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Résumé

Détection Multidimensionnelle au Test Paramétrique avec Recherche

Automatique des Causes

Ali Hajj Hassan

Aujourd'hui, le contrôle des procédés de fabrication est une tâche essentielle pour assurer

une production de haute qualité. A la �n du processus de fabrication en semi-conducteur,

un test électrique, appelé test paramétrique (PT), est e�ectué. PT vise à détecter les

plaques dont le comportement électrique est anormal, en se basant sur un ensemble de

paramètres électriques statiques mesurées sur plusieurs sites de chaque plaque. Le but

de ce travail est de mettre en place un système de détection en temps réel au niveau

de PT, pour détecter les plaques anormales à partir d'un historique récent de mesures

électriques. Pour cela, nous développons un modèle de détection dynamique basé sur

une technique de réapprentissage optimisée, où le modèle de détection est mis à jour

à travers une fenêtre temporelle glissante. Notre modèle de détection est basé sur les

machines à vecteurs supports à une classe (1-SVM), une variante de l'algorithme d'ap-

prentissage statistique SVM, introduit dans le cadre des problèmes de classi�cation à

une classe pour la détection d'anomalies. Pour améliorer la performance prédictive de

l'algorithme de classi�cation 1-SVM, deux méthodes de sélection de variables ont été

développées. La première méthode de type �ltrage est basée sur un score calculé avec la

méthode MADe, une approche robuste pour la détection univariée des valeurs aberrantes.

La deuxième méthode de type wrapper est une adaptation à l'algorithme 1-SVM de la

méthode d'élimination récursive des variables avec SVM (SVM-RFE). Pour les plaques

anormales détectées, nous proposons une méthode permettant de déterminer leurs si-

gnatures multidimensionnelles a�n d'identi�er les paramètres électriques responsables de

l'anomalie. Finalement, nous évaluons notre système proposé sur des jeux de données

réels de STMicroelectronics, et nous le comparons au système de détection basé sur le

test de T 2 de Hotelling, un des systèmes de détection les plus connus dans la littéra-

ture. Les résultats obtenus montrent que notre système est performant et peut fournir

un moyen e�cient pour la détection en temps réel.

Mots clés : détction d'anomalies, Machines à Vecteurs Supports, sélection de variables,

Test Paramétrique, détection en temps réel, signature multidimensionnelle.





Abstract

Multidimensional Detection at Parametric Test with automatic diagnosis

by Ali Hajj Hassan

Nowadays, control of manufacturing process is an essential task to ensure production of

high quality. At the end of the semiconductor manufacturing process, an electric test,

called Parametric Test (PT), is performed. The PT aims at detecting wafers whose

electrical behavior is abnormal, based on a set of static electrical parameters measured

on multiple sites of each wafer. The purpose of this thesis is to develop a dynamic

detection system at PT level to detect abnormal wafers from a recent history of electrical

measurements. For this, we develop a real time detection system based on an optimized

learning technique, where training data and detection model are updated through a

moving temporal window. The detection scheme is based on one class Support Vector

Machines (1-SVM), a variant of the statistical learning algorithm SVM widely used for

binary classi�cation. 1-SVM was introduced in the context of one class classi�cation

problems for anomaly detection. In order to improve the predictive performance of the

1-SVM classi�cation algorithm, two variable selection methods are developed. The �rst

one is a �lter method based on a calculated score with MADe �lter, a robust approach

for univariate outlier detection. The second one is of wrapper type that adapts the

SVM Recursive Feature Elimination method (SVM-RFE) to the 1-SVM algorithm. For

detected abnormal wafers, we propose a method to determine their multidimensional

signatures to identify the electrical parameters responsible for the anomaly. Finally, we

evaluate our proposed system on real datasets of STMicroelecronics and compare it to the

detection system based on Hotelling's T 2 test, one of the most known detection systems

in the literature. The results show that our system yields very good performance and

can provide an e�cient way for real-time detection.

Keywords : anomaly detection, Support Vector Machines, variable selection, Parametric

Test, real-time detection, multidimensional signature.
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Présentation de STMicroelectronics

Présentation générale

Le groupe ST a été créé en juin 1987 à la suite du regroupement de Thomson Semicon-

ducteurs (France) et de SGS Microelectronica (Italie). En mai 1998, SGS-THOMSON

Microelectronics devient STMicroelectronics.

STMicroelectronics est une multinationale qui conçoit, développe, fabrique et commer-

cialise une vaste gamme de circuits intégrés et de composants discrets utilisés dans de

nombreuses applications. STMicroelectronics est le numéro 1 européen dans le secteur

des semi-conducteurs.

Depuis sa création, la société a considérablement étendu et enrichi sa gamme de produits

et de technologies, et renforcé son réseau de distribution et de fabrication en Europe, en

Amérique du Nord et dans la région Asie-Paci�que. Ce processus d'expansion permanent

se poursuit avec l'amélioration des sites existants et la construction de nouvelles usines

de fabrication 300 mm submicroniques (taille inférieure au micron).

Activités

ST reçoit des plaques de silicium vierges qui serviront de base à la fabrication des puces

microélectroniques. Ces puces interviennent dans plusieurs utilisations quotidiennes. En

e�et, chaque personne utilise chaque jour environ 250 circuits électroniques. Des exemples

de ces utilisations sont données dans la Figure 1.

Les plaques de silicium vont suivre un long cheminement dans la salle blanche via les

nombreux ateliers. La fabrication de circuits intégrés se divise en deux grandes parties

comme le montre la Figure 2.

Front-End Cette activité consiste à produire des puces sur des plaques de silicium et

d'en tester la fonctionnalité. Pour parvenir à une performance de pointe, les équipements

1
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Figure 1 � Utilisation quotidienne des circuits électroniques.

Figure 2 � Principales étapes de fabrication d'un Circuit Intégré

utilisés en salle blanche mettent en oeuvre les technologies les plus avancées a�n de

réaliser des motifs submicrométriques sur les plaquettes.

Back-End Les puces achevées dans les usines du Front-End sont envoyées dans les

usines de Back-End pour être assemblées dans des boîtiers. Pour ce faire, les puces de la

plaque sont découpées puis collées sur un support. Des �ls sont ensuite soudés a�n de

relier la puce aux connections du boîtier avant de mouler le tout dans de la résine. Les

circuits intégrés sont ensuite testés, marqués, emballés, puis expédiés aux clients qui les

assembleront sur des circuits imprimés.

Secteurs d'application et clients

STMicroelectronics dispose de centres de recherche, de centres de conception, de sites de

production et de bureaux de vente dans de nombreux pays. Son portefeuille d'applications

couvre un grand nombre de secteurs :
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Figure 3 � Secteurs de vente du premier trimestre 2010

• Grand public : téléviseurs, lecteurs DVD, lecteurs MP3, LCD, ...

• Cartes à puce.

• Automobile : commandes de moteurs, injection électronique, multimédia, freinage,

ABS, ...

• Communication : téléphones portables, circuits ADSL, bluetooth, modem WiFi, ...

• Périphériques informatiques : ordinateurs, disques durs, moniteurs, webcams, ...

La Figure 3 montre la distribution des secteurs de vente de STMicroelectronics pendant

le premier semestre de l'année 2010. La société travaille avec plus de 1500 clients dont

les principaux sont Samsung, Nokia, Delta, Philips, Thomson, Sony, Nintendo, Alcatel,

Motorola, Ericsson, Siemens, Hewlett Packard, Seagate, Western Digital, IBM, Bosch,

Ford, Daimler Chrysler.

Le site de Crolles

STMicroelectronics Crolles (cf. Figure 4) est situé à 15km au nord-est de Grenoble, au

pied de la Dent de Crolles, dans la vallée séparant les deux chaînes de montagnes : la

Chartreuse et Belledonne.

Crolles 1 (Crolles 200mm) Le site STMicroelectronics de Crolles conçu en 1989

a été inauguré en 1993. Ce nouveau site comporte alors deux divisions : la division

chargée de la production de composants hautement complexes et la division Recherche et

Développement (R&D). La production de puces électroniques est réalisée sur des plaques

de silicium de 8 pouces (200mm de diamètre). La longueur de la grille du transistor

varie de 350nm à 120nm. La capacité de production de Crolles 200mm est de 7200

plaques/semaine.
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Figure 4 � Le site de Crolles

Crolles 2 (Crolles 300mm) En 2002, l'association entre STMicroelectronics, NXP

(Philips Semiconductors) et Freescale (Motorola Semiconductors) mène à la création de

l'Alliance Crolles 2 avec la construction d'une nouvelle salle blanche de 5000m2. Cette

nouvelle unité de production plus moderne permet la fabrication de puces électroniques

à partir de plaques de silicium de 12 pouces (300mm de diamètre). L'évolution techno-

logique apportée par rapport à Crolles 1 est double : la taille des plaques sur lesquelles

sont gravées les puces augmentent de 200mm à 300mm tandis que la longueur de la grille

diminue (de 110nm jusqu'à 15nm). A la �n de l'année 2007, l'alliance Crolles 2 (ST-

Microelectronics, NXP, Freescale) prend �n et la salle blanche de Crolles 2 est rachetée

entièrement par STMicroelectronics. La capacité de production de Crolles 300mm est de

3200 plaques/semaine.

Les salles blanches du site ST Crolles

Dans la salle blanche, on réalise di�érentes opérations technologiques sur des plaques de

silicium pour fabriquer des puces. Lorsque ces puces sont mises en boîtier, on parle de

circuits intégrés. Les éléments qui constituent la puce sont très petits (500 à 600 fois plus

petit qu'un cheveu), les dimensions sont inférieures au micron (µm).

La présence de particules sur la plaquette de silicium au cours de la fabrication peut

entraîner des problèmes de fonctionnement : puces hors service ou non �ables. Il faut

donc protéger la plaquette des contaminants, c'est pourquoi on fabrique les puces dans

une salle blanche.



Présentation de STMicroelectronics 5

Les contaminants sont générés par tout ce qui nous entoure. Il faut donc limiter l'accès

à la salle blanche aux seuls éléments indispensables à la fabrication des puces, c'est-à-

dire : les machines, les matières premières et les hommes. Mais comme tout génère des

particules, il va aussi falloir limiter les apports de contaminations par les éléments entrant

en salle blanches et par la salle blanche elle-même.

La salle blanche se compose de trois grandes parties distinctes (cf �gure 5) :

� le plénum : partie supérieure de la salle blanche par laquelle se fait l'injection d'air.

L'air étant prélevé à l'extérieur, il est préalablement traité pour être amené aux ca-

ractéristiques voulues ; taux d'empoussièrement (classe : nombre de particules de taille

équivalente à 0.1 µm, contenu dans un volume d'1 m3 d'air), humidité (40% ± 2%),

température (21◦C ± 0.5 ◦ C).
� la salle blanche : lieu où sont e�ectués les procédés. Cette salle est balayée par un

�ux laminaire verticale de 0,45m/s qui chasse les particules vers les bas et se trouve

en surpression par rapport à l'extérieur (15 Pa) a�n de maintenir un environnement

ultra propre en évitant que l'air extérieur ne rentre dans la salle lors de l'ouverture

d'une porte. Les cloisons de la salle blanche sont lisses et fabriquées d'une matière non

contaminante : c'est de l'aluminium alvéolé revêtu d'une peinture époxy enrichie en

carbone. Le carbone est conducteur et permet l'évacuation de l'électricité statique vers

la terre. Cela évite que les murs attirent les particules.

� le basement : partie inférieure de la salle où se trouvent toutes les infrastructures

qui n'ont pas besoin d'être en salle blanche et qui sont susceptibles de générer de la

contamination (particulaire ou volatile). C'est là où sont regroupés les pompes (pour

éviter les vibrations en salle) qui aspirent l'air de la salle ainsi que tous les circuits

d'alimentations en produits chimiques, liquides ou gazeux.

Les étapes de la fabrication des puces

Les plaques de silicium vont subir environ 200 opérations pendant les 2 mois que dure

la fabrication des puces. Elles vont faire de nombreux allers et retours dans les di�érents

ateliers de la salle blanche.

Atelier Photolithographie la photolithographie permet de dessiner à la surface de

la plaque la géométrie des composants. Elle dé�nit des zones permettant les opérations

technologiques suivantes.

Atelier Gravure Sèche / Etch : la gravure sèche permet d'enlever sélectivement la

matière à l'aide de plasma. Elle intervient le plus souvent après la photolithographie.
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Figure 5 � Représentation schématique de la salle blanche

Figure 6 � Vue de la salle blanche

Atelier Gravures Humides / Wet : la gravure humide permet d'enlever sélective-

ment de la matière avec des produits chimiques liquides. Elle intervient principalement

pour les nettoyages.

Atelier Implantation : réalisation d'implantations ioniques d'atomes spéci�ques dans

le silicium a�n d'améliorer la conductivité.

Atelier CMP (Chemical Mechanical Polishing) : polissage mécano-chimique de

la plaquette a�n de réduire l'épaisseur des dépôts et de planariser les couches.

Traitement Thermiques : fabrication de couches isolantes sur la plaque par dépôt

ou par oxydation dans des fours à très hautes températures.
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Dépôt CVD (Chemical Vapor Deposition) / Diélectrique : dépôt de matières

isolantes à la surface de la plaquette par méthode CVD à haute température pour l'iso-

lation des couches métalliques et inter-métalliques.

Métal : dépôt de couches conductrices qui permettront de relier les composants entre

eux pour assurer les fonctions électriques voulues.

Mise à Epaisseur : rabotage mécanique pour enlever la matière en face arrière, en

�n de process, a�n d'amincir la plaque avant le découpage des puces en vue de la mise

en boîtier.

Test paramétrique : mesures électriques statiques permettant de valider les para-

mètres physiques des circuits réalisés (transistors, résistance, capacité).

Tri Electrique des Plaques (Electrical wafer Sorting) : véri�cation de la fonc-

tionnalité de chaque puce. Les mauvaises puces sont encrées.

Qualité : contrôle qualité des plaques à certains niveaux de la création du circuit

intégré.

Caractérisation : étude des défauts à di�érents niveaux du circuit par coupe ou �de-

processing� (élimination progressive des empilements de matériaux a�n d'identi�er les

défauts générés lors de la fabrication).

Métrologie : mesure physique de di�érents paramètres physiques en cours de process

(épaisseur, contamination...).





Introduction générale

Contexte et problématique

Aujourd'hui, le contrôle des procédés de fabrication est une tâche essentielle pour assurer

le bon fonctionnement des processus et garantir par la suite une production de haute qua-

lité. Ceci est un dé� particulier lorsque les processus ont un grand nombre d'opérations

et systèmes complexes, ce qui est le cas dans le processus de fabrication de dispositifs à

semi-conducteurs et des circuits intégrés. En e�et, les progrès permanents réalisés dans

le domaine de l'intégration en microélectronique aboutissent à une complexi�cation des

circuits et à la réduction des tailles des puces. Ceci est dans le but de proposer sur le

marché des composants compacts et plus performants.

La détection précoce et précise des défauts sur ces composants est alors nécessaire pour le

maintien d'un processus dans sa condition optimale et réduire les coûts de fabrication. Sur

les systèmes actuels (circuits comprenant des millions de transistors, cartes électroniques

multicouches), les activités de test et de diagnostic prennent également de plus en plus

d'importance tout en étant de plus en plus di�ciles à réaliser.

Le processus de fabrication de puces électroniques regroupées en wafers (matériaux semi-

conducteur utilisés dans la fabrication des puces) est un processus long et complexe. Il

nécessite un contrôle de qualité répondant à des spéci�cations bien particulières. A la

�n du processus de fabrication, un test électrique, appelé test paramétrique, est e�ectué.

Ce test permet de faire un premier tri en sortie de production. La procédure PT vise

à détecter les wafers dont le comportement électrique est anormal, en se basant sur

un ensemble de paramètres électriques statiques (résistivité, conductivité, etc) mesurés

avec des structures de test placées sur plusieurs sites du wafer. Par exemple, en 300mm

(wafer dont le diamètre est de 300 mm), ces paramètres sont mesurés sur tous les lots et

tous les wafers en neuf sites (emplacements sur chaque wafer) : un site à proximité du

centre du wafer et huit sites répartis sur le wafer dont au moins cinq de ces huit sites

qui doivent être à proximité du bord du wafer (cf. Figure 7). Le bon fonctionnement

du wafer est véri�é en testant si les paramètres électriques mesurés ne s'écartent d'une

9
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Figure 7 � Position des structures de test placées en 9 sites du wafer pour e�ectuer les
mesures des paramètres électriques statiques en 300mm.

valeur cible (Target) située entre la valeur de spéci�cation minimale (Lower Speci�cation

Limit LSL) et la valeur maximale (Upper Speci�cation Limit USL). Ces deux valeurs

s'appellent limites de spéci�cation des paramètres électriques. La méthode de détection

actuelle du test paramétrique est basée sur des règles d'arrêt consistant à l'évaluation

de chaque paramètre individuel par rapport à ses propres limites de spéci�cation pour

identi�er les wafers anormaux.

Pendant la procédure de test, les wafers passent par deux phases successives :

1. La phase quali�ée de �hold� consiste à écarter tous les lots (un lot est un groupe-

ment de 25 wafers qui ont parcouru ensemble toutes les étapes du processus) dont

certains paramètres spéci�ques mesurés sur chaque wafer composant ces lots sortent

du domaine de spéci�cations. Ces wafers sont alors re-analysés par les ingénieurs

au Test Paramétrique pour con�rmer le mauvais fonctionnement du/des wafer(s)

ou attribuer l'alerte à un problème de test. Ensuite, un �full test� (tests complé-

mentaires) est réalisé en cas d'anomalie con�rmée du/des wafer(s) en retirant ces

derniers de la ligne de production a�n d'y appliquer des tests plus spéci�ques.

2. La deuxième phase vise à tester la fonctionnalité de chaque puce à l'aide du test

EWS (Electrical Wafer Sort) pour garantir le bon fonctionnement selon des spéci-

�cations données.

La méthode de détection actuelle au PT est une approche univariée avec une e�cience

limitée : le taux d'arrêt (hold) peut aller jusqu'à 50% alors que le taux de rejet réel

(scrap) est inférieur à 1%. De plus, les ingénieurs PT ne regardent que les paramètres

électriques de type �Gated�, car parmi tous les paramètres électriques mesurés, ils sont les

seuls paramètres pour lesquels les limites de spéci�cation sont parfaitement dé�nies. Ces
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paramètres peuvent être des paramètres de type qualité (Quality Q), ou des paramètres

de type �ablité (Reliability R).

Objectifs de la thèse

Notre travail porte donc sur l'analyse des données issues du test paramétrique pour

prédire l'état de fonctionnement des puces électroniques a�n d'éliminer les pièces défec-

tueuses en sortie de la chaîne de production. Nous envisageons, dans le but d'améliorer

les gains de productivité, de trouver un moyen permettant de reconnaître le mauvais

fonctionnement des puces dès la première phase de tests sans passer par des tests com-

plémentaires, et sans attendre les tests �naux qui sont plus approfondis et très coûteux

(comme le test EWS).

Notre but est de réduire au maximum le taux de d'arrêt et éventuellement de le ramener

au taux de rejet. Autrement dit, notre travail consiste à proposer un système capable de

détecter dès la première phase de mesure les wafers anormaux en minimisant conjointe-

ment le nombre de wafers incorrectement rejetés (réellement bons, ils sont appelés dans

ce cas des fausses alarmes) et le nombre de wafers anormaux non détectés.

Pour cela, l'objectif principal de la thèse est de développer une approche de détection

multivariée basée sur l'apprentissage statistique permettant :

1. d'améliorer la qualité et l'e�cience de détection : identi�er automatiquement les

wafers anormaux en réduisant le temps d'analyse.

2. de pouvoir détecter des wafers atypiques hors population mais dans les limites de

spéci�cations.

3. de fournir les signatures multidimensionnelles de ces wafers anormaux pour pouvoir

remonter à la cause de l'anomalie.

Concernant le deuxième point, le but est d'identi�er des wafers qui ne ressemblent pas

à la population normale, mais qui ne peuvent pas être détectés avec l'approche actuelle

chez ST car les paramètres électriques sont dans les limites de spéci�cations. La détec-

tion rapide de ce type de wafers permet d'anticiper d'éventuels problèmes de rendement

rencontrés au test �nal EWS.

Notre approche multivariée utilise une méthode de classi�cation pour détecter les wafers

anormaux et une méthode de sélection de variables qui permet d'améliorer la performance

de détection en réduisant la dimension de l'espace de variables, et de sélectionner les

paramètres électriques mis en cause.
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Les approches multivariées sont plus adéquates pour le suivi d'un processus complexe.

Elles sont donc utilisées pour traiter les données multivariables dans le but d'en ex-

traire les informations pertinentes nécessaires pour prendre des décisons critiques. Leur

principal avantage, par rapport aux approches univariées, est la prise en compte de la

corrélation qui peut exister entre les variables.

En�n nous envisageons exploiter l'approche de détection multivariée que nous avons

développée dans le cadre d'une application industrielle. D'où la nécessité d'implémenter

un modèle de detection en temps réel qui détecte les wafers anormaux à partir d'une

fenêtre temporelle glissante de mesures électriques.

État de l'art

Les approches statistiques multivariées ont été utilisées avec succès pour la surveillance

des processus industriels [20, 50, 51, 97]. L'Analyse en Composantes Principales (ACP)

est une approche multivariée qui a reçu une attention particulière et a été largement

utilisée pour la détection de défauts dans les processus industriels. C'est l'une des tech-

niques linéaires de compression les plus largement utilisées pour extraire des informations

pertinentes à partir de données de grande dimension. Le but de l'ACP est de réduire la

dimension des données originelles en les projetant dans un sous-espace de dimension

réduite, minimisant la déformation du nuage de points initial. Après avoir réduit la di-

mension, la variabilité d'un processus est capturée par le suivi de la statistique T 2 de

Hotelling ou de la surveillance des résidus (Q chart)[35]. Dans le cas des processus non

linéaires, une analyse en composantes principales non-linéaire KPCA (Kernel PCA) a

été utilisée pour traiter la non-linéarité à l'aide des fonctions noyaux [56] .

L'ACP a été utilisée pour développer respectivement un modèle statique (test hors ligne)

et un modèle dynamique (détection en temps-réel) pour la détection de défauts dans les

installations de traitement biologique des eaux usées [7, 35]. Elle a été aussi utilisée

pour la détection de défauts dans un procédé de gravure en taille-douce sur une plaque

métallique (etch process) [97]. Des modèles statiques de détection basés sur l'ACP ont

aussi été construits pour la détection d'anomalies dans les processus industriels des semi-

conducteurs au niveau SPC (Statistical Process Control) [61] et au Test Paramétrique

(PT) [65].

Une méthode alternative basée sur l'apprentissage statistique est les Machines à Vecteurs

Supports à une classe (1-SVM) [76], une variante du SVM classique [92]. 1-SVM est une

des méthodes de classi�cation à une classe les plus connues pour la détection d'anomalies.

Un modèle statique de détection basé sur 1-SVM a été utilisé pour la détection de défauts
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dans un procédé de gravure en semi-conducteur, et dans un problème de simulation de

génie chimique [61]. Il a été démontré que la méthode 1-SVM est performante dans

les deux applications considérées. De plus, cette méthode est plus performante que la

technique de détection basée sur l'ACP. Même dans les cas non-linéaires, des expériences

de simulation ont montré que la technique 1-SVM détecte mieux que la méthode d'ACP

non-linéaire KPCA.

La méthode 1-SVM a été appliquée avec succès dans d'autres domaines comme la méde-

cine, la sécurité, l'informatique, etc. Nous citons quelques d'exemples d'application :

� la détection des tumeurs cérébrales par segmentation des images IRM (Imagerie par

Résonance Magnétique) [101].

� la détection des infections nosocomiales [21].

� La détection des accès anormaux à la base de registre utilisée par le système d'exploi-

tation Windows [41].

� la détection des activités anormales ou suspectes sur la cible analysée (un réseau in-

formatique pae exemple) par un système de détection d'intrusion [96].

� la classi�cation d'images de télédétection [67].

Contributions

Dans ce travail, nous considérons le problème de la détection automatique des wafers dont

le comportement électrique est atypique, un problème devenant de plus en plus important

dans l'industrie des semi-conducteurs. Nous développons un modèle de détection basé

sur l'algorithme de classi�cation à une classe 1-SVM. Comme les wafers sont décrits par

plusieurs centaines de paramètres électriques, une sélection de paramètres pertinents est

nécessaire. Pour accomplir la tâche de sélection de variables, nous avons développé une

nouvelle méthode de �ranking� de type �ltrage qui utilise le score de valeurs aberrantes

dans chaque variable pour obtenir une hiérarchie des variables. Ce score est calculé avec

le �ltre MADe, une technique robuste de détection univariée des valeurs aberrantes. Une

deuxième méthode de �ranking� pour la sélection de variables est présentée. C'est une

méthode de type wrapper basée sur un score calculé à partir de l'algorithme 1-SVM. Ce

score représente la variation du vecteur de poids dans cet algorithme. Cette méthode

est une adaptation à l'algorithme 1-SVM de la méthode SVM-RFE (Recursive Feature

Elimination with SVM), une méthode d'élimination récursive des variables basée sur un

score calculé avec les méthodes SVM.
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Le modèle de détection en temps réel exploite une technique de réapprentissage dyna-

mique optimisée consistant en une mise à jour du modèle de détection (une des méthodes

de sélection de variables et l'algorithme 1-SVM) sur un historique glissant de données.

Après avoir détecté les wafers anormaux, nous souhaitons dé�nir les signatures multi-

dimensionnelles de ces wafers pour pouvoir remonter à la cause. Pour cela nous avons

proposé une méthode permettant d'identi�er les paramètres électriques qui ont déclenché

l'anomalie. Ceci se fait en déterminant la distance normalisée par rapport à la population

normale, des paramètres retenus par la méthode de sélection de variables utilisée.

D'où nos principales contributions réalisées pendant cette thèse sont :

� Le développement des méthodes de sélection de variables appropriées à l'algorithme

1-SVM.

� Le choix optimal des paramètres de l'algorithme 1-SVM et des méthodes de sélection

de variables associées.

� Le développement d'un modèle de détection en temps réel exploitant la méthode 1-

SVM avec une méthode de sélection de variables suivant une technique de réappren-

tissage dynamique.

� L'optimisation du scénario de réapprentissage dynamique.

� La dé�nition de la signature multidimensionnelle des wafers anormaux.

A notre connaissance, notre travail est le premier qui implémente un système de détection

en temps réel dans le domaine des semi-conducteurs, et en même temps le premier qui

développe un modèle dynamique basé sur la méthode 1-SVM. Il est aussi le premier

travail qui traite la sélection de variables avec la méthode 1-SVM. En e�et, nos données

contiennent des centaines de variables, alors que les travaux existants sur la détection

de défauts dans les procédés industriels ont traité des données avec quelques dizaines de

variables.

Organisation de la thèse

Ce manuscrit est constitué d'une introduction générale, de cinq chapitres principaux et

une conclusion générale.

Chapitre 1 : Détection d'anomalies.

Nous commençons ce chapitre par une présentation générale du contexte de la dé-

tection d'anomalies introduite dans le cadre d'un problème de classi�cation à une

classe. Puis nous parlons de di�érents aspects ainsi que les di�cultés rencontrées

dans un problème de détection d'anomalies. Ensuite nous décrivons les techniques
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basées sur la classi�cation et nous nous intéressons en particulier aux méthodes de

machines à vecteurs support (SVM), considérées parmi les méthodes les plus répan-

dues en apprentissage automatique introduites initialement pour la classi�cation

binaire. Les méthodes SVM ont été appliquées pour la détection d'anomalies en

les adaptant aux techniques de classi�cation à une classe. Nous argumentons ainsi

l'utilisation de ces méthodes comme un choix principal dans notre travail consis-

tant à détecter les wafers anormaux dans le domaine des semi-conducteurs. Nous

présentons aussi des techniques basées sur la distance, notamment le clustering,

les voisins les plus proches et le T 2 de Hotelling. Nous choisissons cette dernière

technique, fréquemment utilisée en milieu industriel, comme une méthode de dé-

tection alternative aux méthodes SVM. A la �n de ce chapitre sont présentées les

techniques statistiques et leurs limitations.

Chapitre 2 : Machines à Vecteurs Supports (SVM).

Dans la première partie de ce chapitre, nous présentons en détail les machines à vec-

teurs supports dans le cadre de la classi�cation binaire. L'objectif des SVM est de

déterminer un hyperplan linéaire qui donne une séparation otpimale des données

d'apprentissage provenant de deux classes distinctes. Nous formulons alors deux

algorithmes SVM : le premier déterminant un hyperplan à marge maximale, et le

deuxième déterminant un hyperplan à marge souple (C-SVM) a�n de permettre

à quelques observations d'être mal classées dans le cas où les données ne sont pas

séparables. Ensuite nous montrons comment les méthodes SVM peuvent traiter

le problème de séparation non-linéaire grâce aux fonctions noyaux. A�n d'obtenir

un modèle peformant, nous considérons le problème de sélection des paramètres du

modèle ainsi que le choix du noyau. Ensuite, nous donnons une autre reformulation

du problème de l'hyperplan à marge souple (ν-SVM) en substituant le paramètre C

dans la fonction objective d'optimisation par un paramètre ν ayant une meilleure

interprétation en terme de vecteurs de support et des erreurs d'apprentissage. Dans

la deuxième partie de ce chapitre, nous présentons les machines à vecteurs supports

à une classe (1-SVM), la méthode de détection principale dans notre travail. La mé-

thode 1-SVM, qui est une variante de l'algorithme ν-SVM, est parmi les méthodes

de classi�cation à une classe les plus connues pour la détection d'anomalies. L'idée

de base est de créer un hyperplan séparant la majorité des données d'apprentissage

de l'origine avec une marge maximale. Des démonstrations théoriques relatives à

l'algorithme 1-SVM sont données à la �n du chapitre.

Chapitre 3 : Réduction de dimension.

Dans le cas où la dimension de l'espace des variables est élevée, une réduction

de la dimensionalité est indispensable pour améliorer les performances prédictives

des méthodes de détection utilisées. Cette réduction peut être réalisée avec une
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compression ou une sélection de variables. Les approches de type compression de

variables transforment les données d'un espace de grande dimension dans un espace

de dimension plus petite. Nous présentons dans ce cadre l'analyse en composantes

principales (ACP). Puis nous considérons les approches de sélection de variables qui

essaient de trouver un sous-ensemble optimal des variables originelles. Nous nous

intéressons aux approches appropriées aux méthodes de classi�cation à une classe,

et à l'algorithme 1-SVM en particulier. Nous décrivons tout d'abord notre méthode

de �ltrage basée sur le �ltre MADe, puis une autre méthode de type wrapper que

nous avons adaptée à l'algorithme 1-SVM de la méthode SVM-RFE.

Chapitre 4 : Quelques résultats de la détection avec 1-SVM en mode statique.

Nous commençons tout d'abord par introduire les modèles qui vont servir à la dé-

tection d'anomalies dans notre étude. Nous présentons les mesures de performance

utilisées pour évaluer ces modèles. Puis nous parlons de la phase de prétraitement

des données nécessaires pour appliquer le modèle de détection comprenant essen-

tiellement la transposition des données et le traitement des mesures hors limites

de validité. Ensuite nous donnons une description détaillée de deux jeux de don-

nées réels de STMicroelectronics exploités dans notre étude, avant de présenter

quelques résultats de détection en mode statique. L'in�uence de l'hyperparamètre

γ du noyau gaussien sur la performance de l'algorithme 1-SVM est étudiée, ainsi

que l'importance de la sélection de variables pour améliorer la pertinence de détec-

tion avec cet algorithme. En�n, nous étudions l'in�uence de la présence d'anomalies

dans l'étape d'apprentissage de 1-SVM.

Chapitre 5 : Détection en temps réel basée sur 1-SVM.

Ce dernier chapitre constitue une application industrielle des systèmes de détection

développés. Nous commençons par décrire notre système de détection en temps

réel basé sur un modèle dynamique de 1-SVM avec l'une des deux méthodes de

sélection de variables spéci�quement développées. Nous décrivons également les

deux scénarios de mise à jour de la fenêtre mobile de ce système, et nous expliquons

le choix des hyperparamètres optimaux. Ce système est ensuite appliqué aux deux

jeux de données réels de STMicroelectronics. Ce système est comparé à un système

alternatif basé sur le test de T 2 de Hotelling qui est très connu dans le domaine

de détection de défauts en industrie. En�n, les signatures multidimensionnelles des

wafers anormaux détectés par notre système sont déterminées a�n d'identi�er le

ou les paramètre(s) électrique(s) responsable(s) de l'anomalie.

Nous concluons cette thèse en exposant les points forts de nos contributions et les pers-

pectives de recherche dans ce domaine.
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Chapitre 1

Détection d'anomalies

1.1 Classi�cation à une classe

La classi�cation multiclasse est un concept très important en apprentissage automatique

et en fouille de données (data mining). En général, l'objectif des algorithmes de classi�ca-

tion multi-classe consiste à classi�er un objet inconnu parmi plusieurs classes prédé�nies.

Cependant, parfois il n'est pas nécessaire de classer les objets dans deux ou plusieurs

classes. Dans de nombreuses applications, les modèles d'apprentissage construits pour la

classi�cation visent à d�étecter des observations peu fréquentes considérées comme aty-

piques parmi une grande majorité des observations appartenant à une classe cible. Dans

ce cas, Une classi�cation binaire (à deux classes) peut conduire à une situation où l'ap-

prentissage est déséquilibré : les observations de la classe cible sont en sur-apprentissage

et les observations atypiques en sous-apprentissage. Dans de telles situations, le problème

de classi�cation à une classe (ou monoclasse) peut être considéré a�n de construire un

classi�eur approprié.

Le problème de classi�cation à une classe se caractérise donc par la présence d'une classe

cible. on suppose que seules les données de cette classe sont disponibles pour l'appren-

tissage du classi�eur, alors que l'ensemble de test comprend des exemples positifs (classe

cible) et négatifs (classes d'anomalies). Un classi�eur monoclasse cherche à décrire la dis-

tribution des exemples positifs et de traiter les exemples négatifs comme des anomalies

qui peuvent être détectées sans avoir à apprendre explicitement leur apparition.

Une classi�cation à une classe est aussi connue comme une détection des objets aber-

rants (outlier detection [8, 98]), une détection de la nouveauté (novelty detection [59])

ou une détection d'anomalies (anomaly detection [70]). La détection d'anomalies se ré-

fère au problème de trouver les observations dans les données qui ne sont pas conformes

19



Chapitre 1. Détection d'anomalies 20

au comportement normal prévu. Une anomalie est donc une observation qui est consi-

dérablement di�érente, divergente, dissemblable ou distincte, du reste des données. Le

problème est alors de dé�nir cette dissimilarité entre objets. Typiquement, celle-ci est

estimée par une fonction calculant la distance entre objets, la tâche suivante consiste à

déterminer les objets les plus éloignés de la masse. Ces objets anormaux sont souvent ap-

pelés des anomalies, des observations aberrantes (outliers), des observations discordantes,

des exceptions, des défauts, des erreurs ou des nouveautés dans di�érents domaines d'ap-

plication.

La détection d'anomalies a été largement étudiée et utilisée dans une grande variété de

domaines d'application tels que la détection des défauts dans les processus industriels

[30, 61, 80, 84] qui est notre domaine d'intérêt, la détection de la fraude à la carte bancaire

[11, 68] et dans l'assurance [11, 94], la détection d'intrusion [54], la santé publique [58, 85],

la reconnaissance des paroles [4] et de nombreux autres domaines.

L'importance de la détection d'anomalies est due au fait que les anomalies traduisent

des informations importantes (et souvent critiques) dans une grande variété de domaines

d'application. Par exemple, les anomalies dans les données de transaction de cartes de

crédit pourraient indiquer le vol de carte de crédit. De même, les anomalies dans les

données de santé publique sont largement utilisés pour détecter les tendances anormales

dans les dossiers médicaux des patients qui pourraient être des symptômes d'une nou-

velle maladie. Les anomalies dans notre étude correspopndent à des éventuels wafers

défectueux, et leur détection nous permet de gagner en terme de temps et de coût de

production.

L'application de la détection d'anomalies dans un grand nombre de domaines a donné

lieu à une grande diversité de techniques de détection d'anomalies. Un grand nombre de

ces techniques a été développé pour résoudre des problèmes ciblés se rapportant à un

domaine d'application particulier, tandis que d'autres ont été développé de façon plus

générique.

Dans la suite de ce chapitre, nous parlerons des dé�s rencontrés dans un problème de

détection d'anomalies ainsi que des di�érents aspects de ce problème. Puis nous présen-

terons les di�érentes techniques utilisées pour détecter les anomalies.

1.2 Dé�s

Comme nous avons mentionné précédemment, une anomalie peut être dé�nie comme une

observation qui n'est pas conforme à un comportement normal attendu. Une approche

directe sera de caractériser la classe cible (comportement normal) et de déclarer toute



Chapitre 1. Détection d'anomalies 21

observation dans les données n'appartenant pas à cette classe comme une anomalie. Mais

plusieurs facteurs rendent cette approche apparemment simple très di�cile :

� La dé�nition d'une région normale, comprenant tous les comportements normaux pos-

sibles, est très di�cile. Souvent, un comportement normal ne cesse d'évoluer et une

notion existante d'un comportement normal pourrait ne pas être su�samment repré-

sentatif dans l'avenir.

� La limite entre un comportement normal et un autre, anormal, n'est souvent pas

précise. Ainsi, une anomalie qui se trouve près de la frontière peut être une observation

normale et vice-versa.

� La disponibilité des étiquettes des données pour l'apprentissage et la validation est

souvent un problème majeur pour le développement d'une technique de détection des

anomalies.

En présence des dé�s énumérés ci-dessus, une formulation généralisée du problème de

la détection d'anomalies basée sur la dé�nition abstraite d'anomalies n'est pas facile à

résoudre. En fait, la plupart des techniques existantes simpli�e le problème en se concen-

trant sur une formulation spéci�que. La formulation est induite par des facteurs di�érents

tels que la nature des données, la nature des anomalies à détecter, etc. Dans plusieurs

cas, ces facteurs dépendent du domaine d'application dans lequel la technique est à ap-

pliquer. Ainsi, il y a de nombreuses formulations di�érentes du problème de la détection

d'anomalies qui ont été explorées dans diverses disciplines telles que les statistiques,

l'apprentissage automatique, la fouille de données, la théorie de l'information. Comme

l'illustre la Figure 1.1, une technique de détection des anomalies possède les éléments

suivants :

1. Nature des données, nature des anomalies, les contraintes et les hypothèses qui

constituent le problème de reformulation.

2. Le domaine d'application dans lequel la technique est à appliquer.

3. Le concept et les idées utilisées à partir d'une ou plusieurs disciplines.

Pour une meilleure compréhension de ce qui suit, nous introduisons la terminologie sui-

vante : un problème de détection d'anomalies se réfère à la tâche d'identi�er les obser-

vations anormales dans des données selon une dé�nition particulière du comportement

anormal. Les anomalies se réfèrent à ces observations anormales. Une technique de dé-

tection d'anomalies est une solution spéci�que à un problème de détection d'anomalies.

Une observation normale se réfère à une observation dans les données qui n'est pas une
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Figure 1.1 � Une conception générale d'une technique de détection d'anomalies (Source
[17]).

anomalie. Les sorties d'une technique de détection d'anomalies pourraient être des ob-

servations étiquettées (anormale ou normale). Certaines techniques attribuent également

un score à chaque observation basé sur la mesure dans laquelle l'obsrvation est considérée

comme anomalie.

1.3 Les di�érents aspects d'un problème de détection d'ano-

malies

Les données

Les éléments clés de toute technique de détection d'anomalies sont les données d'entrée

dans lesquelles les anomalies résident. Il s'agit d'une collection des instances de données

(également appelés vecteurs, points, obesrvations, entités). Chaque instance peut être

décrite par un ensemble des attributs (également désignés sous le nom de variables, ca-

ractéristiques). Les instances de données peuvent être de di�érentes types tels que binaire,

catégorique ou continue. Chaque instance peut consister en un seul attribut (univariée)

ou un ensemble d'attributs (multivariée).

Une observation importante est que les variables utilisées par toute technique de dé-

tection d'anomalies ne se réfèrent pas nécessairement aux variables observées dans les

données d'entrée. Plusieurs techniques utilisent par exemple la compression des variables

[2], ou construisent des variables plus complexes à partir des variables initiales [28]. Ces

méthodes donc consistent à travailler avec un ensemble de variables qui sont les plus
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susceptibles de discriminer entre les observations normales et les anomalies dans les don-

nées. Un dé� majeur pour toute technique de détection d'anomalies consiste à identi�er

un ensemble optimal de variables qui peuvent permettre à l'algorithme de donner les

meilleurs résultats en terme de précision ainsi que d'e�cacité de calcul [99].

Types de supervision

Outre les données d'entrée (ou observations), un algorithme de détection d'anomalies

peut aussi avoir quelques informations supplémentaires à sa disposition. La présence

des étiquettes pour les données d'apprentissage est une telle information qui a été lar-

gement utilisée (surtout par les techniques basées sur des concepts de l'apprentissage

automatique et la théorie de l'apprentissage statistique [93]). Les étiquettes de données

indiquent la classe des instances de données, par exemple, les instances normales peuvent

être étiquetées par +1 et les instances anormales par −1. Selon la disponibilité des éti-

quettes, les techniques de détection d'anomalies peuvent être divisées en trois catégories :

supervisées, semi-supervisées et non supervisées [17].

Techniques supervisées

Dans ces techniques, nous disposons des étiquettes des données d'apprentissage. L'échan-

tillon d'apprentissage est alors constitué des instances appartenant à deux classes clai-

rement identi�ées. Le but est de modéliser à la fois la normalité et l'anormalité à partir

de cet échantillon étiqueté. Les techniques supervisées de détection d'anomalies ont une

notion explicite des comportements normal et anormal. D'où des modèles précis peuvent

être construits. L'inconvénient de cette méthode est que l'obtention d'une grande quan-

tité de données d'apprentissage étiquetées avec précision est un processus lent, puisque

l'étiquetage est normalement e�ectué par un expert humain. Il peut également être très

di�cile d'obtenir un ensemble de données d'apprentissage qui couvre tous les types d'ano-

malie possibles. Un autre inconvénient des techniques supervisées est que, souvent, les

instances de données anormales sont beaucoup moins nombreuses que les cas de données

normales. Certaines techniques injectent arti�ciellement des anomalies dans un ensemble

d'observations normales pour obtenir un échantillon d'apprentissage étiqueté et appliquer

par suite des techniques supervisées de détection d'anomalies [1].

Techniques semi-supervisées

Dans ces techniques, nous disposons des étiquettes des instances normales seulement.

L'échantillon d'apprentissage est alors constitué uniquement des observations de la classe
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cible. L'approche typique de ces techniques est de modéliser la classe des instances nor-

males et d'attribuer toute observation qui ne correspond pas à ce modéle à la classe

d'anomalies. Les techniques qui modélisent les observations normales durant la phase

d'apprentissage sont très connues. Les étiquettes des observations normales sont rela-

tivement faciles à obtenir. En outre, un comportement normal est bien dé�ni et par

conséquent il est plus facile de construire un modèle caractérisant un comportement

normal à partir des données d'apprentissage.

Techniques non supervisées

La troisième catégorie de techniques ne fait aucune hypothèse quant à la disponibilité

des étiquettes des données d'apprentissage. Donc le but est de déterminer les anomalies

sans aucune connaissance a priori sur les données. Ainsi, ces techniques sont largement

les plus appliquées. Les techniques de cette catégorie font d'autres hypothèses sur les

données. Par exemple, les techniques statistiques paramétriques supposent une distribu-

tion paramétrique d'une ou de deux classes des observations. Un inconvénient majeur

des techniques non supervisées est le taux élevé de fausses alarmes, à cause du manque

de connaissances a priori sur les données, ce qui ne permet pas de dé�nir explicitement

le comportement normal et/ou le comportement anormal.

La disponibilité des étiquettes détermine le choix d'un des modes de fonctionnement

ci-dessus. Généralement, les techniques semi-supervisées et non supervisées sont plus

utilisées que les techniques supervisées supposant la disponibilité des anomalies dans les

données d'apprentissage. Une des raisons est que l'obtention des observations considé-

rées comme anomalies et couvrant tous les types possibles du comportement anormal

est di�cile. En e�et, de nouveaux types d'anomalies pourraient surgir, pour lesquels il

n'existe pas de données d'apprentissage étiquetées.

Types d'anomalies

Il est important, pour une technique de détection des anomalies de dé�nir l'anomalie

qu'on souhaite détecter par cette technique. Les anomalies peuvent être classées en trois

catégories en fonction de sa composition et sa relation avec les autres données. Les

exemples des types d'anomalies cités dans la suite sont adaptés de l'étude de Chandola

et al. [17].
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Anomalies individuelles

C'est le type le plus simple d'anomalie, et fait objet de la majorité des techniques exis-

tantes pour la détection d'anomalies. Une observation est une anomalie individuelle

lorsque une ou plusieurs valeurs de ses attributs ne ressemblent pas aux valeurs prises par

les observations considérées comme normales. Les techniques qui détectent les anomalies

individuelles analysent la relation de chaque exemple individuellement avec le reste des

exemples.

Par exemple, dans la détection de la fraude de carte de crédit, chacune des données

représente généralement une transaction par carte de crédit. Nous supposons, pour une

raison de simplicité, que les données sont dé�nies en utilisant seulement deux attributs :

heure de la journée et le montant dépensé. La Figure 1.2 montre une représentation de

données en deux dimensions. La sphère représente la région normale pour les instances

de données. Les deux transactions A et B se situent en dehors des limites de la région

normale et sont donc considérées comme des anomalies individuelles. A est une tran-

saction frauduleuse qui est une anomalie car elle se produit à un moment anormal et le

montant dépensé est anormalement élevé. B est une anomalie qui a un montant dépensé

exceptionnellement élevé, même si le temps de transaction est normal.

Anomalies contextuelles

Elles sont également appelées des anomalies conditionnelles [83]. Ces anomalies sont dues

à la survenue d'un exemple de données dans un contexte spéci�que dans les données

fournies. Elles sont aussi des anomalies individuelles mais la di�érence avec le premier

type d'anomalies est que les anomalies contextuelles pourraient ne pas être des anomalies

dans un contexte di�érent. Donc ces anomalies sont dé�nies dans un contexte. La notion

du contexte est induite par la structure dans l'ensemble des données et doit être spéci�ée

comme une partie de la reformulation du problème.

Les anomalies contextuelles satisfont deux propriétés :

1. Les données ont un caractère spatial/séquentiel. Chaque instance de données est

dé�nie avec deux ensembles d'attributs : attributs contextuels et attributs com-

portementaux. Les attributs contextuels dé�nissent la position d'une instance et

sont utilisés pour déterminer le contexte pour cette instance. Par exemple, dans

les séries chronologiques, le temps est un attribut contextuel qui détermine la po-

sition de l'instance dans la séquence entière. Les attributs comportementaux sont

les attributs non contextuels d'une instance.
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Figure 1.2 � Anomalies individuelles dans un jeu de données de transactions de carte
de crédit à deux dimensions.

2. Le comportement anormal est déterminé en utilisant les valeurs des attributs com-

portementaux dans un contexte spéci�que.

Les anomalies contextuelles ont été les plus couramment étudiées dans les données tem-

porelles [74] et les données spatiales [24]. La Figure 1.3 montre un exemple d'une série

temporelle de la température qui indique la température menseulle d'un domaine au

cours des dernières années. Une température de 2 degrés Celsius peut être normal pen-

dant l'hiver (au temps t1) à cet endroit, mais la même valeur au cours de l'été (au temps

t2) serait une anomalie.

Anomalies collectives

Ces anomalies se produisent car un sous-ensemble des données est divergent du reste des

données. Les exemples de ce type des anomalies ne sont pas des anomalies par eux-mêmes,

mais leur présence ensemble comme une sous-structure est anormale. Ce type d'anomalies

est signi�catif seulement quand les données ont un caractère spatial ou séquentiel. Ces

anomalies sont des sous-graphes ou sous-séquences anormales se produisant dans les

données.

La Figure 1.4 illustre une anomalie collective dans les données d'une série chronologique.

Le signal est une onde sinusoîdale mais il y a au milieu des fréquences anormales par

rapport au reste du signal.
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Figure 1.3 � Une anomalie contextuelle dans une série temporelle des températures
(Source [17]).

Figure 1.4 � Anomalies collectives dans une onde sinusoîdale.

Sorties d'une technique de détection d'anomalies

La nature des anomalies mentionnées ci-dessus impose une exigence sur la structure des

anomalies détectées par la technique. Une autre exigence pour toute technique de détec-

tion d'anomalies est la manière dont les anomalies sont signalées. D'une façon générale,

ces techniques tombent dans l'une des deux catégories suivantes

Etiquettes

Les techniques de cette catégorie attribuent une étiquette à chaque exemple testé. Ainsi,

elles se comportent comme un algorithme de classi�cation. L'avantage de ces techniques

est qu'elles fournissent un ensemble exacte d'anomalies pour les analystes. L'incovénient

de ces techniques est qu'elles ne di�érencient pas entre les anomalies ; le classement entre

les anomalies n'est pas fourni. Souvent, un niveau de con�ance est associé pour décider
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de la nature d'un exemple. Dans ce cas, une décision binaire n'est pas possible, ce qui

motive la nécessité des techniques de type Scores décrites ci-dessous.

Scores

Ces techniques attribuent à chaque exemple un score en fonction de la mesure dans

laquelle cet exemple est considéré comme une anomalie. Ainsi, la sortie de ces tech-

niques est une liste de classement d'anomalies. Un analyste peut choisir soit d'analyser

les anomalies les plus �anormales�, ou d'utiliser un seuil pour sélectionner un ensemble

d'anomalies. Souvent, le choix de ce seuil n'est pas simple et doit être fait arbitrairement.

Outre la dé�nition de la nature des données et des anomalies, le domaine d'application

peut également imposer certaines contraintes, telles que le niveau souhaité de précision

et l'e�cacité de calcul. Par exemple dans notre étude, il faut faire un compromis entre

la qualité de détection des wafers anormaux et le taux de fausses alarmes suivant des

contraintes dé�nies a priori. Plus précisement, nous pouvons nous décider de choisir

une technique de détection avec un taux de détection optimal en permettant au taux

de fausses alarmes d'aller jusqu'à 30%, ou d'obtenir un taux de détection moins élevé

a�n de réduire le taux de fausses alarmes à une valeur plus petite (inférieur à 15% par

exemple).

Techniques de détection d'anomalies

Le problème de détection d'anomalies peut être reformulé de di�érentes façons selon les

entrées, les exigences et les contraintes. Les techniques décrites dans les sections suivantes

traitent principalement les anomalies individuelles. Plusieurs de ces techniques peuvent

être étendues pour gérer les autres types d'anomalies.

Les techniques de détection d'anomalies peuvent être divisées en quatre catégories : les

techniques basées sur la classi�cation, les techniques basées sur la distance, les techniques

statistiques et les autres techniques.

1.4 Techniques basées sur la classi�cation

L'objectif principal de la classi�cation est de construire un modèle de classi�cation en se

servant des étiquettes des données d'apprentissage et par suite classer les observations

à venir selon leurs classes d'appartencance en utilisant le modèle appris. Le problème
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Figure 1.5 � Approche basée sur la classi�cation pour la détection d'anomalies.

de détection d'anomalies est parfois traité comme un problème de classi�cation à deux

classes :

� une classe cible dont les données sont disponibles.

� une autre classe (classe d'anomalie) dont les données sont di�ciles à obtenir.

Le principe général des méthodes proposées dans ce cadre consistent à générer arti�-

ciellement [1, 88] les données de la classe négative puis à employer des algortithmes

traditionnels d'apprentissage à deux classes. Ces techniques se situent dans le cadre des

techniques de détection d'anomalies supervisées.

D'autre part, les méthodes de classi�cation à une classe visent à caractériser une classe des

objets normaux et identi�er tous les objets qui ne ressemblent pas à cette classe. Ces tech-

niques se situent dans le cadre de techniques de détection d'anomalies semi-supervisées,

puisqu'elles exigent la connaissance de la classe normale seulement. Le problème de clas-

si�cation est modélisé comme un problème binaire où les exemples qui n'appartiennent

pas à la classe normale sont des anomalies.

La Figure 1.5 montre comment les techniques de classi�cation peuvent être utilisées pour

la détection d'anomalies. En mode supervisé, le classi�eur est construit pour séparer les

deux classes. La phase de test consiste à attribuer un exemple de test à une des deux

classes. En mode semi-supervisé, on construit une région autour des exemples normaux et

tout exemple en dehors de cette région est considéré comme une anomalie. Les avantages

et les inconvénients des techniques de classi�cation supervisée et semi-supervisée sont

présentés dans le Tableau 1.1.

Les machines à vecteurs supports (SVM) [22] sont parmi les techniques de détection

d'anomalies basées sur la classi�cation les plus connues. Le choix des SVM comme mé-

thode de détection dans notre travail sera justi�é dans la section suivante.
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Classi�cation Avantages Inconvénients

Supervisée
Besoin des étiquettes des
exemples de deux classes

Ces techniques ont
une très bonne
qualité de détection
de plusieurs types
d'anomalies déjà
vues

Ces techniques ne peuvent
pas détecter les anomalies
di�érentes de celles vues en
apprentissage

Semi-supervisée
Besoin des étiquettes des
exemples de la classe nor-
male

Le comportement
normal peut être
appris avec précision

Des nouveaux exemples
normaux inédits en appren-
tissage peuvent être recon-
nus comme des anomalies,
ce qui donne un taux de
fausses alarmes élevé

Table 1.1 � Avantages et inconvénients des techniques de classi�cation supervisée et
semi-supervisée.

1.4.1 Machines à Vecteurs Support (SVM)

Les Machines à vecteurs support (Support Vector Machines SVM) sont des algorithmes

d'apprentissage statistique utilisés principalement pour la classi�cation binaire. Un al-

gorithme SVM sépare les données appartenant à deux classes di�érentes en déterminant

un hyperplan qui donne une séparation maximale.

Les SVM ont été appliquées pour la détection d'anomalies en les adaptant aux techniques

de classi�cation à une classe (apprentissage semi-supervisé)[72]. Ainsi, une technique

intuitive serait de déterminer la plus petite hypersphère [87] contenant tous les exemples

appartenant à la classe normale. La phase de test consisterait à déterminer de quel côté

de cet hypersphère se situe l'exemple de test. Une autre variante de l'approche ci-dessus

[75], appelée machines à vecteurs support à une classe (1-SVM), consiste à déterminer

une région de volume minimum contenant la plupart des données et ceci en séparant les

observations de la classe normale de l'origine avec une marge maximale.

1.4.2 Choix des SVM pour la détection d'anomalies

Nous avons choisi 1-SVM comme une technique de classi�cation à une classe pour la

détection d'anomalies. La raison du choix d'une classi�cation à une classe est que les

données n'ont pas su�samment d'anomalies par rapport aux observations normales. En
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e�et, au test paramétrique le pourcentage des wafers anormaux n'est qu'une fraction de

pourcent.

D'autre part, l'avantage principal de 1-SVM par rapport aux autres méthodes de clas-

si�cation mono-classe est qu'il se concentre uniquement sur l'estimation de l'enveloppe

d'une région contenant les observations de la classe cible plutôt que sur l'estimation de sa

densité de probabilité. D'autres avantages menant au choix de 1-SVM pour la détection

des wafers anormaux dans le domaine des semi-conducteurs sont les suivants :

1. Les SVM fournissent un temps d'apprentissage satisfaisant et des résultats de clas-

si�cation de bonne précision [44].

2. Les SVM sont des algorithmes d'apprentissage automatique qui, avec l'utilisation

des fonctions noyaux, permettent de capturer et modéliser la non-linéarité dans les

données.

3. Ces algorithmes ne supposent aucune hypothèse sur la distribution des données (la

normalité par exemple).

4. L'existance de LIBSVM [18], une bibliothèque de programmation implémentant les

machines à vecteurs support et d'utilisation simple.

5. Les résultats obtenus avec 1-SVM ont été très prometteurs [6, 36, 102].

Le Chapitre 2 sera consacré à présenter en détails les machines à vecteurs support biclasse,

et la variante développée dans le cadre de la classi�cation à une classe pour la détection

d'anomalies.

1.5 Clustering

Le clustering est une technique d'apprentissage non-supervisée utilisée pour la classi�-

cation de données. Les données sont divisées en groupes appelés �clusters� en se basant

sur une distance ou une fonction de dissimilarité. Les données du même cluster ont un

comportement similaire. Des techniques de détection d'anomalies basées sur le clustering

ont été développées. L'idée principale est que les instances normales appartiennent aux

clusters denses. Dans ces techniques, les anomalies vér��ent une des trois hypothèses

suivantes :

1. elles n'appartiennent à aucun cluster car elles sont très peu nombreuses et di�é-

rentes des instances normales.

2. elles appartiennent à un petit cluster où ils sont très di�érentes des autres instances.

3. elles appartiennent à des clusters peu denses où elles sont loins des autres instances

situées dans le même cluster (anomalies locales).
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Nous citons par exemple les algorithmes FindOut [100] et CBLOF (Cluster Based Local

Outlier Factor) [40].

Ces techniques sont par contre coûteuses en temps de calcul avec une complexité de

l'ordre O(n2). De plus, si les données de la classe normale ne forment aucun cluster ou

forment des clusters non signi�catifs, ces techniques peuvent échouer. Finalement, dans

le cas où on dispose de données de grande dimension, les individus ont plus de chance

d'être eloignés les uns des autres au moins sur un sous-ensemble d'attributs, d'où la

distance devient une mesure inappropriée.

1.6 Plus proches voisins

Les plus proches voisins est une approche largement utilisée en apprentissage automatique

et fouille de données. Dans ces méthodes, un objet est analysé par rapport à ses voisins

les plus proches. Cette aproche a été appliquée dans la classi�cation, le clustering et la

détection d'anomalies. En détection d'anomalies, les méthodes des plus proches voisins

sont caractérisées par le fait qu'elles ont une notion explicite de proximité, dé�nie sous

la forme d'une mesure de distance ou de similarité pour toute paire des instances de

données. Alors que le clustering a une vision globale des données, les méthodes des plus

proches voisins analysent chaque objet par rapport à son voisinage local. L'idée de base

est que les observations normales ont des voisins proches, tandis que les anomalies sont

situées loin des autres observations.

Ces techniques sont divisées en deux catégories. Des méthodes sont basées sur la distance

où les anomalies sont les observations les plus distantes des autres observations. Nous

citons dans ce cadre la méthode des k plus proches voisins (k-Nearest Neighbors k-

NN) [48]. Les autres méthodes sont basées sur la densité où les anomalies sont des

observations situées dans des régions moins denses que les autres. Les algorithmes LOF

(Local Outlier Factor) [14] et COF (Connectivity Outlier Factor) [86] sont des exemples

de ces méthodes.

L'avantage des techniques des plus proches voisins est qu'elles peuvent être utilisées

dans un mode non-supervisé ou semi-supervisé. De plus, elles sont des méthodes non-

paramétriques qui ne font aucune hypothèse sur la distribution des données. Les incové-

nients sont les suivants :

� Si les observations normales n'ont pas le nombre su�sant de voisins, ces techniques

peuvent échouer.

� La complexité de calcul des distances entre toutes les observations est de l'ordre O(n2).

La plupart de ces techniques requiert le calcul de la distance aux plus proches voisins
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de chaque observation. D'où ces techniques, comme en Clustering, sont coûteuses du

point de vue computationnelle.

� En grande dimension, et comme en clustering, la distance devient aussi une mesure

inappropriée. Par suite, la notion de voisinage perd de sa signi�cation.

1.7 Techniques statistiques

Les techniques statistiques peuvent être considérées comme la détermination du modèle

probabiliste génératif (ou l'estimation de la fonction de distribution de probabilité des

données), puis de tester si une instance est engendrée par ce modèle ou non. Ces tech-

niques estiment donc un modèle statistique qui capte la distribution des données, et les

instances sont évaluées par rapport à la façon dont elles s'adaptent au modèle. Si la

probabilité qu'une instance devant être générée par ce modèle est très faible, l'instance

est considérée comme une anomalie.

Comme les techniques basées sur la classi�cation, ces techniques fonctionnent générale-

ment en deux phases : la phase d'apprentissage qui comprend l'estimation du modèle

statistique (estimation des paramètres de la distribution), et la phase de test où une

instance de test est comparée au modèle a�n de déterminer si elle est une anomalie ou

non. La technique permet d'estimer la densité de probabilité soit pour les cas normaux,

soit pour les cas anormaux (techniques semi-supervisées), en fonction des étiquettes dis-

ponibles. Une technique non supervisée détermine un modèle statistique qui correspond

à la majorité des observations, et toute observation qui se situe dans une région de faible

probabilité est déclarée comme une anomalie.

1.7.1 Techniques paramétriques vs techniques non-paramétriques

Les techniques statistiques comprennent les techniques paramétriques et les techniques

non-paramétriques. Les techniques paramétriques supposent que les données de la classe

normale (et peut-être anormale) sont générées à partir d'une distribution paramétrique

sous-jacente. Ainsi, la phase d'apprentissage consiste à estimer les paramètres de la dis-

tribution de l'échantillon donné. Ensuite, la probabilité d'occurence qu'une instance de

test soit générée à partir de cette distribution est déterminée. Si cette probabilité est très

faible, l'instance de test est considérée comme une anomalie. Concernant la distribution

sous-jacente des données, plusieurs tests statistiques supposent une distribution gaus-

sienne. Pour les données avec des variables catégorielles, une distribution multinomiale

pourrait être supposée. De même, plusieurs techniques supposent une distribution d'une
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chaîne de Markov lors de la modélisation des données séquentielles [63]. Dans des scéna-

rios réels, une seule distribution ne capture pas e�ectivement la distribution réelle des

données. D'où plusieurs techniques supposent que les données proviennent d'un mélange

de distributions [29], et par conséquent la phase d'apprentissage consiste à estimer les

paramètres du modèle de mélange (modèle de mélanges gaussiens par exemple).

Les techniques non-paramétriqus ne supposent pas la connaissance de la distribution des

données. Ces techniques utilisent les méthodes non-paramétriques pour apprendre une

distribution. Une des techniques les plus connues pour estimer une densité de probabilité

multidimensionnelle est l'estimateur à noyau de Parzen ou encore appelée méthode de

Parzen-Rozenblatt (Parzen windows) [25].

1.7.2 T 2 de Hotelling

La technique de détection basée sur la statistique de T 2 de Hotelling est une des tech-

niques statistiques paramétriques les plus utilisées. Cette statistique, proposée en 1947

par Hotelling [42], permet d'établir une carte de contrôle multivariée a�n d'analyser un

système de variables corrélées. Cette statistique permet de résumer en une seule variable

l'état de contrôle du procédé. Elle tient compte de la valeur cible des di�érentes variables,

de leurs variances respectives et également des corrélations qui les lient.

Les données sont stockées dans une matrice Xn×p, où chacune des n lignes représente un

wafer décrit par p paramètres électriques. X s'écrit comme suit :

X = [x1. . . . xi. . . . xn.]
T = [x.1 . . . x.j . . . x.p]

où xi. = [xi1 . . . xij . . . xip]
T , x.j = [x1j . . . xij . . . xnj ]

T et AT désigne le transposé d'une

matrice A.

Le principe de cette méthode est simple : une carte de contrôle est construite en se basant

sur la distance (élevée au carré) entre une observation dé�nie par les valeurs prises par

les p grandeurs observées et la valeur centrale de ces p grandeurs lorsque le processus

est en fonctionnement normal. Puis cette distance est comparée à une limite de contrôle

supérieure notée UCL. Si la statistique T 2
i de la ième observation est inférieur à UCL,

on considérera que l'observation (le wafer dans notre cas) est sous-contrôle statistique et

donc elle est normale (le wafer est sain). Par contre, si T 2
i dépasse la limite de contrôle

UCL, on dira que l'observation n'est plus sous-contrôle (le wafer est anormal).

Une hypothèse fondamentale dans la construction de l'indice T 2 de Hotelling est que les

vecteurs d'observations sont issues d'une distribution normale mutlidimensionnelle. Pour
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calculer la statistique de Hotelling d'une observation quelconque xi., deux cas peuvent

se présenter :

1. Si le vecteur (x.1, x.2, . . . , x.p)
T suit une distribution normale N(µp,Σ2), où µp =

[µ1, . . . , µp]
T représente le vecteur des espérances des p variables, et Σ2 est la ma-

trice de covariance de dimension p× p, on peut montrer que la statistique

T 2
i = (xi. − µp)T (Σ2)−1(xi. − µp) (1.1)

suit une loi Chi-deux X 2 à p degrés de liberté. La limite de contrôle supérieure

UCL est déterminée alors en se basant sur cette distribution. Plus précisement,

UCL est le quantile d'ordre 1 − α de la loi Chi-deux X 2 à p degrés de liberté tel

que

P (X 2(p) > UCL) = α

2. Si µp et Σ2 ne sont pas connus, la matrice de covariance Σ2 est estimée par la

matrice de covariance empirique Σ̂2, et le vecteur µp est estimé par le vecteur des

moyennes empiriques µ̂p = [µ̂1, . . . µ̂j . . . µ̂p]
T . L'expression de la statistique T 2 est

donnée par :

T 2
i = (xi. − µ̂p)T (Σ̂2)−1(xi. − µ̂p) (1.2)

La limite de contrôle supérieure est donnée par la distribution de Fisher comme

suit :

UCL =
p(n− 1)(n+ 1)

n(n− p)
F (p, n− p) (1.3)

où F (p, n − p) est le quantile de la distribution de Fisher à p et n − p degrés de

liberté tel que :

P (F (p, n− p) > UCL) = α

1.8 Techniques et domaines d'application

Comme nous avons vu, les techniques statistiques pour la détection d'anomalies utilisent

des méthodes de modélisation statistique existantes pour modéliser les di�érentes types

de distribution. Cependant, quand la dimension de l'espace des variables est élevée,

l'estimation des distributions devient un problème NP-di�cile. De plus, les hypothèses

paramètriques ne sont souvent pas validées pour des jeux de données réels.

D'autres techniques de détection d'anomalies sont basées sur, par exemple, la théorie de

l'information ou de la théorie spectrale [17]. Le tableau 1.2 illustre quelques domaines

d'application où di�érentes techniques de détection d'anomalies peuvent être utilisées.



Chapitre 1. Détection d'anomalies 36

Méthodes
de classi-
�cation

Méthodes
basées
sur la
distance

Méthodes
statis-
tiques

Autres
mé-
thodes

Détection d'intrusion * * * *
Détection des fraudes * * *
Détection des défauts
dans les unités méca-
niques

* * *

Détection de dom-
mages structurels

* *

Domaine de traite-
ment d'image

* * * *

Les réseaux de cap-
teurs

* * * *

Table 1.2 � Techniques et domaines d'application de la détection d'anomalies.

On peut constater que la classi�cation et les méthodes statistiques peuvent être utilisées

dans de nombreux domaines di�érents. Les informations contenues dans le Tableau 1.2

sont adaptées de [17].

Toutes les techniques de détection d'anomalies ont leurs points forts et leurs points faibles

et aucune d'entre elles ne peut être utilisée dans toutes les situations. Par exemple, les

techniques basées sur la distance ne fonctionnent pas bien avec des données en grande di-

mension, et les méthodes de classi�cation supervisée ont besoin des étiquettes de l'échan-

tillon d'apprentissage. Certains problèmes peuvent être résolus avec des techniques de

classi�cation à une classe tandis que d'autres nécessitent des méthodes de classi�cation

multi-classes.



Chapitre 2

Machines à Vecteurs Supports

(SVM)

2.1 Apprentissage statitique et SVM

Depuis quelques années, de nouvelles méthodes d'apprentissage se développent sur la base

de la Théorie de l'Apprentissage Statistique (Statistical Learning Theory) de Vapnick et

Chervonenkis [93]. L'une de ces méthodes, appelée Machine à Vecteur de Support ou

SVM (Support Vector Machine) [22], permet de réaliser des estimations en classi�cation

(à deux classes ou plus) [15] ou en régression [82].

Les machines à vecteurs supports sont une classe d'algorithmes basés sur le principe de

minimisation du �risque structurel�, décrit par la théorie de l'apprentisage statistique

de Vapnick et Chervonenkis [93]. Ce principe représente la dépendance entre l'erreur de

généralisation du modèle d'apprentissage et la famille de fonctions utilisée pour apprendre

le modèle. Une courte description de ce principe sera donnée dans la Section 2.3.1.

Les méthodes SVM sont largement répandues en apprentissage statistique et ont eu

beaucoup de succès dans quasiment tous les domaines où elles ont été appliquées. Ces

méthodes ont rapidement été adoptées pour leur capacité à travailler avec des données

de grandes dimensions, le faible nombre d'hyperparamètres, leurs garanties théoriques,

et leurs bons résultats en pratique.

Les machines à vecteurs supports exploitent les concepts relatifs à la théorie de l'ap-

prentissage statistique pour aborder d'une façon nouvelle la question du dilemme biais-

variance. Le compromis entre la capacité d'apprentissage (adéquation aux données) et

la capacité de généralisation (complexité du modèle et capacité à donner des prédictions

37
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avec une précision élevée pour les futurs observations) de ces méthodes est respective-

ment accompli en minimisant l'erreur empirique et dans le même temps, en essayant de

maximiser la distance entre les deux classes. La justi�cation intuitive de cette méthode

d'apprentissage est la suivante : si l'échantillon d'apprentissage est linéairement sépa-

rable, il semble naturel de séparer parfaitement les éléments des deux classes de telle

sorte qu'ils soient le plus loin possible de la frontière choisie.

L'idée de base des SVM est de trouver un hyperplan qui donne une séparation optimale

entre des observations appartenant à deux classes distinctes. La première version de

SVM était capable de classi�er seulement les données séparables, ce qu'on appelle SVM

à �marge maximale� (hard margin SVM). Puis une variante de cette version, appelée

SVM à �marge souple� (soft margin SVM), a été introduite pour classi�er les données

dans le cas non séparable [22].

Dans ce chapitre nous parlons tout d'abord du problème de la classi�cation linéaire.

Puis nous présentons la théorie des méthodes SVM et comment séparer linéairement les

données dans les cas séparable et non séparable. Nous expliquons ensuite comment les

méthodes SVM peuvent être utilisées pour une séparation non linéaire des données . A

la �n du chapitre, nous donnons une description détaillée de la méthode SVM à une

classe, une variante des SVM classiques, introduite dans le cadre d'une classi�cation à

une classe pour la détection d'anomalies.

2.2 Problème de la classi�cation linéaire

Le problème de la discrimination linéaire remonte aux années 1930 quand Fisher a pro-

posé la première procédure de classi�cation binaire. Entre les années 1960 et 1980 les

statistiques ont connu une révolution menée par l'apparition de la théorie de l'apprentis-

sage statistique. Et depuis 1992, les machines à vecteurs supports en sont le plus grand

succès.

2.2.1 Formalisation du problème

Le problème de classi�cation rentre dans le cadre de l'apprentissage statistique supervisé.

Le but est de prévoir la classe d'appartenance notée y d'un vecteur p-dimensionnel x en

se basant sur les mesures des variables qui l'expliquent avec pour seule information celle

contenue dans l'echantillon d'apprentissage S.

Dans le cadre la discrimination biclasse, on considère un couple (M, Y ) de variables

aléatoires à valeurs dans X ×Y, où X désigne l'espace des variables explicatives souvent
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pris dans Rp, Y = {−1,+1}. L'échantillon d'apprentissage S est ainsi une collection

de n réalisations indépendantes et identiquement distribuées (i.i.d.) du couple aléatoire

(M, Y ) dont sa distribution jointe est �xe mais inconnue. Cet ensemble est souvent noté

par :

S = {(M1, Y1), (M2, Y2), . . . , (Mn, Yn)}.

Le but est de construire une fonction h : X −→ Y telle que P
(
h(M) 6= Y

)
soit minimale.

h est appelée classi�eur. L'appartenance d'une observation mi ∈ Rp (une réalisation de

la variable aléatoire Mi) à une classe ou à une autre dépend de la valeur -1 ou 1 prise

par yi = h(mi). Dans la suite, et pour raison de conformité avec les notations introduites

dans le Chapitre 1, nous désignons par xi=xi. ∈ Rp l'observation mi.

2.2.2 Approche générale

Généralement, la classi�cation binaire est accomplie au moyen d'une fonction à valeurs

réelles f : X ⊆ Rp → R. La fonction h introduite dans le paragraphe précédent est telle

que h(x) = sgn
(
f(x)

)
, i.e. toute observation xi est a�ectée à la classe qui correspond

au signe de f(xi) : si f(xi) ≥ 0, xi. est a�ecté à la classe positive (h(xi) = +1) sinon

elle sera dans la classe négative (h(xi) = −1). En classi�cation linéaire la fonction f est

linéaire en xi et elle prend la forme générale suivante,

f(xi) = 〈w, xi〉+ b,

où (w, b) ∈ Rp×R sont les paramètres à estimer de la fonction f et l'opérateur 〈 〉 désigne
le produit scalaire usuel dans Rp. La règle de décision est donc donnée par sgn

(
f(xi)

)
.

Comme nous sommes dans un cadre de classi�cation par apprentissage, l'estimation des

paramètres de f s'e�ectue en se basant sur l'échantillon d'apprentissage S.

Géométriquement, le classi�eur h divise l'espace des variables explicatives X en deux

demi-espaces correspondant chacun à une classe. Cette séparation est réalisée par l'hy-

perplan H(w,b) dé�ni par l'équation 〈w, x〉+ b = 0 où w est un vecteur normal à l'hyper-

plan de séparation qu'on appelle vecteur de poids, tandis que la variation du paramètre

b, appelé biais, engendre une simple translation de l'hyperplan séparateur. Il est donc

nécessaire d'employer une représentation à (p+ 1) paramètres de liberté pour parcourir

l'ensemble de tous les hyperplans de Rp.

L'objectif de la discrimination linéaire est de trouver la bonne (En terme de capacité de

généralisation) fonction f dans la classe de toutes les fonctions linéaires de X dans R que

nous noterons FL. La classe de tous les hyperplans qui en decoule sera notée H. Cette
forme simple de classi�eur a été énormement utilisée dans la classi�cation binaire. Les
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termes �vecteur de poids� pour le vecteur w et �biais� pour le paramètre b sont empruntés

de la litterature des reseaux de neurones.

Plusieurs algorithmes itératifs simples motivés par l'optimisation de di�érentes fonctions

de coûts ont été introduits dans les années 1960 pour séparer linéairement des observa-

tions issues de deux populations di�érentes. Les machines à vecteurs supports cherchent

plutôt à séparer parfaitement les deux classes de telle sorte que leurs élements soient le

plus loin possible de l'hyperplan trouvé. C'est pour dé�nir cette notion de �plus loin� que

l'on introduit la �marge�.

2.2.3 Dé�nitions de base

Dans ce paragraphe nous introduisons la notion de marge pour la classe des fonctions

linéaires FL. Cette grandeur est au coeur des SVM et elle jouera un rôle important tout

au long de la suite de cette partie.

Dé�nition 2.2.1 (Marge biclasse). Soit f une fonction de FL. La marge d'une obser-

vation (xi, yi) ∈ S relativement à la fonction f est dé�nie par ∆i = yif(xi).

Cette marge peut prendre une valeur négative. Elle dépend de la fonction f et non du

classi�eur sgn
(
f(.)

)
. Si g est un multiple de f , les classi�eurs pour ces deux fonctions

sont les mêmes mais leurs marges sont di�érentes.

La valeur absolue de γi est proportionnelle à la distance euclidienne séparant le point xi

de l'hyperplan H(w,b) associé à f :

d(xi, H(w,b)) =
|〈w, xi〉+ b|
‖w‖

=
|f(xi|
‖w‖

=
|yif(xi)|
‖w‖

=
|∆i|
‖w‖

. (2.1)

Ces deux quantités ne coïncident que lorsque ‖w‖ = 1, dans ce cas nous parlons de la

marge euclidienne. En�n, l'observation xi est bien classée par f si et seulement si ∆i > 0.

Après avoir introduit la notion de la marge, nous dé�nissons ensuite :

� La distribution de marges d'un hyperplan H(w,b) par rapport à l'échantillon d'appren-

tissage S est dé�nie par :

MS(H(w,b)) = {∆i = yi(〈w, xi〉+ b); i = 1, 2, . . . , n}

� La marge de l'hyperplan H(w,b) par rapport à l'échantillon d'apprentissage S est dé�nie

par :

mS(H(w,b)) = min
1≤i≤n

MS(H(w,b))
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Si nous normalisons w, notre hyperplan aura comme équation :

H(
w
‖w‖ ,

b
‖w‖

) :

〈
w

‖w‖
, x

〉
+

b

‖w‖
= 0.

Les hyperplans H(w,b) et H( w
‖w‖ ,

b
‖w‖ )

sont les mêmes mais ils donnent lieu à des marges

di�érentes. Dans ce cas, la valeur absolue de la marge d'un point xi est égale à la

distance euclidienne entre ce point et l'hyperplan H( w
‖w‖ ,

b
‖w‖ )

(cf. équation 2.1 avec

‖w‖ = 1). Ainsi, c'est la métrique euclidienne que nous utilisons en calculant les

marges plus tard. Ce changement d'échelle va jouer un rôle important dans la formula-

tion des problèmes de maximisation de la marge, au sens euclidien, pour les machines

à vecteurs supports.

� Finalement, on dé�nit sur S la marge de l'échantillon d'apprentissagemS comme étant

le maximum de la marge euclidienne sur l'ensemble des hyperplans normalisés HN où :

HN =

{
H( w

‖w‖ ,
b
‖w‖

) : (w, b) ∈ Rp × R
}
,

et

mS = max
HN

{
min
1≤i≤n

MS
(
H( w

‖w‖ ,
b
‖w‖

))} .
L'hyperplan qui réalise ce maximum est appelé l'hyperplan à marge maximale et la va-

leur de sa marge sera positive dans le cas où S est linéairement séparable. Dans le cas

où l'échantillon d'apprentissage est non-linéairement séparable, un tel hyperplan n'existe

pas. En pratique, l'hypothèse que l'échantillon S est linéairement séparable est assez

forte. De ce fait, d'autres mesures plus �exibles ont été utilisées a�n d'autoriser quelques

violations de la marge et pour prendre en compte des propriétés plus générales de l'échan-

tillon d'apprentissage (cf. Section 2.3.3).

2.3 Machines à Vecteurs Supports biclasses

Au cours de cette section nous allons présenter les principaux problèmes et résultats

de l'apprentissage des machines à vecteurs supports dans le cadre de la classi�cation

binaire. Tous les algorithmes qui seront exposés sont motivés par la théorie des bornes

developpée par Vapnik et Chervonenkis [93]. Cette théorie propose di�érents majorants

de l'erreur de généralisation. Par exemple nous pouvons nous intéresser à l'optimisation

de la marge, la marge relaxée par l'introduction des variables d'écarts ξi ou le nombre des

vecteurs supports,. . .etc. Dans ce paragraphe nous allons mettre en lumière la formulation
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la plus utilisée qui transforme le problème de recherche de l'hyperplan séparateur en la

minimisation de la norme de son vecteur de poids w.

2.3.1 Minimisation du risque structurel

Dans les méthodes d'apprentissage, deux échantillons de données principaux sont géné-

ralement utilisés : l'échantillon d'apprentisage et l'échantillon de test. L'échantillon d'ap-

prentisage représente la part des données utilisée pour apprendre le modèle, et l'échan-

tillon de test est l'autre partie, non exploitée dans la phase d'apprentissage, utilisée pour

évaluer les performances de généralisation du modèle. La qualité de ce modèle est alors

jugée à sa capacité à réduire l'erreur de test ou de �généralisation�. Cependant, comme

le modèle n'est pas construit en utilisant l'échantillon de test, l'erreur de généralisation

ne peut pas être évaluée exactement car elle dépend de la distribution de probabilité des

données :

R[f ] =

∫
Q(x)dΩ(x, y) (2.2)

où Q est la fonction d'erreur, x est le vecteur d'entrée, et Ω est la distribution des données

(qui nous est inconnue).

La seule information dont nous disposons comme évaluation de l'erreur est l'erreur d'ap-

prentissage (ou le risque empirique) :

Remp[f ] =
1

n

n∑
i=1

Q(xi). (2.3)

Cette information n'est pas su�sante. En e�et, on peut facilement trouver un modèle

minimisant l'erreur d'apprentissage mais pour lequel l'erreur de généralisation sera très

grande. Un exemple simple est la régression de données linéaires bruitées au moyen d'une

fonction polynomiale : plus le degré du polynôme sera grand, plus l'erreur d'apprentissage

sera faible, mais plus l'erreur de généralisation sera élevée. On peut donc comprendre

que cette dernière est aussi liée à la famille de fonction utilisée comme modèle. Cette

dépendance est nommée �risque structurel�.

Dans leur Théorie de l'Apprentissage Statistique, Vapnik et Chervonenkis ont prouvé

qu'il est possible de dé�nir une majoration du risque structurel en fonction de la famille

de fonction utilisée pour le modèle. L'une de ces majorations peut être calculée en utili-

sant la dimension de Vapnik-Chervonenkis (dimension VC) qui représente le plus grand

nombre d'observations pouvant être séparées de toutes les façons possibles par une fonc-

tion appartenant à l'ensemble de fonctions linéaires FL. La borne VC est alors dé�nie

ainsi : si la dimension VC, notée υ, de la famille de fonctions utilisées est inférieure à la



Chapitre 2. Machines à Vecteurs Supports (SVM) 43

Figure 2.1 � Hyperplan linéaire pour des données séparables.

taille de l'échantillon d'apprentissage n, alors avec une probabilité d'au moins 1− ζ, on
a :

R[f ] ≤ Remp[f ] +

√
υ
(
log(2nυ ) + 1

)
− log( ζ4)

n
. (2.4)

Cette dernière équation nous donne une borne sur le risque structurel de f après calcul de

son risque empirique. L'utilité pratique de la borne donnée par l'Equation (2.4) dépend

de la taille n de l'échantillon d'apprentissage et de la dim VC de la classe de fonctions

FL. Avec une con�ance 1 − ζ donnée, le risque de l'une des fonctions qui minimisent le

risque empirique se rapproche du minimum sur FL du risque structurel lorsque la taille

de l'échantillon d'apprentissage augmente, et ce, d'autant plus vite que la dimension VC

de FL est faible. Ainsi, Vapnik considère que la taille n d'un échantillon d'apprentissage

S est faible pour estimer une fonction dans une classe de dimension υ si le rapport n/υ

est petit, soit n/υ < 20.

2.3.2 Hyperplan à �marge maximale�

L'hyperplan à marge maximale est le modèle le plus simple des machines à vecteurs

supports et il constitue le point de départ pour d'autres algorithmes plus complexes. C'est

le cas de classi�cation le plus simple où il y a seulement deux classes et cet hyperplan ne

peut être construit que si les exemples d'apprentissage sont séparables (cf. Fgure 2.1).

L'idée des SVM est de déterminer un hyperplan séparateur qui sépare les deux classes et

de maximiser la distance entre l'hyperplan séparateur et les observations les plus proches

de chaque classe.

Il est évident qu'il existe une multitude d'hyperplan valide mais la propriété remarquable

des SVM est que cet hyperplan est optimal. Nous allons chercher parmi les hyperplans

valides, celui qui passe �au milieu� des points de deux classes d'exemples. Formellement,
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Figure 2.2 � Hyperplan optimal à marge maximale pour les données séparables.

cela revient à chercher un hyperplan dont la distance minimale aux données d'apprentis-

sage est maximale. On appelle cette distance la marge entre l'hyperplan et les exemples.

L'hyperplan séparateur optimal est celui qui maximise cette marge. La Figure 2.2 illustre

les notions �hyperplan optimal� et �marge maximale� présentées dans ce paragraphe.

L'estimation des paramètres (w∗, b∗) de cet hyperplan se fait donc en résolvant le pro-

blème d'optimisation suivant :

(w∗, b∗) = argmax
(w,b)

{
min
i

[yi(〈w, xi〉+ b)] , ‖w‖ = 1
}
. (2.5)

Par conséquent ce que nous optimisons dans le problème (2.5) est la marge au sens de

la norme euclidienne vu que nous imposons la contrainte ‖w‖ = 1. Cette contrainte

n'implique aucune restriction sur l'ensemble des hyperplans H de Rp. En e�et :

H =
{
h/h(x) = sgn

(
〈w, x〉+ b

)}
(2.6)

=

{
h/h(x) = sgn

(〈
w

‖w‖
, x

〉
+

b

‖w‖

)}
= {h/h(x) = sgn (〈w, x〉 + b) ; ‖w‖ = 1} .

Dire que les deux classes de l'échantillon d'apprentissage S sont linéairement séparables

est équivalent à dire qu'il existe des paramètres (w∗, b∗) ∈ Rp × R tels que l'on a pour

tout i ∈ {1, . . . , n} :

〈w∗, xi〉 + b∗ > 0 si yi = +1

〈w∗, xi〉 + b∗ < 0 si yi = −1

ce qui est équivalent à :

yi(〈w∗, xi〉+ b∗) > 0 ∀i ∈ {1, . . . , n}.
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Les paramètres (w∗, b∗) sont normalisés par mini [yi(〈w∗, xi〉+ b∗)], pour obtenir (w̃, b̃)

tels que :

yi(〈w̃, xi〉 + b̃) > 1 ∀i ∈ {1, . . . , n}. (2.7)

Ainsi la marge de l'hyperplanH(w̃,b̃) notée ∆H est la distance entre les hyperplans d'équa-

tions 〈w̃, x〉+ b̃ = 1 et 〈w̃, x〉+ b̃ = −1 qui sont parallèles àH(w̃,b̃) et lui sont équidistants.

Soient x+ et x− deux points véri�ant respectivement les deux équations précédentes, nous

écrivons alors :
∆H = 〈 w̃

‖w̃‖ , x
+〉 − 〈 w̃

‖w̃‖ , x
−〉

= 2
‖w̃‖ .

(2.8)

Comme notre but est de maximiser cette marge, cela revient alors à minimiser la norme

du vecteur de poids ‖w̃‖. L'hyperplan à marge maximale est la solution du problème

primal d'optimisation suivant portant sur les paramètres w et b :

Minimiserw,b
1
2 ‖w‖

2 ,

sous les contraintes yi (〈w, xi〉+ b) ≥ 1, i=1, 2,. . . , n.
(2.9)

Nous nous retrouvons ainsi face à un problème d'optimisation quadratique convexe sous

contraintes linéaires.

Pour résoudre le problème (2.9), on construit le lagrangien L qui est la somme de la

fonction objective et d'une combinaison linéaire des contraintes du problème (2.9). Ce

lagrangien possède un unique point-selle pour ce genre de problèmes. Soit alors :

L(w, b, α) =
1

2
‖w‖2 −

n∑
i=1

αi [yi(〈w, xi〉+ b)− 1], (2.10)

où les αi, i = 1, . . . , n, sont des réels positifs désignant les multiplicateurs de Lagrange ou

variables duales associées aux contraintes du problème (2.9). Le coe�cient 1
2 qui apparaît

ici est rajouté pour simpli�er les calculs de dérivée qui vont suivre.

Le problème primal et sa formulation duale ont la même solution qui correspond à un

point-selle du lagrangien. Pour trouver ce point selle, on est appelé à minimiser L par

rapport aux variables primaires w et b et le maximiser par rapport aux variables duales

αi. Le point selle doit donc satisfaire les conditions nécessaires dites de stationnarité, i.e

la dérivée du Lagrangien par rapport aux variables primaires doit s'annuler :

∂L(w, b, α)

∂w
= 0 ⇐⇒ w =

n∑
i=1

αiyixi (2.11)

∂L(w, b, α)

∂b
= 0 ⇐⇒

n∑
i=1

αiyi = 0 (2.12)
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En substituant (2.11) et (2.12) dans (2.10), on élimine les variables primaires et l'on ob-

tient la forme duale du problème d'optimisation. C'est un problème quadratique consis-

tant à trouver les multiplicateurs de Lagrange αi ≥ 0 tels que :

Maximiserα W (α) =
∑n

i=1 αi −
1
2

∑n
i,j=1 yiyjαiαj〈xi, xj〉,

sous les contraintes
∑n

i=1 yiαi = 0,

αi ≥ 0, i = 1, 2, . . . , n.

(2.13)

Ce dernier problème peut être résolu en utilisant des méthodes standards de program-

mation quadratique [34]. Une fois la solution optimale α∗ = (α∗1, . . . , α
∗
n) du problème

(2.13) obtenue, le vecteur de poids de l'hyperplan à marge maximale recherché s'écrit :

w∗ =
n∑
i=1

α∗i yixi. (2.14)

Il est à noter que les conditions de Karush-Kuhn-Tucker (KKT) [53],

α∗i [yi(〈w∗, xi〉+ b∗)− 1] = 0, i = 1, 2, . . . , n (2.15)

qui expriment le fait qu'à l'optimum le produit des variables duales et des contraintes

associées doit être nul, nous donnent une information très utile sur la structure de la

solution. Ces conditions (2.15) impliquent que seuls les points qui sont sur les hyperplans

frontière 〈xi, w〉+b = ±1 jouent un rôle, car les multiplicateurs de Lagrange α∗i sont non

nuls pour ces seuls points. Ces points sont appelés vecteurs supports (SVs). L'ensemble

des indices des vecteurs supports est noté sv :

sv = {i ∈ {1, 2, . . . , n} ; α∗i 6= 0}

Compte tenu des conditions de KKT, ces vecteurs dé�nissent à eux seuls la solution du

problème (2.9). Ils constituent donc la partie active de l'échantillon d'apprentissage. Si

un vecteur non support est supprimé de l'echantillon d'apprentissage, nous retrouvons

toujours le même hyperplan séparateur,i.e. la solution du problème (2.9) reste la même.

Cette proprieté rend les machines à vecteurs supports très attractives car elles permettent

d'extraire les élements representatifs de l'échantillon d'apprentissage.

En�n, la fonction linéaire correspondante à l'hyperplan solution peut alors être écrite :

f(x) = 〈w∗, x〉 + b∗ =
∑
i∈sv

α∗i yi〈xi, x〉+ b∗, (2.16)

où b∗ est obtenue en utilisant n'importe quel vecteur support (xi, yi)i∈sv dans l'équation
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Figure 2.3 � Hyperplan optimal à marge souple pour des données non-séparables.

(2.15). On remarque que l'hyperplan solution ne requiert que le calcul des produits sca-

laires 〈x, xi〉 entre des vecteurs de l'espace d'entrée X . On remarque aussi que la solution

ne dépend plus de la dimension p de l'espace d'entrée, mais de la taille n de l'échantillon

d'apprentissage et même du nombre de vecteurs supports qui est bien inférieur à n.

La règle de classi�cation d'une nouvelle observation x basée sur l'hyperplan à marge

maximale est donnée par :

h(x) = sgn (f(x)) = sgn

(∑
i∈sv

α∗i yi〈xi, x〉+ b∗

)
. (2.17)

2.3.3 Hyperplan à �marge souple� : C-SVM

L'hypothèse que les données soient séparables conditionne beaucoup la résolution du

problème (2.9). En e�et, il su�t qu'une observation des deux classes viole la contrainte

(2.3) pour que ce problème n'ait plus de solution.

Comme indiqué précédemment, la première version de SVM (SVM à marge maximale)

peut seulement classi�er les données séparables. Alors, comment pouvons-nous générali-

ser cette version pour gérer les données non-séparables ?

Cette généralisation de l'hyperplan à marge maximale à été proposée par [22] en intro-

duisant les variables d'écart à la marge (ξi)1≤i≤n (cf. Figure 2.3). Les SVM qui sont

capables de séparer les donnés non-séparables sont appelés SVM à marge souple. Les

SVM à marge souple cherchent un hyperplan séparateur comme dans les SVM à marge

maximale, tout en permettant à quelques observations d'être mal classées. L'idée consiste

à relâcher les contraintes (2.7) dans le but d'autoriser quelques erreurs de classi�cation.

Les SVM à marge souple essayent de minimiser la somme des variables d'écart à la marge

ξi des erreurs d'apprentissage et de maximiser la marge entre les classes. Notons que la

valeur de ξi est égale à zéro si xi est classée correctement.
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Une première réalisation pour déterminer un hyperplan à marge souple est appelée C-

SVM (C-Support Vectors Machines). Cette approche utilise le paramètre de pénalisation

C qui contrôle le compromis entre la maximisation de la marge et la permission à quelques

observations d'être mal classés. Le problème (2.9) devient alors :

Minimiserw,b,ξ
1
2 ‖w‖

2 + C
∑n

i=1 ξi,

sous les contraintes yi(〈w, xi〉+ b) ≥ 1− ξi
ξi ≥ 0, i=1, 2,. . . , n.

(2.18)

Autrement dit, on cherche à maximiser la marge en s'autorisant pour chaque contrainte

une erreur positive ξi la plus petite possible. Le paramètre supplémentaire C qui apparaît

ici est un hyperparamètre �xé par l'utilisateur et doit être calibré en fonction de données.

Il permet de contrôler l'importance de l'erreur que l'on s'autorise par rapport à la taille

de la marge. Plus C est important, moins d'erreurs sont autorisées.

En suivant la même démarche du Lagrangien que précédemment, nous aboutissons à la

forme duale

Maximiserα W (α) =
∑n

i=1 αi −
1
2

∑n
i,j=1 yiyjαiαj 〈xi, xj〉,

sous les contraintes
∑n

i=1 yiαi = 0,

0 ≤ αi ≤ C, i = 1, 2, . . . , n.

(2.19)

La seule di�érence par rapport au problème (2.13) est la majoration des αi par C. On

peut montrer que si S est séparable et quand C est su�samment grand, les problèmes

(2.13) et (2.19) deviennent équivalents. Le choix de C sera discuté dans la Section 2.3.5.

2.3.4 SVM non linéaires

Comment les algorithmes de SVM ci-dessus peuvent être généralisés au cas où la fonction

de décision n'est pas une fonction linéaire de données ? Est-il possible de construire un

hyperplan linéaire qui sépare les données non linéaires ?

L'extension de SVM pour traiter les données non linéaires est basée sur une transforma-

tion de ces données dans un espace de dimension plus grande ( un espace de Hilbert de

dimension �nie ou in�nie). Puis une classi�cation linéaire est e�ectuée dans cet espace

transformé (cf. Figure 2.4).

En remarquant que dans la résolution des problèmes (2.13) et (2.19), seuls les produits

scalaires 〈xi, xj〉 sont nécessaires, les SVM peuvent être étendues pour traiter le cas

non-linéaire. L'astuce qui fait la force des SVM repose sur les noyaux autoreproduisants
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Figure 2.4 � Séparation non linéaire des données.

[5]. L'idée de Boser et al. [12] est de transformer les observations xi dans un espace de

Hilbert H de dimension plus élevé, à l'aide d'une fonction non-linéaire φ : Rp −→ H.

L'espace H ainsi obtenu est appelé espace de redescription ou aussi espace transformé.

Tout ce qu'il nous reste à faire c'est de résoudre le problème (2.13) ou (2.19) dans l'espace

H, en remplacant 〈xi, xj〉 par 〈φ(xi), φ(xj)〉. Cependant, il peut être parfois possible de
ne pas avoir à e�ectuer explicitement ces produits scalaires dans H grâce à l'utilisation

de fonctions noyaux. C'est ce qu'on appelle l'astuce de noyaux (kernel trick [3]). En e�et,

si on peut trouver une �fonction noyau� K telle que

K(xi, xj) = 〈φ(xi), φ(xj)〉, (2.20)

nous aurons alors seulement besoin d'utiliser K dans l'algorithme d'apprentissage, sans

jamais avoir besoin de connaître explicitement φ. Un exemple de cette fonction est le

noyau gaussien

K(x, z) = exp
(
− γ ‖x− z‖2

)
. (2.21)

Nous donnons maintenant un exemple simple pour un noyau, pour lequel nous pouvons

construire la fonction φ. Supposons que les données sont des vecteurs dans R2, et que

nous choisissons K(xi, xj) = (〈xi, xj〉)2. Il est facile de trouver un espace H, et une

fonction φ de R2 dans H, telle que (〈x, y〉)2 = 〈φ(x), φ(y)〉 : nous choisissons H = R3 et

φ(x) =


x21√

2x1x2

x22.


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Notons que ni la fonction φ ni l'espace H sont uniques pour un noyau donné. Nous

pourrions également trouver une deuxième fonction φ : R2 −→ R3

φ(x) =
1

2


x21 − x22
2x1x2

x21 + x22


ou aussi une troixième fonction φ : R2 −→ R4

φ(x) =


x21

x1x2

x1x2

x22.


telles que (〈x, y〉)2 = 〈φ(x), φ(y)〉.

Pour quels noyaux existe-t-il une paire {H, φ}, avec les propriétés décrites ci-dessus ?

Jusqu'à présent, le seul critère que nous avons énoncé pour savoir si une fonction sy-

métrique K : X × X → R est une fonction noyau était celui d'exhiber un espace de

redescritpion H et de véri�er que K correspond à un produit scalaire dans H. Nous
cherchons maintenant à caractériser les fonctions noyaux sans passer explicitement par

l'espace de redescription.

Etant donné l'ensemble d'apprentissage S, nous pouvons calculer la matrice de Gram

(ou matrice noyau) G dont les éléments sont : Gij = K(xi, xj)1≤i,j≤n. Une matrice réelle

G de dimension n×n véri�ant la forme quadratique Q(v) = vTGv ≥ 0 pour tout vecteur

v ∈ Rn est dite semi-dé�nie positive. Si Q(v) = 0 seulement quand v = 0, alors la

matrice G est dite dé�nie positive. De manière équivalente, une matrice symétrique est

semi-dé�nie positive si et seulement si toutes ses valeurs propres sont positives.

Dans la pratique on choisit un noyau K qui satisfait la condition de Mercer ([23, 64])

a�n de garantir la décomposition (2.20). Une fonction K : X × X → R est une fonction

noyau si et seulement si elle est symétrique et semi-dé�nie positive. Ceci est équivaut à

dire que, pour toute fonction u telle que∫
u(x)2dx (2.22)

est �ni (i.e. u ∈ L2(X ), on a ∫
K(x, y)u(x)u(y)dx dy ≥ 0. (2.23)
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De manière équivalente, une fonction noyau dé�nissant une matrice de Gram semi-dé�nie

positive pour tout ensemble d'apprentissage S est semi-dé�nie postive.

Notons que dans certains cas, il est di�cile de véri�er si les conditions de Mercer sont

satisfaites, puisque la relation (2.23) doit être valable pour toute fonction u satisfaisante

l'équation (2.22).

Les premiers noyaux basiques utilisés dans les problèmes de reconnaissance de forme, et

en SVM notamment, ont été les suivants :

� linéaire : K(x, z) = 〈x, z〉.
� polynomial : K(x, z) =

(
γ〈x, z〉+ τ

)η
, γ > 0.

� gaussien : k(K, z) = exp
(
− γ ‖x− z‖2

)
, γ > 0.

� sigmoîde : K(x, z) = tanh
(
γ〈x, z〉+ τ

)
.

Pour plus de détails sur les méthodes de noyaux, le lecteur pourrait se référer à [79]

2.3.5 Choix du noyau et des hyperparamètres

L'implémentation d'un algorithme de SVM biclasse exige les spéci�cations suivantes :

la fonction noyau, les hyperparamètres du noyau et le paramètre C dans C-SVM ou ν

dans ν-SVM. Le réglage de ces paramètres est une étape cruciale pour obtenir un modèle

performant. Il n'existe pas une méthode automatique pour spéci�er les paramètres du

modèle construit.

Choix du noyau

Le fait d'utiliser di�érents types de noyau avec di�érents réglages de leurs hyperpara-

mètres aboutit à des con�gurations géométriques qui correspondent à une variété d'esti-

mateurs non linéaires dans l'espace de redescription.

En général, le noyau gaussien est un choix raisonnable. Empiriquement, il fournit les

meilleures performances en classi�cation [62]. Contrairement au noyau linéaire, ce noyau

peut gérer la séparation des données non linéaires. En outre, le noyau linéaire est un cas

particulier du noyau gaussien, puisque le noyau linéaire avec un paramètre de pénali-

sation C̃ a la même performance qu'un noyau gaussien avec certains paramètres (C, γ)

[47]. De plus, le noyau sigmoîde se comporte comme le noyau gaussien pour certains

hyperparamètres [57].
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Une deuxième raison justi�ant le choix du noyau gaussien est le nombre des hyperpara-

mètres à régler. Ce noyau présente l'avantage de n'avoir qu'un hyperparamètre à �xer (γ)

contre trois pour les noyaux polynomiaux (γ, τ et η) et deux pour les noyaux sigmoîdes

(γ et τ).

En�n, le noyau gaussien a moins de di�cultés numériques. Un point clé pour ces noyaux

est que 0 < K(x, z) ≤ 1 contrairement aux noyaux polynomiaux avec lequels les valeurs

peuvent aller à l'in�ni
(
γ〈x, z〉+ τ > 1

)
ou zéro

(
γ〈x, z〉+ τ < 1

)
quand le degré η est

large. Par ailleurs, il faut noter que le noyau sigmoîde n'est pas valide (i.e. le produit

scalaire de deux vecteurs) sous certains paramètres [93].

Vu les multiples avantages du noyau gaussien par rapport aux autres noyaux, nous avons

décidé de choisir ce noyau lors d'une construction d'un modèle SVM. L'hyperparamètre

γ contrôle la largeur du noyau gaussien. Selon Vapnick [92], le choix de la valeur de γ

dépend de la dimension de l'espace de description auquel les SVM sont appliqués, et

celui-ci préconise de choisir γ = 1
p .

Choix de C et γ

Pour le choix de C, comme pour le choix de γ, on ne sait pas à l'avance quels sont les

meilleurs réglages pour un problème donné. Par conséquent une sorte de sélection de

modèle (choix de paramètres) doit être e�ectuée. L'objectif est d'identi�er les valeurs

idéales de (C, γ) de sorte que le classi�eur donne la meilleure prédiction des futurs ob-

servations. Une stratégie commune consiste à séparer l'échantillon dont on dispose en

deux parties : un ensemble d'apprentissage pour construire le modèle et un ensemble de

validation a�n d'obtenir le meilleur réglage de paramètres. La qualité de prédiction obte-

nue sur l'ensemble de validation re�ète plus précisement la performance de classi�cation

sur un ensemble indépendant (i.e. qui n'a pas servi dans la phase d'apprentissage). En

pratique, les jeux de données sont rarement su�samment grands pour que l'erreur de

test calculée sur l'ensemble de validation estime correctement l'erreur de prédiction du

modèle. Une version améliorée de cette procédure est la validation croisée, qui est une

alternative très utilisée pour gérer la parcimonie des données.

Dans une validation croisée, nous divisons tout d'abord l'échantillon d'apprentissage en V

sous-ensembles de même taille. Séquentiellement, un sous-ensemble est testé en utilisant

le classi�eur appris sur les V − 1 sous-ensembles restants. Ainsi, chaque instance de

données a été testé une seule fois, par suite la précision de la validation croisée est le

pourcentage des données qui sont correctement classées.

Nous expliquons maintenant comment trouver les meilleurs paramètres C et γ à utiliser.

La méthode consiste à mettre en place une �grille de recherche� (grid-search) pour C et
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γ qui va utiliser la validation croisée ou l'ensemble de validation. Di�érentes paires de

(C, γ) sont constituées, et celle avec la meilleure précision obtenue à partir d'une de deux

procédures est retenue. Il a été constaté dans [43] qu'essayer des séquences de croissances

exponentielles de C et γ est une méthode pratique pour identi�er les bons paramètres

(par exemple, C = 2−5, 2−3, . . . , 215, γ = 2−15, 2−13, . . . , 23). Après avoir identi�é une

meilleure région sur la grille, une recherche de grille plus �ne sur cette région peut

être e�ectuée pour trouver un couple (C, γ) qui donne une meilleure précision avec la

procédure utilisée. Après avoir trouvé le meilleur couple, nous apprenons le classi�eur

�nal à partir de l'échantillon d'apprentissage tout entier.

2.3.6 Hyperplan à �marge souple� : ν-SVM

Dans plusieurs méthodes d'apprentissage statistique, un reparamétrage de l'algorithme

original est utile a�n de simpli�er son utilisation. Dans l'algorithme C-SVM, le seul

paramètre dont on dispose est la constante de régularisation C. Rappelons que C est

une constante positive contrôlant le compromis entre la maximisation de la marge et la

permission à quelques données d'apprentissage d'être mal classées. Comme nous avons

vu dans la Section 2.3.5 (choix de C et γ), il n'est pas facile de sélectionner une valeur

appropriée pour C. Pour le substituer par un paramètre avec une interprétation inté-

ressante, une autre réalisation pour déterminer un hyperplan optimal à marge souple,

appelée ν-SVM, a été introduite par Schölkopf et al. [78].

Le nouveau paramètre introduit ν ∈ [0, 1] permet de contrôler le nombre de vecteurs

supports et le nombre des erreurs de la marge (observations mal classés ou situés dans la

marge). Plus précisement, Schölkopf et al. ont démontré que ν est une borne inférieure

de la fraction de vecteurs supports, et une borne supérieure de la fraction des erreurs de

la marge (2.38).

Comme un problème primal pour cette approche, nous considérons

Minimiserw,b,ρ,ξ
1
2 ‖w‖

2 − νρ+ 1
n

∑n
i=1 ξi,

sous les contraintes yi(〈w, φ(xi)〉+ b) ≥ ρ− ξi
ξi ≥ 0, i=1, 2,. . . , n, ρ ≥ 0.

(2.24)

Notons que la constante C n'apparait plus dans cette formulation. Elle a été substi-

tuée par un paramètre ν, et également par une variable supplémentaire ρ à optimiser.

Pour comprendre le rôle de ρ, notons que pour ξ = 0, la contrainte dans (2.24) indique

simplement que les deux classes sont séparées par la marge 2ρ/ ‖w‖.
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Pour former le dual de l'algorithme ν-SVM, nous considérons le lagrangien

L(w, ξ, b, ρ, α, β, δ) = 1
2 ‖w‖

2 − νρ+ 1
n

∑n
i=1 ξi

−
∑n

i=1

(
αi(yi(〈w, φ(xi)〉+ b)− ρ+ ξi) + βiξi

)
−δρ,

(2.25)

en utilisant les multiplicateurs αi, βi, δ ≥ 0. Cette fonction doit être minimisée par

rapport aux variables primales w, ξ, b, ρ, et maximisée par rapport aux variables duales

α, β, δ. Nous calculons les dérivées partielles correspondantes, et en les posant égales à

0 nous obtenons les conditions suivantes :

∂L(w, ξ, b, ρ, α, β, δ)

∂w
= 0 ⇐⇒ w =

n∑
i=1

αiyiφ(xi), (2.26)

∂L(w, ξ, b, ρ, α, β, δ)

∂ξ
= 0 ⇐⇒ αi + βi =

1

n
, (2.27)

∂L(w, ξ, b, ρ, α, β, δ)

∂b
= 0 ⇐⇒

n∑
i=1

αiyi = 0, (2.28)

∂L(w, ξ, b, ρ, α, β, δ)

∂ρ
= 0 ⇐⇒

n∑
i=1

αi − δ = ν. (2.29)

En substituant (2.26) et (2.27) dans L, sachant que αi, βi, δ ≥ 0, cela nous amène au

problème d'optimisation quadratique suivant :

Maximiserα W (α) = −1
2

∑n
i,j=1 yiyjαiαj 〈φ(xi), φ(xj)〉 (2.30)

sous les contraintes 0 ≤ αi ≤ 1
n , (2.31)∑n

i=1 yiαi = 0, (2.32)∑n
i=1 αi ≥ ν. (2.33)

La fonction de décision résultante est la suivante :

h(x) = sgn

(∑
i∈sv

yiαiK(xi, x) + b

)
. (2.34)

Comparée avec le dual de C-SVM (2.19), il y a deux di�érences. Premièrement, il existe

une contrainte additionnelle (2.33). Deuxièment, le terme linéaire
∑n

i=1 αi n'apparaît

plus dans la fonction objective (2.30). Ceci a une conséquence intéressante : la fonction

objective dans (2.30) est quadratique homogène en α. Il est facile de véri�er que la même

fonction de décision est obtenue si nous commençons avec la fonction primale

1

2
‖w‖2 + C

(
− νρ+

1

n

n∑
i=1

ξi
)
, (2.35)
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(i.e., si nous utilisons C). La seule di�érence étant que les contraintes (2.31) et (2.33)

auraient un facteur supplémentaire C sur le côté droit. Dans ce cas, en raison de l'homo-

génité, la solution du dual serait normalisée par C, mais il est facile de voir que la fonction

de décision correspondante ne sera pas changée. Nous pouvons donc poser C = 1.

Pour déterminer b et ρ, nous considérons deux ensembles S±, de même taille s > 0,

contenant des vecteurs de suport xi avec 0 < αi < 1 et yi = ±1 respectivement. Puis

suite aux conditions KKT, la contrainte dans (2.24) devient une égalité avec ξi = 0. Par

conséquent,

b = − 1

2s

∑
x∈S+∪S−

∑
j

αjyjK(x, xj), (2.36)

ρ =
1

2s

( ∑
x∈S+

∑
j

αjyjK(x, xj)−
∑
x∈S−

∑
jαjyj 〈x, xj〉

)
. (2.37)

Nous présentons maintenant la Proposition (2.3.1) dans laquelle nous donnons la dé-

monstration établie par Schölkopf et al. de leur interprétation du paramètre ν. En e�et,

dé�nissons tout d'abord le terme erreurs de la marge. Les erreurs de la marge repré-

sentent toutes les observations d'apprentissage qui sont soit mal classées ou situées dans

la marge(i.e. ξi > 0). La fraction des erreurs de la marge est alors

Rρemp[f ] :=
1

n
|i : yi.f(xi) < ρ|, (2.38)

où f est utilisé pour dénoter l'argument du signe de la fonction décisive (2.34), tel que

h = sign ◦ f .

Proposition 2.3.1. [78][propriétés de ν]

(i) ν est une borne supérieure de la fraction des erreurs de la marge.

(ii) ν est une borne inférieure de la fraction des vecteurs supports.

Preuve. (i). D'après les conditions KKT, ρ > 0 implique δ = 0. Par suite l'inégalité

(2.33) devient une égalité (cf. Equation 2.29). Ainsi, au plus une fraction ν des obser-

vations justi�ent αi = 1
n . (ii). Les vecteurs supports (SVs) pour lesquels les αi sont

strictement positifs peuvent chacun contribuer au plus avec 1
n (cf. Equation 2.31) au

terme à gauche de l'inéquation (2.33). Donc il faut au moins νn de ces vecteurs pour

satisfaire cette inéquation.
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2.4 Machines à Vecteurs Supports à une classe (1-SVM)

Dans le contexte de la détection d'anomalies, le problème de déséquilibre de classes

observé dans de nombreuses applications réelles est aussi présent dans le domaine des

semi-conducteurs. En e�et, la part des wafers anormaux ne constituent qu'une fraction

de pourcent de l'ensemble de wafers. Dans ce cas, une classi�cation à deux classes peut

conduire à une situation où l'apprentissage est déséquilibré : les données normales peuvent

être en sur-apprentissage et les données anormales en sous-apprentissage.

A�n de résoudre ce genre de problème, les méthodes de classi�cation à une classe peuvent

être utilisées. Elles possèdent la particularité de caractériser une classe cible plutôt que

de discriminer deux classes. Dans un sens probabiliste, une classi�cation à une classe

est équivalente à déterminer si une observation de test est produite par la distribution

sous-jacente qui correspond à l'échantillon d'apprentissage des données normales.

Une des méthodes de classi�cation à une classe les plus connues pour la détection d'ano-

malies est les machines à vecteurs supports à une classe [76]. Cette méthode, notée 1-SVM

(One Class Support Vectors Machines), est une extension des SVM biclasses permettant

l'apprentissage d'un classi�eur en absence des observations de la classe négative (les ano-

malies) dans les données. L'approche 1-SVM est implémentée dans La librairie LIBSVM,

disponible dans les logiciels R et MATLAB.

La principale di�érence entre 1-SVM et le SVM classique est que, pour construire un

classi�eur, le premier ne nécessite que les données normales dans la phase d'apprentissage

tandis que le deuxième nécessite des données issues des classes normale et anormale .

Etant donné un échantillon d'apprentissage constitué des observations normales, 1-SVM

détermine le support ou la région contenant la plupart des données d'apprentissage. Ceci

constitue la phase d'apprentissage. Si un point de test se situe dans cette région, il est

classée comme normal, sinon il est considéré comme anormal.

1-SVM estime une région R dans X de volume minimum contenant au moins (1 − ν)n

données, ν déterminant asymptotiquement la proportion de données hors volume. Comme

dans le cas du SVM biclasse, la frontière de R est recherchée dans un espace transformé

H de plus grande dimension. Puis un classifeur linéaire est construit dans le nouvel

espace. Ceci est équivalent à construire un classifeur non linéaire dans l'espace d'entrée

des données X .

Dans 1-SVM, une hypothèse inhérente est que l'origine de l'espace de redescription ap-

partient à la classe d'anomalies. Par conséquent l'objectif est de faire la séparation entre

l'origine et les observations de la classe cible dans un espace de dimension plus grande
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avec une marge maximale. Pour résumer, 1-SVM développe un hyperplan dans un espace

transformé qui retourne une valeur positive pour les observations normales et une valeur

négative pour les anomalies, en se basant sur la maximisation de la distance perpendi-

culaire de cet hyperplan à l'origine.

2.4.1 Algorithmes

Nous considérons toujours l'échantillon d'apprentissage S et supposons que les observa-

tions sont distribuées suivant une distribution de probabilité sous-jacente inconnue Ω.

Nous souhaitons savoir si une nouvelle observation est issue de Ω ou non. Cela peut être

fait en déterminant une région R dans l'espace d'entrées X telle que la probabilité qu'une

nouvelle observation générée suivant Ω et n'appartenant pas à R soit majorée par une

valeur ν ∈ (0, 1) spéci�ée a priori. Ce problème est résolu en estimant une fonction de

décision f qui est positive sur R et négative ailleurs.

Une fonction non linéaire φ : X → H transforme les observations d'apprentissage de

l'espace d'entrées X dans un espace de Hilbert H. Dans ce nouvel espace, les données

d'apprentissage suivent une distribution sous-jacente Ω′ et le problème sera de déterminer

une région R′ de H qui contient la majorité des observations de cette distribution. Un

hyperplan H(w, ρ) est construit dans l'espace transformé et est dé�ni par

H(w, ρ) = 〈w, φ(x)〉 − ρ (2.39)

où w est le vecteur de poids qui est un vecteur normal à H, ρ est le biais et ρ/ ‖w‖ spéci�e
la distance de l'hyperplan à l'origine (la marge). Notons que nous avons remplacé le biais

b des hyperplans considérés dans les SVM biclasses par le biais ρ a�n de permettre la

comparaison avec ν-SVM. En e�et, la marge dans 1-SVM est égale à ρ/ ‖w‖, alors que
celle de ν-SVM est égale à 2ρ/ ‖w‖. Le biais ρ, ajouté dans la fonction objective (2.41),

permet d'obtenir également comme pour le paramètre supplémentaire ρ introduit dans

ν-SVM les mêmes propriétés de ν (Proposition 2.3.1).

Pour obtenir une séparation maximale entre l'hyperplan et l'origine, on cherche à maxi-

miser la marge donc à minimiser ‖w‖. Ceci revient à résoudre le problème d'optimisation

quadratique suivant

Minimiserw,ρ
1
2 ‖w‖

2

sous les contraintes 〈w, φ(xi)〉 ≥ ρ, i = 1, . . . , n.
(2.40)

Cependant, il n'est pas toujours possible de séparer parfaitement les observations de la

classe cible de l'origine dans l'espace de redescription. Pour de tels cas, l'algorithme résol-

vant le problème d'optimisation (2.40) ne converge pas vers une solution �nie. Pour tenir
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compte de ce problème, on dé�nit un paramètre ν ∈ (0, 1) et des variables d'écart ξi pour

relâcher les contraintes. ν correspond à la fraction maximale des erreurs d'apprentissage,

i.e. les observations situées entre l'hyperplan et l'origine. Les variables ξi sont utilisées

pour pénaliser la fonction objective en permettant à certaines observations d'être mal

classées. Le problème d'optimisation modi�é peut être écrit :

Minimiserw,ξi,ρ
1
2 ‖w‖

2 + 1
νn

∑n
i=1 ξi − ρ

sous les contraintes 〈w, φ(xi)〉 ≥ ρ− ξi, ξi ≥ 0, i = 1, . . . , n.
(2.41)

D'où si w et ρ sont solutions du problème (2.41), nous nous attendons alors à ce que la

fonction de décision

h(x) = sgn (〈w.φ(x)〉 − ρ) (2.42)

soit positive pour la plupart des données d'apprentissage xi alors que le terme ‖w‖ reste
petit. Le compromis entre ces deux objectifs est controlé par ν. Plus précisement, ν

contrôle le compromis entre maximiser la distance à l'origine et contenir la plupart des

observations dans la région construite par l'hyperplan. Scholkopf et al. [75] ont démontré

que ν est une borne supérieure de la fraction des erreurs d'apprentissage (données d'ap-

prentissage situées entre l'hyperplan et l'origine), et une borne inférieure de la fraction

des vecteurs supports (cf. Proposition 2.4.3 de la section 2.4.3).

La Figure 2.5 représente un schéma 2D d'un classi�eur 1-SVM. Le noyau gaussien trans-

forme les données sur une hypersphère, et 1-SVM vise à trouver un hyperplan dans cet

espace transformé séparant la majorité des données de l'origine avec une marge maximale,

tout en permettant à quelques observations d'être mal classées.

En utilisant les multiplicateurs de Lagrange αi, βi ≥ 0, nous introduisons le Lagrangien

(2.43), puis les dérivées partielles du Lagrangien par rapport aux variables primaires

w, ξ, b sont annulées (2.44�2.46).

L(w, ξ, ρ, α, β) = 1
2 ||w||

2 + 1
νl

∑
i ξi − ρ

−
∑

i αi (〈w, φ(xi〉 − ρ+ ξi)

−
∑

i βiξi,

(2.43)

∂L(w, ξ, ρ, α, β)

∂w
= 0 ⇐⇒ w =

n∑
i=1

αiφ(xi), (2.44)

∂L(w, ξ, ρ, α, β)

∂ξ
= 0 ⇐⇒ αi =

1

νn
− βi ≤

1

νn
(2.45)

∂L(w, ξ, ρ, α, β)

∂ρ
= 0 ⇐⇒

n∑
i=1

αi = 1. (2.46)
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En substituant (2.44) et (2.45) dans (2.43), et en utilisant un noyau approprié (2.20), la

solution du problème est équivalente à la solution de la forme duale

Minimiserα
1
2

∑
ij αiαjK(xi, xj)

sous les contraintes 0 ≤ αi ≤ 1
νn∑

i αi = 1.

(2.47)

Dans (2.44), toutes les observations xi telles que αi > 0 sont appelées vecteurs supports.

En e�et parmi les données d'apprentissage, les vecteurs supports determinent uniquement

l'hyperplan séparateur. En utilisant (2.20) et (2.44) la fonction de décision (2.42) devient

h(x) = sgn

(∑
i∈sv

αiK(xi, x)− ρ

)
. (2.48)

On peut montrer que, à l'otpimum, les deux contraintes d'inégalité dans (2.41) deviennent

des égalités si αi et βi sont non nuls, i.e. si 0 < αi <
1
νn . Par suite, nous pouvons déter-

miner ρ en exploitant que, pour de tels αi, les observations xi correspondants satisfont

ρ = 〈w, φ(xi)〉 =
∑
j

αiK(xj , xi). (2.49)

Les propriétés de base du SVM à une classe ont été présentées et démontrées dans

[75]. Le résultat le plus important est l'interprétation de ν à la fois comme la fraction

asymptotique des outliers, et la fraction des vecteurs support retournés par l'algorithme.

Comme nous l'avons vu, les SVM à une classe et les SVM biclasses sont très similaires.

Les SVM biclasses déterminent un hyperplan de séparation en maximisant la distance

entre les deux classes, alors que les SVM à une classe séparent les données d'apprentissage

de l'origine avec une marge maximale.

2.4.2 Choix du noyau et des hyperparamètres

Pour les raisons citées dans la Section 2.3.5, nous avons décidé de choisir le noyau gaus-

sien pour apprendre le modèle 1-SVM. Par conséquent, deux hyperparamètres de ce

modèle sont à régler : ν et γ. Dans la Section 4.3 du Chapitre 4, nous montrons que

l'algorithme 1-SVM n'est pas sensible au hyperparamètre γ du noyau gaussien. Ainsi

une petite plage de valeurs est su�sante pour déterminer une valeur optimale pour cet

hyperparamètre. La méthode basée sur la �grille de recherche� (grid-search) pour C et γ

introduite dans la Section 2.3.5 peut être également appliquée pour choisir la meilleure
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Figure 2.5 � Schéma d'un classi�eur 1-SVM dans R2.

paire (ν, γ). Di�érentes paires de (ν, γ) sont constituées, et celle avec la meilleure pré-

cision obtenue à partir de la procédure basée sur la validation croisée ou la procédure

basée sur l'ensemble de validation est retenue. On peut par exemple prendre γ = 1/mp

avec m ∈ {1, 2, 3, 4, 5}, et ν ∈ {0.01, 0.02, . . . , 0.15}.

2.4.3 Résultats théoriques

Dans cette section (extraite des résultats théoriques de [76]), l'algorithme 1-SVM est

analysé théoriquement. On commence par l'unicité de l'hyperplan (Proposition 2.4.1).

Ensuite une liaison avec la classi�cation binaire sera établie (Proposition 2.4.2). En�n, on

démontre que le paramètre ν caractérise les fractions des vecteurs support et des erreurs

de la marge (Proposition 2.4.3).

Dé�nition 2.4.1. Un jeu de données

x1, . . . , xn (2.50)

est dit séparable de l'origine s'il existe un vecteur w ∈ H tel que 〈w, φ(xi)〉 > 0 pour

i ∈ {1, . . . , n}.

Si on utilise un noyau gaussien, alors n'importe quel jeu de données est séparable après

avoir transformé les données dans l'espace de Hilbert H. En e�et, notons tout d'abord

que K(xi, xj) > 0 pour tout i, j, donc le produit scalaire entre toutes les données dans

l'espace transformé est positif, ce qui implique que toutes les données se trouvent dans

le même orthant. De plus, comme K(xi, xi) = 1 pour tout i, les données ont toutes une

norme égale à 1. D'où elles sont séparables de l'origine.
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Proposition 2.4.1. [76] [hyperplan support]

Si le jeu de données (2.50) est séparable, alors il existe un unique hyperlan support avec

les propriétés suivantes : (i) il sépare toutes les observations de l'origine, et (ii) sa distance

à l'origine est maximale parmi tous ces hyperplans. Pour tout ρ > 0, il est dé�ni par

min
w∈H

1

2
‖w‖2 sous 〈w, φ(xi)〉 ≥ ρ, i ∈ {1, . . . , n} (2.51)

Preuve. Pour une raison de séparabilité, l'enveloppe convexe des données ne contient pas

l'origine. L'existence et l'unicité de l'hyperplan résulte alors du théorème de l'hyperplan

support (e.g. [9]). En outre, la séparabilité implique qu'il existe e�ectivement un ρ > 0

et w ∈ H tels que 〈w, φ(xi)〉 ≥ ρ pour i ∈ {1, . . . , n}. La distance de l'hyperplan

{z ∈ H : 〈w, z〉 = ρ} à l'origine est égale à ρ/ ‖w‖. Par conséquent l'hyperplan optimal

est obtenu en minimisant ‖w‖ sous ces contraintes, i.e. par la solution de (2.51).

Le résultat suivant illustre la liaison entre la classi�cation à une classe et la classi�cation

binaire.

Proposition 2.4.2. [76][liaison avec reconnaissance de formes ]

(i) Supposons que (w, ρ) soient les paramètres de l'hyperplan support des données

(2.50). Alors (w, 0) paramétrise l'hyperplan séparateur optimal des données étique-

tées

{(x1, 1), . . . , (xn, 1), (−x1, −1), . . . , (−xn, −1)} (2.52)

(ii) Supposons que (w, 0) soient les paramètres de l'hyperplan séparateur otpimal pas-

sant par l'origine, des données étiquettées

{(x1, y1), . . . , (xn, yn)}, (yi ∈ {±1}pour i ∈ {1, . . . , n}),

telles que 〈w, φ(xi)〉 est positif si yi = 1. Supposons de plus que ρ/ ‖w‖ est la

marge de l'hyperplan optimal. Alors (w, ρ) constituent les paramètres de l'hyperplan

séparateur otpimal des données non étiquettées

{y1x1, . . . , ynxn}. (2.53)

Preuve. (i). Par construction, la séparation de (2.52) est un problème de points symé-

triques. D'où l'hyperplan séparateur optimal passe par l'origine, car sinon nous pouvons

obtenir un autre hyperplan séparateur optimal en construisant l'hyperplan symétrique
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du premier hyperplan par rapport à l'origine. Ce serait en contradiction avec l'unicité de

l'hyperplan séparateur optimal de Vapnick [93].

Ensuite, observons que (−w, ρ) paramétrise l'hyperplan support des données symétriques

par rapport à l'origine, et qu'il est parallèle à l'hyperplan paramétré par (w, ρ).Ceci four-

nit une séparation optimale de deux ensembles de données, avec une distance 2ρ, et un

hyperplan séparateur paramétré par (w, 0).

(ii). Par hypothèse, w est le vecteur minimal (minimisant la norme euclidienne) satisfai-

sant yi〈w, φ(xi)〉 ≥ ρ (notons que le biais est égal à 0). Ainsi, de manière équivalente, il

est le vecteur minimal satisfaisant 〈w, yiφ(xi)〉 ≥ ρ pour i ∈ {1, . . . , n}).

Notons que la relation est similaire dans le cas des données non séparables. Dans ce cas,

les observations mal classées en classi�cation binaire (i.e. observations qui sont soit sur

le mauvais coté de l'hyperplan séparateur ou qui se situent dans la marge) s'interprétent

comme des anomalies dans la classi�cation à une classe , i.e. en des observations qui se

situent entre l'hyperplan séparateur et l'origine.

L'utilité de la Proposition 2.4.2 réside dans le fait qu'elle nous permet de réutiliser cer-

tains résultats démontrés en classi�cation binaire ([78]). La proposition suivante expli-

quant l'importance du paramètre ν, est un tel cas.

Proposition 2.4.3. [76][propriétés de ν]

(i) ν est une borne supérieure de la fraction des erreurs d'apprentissage.

(ii) ν est une borne inférieure de la fraction des vecteurs supports.

Preuve. Les parties (i) et (ii) résultent directement de la Proposition 2.4.2 et le fait

que les erreurs d'apprentissage sont traitées de la même manière que dans le problème

d'optimisation pour la classi�cation binaire [78]. L'idée de base est que l'inégalité en

(2.45) impose des contraintes sur la fraction des données qui pourrait avoir αi = 1/(νl),

i.e. la borne supérieure de la fraction des erreurs d'apprentissage, et sur la fraction des

données qui devraient avoir αi > 0, i.e. les vecteurs supports.



Chapitre 3

Réduction de dimension

3.1 Compression et sélection de variables

Dans notre travail, nous disposons de données de dimension élevée, puisque les wafers sont

décrits par plusieurs centaines de paramètres électriques. Par conséquent une réduction

de dimension nous paraît indispensable a�n d'améliorer la performance prédictive de

l'algorithme de classi�cation utilisé.

En apprentissage automatique et en statistique, la réduction de dimension est le proces-

sus de réduction du nombre de variables de l'étude considérée [73]. Il existe deux types

d'approches : la compression de variables et la sélection de variables [69]. Les approches

de sélection de variables essaient de trouver un sous-ensemble optimal des variables a�n

d'améliorer la qualité de prédiction du modèle d'apprentissage. Les approches de com-

pression de variables transforment les données d'un espace de grande dimension dans

un espace de dimension plus petite. La transformation de données peut être linéaire,

comme l'analyse en composantes principales (ACP), mais de nombreuses techniques de

réduction de dimensionnalité non linéaires existent également [26]. Par exemple, l'ACP à

noyau (kernel PCA) [77] est une généralisation de l'ACP linéaire permettant une réduc-

tion de dimensionnalité non lineaire. Comme dans la méthode SVM (cf. Section 2.3.4), la

fonction noyau permet de projeter les données dans un espace de plus grande dimension

de sorte que la varieté devienne linéaire et d'e�ectuer l'ACP dans cet espace.

Dans ce chapitre, nous présenterons une des techniques les plus connues pour la com-

pression de variables : l'analyse en composantes principales (ACP). L'ACP réalise une

transformation linéaire des données dans un nouvel espace de dimension inférieure, de

telle façon que la variance des données dans cet espace soit maximisée. Nous montrons

comment une ACP contribue à la détection d'anomalies. Enuite nous parlerons des dif-

férentes catégories de sélection de variables, et nous présenterons en particulier deux

63
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méthodes que nous avons spéci�quement dévelopées pour une meilleure performance de

détection avec l'algorithme 1-SVM. La première méthode de type �ltrage est basée sur un

score calculé avec le �ltre MADe, une approche robuste pour la détection univariée des

valeurs aberrantes. La deuxième méthode de type wrapper est une adaptation à l'algo-

rithme 1-SVM de la méthode d'élimination récursive des variables basée sur la variation

du vecteur de poids de l'algorithme SVM.

3.2 Compression de variables : Analyse en Composantes

Principales (ACP)

L'analyse en composantes principales est une méthode de statistique exploratoire per-

mettant de décrire un grand tableau de données de type individus / variables. L'intérêt

majeur d'une ACP est d'o�rir une meilleure visualisation possible des données multi-

variées, en identi�ant les hyperplans dans lesquels la dispersion est maximale, mettant

en évidence avec le maximum de précision les relations de proximité et d'éloignement

entre les variables [55].Une ACP permet donc de fournir une représentation graphique

�optimale� des observations projetées dans un sous-espace de dimension réduite (d < p),

minimisant la déformation du nuage de points initial.

Mathématiquement, l'ACP correspond à l'approximation de la matrice de données X par

une matrice T de même dimension (n, p) mais de rang d < p. Ceci est réalisé à travers une

projection orthogonale linéaire qui projette les observations multidimensionnelles repré-

sentées dans un sous-espace de dimension p dans un sous-espace de dimension inférieure

d en maximisant la variance des projections. La solution de ce problème de maximisa-

tion est basée sur le calcul des valeurs et vecteurs propres de la matrice de covariance

des données, puisqu'on analyse essentiellement la dispersion des données considérées.

Cette solution dé�nit à la fois la projection du sous-espace de dimension p dans le sous-

espace de dimension d et la projection inverse permettant de reconstruire les données

observées. L'ACP peut être donc considérée comme une technique de minimisation de

l'erreur quadratique de reconstruction ou une technique de maximisation de la variance

des projections (il faut noter que ces deux critères sont équivalents).

3.2.1 Minimisation d'erreur/maximisation variance

L'objectif d'une ACP étant de trouver un sous-espace de dimension d < p qui permet

d'avoir une représentation réduite de X, cette méthode consiste à trouver une nouvelle

base dans laquelle la projection du nuage de points initial est la plus �dèle possible. Cette

nouvelle base est obtenue par combinaison linéaire de la base originelle. C'est donc tout



Chapitre 3. Réduction de dimension 65

simplement un problème de changement de base. Soit P une matrice de changement

de base de dimension p × p telle que P = [p.1 . . . p.j . . . p.p], où p.j = (p1j , . . . , ppj)
T .

Un nombre d des colonnes de P vont former les vecteurs de base orthonormés d'un

sous-espace Rd de représentation réduite des données. Ces vecteurs sont orthogonaux

2 à 2 (i.e. pT.jp.k = 0 si j 6= k) et de norme égale à 1 (i.e. pT.jp.j = 1). La matrice

T = [t1. . . . ti. . . . tn.]
T = [t.1 . . . t.j . . . t.p] des scores des observations dans la nouvelle

base est telle que T = XP .

Au sens de l'ACP, on construit P de sorte que la représentation réduite minimise l'erreur

de reconstruction de X. Autrement dit, la projection à travers P est optimale si le

critère d'erreur quadratique moyenne MSE(P) (Mean Square Error) d'approximation

des {xi.}(i=1, ..., n) à l'aide des d premières colonnes de cette matrice est minimale.

Sous la contrainte d'orthogonalité de P , et sous l'hypothèse de la nullité de la moyenne

d'une observation xi, le critère MSE(P) est égal à :

MSE(P ) = trace(Σ̂2)− trace(P T Σ̂2P ), (3.1)

où Σ̂2 est la matrice de covariance empirique des variables de terme général Σ̂2
jk =

cov (x.j , x.k), cov (x.j , x.k) étant la covariance entre les variables x.j et x.k. Quand X est

centrée, cette matrice carré symétrique d'ordre p est égale à

Σ̂2 =
1

n
XTX. (3.2)

Comme la matrice de covariance Σ̂2 est indépendante de P , minimiser MSE(P ) revient

à maximiser le second terme de son expression dans l'Equation (3.1) que nous notons

Jv(P ) . Ainsi, la minimisation de l'erreur quadratique d'approximation est équivalente à

la maximisation de la variance des projections des données :

Popt = argmin
P
MSE(P ) = argmax

P
Jv(P ). (3.3)

3.2.2 Axes factoriels et optimisation

Avant de résoudre ce problème d'optimisation, nous introduisons les notions �axes fac-

toriels� et �composantes principales�. On appelle premier axe factoriel de X le vecteur

p.1 (première colonne de la matrice P ) sur lequel le nuage se déforme le moins possible

en projection, donc c'est le vecteur p.1 tel que la variance de Xp.1 est maximale. Le vec-

teur t.1 = Xp.1 est appelé première composante principale. D'une façon plus générale,

Le kième axe factoriel de X est le vecteur p.k unitaire tel que la variance de la kième
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composante principale t.k = Xp.k soit maximale et que p.k soit orthogonal aux k − 1

premiers axes factoriels.

Notre objectif maintenant est de chercher un sous-espace de dimension 1 engendré par

p.1 avec comme contrainte pT.1p.1 = 1. La maximisation de la variance de projection sur

p.1, sous condition de norme unité du vecteur p.1, est donc un problème d'optimisation

sous contraintes d'égalité qui peut être résolu avec la méthode des multiplicateurs de

Lagrange. Le problème d'optimisation est le suivant :

MaximiserP1 Jv(P1) = P T1 Σ̂2P1,

sous la contrainte P T1 P1 = 1.
(3.4)

La résolution du problème (3.4) montre que le premier axe factoriel p.1 est le vecteur

propre associé à λ1, la plus grande valeur propre de Σ̂2. De façon plus générale, le kième

axe factoriel est le vecteur propre p.k associé à λk, la kième plus grande valeur propre

de Σ̂2. Rappelons que les valeurs propres de Σ̂2 sont positives car Σ̂2 est une matrice

semi-dé�nie positive.

En outre, les valeurs propres de la matrice de covariance Σ̂2 représentent les variances des

projections des données sur les directions représentées par les vecteurs propres p.j (j =

1, . . . , p). Les p vecteurs propres unitaires p.j représentent les p directions orthogonales

de l'espace des données suivant lesquelles les variances des projections des données sont

maximales.

Le sous-espace vectoriel de dimension d qui assure une dispersion maximale des obser-

vations est donc dé�ni par une base orthonormée formée des d vecteurs propres corres-

pondant aux d plus grandes valeurs propres de la matrice Σ̂2. Ce sous-espace constitue

donc un espace de représentation optimale des données.

3.2.3 Réduction de la dimensionalité

Nous avons vu qu'une ACP permet de caractériser les directions orthogonales d'un es-

pace de données porteuses du maximum d'information au sens de la maximisation des

variances de projections. L'amplitude des valeurs propres de la matrice de covariance Σ̂2

des données quanti�e pour chacune de ces directions la quantité d'information encodée.

Une approximation x̃i. de l'observation xi. par l'intermédiaire des d composantes princi-

pales ti1, . . . , tid présentant les plus fortes variances est donnée par

x̃i. =

d∑
j=1

tijp.j . (3.5)
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La perte d'information induite par la réduction de dimension de représentation de chaque

xi. est mesurée par la di�érence e entre ses représentations exacte et approchée :

e = xi. − x̃i. =

p∑
j=d+1

tijp.j (3.6)

L'erreur d'approximation sur un sous-espace vectoriel de dimension d est :

Ed =
1

n

n∑
i=1

‖x.i − x̃i.‖2 =

p∑
k=d+1

λk.

Les p − d composantes principales t.j (j = d + 1, . . . , p)) à partir desquelles l'erreur

d'estimation e est évaluée, sont associées aux plus faibles valeurs propres λq+1, . . . , λp.

Il est par conséquent bien évident que la compression de données préserve d'autant mieux

d'information que ces valeurs propres sont faibles.

3.2.4 Choix de dimension

Pour une reconstruction optimale de données, le choix du nombre de composantes prin-

cipales à retenir d est crucial dans une méthode ACP. Toutefois dans le cadre de l'ap-

plication de l'ACP à la détection d'anomalies (cf. Chapitre 4, Section 3.3), le nombre de

composantes a un impact signi�catif sur la qualité de détection. Si trop peu de compo-

santes sont utilisées, on risque de perdre des informations contenues dans les données de

départ. Si par contre trop de composantes sont utilisées, il y a le risque d'avoir des com-

posantes retenues (les composantes correspondantes aux valeurs propres les plus faibles

parmi celles retenues dans le modèle) qui sont porteuses de bruit ce qui est indésirable.

De nombreuses règles ont été proposées dans la littérature [33, 91]. Dans la suite nous

allons présenter quelques critères utilisés pour le choix optimal de d.

Pourcentage cumulé de la variance totale (PCV) Le pourcentage de variance

(ou la part d'inertie) expliquée par un sous-espace d'ordre d engendré par les d premiers

axes est donné par :

PCV (d) =

∑d
k=1 λk∑p
k=1 λk

. (3.7)

Le nombre de composantes à retenir est le plus petit nombre d pour lequel au moins une

fraction ψ (prédé�nie par l'utilisateur) de la variance totale soit expliquée.

d = argmin
u
{PCV (u) ≥ ψ}
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Par exemple, si nous prenons ψ = 0.8, nous retenons le nombre minimal de composantes

qui préserve 80% de l'information contenue dans les données originelles.

Règle de Kaiser Cette règle consiste à ne prendre en considération que les com-

posantes pour lesquelles l'inertie est supérieure à l'inertie moyenne. En ACP normée,

l'inertie totale est trace(Σ̂2) = p. On ne retiendra donc que les composantes associées à

des variances supérieures à l'unité. Ce critère, utilisé implicitement par SAS, a tendance

à surestimer le nombre de composantes pertinentes.

Eboulis L'éboulis est un graphique présentant la décroissance des valeurs propres. Le

principe consiste à rechercher, s'il existe, un �coude� suivi d'une décroissance régulière.

On sélectionne les axes se situant avant le coude. Les axes qui suivent ce coude semblent

former une ligne droite horizontale, i.e. la variation des valeurs propres correspondant

à n'importe quel deux axes consécutifs situés après le coude est trop faible par rapport

aux variations observées avant le coude. L'information ajoutée par les axes qui suivent

le coude est donc peu pertinente.

3.3 ACP et détection d'anomalies

Les méthodes de détection d'anomalies reposant sur l'analyse en composantes principales

linéaires (ACP) ont reçu une attention particulière et ont été largement utilisées pour la

surveillance des processus industriels ([60, 66, 81, 90]). Le principe de cette approche est

d'utiliser l'analyse en composantes principales pour une compression de variables, et puis

de déterminer le T 2 de Hotteling à partir des scores de données obtenues et le comparer

à un seuil prédé�ni.

Après avoir établi le modèle ACP, une observation xi est projetée sur le modèle et

la statistique T 2 de Hotteling (cf. Section 1.7.2) peut être déterminée à partir des d

premières composantes principales t̃i. = (ti1, . . . , tid) :

T 2
i = t̃i.

T
(Σ̂2

d)
−1t̃i. (3.8)

où Σ̂2
d = diag(λ1, λ2, . . . , λd) est une matrice diagonale contenant les d plus grandes

valeurs propres de la matrice de covariance des données. La statitique de Hotteling peut

alors s'écrire sous la forme suivante :

T 2
i =

d∑
j=1

t2ij
λj
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Le seuil approprié pour l'indice T 2 pour un risque α peut être déterminé comme dans

l'Equation (1.3) de la Section 1.7.2, en remplaçant p par d. Une observation est considérée

anormale si son T 2 de Hotteling dépasse le seuil, et normale sinon.

Puisque l'indice T 2 n'est pas a�ectée par le bruit, qui est représenté par les dernières

valeurs propres, théoriquement elle est capable de représenter le comportement normal

du processus. L'indice T 2 peut être interprété comme la mesure des variations normales

du processus, et la violation du seuil de détection de cette statistique indique que ces

variations sont en dehors des limites de contrôle et correspondent à un fonctionnement

anormal.

Pour le choix de nombre de composantes d à retenir, nous utilisons la méthode de Pour-

centage cumulé de la variance totale (PCV) (cf. Section 3.2.4).

3.4 Sélection de variables

Le problème de sélection de variables est crucial dans le domaine de l'apprentissage statis-

tique et plus particulièrement dans le cadre de la classi�cation supervisée. La complexité

de nombreuses techniques de classi�cation dépend fortement du nombre des variables

décrivant les instances de données. La sélection de variables joue un rôle important en

classi�cation lorsqu'un grand nombre p de variables sont disponibles. Certaines variables

pouvent être peu signi�catives, redondantes ou non pertinentes au regard de l'application

considérée. Les méthodes de sélection de variables consistent à retenir un sous-ensemble

optimal de m variables parmi les p >> m variables disponibles qui améliore les perfor-

mances de l'algorithme de classi�cation .

Généralement, une méthode de sélection de variables repose principalement sur les trois

composantes suivantes :

� Un algorithme de recherche permettant d'explorer l'espace des combinaisons de va-

riables.

� Un critère d'évaluation pour mesurer la pertinence des sous-ensembles potentiels de

variables.

� Une condition d'arrêt pour arrêter la procédure de recherche.

Dans la sélection de variables, nous nous intéressons à la réduction de la dimension de

l'espace des variables explicatives, sans pour autant transformer ses composantes comme

dans les méthodes d'analyse factorielle (compression de variables).

D'un point de vue industriel, la sélection des variables (les paramètres électriques per-

tinents) devrait permettre d'e�ectuer un diagnostic des wafers anormaux. Ce diagnostic
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a pour but d'apporter plus de connaissances sur la raison de l'anomalie en dé�nissant

des signatures de ces wafers basées sur les paramètres électriques les plus pertinents. La

détermination de la source ou raison d'anomalie (localisation de défauts) nous permet

de remonter à la cause (root cause) et ensuite remettre le processus dans un état de

fonctionnement normal après avoir e�ectué un correctif adapté.

D'un point de vue statistique, la sélection d'un sous-ensemble de variables pertinentes

permettrait d'améliorer la performance de détection des méthodes de classi�cation, d'ac-

célérer le temps de calcul de ces méthodes et en�n de comprendre le processus sous-jacent

ayant généré ces données [37]. Nous améliorons ainsi notre connaissance du phénomène

de causalité entre les descripteurs (les paramètres électriques) et la variable à prédire

(l'état de fonctionnement des wafers), ce qui est fondamental si nous voulons interpréter

les résultats pour en assurer la reproductibilité.

Dans la littérature du Machine Learning, trois catégories de méthodes existantes pour la

sélection de variables sont considérées et présentées dans les revues bibliographiques de

[10, 37, 49] :

1. les méthodes de �ltrage,

2. les méthodes de type wrapper,

3. les méthodes de type embedded.

Chaque méthode de sélection de variables est répartie dans une de ces trois catégories

selon le type du critère de sélection et la façon dont il est pris en compte dans la procédure

de classi�cation.

Les méthodes de �ltrage

Les méthodes de �ltrage utilisent les propriétés statistiques des variables a�n de �ltrer les

variables non informatives. Ces méthodes sélectionnent des sous-ensemble de variables

comme une étape de pré-traitement, indépendamment du prédicteur choisi. Dans ce

type de méthodes, les critères d'évaluation sont fondés uniquement sur les données et

sont donc totalement indépendants du discriminateur utilisé. Les variables alors sont

�ltrées avant le processus d'apprentissage et de classi�cation. Di�érentes fonctions sont

utilisées pour dé�nir les critères d'évaluation. Certaines sont basées sur des mesures

de distance probabilistes (ex : distance de Mahalanobis), d'autres sont fondées sur les

mesures d'information (ex : entropie) ou de dépendance (ex : coe�cient de corrélation

de Pearson, information mutuelle, score de Fisher).

Le principal avantage des méthodes de �ltrage est leur e�cacité calculatoire et leur ro-

bustesse face au surapprentissage (ou surajustement). Malheureusement, ces méthodes
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ne tiennent pas compte des interactions qui peuvent exister entre les variables et tendent

à sélectionner des variables comportant de l'information redondante plutôt que complé-

mentaire [37]. De plus, elles ne tiennent pas compte de la performance des méthodes de

classi�cation appliquées dans une deuxième étape.

Les méthodes de type wrapper

Les méthodes de type wrapper consistent en l'évaluation de la performance de sous-

ensembles de variables de manière successive, prenant ainsi en compte les interactions

entre variables. Ainsi, l'algorithme de sélection �entoure� (wrapp) la méthode de clas-

si�cation qui évalue la performance. En fait, la machine d'apprentissage est considérée

comme une boîte noire et la méthode de sélection se prête à l'utilisation de cette machine.

Plus précisement, Ces méthodes consistent à utiliser les résultats de prédiction de la mé-

thode d'apprentissage a�n d'évaluer l'utilité relative des sous-ensembles de variables. Par

exemple, la méthode SVM-RFE (Recursive Feature Elimination with SVM) [38] est une

méthode wrapper basée sur un score calculé à partir de l'algorithme SVM.

La recherche d'un tel sous-ensemble de variables optimal requiert certaines dé�nitions au

préalable [37] : comment rechercher dans l'espace des variables tous les sous-ensembles

possibles, comment évaluer la performance de prédiction d'une méthode d'apprentissage

pour guider la recherche, quand arrêter l'algorithme. Bien entendu, une recherche ex-

haustive est un problème NP-di�cile et incalculable lorsque p est grand ; il nécessite des

approximations des calculs d'optimisation. Le risque de surapprentissage est grand si le

nombre d'observations n est insu�sant et le nombre de variables à sélectionner doit être

choisi par l'utilisateur. En�n, le plus grand désavantage de ces méthodes est le temps de

calcul qui devient vite important dès que p est grand.

John et al. [46] prétendent que la stratégie wrapper est supérieure à la stratégie �ltre

en terme de performance de classi�cation, puisqu'elle utilise les performances prédictives

de l'algorithme de classi�cation comme critère d'évaluation de la pertinence du sous-

ensemble de variables.

Les méthodes de type embedded

Les méthodes de type embedded incorporent la sélection de variables lors du processus

d'apprentissage, sans étape de validation, pour maximiser la qualité de l'ajustement et

minimiser le nombre de variables. Fan and Li [31, 32] ont démontré qu'on pourrait ga-

rantir une meilleur performance de l'algorithme d'apprentissage en faisant la sélection
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des variables et l'estimation du modèle simultanément. Ces méthodes consistent géné-

ralement à pénaliser la fonction objective du problème d'optimisation de l'algorithme

d'apprentissage. On cite par exemple les méthodes de minimisation avec une pénalité

de type L1 qui ont attiré beaucoup d'attention. Tibshirani [89] a proposé le lasso (least

absolute shrinkage and selection operator), une méthode de moindres carrés pénalisée

par la norme L1, pour la sélection des variables dans les modèles linéaires et les mo-

dèles linéaires généralisés. Les SVM pénalisés par la norme L1 (1-norm SVM) ont été

considérés pour accomplir la tache de sélection des variables dans SVM [13, 103] .

En utilisant la méthode d'apprentissage comme une boîte noire, les méthodes de type

wrapper sont remarquablement universelles et simples. Mais les méthodes de type embed-

ded peuvent être plus e�caces à plusieurs égards. Tout d'abord ils feraient un meilleur

usage des données disponibles en n'ayant pas besoin de partager les données d'appren-

tissage en un échantillon d'apprentissage et un échantillon de validation. Ensuite ces

méthodes seraient bien plus avantageuses en terme de temps de calcul que les méthodes

de type wrapper car elles évitent le réapprentissage du prédicteur pour tout sous-ensemble

de variables sélectionné. Finalement, elles seraient robustes face au problème de surajus-

tement.

3.5 Sélection de variables et 1-SVM

Dans cette section, nous considérons le problème de la sélection de variables dans le

cadre de la détection d'anomalies basée sur l'algorithme de classi�cation semi-supervisée

1-SVM. A notre connaissance, et contrairement à l'algorithme de classi�cation super-

visée SVM, il n'existe pas des méthodes de sélection de variables pouvant améliorer la

performance de détection pour l'algorithme 1-SVM. Dans les travaux existants, la mé-

thode 1-SVM a été appliquée sans sélection de variables sur des données dont l'espace

de variables est relativement petit (quelques dizaines de variables) [21, 41, 95, 101], où

avec une compression de variables en utilisant une ACP [61].

Dans la littérature, on peut trouver plusieurs méthodes de sélection de variables qui ont

été développées pour améliorer la performance prédictive de l'algorithme de classi�cation

supervisée SVM. On peut citer par exemple la méthode de �ltrage basée sur le score de

Fisher [19], la méthode wrapper d'élimination récursive des variables SVM-RFE , ou

aussi la méthode embedded des SVM pénalisés par la norme L1 (1-norm SVM) [103].

Le score de Fisher et la méthode SVM-RFE sont des méthodes de ranking permettant

d'établir une hiérarchie des variables. Ces méthodes consistent à attribuer une �valeur
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d'importance� à chaque variable puis les classer par ordre décroissant en fonction de leur

importance.

Le score de Fisher d'une certaine variable utilise les moyennes et les variances respectives

de cette variable dans chacune des deux classes (classe positive et classe négative). Donc

ce score mesure la corrélation entre une variable et les étiquettes à prédire. Le score de

Fisher pour un SVM linéaire est calculé de la façon suivante :

Sj =
|x̄j,+1 − x̄j,−1|√
s2j,+1 + s2j,−1

où x̄j,+1 (respectivement x̄j,−1) est la moyenne empirique de la jieme variable dans la

classe positive (respectivement la classe négative), s2j,+1 et s
2
j,−1 sont les variances empi-

riques de cette variable dans chacune des deux classes.

Donc cette méthode de �ltrage est spéci�que à un problème de classi�cation binaire

supervisé, où on nécessite la connaissance des étiquettes des observations appartenant

à l'échantillon d'apprentissage. Ce qui n'est pas le cas dans notre travail, où on utilise

la méthode de classi�cation semi-supervisée 1-SVM qui apprend le modèle de détection

à partir d'un échantillon d'apprentissage disposant seulement des observations normales

(une seule classe).

Pour cela, nous avons développé une méthode de �ltrage appropriée au classi�eur 1-SVM,

et plus généralement aux méthodes de classi�cation à une classe. En e�et cette méthode

ne nécessite pas la connaissance des étiquettes des données d'apprentissage. C'est une

méthode de ranking basée sur un score indépendant de l'algorithme 1-SVM, calculé en se

basant sur une approche robuste de détection univariée des valeurs aberrantes. Ce score

est le pourcentage de valeurs aberrantes dans chaque variable déterminée avec le �ltre

MADe. Ce score est donc indépendant des étiquettes à prédire. Une description détaillée

de cette méthode, appelée MADe.FS (MADe for Feature Selection), est donnée dans la

Section 3.5.1.

Une deuxième méthode est une adaptation à l'algorithme 1-SVM de la méthode SVM-

RFE [38] initialement introduite avec l'algorithme SVM. C'est une méthode de ranking

basée sur un score calculé à partir de l'algorithme 1-SVM. Elle évalue l'importance d'une

variable en calculant la variation du vecteur de poids ‖w‖2 de l'algorithme 1-SVM après

l'élimination de cette variable de l'échantillon d'apprentissage. Cette méthode sera décrite

dans la Section 3.5.2. On s'attend à ce que cette méthode soit plus performante que la

méthode MADe.FS puisque la première intègre les performances prédictives du classi�er

1-SVM alors que la deuxième est basée sur un score indépendant du classi�eur 1-SVM.
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3.5.1 Notre méthode de �ltrage MADe.FS

Dans cette section, nous présentons notre méthode de �ltrage que nous avons développée

pour sélectionner les variables les plus pertinentes a�n d'améliorer la performance de

détection de l'algorithme 1-SVM. Le choix d'une méthode de �ltrage est justi�é par le

temps de calcul rapide de ce type de méthodes. Une autre justi�cation convaincante est

que les méthodes de �ltrage permettent de réduire la dimension de l'espace de variables

avant l'apprentissage du modèle, ce qui permet d'éviter le sur-ajustement.

L'idée principale est d'utiliser une méthode de détection univariée pour déterminer le

pourcentage de valeurs aberrantes dans chaque variable. Puis les variables avec un pour-

centage des valeurs aberrantes supérieur à un certain seuil prédé�ni seront de potentielles

variables discriminantes, tandis que les variables ayant un pourcentage non signi�catif

des valeurs aberrantes seront considérées comme non pertinentes. Un avantage important

de cette méthode est qu'elle ne nécessite pas les étiquettes des observations pour faire la

sélection.

Comme approche univariée robuste de détection des valeurs aberrantes, nous avons uti-

lisé la méthode MADe [16] basée sur des estimateurs robustes de la position et la dis-

persion . Pour mieux comprendre le mot robuste, nous introduisons la notion point de

rupture (breakdown point)[27] d'un estimateur qui correspond à la proportion maximale

admissible de valeurs abérrantes dans les données avant que cette estimation soit complè-

tement corrompue. Par exemple, l'estimateur classique de la moyenne et de l'écart-type

possèdent un point de rupture de 0%, ce qui signi�e que la présence d'une seule valeur

abérrante est su�sante pour que leur estimation soit complètement erronée. Alors que

la médiane et l'écart absolu à la médiane (Median Absolute Deviation MAD) [39] ont un

point de rupture égale à 50% [45].

Donc la robustesse de la méthode MADe provient du fait qu'elle utilise la médiane et

l'écart absolu à la médiane comme estimateurs respectifs de la position et la dispersion.

En e�et ces deux estimateurs ont un point de rupture élevé, et contrairement à la moyenne

et l'ecart-type, les écarts d'un petit nombre (pouvant aller jusqu'à la moitié de la taille

de l'échantillon) de valeurs aberrantes ne sont pas pertinents dans le calcul de ces deux

estimateurs.

3.5.1.1 Ecart absolu à la médiane

En statistique, l'écart absolu à la médiane MAD est une statistique robuste qui mesure

la dispersion d'un échantillon univarié de données. Elle est plus résistante aux valeurs

aberrantes que l'écart-type. Cette statistique est dé�nie étant la médiane des écarts
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absolus à la médiane des observations d'une variable x.j :

MAD(j) = medianei (|xij −medianej(x.j)|) . (3.9)

Dans le but d'utiliser le MAD comme un estimateur consistant σ̂ pour l'estimation de

l'écart-type σ (i.e. E(σ̂) = σ, où E(σ̂) est l'espérance de σ̂), on prend

σ̂ = k ×MAD, (3.10)

où k est un facteur de normalisation constant qui dépend de la distribution des données.

Pour des données suivant une loi normale, k est pris approximativement égal à 1.4826.

Expliquons maintenant le choix de cette valeur. Soit T = (T1, . . . , Tn)T une variable

aléatoire suivant une loi normale N(µ, σ2) d'espérance µ et de variance σ2, alors la

variable aléatoire Z = T−µ
σ suit la loi normale N(0, 1). La médiane de T converge vers

µ quand n tend vers l'in�ni, et ensuite la probabilité P (|T − µ| ≤MAD) converge vers

P (|T − µ| ≤ mediane(|T − µ|)) = 1
2 . D'où :

1

2
= P (|T − µ| ≤MAD) = P

(
|Z| ≤ MAD

σ

)
(3.11)

= 2F (
MAD

σ
)− 1 (3.12)

où F est la fonction de répartition d'une distribution normale centrée réduite N(0, 1).

Soit Q l'inverse de F , i.e. Q est la fonction quantile de la loi N(0, 1). L'égalité établie

dans (3.11) implique :

F (
MAD

σ
) =

3

4
=⇒ MAD

σ
= F−1(

3

4
) = Q(

3

4
). (3.13)

Finalement, l'Equation (3.10) et l'Equation (3.13) permettent d'établir :

k =
σ

MAD
=

1

Q(34)
≈ 1.4826 (3.14)

L'équation (3.14) montre que MAD converge vers σ/1.4826 lorsque n tend vers l'in�ni,

ce qui est équivaut à dire que σ̂ = 1.4826 × MAD converge vers σ. Autrement dit,

l'espérance de σ̂ pour les grands échantillons distribués suivant une loi normale est ap-

proximativement égale à l'écart-type σ de la population. D'où le facteur k = 1.4826

calibre σ̂ dans l'équation (3.10) de sorte qu'il soit un estimateur consistant de σ.

Dans la suite, nous remplaçons σ̂ par MADe pour désigner l'estimateur de σ obtenu en

utilisant le MAD. On a donc :

MADe = 1.4826×MAD.
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3.5.1.2 Description de la méthode MADe.FS

La méthode MADe dé�nit pour un paramètre électrique x.j une limite inférieure LLj

(Lower Limit) et une limite supérieure ULj (Upper Limit) telles que toutes les valeurs

situées à l'extérieur de l'intervalle [LLj ;ULj ] sont considérées comme aberrantes. Les

limites sont calculées de la façon suivante :

LLj = mediane(x.j)− 3×MADe(j)

ULj = mediane(x.j) + 3×MADe(j)

où MADe(j) = 1.483×MAD(j).

Cette approche est similaire à la méthode SD (Standard Deviation) qui considère les

valeurs situées à l'extérieur de l'intervalle [x̄ ± 3SD] comme aberrantes, où x̄ et SD

sont respectivement la moyenne et l'ecart-type empiriques de l'échantillon univarié (le

paramètre x.j). Cependant, la moyenne et l'écart-type sont remplacés respectivement par

la médiane et le MADe. Puisque cette approche utilise deux estimateurs robustes ayant

un point de rupture élevé, elle ne sera pas a�ectée par les valeurs aberrantes contrairement

à la méthode SD.

Le pourcentage de valeurs aberrantes OOLj (Out Of Limit) du paramètre électrique x.j

est donné par :

OOL(j) = 100× card ({i; xij /∈ [LLj ;ULj ]})
n

%,

où card() représente le cardinal d'un ensemble.

Avec notre méthode MADe.FS, le sous-ensemble S des paramètres électriques pertinents

sélectionnés est constitué des paramètres électriques dont le pourcentage de valeurs aber-

rantes dépasse un seuil θq, où θq est le quantile du vecteurOOL = (OOL(1), . . . , OOL(p))

d'ordre q,

S = {x.j ; OOL(j) > θq}.

Par exemple si nous posons q = 0.75 (i.e. θq est le troixième quartile), nous décidons

alors de retenir le quart des paramètres électriques qui ont le plus grand pourcentage de

valeurs aberrantes. D'une façon plus générale, et pour une valeur q ∈]0, 1[, les 100(1−q)%
des paramètres les plus aberrants sont considérés commme pertinents et discriminatifs

pour notre méthode de �ltrage.
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3.5.2 Elimination récursive des variables avec 1-SVM (1-SVM-RFE)

Dans cette section, nous présentons une méthode de sélection de variables de type wrap-

per intégrant les pouvoirs prédictifs du classi�eur 1-SVM. C'est une méthode de ranking

exploitant le principe d'élimination récursive des variables et basée sur un score calculé

à partir de la méthode 1-SVM. Cette méthode, appelée 1-SVM-RFE est une adaptation

de la méthode SVM-RFE à l'algorithme 1-SVM.

Nous rappelons tout d'abord la méthode SVM-RFE puis nous présentons notre algo-

rithme 1-SVM-RFE.

3.5.2.1 Elimination récursive des variables avec SVM (SVM-RFE)

L'algorithme RFE-SVM a été proposé par Guyon et al. [38] pour sélectionner des gènes

qui sont pertinents pour un problème de classi�cation du cancer. La méthode est basée

sur une sélection séquentielle descendante (backward sequential selection) et exploitant

les SVM, de façon récursive pour sélectionner un sous-ensemble de variables optimal.

Ce sous-ensemble optimal est constitué par les r parmi p variables (r < p) qui maxi-

misent la performance du prédicteur. Cet algorithme intègre le �ltrage dans le processus

d'apprentissage SVM dans le but d'évaluer chaque sous-ensemble grâce à un classi�eur

SVM mais aussi pour avoir des informations sur la contribution de chaque variable sur

la construction de l'hyperplan séparateur.

On part de l'ensemble complet des variables, on élimine progressivement la variable

la moins pertinente jusqu'à avoir laissé r variables. La variable éliminée est celle dont

son élimination minimise la variation de ‖w‖2. Ainsi le critère de classement (ranking

criterion) Rc pour une variable j est :

∣∣∣∣‖w‖2 − ∥∥∥w(j)
∥∥∥2∣∣∣∣ =

1

2

∣∣∣∣∣∣
∑
i,k

α∗iα
∗
kyiykK(xi, xk)−

∑
i,k

α
∗(j)
i α

∗(j)
k yiykK

(j)(xi, xk)

∣∣∣∣∣∣ (3.15)

où K(j)(xi, xk) est l'élément correspondant à la ième ligne, kième colonne de la matrice

de Gram G (cf. Section 2.3.4) des données d'apprentissage obtenue après l'élimination

de la variable j

K(j)(xi, xk) = G
(j)
ik = 〈φ(xji ), φ(xjj)〉

et α∗(j)k est la solution de la duale de l'algorithme SVM. Pour une raison de simplicité et

a�n de réduire la complexité de calcul, les auteurs supposent que α∗(j)k est égal à α∗k même

si une variable a été éliminée. Les auteurs ont également indiqué qu'une normalisation

des données est nécessaire pour le bon fonctionnement de RFE.
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De l'Equation (3.15), on peut considérer que la variable éliminée est celle qui a le moins

d'in�uence sur la norme du vecteur de poids. En e�et, la mesure ‖w‖2 est une mesure

de pouvoir prédictif. L'idée est que les variables, qui correspondent à des directions de

l'espace selon lesquelles le vecteur w admet une faible énergie, ne sont pas aussi utiles

au problème que les autres variables (puisqu'ils contribuent faiblement à la dé�nition de

l'hyperplan optimal). Donc, à chaque récursion de l'algorithme SVM-RFE, la variable

possédant le score Rc le plus faible est éliminée. Le processus est arrêté lorsque le critère

d'arrêt est atteint. Ce critère correspond au nombre r de variables à retenir. Autrement

dit, le processus est arrêté quand le sous-ensemble sélectionné récursivement par SVM-

RFE ne contient que r variables à classer. Le choix optimal de r sera discuté à la �n de

cette section.

L'algorithme SVM-RFE de base est donné dans l'Algorithme 1.

Algorithm 1 SVM-RFE
1. Initialisation :
V ar = [1, . . . , p]
r : nombre de variables �xé
2. Tant que card(V ar) > r Faire
(a) Apprentissage du SVM sur toutes les données d'apprentissage et les variables V ar

(b) Pour toutes les variables dans V ar, Faire évaluer le critère Rc(j) de la variable j
Fin Pour
(c) Déterminer la variable minimisant le critère Rc : f = min

j∈V ar
Rc(j)

(d) Eliminer la variable f de l'ensemble de variables V ar : V ar = {V ar}\f
Fin Tant que
3. S=Var
4. Retourner S : l'ensemble solution

Avec la version originale de RFE où une variable est éliminée par itération, le temps

d'exécution de l'algorithme SVM-RFE est extrêmement coûteux. Pour surmonter cet

inconvénient, les auteurs de [38], et en raison du grand nombre de gènes, proposent

d'éliminer plusieurs variables simultanément en une itération ; il s'agit dans ce cas de

ceux ayant le Rc le plus faible. Pour accélérer le temps de calcul de la procédure de

sélection de variables, Rakotomamonjy [71] propose d'éliminer la moitié des variables

pour les itérations initiales où le nombre de variables utilisées est grand, jusqu'à ce que

100 variables restent à être classées. Ensuite une variable est retirée à chaque itération.

Notons qu'éliminer plusieurs variables à la fois peut a�ecter la performance de classi�ca-

tion. Dans ce cas-là, on n'obtient pas un critère de rang sur des variables, mais un critère

de rang sur des sous-ensembles de variables qui sont imbriqués les uns dans les autres. Si

les variables sont éliminées une à une comme le propose l'algorithme initial, les auteurs

dans [38] mettent en garde sur la pertinence des variables du plus haut rang : seul le
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sous-ensemble de variables sélectionné est optimal, et pas les variables de plus haut rang

considérées individuellement. En e�et, RFE est une méthode de type �wrapper� qui va

avoir tendance à sélectionner des variables contenant de l'information complémentaire,

améliorant ainsi la tâche de classi�cation. Les variables considérées une à une dans la

sélection ne contiennent que peu d'information pertinente.

Un autre inconvénient de l'algorithme SVM-RFE est que la variable ou le sous-ensemble

de variables éliminé ne peut plus jamais revenir dans le sous-ensemble sélectionné, ce qui

pourrait biaiser la recherche.

Il est important de noter que RFE ne s'intéresse pas à la recherche du sous-ensemble de

taille optimale, mais donne une mesure d'importance sur chaque variable ou groupe de

variables. Rakotomamonjy [71] a proposé plusieurs solutions possibles a�n de répondre

à la question suivante : combien de variables sélectionnées par l'algorithme SVM-RFE

doivent être fournies au prédicteur ?

Ces solutions ont été testées dans [71] sur un jeu de données non-linéaire. La méthode

basée sur l'erreur de validation était la meilleure. Cette méthode consiste à utiliser une

procédure de leave-one-out ou un ensemble de validation pour estimer l'erreur de gé-

néralisation en fonction du nombre de variables sélectionnées et de choisir le nombre

de variables qui minimise l'erreur de test. Cette solution est simple, cependant elle est

coûteuse en terme de calcul.

3.5.2.2 L'algorithme 1-SVM-RFE

Similairement à la méthode SVM-RFE, la méthode 1-SVM-RFE est basée sur une sé-

lection séquentielle descendante (backward sequential selection) et exploitant 1-SVM de

façon récursive pour sélectionner un sous-ensemble de variables optimal maximisant la

performance du prédicteur.

La mesure du pouvoir prédictif est toujours ‖w‖2. A chaque itération, la variable éliminée

est celle dont son élimination minimise la variation de ‖w‖2 de la méthode 1-SVM. Ainsi

le critère de classement (ranking criterion) Rc pour une variable j est :

∣∣∣∣‖w‖2 − ∥∥∥w(j)
∥∥∥2∣∣∣∣ =

1

2

∣∣∣∣∣∣
∑
i,k

α∗iα
∗
kK(xi, xk)−

∑
i,k

α
∗(j)
i α

∗(j)
k K(j)(xi, xk)

∣∣∣∣∣∣ (3.16)

où α∗(j)k est la solution de la duale de l'algorithme 1-SVM.

L'algorithme 1-SVM-RFE de base est donné dans l'Algorithme 2.
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Algorithm 2 1-SVM-RFE
1. Initialisation :
V ar = [1, . . . , p]
r : nombre de variables �xé
2. Tant que card(V ar) > r Faire
(a) Apprentissage du 1-SVM sur toutes les données d'apprentissage et les variables
V ar
(b) Pour toutes les variables dans V ar, Faire évaluer le critère Rc(j) de la variable j
Fin Pour
(c) Déterminer la variable minimisant le critère Rc : f = min

j∈V ar
Rc(j)

(d) Eliminer la variable f de l'ensemble de variables V ar : V ar = {V ar}\f
Fin Tant que
3. S=Var
4. Retourner S : l'ensemble solution

Pour accélérer le temps de calcul, nous proposons d'éliminer la moitié des variables à

la première itération, puis 5% des variables aux itérations suivantes jusqu'à ce que la

taille du sous-ensemble à sélectionner sera égale à r. A�n de gagner encore en temps

de calcul, nous dé�nissons un hyperparamètre q qui permet de déterminer le nombre r

de variables à retenir par l'algorithme 1-SVM-RFE. Identiquement à notre méthode de

�ltrage, et pour une valeur de q ∈]0, 1[, le nombre de variables à retenir r correspond à

la fraction (1 − q) du nombre de variables initiales p. Le choix optimal de q peut être

accompli selon la solution proposée par Rakotomamonji [71], déjà mentionnée à la �n

de la section précédente. Par exemple, une plage de valeurs de q dans [0.5; 1[ et avec un

pas de 0.05 nous permet d'éviter de parcourir de nombreuses valeurs de r, et par suite

réduire le coût de calcul.



Chapitre 4

Quelques résultats de la détection

avec 1-SVM en mode statique

Dans ce chapitre, nous introduisons tout d'abord deux modèles de détection que nous

avons développés pendant notre étude. Ils sont basés sur les deux méthodes de sélection

de variables que nous venons de présenter dans le Chapitre 3, et sur l'algorithme de

détection 1-SVM. Les deux modèles peuvent être appliqués en mode statique ou en

mode dynamique selon qu'on prend en compte ou non l'ordre chronologique des wafers.

Nous présentons quelques résultats de la détection avec 1-SVM en mode statique. Nous

commençons par étudier l'in�uence de l'hyperparamètre γ du noyau gaussien sur la per-

formance de 1-SVM, et nous allons voir qu'il n'est pas nécessaire de faire un réglage

extrêmement �n pour cet hyperparamètre. Ensuite nous montrons l'importance de l'ap-

plication de nos méthodes de sélection de variables avec l'algorithme 1-SVM, révélée par

des améliorations signi�catives de la performance de détection de cet algorithme. Puis

nous étudions l'in�uence de la présence d'anomalies dans la phase d'apprentissage du

modèle 1-SVM. Ceci va servir dans l'interprétation des résultats de comparaison de deux

scénarios de mise à jour de notre système de détection en temps réel (cf. Section 5.4 du

Chapitre 5).

Avant de présenter ces résultats, nous introduisons les mesures de performances permet-

tant d'évaluer les capacités de détection des modèles utilisés, ainsi que les di�érentes

étapes de prétraitement de données, et nous décrivons les jeux de données réels de ST

qui vont servir pour évaluer les di�érents modèles de détection.

81
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4.1 Modèles de détection

Le but de notre travail était de développer une approche statistique multivariée pour

détecter les anomalies dans le domaine des semi-conducteurs. Ces anomalies représentent

des wafers dont le comportement électrique est anormal. Cette approche multivariée vise

donc à détecter les wafers anormaux en regardant les mesures des paramètres électriques

statiques obtenues à l'issu du Test Paramétrique (PT).

Dans les chapitres précédents, nous avons présenté la méthode 1-SVM pour la détection

d'anomalies. Nous avons présenté également deux techniques de réduction de dimension :

la méthode de type �ltrage MADe.FS, et la méthode de type wrapper 1-SVM-RFE.

Ainsi nous introduisons deux modèles de détection :

1. 1-SVM.MADe : ce modèle utilise tout d'abord notre méthode MADe.FS pour sélec-

tionner les paramètres électriques pertinents, puis l'algorithme 1-SVM est appliqué

sur le sous-ensemble de paramètres sélectionnés pour détecter les wafers anormaux.

2. 1-SVM.RFE : dans ce modèle, la sélection de variables est e�ectuée en utilisant la

méthode de type wrapper 1-SVM-RFE, puis un classi�eur 1-SVM est construit à

partir des paramètres retenus.

Ces deux modèles ont été testés suivant deux modes de fonctionnement : un mode statique

et un mode dynamique.

� Mode statique : les modèles sont �gés. Ils ne prennent pas en considération l'ordre

chronologique des wafers et l'évolution temporelle des mesures de paramètres éléc-

triques.

� Mode dynamique : Le modèle dynamique exploite les modèles de détection développés

tout en considérant le facteur �temps�. Le but étant de réaliser une détection en temps

réel dans le contexte d'une application industrielle. L'idée est d'appliquer les modèles

de détection dans un cadre temporel où l'ordre chronologique des wafers est respecté.

En mode dynamique, les wafers mavericks sont détectés à partir d'un historique récent

des mesures électriques à l'aide d'une fenêtre temporelle glissante. Pour ce faire, deux

conditions sont nécessaires :

1. Les mesures doivent etre triées par ordre chronologique.

2. L'historique disponible doit être su�sament long pour pouvoir construire le mo-

dèle sur un échantillon d'apprentissage représentatif contenant une grande variété

des mesures électriques.
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Modèle
anomalie normal

PT
anomalie TN FN
normal FP TP

Table 4.1 � Résultats possibles lors d'une application d'un modèle de détection.

4.2 Evaluation de Performance et jeux de données

Puisque l'hypothèse construite par un algorithme d'apprentissage peut être comprise

comme une approximation de la fonction cible, la qualité de cette approximation, appelée

performance, est d'un grand intérêt. Il s'agit d'une mesure de la capacité de généralisation

des hypothèses.

D'une part, l'évaluation de performance est importante pour faire le réglage des para-

mètres de l'algorithme d'apprentissage ou pour trouver un sous-ensemble optimal des

variables dans le cadre d'une sélection de variables. D'autre part, elle est utilisée pour

comparer et évaluer les di�érents algorithmes d'apprentissage utilisés. De cette façon,

l'algorithme optimal pour un problème spéci�que peut être étudié.

4.2.1 Mesures de Performance

Le terme �mesure de performance� spéci�e la manière dont la performance de l'algo-

rithme est déterminée. Le tableau 4.1 montre les di�érents résultats possibles lors d'une

application d'un modèle de détection :

1. TN : le nombre de vrais négatifs(True Negative), i.e. le nombre de wafers considérés

comme anormaux au PT et détectés par le modèle.

2. FN : le nombre de faux négatifs (False Negative), i.e. le nombre de wafers considérés

comme anormaux au PT et non détectés par le modèle.

3. FP : le nobmre de faux positifs (False Positive), i.e. le nombre de wafers considérés

comme normaux au PT et détectés par le modèle.

4. TP : le nombre de vrais positifs (True Positive), i.e. le nombre de wafers considérés

comme normaux au PT et non détectés par le modèle.

Par suite nous pouvons calculer la sensibilité et la spéci�cité. La sensibilité (4.1) repré-

sente le taux de vrais négatifs, i.e la précision de détection des observations anormales.

La spéci�cité (4.2) représente le taux de vrais positifs, i.e la précision de détection des

observations normales.
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sensibilité = 100
TN

TN + FN
% (4.1)

spécificité = 100
TP

TP + FP
% (4.2)

En se basant sur ces deux mesures, nous dé�nissons deux mesures de performance : le

taux de détection (Detection Rate DR) et le taux de fausses alarmes (False Alarms Rate

FAR). Le taux de détection (sensibilité) est le pourcentage de wafers anormaux détectés

par notre modèle tandis que le taux de fausses alarmes (100-spéci�cité) est le pourcentage

des wafers normaux considérés comme des anomalies par notre modèle.

Une mesure de performance largement utilisée dans la classi�cation est la précision (accu-

racy), qui représente la fraction d'observations correctement classées dans l'ensemble de

test. Nos jeux de données sont constitués presque entièrement d'observations normales

alors que les anomalies sont rares. Alors les probabilités a priori des classes sont très

di�érentes, d'où cette mesure n'est pas adaptée à notre étude. Par exemple, sur un en-

semble de données avec une distribution de 98%−2% des classes, il est facile d'atteindre

98% de précision en attribuant simplement chaque nouveau cas à la classe cible (wafers

normaux). Une telle mesure est inappropriée pour la détection des wafers anormaux,

comme le classi�cateur aurait échoué de reconnaître un wafer anormal.

Pour surmonter ce problème, nous avons choisi la métrique G-means (4.3) présentée dans

[52].

G−means =
√
sensitivité× spécificité =

√
DR× (100− FAR) (4.3)

L'idée de base de G-means est de maximiser les valeurs de la sensibilité et de la spéci�cité

et de garder le taux de détection et le taux de fausses alarmes en équilibre. Des valeurs

élevées de cette mesure indique une bonne qualité du modèle de classi�cation.

4.2.2 Courbes FAR-DR

Une façon plus avancée et fréquemment utilisée pour l'évaluation de la performance des

modèles d'apprentissage automatique est fournie par ce qu'on appelle la courbe FAR-DR.

Cette courbe fournit un moyen approprié pour l'évaluation de classi�cateurs en intégrant

leur performance sur une gamme de seuils de décision. Par exemple, cette gamme peut

être de di�érentes valeurs d'un paramètre libre du modèle d'apprentissage comme le

paramètre ν dans les SVM à une classe. La courbe FAR-DR montre donc la relation

ou le compromis entre le taux de détection et le taux de fausses alarmes en faisant

varier une condition ou un paramètre libre du modèle utilisé. Pour chaque élément de

cette gamme, un point de la courbe FAR-DR est déterminé. Un point parfait dans cette
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courbe présenterait un taux de détection de 100% avec un taux de fausses alarmes de

0%. Par conséquent, les chercheurs essaient de pousser la courbe vers ce point idéal, i.e

vers la partie haute gauche.

La courbe FAR-DR est inspirée de la courbe ROC. Cette dernière montre aussi le compro-

mis entre le taux de détection et le taux de fausses alarmes en faisant varier un paramètre

libre du modèle utilisé. La seule di�érence entre les deux courbes est la gamme de valeurs

de ce paramètre exploitée par ces courbes. Avec la courbe ROC, on fait varier le para-

mètre ν du 1-SVM pour di�érentes valeurs appartenant à ]0, 1[, alors qu'avec la courbe

FAR-DR on peut se contenter de varier ce paramètre sur un sous-ensemble de ]0, 1[.

Dans notre étude, les courbes FAR-DR sont tracées en faisant varier ν sur [0.01, 0.2]

avec un pas de 0.01.

4.2.3 Prétraitement des données

Les données collectées sur Crolles 300 (mesures des paramètres, limites de validité) sont

extraites à partir de la base de données avec le logiciel PT_ANALYSIS_II. Cet outil

a été développé à STMicroelectronics, sur le site de Crolles, pour visualiser et analyser

toutes les données du PT (boites à moustaches, histogrammes, indicateurs statistiques,

mapping des wafers . . . ).

Les paramètres PT

Les paramètres collectés sont les paramètres de type �Gated�. Ce sont tous les paramètres

électriques dé�nis dans le programme du test paramétrique pour l'acceptation des lots

et des wafers. Ces paramètres comprennent les paramètres �clés�, un sous-ensemble de

paramètres de �abilité et de qualité considérés comme majeurs pour la technologie et

doivent être garantis aux clients.

Les paramètres Gated sont classés en deux catégories :

� Les paramètres de �abilité : paramètres potentiellement liés à des problèmes de �abi-

lité, en raison du processus de fabrication, et qui peuvent avoir un impact sur la durée

de vie du circuit. Nous citons par exemple les paramètres �VBD_AREA_PN_1� et

�VBD_AREA_PN_2� qui mesurent la tension de claquage de deux structures de test

di�érentes.

� Les paramètres de qualité : paramètres qui caractérisent le rendement de fabrication

du produit. Nous citons par exemple le paramètre �NIOFF03028TG14� qui mesure le

courant résiduel du transistor fermé, le paramètre clé �NVT02044RST14� qui mesure la

tension seuil d'un transistor caractérisé par une longuer et une largeur bien spéci�que,
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et le paramètre �NIDS0205RD14� mesurant le courant de saturation d'un transistor

caractérisé par une longuer et une largeur bien spéci�que.

Comme nous avons déjà vu dans la Figure 7, ces paramètres sont mesurés sur tous les

lots et tous les wafers en neuf sites (emplacements) de chaque wafer.

Transposition des données

Les �chiers contenant les données sont sous forme d'une matrice : chaque colonne re-

présente un indicateur du wafer (identi�ant du lot, numéro du wafer dans le lot, nom

du produit, position (location), date de prise des mesures, . . . ) ou un paramètre PT, et

chaque ligne, une observation (un site d'un wafer d'un lot) (Tableau 4.2).

Au début, nous avons résumé les neuf sites de mesures de chaque paramètre électrique par

leur moyenne et leur écart-type. Ceci nous amené à une perte d'information importante et

a réduit la pertinence de la détection. Pour cela, un code a été réalisé dans le logiciel pour

garder toutes les valeurs correspondantes aux neuf sites de mesure, mais dans un format

exploitable. Ce code transpose les �raw data� d'un wafer (9 lignes correspondant aux 9

sites du wafer) en colonnes, donc chaque wafer d'un lot sera représenté par une ligne et

décrit par 9 mesures de chaque paramètre en colonnes (Tableau 4.3). Donc la dimension

de l'espace de variables est égale à neuf fois le nombre de paramètres électriques mesurés,

puisque chaque site de mesure d'un paramètre va à son tour constituer un nouveau

paramètre.

Le Tableau 4.2 montre un exemple de �chier de données extrait de la base de données de

ST, où chaque wafer est décrit par neuf lignes, chaque ligne correspond aux mesures d'un

site de mesures de l'ensemble de paramètres électriques. Avec le code de transposition

développé, nous obtenons dans le Tableau 4.3 le format exploitable en analyse de données,

où chaque wafer est décrit par une seule ligne, et le facteur site �gure en colonnes et pas

en ligne (BVNWPW11_1,. . . , BVNWPW11_9).

Traitement des mesures hors limites de validité

Outre les limites de spéci�cations, les ingénieurs PT dé�nissent aussi des limites de vali-

dité pour les paramètres électriques, qui sont bien éloignées des limites de spéci�cation.

Une mesure hors validité peut être dûe à un défaut de fabrication ou un problème de

mesure. Les mesures hors validité qui s'écartent trop des autres mesures pourraient af-

fecter le bon fonctionnement des méthodes statistiques utilisées. Par exemple, on peut

trouver une mesure égale à 1021 pour un paramètre électrique causée par un problème
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lot lotwaf site . . . BVNWPW11 . . . W_MAX

Q102YAK Q102YAK_1 1 STD 8.806 . . . 1.08
...

...
...

...
...

...
...

Q102YAK Q102YAK_1 9 STD 8.784 . . . 1.35
...

...
...

...
...

...
...

Q102YAK Q102YAK_25 1 STD 8.885 . . . 1.17
...

...
...

...
...

...
...

Q102YAK Q102YAK_25 9 STD 8.915 . . . 0.96
...

...
...

...
...

...
...

Q131MWH 131MWH_25 1 STD 9.768 . . . 0.82
...

...
...

...
...

...
...

Q131MWH 131MWH_25 9 STD 9.879 . . . 0.75

Table 4.2 � Exemple de �chier de données extrait à partir de la base de données

lot lotwafer . . . BVNWPW11_1 . . . BVNWPW11_9 . . . W_MAX_9

Q102YAK Q102YAK_1 . . . 8.806 . . . 8.784 . . . 1.35

Q102YAK Q102YAK_25 . . . 8.885 . . . 8.915 . . . 0.96
...

...
...

...
...

...
...

...

Q131MWH Q131MWH_25 . . . 9.768 . . . 9.879 . . . 0.75

Table 4.3 � Transposition en colonnes des �Raw data� du Tableau 4.2

de mesure. Par conséquent, il est nécessaire de �ltrer ce type de mesures non représenta-

tives du procédé de fabrication. Pour cela, nous classi�ons suite aux avis des ingénieurs

PT les paramètres électriques en deux catégories dé�nissant si les mesures hors validité

ont une signi�cation physique (un défaut de fabrication) ou non (un problème de mesure).

Nous construisons alors un �chier contenant les paramètres électriques et leur catégorie

constituée de deux modalités :

� Categorie C1 : une meure hors validité a une signi�cation physique.

� Categorie C2 : une meure hors validité n'a pas une signi�cation physique.

Le logiciel PT_ANALYSIS_II permet avec l'option �Exclude Out of Validity� (exclure

les mesures hors validité) de remplacer automatiquement dans les �chiers extraits les

mesures hors validité par des données manquantes.

Ensuite, pour traiter les données manquantes qui correspondent à des valeurs hors vali-

dité, un programme a été créé avec le logiciel R. Ce programme prend en entrée un �chier

de données contenant les mesures des paramètres et un autre contenant les catégories de
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ces paramètres. Le programme parcourt tout le �chier de données et dès qu'une valeur

manquante est détectée, il procède à une de deux actions suivantes :

� si la donnée manquante correspond à un paramètre de �Catégorie C1�, nous la rempla-

çons par la limite de validité la plus proche (supérieure ou inférieure) du paramètre

électrique correspondant.

� si la donnée manquante correspond à un paramètre de �Catégorie C2�, nous la rempla-

çons par la moyenne des mesures valides du même paramètre électrique et même site

de mesure des wafers du même lot.

4.2.4 Description des jeux de données

Nous avons décidé de travailler sur la technologie �IMAGER 140� (I140). Elle fait partie

des technologies les plus avancées à Crolles. De plus, elle présente un volume de produc-

tion important ce qui est un avantage pour la collecte des données et la pertinence des

analyses.

Cette technologie consiste à fabriquer des capteurs d'images. Ces capteurs sont des dispo-

sitifs qui permettent de transcrire une scène observée en un signal électronique à travers

une optique de focalisation. Autrement dit, ils permettent de transformer une image

réelle en signal numérique. Nous en utilisons au quotidien à travers des photocopieurs,

appareils photo, caméras numériques, lecteurs code barres et téléphones portables.

Les di�érentes techniques de détection ont été testées sur deux jeux de données réelles

de ST : dataset 1 et dataset 2. Ces deux jeux de données sont décrits dans le Tableau

4.4. Chaque jeu de données consiste en un produit de la technologie I140 avec plusieurs

mois de production.

dataset 1 dataset 2

Produit P1 P2

Période de production 4 mois 2 mois

Nb de wafers 2550 1600

Nb de wafers scrapés au PT 12 23

% de wafers scrapés au PT 0.47 1.44

Nb de paramètres électriques 118 84

Dimension de l'espace de variables 1062 756

Table 4.4 � Description des jeux de donnéees réelles de ST utilisées dans notre étude.

Le dataset 1 est composé de 2550 wafers décrits chacun par 118 paramètres électriques

mesurés en neuf sites ce qui fait un espace de variables de dimension égale à 1062 (9×118).
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Il contient 12 wafers considérés comme anormaux au PT. Le dataset 2 est composé de

1600 wafers dont 23 sont considérés comme anormaux au PT. Chaque wafer est décrit par

84 paramètres électriques mesurés également en neuf sites, d'où la dimension de l'espace

de variables est égale à 756 (9 × 84). Les wafers anormaux du dataset 1 ont des pro�ls

très atypiques et sont donc faciles à détecter par les trois modèles de détection que nous

allons utilisés contrairement aux wafers anormaux du dataset 2. Des taux de détection

très élevés peuvent être obtenus avec les trois modèles utilisés et sur les deux jeux de

données, mais avec des taux de fausses alarmes dans le dataset 1 beaucoup plus petits

que dans le dataset 2. Alors nous pouvons dire que le dataset 1 est un jeu de données

idéal où tous les modèles sont capables de réaliser une détection performante, tandis que

le dataset 2 représente un dé� pour les modèles de détection et va permettre de choisir

le modèle le plus performant.

4.3 In�uence de l'hyperparamètre γ sur la performance de

1-SVM

Dans la Section 2.4.2, et pour les raisons citées dans la Section 2.3.5, nous avons vu

que le noyau gaussien représente le meilleur choix en tant qu'une fonction noyau pour

les algorithmes SVM et 1-SVM. Pour cela nous avons commencé par étudier l'in�uence

de l'hyperparamètre γ du noyau gaussien sur la performance de l'algorithme 1-SVM

appliqué sans sélection de variables.

Selon Vapnik [92], le choix de la valeur de γ dépend de la dimension de l'espace de

variables auquel les SVM sont appliqués, et celui-ci préconise de choisir γ = 1/p.

Toutefois, comme on peut le constater sur la Figure 4.3 cette valeur n'est pas toujours

optimale (ici la valeur préconisée par Vapnik correspond à l'abscisse 1, pour laquelle la

performance de 1-SVM n'est pas optimale). C'est pourquoi nous avons utilisé un parcours

d'un ensemble de valeurs de γ discrètes réelles dé�nies par

γ =
1

m× p

avec m ∈ {13 ,
1
2 , 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}.

Les bornes supérieures et inférieures de cet intervalle ont été dé�nies de façon empirique

a�n de couvrir une plage de valeur su�samment large autour de la valeur recommandée

γ = 1/p.

L'in�uence de l'hyperparamètre γ a été étudiée sur les deux jeux de données en mode

statique. Nous avons partitionné le jeu de données en un ensemble d'apprentissage et
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Figure 4.1 � Dataset 1 : variation de la mesure de performance G-means de l'algorithme
1-SVM en fonction de di�érentes valeurs de m, pour ν = 0.05.
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Figure 4.2 � Dataset 1 : variation de la mesure de performance G-means de l'algorithme
1-SVM en fonction de di�érentes valeurs de m, pour ν = 0.1.
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Figure 4.3 � Dataset 2 : variation de la mesure de performance G-means de l'algorithme
1-SVM en fonction de di�érentes valeurs de m, pour ν = 0.1.
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Figure 4.4 � Dataset 2 : variation de la mesure de performance G-means de l'algorithme
1-SVM en fonction de di�érentes valeurs de m, pour ν = 0.15.
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un ensemble test avec des proportions respectives de 2/3 et 1/3. Ensuite nous avons

appris le modèle 1-SVM sur l'échantillon d'apprentissage ne contenant que des wafers

considérés comme normaux au PT, et nous avons déterminé les taux de détection et

de fausses alarmes obtenus suite à l'application du modèle sur l'échantillon de test. Ce

scénario est répété 100 fois (100 partitionnements aléatoires du jeu de données suivant les

proportions 2/3 ;1/3). Pour chaque valeur de m, la moyenne et l'écart-type de la mesure

de performance G-means sont calculés sur les 100 répétitions aléatoires.

Les Figures 4.1 et 4.2 (resp. Figures 4.3 et 4.4) montrent les variations de la mesure de

performance G-means en fonction de di�érentes valeurs de m dans le dataset 1 (resp.

dataset 2), pour ν = 0.05 et ν = 0.1 (resp. ν = 0.1 et ν = 0.15) . Des barres d'erreurs ont

été ajoutées pour représenter les écarts-type de G-means. Comme on peut le constater,

les quatre courbes présentent une assez large plage (m ≥ 1) pour laquelle la mesure G-

means est élevée et peu variable, avec aussi une légère variabilité observée au niveau de

chaque valeur de m (des petites barres d'erreur). L'algorithme 1-SVM montre alors une

performance quasiment stable, et Le choix de m dans cette plage n'est donc pas critique.

Ces résultats montrent alors que 1-SVM n'est pas sensible au hyperparamètre γ du noyau

gaussien. Donc il n'est pas nécessaire de faire un réglage précis pour cet hyperparamètre.

Pour la suite, nous avons décidé de retenir la valeur γ = 1/3p (m = 3). Toutefois, nous

pouvons, en présence d'un échantillon de validation, choisir une valeur optimale de γ dans

la plage de valeurs proposée dans cette section en se basant sur l'erreur de validation.

4.4 Importance de la sélection de variables dans 1-SVM

Dans cette section, nous montrons l'importance de l'utilisation de deux méthodes de

sélection de variables dans l'amélioration de la performance de détection de l'algorithme

1-SVM. Nous avons considéré les deux jeux de données et nous avons testé les modèles

1-SVM, 1-SVM.MADe et 1-SVM.RFE en mode statique selon le même scénario d'ap-

prentissage et de test de la section précédente. L'hyperparamètre γ est posé égal à 1/3p.

Dans les modèles 1-SVM.MADe et 1-SVM.RFE, p représente le nombre de paramètres

électriques retenus après la sélection de variables. Nous avons considéré 20 valeurs de ν

telles que ν ∈ {0.01, 0.02, . . . , 0.2}. L'hyperparamètre q des méthodes de sélection de

variables est pris égal à 0.75 (i.e. nous avons retenu le quart des paramètres électriques

les plus pertinents avec chaque méthode).

Nous donnons dans les Tableaux 4.5 et 4.6 des illustrations numériques de l'amélioration

de la performance de détection après avoir utilisé chacune des méthodes de sélection de

variables respectivement dans le dataset 1 et le dataset 2. Nous avons choisi 6 valeurs
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ν
1-SVM 1-SVM.MADe 1-SVM.RFE

DR FAR DR FAR DR FAR
0.03 77.50 (5.85) 4.19 (0.71) 80.15 (3.24) 3.65 (1.15) 81.12 (2.05) 3.37 (0.98)
0.04 83.61 (1.52) 5.40 (0.91) 84.35 (2.45) 4.87 (0.82) 84.73 (3.21) 4.41 (0.85)
0.05 84.72 (3.16) 6.13 (0.98) 86.07 (2.15) 5.89 (0.71) 87.11 (2.66) 4.99 (0.71)
0.06 89.44 (3.75) 7.06 (0.96) 90.55 (1.49) 6.77 (1.21) 90.72 (1.26) 6.29 (1.15)
0.07 91.39 (1.52) 8.30 (1.02) 91.66 (0) 8.23 (1.02) 91.66 (0) 8.46 (0.82)
0.08 91.66 (0) 9.11 (1.66) 91.66 (0) 8.71 (1.16) 91.66 (0) 8.55 (1.35)

Table 4.5 � Dataset 1 : ilustration numérique de l'amélioration de la performance de
détection avec les méthodes de sélection de variables pour q = 0.75.

ν
1-SVM 1-SVM.MADe 1-SVM.RFE

DR FAR DR FAR DR FAR
0.05 52.52 (6.93) 5.78 (1.28) 79.45 (8.79) 5.28 (1.13) 93.57 (5.29) 5.96 (1.22)
0.06 62.22 (8.44) 6.89 (1.52) 89.30 (5.43) 7.22 (1.33) 95.65 (0) 6.43 (1.19)
0.07 71.22 (7.79) 8.12 (1.57) 93.30 (3.54) 7.84 (1.23) 95.65 (0) 7.78 (1.29)
0.10 88.65 (5.13) 10.96 (1.76) 95.65 (0) 10.63 (1.42) 95.65 (0) 10.55 (1.35)
0.12 94 (2.88) 12.92 (1.75) 95.65 (0) 12.29 (1.64) 95.65 (0) 12.93 (1.93)
0.15 95.65 (0) 15.86 (2.03) 95.65 (0) 15.57 (2.26) 95.65 (0) 15.53 (1.79)

Table 4.6 � Dataset 2 : ilustration numérique de l'amélioration de la performance de
détection avec les méthodes de sélection de variables pour q = 0.75.

de ν représentatives de cette amélioration. Pour chaque valeur de ν, nous donnons la

moyenne et l'écart-type (entre paranthèse) de deux mesures de performance DR et FAR

obtenus sur les 100 répétitions aléatoires avec chacun de trois modèles de détection.

Dans le Tableau 4.5, une amélioration de deux mesures de performance a été observée

en appliquant les méthodes de sélection de variables, surtout pour les premières valeurs

de ν (ν ∈ {0.03, 0.04, 0.05}). Les méthodes 1-SVM-RFE et MADe.FS ont montré des

performances similaires, avec des légères augmentations de DR et réductions de FAR

apportées par la méthode 1-SVM-RFE par rapport à la méthode MADe.FS. Cette légère

amélioration de performance de détection est dûe à la facilité de détection des wafers

anormaux dans ce jeu de données (cf. Section 4.2.4). Il su�t de voir que le modèle 1-

SVM fournit une bonne performance de détection pour toutes les valeurs de ν, et ceci

sans appliquer une sélection de variables. Nous nous attendons à une amélioration plus

signi�cative de la performance de détection dans le dataset 2 après avoir sélectionné

les paramètres électriques pertinents. Dans le Tableau 4.6, nous voyons clairement les

améliorations signi�catives dans la performance de détection, apportées par chacune des

deux méthodes de sélection de variables. En e�et, pour une même valeur de ν, nous

observons des FAR similaires et peu variables (petits écarts-type) mais des améliorations

importantes et moins variables des DR avec les modèles 1-SVM.MADe et 1-SVM.RFE

par rappot au modèle 1-SVM. Par exemple, pour ν = 0.05, nous notons en moyenne



Chapitre 4. Quelques résultats de la détection avec 1-SVM en mode statique 94

ν
1-SVM 1-SVM.MADe 1-SVM.RFE

DR FAR DR FAR DR FAR
0.05 52.52 (6.93) 5.78 (1.28) 66.17 (14.23) 5.42 (1.14) 88.43 (4.36) 5.96 (1.25)
0.06 62.22 (8.44) 6.89 (1.52) 72.70 (14.11) 6.55 (1.35) 91.04 (1.36) 6.41 (1.28)
0.07 71.22 (7.79) 8.12 (1.57) 77.30 (13.76) 7.10 (1.23) 91.30 (0) 7.91 (1.41)
0.10 88.65 (5.13) 10.96 (1.76) 88.52 (7.28) 10.19 (1.52) 92.87 (2.11) 10.53 (1.65)
0.12 94 (2.88) 12.92 (1.75) 91.04 (6.24) 11.85 (1.84) 95.57 (0.61) 12.41 (1.71)
0.15 95.65 (0) 15.86 (2.03) 94.35 (3.07) 14.96 (1.94) 95.65 (0) 15.73 (1.64)

Table 4.7 � Dataset 2 : ilustration numérique de l'amélioration de la performance de
détection avec les méthodes de sélection de variables pour q = 0.9.

des augmentations respectives de DR d'environ 27% et 41%, puis d'environ 22% et

24% pour ν = 0.07. Ensuite, le taux de détection a atteint 94% avec le modèle 1-

SVM (pour ν = 0.12). Des taux de détection très proches ont été obtenus en appliquant

les modèles 1-SVM.MADe (93.3%, ν = 0.07) et 1-SVM.RFE (93.57%, ν = 0.05), mais

avec des réductions signi�catives des fausses alarmes respectivement égales à 5 et 7%

environ. Pour un taux de détection égal à 95.65% obtenu sans sélection de variables

(ν = 0.15), les méthodes de �ltrage (ν = 0.10) et de wrapper (ν = 0.06) ont abouti à ce

même taux mais avec des réductions respectives de fausses alarmes de 5 et 9% environ.

De plus, ces résultats montrent que le modèle 1-SVM.RFE est plus performant que le

modèle 1-SVM.MADe. Ce résultat était attendu vu que le premier modèle utilise une

méthode wrapper qui intègre les performances prédictives du classi�eur 1-SVM alors que

le deuxième utilise une méthode de �ltrage basée sur un score indépendant du classi�eur

1-SVM.

Le Tableau 4.7 montre aussi l'amélioration de la performance de détection apportée par

les méthodes 1-SVM.MADe et 1-SVM.RFE par rapport au 1-SVM, avec q pris égal à

0.9. Le modèle 1-SVM.RFE est toujours plus performant que le modèle 1-SVM.MADe.

Cependant, et en comparant pour les mêmes valeurs de ν, ce tableau au Tableau 4.6,

nous remarquons une diminution respective des DR et FAR des modèles 1-SVM.MADe

et 1-SVM.RFE. Avec q = 0.90, nous observons une dégradation signi�cative de la per-

formance du modèle 1-SVM.MADe par rapport à q = 0.75, et ceci pour les 6 valeurs

de ν. De plus, pour ν ∈ {0.10, 0.12, 0.15}, le modèle 1-SVM a donné des DR plus

élevés et moins variables que le modèle 1-SVM.MADe. Ceci peut être dû à l'élimination

d'une ou plusieurs variables discriminatives par la méthode de �ltage. Concernant le

modèle 1-SVM.RFE, une légère dégradation de performance est soulignée pour quelques

valeurs de ν (ν ∈ {0.05, 0.06, 0.07, 0.1}). 1-SVM.RFE a donc été moins a�ecté par

l'augmentation de q que 1-SVM.MADe. Ceci peut s'expliquer par le fait que la méthode

de sélection de type wrapper a pu garder les paramètres électriques discriminants dans

les 10% paramètres sélectionnés (q = 0.9) contrairement à la méthode de type �ltrage.
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L'augmentation de q de 0.75 à 0.90 a abouti à une baisse de performance des méthodes

de sélection de variables.

Pour résumer, les résultats des Tableaux 4.5 et 4.6 ont montré l'importance d'applica-

tion d'une méthode de sélection de variables pour une détection plus performante avec

la méthode 1-SVM. Ces deux jeux de données ont montré aussi la supériorité du mo-

dèle 1-SVM.RFE par rapport au modèle 1-SVM.MADe. D'autre part, la comparaison des

Tableaux 4.7 et 4.6 montre que le choix de l'hyperparamètre q est sensible. Il est donc im-

portant de faire un choix optimal de cet hyperparamètre a�n d'optimiser la performance

de détection de la méthode 1-SVM.

4.5 In�uence de la présence d'anomalies dans l'étape d'ap-

prentissage de 1-SVM

1-SVM est une méthode d'apprentissage semi-supervisée où le modèle de classi�cation

est construit sur un échantillon d'apprentissage constitué des observations normales.

Donc l'idée d'avoir des anomalies dans l'échantillon d'apprentissage n'est pas tout à

fait réaliste. Cependant, il est important d'étudier ce cas a�n de mieux interpréter les

résultats de comparaisons de deux scénarios de mise à jour de notre système de détection

en temps réel dans le Chapitre 5. De plus, il se peut qu'il existe un ou plusiers wafers

dans l'échantillon d'apprentissage considérés comme normaux par les ingénieurs PT et

qu'ils soient réellement anormaux.

Ceci nous amène à se poser la question suivante : que se passe-t-il si l'échantillon d'ap-

prentissage contient une très petite fraction d'anomalies ? Rappelons tout d'abord que le

paramètre ν de cette méthode est une borne supérieure de la fraction des erreurs d'ap-

prentissage et permet alors de maximiser la marge de séparation en classant quelques

observations normales comme anomalies. Intuitivement, nous pouvons nous attendre à

ce que ces anomalies, avec une valeur appropriée de ν, vont être situées entre l'hyper-

plan séparateur et l'origine et par suite leur présence ne va pas a�ecter fortement la

performance prédictive du classi�eur 1-SVM. Cependant, et pour une même valeur de ν,

la marge du classi�eur 1-SVM est plus large en absence d'anomalies dans l'échantillon

d'apprentissage et par conséquent la présence d'anomalies dans la phase d'apprentissage

peut réduire la capacité de généralisation du classi�eur 1-SVM.

Nous étudions donc, dans cette section, l'in�uence de la présence d'anomalies dans la

phase d'apprentissage du modèle 1-SVM sur sa performance de détection. Cette condi-

tion est testée sur les deux jeux de données en mode statique. Nous avons considéré deux

types d'échantillons d'apprentissage : un échantillon non contaminé ne contenant que
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ν
Sans anomalies Avec anomalies

DR FAR DR FAR
0.06 67.92 (14.19) 6.04 (0.84) 64.58 (14.34) 5.94 (0.83)
0,08 72.08 (13.80) 8.28 (1.22) 70.83 (14.06) 8.12 (1.23)
0,10 75.42 (15.91) 10.43 (1.48) 72.08 (16.64) 10.22 (1.46)
0,12 75.83 (14.28) 12.35 (1.41) 73.33 (14.58) 12.25 (1.44)

Table 4.8 � Dataset 1 : in�uence de la présence d'anomalies dans l'échantillon d'appren-
tissage sur la performance du modèle de détection 1-SVM.MADe, avec q = 0.75.

ν
Sans anomalies Avec anomalies

DR FAR DR FAR
0.06 89.50 (8.39) 7.23 (1.53) 68.50 (12.74) 6.53 (1.48)
0,08 93.33 (5.32) 9.24 (1.56) 85.33 (9.31) 8.39 (1.68)
0,10 95.33 (4.18) 10.87 (1.82) 93.83 (5.27) 9.89 (1.65)
0,12 96.83 (4.08) 12.96 (1.69) 96.67 (4.12) 12.01 (1.63)

Table 4.9 � Dataset 2 : in�uence de la présence d'anomalies dans l'échantillon d'appren-
tissage sur la performance du modèle de détection 1-SVM.MADe, avec q = 0.75.

des wafers normaux, et un échantillon contaminé contenant quelques wafers anormaux.

Les échantillons d'apprentissage du dataset 1 sont constitués de 1700 wafers (2/3) dont

4 wafers sont anormaux dans les échantillons contaminés ce qui représente une fraction

de 0.24% environ. Les échantillons d'apprentissage du dataset 2 sont constitués de 1077

wafers (2/3) dont 11 wafers sont anormaux dans les échantillons contaminés ce qui repré-

sente une fraction de 1% environ. L'écart signi�catif des fractions d'anomalies injectées

dans les échantillons d'apprentissage est dû au faible nombre des wafers anormaux dans

le dataset 1. Les échantillons de test correspondant à chacun des deux types des échan-

tillons d'apprentissage sont les mêmes, et ils contiennent les 12 (resp. 8) wafers anormaux

non injectés dans les échantillons d'apprentissage contaminés du dataset 1 (resp. dataset

2). Nous avons procédé à 100 répétitions aléatoires des wafers normaux et anormaux

dans les échantillons d'apprentissage.

Dans cette section, nous avons uniquement utilisé le modèle 1-SVM.MADe qui est beau-

coup plus rapide en terme de temps de calcul que le modèle 1-SVM.RFE, l'objectif es-

sentiel étant d'étudier le comportement du modèle de détection 1-SVM avec la présence

d'anomalies dans l'échantillon d'apprentissage et non pas comparer les performances des

modèles de détection. Nous aurions pu choisir 1-SVM sans sélection de variables dans

cette section, mais nous avons préféré séléctionner les paramètres électriques pertinents

avec la méthode de �ltrage pour améliorer la performance prédictive de ce modèle et

réduire le temps de calcul. L'hyperparamètre q est pris égal à 0.75 dans les deux jeux de

données.
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Les Tableaux 4.8 et 4.9 montrent respectivement les résultats de comparaison de la per-

formance de deux modèles de détection dans le dataset 1 et le dataset 2, construits

respectivement sur des échantillons non contaminés (Sans anomalies) et sur des échan-

tillons contaminés (Avec anomalies), et ceci pour quatre valeurs illustratives de ν choisies

parmi les 20 valeurs introduites dans la section précédente. Nous remarquons que pour

toutes les valeurs de ν, les taux de détection sont plus élevés et moins variables en absence

d'anomalies dans les échantillons d'apprentissage, tandis que les taux de fausses alarmes

sont légèrement inférieurs dans les échantillons contaminés. Le modèle 1-SVM construit

à partir d'un échantillon non contaminé tend alors à détecter plus rapidement les anoma-

lies qu'un modèle construit à partir d'un échantillon contaminé. Notons �nalement que

la présence d'anomalies dans l'échantillon d'apprentissage du modèle 1-SVM n'a�ecte

pas fortement sa performance de détection. Regardons par exemple dans le dataset 1

(resp. dataset 2) les résultats du cas �Avec anomalies� pour ν ≥ 0.08, où les taux de

détection dépassent 70% (resp. 85%) avec une réduction moyenne d'environ 0.15% (resp.

1%) de fausses alarmes par rapport au cas �Sans anomalies�. La réduction de fausses

alarmes peut être expliquée par le fait que la région des observations normales devient

plus grande en présence d'anomalies puisque la marge du classi�eur 1-SVM est moins

large dans ce cas.

Nous constatons que la di�érence de performance de détection entre le cas �Sans ano-

malies� et le cas �Avec anomalies� est moins signi�cative dans le dataset 1 que dans le

dataset 2. Ceci est dû à la faible fraction de contamination dans les échantillons d'ap-

prentissage du dataset 1, qui est cinq fois inférieur à la fraction de contamination dans

les échantillons d'apprentissage du dataset 2.

Notons que l'écart observé au niveau des taux de détection entre les deux jeux de données

ne veut absolument pas dire que le modèle 1-SVM.MADe est moins performant dans le

dataset 1 que dans le dataset 2. Nous rappelons qu'il y a 8 wafers anormaux dans les

échantillons de test du dataset 1. Ainsi, un taux de détection égal à 75% représente

6 wafers anormaux détectés parmi 8. De plus, il y a un wafer dans ce jeu de données

impossible à détecter, le pro�l de ce wafer sera présenté dans la Section 5.5. Le fait que ce

wafer �gure dans l'échantillon de test ou non, explique les écart-type élevés des taux de

détection obtenus avec ce jeu de données et dans les deux cas d'étude, puisque un wafer

sur huit représente un pourcentage de 12.5 %. Finalement, il se peut que la valeur choisie

de q (0.75) est plus appropriée au dataset 2 qu'au dataset 1, puisque la dimension de ce

dernier est bien supérieure à celle du premier et par suite il faut peut être augmenter la

valeur de q dans le dataset 2 pour obtenir une meilleure performance.





Chapitre 5

Détection en temps réel basée sur

1-SVM

Ce dernier chapitre constitue une application industrielle des systèmes de détection déve-

loppés. Nous commençons par décrire notre système de détection en temps réel basé sur

un modèle dynamique de 1-SVM avec une des deux méthodes de sélection de variables

spéci�quement développées. Ce système est ensuite appliqué sur les deux jeux de données

réels de STMicroelectronics. Ce système est comparé à un système alternatif basé sur le

test de T 2 de Hotelling qui est très connu dans le domaine de détection de défauts en

industrie. Ce système, que nous le dénotons par T 2.PCA, consiste en une compression

de variables e�ectuée avec une ACP, puis la statistique T 2 de Hotelling est déterminée

sur les scores de données obtenues et comparée à un seuil prédé�ni.

A la �n de ce chapitre, les signatures multidimensionnelles des wafers anormaux détectés

par notre système sont déterminées a�n d'identi�er le ou les paramètre(s) électrique(s)

responsable(s) de l'anomalie.

5.1 Notre système de détection en temps réel

L'idée derrière le développement d'un système de détection en temps réel était d'exploi-

ter nos deux modèles de détection développés 1-SVM.MADe et 1-SVM.RFE en mode

dynamique a�n de tester en ligne de production (in-line testing) l'état électrique des

wafers (normal ou anormal). Ce système vise donc à détecter en temps réel les wafers

anormaux en se basant sur un historique récent de mesures électriques. Dans ce qui suit,

et a�n de simpli�er la lecture, nous notons notre modèle de sélection de variables et de

99
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classi�cation par 1-SVM.FS (one-class SVM with Feature Selection). Ce modèle peut

représenter 1-SVM.MADe ou 1-SVM.RFE.

5.1.1 Description du système

Notre système de détection est basé sur trois étapes principales :

1. La sélection d'un jeu de données de référence, représentant le comportement de

fonctionnement normal.

2. Une mise à jour des données d'apprentissage par une fenêtre mobile, pour obtenir

une procédure en temps réel.

3. Application du modèle 1-SVM.FS aux données d'apprentissage mises à jour.

Donc nous dé�nisssons d'abord un jeu de données de référence, représentant un état de

fonctionnement normal. Pour cela, nous sélectionnons dans la base de données historique,

un ensemble de wafers normaux correspondant à un état nominal de processus. En ce

qui concerne la taille des données de référence, un grand ensemble des données augmente

la �abilité de détection. Ainsi la taille des données de référence doit être su�samment

grande, nous permettant de dé�nir une région normale qui englobe une grande variété

des wafers normaux.

Le jeu de données de référence va servir en tant qu'échantillon d'apprentissage pour

construire un modèle caractérisant le comportement normal du processus. Quand un

nouveau lot (un groupement de 25 wafers qui parcourent ensemble toutes les étapes du

processus) arrive, le modèle 1-SVM.FS construit sur le jeu de données de référence est

utilisé pour tester si chacun des 25 wafers est normal ou anormal. Le lot testé joint

l'échantillon d'apprentissage initial, tandis que le lot le plus ancien dans cet échantillon

sera retiré ou entretenu selon les scénarios choisis que nous allons décrire ci-dessous. Ainsi,

un nouvel échantillon d'apprentissage est formé. Le modèle 1-SVM.FS est reconstruit sur

ce nouvel échantillon et sera utilisé pour prédire l'état de fonctionnement des 25 wafers

suivants. Cette procédure est répétée avec l'arrivée de chaque nouveau lot. Une vue

générale de notre système de détection est présentée dans la Figure 5.1.

5.1.2 Deux scénarios de mise à jour

Comme nous avons vu, la dynamicité du modèle 1-SVM.FS est assurée au moyen d'une

fenêtre temporelle mobile. Nous considérons 2 scénarios re�étant deux modes de mise à

jour de cette fenêtre :

� Scénario 1 (taille croissante) : dans ce scénario, le lot testé à chaque itération est

ajouté à l'échantillon d'apprentissage existant sans éliminer les anciennces données.
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Figure 5.1 � Schéma fonctionnel de notre système de détection en temps réel basé sur
le modèle dynamique 1-SVM.FS.

Figure 5.2 � Fenêtre mobile du système de détection en temps réel suivant le scénario
1.

Alors le modèle 1-SVM.FS est mis à jour suivant une fenêtre mobile de taille croissante.

Comme le comportement normal ne cesse pas d'évoluer, nous avons décidé d'éliminer à

la fois des anciennes données de l'ensemble d'apprentissage existant après une période

prédé�nie ∆t. ∆t dépend du volume de production du produit considéré.

� Scénario 2 (taille �xe) : pendant l'opération de détection en temps réel, la fenêtre

mobile conserve la même taille que celle de l'échantillon d'apprentissage initial (ou le

jeu de données de référence), et fonctionne selon la procédure �First-IN-First-Out�, en

ajoutant le nouveau lot déjà testé dans la base d'apprentissage et éliminant le lot le

plus ancien de cette base.

Les deux scénarios sont illustrés respectivement dans les Figures 5.2 et 5.3. Finalement,

notons que les méthodes de sélection de variables sont appliquées à chaque mise à jour des

données d'apprentissage, ce qui permet le suivi en temps réel d'éventuels changements

des paramètres électriques discriminants responsables de l'anomalie des wafers.
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Figure 5.3 � Fenêtre mobile du système de détection en temps réel suivant le scénario
2.

5.1.3 Choix optimal de q et ν

Le modèle 1-SVM.FS nécessite le réglage du paramètre ν (le seuil de détection dans

l'algorithme 1-SVM) et de l'hyperparamètre q des méthodes de sélection de variables.

Rappelons que l'hyperparamètre q représente la fraction des paramètres retenus pour

chacune de ces deux méthodes.

Par conséquent, un choix optimal de ν et q doit être fait. Pour accomplir cette tâche,

nous utilisons la procédure basée sur l'ensemble de validation, expliquée dans la Section

2.3.5 du Chapitre 2. Pour cela, nous constituons à partir de la base de données un

ensemble de validation contenant des wafers normaux contaminé par la présence de

quelques wafers anormaux. Cet ensemble est utilisé pour identi�er la meilleure paire

(q, ν) a�n que le classi�eur 1-SVM puisse prédire avec la meilleure précision les données

de test (les nouveaux wafers qui arrivent). Une recherche sur une grille de valeurs de q

et ν est e�ectuée. Le modèle 1-SVM.FS est construit sur le jeu de données de référence

en utilisant les di�érentes paires (q, ν). Pour chaque paire, les données de l'ensemble de

validation sont testées avec le modèle 1-SVM.FS construit. Le taux de détection (DR)

et le taux de fausses alarmes (FAR) sont ensuite calculés. La paire qui optimise ces

deux mesures de performance est choisie. Plus précisément, la meilleure paire (q, ν) est

celle qui donne le meilleur compromis entre la maximisation du taux de détection et la

minimisation du taux de fausses alarmes. La paire choisie est utilisée à chaque mise à

jour du modèle 1-SVM.FS. L'optimum selon les deux mesures de performance n'est pas

toujours unique. Il se peut que nous obtenons par exemple un DR de 100% et un FAR

de 15% avec une paire, et un DR de 90% et un FAR de 5% avec une autre paire, dans

ce cas laquelle des deux paires choisissons-nous ? Nous décidons alors de choisir la paire

qui maximise la mesure G-means.

Dans notre étude, le calibrage de ν et q pour notre système de détection en temps réel

est fait seulement une fois au début sur le jeu de données de référence et l'ensemble

de validation. Plus précisément, ce calibrage n'est pas fait dans chaque fenêtre mobile
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où l'échantillon d'apprentissage et le modèle 1-SVM.FS sont mis à jour. Ceci n'est pas

possible car nous ne pouvons pas nous disposer d'un nouvel ensemble de validation

pour chaque fenêtre mobile. Une seule possibilité est alors de considérer chaque nouveau

lot testé comme un ensemble de validation avec les wafers détectés par notre système

comme wafers anormaux, et nous pouvons ensuite appliquer la procédure basée sur cet

ensemble de validation pour choisir la meilleure paire (q, ν). Cependant, les wafers consi-

dérés comme anormaux par notre système peuvent réellement être des fausses alarmes.

Nous pourrons d'ailleurs mettre à jour ces hyperparamètres au retour des résultats du

test électrique �nal où un nouveau ensemble de validation contenant quelques wafers

anormaux est constitué. Cette mise à jour pourra être faite tous les deux mois, une

période qui correspond au temps de cycle de production.

5.2 Taille du jeu de données de référence

Nous commençons par étudier l'in�uence de la taille du jeu de données de référence, que

nous dénotons par nref , sur la performance de nos modèles dynamiques. Pour cela nous

avons testé en temps réel les modèles 1-SVM.MADe et 1-SVM.RFE sur les deux jeux de

données, suivant les deux scénarios et pour des valeurs de nref égales à 400 et 600 (resp.

300 et 400) pour le dataset 1 (resp. dataset 2).

Le Tableau 5.1 représente une illustration numérique pour certaines valeurs de ν de

la comparaison de performance de détection réalisée sur le dataset 1 avec le modèle 1-

SVM.MADe suivant le scénario 1. En augmentant nref de 400 à 600, les taux de détection

restent les mêmes alors que les taux de fausses alarmes sont légérement inférieurs.

Dans la Figure 5.4, des courbes FAR-DR de la détection en temps réel sur le dataset

2 avec le modèle 1-SVM.MADe suivant le scénario 1 et pour les deux valeurs de nref

sont obtenues en faisant varier ν (ν ∈ {0.01, 0.02, . . . , 0.19, 0.2}). Malgré les légères

améliorations en terme de taux de détection et de fausses alarmes obtenues pour quelques

valeurs de ν, les deux courbes sont similaires.

Ensuite, des illustrations numériques pour certaines valeurs de ν de la comparaison de

performance de détection réalisée sur le dataset 1 et le dataset 2 avec le modèle 1-

SVM.RFE suivant le scénario 1 sont données respectivement dans les Tableaux 5.2 et 5.3

. D'après ces tableaux, l'augmentation de nref aboutit aux mêmes résultats observés avec

le modèle 1-SVM.MADe appliqué avec le même scénario (scénario 1). En e�et, les taux

de détection sont constants, avec des petites réductions en fausses alarmes (sauf pour

ν = 0.04 dans le dataset 2, le taux de fausses alarmes était supérieur). Nous pouvons

donc constater que l'augmentation de la taille du jeu de données de référence n'a�ecte pas
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ν
nref = 400 nref = 600
DR FAR DR FAR

0.03 70 5.66 70 4.40
0.04 80 6.79 80 6.50
0.05 80 8.54 80 6.61
0.09 90 15.38 90 14.21

Table 5.1 � Dataset 1 : illustration numérique comparant la détection en temps réel
avec le modèle 1-SVM.MADe suivant le scénario 1 pour nref = 400 et nref = 600, en
faisant variant ν et pour q = 0.75.
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Figure 5.4 � Dataset 2 : courbes FAR-DR de la détection en temps réel avec le modèle
1-SVM.MADe suivant le scénario 1 pour nref = 300 et nref = 400, en faisant variant ν
et pour q = 0.75.

signi�cativement la performance de détection de 1-SVM.MADe et 1-SVM.RFE appliqués

suivant le scénario 1. Ceci est dû à la taille croissante de la fenêtre mobile du scénario

1 qui permet l'augmentation au fur et à mesure de la taille des données d'apprentissage

puisque chaque lot testé rejoint l'échantillon d'apprentissage mis à jour à chaque fenêtre

sans éliminer le lot le plus ancien de cet échantillon. La taille croissante de la fenêtre

mobile du scénario 1 aboutit donc à une détection pertinente sans nécessiter une taille

nref assez élevée. Cependant, la taille du jeu de données de référence joue un rôle im-

portant en e�ectuant une détection suivant le scénario 2 avec le modèle 1-SVM.MADe.

Ceci est illustré dans le Tableau 5.4 et la Figure 5.5. Les résultats obtenus dans le Ta-

bleau 5.4 sur le dataset 1 montrent que l'augmentation de la taille du jeu de données de
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ν
nref = 300 nref = 400
DR FAR DR FAR

0.03 80 4.12 80 4.03
0.04 80 6.32 80 6.21
0.05 80 8.40 90 6.53
0.09 90 15.91 90 12.04

Table 5.2 � Dataset 1 : illustration numérique comparant la détection en temps réel
avec le modèle 1-SVM.RFE suivant le scénario 1 pour nref = 400 et nref = 600, en
faisant variant ν et pour q = 0.75.

ν
nref = 300 nref = 400
DR FAR DR FAR

0.04 70.59 4.12 70.59 6.03
0.05 82.35 6.32 82.35 6.21
0.06 88.24 8.40 88.24 6.53
0.12 94.12 15.91 94.12 12.04

Table 5.3 � Dataset 2 : illustration numérique comparant la détection en temps réel
avec le modèle 1-SVM.RFE suivant le scénario 1 pour nref = 300 et nref = 400, en
faisant variant ν et pour q = 0.75.

ν
nref = 400 nref = 600
DR FAR DR FAR

0.03 70 9.66 80 5.65
0.04 70 11.03 80 6.31
0.05 80 13.81 90 9.29
0.09 90 22.56 90 15.22

Table 5.4 � Dataset 1 : illustration numérique comparant la détection en temps réel
avec le modèle 1-SVM.MADe suivant le scénario 2 pour nref = 400 et nref = 600, en
faisant variant ν et pour q = 0.75.

référence aboutit à une amélioration signi�cative dans la détection : les taux de détection

augmentent (sauf pour ν = 0.09 où ce taux est le même dans les deux cas, sachant que

c'est le taux maximum qu'on peut obtenir sur le dataset 1), suivis de réductions impor-

tantes en terme de fausses alarmes. Les améliorations signi�catives des deux mesures de

performance sont observées également pour toutes les valeurs de ν dans la Figure 5.5,

où nous avons tracé les courbes FAR-DR de la détection en temps réel sur le dataset

2 avec le modèle 1-SVM.MADe suivant le scénario 2 et avec les deux valeurs de nref .

Comme la taille de la fenêtre mobile dans le scénario 2 est constante, augmenter la taille

du jeu de données de référence aboutit à l'amélioration de la performance de détection

du modèle 1-SVM.MADe. En e�et, la méthode 1-SVM nécessite de nombreuses données

d'apprentissage pour donner une frontière de décision de bonne précision parce que ses

vecteurs supports ne proviennent essentiellement que des données de la classe positive



Chapitre 5. Détection en temps réel basée sur 1-SVM 106

0 5 10 15 20

40
50

60
70

80
90

10
0

Taux de Fausses Alarmes

Ta
ux

 d
e 

D
ét

ec
tio

n

Figure 5.5 � Dataset 2 : courbes FAR-DR de la détection en temps réel avec le modèle
1-SVM.MADe suivant le scénario 2 pour nref = 300 et nref = 400, en faisant variant ν
et pour q = 0.75.

(wafers normaux).

L'in�uence de la taille du jeu de données de référence sur la performance du modèle

1-SVM.RFE appliqué suivant le scénario 2 a été aussi étudié sur les deux jeux de don-

nées. Des illustrations numériques de cette étude sont présentées respectivement dans les

Tableaux 5.5 et 5.6, où sont présentés les résultats de comparaison pour certaines valeurs

de ν. Des améliorations importantes des deux mesures de performance sont observées en

augmentant la taille nref dans le dataset 1 (cf Tableau 5.5). Dans le Tableau 5.6, nous

remarquons que les taux de détection n'ont pas évolué avec l'augmentation de nref , vu

que ces taux sont déjà trés élevés dès les premières valeurs de ν, et pour les deux valeurs

de nref . Concernant les fausses alarmes, nous avons observé de légères réductions au

niveau des quatre premières valeurs de ν, puis des réductions signi�catives pour ν égal

à 0.12 et 0.16.

Pour conclure, la taille du jeu de données de référence est un facteur important pour

une détection pertinente avec le scénario 2. Nous avons vu que généralement les taux

de détection augmentent et les taux de fausses alarmes diminuent en augmentant cette

taille. Contrairement au scénario 2, le scénario 1 ne dépend pas visiblement de ce facteur.
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ν
nref = 300 nref = 400
DR FAR DR FAR

0.03 80 6.89 80 4.91
0.04 80 8.14 90 5.62
0.05 80 12.71 90 8.64
0.09 90 21.16 90 14.05

Table 5.5 � Dataset 1 : illustration numérique comparant la détection en temps réel
avec le modèle 1-SVM.RFE suivant le scénario 2 pour nref = 400 et nref = 600, en
faisant variant ν et pour q = 0.75.

ν
nref = 300 nref = 400
DR FAR DR FAR

0.04 88.24 7.98 88.24 7.34
0.05 94.12 9.14 94.12 8.48
0.06 94.12 10.90 94.12 10.42
0.12 94.12 20.66 94.12 16.47

Table 5.6 � Dataset 2 : illustration numérique comparant la détection en temps réel
avec le modèle 1-SVM.RFE suivant le scénario 2 pour nref = 300 et nref = 400, en
faisant variant ν et pour q = 0.75.

5.3 Exemples de performance des systèmes de détection en

temps réel

Notre objectif expérimental était d'évaluer la capacité de nos systèmes de détection pour

détecter automatiquement les wafers anormaux. Il est également important de réduire

au minimum le taux de fausses alarmes car ils provoquent l'interruption injusti�ée dans

le cycle de production.

Les systèmes de détection basés sur les modèles dynamiques 1-SVM.MADe, 1-SVM.RFE

et T 2.PCA sont testés suivant les deux scénarios de mise à jour sur les deux jeux de

données réels de STMicroelectronics, a�n de prouver l'e�cacité et la supériorité de nos

systèmes de détection. Idéalement, nous voulons un haut DR (pour détecter la majorité

des wafers anormaux) et un faible taux de fausses alarmes (pour éviter de classer les

wafers normaux comme anormaux).

5.3.1 Dataset 1

Le dataset 1 est composé de 2550 wafers du produit P1 de la technologie I140, et corres-

pond à une période de production de 4 mois. 12 wafers sont considérés comme anormaux

au PT dans ce jeu de données. Dans cette expérience, nous avons dé�ni un jeu de données
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de référence contenant 600 wafers normaux. L'ensemble de validation consiste en 100 wa-

fers dont 2 sont anormaux. Par conséquent, il reste 1850 wafers à tester (74 lots) dont

10 sont anormaux. Nous avons construit les modèles de détection sur le jeu de données

de référence avec plusieurs paires de l'hyperparamètre q et le seuil de détection ν. Nous

considérons respectivement 9 et 20 valeurs de q et ν :

q ∈ {0.25, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9},

ν ∈ {0.01, 0.02, . . . , 0.19, 0.2}.

Les étiquettes des wafers de l'ensemble de validation sont ensuite prédites en utilisant

chacun de 180 (9 × 20) modèles construits. Les taux de détection et de fausses alarmes

sont calculés pour chaque modèle de prédiction. Nous sélectionnons la paire de valeurs

qui optimise simultanément ces deux mesures de performance (i.e qui optimise la mesure

de performance G-means). Pour le modèle 1-SVM.MADe, nous avons retenu q = 0.8 et

ν = 0.04 où nous avons détecté tous les wafers anormaux de l'ensemble de validation

(DR= 100%) pour un FAR égal à 4.35% (G-means= 97.8). Pour le modèle 1-SVM.RFE,

nous avons retenu q = 0.85 et ν = 0.03 où nous avons aussi détecté tous les wafers

anormaux de l'ensemble de validation pour un FAR égal à 3.25% (G-means= 98.36).

D'une façon similaire, nous avons sélectionné la meilleure paire (ψ, α) (cf. Section 3.3)

du modèle T 2.PCA en prenant ψ ∈ {0.75, 0.8, 0.85, 0.9} et considérant la même plage de

valeurs de ν pour α. La performance optimale est obtenue pour ψ = 0.85 and α = 0.01,

où DR et FAR sont respectivement égaux à 100% et 2.75% (G-means= 98.62).

Pour le scénario 1, ∆t corespond à la période pour laquelle nous aurions testé la moitié

des lots. Plus précisément, la taille de la base d'apprentissage croît à chaque itération

correspondante à un test d'un lot, jusqu'à avoir testé la moitié des lots. Ensuite les

anciens wafers sont éliminés de la base de sorte que nous gardons seulement un nombre

de wafers égal à celui du jeu de données de référence.

Après avoir dé�ni le jeu de données de référence et sélectionné les hyperparamètres

otpimaux pour les trois modèles de détection, nous procédons maintenant à la détection

en temps réel en appliquant chacun des trois modèles sur les données. 74 fenêtres mobiles

sont considérées pour mettre à jour les modèles de détection, puisque nous nous disposons

de 74 lots à tester. Les mises à jour suivant une fenêtre mobile des données d'apprentissage

et des modèles de détection à l'arrivée de chaque nouveau lot testé permettent ainsi

d'obtenir une procédure en temps réel. Ces mises à jour suivent un des deux scénarios

déjà dé�nis : scénario 1 (taille croissante) et scénario 2 (taille �xe).

Le Tableau 5.7 montre une comparaison de performance des trois systèmes de détection

en temps réel suivant les deux scénarios de mise à jour des fenêtres mobiles. Notons que
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Fenêtre mobile Système DR FAR

Scénario 1
1-SVM.MADe 80 5.64
1-SVM.RFE 90 3.05
T 2.PCA 80 6.21

Scénario 2
1-SVM.MADe 90 6.11
1-SVM.RFE 90 5.75
T 2.PCA 90 7.36

Table 5.7 � Dataset 1 : comparaison de la performance de détection des systèmes 1-
SVM.MADe, 1-SVM.RFE et T 2.PCA.

le taux de détection DR représente le pourcentage de wafers anormaux détectés par le

système utilisé parmi tous les wafers anormaux présents dans les 74 fenêtres (ici il y a 10),

et le taux de fausses alarmes FAR représente la moyenne des fausses alarmes obtenues

sur l'ensemble de 74 fenêtres. Les résultats révèlent une similarité de performance entre

les trois systèmes. Une haute performance a été obtenue avec les trois systèmes. Ils ont

détecté 9 parmi 10 wafers anormaux en utilisant le scénario 2 et 8 parmi 10 avec le

scénario 1 ( sauf pour 1-SVM.RFE qui a détecté 9 parmi 10). Avec les deux scénarios,

1-SVM.RFE a réduit les fausses alarmes par rappot aux deux autres systèmes, qui à leur

tour avaient des taux très proches.

5.3.2 Dataset 2

Le dataset 2 est composé de 1600 wafers du produit P2 de la technologie I140, dont 23

sont considérés comme anormaux au PT. Dans cette expérience, nous avons construit

un jeu de données de référence contenant 400 wafers normaux. L'ensemble de validation

consiste en 100 wafers dont 6 sont anormaux. Par conséquent, il reste 1100 wafers à

tester (44 lots) dont 17 sont anormaux. Comparé au dataset 1, ce jeu de données a une

dimension d'espace de variables plus petite et un pourcentage de wafers anormaux plus

grand.

En suivant la même procédure utilisée dans le dataset 1 pour sélectionner les hyperpara-

mètres optimaux, nous avons retenu q = 0.75 et ν = 0.13 pour le modèle 1-SVM.MADe

où nous avons détecté tous les wafers anormaux de l'ensemble de validation (DR= 100%)

pour un FAR égal à 11.37% (G-means= 94.14). Pour le modèle 1-SVM.RFE, nous avons

retenu q = 0.8 et ν = 0.06 où nous avons aussi détecté tous les wafers anormaux de

l'ensemble de validation pour un FAR égal à 6.19% (G-means= 96.86). Pour le modèle

T 2.PCA, la performance optimale sur l'ensemble de validation est obtenue pour ψ = 0.75

and α = 0.18, où DR et FAR sont respectivement égaux à 66.67% (4 sur 6 wafers anor-

maux) et 15.89% (G-means= 74.88).
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Fenêtre mobile Système DR FAR

Scénario 1
1-SVM.MADe 94.12 9.38
1-SVM.RFE 88.24 6.53
T 2.PCA 64.71 11.56

Scénario 2
1-SVM.MADe 94.12 13.23
1-SVM.RFE 94.12 10.42
T 2.PCA 70.59 15.89

Table 5.8 � Dataset 2 : comparaison de la performance de détection des systèmes 1-
SVM.MADe, 1-SVM.RFE et T 2.PCA.

44 fenêtres mobiles sont considérées pour mettre à jour les modèles de détection. Les

mises à jour des modèles de détection se font selon le scénario 1 (taille croissante) et le

scénario 2 (taille �xe). Comme dans le dataset 1, le taux de détection DR représente le

pourcentage de wafers anormaux détectés par le système utilisé parmi tous les wafers

anormaux présents dans les 44 fenêtres (ici il y a 17), et le taux de fausses alarmes FAR

représente la moyenne des fausses alarmes obtenues sur l'ensemble de 44 fenêtres.

Les résultats de comparaison sont donnés dans le Tableau 5.8. Avec les deux scénarios,

le système de T 2 de Hotelling basé sur le modèle dynamique T 2.PCA montre une faible

performance dans la détection des wafers anormaux (DR respectivement égal à 64.71

et70.59%). Tandis que le système basé sur le modèle 1-SVM.MADe a été capable de

détecter 94.12% des wafers anormaux avec les deux scénarios. De plus, avec ce système

nous avons obtenu des taux de fausses alarmes inférieurs par rapport au système basé sur

T 2.PCA, mais supérieurs par rapport au système basé sur 1-SVM.RFE avec lequel les

taux de détection selon les deux scénarios ont été respectivement égaux à 88.24 et 94.12%.

Avec les trois systèmes de détection, le scénario 1 a réduit le taux de fausses alarmes par

rapport au scénario 2. Concernant nos deux systèmes, une réduction de fausses alarmes

de 2.85 et 2.81 sont obtenues avec 1-SVM.RFE par rapport à 1-SVM.MADe en utilisant

respectivement les scénarios 1 et 2. Notons que dans ce jeu de données considérant

seulement deux mois de production, nous n'avons pas éliminé les anciennes données de

la base d'apprentissage existante après une période ∆t pour le scénario 1, comme il a

été recommandé dans la Section 5.1.2. Cette action a eu lieu seulement dans la première

expérience considérant quatre mois de production, où le nombre de wafers est grand.

Temps de calcul

Nous nous intéressons maintenant à la comparaison de temps de calcul des trois systèmes

de détection en temps réel. Pour cela, nous considérons le critère de performance �Temps�.

Ce critère représente le temps moyen, en secondes, émis par un système pour prédire l'état
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Système
Temps (sec)

Dataset 1 Dataset 2
1-SVM.MADe 1.44 1.05
1-SVM.RFE 1412.71 912.62
T 2.PCA 7.49 4.40

Table 5.9 � Temps moyen émis par un système de détection pour tester un nouveau
lot selon le scénario 2.

des wafers d'un nouveau lot à tester selon le scénario 2 caractérisé par une fenêtre mobile

de taille �xe. A une itération quelconque, ce critère comprend le temps nécessaire pour :

1. la mise à jour de la méthode de sélection de variables.

2. la mise à jour du modèle 1-SVM.

3. la phase de prédiction du nouveau lot.

Le Tableau 5.9 nous montre, sur les deux jeux de données, que 1-SVM.MADe et T 2.PCA

sont très rapides en temps de calcul, avec une supériorité du premier système sur le

deuxième. Ces deux systèmes sont nettement meilleurs que 1-SVM.RFE, qui est à son

tour extrêmement coûteux en temps de calcul (cf. Section 3.5.2). Notons que le critère

calculé avec les trois systèmes est plus grand dans le dataset 1, puisque la dimension de

son espace de variables est plus élevée que celle du dataset 2.

5.3.3 Conclusion

Pour conclure, le système basé sur le modèle 1-SVM.RFE est le plus e�cient. Les taux de

détection avec ce système ont été très élevés avec des réductions signi�catives de fausses

alarmes par rapport aux autres systèmes de détection utilisés.

Similairement au système 1-SVM.RFE, notre système basé sur 1-SVM.MADe a montré

une bonne performance de détection sur les deux jeux de données réels. De plus il est

beaucoup plus rapide en temps de calcul par rapport au système basé sur 1-SVM.RFE.

Sur le dataset 1, le système basé sur T 2.PCA a montré une performance compététive à

celles des deux autres systèmes, avec un peu plus de fausses alarmes. La performance

de ce système s'est dégradée sur le dataset 2. Ce système exige quelques contraintes

pour une bonne détection qui ne peuvent pas être véri�ées par les données comme la

normalité des variables (T 2 de Hotelling), ou/et la linéarité ainsi que la corrélation entre

les variables (ACP).

La mise à jour de la fenêtre mobile des modèles dynamiques aboutit à une réduction de

fausses alarmes selon le scénario 1, et à une détection plus rapide des wafers anormaux

selon le scénario 2. Une interprétation expliquant ces résultats sera donnée dans la section
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suivante. Par conséquent, nous pouvons décider d'appliquer nos systèmes de détection

selon le scénario 2, mais en enrichissant encore le jeu de données de référence avec des

observations normales. Cela va amener l'algorithme 1-SVM à reconnaître plus facilement

les wafers normaux et par suite réduire les fausses alarmes.

Pour une application industrielle, nous recommandons donc d'utiliser le système 1-

SVM.RFE selon le scénario 2. Pour une technologie volumineuse, nous pourrons uti-

liser 1-SVM.MADe qui est un système simple, e�cace et beaucoup plus rapide que 1-

SVM.RFE. Avec un réglage �n des paramètres de ce système, il aboutit à une performance

compétitive à celle du système 1-SVM.RFE.

5.4 Comparaison de deux scénarios de mise à jour

Dans cette section, nous avons pour objectif de con�rmer les conclusions tirées dans la

section précédente concernant les deux scénarios utilisés pour la mise à jour de la fenêtre

mobile de nos techniques de détection.

Le Tableau 5.10 représente une illustration numérique de la comparaison des scénarios

1 et 2 suivant nos modèles dynamiques de détection appliqués sur le dataset 1. Pour les

quatre valeurs de ν et avec les deux modèles de détection, le scénario 1 donne des taux

de fausses alarmes plus petits par rapport au scénario 2. Avec le modèle 1-SVM.MADe,

les taux de détection avec le scénario 2 sont plus élevés que ceux du scénario 1, sauf pour

ν = 0.09 où un taux de détection maximal est obtenu avec les deux modèles. Avec le

modèle 1-SVM.RFE et selon les deux scénarios, les taux de détection atteignent tous la

valeur maximale égale à 90%.

Pour le dataset 2, des illustrations numériques pour six valeurs de ν de la comparaison

des scénarios 1 et 2 suivant les modèles dynamiques 1-SVM.MADe et 1-SVM.RFE sont

données respectivement dans les Tableaux 5.11 et 5.12. Le scénario 1 fournit une réduc-

tion signi�cative en terme de fausses alarmes par rapport au scénario 2, et ceci pour les

deux modèles de détection. Par exemple, dans le Tableau 5.11 (resp. Tableau 5.12), nous

notons une réduction entre 3 (resp. 1.3) et 5% (resp. 4.5%) environ de fausses alarmes

pour les di�érentes valeurs de ν. Pour les quatre premières valeurs de ν et avec les deux

modèles, les taux de détection ont augmenté avec le scénario 2. Pour les deux dernières

valeurs de ν dans chaque tableau, les taux de détection pour les deux modèles sont maxi-

maux et sont égaux à 94.12%. Donc pour toute valeur de ν des Tableaux 5.11 et 5.12, le

scénario 2 a un taux de détection supérieur ou égal à celui du scénario 1.

Ces résultats con�rment donc nos conclusions de la section précédente concernant les

deux scénarios. D'une part, la réduction de fausses alarmes avec le scénario 1 est dûe à
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ν
1-SVM.MADe 1-SVM.RFE

scénario 1 scénario 2 scénario 1 scénario 2
DR FAR DR FAR DR FAR DR FAR

0.03 70 4.17 80 5.36 90 2.79 90 4.81
0.04 80 5.64 90 6.11 90 3.05 90 5.75
0.05 80 6.27 90 8.57 90 4.41 90 8.11
0.09 90 12.92 90 14.15 90 8.63 90 13.71

Table 5.10 � Dataset 1 : illustration numérique comparant les scénario 1 et 2 avec les
modèles dynamiques 1-SVM.MADe et 1-SVM.RFE.

ν
scénario 1 scénario 2
DR FAR DR FAR

0.07 70.59 4.76 76.47 7.84
0.08 76.47 4.78 82.35 8.13
0.09 76.47 4.91 88.23 9.35
0.11 88.24 8.25 94.12 11.43
0.13 94.12 9.38 94.12 13.23
0.15 94.12 10.61 94.12 15.68

Table 5.11 � Dataset 2 : illustration numérique comparant la détection en temps réel
avec le modèle 1-SVM.MADe suivant les scénario 1 et 2, pour q = 0.75.

ν
scénario 1 scénario 2
DR FAR DR FAR

0.04 70.59 6.03 88.24 7.34
0.05 82.35 6.21 94.12 8.48
0.06 88.24 6.53 94.12 10.42
0.11 88.24 13.24 94.12 16.46
0.12 94.12 12.04 94.12 16.47
0.13 94.12 14.92 94.12 19.41

Table 5.12 � Dataset 2 : illustration numérique comparant la détection en temps réel
avec le modèle 1-SVM.RFE suivant les scénario 1 et 2, pour q = 0.75.

la taille croissante de la fenêtre mobile où à chaque mise à jour le nouveau lot testé est

ajouté à la base d'apprentissage. Ceci permet à l'algorithme 1-SVM d'enrichir sa base

d'apprentissage avec plus d'observations normales ce qui facilite la reconnaissance de

futures observations normales et donc on obtient moins de fausses alarmes. D'autre part,

la détection rapide des wafers anormaux avec le scénario 2 est dûe à une stratégie de

mise à jour e�cace de la base d'apprentissage avec sa fenêtre de taille �xe et contenant

moins de wafers anormaux que celle du scénario 1, et cela améliore la performance de

détection de l'algorithme 1-SVM. Ceci a été démontré dans la Section 4.5.
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5.5 Signatures multidimensionnelles des wafers anormaux

Quand notre système de détection déclenche une alarme (wafer anormal), une tâche

essentielle sera d'identi�er les paramètres électriques responsables de cette anomalie.

Ceci est fait en dé�nissant la signature multidimensionnelle du wafer anormal pour pou-

voir remonter à la cause et ensuite e�ectuer les modi�cations opérationelles nécessaires

pour faire retourner le processus aux conditions normales. Nous avons donc proposé

une méthode basée sur la distance normalisée par rapport à la population normale, des

paramètres retenus par la méthode utilisée pour la sélection de variables .

A une itération donnée, la base d'apprentissage est mise à jour et le modèle de détection

(1-SVM.MADe ou 1-SVM.RFE) est construit. Un nouveau lot à tester arrive, un wafer

(ou plusieurs) appartenant à ce lot est considéré comme anormal par notre modèle. Nous

considérons l'ensemble des paramètres électriques pertinents retenus par la méthode de

sélection de variables. Pour chaque variable (un des paramètres électriques mesuré sur

un des neuf sites de mesure), nous déterminons la valeur normalisée de la façon suivante :

D(xij , B) =
xij − x̄j,B
sj,B

(5.1)

où xij représente la mesure de la jème variable pour le wafer détecté d'indice i, B

constitue l'échantillon d'apprentissage du modèle utilisé pour détecter ce wafer, x̄j,B et

sj,B sont respectivement la moyenne et l'écart-type de la variable j sur l'ensemble de

wafers appartenant à B. Pour deux wafers détectés appartenant à un même lot, B est

le même, et il est di�érent pour deux wafers détectés qui appartiennent à deux lots

di�érents, puisque la fenêtre mobile ne va pas être la même.

Cette distance normalisée permet de détecter des éventuelles déviations d'un ou plusieurs

paramètres sélectionnés par rapport à la base d'apprentissage B. Notre méthode de

dé�nition de signature permet donc de visualiser les valeurs normalisées des paramètres

électriques pertinents, et de déterminer en particulier les paramètres responsables de

l'anomalie (i.e. les paramètres qui ont des valeurs normalisées très élevées ou très basses).

Dans ce qui suit, nous reprenons les résultats de détection en temps réel de la Section

5.3 avec les systèmes 1-SVM.MADe et 1-SVM.RFE selon le scénario 2 a�n d'étudier les

signatures des wafers anormaux. Le scénario 2 a été choisi pour comparer les signatures

des di�érents wafers anormaux par rapport à une base d'apprentissage de même taille.

Les noms des wafers étudiés ne seront pas a�chés pour des raisons de con�dentialité.

Nous ne montrons pas les noms des paramètres électriques sur les axes des abscisses des

�gures pour des raisons de lisibilité. Nous encerclons en rouge le groupement de para-

mètres discriminants, chaque groupement étant constitué d'un ou plusieurs paramètres,
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avec un ou plusieurs sites qui peuvent déclencher pour chaque paramètre. Toutefois, les

sites de mesure des paramètres électriques qui déclenchent peuvent être di�érents d'un

wafer anormal à un autre. Nous désignons par �wafer anormal� un wafer considéré comme

anormal par les ingénieurs PT et détecté par nos systèmes de détection, et par �signatu-

res� d'un wafer les deux signatures obtenues avec chacune des méthodes de sélection de

variables.

Dans le dataset 1 et dataset 2, les paramètres électriques identi�és par notre méthode

comme responsables de l'anomalie d'un wafer ont été con�rmés par les ingénieurs PT. Le

nombre de paramètres électriques qui apparaissent dans les deux signatures d'un wafer

n'est pas le même puisque la valeur de nombre de variables retenues q n'est pas la même

pour les deux méthodes de sélection de variables. Rappelons que le dataset 1 et dataset 2

correspondent à deux produits d'une même technologie, d'où la majorité des paramètres

électriques sont communs pour ces deux produits.

Dataset 1

Nous donnons un exemple de signature d'un wafer anormal dans le dataset 1. Les wa-

fers anormaux dans ce dataset ont tous des signatures similaires. Les Figures 5.6 et 5.7

montrent les signatures du wafer anormal QXXXXXX_15. Trois paramètres ont commu-

nément déclenché selon les deux méthodes de sélection de variables. Les paramètres de

�abilité �VBD_AREA_NP_2� et �VBD_AREA_PN_2� (cercles en bas) ont des valeurs

extrêmement basses en plusieurs sites de mesure par rapport à la population normale, tan-

dis que le paramètre de �abilité �VBD_AREA_PN_1� (cercle en haut à droite) avait une

valeur d'un site de mesure extrêmement élevée. Les paramètres �VBD_AREA_PN_1�

et �VBD_AREA_PN_2�, comme le paramètre �VBD_AREA_NP_2�, mesurent la ten-

sion de claquage d'une structure de test. De plus, avec la méthode MADe.FS, le paramètre

de qualité �NIDS0205RD14� était parmi l'ensemble de paramètres responsables de l'ano-

malie de ce wafer. En e�et, il avait des valeurs trés élevées pour deux sites de mesure.

Alors que ce paramètre n'a pas été retenu par la méthode 1-SVM-RFE. Cet exemple

a montré que nos méthodes de sélection de variables ont réussi à identi�er simultané-

ment les paramètres électriques qui ont déclenché la détection. De plus, la majorité des

paramètres électriques sélectionnés par ces méthodes sont communs.

L'identi�cation e�cace des paramètres électriques discriminants (�VBD_AREA_NP_2�,

�VBD_AREA_PN_1� et �VBD_AREA_PN_2�) avec leur écart extrême par rapport à

la population d'apprentissage ont permis de détecter facilement tous les wafers anormaux

(sauf le wafer QXXXXXX_03). Ce qui rend le dataset 1 un jeu de données facile pour

la détection d'anomalies.
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Les Figures 5.16 et 5.18 montrent les signatures du wafer QXXXXXX_03, indétectable

par les systèmes 1-SVM.MADe et 1-SVM.RFE. Bien que ce wafer possède quelques me-

sures électriques qui sont un peu loin par rapport à l'échantillon d'apprentissage qui a

servi pour tester ce wafer, son pro�l reste di�érent des pro�ls des wafers anormaux dans ce

jeu de données (comme le pro�l du wafer QXXXXXX_15 par exemple). De plus, ces me-

sures un peu écartées n'étaient pas la cause pour laquelle les ingénieurs PT l'ont considéré

comme anormal. Selon eux, ce wafer a été arrêté car ses trois paramètres électriques de

�abilité �VBD_AREA_NP_2�, �VBD_AREA_PN_1� et �VBD_AREA_PN_2� ont

chacun un ou deux sites de mesure qui s'écartent un peu des limites de spéci�cation.

De plus, les limites de spéci�cation de ces paramètres sont serrées, et par conséquent

nous avons des di�cultés à identi�er avec notre distance normalisée ces trois paramètres

comme responsables de l'anomalie du wafer.

Dataset 2

Dans cette section, nous donnons les signatures multidimensionnelles des trois wafers

anormaux détectés par nos systèmes.

Les Figures 5.10 et 5.11 montrent les signatures multidimensionnelles du wafer anor-

mal QXXXXXX_09, obtenues respectivement par la méthode MADe-FS et la méthode

1-SVM-RFE . Avec les deux méthodes de sélection de variables, trois groupements de

paramètres ont déclenché l'anomalie de ce wafer. Un premier groupement (le cercle en

bas à gauche) caractérise ce wafer par des valeurs très basses du paramètre de qualité

�NGA0205SF175� par rapport à l'échantillon d'apprentissage, ce paramètre qui a déclen-

ché en plusieurs sites représente le gain du transistor. Nous soulignons les mêmes observa-

tions sur le deuxième groupement (le cercle en bas à droite) avec le paramètre de qualité

�NIOFF03028TG14� mesurant le courant résiduel du transistor fermé. Le troixième grou-

pement (cercle en haut) concerne les deux paramètre qualité clé �NVT02044RST14� et le

paramètre de qualité �NVT0205RD14� mesurant la tension de seuil de deux transistors,

caractérisés chacun par une longueur et une largeur bien spéci�que. Les valeurs de ces

deux paramètres, chacun sur plusieurs sites, ont été extrêmement élevées par rapport à

l'échantillon d'apprentissage.

Un paramètre électrique supplémentaire par rapport au trois que nous venons de voir a

été responsable de l'anomalie du wafer QXXXXXX_20. Les signatures de ce wafer sont

tracées dans les Figures 5.12 et 5.13. Ce paramètre supplémentaire (le cercle en haut à

droite) est appelé �NIDS0205RD14�, c'est un paramètre de qualité qui mesure le courant

de saturation d'un transistor d'une longueur et une largeur bien spéci�que. Les sites de
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mesure de ce paramètre qui ont déclenché avaient des valeurs plus élevées (deux sites

avec MADe.FS et un site avec 1-SVM-RFE) par rapport à la population normale.

Concernant le wafer anormal QXXXXXX_02, nous retrouvons toujours les trois grou-

pements de paramètres identi�és dans les trois wafers précédents, mais avec moins de

sites de mesure qui ont déclenché pour chaque paramètre. D'ailleurs, les signatures de ce

wafer tracées dans les Figures 5.14 et 5.15 montrent deux nouveaux paramètres qui

ont contribué à la détection de ce wafer. Le premier (en haut à droite) est appelé

�NVT0205SF175� et ce paramètre de qualité, comme les paramètres �NVT02044RST14�

et �NVT0205RD14�, mesure la tension du seuil d'un transistor possédant une longueur

et une largeur bien spéci�que. Le deuxième (en bas à droite) est le paramètre de �abi-

lité �VBD_AREA_NP_2� mesurant la tension de claquage d'une structure de test qui

sert à e�ectuer les mesures électriques sur le wafer. Ces deux paramètres ont déclenché

en un seul site de mesure en utilisant la méthode MADe.FS, et en plusieurs sites avec

la méthode 1-SVM-RFE. Le paramètre �NVT0205SF175� (resp. �VBD_AREA_NP_2�)

avait des valeurs très élevées (resp. très basses) par rapport à la base d'apprentissage.

Le paramètre �VBD_AREA_NP_2� a déclenché également dans le dataset 1 pour des

valeurs très basses (cf. Figures 5.14 et 5.15).

Les Figures 5.16 et 5.18 montrent les signatures du wafer QXXXXXX_07. Aucun de

nos systèmes de détection n'a pu détecté ce wafer puisque le taux de détection maximale

obtenu dans le Tableau 5.7 a été égal à 94.12% (l'équivalent de 16 wafers anormaux

détectés parmi 17). Les signatures de ce wafer ont été comparées à celles du wafer normal

QXXXXXX_15 (cf. Figures 5.17 et 5.19) appartenant à la base d'apprentissage qui a

servi pour tester le wafer QXXXXXX_07. Pour le wafer QXXXXXX_07, et avec les

deux méthodes de sélection de variables, les paramètres électriques identi�és comme

responsables de la détection ont été un peu plus éloignés par rapport à ceux du wafer

QXXXXXX_15. Cependant, le pro�l du wafer non détecté reste loin des pro�ls des wafers

anormaux et il ressemble donc à un wafer normal. Les raisons d'arrêt de ce wafer par les

ingénieurs PT reviennent, comme pour le wafer QXXXXXX_07 du dataset 1, à deux

paramètres de �abilité (�VBD_PF_NP_2� et �VBD_PF_PN_1�) avec respectivement

un et deux sites de mesure qui ne sont pas dans les limites de spéci�cation.

Conclusion

Les résultats de cette section ont montré une bonne e�cacité de notre méthode à identi�er

les paramètres électriques responsables de l'anomalie.
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Figure 5.6 � Dataset 1 : signature multidimensionnelle du wafer anormal

QXXXXXX_15 déterminée avec la méthode MADe-FS.

Figure 5.7 � Dataset 1 : signature multidimensionnelle du wafer anormal

QXXXXXX_15 déterminée avec la méthode 1-SVM-RFE.
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Figure 5.8 � Dataset 1 : signature multidimensionnelle du wafer anormal

QXXXXXX_03 non détecté par nos systèmes, déterminée avec la méthode MADe-FS.

Figure 5.9 � Dataset 1 : signature multidimensionnelle du wafer anormal

QXXXXXX_03 non détecté par nos systèmes, déterminée avec la méthode 1-SVM-RFE.
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Figure 5.10 � Dataset 2 : signature multidimensionnelle du wafer anormal

QXXXXXX_09 déterminée avec la méthode MADe-FS.

Figure 5.11 � Dataset 2 : signature multidimensionnelle du wafer anormal

QXXXXXX_09 déterminée avec la méthode 1-SVM-RFE.
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Figure 5.12 � Dataset 2 : signature multidimensionnelle du wafer anormal

QXXXXXX_20 déterminée avec la méthode MADe-FS.

Figure 5.13 � Dataset 2 : signature multidimensionnelle du wafer anormal

QXXXXXX_20 déterminée avec la méthode 1-SVM-RFE.
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Figure 5.14 � Dataset 2 : signature multidimensionnelle du wafer anormal

QXXXXXX_02 déterminée avec la méthode MADe-FS.

Figure 5.15 � Dataset 2 : signature multidimensionnelle du wafer anormal

QXXXXXX_02 déterminée avec la méthode 1-SVM-RFE.
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Figure 5.16 � Dataset 2 : signature multidimensionnelle du wafer anormal

QXXXXXX_07 non détecté par nos systèmes, déterminée avec la méthode MADe-FS.

Figure 5.17 � Dataset 2 : signature multidimensionnelle du wafer normal

QXXXXXX_15, déterminée avec la méthode MADe-FS.
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Figure 5.18 � Dataset 2 : signature multidimensionnelle du wafer anormal

QXXXXXX_07 non détecté par nos systèmes, déterminée avec la méthode 1-SVM-RFE.

Figure 5.19 � Dataset 2 : signature multidimensionnelle du wafer normal

QXXXXXX_15, déterminée avec la méthode 1-SVM-RFE.



Conclusion générale et perspectives

Dans ce travail, nous avons considéré le problème de la détection automatique des wafers

anormaux dans le domaine de semi-conducteur. Nous avons développé un système de

détection en temps réel basé sur une technique de réapprentissage dynamique. Cette

technique exploite l'algorithme de classi�cation à une classe 1-SVM avec l'une de deux

méthodes de sélection de variables spéci�quement développées : une méthode de type

�ltrage basée sur un score indépendant de 1-SVM et calculé avec le �ltre univarié MADe,

et une autre méthode de type wrapper appropriée à 1-SVM et basée sur un score calculé

à partir de cet algorithme. Le réapprentissage dynamique est assuré par une mise á jour

des modèles de détection à travers une fenêtre mobile suivant deux scénarios proposés.

L'e�cience de notre système de détection a été démontrée sur des données réels de

STMicroelectronics. Il a été comparé également à un système de détection alternatif

basé sur une compression de variables avec la méthode ACP et la statistique de Hotelling.

Notre systèmes a montré une haute performance avec des taux de détection très élevés

et des taux de fausses alarmes extrêmement réduits par rapport à l'approche univariée

existante. De plus, notre système était plus performants que le système alternatif.

Après avoir détecté les wafers anormaux, nous avons développé une méthode permettant

de visualiser les signatures multidimensionnelles de ces wafers. Cette méthode exploi-

tant nos méthodes de sélection de variables ont permis aussi d'identi�er e�cacement les

paramètres électriques pertinents et responsables de l'anomalie.

Une collaboration est actuellement en cours avec l'équipe EDA (Engineering Data Ana-

lysis) du site de Crolles pour développer un software industriel permettant de mettre en

oeuvre notre système de détection en temps réel.

Perspectives

Techniquement, nous pourrons étudier la possibilité d'exploiter une méthode de sélec-

tion de variables de type �embedded� appropriée à la méthode 1-SVM. Ceci pourra être

125
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réalisé en ajoutant une pénalité à la fonction objective du problème d'optimisation de

l'algorithme 1-SVM. Cette approche, combinant à la fois l'apprentissage du modèle 1-

SVM et la sélection de variables, pourra éventuellement améliorer encore la performance

de notre système de détection en temps réel.

Pratiquement, nous pourrons valider les fausses alarmes de notre système par l'analyse au

test �nal EWS, du rendement des wafers considérés comme anormaux par notre système.

Il se peut que certains wafers soient atypiques qui ne ressemblent pas à la population

étudiée, mais qui sont dans les limites de spéci�cation. Ce qui expliquerait le fait que

ces wafers soient considérés comme anormaux par notre système et comme normaux par

les ingénieurs PT. Le test EWS est un test approfondi qui s'applique sur l'ensemble des

puces, et le rendement d'un wafer (pourcentage de puces en bon état de fonctionnement)

pourrait nous aider à véri�er s'il s'agissait vraiment de fausses alarmes ou non.

Contrairement à l'approche de détection univariée existante basée sur les limites de spé-

ci�cation n'étant dé�nis que pour les paramètres �Gated�, nous pouvons étendre notre

approche de détection à tous les autres paramètres électriques mesurés.

Par ailleurs, la détection multidimensionnelle peut avoir beaucoup d'autres applications

possibles en semi-conducteur. Parmi elles, deux applications majeures pourront être étu-

diées respectivement en SPC classique (Statistical Process Control ou MSP pour Maîtrise

Statistique du Procédé) et en FDC (Faul Detection and Classi�cation).

En e�et, notre approche de détection peut être utilisée en MSP classique pour la dé-

tection basée sur les mesures de paramètres physiques en ligne de production. La MSP

classique est basée sur un suivi de résumé statistique (moyenne, écart-type, étendu) ve-

nant de données individuelles mesurées sur les composants pouvant aller de 17 valeurs

individuelles à plusieurs centaines. Le résumé statistique réduit la dimension de p don-

nées individuelles à 2-3 dimensions et nous amène à un perte d'information importante

et réduit la pertinence de la détection.

Notre approche de détection peut aussi être utilisée en FDC pour la détection basée sur

les paramètres machines. Pour la FDC, on dispose de plusieurs dizaines voire centaines

de paramètres machine collectés pendant chaque process d'un wafer avec une probléma-

tique de détection similaire au test paramétrique. Cette détection multidimensionnelle

permettra de simpli�er l'approche en réduisant le nombre d'indicateurs de suivi à un

seul, d'améliorer la pertinence de la détection et de réduire les fausses alarmes statis-

tiques comparée à une approche unidimensionnelle.
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 

Abstract—In this paper, we propose a real-time fault 

detection system for the semiconductor domain, which aims to 

detect abnormal wafers from a recent history of electrical 

measurements. It is based on a dynamic model which uses our 

filter method as feature selection approach, and one-class 

support vector machines algorithm for classification task. The 

dynamicity of the model is ensured by updating the database 

through a temporal moving window. Two scenarios for 

updating the moving window are proposed. In order to prove 

the efficiency of our system, we compare it to an alternative 

detection system based on the Hotelling’s T
2
 test. Experiments 

are conducted on two real-world semiconductor datasets. 

Results show that our system outperforms the alternative 

system, and can provide an efficient way for real-time fault 

detection. 

 
Index Terms—Real-time detection, feature selection, 

one-class support vector machines, semiconductor. 

 

I. INTRODUCTION 

Nowadays, the control of manufacturing processes is an 

essential task to ensure consistently safe operation and high 

quality production. This is challenging particularly when 

processes have a large number of operations and complex 

systems, which is the case in manufacturing process of 

semiconductor devices and integrated circuits. Early and 

accurate detection of faults is then required for maintaining a 

process at its optimal condition, and reducing manufacturing 

costs.  

Once the manufacturing process of semiconductor ends, an 

electrical test, called Parametric Test (PT), is performed. PT 

aims to detect within shortest possible time the abnormal 

wafers (semiconductor material used in manufacturing of 

semiconductor devices) by looking at a set of static electrical 

parameters measured on multiple sites of each wafer.  

The purpose of this work is to implement an automatic 

real-time detection system at PT level. Based on a 

multivariate statistical approach, this system aims to detect 

abnormal wafers through a moving temporal window of 

electrical measurements.  

Multivariate statistical approaches have been successfully 

used for monitoring industrial processes [1]–[3]. Principal 

Component Analysis (PCA) was considered to develop 

respectively a static (off-line testing) and dynamic (in-line 

testing) models for fault detection in biological Wastewater 

Treatment Plant (WWTP) [4], [5]. PCA was also considered 
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in [3] to detect faults in a semiconductor etch process. PCA is 

one of the most widely multivariate techniques used for 

extracting relevant information from high dimensional data. 

The goal of PCA is to reduce the dimensionality of the 

original data by projecting them into a lower dimensionality 

space without a significant loss of information. This can be 

done by identifying the directions that explain the maximum 

variation of the data. The PCA method captures the 

variability of a process by monitoring the T2 metric on the 

new PCA components or by monitoring the residuals (Q 

chart) of the PCA model [4]. In case of non-linear processes, 

kernel principal component analysis (KPCA) was used to 

handle non-linearity with the help of kernel functions [6].  

Another multivariate method based on statistical learning 

approaches is the one-class Support Vector Machines 

(1-SVM) [7], which is a variant of the original Support 

Vector Machine (SVM) algorithm [8]. 1-SVM is a useful and 

popular tool used for anomaly detection. A static model 

based on 1-SVM method and the SVM-recursive feature 

elimination algorithm (RFE-SVM) [9] was used in [10] for 

fault detection in a semiconductor etch process, and in 

chemical engineering simulation problem. It has been shown 

that 1-SVM method is an efficient method for fault detection 

in both domains. Moreover, the 1-SVM technique performed 

better than PCA. Even in non-linear cases, simulation 

experiments showed that 1-SVM technique outperformed the 

KPCA method.  

However the SVM-RFE algorithm requires a huge 

computational time since the number of SVM models to be 

trained is O(p2), where p is the dimension of variable space. 

In our study, the variable space is characterized by several 

electrical parameters (hundreds or thousands). High 

dimensional variable space restricts the use of the SVM-RFE 

algorithm. Moreover, as part of the training stage at each 

iteration of a real-time application, this algorithm would not 

be computationally useful, especially when we use a short 

temporal moving window to update the detection algorithm.  

To overcome this problem, we have developed in [11] a 

new filter technique selecting the most relevant features 

(electrical parameters). This technique is based on the 

Median Absolute Deviation method denoted by MADe [12], 

a robust approach for detecting univariate outliers. The key 

idea is to use the MADe method to determine the percentage 

of outlier in each parameter. Then parameters with a 

percentage of outliers exceeding a predefined threshold will 

be potential discriminative features. We denote this method 

by MADe-FS (MADe for Feature Selection). 

The remainder of the paper is structured as follows. First, 

our main contributions in this work are mentioned in the 

Section II. In Section III we recall the one-class support 

vector machine method. Then, our filter method MADe-FS 

which selects the most informative parameters is also 
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recalled in Section IV. Section V describes our real-time 

detection system according to two proposed scenarios for 

updating moving window. A short description of Hotelling’s 

T2 test which is the basis of an alternative detection system is 

given in Section VI. Before concluding, Section VII serves as 

an application of our system on a two real-world 

semiconductor datasets.  

 

II. MAIN CONTRIBUTIONS 

In our work [11], we have considered the problem of 

detecting abnormal wafers in semiconductor using electrical 

measurements. We have developed a static model for fault 

detection based on 1-SVM method for anomaly detection and 

our filter method MADe-FS for selecting the most relevant 

electrical parameters.  

In this work, we consider the problem of real-time fault 

detection, becoming increasingly important in semiconductor 

domain. We develop a dynamic model which shares the same 

approaches of classification and feature selection as in our 

static model. Our dynamic model consists of updating the 

MADe-FS method and the 1-SVM algorithm at each update 

of the moving temporal window. We propose two scenarios 

for updating this window, and we explain our technique used 

to optimize the initial choice of model parameters and their 

updating strategy. 

As an alternative system of real-time detection, we 

implement a similar dynamic model based on PCA method to 

reduce dimension and model the normal behavior, and 

Hotelling’s T2 statistic as multivariate control chart. 

Parameters of this model is selected and updated under the 

same strategy used in our developed dynamic model.  

At our knowledge, this work is the first one to implement a 

real-time fault detection system in semiconductor domain, 

and at the same time the first one to develop a dynamic model 

based on the 1-SVM method. This model is applied on high 

dimensional data consisting of hundreds of variables while 

previous works on fault detection in industrial processes 

considered data with tens of variables. 

 

III. ONE-CLASS SUPPORT VECTORS MACHINES 

Support Vector Machine (SVM) [13] is as an effective 

learning algorithm for binary classification. This algorithm 

aims to find an optimal hyperplane to separate the two classes 

of training data.  

An extension of SVM, called one-class SVM (1-SVM), 

was subsequently proposed in [7] to handle one-class 

classification problem. The 1-SVM strategy is to find an 

optimal hyperplane in a feature space separating the training 

data (positive samples) from the origin (considered as 

negative samples) with maximum margin (the distance from 

the hyperplane to the origin). 

Given a training dataset of n positive samples (normal 

wafers) {x1,…,xn} where each xiϵRp is described by a vector 

of p features (electrical parameters). Each xi is first 

transformed via a feature map φ: Rp --> F where F is a high 

(possibly infinite) dimensional Hilbert space generated by a 

positive-definite kernel K. The kernel function corresponds to 

an inner product in the feature space F through K(x, x’)= 

φ(x) ∙ φ(x’) . 

The 1-SVM algorithm finds in the feature space a 

hyperplane H {z ϵ F; w∙z= ρ} that separates the cluster of 

normal samples from the origin. wϵ F is the normal vector 

defining H. The margin is equal to ρ/||w||. The one-class SVM 

requires solving the following quadratic optimization 

problem:  

min𝑤,𝑏,𝜉

1

2
 | 𝑤 |2 +

1

𝜈𝑛
 𝜉𝑖 − 𝜌

𝑛

𝑖=1

 

st    w  ∙ φ(xi) ≥ ρ - 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑛.      (1) 

 

𝜉𝑖 ’s are slack variables introduced to allow 

misclassification for some points, and ν∈[0, 1] is a free 

parameter controlling the impact of the slack variables, i.e. 

the fraction of training data which are allowed to fall wihtin 

the margin. In fact, it can be shown that ν is an upper bound 

on the fraction of training errors [7].  

The dual problem, to be maximized, is given by:  

min𝛼

1

2
 𝛼𝑖

ij

𝛼𝑗  𝐾 𝑥𝑖 , 𝑥𝑗   

st  0 ≤  𝛼𝑖  ≤ 
1

𝜈𝑛
 ,  𝛼𝑖𝑖 = 1. (2) 

The data xi with non-zero αi are the so-called support 

vectors. They are the training data that determine the 

separating hyperplane. It can also be shown that ν lower 

bounds the fraction of support vectors [7].Once the optimal 

values of the parameters are found, one can classify the new 

data (new wafers) according to the decision function  

𝑔 𝑥 = 𝑠𝑔𝑛  𝛼𝑖  𝐾 𝑥𝑖 , 𝑥 −  𝜌𝑖 ϵ 𝑠𝑣  , (3) 

where sv is the set of the support vectors’ indices. 

In practice, the 1-SVM has been successfully applied with 

the RBF kernel K(xi, xj)=exp(-γ || xi – xj ||2) where γ is a 

parameter that controls the width of the kernel function. After 

many experiments in which we have tested many values for γ 

(γ=1/mp, with m ϵ {0.5, 1, 2, 3, 4, 5}), results have showed 

that best performance of 1-SVM algorithm is obtained for 

m>1, and this performance is not very sensitive to the kernel 

parameter. Hence fine-tuning of the parameter is not 

required. We set γ=1/5p. 

 

IV. OUR FILTER METHOD 

In machine learning and statistics, feature selection is the 

process of selecting an optimal subset of relevant features in 

order to obtain good classification performances.  

To achieve the task of feature selection, we use our filter 

approach based on MADe method, which is a robust 

univariate outlier detection method. Before presenting this 

method, we first introduce the Maximum Absolute Deviation 

(MAD) [14] of a variable xjϵRn (j = 1,…, p):  

MAD 𝑗 =  median𝑖 ϵ [1,𝑛]  𝑥𝑖𝑗 − median 𝑥 𝑗    .           (4) 

MAD is a robust estimator of the spread in a data, similar 

to the standard deviation. When the MAD value is scaled by a 

factor of 1.483, it represents a consistent estimator of the 

standard deviation in a normal distribution [12]. This scaled 
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To conclude, our filter method consider the top 100(1−q) 

% outlying variables as the most relevant electrical 

parameters for the classification task. 

 

V. REAL TIME DETECTION SYSTEM 

The motivation behind the development of a real-time 

detection system is to use the MADe-FS and 1-SVM 

approaches for in-line testing in the context of industrial 

application. This system aims to detect in real-time abnormal 

wafers using a recent history of electrical measurements. In 

the following, we denote our model of feature selection and 

classification by 1-SVM.FS (one-class SVM with Feature 

selection). This model consists of determining firstly the 

most relevant features in the training data using our filter 

method MADe-FS, and secondly applying the 1-SVM 

algorithm on the subset of relevant features. 

Our detection system is based on three major steps:  

1) Selection of a correct performance reference data set, 

representing the normal operating behavior  

2) Real-time data updating through a moving window, to 

obtain a real-time procedure.  

3) 1-SVM.FS application to the updated real-time data.  

So we first define the reference correct performance 

dataset, representing a well-behaved operating condition. For 

this, we select from the historical database of considered 

products, a set of operational positive samples (normal 

wafers) corresponding to a nominal condition of processes. 

Concerning the reference data size, a large data set increases 

the detection reliability. Hence reference data must be large 

enough allowing us to define a normal region which 

encompasses a wide variety of positive samples.  

The correct performance dataset is used as a training set to 

build a model describing the normal behavior of the process. 

When a new lot (group of 25 wafers that run together all 

processing steps) arrives, the 1-SVM.FS model trained on the 

correct performance dataset is used to test whether each of 25 

wafers is normal or abnormal. The tested lot will join the 

initial training set while oldest lot in this set will be removed 

or maintained depending on the used scenarios explained 

below. Thus a new training set is formed. 1-SVM.FS model is 

retrained on the updated training set and will be used to 

predict the operating state of the next 25 new wafers. 

1-SVM.FS model is retrained on the updated training set and 

will be used to predict the operating state of the next 25 new 

wafers. 1-SVM.FS model is retrained on the updated training 

set and will be used to predict the operating state of the next 

25 new wafers. This procedure is repeated with the arrival of 

each new lot. A general view of our detection system is 

presented in the Fig. 1. 

 

 
Fig. 1. Schema of our real-time detection system based on 1-SVM.FS 

dynamic model. 

 

As we described before, the basic 1-SVM.FS model was 

made dynamic by updating the database through a moving 

window. We consider 2 scenarios reflecting two updating 

modes of the moving window:  

 Scenario 1 (increased length): with this scenario, the 

tested lot at each iteration is added to the existing training 

set without removing old data. So 1-SVM.FS model is 

updated according to a moving window of increased 

length. Since normal behavior keeps evolving, we have 

decided to remove at once some old data from the 

increased training set after a defined period Δt. Δt 

depends on the volume production of the considered 

product(s).  

 Scenario 2 (fixed length): during the real-time operation, 

the window still maintains the length of the correct 

performance dataset and operates as a First-In-First-Out 

(FIFO) shift-register, discarding old data and including 

new ones.  

The two scenarios are illustrated respectively in the Fig. 2 

and the Fig. 3. 

Recall that 1-SVM.FS model requires setting the 

parameter ν (the threshold in 1-SVM algorithm) and two 

hyperparameters: the order q of the threshold 𝛳𝑞  in feature 

selection method, and the kernel parameter γ. Consequently 

some kind of model selection (parameter search) must be 

done. 
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MAD value is the MADe:  

MAD𝑒 = 1.483 × MAD.                                (5) 

The MADe method is defined as follows:  

𝐿𝐿𝑗 = Median 𝑗 − 3 × MAD𝑒(𝑗)                      
(6) 

𝑈𝐿𝑗 = Median 𝑗 + 3 × MAD𝑒(𝑗), 

where LLj and ULj are respectively the lower and upper limits 

for the variable j. 

The MADe approach is similar to the Standard Deviation 

(SD) method that considers the observations outside the 

interval [𝑥 ±3σ] as outliers, where x  and σ are respectively the 

empirical mean and standard deviation for a univariate 

samples. However, the median and MADe are employed 

instead of the mean and the standard deviation. Since this 

approach uses two robust estimators, it is largely unaffected 

by the presence of extreme values in the data set. 

Thus the percentage of outliers OOLj (Out Of Limit) of the 

variable xj represents the proportion of data outside the 

interval determined by the lower and upper limits of the 

MADe method. Therefore we have:  

 

𝑂𝑂𝐿𝑗 =
# 𝑖 𝜖  [𝐿𝐿𝑗 ,𝑈𝐿𝑗 ]

𝑛
                  (7) 

 
Finally, the Subset of Relevant Variables (SRV) contains 

variables for which the percentage of outliers exceeds the 

threshold ϴq (cf. Eq. 8). ϴq is defined as the quantile of order 

q of the values in the vector OOL=(OOL1,…, OOLp).  

 

SRV = {𝑥𝑗, OOL𝑗 > 𝛳𝑞}                             (8) 
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To accomplish the model selection task, a validation set 

containing normal data contaminated by some abnormal 

wafers is needed. It is used to identify good (q, ν) so that the 

classifier can accurately predict unknown data (i.e. testing 

data). A “grid search” on q and ν is performed. 1-SVM.FS 

model is built on training set using various pairs of (q, ν) 

values. For each pair, samples from validation set are 

projected onto the trained 1-SVM.FS model. Then Detection 

Rate and the False Alarms Rate (cf. Section VII-A) are 

computed. The pair that optimizes these two performance 

measures is picked. More precisely, the best pair (q, ν) is the 

one giving the optimal compromise between maximizing the 

Detection Rate and minimizing the False Alarms Rate. The 

selected pair is used at each update of the 1-SVM.FS model. 

 

 
Fig. 2. Real-time moving window using scenario 1. 

  

 
Fig. 3. Real-time moving window using scenario 2.  

 

VI. HOTELLING’S T2
 TEST 

To make our study comparable to previous studies, we 

have investigated the Hotelling’s T2 test. Hotelling’s T2 

statistic provides an indication of novel variability within the 

model space. 

The principle of this test is to use PCA method to model 

the behavior of the normal samples. Anomalies are then 

detected by comparing the behavior observed with that given 

by the PCA model. Having established a PCA model of the 

positive training data, testing data are projected onto this 

model, and Hotelling’s T2 statistic can be computed based on 

the first k principal components of the model. The T2 statistic 

for a sample xi is:   

2 1 1

i

    T T T

i i i k k iT t t x p p x                   (9) 

where ti =Pk
T xi is the orthogonal projection of the data xi into 

the model subspace defined by the k first principal 

components, and Λ is a diagonal matrix containing the first k 

eigenvalues of the covariance matrix of the positive training 

data. 

A threshold T2
α can be obtained using the Fisher 

distribution. If T2
i> T2

α, the sample is categorized as 

abnormal, and normal otherwise. For further details on fault 

detection based on PCA readers are advised to read the 

literature [4]. 

To choose k, we use the Cumulative Proportion of 

Variance (PCV): 

PCV 𝑘 = 100 ×
 𝜆𝑗

𝑘
𝑗=1

 𝜆𝑗
𝑝
𝑗=1

 , 

where λ1,…, λp are the eigenvalues sorted in descending 

order. Thus we retain the first k components that account for a 

predefined percentage of the variance in the data: 

𝑘 = arg min𝑢 {PCV(𝑢) ≥  𝛽 }. 

For example, if we set β=0.8 we retain the minimal number 

of components that preserve 80% of the information in the 

data. 

Detection system based Hotelling’s T2 test is dynamically 

the same as our system. The data and model update is 

performed at the level of 25 wafers (each new lot) following 

the proposed two scenarios. 

 

VII. APPLICATION 

Our experimental goal was to assess the ability of our 

detection system to detect abnormal wafers. It is also 

important to minimize false alarms rate as they cause 

unwarranted interruption in plant operation. Let us first 

introduce the performance measures used in our study. 

 
TABLE I: CONFUSION MATRIX OF METRICS USED IN PERFORMANCE 

MEASURES 

True class vs Decision Positive Negative 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 

A. Performance Measures and Data 

In order to evaluate and compare the results obtained from 

the different methods, we used two performance criteria: 

Detection Rate (DR) and False Alarms Rate (FAR). 

Detection Rate quantifies the percentage of data predicted to 

be negative by the classifier that are actually negative; False 

Alarms Rate quantifies the percentage of data predicted to be 

negative by the classifier that are actually positive. These two 

measures are computed using the four metrics described in 

the Table I as follows: 

𝐷𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
 

We notice that the resulting false alarms rate in the context 

of application of real-time detection system over a production 

period represents the average of false alarms rates obtained 

when testing separately each of all lots that have to be tested. 

Furthermore, the FAR-DR curve is suitable for evaluating 

classifiers by integrating their performance over a range of 

decision thresholds. It depicts the relation between DR 

(x-axis) and FAR (y-axis) varying the range of thresholds. 

The lower the misclassification error of a classifier, the closer 

the corresponding point is to the upper right-hand corner of 

the ROC curve.  
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The real-time detection system proposed in this paper has 

been tested on two real-world industrial datasets. Each 

dataset consists of wafers corresponding to one or more 

products of a certain technology over months of production. 

Each wafer is described by a certain number of electrical 

parameters. We give the percentage of abnormal wafers in 

each dataset. The description of these two datasets is given in 

Table II. 1-SVM.FS and Hotelling’s T2 detection systems are 

investigated under the two scenarios in both datasets, in order 

to prove again the efficacy and superiority of our detection 

system. Ideally, we want high DR (to detect most of the 

abnormal wafers) and a low false alarms rate (to avoid 

mistakenly classifying normal wafers as abnormal). 

 
TABLE II: DESCRIPTION OF THE REAL WORLD INDUSTRIAL DATA USED IN 

OUR STUDY 

 Data Production time Nb of 

parameters 

% of abnormal 

wafers 

  dataset 1 2 months 756 1.75 

 dataset 2 4 months 1062 0.5 

addition, we have obtained lower false alarms rate using our 

detection system. For both detection systems, scenario 1 

reduces false alarms compared to scenario 2. 

 
TABLE III: PERFORMANCE OF 1-SVM.FS AND HOTELLING’S T2

 SYSTEMS 

ON THE DATASET 1 

 Moving window Detection system Detection Rate False Alarms 

Rate 

  Scenario 1 1-SVM.FS 95.65 12.89 

 Hotelling’s T2 65.22 13.43 

  Scenario 2 1-SVM.FS 95.65 19.25 

 Hotelling’s T2 65.22 19.85 

 

To confirm this hypothesis, FAR-DR curve is plotted in 

the Fig. 4 to study the behavior of our detection system 

regarding the two different scenarios, over the same range of 

ν defined above. It is clear that scenario 1 gives a significant 

reduction interm of false alarms compared to scenario 2. This 

is due to the increased size of its moving window where a 

new lot is added to the training database at each update. In 

fact one-class SVM requires many more positive training 

data to give an accurate decision boundary because its 

support vectors come only from the positive data. However 

scenario 2 tends to detect more quickly abnormal wafers (i.e. 

for any value of ν, scenario 2 has higher or the same DR than 

scenario 1). The short fixed window in scenario 2 has a more 

efficient updating strategy and contains fewer abnormal 

wafers in the moving training dataset, which improves the 

performance of 1-SVM algorithm since the latter requires 

normal wafers to learn the classifier.  

 

 
Fig. 4. FAR-DR curve comparing performances of 1-SVM.FS detection 

system using the two proposed scenarios. 

 

Note that, in the first experiment considering only two 

months of production, we did not remove old data in the 

actual training set after the Δt period for the scenario 1, as has 

been recommended in Section V. This action takes place in 

the second experiment considering four months of production 

where we have a larger number of wafers. 

A final comparison is realized between 1-SVM.FS and 

1-SVM detection systems. The difference between these two 

systems is that the latter ignores the feature selection step 

used by the former. Another FAR-DR curve is plotted in the 

Fig. 5 illustrating this comparison. From this curve, a very 

important improvements achieved by applying our feature 

selection method MADe-FS. These improvements were 
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1) Dataset 1 

In this experiment, the correct performance data is formed 

using 300 normal wafers. The validation set consists of 100 

wafers of which 6 wafers are abnormal. We have trained our 

1-SVM.FS model on the correct performance data using 

various pairs of values for the feature selection 

hyperparameter q and the threshold ν. We consider 

respectively 6 and 20 values for q and ν, as follows:  

qϵ{0.25, 0.4, 0.5, 0.6, 0.75, 0.9}, 

νϵ{0.01, 0.02,…, 0.19, 0.2}. 

Samples from the validation set are then predicted using 

each of 120 learned models. The Detection Rate and the False 

Alarms Rate are computed for each prediction. We have 

selected the pair that optimizes simultaneously these two 

performance measures. Here we have retained q=0.75 and 

ν=0.16 and we have obtained a DR equal to 100% and FAR 

equal to 14.21%.  

Similarly, we have selected for the Hotelling’s T2 test the 

best pair (β, α) (cf. Section VI) by taking β∈ 

{0.75, 0.8, 0.85, 0.9} and considering the same range of 

values of ν for α. The optimal performance is obtained for 

β=0.75 and α=0.2, where DR and FAR are respectively equal 

to 66.67% (4 among 6 abnormal wafers) and 17.36%.  

After defining the correct performance data set and 

selecting the optimal parameters for 1-SVM.FS and 

Hotelling’s T2 models, we now proceed to the real-time 

detection by applying both of models to the real-time data. 

The real-time data are updated at each arrival of a new lot 

through a moving window in order to obtain a real-time 

procedure. The two models are also updated. The updates 

through the moving window follow one of two defined 

scenarios: scenario 1 (increased length) and scenario 2 (fixed 

length). 

Next, we focus on comparing the performance of the two 

real-time detection systems based on 1-SVM.FS and 

Hotelling’s T2 dynamic models using the two scenarios. The 

results are reported in Table III. For both scenarios, the 

Hotelling’s T2 system has shown poor performance in 

detecting abnormal wafers (DR=65.22%), while 1-SVM.FS 

system has been able to detect 95.65% of abnormal wafers. In 
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observed on each of the two performance measures (DR and 

FAR). 

 

 
Fig. 5. FAR-DR curve showing the importance of our filter method 

MADe-FS to improve the performance of the 1-SVM classifier, according to 

scenario 1. 

 

demonstrated using two real-world industrial datasets. For 

both scenarios, results from the two datasets showed that our 

system could detect most of the abnormal wafers with an 

admissible percentage of false alarms. In addition, our system 

outperformed the detection system based on the Hotelling’s 

T2 test in the dataset 1, and similar performance was obtained 

in dataset 2 with slightly lower rate of false alarms. 
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2) Dataset 2 

Dataset 2 contains wafers from another category of 

products collected over four months of production. This 

dataset has higher dimensional space and lower percentage of 

abnormal wafers, compared to the first dataset. We set to 500 

the size of the correct performance data. The validation set 

contains 2 abnormal wafers among of 100. 

Following the same procedure used in dataset 1 for 

selecting optimal parameters, we have retained 

(q, ν)=(0.75, 0.04) for 1-SVM.FS model and 

(β, α)=(0.8, 0.01) for Hotelling’s T2 model. We set Δt to 2 

months. 

Table IV summarizes the performances achieved by the 

two systems under the two different scenarios. The results 

reveal a degree of similarity between the performances of 

both systems. High performance was obtained using both 

systems. Observations resulting from the comparison of two 

scenarios in dataset 1 are confirmed in dataset 2. Scenario 1 

has lower false alarms rate, while scenario 2 detect more 

effectively abnormal wafers.  

 
TABLE IV: PERFORMANCE OF 1-SVM.FS AND HOTELLING’S T2

 SYSTEMS 

ON THE DATASET 2 

 Moving window Detection system Detection Rate False Alarms 

Rate 

  Scenario 1 1-SVM.FS 83.33 5.89 

 Hotelling’s T2 83.33 6.34 

  Scenario 2 1-SVM.FS 91.67 8.62 

 Hotelling’s T2 91.67 9.12 

 

VIII. CONCLUSION 

In this paper, we proposed a new real-time fault detection 

system based on the machine learning 1-SVM algorithm and 

our filter method for feature selection. A dynamic detection 

was realized by updating the database following two 

proposed scenarios. The efficacy of our system has been 
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