Thèse de doctorat en Informatique
Sous la direction de Marie-Christine Rousset et de Maurice Tchuenté.
Soutenue le 05-12-2014
à Grenoble en cotutelle avec l'Université de Yaoundé I , dans le cadre de École doctorale mathématiques, sciences et technologies de l'information, informatique (Grenoble) , en partenariat avec Laboratoire d'informatique de Grenoble (laboratoire) et de Laboratoire International de Recherche en Informatique et Mathématiques Appliquées (laboratoire) .
Le jury était composé de Alexandre Termier, Céline Robardet, Éric Gaussier, Noha Ibrahim.
Les rapporteurs étaient Laks V.S. Lakshmanan, Pascal Poncelet.
Le projet SoC-Trace a pour objectif le développement d'un ensemble de méthodes et d'outils basés sur les traces d'éxécution d'applications embarquées multicoeur afin de répondre aux besoins croissants d'observabilité et de 'débogabilité' requis par l'industrie. Le projet vise en particulier le développement de nouvelles méthodes d'analyse, s'appuyant sur différentes techniques d'analyse de données telles que l'analyse probabiliste, la fouille de données, et l'agrégation de données. Elles devraient permettre l'identification automatique d'anomalies,l'analyse des corrélations et dépendances complexes entre plusieurs composants d'une application embarquées ainsi que la maîtrise du volume important des traces qui peut désormais dépasser le GigaOctet. L'objectif de la thèse est de fournir une représentation de haut niveau des informations contenues dans les traces, basée sur la sémantique. Il s'agira dans un premier temps de développer un outil efficace de comparaison entre traces;de définir une distance démantique adaptée aux traces, puis dans un second temps d'analyser et d'interpréter les résultats des comparaisons de traces en se basant sur la distance définie.
Abstraction and comparison of execution traces for analysis of embedded multimedia applications
The SoC-Trace project aims to develop a set of methods and tools based on execution traces of multicore embedded applications to meet the growing needs of observability and 'débogability' required by the industry. The project aims in particular the development of new analytical methods, based on different data analysis techniques such as probabilistic analysis, data mining, and data aggregation. They should allow the automatic identification of anomalies, the analysis of complex correlations and dependencies between different components of an embedded application and control of the volume traces that can now exceed the gigabyte. The aim of the thesis is to provide a high-level representation of information in the trace based semantics. It will initially develop an effective tool for comparing traces, to define a semantic distance for execution traces, then a second time to analyze and interpret the results of comparisons of traces based on the defined distance.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.