Thèse soutenue

Contribution à la modélisation hygrothermique des bâtiments : application des méthodes de réduction de modèle

FR  |  
EN
Auteur / Autrice : Julien Berger
Direction : Monika WoloszynSihem Guernouti
Type : Thèse de doctorat
Discipline(s) : Génie civil et sciences de l'habitat
Date : Soutenance le 10/12/2014
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale sciences et ingénierie des systèmes, de l'environnement et des organisations (Chambéry ; 2007-2021)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'optimisation de la conception et ingénierie de l'environnement (Le-Bourget-du-Lac, Savoie)
Jury : Président / Présidente : Bernard Perrin
Examinateurs / Examinatrices : Nathan Mendes, Francisco Chinesta, Marx Chhay
Rapporteurs / Rapporteuses : Jean-Jacques Roux, Ian Beausoleil-Morrison

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les bâtiments existants reposent sur un équilibre stable qui assure leur durabilité. Toute exécution de travaux de réhabilitation qui déplace cet équilibre peut être à l'origine de désordres. En ce sens, les travaux peuvent être qualifiés de pathogènes. Dans le cadre de rénovations énergétiques, la problématique de l'humidité dans les bâtiments existants nécessite donc une attention particulière. Il convient donc de fournir aux acteurs de la construction des modèles de simulation du comportement hygrothemique global des bâtiments et d'évaluer les risques de pathologies liées à l'humidité. L'élaboration de ces modèles passent par la résolution de problèmes non-linéaires, de grande échelles spatiales et temporelles, et parfois paramétrique. Ils sont donc complexes à résoudre et les méthodes de réduction de modèle permettent de répondre à cette problématique. Deux techniques de réduction de modèles ont été explorées: la Décomposition Orthogonale Propre (POD) et la Décomposition Générale Propre (PGD). Elles ont été appliquées sur des problèmes de diffusion non-linéaire, couplée chaleur et humidité, dans les matériaux poreux. Ces deux méthodes ont été évaluées et comparées sur les critères de réduction du coût numérique de résolution du problème et sur la précision de calcul de la solution. Sur la base de ces analyses, la PGD a été retenue pour la suite des travaux. Grâce à ses caractéristiques, la méthode PGD présente plusieurs avantages d'ordre structurel, recensés dans la littérature. Au chapitre 3, nous avons utilisé ces prérogatives pour répondre aux problématiques de complexité des modèles de simulation des bâtiments. Notre intérêt s'est concentré sur la réduction de la complexité numérique de problèmes multi-dimensionnels, sur la globalisation de problèmes locaux et sur la création de méta-modèle ou solution PGD paramétrique. Plusieurs cas académiques ont été considérés pour illustrer ces propos. Nous avons traité des problèmes de transferts non-linéaires dans les matériaux poreux et des problèmes de transferts multizone dans un bâtiment. Enfin, la dernière partie des travaux est axée sur la construction d'un modèle global articulant des modèles réduits PGD. Deux modèles sont construits. Le premier couple un modèle réduit enveloppe PGD avec un modèle complet multizone. Ces travaux ont été réalisés dans le cadre d'une collaboration avec le laboratoire LST de l'université PUCPR de Curitiba, Brésil. Ce partenariat a permis de bénéficier du modèle reconnu et validé Domus pour la simulation des transferts multizones. Les nombreuses possibilités du logiciel ont pu être exploitées. Deux cas d'études sont abordés. Le premier concerne la résolution d'un problème paramétrique pour l'étude de scénarios de réhabilitation en fonction de la perméabilité à la vapeur de l'isolant. Le second porte sur la modélisation globale d'un bâtiment bi-zone intégrant une simulation bi-dimensionnelle d'un pont thermique. Il est possible d'élaborer un modèle global présentant une plus grande réduction de la complexité du problème que celui réalisé avec Domus. Le deuxième modèle couple donc un modèle réduit PGD pour le problème enveloppe et une solution PGD paramétrique pour le problème multizone. Les performances de ce modèle ont été discutées en terme de précision de calcul de la solution et d'économie numérique de résolution du problème. La pertinence des méthodes de réduction de modèle pour la simulation du comportement des bâtiments a été montrée. En particulier, la méthode PGD permet d'apporter une nouvelle approche de résolution ces problèmes.