de taille fixe. A une itération quelconque, ce critére comprend le temps nécessaire pour :
1. la mise & jour de la méthode de sélection de variables.
2. la mise a jour du modele 1-SVM.
3. la phase de prédiction du nouveau lot.

Le Tableau 5.9 nous montre, sur les deux jeux de données, que 1-SVM.MAD, et T2.PCA
sont trés rapides en temps de calcul, avec une supériorité du premier systéme sur le
deuxiéme. Ces deux systémes sont nettement meilleurs que 1-SVM.RFE, qui est a son
tour extrémement coiteux en temps de calcul (cf. Section 3.5.2). Notons que le critére
calculé avec les trois systémes est plus grand dans le dataset 1, puisque la dimension de

son espace de variables est plus élevée que celle du dataset 2.

5.3.3 Conclusion

Pour conclure, le systéme basé sur le modéle 1-SVM.RFE est le plus efficient. Les taux de
détection avec ce systéme ont été trés élevés avec des réductions significatives de fausses

alarmes par rapport aux autres systémes de détection utilisés.

Similairement au systéme 1-SVM.RFE, notre systéme basé sur 1-SVM.MAD, a montré
une bonne performance de détection sur les deux jeux de données réels. De plus il est

beaucoup plus rapide en temps de calcul par rapport au systéme basé sur 1-SVM.RFE.

Sur le dataset 1, le systéme basé sur T2.PCA a montré une performance compététive a
celles des deux autres systémes, avec un peu plus de fausses alarmes. La performance
de ce systéme s’est dégradée sur le dataset 2. Ce systéme exige quelques contraintes
pour une bonne détection qui ne peuvent pas étre vérifices par les données comme la
normalité des variables (7 de Hotelling), ou/et la linéarité ainsi que la corrélation entre
les variables (ACP).

La mise a jour de la fenétre mobile des modéles dynamiques aboutit & une réduction de
fausses alarmes selon le scénario 1, et & une détection plus rapide des wafers anormaux

selon le scénario 2. Une interprétation expliquant ces résultats sera donnée dans la section
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suivante. Par conséquent, nous pouvons décider d’appliquer nos systémes de détection
selon le scénario 2, mais en enrichissant encore le jeu de données de référence avec des
observations normales. Cela va amener ’algorithme 1-SVM & reconnaitre plus facilement

les wafers normaux et par suite réduire les fausses alarmes.

Pour une application industrielle, nous recommandons donc d’utiliser le systéme 1-
SVM.RFE selon le scénario 2. Pour une technologie volumineuse, nous pourrons uti-
liser 1-SVM.MAD, qui est un systéme simple, efficace et beaucoup plus rapide que 1-
SVM.RFE. Avec un réglage fin des paramétres de ce systéme, il aboutit a une performance

compétitive & celle du systéme 1-SVM.RFE.

5.4 Comparaison de deux scénarios de mise a jour

Dans cette section, nous avons pour objectif de confirmer les conclusions tirées dans la
section précédente concernant les deux scénarios utilisés pour la mise & jour de la fenétre

mobile de nos techniques de détection.

Le Tableau 5.10 représente une illustration numérique de la comparaison des scénarios
1 et 2 suivant nos modéles dynamiques de détection appliqués sur le dataset 1. Pour les
quatre valeurs de v et avec les deux modéles de détection, le scénario 1 donne des taux
de fausses alarmes plus petits par rapport au scénario 2. Avec le modeéle 1-SVM.MAD,,
les taux de détection avec le scénario 2 sont plus élevés que ceux du scénario 1, sauf pour
v = 0.09 ou un taux de détection maximal est obtenu avec les deux modéles. Avec le
modeéle 1-SVM.RFE et selon les deux scénarios, les taux de détection atteignent tous la

valeur maximale égale & 90%.

Pour le dataset 2, des illustrations numériques pour six valeurs de v de la comparaison
des scénarios 1 et 2 suivant les modéles dynamiques 1-SVM.MAD, et 1-SVM.RFE sont
données respectivement dans les Tableaux 5.11 et 5.12. Le scénario 1 fournit une réduc-
tion significative en terme de fausses alarmes par rapport au scénario 2, et ceci pour les
deux modeles de détection. Par exemple, dans le Tableau 5.11 (resp. Tableau 5.12), nous
notons une réduction entre 3 (resp. 1.3) et 5% (resp. 4.5%) environ de fausses alarmes
pour les différentes valeurs de v. Pour les quatre premiéres valeurs de v et avec les deux
modeéles, les taux de détection ont augmenté avec le scénario 2. Pour les deux derniéres
valeurs de v dans chaque tableau, les taux de détection pour les deux modéles sont maxi-
maux et sont égaux a 94.12%. Donc pour toute valeur de v des Tableaux 5.11 et 5.12, le

scénario 2 a un taux de détection supérieur ou égal a celui du scénario 1.

Ces résultats confirment donc nos conclusions de la section précédente concernant les

deux scénarios. D’une part, la réduction de fausses alarmes avec le scénario 1 est die a
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1-SVM.MAD, 1-SVM.RFE

v scénario 1 scénario 2 | scénario 1 scénario 2
DR | FAR | DR | FAR | DR | FAR | DR | FAR
0.03 | 70 | 4.17 | 80 | 5.36 | 90 | 2.79 | 90 | 4.81
0.04 | 8 | 5.64 | 90 | 6.11 90 | 3.05 | 90 | 5.75
0.05| 8 | 6.27 | 90 | 857 | 90 | 4.41 | 90 | 8.11
0.09 | 90 | 1292 | 90 | 14.15| 90 | 8.63 | 90 | 13.71

TABLE 5.10 — Dataset 1 : illustration numérique comparant les scénario 1 et 2 avec les
modéles dynamiques 1-SVM.MAD, et 1-SVM.RFE.

scénario 1 scénario 2

DR | FAR | DR | FAR
0.07 | 70.59 | 4.76 | 76.47 | 7.84
0.08 | 76.47 | 4.78 | 82.35 | 8.13
0.09 | 76.47 | 4.91 | 88.23 | 9.35
0.11 | 88.24 | 825 | 94.12 | 11.43
0.13 | 94.12 | 9.38 | 94.12 | 13.23
0.15 | 94.12 | 10.61 | 94.12 | 15.68

v

TABLE 5.11 — Dataset 2 : illustration numérique comparant la détection en temps réel
avec le modéle 1-SVM.MAD, suivant les scénario 1 et 2, pour ¢ = 0.75.

scénario 1 scénario 2

DR | FAR | DR | FAR
0.04 | 70.59 | 6.03 | 88.24 | 7.34
0.05 | 82.35 | 6.21 | 94.12 | 8.48
0.06 | 88.24 | 6.53 | 94.12 | 10.42
0.11 | 88.24 | 13.24 | 94.12 | 16.46
0.12 | 94.12 | 12.04 | 94.12 | 16.47
0.13 | 94.12 | 14.92 | 94.12 | 19.41

14

TABLE 5.12 — Dataset 2 : illustration numérique comparant la détection en temps réel
avec le modeéle 1-SVM.RFE suivant les scénario 1 et 2, pour ¢ = 0.75.

la taille croissante de la fenétre mobile oil & chaque mise a jour le nouveau lot testé est
ajouté & la base d’apprentissage. Ceci permet & 'algorithme 1-SVM d’enrichir sa base
d’apprentissage avec plus d’observations normales ce qui facilite la reconnaissance de
futures observations normales et donc on obtient moins de fausses alarmes. D’autre part,
la détection rapide des wafers anormaux avec le scénario 2 est dlie & une stratégie de
mise & jour efficace de la base d’apprentissage avec sa fenétre de taille fixe et contenant
moins de wafers anormaux que celle du scénario 1, et cela améliore la performance de

détection de l'algorithme 1-SVM. Ceci a été démontré dans la Section 4.5.
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5.5 Signatures multidimensionnelles des wafers anormaux

Quand notre systéme de détection déclenche une alarme (wafer anormal), une tache
essentielle sera d’identifier les paramétres électriques responsables de cette anomalie.
Ceci est fait en définissant la signature multidimensionnelle du wafer anormal pour pou-
voir remonter & la cause et ensuite effectuer les modifications opérationelles nécessaires
pour faire retourner le processus aux conditions normales. Nous avons donc proposé
une méthode basée sur la distance normalisée par rapport & la population normale, des

parameétres retenus par la méthode utilisée pour la sélection de variables .

A une itération donnée, la base d’apprentissage est mise 4 jour et le modeéle de détection
(I-SVM.MAD, ou 1-SVM.RFE) est construit. Un nouveau lot & tester arrive, un wafer
(ou plusieurs) appartenant a ce lot est considéré comme anormal par notre modéle. Nous
considérons ’ensemble des paramétres électriques pertinents retenus par la méthode de
sélection de variables. Pour chaque variable (un des paramétres électriques mesuré sur
un des neuf sites de mesure), nous déterminons la valeur normalisée de la fagon suivante :

Day, B) = —L—2% (5.1)

5‘773

ol z;; représente la mesure de la jéme variable pour le wafer détecté d’indice i, B
constitue I’échantillon d’apprentissage du modele utilisé pour détecter ce wafer, Z; p et
sj,B sont respectivement la moyenne et 1’écart-type de la variable j sur I’ensemble de
wafers appartenant a B. Pour deux wafers détectés appartenant & un méme lot, B est
le méme, et il est différent pour deux wafers détectés qui appartiennent & deux lots

différents, puisque la fenétre mobile ne va pas étre la méme.

Cette distance normalisée permet de détecter des éventuelles déviations d’'un ou plusieurs
paramétres sélectionnés par rapport & la base d’apprentissage B. Notre méthode de
définition de signature permet donc de visualiser les valeurs normalisées des parameétres
électriques pertinents, et de déterminer en particulier les paramétres responsables de

Panomalie (i.e. les parameétres qui ont des valeurs normalisées trés élevées ou trés basses).

Dans ce qui suit, nous reprenons les résultats de détection en temps réel de la Section
5.3 avec les systémes 1-SVM.MAD, et 1-SVM.RFE selon le scénario 2 afin d’étudier les
signatures des wafers anormaux. Le scénario 2 a été choisi pour comparer les signatures
des différents wafers anormaux par rapport 4 une base d’apprentissage de méme taille.
Les noms des wafers étudiés ne seront pas affichés pour des raisons de confidentialité.
Nous ne montrons pas les noms des paramétres électriques sur les axes des abscisses des
figures pour des raisons de lisibilité. Nous encerclons en rouge le groupement de para-

meétres discriminants, chaque groupement étant constitué d’un ou plusieurs paramétres,
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avec un ou plusieurs sites qui peuvent déclencher pour chaque paramétre. Toutefois, les
sites de mesure des paramétres électriques qui déclenchent peuvent étre différents d’un
wafer anormal & un autre. Nous désignons par “wafer anormal” un wafer considéré comme
anormal par les ingénieurs PT et détecté par nos systéemes de détection, et par “signatu-
res” d’'un wafer les deux signatures obtenues avec chacune des méthodes de sélection de

variables.

Dans le dataset 1 et dataset 2, les paramétres électriques identifiés par notre méthode
comine responsables de I’anomalie d’un wafer ont été confirmés par les ingénieurs PT. Le
nombre de paramétres électriques qui apparaissent dans les deux signatures d’un wafer
n’est pas le méme puisque la valeur de nombre de variables retenues ¢ n’est pas la méme
pour les deux méthodes de sélection de variables. Rappelons que le dataset 1 et dataset 2
correspondent & deux produits d’'une méme technologie, d’oti la majorité des paramétres

électriques sont communs pour ces deux produits.

Dataset 1

Nous donnons un exemple de signature d’un wafer anormal dans le dataset 1. Les wa-
fers anormaux dans ce dataset ont tous des signatures similaires. Les Figures 5.6 et 5.7
montrent les signatures du wafer anormal QXXXXXX 15. Trois parametres ont commu-
nément déclenché selon les deux méthodes de sélection de variables. Les paramétres de
fiabilite “VBD _AREA NP 2"et“VBD AREA PN _ 27 (cercles en bas) ont des valeurs
extrémement basses en plusieurs sites de mesure par rapport & la population normale, tan-
dis que le parametre de fiabilité “VBD _AREA PN 17 (cercle en haut a droite) avait une
valeur d’un site de mesure extrémement élevée. Les parameétres “VBD AREA PN 17
et “VBD AREA PN 27 comme le paramétre “VBD  AREA NP 27 mesurent la ten-
sion de claquage d’une structure de test. De plus, avec la méthode MAD,.FS, le paramétre
de qualité “NIDS0205RD14” était parmi ’ensemble de parameétres responsables de I’ano-
malie de ce wafer. En effet, il avait des valeurs trés élevées pour deux sites de mesure.
Alors que ce parameétre n’a pas été retenu par la méthode 1-SVM-RFE. Cet exemple
a montré que nos méthodes de sélection de variables ont réussi a identifier simultané-
ment les paramétres électriques qui ont déclenché la détection. De plus, la majorité des

parameétres électriques sélectionnés par ces méthodes sont communs.

L’identification efficace des parameétres électriques discriminants (“VBD _AREA NP 27,
“VBD AREA PN 17et“VBD_AREA PN _27) avec leur écart extréme par rapport a
la population d’apprentissage ont permis de détecter facilement tous les wafers anormaux
(sauf le wafer QXXXXXX 03). Ce qui rend le dataset 1 un jeu de données facile pour

la détection d’anomalies.
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Les Figures 5.16 et 5.18 montrent les signatures du wafer QXXXXXX 03, indétectable
par les systémes 1-SVM.MAD, et 1-SVM.RFE. Bien que ce wafer posséde quelques me-
sures électriques qui sont un peu loin par rapport a I’échantillon d’apprentissage qui a
servi pour tester ce wafer, son profil reste différent des profils des wafers anormaux dans ce
jeu de données (comme le profil du wafer QXXXXXX 15 par exemple). De plus, ces me-
sures un peu écartées n’étaient pas la cause pour laquelle les ingénieurs PT ["ont considéré
comme anormal. Selon eux, ce wafer a été arrété car ses trois paramétres électriques de
fiabilite “VBD AREA NP 27 “VBD AREA PN 17 et “VBD AREA PN _ 27 ont
chacun un ou deux sites de mesure qui s’écartent un peu des limites de spécification.
De plus, les limites de spécification de ces paramétres sont serrées, et par conséquent
nous avons des difficultés & identifier avec notre distance normalisée ces trois parameétres

comme responsables de 'anomalie du wafer.

Dataset 2

Dans cette section, nous donnons les signatures multidimensionnelles des trois wafers

anormaux détectés par nos systémes.

Les Figures 5.10 et 5.11 montrent les signatures multidimensionnelles du wafer anor-
mal QXXXXXX 09, obtenues respectivement par la méthode MAD.-FS et la méthode
1-SVM-RFE . Avec les deux méthodes de sélection de variables, trois groupements de
parameétres ont déclenché I'anomalie de ce wafer. Un premier groupement (le cercle en
bas a gauche) caractérise ce wafer par des valeurs trés basses du paramétre de qualité
“NGA0205SF175” par rapport & ’échantillon d’apprentissage, ce parameétre qui a déclen-
ché en plusieurs sites représente le gain du transistor. Nous soulignons les mémes observa-
tions sur le deuxiéme groupement (le cercle en bas a droite) avec le paramétre de qualité
“NIOFF03028TG14” mesurant le courant résiduel du transistor fermé. Le troixiéme grou-
pement (cercle en haut) concerne les deux parametre qualité clé “NVT02044RST14” et le
paramétre de qualité “NVT02056RD14” mesurant la tension de seuil de deux transistors,
caractérisés chacun par une longueur et une largeur bien spécifique. Les valeurs de ces
deux paramétres, chacun sur plusieurs sites, ont été extrémement élevées par rapport a

I’échantillon d’apprentissage.

Un paramétre électrique supplémentaire par rapport au trois que nous venons de voir a
été responsable de 'anomalie du wafer QXXXXXX 20. Les signatures de ce wafer sont
tracées dans les Figures 5.12 et 5.13. Ce parameétre supplémentaire (le cercle en haut a
droite) est appelé “NIDS0205RD14”, ¢’est un parameétre de qualité qui mesure le courant

de saturation d’un transistor d’une longueur et une largeur bien spécifique. Les sites de
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mesure de ce parameétre qui ont déclenché avaient des valeurs plus élevées (deux sites

avec MAD,.FS et un site avec 1-SVM-RFE) par rapport a la population normale.

Concernant le wafer anormal QXXXXXX 02, nous retrouvons toujours les trois grou-
pements de paramétres identifiés dans les trois wafers précédents, mais avec moins de
sites de mesure qui ont déclenché pour chaque parameétre. D’ailleurs, les signatures de ce
wafer tracées dans les Figures 5.14 et 5.15 montrent deux nouveaux parameétres qui
ont contribué a la détection de ce wafer. Le premier (en haut & droite) est appelé
“NVT02055F175” et ce parametre de qualité, comme les parameétres “NVT(02044RST14”
et “NVT0205RD14”, mesure la tension du seuil d’'un transistor possédant une longueur
et une largeur bien spécifique. Le deuxiéme (en bas a droite) est le parameétre de fiabi-
litt “VBD AREA NP _2” mesurant la tension de claquage d’une structure de test qui
sert & effectuer les mesures électriques sur le wafer. Ces deux parameétres ont déclenché
en un seul site de mesure en utilisant la méthode MAD..FS, et en plusieurs sites avec
la méthode 1-SVM-RFE. Le paramétre “NVT0205SF175” (resp. “VBD _AREA NP _27)
avait des valeurs trés élevées (resp. trés basses) par rapport a la base d’apprentissage.
Le parameéetre “VBD AREA NP 2”7 a déclenché également dans le dataset 1 pour des
valeurs trés basses (cf. Figures 5.14 et 5.15).

Les Figures 5.16 et 5.18 montrent les signatures du wafer QXXXXXX 07. Aucun de
nos systémes de détection n’a pu détecté ce wafer puisque le taux de détection maximale
obtenu dans le Tableau 5.7 a été égal a 94.12% (I’équivalent de 16 wafers anormaux
détectés parmi 17). Les signatures de ce wafer ont été comparées a celles du wafer normal
QXXXXXX 15 (cf. Figures 5.17 et 5.19) appartenant a la base d’apprentissage qui a
servi pour tester le wafer QXXXXXX 07. Pour le wafer QXXXXXX 07, et avec les
deux méthodes de sélection de variables, les paramétres électriques identifiés comme
responsables de la détection ont été un peu plus éloignés par rapport & ceux du wafer
QXXXXXX 15. Cependant, le profil du wafer non détecté reste loin des profils des wafers
anormaux et il ressemble donc & un wafer normal. Les raisons d’arrét de ce wafer par les
ingénieurs P'T reviennent, comme pour le wafer QXXXXXX 07 du dataset 1, a deux
paramétres de fiabilité (“VBD _PF NP 27 et “VBD_PF PN _1”) avec respectivement

un et deux sites de mesure qui ne sont pas dans les limites de spécification.

Conclusion

Les résultats de cette section ont montré une bonne efficacité de notre méthode & identifier

les paramétres électriques responsables de ’anomalie.
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Figure 5.6 — Dataset 1 : signature multidimensionnelle du wafer anormal
QXXXXXX 15 déterminée avec la méthode MAD,-FS.
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Ficure 5.7 — Dataset 1 : signature multidimensionnelle du wafer anormal

QXXXXXX 15 déterminée avec la méthode 1-SVM-RFE.
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Ficure 5.8 — Dataset 1 : signature multidimensionnelle du wafer anormal

QXXXXXX 03 non détecté par nos systémes, déterminée avec la méthode MAD,-FS.
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FiGURE 5.9 — Dataset 1 : signature multidimensionnelle du wafer anormal
QXXXXXX 03 non détecté par nos systémes, déterminée avec la méthode 1-SVM-RFE.
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Ficure 5.10 — Dataset 2 : signature multidimensionnelle du wafer anormal
QXXXXXX 09 déterminée avec la méthode MAD,-FS.
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Ficure 5.11 — Dataset 2 : signature multidimensionnelle du wafer anormal

QXXXXXX 09 déterminée avec la méthode 1-SVM-RFE.
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FicUure 5.12 — Dataset 2 : signature multidimensionnelle du wafer anormal

QXXXXXX 20 déterminée avec la méthode MAD,-FS.
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FiGURE 5.13 — Dataset 2 : signature multidimensionnelle du wafer anormal

QXXXXXX 20 déterminée avec la méthode 1-SVM-RFE.
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FIGURE 5.14 — Dataset 2 : signature multidimensionnelle du wafer anormal

QXXXXXX 02 déterminée avec la méthode MAD,-FS.
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FicUure 5.15 — Dataset 2 : signature multidimensionnelle du wafer anormal

QXXXXXX 02 déterminée avec la méthode 1-SVM-RFE.
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FicUure 5.16 — Dataset 2 : signature multidimensionnelle du wafer anormal

QXXXXXX 07 non détecté par nos systémes, déterminée avec la méthode MAD.-FS.
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FicURE 5.17 — Dataset 2 : signature multidimensionnelle du wafer normal

QXXXXXX 15, déterminée avec la méthode MAD,-FS.
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FIGURE 5.18 — Dataset 2 : signature multidimensionnelle du wafer anormal

QXXXXXX 07 non détecté par nos systémes, déterminée avec la méthode 1-SVM-RFE.
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Ficure 5.19 - Dataset 2 : signature multidimensionnelle du wafer normal
QXXXXXX 15, déterminée avec la méthode 1-SVM-RFE.



Conclusion générale et perspectives

Dans ce travail, nous avons considéré le probléme de la détection automatique des wafers
anormaux dans le domaine de semi-conducteur. Nous avons développé un systéme de
détection en temps réel basé sur une technique de réapprentissage dynamique. Cette
technique exploite I'algorithme de classification a une classe 1-SVM avec 'une de deux
méthodes de sélection de variables spécifiquement développées : une méthode de type
filtrage basée sur un score indépendant de 1-SVM et calculé avec le filtre univarié¢ MAD.,
et une autre méthode de type wrapper appropriée & 1-SVM et basée sur un score calculé
a partir de cet algorithme. Le réapprentissage dynamique est assuré par une mise & jour

des modéles de détection a travers une fenétre mobile suivant deux scénarios proposés.

L’efficience de notre systéme de détection a été démontrée sur des données réels de
STMicroelectronics. Il a été comparé également & un systéme de détection alternatif
basé sur une compression de variables avec la méthode ACP et la statistique de Hotelling.
Notre systémes a montré une haute performance avec des taux de détection trés élevés
et des taux de fausses alarmes extrémement réduits par rapport a l'approche univariée

existante. De plus, notre systéme était plus performants que le systéme alternatif.

Aprés avoir détecté les wafers anormaux, nous avons développé une méthode permettant
de visualiser les signatures multidimensionnelles de ces wafers. Cette méthode exploi-
tant nos méthodes de sélection de variables ont permis aussi d’identifier efficacement les

parameétres électriques pertinents et responsables de I’anomalie.

Une collaboration est actuellement en cours avec I’équipe EDA (Engineering Data Ana-
lysis) du site de Crolles pour développer un software industriel permettant de mettre en

oeuvre notre systéme de détection en temps réel.

Perspectives

Techniquement, nous pourrons étudier la possibilité d’exploiter une méthode de sélec-

tion de variables de type “embedded” appropriée a la méthode 1-SVM. Ceci pourra étre
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réalisé en ajoutant une pénalité & la fonction objective du probléme d’optimisation de
I’algorithme 1-SVM. Cette approche, combinant a la fois ’apprentissage du modéle 1-
SVM et la sélection de variables, pourra éventuellement améliorer encore la performance

de notre systéme de détection en temps réel.

Pratiquement, nous pourrons valider les fausses alarmes de notre systéme par ’analyse au
test final EWS, du rendement des wafers considérés comme anormaux par notre systéme.
Il se peut que certains wafers soient atypiques qui ne ressemblent pas & la population
étudiée, mais qui sont dans les limites de spécification. Ce qui expliquerait le fait que
ces wafers soient considérés comme anormaux par notre systéme et comme normaux par
les ingénieurs PT. Le test EWS est un test approfondi qui s’applique sur 'ensemble des
puces, et le rendement d’un wafer (pourcentage de puces en bon état de fonctionnement)

pourrait nous aider a vérifier 8’il s’agissait vraiment de fausses alarmes ou non.

Contrairement & ’approche de détection univariée existante basée sur les limites de spé-
cification n’étant définis que pour les paramétres “Gated”, nous pouvons étendre notre

approche de détection & tous les autres paramétres électriques mesurés.

Par ailleurs, la détection multidimensionnelle peut avoir beaucoup d’autres applications
possibles en semi-conducteur. Parmi elles, deux applications majeures pourront étre étu-
diées respectivement en SPC classique (Statistical Process Control ou MSP pour Maitrise

Statistique du Procédé) et en FDC' (Faul Detection and Classification).

En effet, notre approche de détection peut étre utilisée en MSP classique pour la dé-
tection basée sur les mesures de paramétres physiques en ligne de production. La MSP
classique est basée sur un suivi de résumé statistique (moyenne, écart-type, étendu) ve-
nant de données individuelles mesurées sur les composants pouvant aller de 17 valeurs
individuelles a plusieurs centaines. Le résumé statistique réduit la dimension de p don-
nées individuelles & 2-3 dimensions et nous améne & un perte d’information importante

et réduit la pertinence de la détection.

Notre approche de détection peut aussi étre utilisée en FDC pour la détection basée sur
les paramétres machines. Pour la FDC, on dispose de plusieurs dizaines voire centaines
de parameétres machine collectés pendant chaque process d’un wafer avec une probléma-
tique de détection similaire au test paramétrique. Cette détection multidimensionnelle
permettra de simplifier 'approche en réduisant le nombre d’indicateurs de suivi & un
seul, d’améliorer la pertinence de la détection et de réduire les fausses alarmes statis-

tiques comparée a une approche unidimensionnelle.
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Real-Time Fault Detection in Semiconductor Using
One-Class Support Vector Machines

Ali Hajj Hassan, Sophie Lambert-Lacroix, and Francois Pasqualini

Abstract—In this paper, we propose a real-time fault
detection system for the semiconductor domain, which aims to
detect abnormal wafers from a recent history of electrical
measurements. It is based on a dynamic model which uses our
filter method as feature selection approach, and one-class
support vector machines algorithm for classification task. The
dynamicity of the model is ensured by updating the database
through a temporal moving window. Two scenarios for
updating the moving window are proposed. In order to prove
the efficiency of our system, we compare it to an alternative
detection system based on the Hotelling’s T test. Experiments
are conducted on two real-world semiconductor datasets.
Results show that our system outperforms the alternative
system, and can provide an efficient way for real-time fault
detection.

Index Terms—Real-time detection, feature
one-class support vector machines, semiconductor.

selection,

I. INTRODUCTION

Nowadays, the control of manufacturing processes is an
essential task to ensure consistently safe operation and high
quality production. This is challenging particularly when
processes have a large number of operations and complex
systems, which is the case in manufacturing process of
semiconductor devices and integrated circuits. Early and
accurate detection of faults is then required for maintaining a
process at its optimal condition, and reducing manufacturing
costs.

Once the manufacturing process of semiconductor ends, an
electrical test, called Parametric Test (PT), is performed. PT
aims to detect within shortest possible time the abnormal
wafers (semiconductor material used in manufacturing of
semiconductor devices) by looking at a set of static electrical
parameters measured on multiple sites of each wafer.

The purpose of this work is to implement an automatic
real-time detection system at PT level. Based on a
multivariate statistical approach, this system aims to detect
abnormal wafers through a moving temporal window of
electrical measurements.

Multivariate statistical approaches have been successfully
used for monitoring industrial processes [1]-[3]. Principal
Component Analysis (PCA) was considered to develop
respectively a static (off-line testing) and dynamic (in-line
testing) models for fault detection in biological Wastewater
Treatment Plant (WWTP) [4], [5]. PCA was also considered
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in [3] to detect faults in a semiconductor etch process. PCA is
one of the most widely multivariate techniques used for
extracting relevant information from high dimensional data.
The goal of PCA is to reduce the dimensionality of the
original data by projecting them into a lower dimensionality
space without a significant loss of information. This can be
done by identifying the directions that explain the maximum
variation of the data. The PCA method captures the
variability of a process by monitoring the T? metric on the
new PCA components or by monitoring the residuals (Q
chart) of the PCA model [4]. In case of non-linear processes,
kernel principal component analysis (KPCA) was used to
handle non-linearity with the help of kernel functions [6].

Another multivariate method based on statistical learning
approaches is the one-class Support Vector Machines
(1-SVM) [7], which is a variant of the original Support
Vector Machine (SVM) algorithm [8]. 1-SVM is a useful and
popular tool used for anomaly detection. A static model
based on 1-SVM method and the SVM-recursive feature
elimination algorithm (RFE-SVM) [9] was used in [10] for
fault detection in a semiconductor etch process, and in
chemical engineering simulation problem. It has been shown
that 1-SVM method is an efficient method for fault detection
in both domains. Moreover, the 1-SVM technique performed
better than PCA. Even in non-linear cases, simulation
experiments showed that 1-SVM technique outperformed the
KPCA method.

However the SVM-RFE algorithm requires a huge
computational time since the number of SVM models to be
trained is O(p?), where p is the dimension of variable space.
In our study, the variable space is characterized by several
electrical parameters (hundreds or thousands). High
dimensional variable space restricts the use of the SVM-RFE
algorithm. Moreover, as part of the training stage at each
iteration of a real-time application, this algorithm would not
be computationally useful, especially when we use a short
temporal moving window to update the detection algorithm.

To overcome this problem, we have developed in [11] a
new filter technique selecting the most relevant features
(electrical parameters). This technique is based on the
Median Absolute Deviation method denoted by MADe [12],
a robust approach for detecting univariate outliers. The key
idea is to use the MADe method to determine the percentage
of outlier in each parameter. Then parameters with a
percentage of outliers exceeding a predefined threshold will
be potential discriminative features. We denote this method
by MADe-FS (MADe for Feature Selection).

The remainder of the paper is structured as follows. First,
our main contributions in this work are mentioned in the
Section 1I. In Section Il we recall the one-class support
vector machine method. Then, our filter method MADe-FS
which selects the most informative parameters is also
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recalled in Section V. Section V describes our real-time
detection system according to two proposed scenarios for
updating moving window. A short description of Hotelling’s
T test which is the basis of an alternative detection system is
given in Section V1. Before concluding, Section VII serves as
an application of our system on a two real-world
semiconductor datasets.

In our work [11], we have considered the problem of
detecting abnormal wafers in semiconductor using electrical
measurements. We have developed a static model for fault
detection based on 1-SVM method for anomaly detection and
our filter method MADe-FS for selecting the most relevant
electrical parameters.

In this work, we consider the problem of real-time fault
detection, becoming increasingly important in semiconductor
domain. We develop a dynamic model which shares the same
approaches of classification and feature selection as in our
static model. Our dynamic model consists of updating the
MADe-FS method and the 1-SVM algorithm at each update
of the moving temporal window. We propose two scenarios
for updating this window, and we explain our technique used
to optimize the initial choice of model parameters and their
updating strategy.

As an alternative system of real-time detection, we
implement a similar dynamic model based on PCA method to
reduce dimension and model the normal behavior, and
Hotelling’s T® statistic as multivariate control chart.
Parameters of this model is selected and updated under the
same strategy used in our developed dynamic model.

At our knowledge, this work is the first one to implement a
real-time fault detection system in semiconductor domain,
and at the same time the first one to develop a dynamic model
based on the 1-SVM method. This model is applied on high
dimensional data consisting of hundreds of variables while
previous works on fault detection in industrial processes
considered data with tens of variables.

MAIN CONTRIBUTIONS

I1l.  ONE-CLASS SUPPORT VECTORS MACHINES

Support Vector Machine (SVM) [13] is as an effective
learning algorithm for binary classification. This algorithm
aims to find an optimal hyperplane to separate the two classes
of training data.

An extension of SVM, called one-class SVM (1-SVM),
was subsequently proposed in [7] to handle one-class
classification problem. The 1-SVM strategy is to find an
optimal hyperplane in a feature space separating the training
data (positive samples) from the origin (considered as
negative samples) with maximum margin (the distance from
the hyperplane to the origin).

Given a training dataset of n positive samples (normal
wafers) {xi,...,x.} Where each x;eR” is described by a vector
of p features (electrical parameters). Each x; is first
transformed via a feature map ¢: R® --> F where F is a high
(possibly infinite) dimensional Hilbert space generated by a
positive-definite kernel K. The kernel function corresponds to
an inner product in the feature space F through K(x, X’)=

192

P(x) - 9(x’) .

The 1-SVM algorithm finds in the feature space a
hyperplane H {z € F; w-z= p} that separates the cluster of
normal samples from the origin. we F is the normal vector
defining H. The margin is equal to p/|jw||. The one-class SVM
requires solving the following quadratic optimization
problem:

11X
mmw,ngHwH +%Z§‘P
i=1

st wepi)>p-§,620,i=1,...,n. (1)

& s are slack variables introduced to allow
misclassification for some points, and ve[0, 1] is a free
parameter controlling the impact of the slack variables, i.e.
the fraction of training data which are allowed to fall wihtin
the margin. In fact, it can be shown that v is an upper bound
on the fraction of training errors [7].

The dual problem, to be maximized, is given by:

1
minaiz a; o K(xi,x]-)

i
@

The data x; with non-zero «; are the so-called support
vectors. They are the training data that determine the
separating hyperplane. It can also be shown that v lower
bounds the fraction of support vectors [7].Once the optimal
values of the parameters are found, one can classify the new
data (new wafers) according to the decision function

1
st 0< aisﬁ,Ziai =1

9() = sgn(i e v @ K(x;, %) = p), ©)]

where sv is the set of the support vectors” indices.

In practice, the 1-SVM has been successfully applied with
the RBF kernel K(xi, x)=exp(-y || xi — X; [|2) where y is a
parameter that controls the width of the kernel function. After
many experiments in which we have tested many values for y
(y=L/mp, with m € {05, 1, 2, 3, 4, 5}), results have showed
that best performance of 1-SVM algorithm is obtained for
m>1, and this performance is not very sensitive to the kernel
parameter. Hence fine-tuning of the parameter is not
required. We set y=1/5p.

IV. OUR FILTER METHOD

In machine learning and statistics, feature selection is the
process of selecting an optimal subset of relevant features in
order to obtain good classification performances.

To achieve the task of feature selection, we use our filter
approach based on MADe method, which is a robust
univariate outlier detection method. Before presenting this
method, we first introduce the Maximum Absolute Deviation
(MAD) [14] of a variable xjeR" (j = 1,..., p):

MAD(j) = medianis[lln](|xij - median(x’)D.

O]

MAD is a robust estimator of the spread in a data, similar
to the standard deviation. When the MAD value is scaled by a
factor of 1.483, it represents a consistent estimator of the
standard deviation in a normal distribution [12]. This scaled
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MAD value is the MAD,:

MAD, = 1.483 x MAD. (5)
The MAD, method is defined as follows:
LL; = Median(j) — 3 X MAD, (j)
(6)

UL; = Median(j) + 3 x MAD, (j),

where LL; and UL; are respectively the lower and upper limits
for the variable j.

The MADe approach is similar to the Standard Deviation
(SD) method that considers the observations outside the
interval [x+3c] as outliers, where X and o are respectively the
empirical mean and standard deviation for a univariate
samples. However, the median and MAD, are employed
instead of the mean and the standard deviation. Since this
approach uses two robust estimators, it is largely unaffected
by the presence of extreme values in the data set.

Thus the percentage of outliers OOL; (Out Of Limit) of the
variable x; represents the proportion of data outside the
interval determined by the lower and upper limits of the
MADe method. Therefore we have:

#ie[LLjUL;]
00L; = ——1—= ()

Finally, the Subset of Relevant Variables (SRV) contains
variables for which the percentage of outliers exceeds the
threshold & (cf. Eq. 8). @y is defined as the quantile of order
q of the values in the vector OOL=(OOL,..., OOLp).

SRV = {¥,00L; > 6,}

®)

To conclude, our filter method consider the top 100(1-q)
% outlying variables as the most relevant electrical
parameters for the classification task.

V. REAL TIME DETECTION SYSTEM

The motivation behind the development of a real-time
detection system is to use the MADe-FS and 1-SVM
approaches for in-line testing in the context of industrial
application. This system aims to detect in real-time abnormal
wafers using a recent history of electrical measurements. In
the following, we denote our model of feature selection and
classification by 1-SVM.FS (one-class SVM with Feature
selection). This model consists of determining firstly the
most relevant features in the training data using our filter
method MADe-FS, and secondly applying the 1-SVM
algorithm on the subset of relevant features.

Our detection system is based on three major steps:
Selection of a correct performance reference data set,
representing the normal operating behavior
Real-time data updating through a moving window, to
obtain a real-time procedure.
1-SVM.FS application to the updated real-time data.

So we first define the reference correct performance

dataset, representing a well-behaved operating condition. For

this, we select from the historical database of considered
products, a set of operational positive samples (normal
wafers) corresponding to a nominal condition of processes.

Concerning the reference data size, a large data set increases

1)
2)

3)
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the detection reliability. Hence reference data must be large
enough allowing us to define a normal region which
encompasses a wide variety of positive samples.

The correct performance dataset is used as a training set to
build a model describing the normal behavior of the process.
When a new lot (group of 25 wafers that run together all
processing steps) arrives, the 1-SVM.FS model trained on the
correct performance dataset is used to test whether each of 25
wafers is normal or abnormal. The tested lot will join the
initial training set while oldest lot in this set will be removed
or maintained depending on the used scenarios explained
below. Thus a new training set is formed. 1-SVM.FS model is
retrained on the updated training set and will be used to
predict the operating state of the next 25 new wafers.
1-SVM.FS model is retrained on the updated training set and
will be used to predict the operating state of the next 25 new
wafers. 1-SVM.FS model is retrained on the updated training
set and will be used to predict the operating state of the next
25 new wafers. This procedure is repeated with the arrival of
each new lot. A general view of our detection system is
presented in the Fig. 1.

Projestion onto tre
1-SVMFS model

Reference data
loacing

Curent dzcision

Feature selecton: 8
value )

MADe-FS

1-SVMFS mods]
decision finciion f)

Standardization
1-$VM elassifer

Update
MADeFS
1-SVM

Reference data
update

Fig. 1. Schema of our real-time detection system based on 1-SVM.FS
dynamic model.

As we described before, the basic 1-SVM.FS model was
made dynamic by updating the database through a moving
window. We consider 2 scenarios reflecting two updating
modes of the moving window:

e Scenario 1 (increased length): with this scenario, the
tested lot at each iteration is added to the existing training
set without removing old data. So 1-SVM.FS model is
updated according to a moving window of increased
length. Since normal behavior keeps evolving, we have
decided to remove at once some old data from the
increased training set after a defined period At. At
depends on the volume production of the considered
product(s).

o Scenario 2 (fixed length): during the real-time operation,
the window still maintains the length of the correct
performance dataset and operates as a First-In-First-Out
(FIFO) shift-register, discarding old data and including
New ones.

The two scenarios are illustrated respectively in the Fig. 2
and the Fig. 3.

Recall that 1-SVM.FS model requires setting the
parameter v (the threshold in 1-SVM algorithm) and two
hyperparameters: the order g of the threshold 6, in feature
selection method, and the kernel parameter y. Consequently
some kind of model selection (parameter search) must be
done.
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To accomplish the model selection task, a validation set
containing normal data contaminated by some abnormal
wafers is needed. It is used to identify good (q, v) so that the
classifier can accurately predict unknown data (i.e. testing
data). A “grid search” on q and v is performed. 1-SVM.FS
model is built on training set using various pairs of (g, v)
values. For each pair, samples from validation set are
projected onto the trained 1-SVM.FS model. Then Detection
Rate and the False Alarms Rate (cf. Section VII-A) are
computed. The pair that optimizes these two performance
measures is picked. More precisely, the best pair (g, v) is the
one giving the optimal compromise between maximizing the
Detection Rate and minimizing the False Alarms Rate. The
selected pair is used at each update of the 1-SVM.FS model.

; New lot

; News lot

Eng
rest
erove

Fig. 2. Real-time moving window using scenario 1.

training
test
remove

Newlot C—
]
| .

]
| .
Fig. 3. Real-time moving window using scenario 2.

VI. HOTELLING’S T? TEST

To make our study comparable to previous studies, we
have investigated the Hotelling’s T test. Hotelling’s T2
statistic provides an indication of novel variability within the
model space.

The principle of this test is to use PCA method to model
the behavior of the normal samples. Anomalies are then
detected by comparing the behavior observed with that given
by the PCA model. Having established a PCA model of the
positive training data, testing data are projected onto this
model, and Hotelling’s T2 statistic can be computed based on
the first k principal components of the model. The T? statistic
for a sample x; is:

T2 =t A =X poAT B ©
where t; =P, i is the orthogonal projection of the data i into
the model subspace defined by the k first principal
components, and A is a diagonal matrix containing the first k
eigenvalues of the covariance matrix of the positive training
data.

A threshold T2, can be obtained using the Fisher
distribution. If T%> T2, the sample is categorized as
abnormal, and normal otherwise. For further details on fault

194

detection based on PCA readers are advised to read the
literature [4].

To choose k, we use the Cumulative Proportion of
Variance (PCV):

k
Lj=14

P ’
i

PCV(k) = 100 x

where 11,..., Ap are the eigenvalues sorted in descending
order. Thus we retain the first k components that account for a
predefined percentage of the variance in the data:

k = argmin, {PCV(u) > B }.

For example, if we set #=0.8 we retain the minimal number
of components that preserve 80% of the information in the
data.

Detection system based Hotelling’s T2 test is dynamically
the same as our system. The data and model update is
performed at the level of 25 wafers (each new lot) following
the proposed two scenarios.

VII.  APPLICATION

Our experimental goal was to assess the ability of our
detection system to detect abnormal wafers. It is also
important to minimize false alarms rate as they cause
unwarranted interruption in plant operation. Let us first
introduce the performance measures used in our study.

TABLE |: CONFUSION MATRIX OF METRICS USED IN PERFORMANCE

MEASURES
True class vs Decision Positive Negative
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) | True Negative (TN)

A. Performance Measures and Data

In order to evaluate and compare the results obtained from
the different methods, we used two performance criteria:
Detection Rate (DR) and False Alarms Rate (FAR).
Detection Rate quantifies the percentage of data predicted to
be negative by the classifier that are actually negative; False
Alarms Rate quantifies the percentage of data predicted to be
negative by the classifier that are actually positive. These two
measures are computed using the four metrics described in
the Table | as follows:

DR = TN
“TN+FN

FAR = Fp
" FP+TP

We notice that the resulting false alarms rate in the context
of application of real-time detection system over a production
period represents the average of false alarms rates obtained
when testing separately each of all lots that have to be tested.
Furthermore, the FAR-DR curve is suitable for evaluating
classifiers by integrating their performance over a range of
decision thresholds. It depicts the relation between DR
(x-axis) and FAR (y-axis) varying the range of thresholds.
The lower the misclassification error of a classifier, the closer
the corresponding point is to the upper right-hand corner of
the ROC curve.
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The real-time detection system proposed in this paper has
been tested on two real-world industrial datasets. Each
dataset consists of wafers corresponding to one or more
products of a certain technology over months of production.
Each wafer is described by a certain number of electrical
parameters. We give the percentage of abnormal wafers in
each dataset. The description of these two datasets is given in
Table I1. 1-SVM.FS and Hotelling’s T2 detection systems are
investigated under the two scenarios in both datasets, in order
to prove again the efficacy and superiority of our detection
system. Ideally, we want high DR (to detect most of the
abnormal wafers) and a low false alarms rate (to avoid
mistakenly classifying normal wafers as abnormal).

TABLE II: DESCRIPTION OF THE REAL WORLD INDUSTRIAL DATA USED IN
OUR STUDY

Data Production time Nb of % of abnormal
parameters wafers
dataset 1 2 months 756 1.75
dataset 2 4 months 1062 05

1) Dataset 1

In this experiment, the correct performance data is formed
using 300 normal wafers. The validation set consists of 100
wafers of which 6 wafers are abnormal. We have trained our
1-SVM.FS model on the correct performance data using
various pairs of values for the feature selection
hyperparameter q and the threshold v. We consider
respectively 6 and 20 values for g and v, as follows:

4e{0.25, 0.4, 0.5, 0.6, 0.75, 0.9},
ve{0.01, 0.02,..., 0.19, 0.2},

Samples from the validation set are then predicted using
each of 120 learned models. The Detection Rate and the False
Alarms Rate are computed for each prediction. We have
selected the pair that optimizes simultaneously these two
performance measures. Here we have retained q=0.75 and
v=0.16 and we have obtained a DR equal to 100% and FAR
equal to 14.21%.

Similarly, we have selected for the Hotelling’s T? test the
best pair (B,a) (cf. Section VI) by taking PE
{0.75,0.8,0.85, 0.9} and considering the same range of
values of v for a. The optimal performance is obtained for
$=0.75 and ¢:=0.2, where DR and FAR are respectively equal
t0 66.67% (4 among 6 abnormal wafers) and 17.36%.

After defining the correct performance data set and
selecting the optimal parameters for 1-SVM.FS and
Hotelling’s T> models, we now proceed to the real-time
detection by applying both of models to the real-time data.
The real-time data are updated at each arrival of a new lot
through a moving window in order to obtain a real-time
procedure. The two models are also updated. The updates
through the moving window follow one of two defined
scenarios: scenario 1 (increased length) and scenario 2 (fixed
length).

Next, we focus on comparing the performance of the two
real-time detection systems based on 1-SVM.FS and
Hotelling’s T2 dynamic models using the two scenarios. The
results are reported in Table I1l. For both scenarios, the
Hotelling’s T? system has shown poor performance in
detecting abnormal wafers (DR=65.22%), while 1-SVM.FS
system has been able to detect 95.65% of abnormal wafers. In
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addition, we have obtained lower false alarms rate using our
detection system. For both detection systems, scenario 1
reduces false alarms compared to scenario 2.

TABLE I11: PERFORMANCE OF 1-SVM.FS AND HOTELLING’S T? SYSTEMS
ON THE DATASET 1

Moving window|Detection system| Detection Rate | False Alarms
Rate
Scenario 1 1-SVM.FS 95.65 12.89
Hotelling’s T 65.22 1343
Scenario 2 1-SVM.FS 95.65 19.25
Hotelling’s T 65.22 19.85

To confirm this hypothesis, FAR-DR curve is plotted in
the Fig. 4 to study the behavior of our detection system
regarding the two different scenarios, over the same range of
v defined above. It is clear that scenario 1 gives a significant
reduction interm of false alarms compared to scenario 2. This
is due to the increased size of its moving window where a
new lot is added to the training database at each update. In
fact one-class SVM requires many more positive training
data to give an accurate decision boundary because its
support vectors come only from the positive data. However
scenario 2 tends to detect more quickly abnormal wafers (i.e.
for any value of v, scenario 2 has higher or the same DR than
scenario 1). The short fixed window in scenario 2 has a more
efficient updating strategy and contains fewer abnormal
wafers in the moving training dataset, which improves the
performance of 1-SVM algorithm since the latter requires
normal wafers to learn the classifier.

Scenario scenariol —e— scenario2

Detection Rate

False Alarms Rate

Fig. 4. FAR-DR curve comparing performances of 1-SVM.FS detection
system using the two proposed scenarios.

Note that, in the first experiment considering only two
months of production, we did not remove old data in the
actual training set after the At period for the scenario 1, as has
been recommended in Section V. This action takes place in
the second experiment considering four months of production
where we have a larger number of wafers.

A final comparison is realized between 1-SVM.FS and
1-SVM detection systems. The difference between these two
systems is that the latter ignores the feature selection step
used by the former. Another FAR-DR curve is plotted in the
Fig. 5 illustrating this comparison. From this curve, a very
important improvements achieved by applying our feature
selection method MADe-FS. These improvements were
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observed on each of the two performance measures (DR and
FAR).

Scenario 1-SVM —+— 1-SVM.FS

Detection Rate

40-

10 20 30
False Alarms Rate

Fig. 5. FAR-DR curve showing the importance of our filter method
MADe-FS to improve the performance of the 1-SVM classifier, according to
scenario 1.

2) Dataset 2

Dataset 2 contains wafers from another category of
products collected over four months of production. This
dataset has higher dimensional space and lower percentage of
abnormal wafers, compared to the first dataset. We set to 500
the size of the correct performance data. The validation set
contains 2 abnormal wafers among of 100.

Following the same procedure used in dataset 1 for
selecting optimal parameters, we have retained
(g, v)=(0.75,0.04)  for  1-SVMFS  model and
(8, 0)=(0.8, 0.01) for Hotelling’s T2 model. We set At to 2
months.

Table IV summarizes the performances achieved by the
two systems under the two different scenarios. The results
reveal a degree of similarity between the performances of
both systems. High performance was obtained using both
systems. Observations resulting from the comparison of two
scenarios in dataset 1 are confirmed in dataset 2. Scenario 1
has lower false alarms rate, while scenario 2 detect more
effectively abnormal wafers.

TABLE IV: PERFORMANCE OF 1-SVM.FS AND HOTELLING’S T? SYSTEMS
ON THE DATASET 2

Moving window|Detection system| Detection Rate | False Alarms
Rate
Scenario 1 1-SVM.FS 83.33 5.89
Hotelling’s T 83.33 6.34
Scenario 2 1-SVM.FS 91.67 8.62
Hotelling’s T 91.67 9.12
VIII.  CONCLUSION

In this paper, we proposed a new real-time fault detection
system based on the machine learning 1-SVM algorithm and
our filter method for feature selection. A dynamic detection
was realized by updating the database following two
proposed scenarios. The efficacy of our system has been
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demonstrated using two real-world industrial datasets. For
both scenarios, results from the two datasets showed that our
system could detect most of the abnormal wafers with an
admissible percentage of false alarms. In addition, our system
outperformed the detection system based on the Hotelling’s
T2 test in the dataset 1, and similar performance was obtained
in dataset 2 with slightly lower rate of false alarms.
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