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grateful to Professor Säıd Mammar for his help and support of my research

academic activity throughout my PhD course. I would also like to acknowl-

edge Florant and Sabine. The are responsible for their to assistant our

research work in the laboratory. Finally, thanks to my parents and friends

for their heed and support.



Abstract

This thesis is concerned with the problem of vision-based navigation for mo-

bile robots in indoor environments. More recently, many works have been

carried out to solve the navigation using a visual path, namely appearance-

based navigation. The visual path is generated after a training step. During

the navigation, the mobile robot tracks the trained visual path by visual

servoing approaches from key to key images. Compared to the metric map-

based navigation approaches, the appearance-based scheme can avoid envi-

ronment modeling, loop closing problem and the time consuming of plan-

ning algorithms. However, using this scheme the robot motion is limited

to the trained visual path. For safety navigation, the robot should have

the ability to avoid obstacles during the navigation process. The potential

collision can make robot deviate from the current visual path, in which the

visual landmarks can be lost in the current field of view. To the best of our

knowledge, seldom works consider collision avoidance and landmark loss in

the framework of appearance-based navigation.

We outline a mobile robot navigation framework in order to enhance the

capability of appearance-based method, especially in case of collision avoid-

ance and field-of-view constraints. Our framework introduces several tech-

nical contributions. First of all, the motion constraints are considered into

the visual landmark detection to improve the detection performance. Next

then, we model the obstacle boundary using B-Spline by interpolating the

convex polygonal chain of the boundary. The B-Spline representation has

no accidented regions due to the convex polygonal chain and can generate a

smooth motion for the collision avoidance task. Additionally, we propose an

vision-based control strategy, which can deal with the complete target loss.

Finally, we use spherical image to handle the case of ambiguity and infinity

projections due to perspective projection. The real experiments demon-

strate the feasibility and the effectiveness of our framework and methods.
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2.4 Résultats Expérimentaux . . . . . . . . . . . . . . . . . . . . . . 10
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Synthèse en Français

Introduction

Objectif de la thèse

Notre travail de recherche vise à développer un système de robot mobile autonome

pour aider les personnes agées ou handicapées dans des situations quotidiennes. Notre

domaine de recherche se concentre sur les scénarios à usage domestique. Nous voulons

concevoir un robot mobile qui peut de manière autonome et en toute sécurité passer

d’une pièce à l’autre en utilisant des repères visuels dans l’environnement. Notre envi-

ronnement est marqué avec des repères visuels. L’environnement est présenté par un

ensemble d’images clés jouant le rôle repères visuels. Ces images sont stockées dans la

mémoire du robot en tant que base de données. Nous supposons que le robot a une

caméra fixe, un laser 2D à balayage et une odométrie. Le robot mobile peut naviguer

entre les repères visuels en utilisant des approches de contrôle basées sur la vision en

présence d’obstacles.

Nous nous concentrons sur le défi de chaque étape de la tache de navigation comme

décrit dans la figure 1. Notre champ d’application est de faire naviguer le robot jusqu’à

un repère visuel tout en considérant l’espace libre de collisions, la contrainte de champ

de vision limité ainsi que les contraintes non holonomes. A chaque étape de la tache

de navigation, trois tâches principalement sont considérées: (1) la détection et le suivi

des repères visuels pour naviguer entre eux. Le mouvement du robot est contrôlé par

des approches basées sur la vision. Cette tâche entrâıne le robot vers un but désiré.

Ainsi, il est appelée tache orientée objectifs. (2) détection d’obstacle et d’évitement,

dans laquelle la sécurité de mouvement du robot est considérée. (3) l’estimation de la

cible quand il est perdu après l’exécution de la tache d’évitement d’obstacles, afin de

retrouver la cible après évitement d’obstacle.
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Introduction

Figure 1: Illustration des défis de navigation basée apparence.

Contributions

Dans le cadre des approches de navigation par leur apparence, robots mobiles sont

généralement limitées à la voie visuelle. Cependant, les obstacles inconnus dynamiques

peuvent faire que les robots s’écartent du chemin visuel formé de sorte que les repères

visuels peuvent être perdus dans le champ de vision de la caméra. Finalement, le

chemin visuel est totalement perdu et la tache de navigation échoue. Il y a quelques

travaux qui prennent en compte l’évitement d’obstacles et la perte complète du chemin

visuel pendant la navigation basée sur la vision. Certains travaux utilisent un système

redondant combinant le controleur basé sur la vision avec le contrôleur d’évitement

d’obstacles pour maintenir la cible visuelle visible pendant l’évitement d’obstacle. Cer-

tains travaux utilisent le système de caméra catadioptrique central pour augmenter le

champ de vision du système de la caméra. Cependant, ces travaux ne essentiellement

résout pas le problème de la perte complète de cible visuelle. Folio et al. propose un

procédé utilisant l’algorithme d’estimation visuelle de données. Il utilise les mesures

visuelles antérieures et les entrées de commande pour estimer les caractéristiques vi-

suelles courantes quand elles sont perdus. La principale contribution de cette thèse est

la solution pour gérer la perte totale de repère visuel causé par l’évitement d’obstacles

pendant la navigation basée sur la vision. Dans les détails, les domaines suivants sont

des contributions originales:

• Présenter une approche RANSAC deux-points pour le calcul de l’homographie

d’un objet plan posé verticalement. L’approche de détection d’objet est utilisée

pour initialiser une approche efficace de suivi visuel. La méthode de détection

etde suivi de détection et de suivi visuel peut détecter un objet à partir d’une
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grande distance et la suivre de façon robuste en temps réel.

• Proposer une détection d’obstacle, sa représentation et son évitement efficaces. La

représentation B-spline proposée permet un mouvement fluide lors de l’évitement

d’obstacles.

• Développer une approche de l’asservissement visuel basé homographie qui peut

traiter la perte de cible en raison de contraintes de champ de vision et les con-

traintes de sécurité de collision.

• Etendre l’utilisation de l’image sphérique à l’asservissement visuel pour traiter le

problème de cible perdue.

Chapitre 1

Fonction de Sélection pour la Détection d’Objets

De nombreux détecteurs et de descripteurs de caractéristiques ont été proposées dans la

littérature. Afin de décider de la méthode d’extraction de caractéristiques appropriée

pour notre application, nous évaluons certaines approches prometteuses de détection,

la description et la détection de caractéristiques dans ce chapitre. Nous utilisons notre

propre ensemble de données en tenant compte de critères liés à notre application pour

l’évaluation.

1.1 Expérience pour la sélection d’entité

Dans la littérature, SIFT est absolument la méthode la plus utilisée avec SURF. SURF,

similaire à SIFT, efficace d’un point de vue calculatoire. MSER est particuliérement

robuste pour les changements de point de vue et d’éclairage d’après [106]. BREF,

ORB, BRISK et FREAK sont la récente vague d’extracteurs qui garantit la robustesse

tout en réalisant unefficacité élevée de calcul. Par conséquent, nous avons comparé ces

méthodes.

Dans les applications de robotique d’intérieur, la performance de ces caractéristiques

locales pour les changements d’échelle, point de vue et le flou de mouvement est le

principal facteur pris en considération. Ainsi, l’évaluation de ces caractéristiques des

détecteurs et des descripteurs est réalisée avec trois ensembles de données: le change-

ment d’échelle, le changement de point de vue, et de flou de bougé. On compare la

qualité de l’extraction et le temps de calcul par les critères suivants:
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– temps par image: temps total en millisecondes passé pour l’extraction de car-

actéristiques d’un cadre unique.

– fois par keypoint: temps d’extraction pour un seul point-clé. Il est évalué par

le temps d’extraction totale divisée au nombre de points-clés détectés.

– nombre de vrais appariement.

– Pourcentage de vrais appariements: évalué comme le nombre de vrais ap-

parienments divisé par le nombre de points-clés minimal des images de référence

et de la scène.

Les expériences montrent que SIFT fournit toujours un nombre de vrais appariements

suffisant même en présence de changement de point de vue et d’échelle. Le pourcentage

de vrais appariement est élévé. Cependant, les SIFT, SURF et MSER ne conviennent

pas pour des applications temps réels. BRISK, BREF, ORB ainsi que FREAK satisfont

à l’exigence temps réel. Afin de gérer la détection à grande distance dans notre applica-

tion, nous choisissons le détecteur et le descripteur SIFT. Afin d’assurer la performance

en temps réel de suivi visuel, nous utilisons le résultat de détection pour initialiser une

méthode de suivi basée sur un modèle.

1.2 Contrainte RANSAC pour Homographie Estimation

Dans nos expériences de détection planaire de repère visuel, des résultats inattendus

peuvent se produire comme illustré dans la figure 2. Sur la gauche de la figure est

l’image de référence, dans lequel une affiche est l’objet. Sur la droite est l’image de la

scène. Les matchs sont représentés par des lignes droites. Les lignes vertes représentent

les points d’intérêt satisfaisant à une transformation d’homographie, qui est choisie par

l’algorithme RANSAC 4-points. Les lignes roses représentent les valeurs aberrantes,

qui satisfont pas l’homographie estimée. Le résultat correspondant montrent de toute

évidence que l’algorithme standard de RANSAC 4-points pour l’estimation de homogra-

phie peut sélectionner un modèle faux. Par conséquent, les véritables “inliears” ne sont

pas sélectionnés. C’est parce que l’algorithme de RANSAC fonctionne de façon aléatoire

et choisit un modèle avec une erreur minimum. Et l’homographie code le mouvement

de la caméra entre deux points de vue et la structure de l’objet plan. L’algorithme

RANSAC 4-points considère un mouvement de caméra à 6 DDL par rapport à un objet

plan orienté de manière arbitraire.

Cependant, dans notre application de l’environnement intérieur, le robot se déplace

dans un plan. Pour notre configuration caméra-robot, la caméra est fixée sur le robot
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Figure 2: Le problème de la 4-Points RANSAC pour la d’etection d’objet.

mobile et son mouvement est parallèle au sol. Ainsi, le mouvement de la caméra dispose

de 3 DoF, deux translations et une rotation. L’objet planaire est placé en parallèle avec

la paroi et à la verticale au sol. Par conséquent, le vecteur normal de l’objet plan est

également parallèle au sol. Afin d’améliorer le résultat de détection, nous considérons

le mouvement contraint de la caméra et l’orientation contrainte de l’objet plan pour

formuler une homographie contrainte. Afin d’améliorer le résultat de la détection,

on utilise l’algorithme RANSAC pour estimer l’homographie contrainte dans l’étape

d’appariement.

Considérent que le mouvement de la caméra et son Plan x − z sont à la fois par-

allèle au sol. Le vecteur normal de l’objet plan est parallèle au sol. Par conséquent,

l’homographie est:

H = R+
t

d
n⊤

=




cos θ + txnx

d
0 sin θ + txnz

d

0 1 0

− sin θ + tznx

d
0 cos θ + tznz

d




=




h11 0 h13

0 h22 0

h31 0 h33


 . (1)

Pour chaque correspondance (x1,x2), nous avons x2 = Hx1, ce qui est équivalent

à x2 ×Hx1 = 0. Si nous notons l’jth row de H en utilisant un vecteur ligne hT
j , tous

les éléments de H présenté par un vecteur h = [h⊤
1 h⊤

2 h⊤
3 ]

⊤. Le produit croisé peut

être écrit comme la forme de la matrice Ah = 0, où A est la matrice des paramètres.

Considérant l’équation (1), le vecteur h est réduite à hr = [h11 h13 h22 h31 h33]
⊤. Donc
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la matrice A sera réduite à

Ar =

[
0 0 −y1z2 x1y2 z1y2

x1z2 z1z2 0 −x1x2 −z1x2

]
(2)

Le vecteur h a cinq entrées. Un appariement donne deux équations. Par conséquent,

seuls deux appariements sont assez pour résoudre h à un facteur d’échelle près. Par

conséquent, nous avons adapté l’estimation de homographie avec seulement 2 points

compte tenu des contraintes de mouvement de la caméra et le vecteur normal de l’objet

plan. Le résultat expérimental de l’algorithme RANSAC 2-Points est illustré sur la

figure 3.

Figure 3: Le résultat expérimental de l’algorithme RANSAC 2-Points.

Chapitre 2

Evitement Réactif Temps Réel d’Obstacles

2.1 Introduction

Le déplacement en toute sécurité du robot dans un environnement réaliste est une

des fonctionnalités essentielles d’un robot. La détection d’obstacles, la représentation

ainsi que l’évitement sont des taches cruciales pour la navigation de robot mobile en

milieu intérieur et extérieur. Ce chapitre présente l’évitement d’obstacle de notre robot

dans un environnement intérieur inconnu notre robot mobile dans un environnement

inconnu, à partir de données fournies par un laser 2D. Les méthodes proposées peuvent

obtenir un mouvement sans collision pendant la navigation du robot mobile.

2.2 Détection d’Obstacles et Représentation

Dans cette section, nous présentons nos approches de détection d’obstacles et de représentation

basée sur les mesures d’un laser plan. Contrairement à d’autres procédés de représentation
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d’obstacle, on analyse la forme convexe et concave de la limite des obstacles et génère

une courbe lisse par rapport à la limite convexe.

2.2.1 Détection d’Obstacles

La détection d’obstacles commence habituellement par la segmentation puis la fusion

de points, comme indiqué dans la figure 4. La collision est ensuite vérifiée par calcul

de prédiction de mouvement.

Afin de distinguer des objet différents, nous segmentons les balayages laser dans

des grappes de points adjacents. Chaque groupe correspond à un contour visible d’un

objet détecté. Le Successive Edge Following (SEF) algorithme [144] est utilisé dans

le processus de segmentation. Dans le processus de segmentation, nous éliminons les

points isolés considérés comme du bruit. La figure4(b) montre différents segments de

couleurs. À cause du bruit ou d’occlusion, un contour de l’objet peut être divisé en

plusieurs segments adjacents. Afin de faire face à cette question, nous fusionnons les

segments proches dans un grand segment en utilisant l’écart angulaire entre deux points

des deux segments les plus proches. La figure 4(c) montre le résultat de la fusion finale.

(a) Les données brutes laser (b) Segmentation des données
laser

(c) Fusion des données laser

Figure 4: Segmentation et fusion des données laser.

2.2.2 La Représentation

La représentation des obstacles vise à trouver un modèle de la frontière de l’obstacle

détecté. Dans cette section, nous allons modéliser la limite d’obstacle sur la base de

lignes polygonales.

Représentation d’une chaine polygonale convexe Les chaines polygonales peu-

vent être utilisées pour se rapprocher d’autres courbes [130] et formes planes [142]. Elle

peuvent également être utilisés pour rapprocher les contours d’obstacles. Cependant,
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les sommets concaves sont inadéquates pour l’évitement d’obstacles lorsque le robot

mobile va le long de la châıne polygonale. Parce que le robot peut se déplacer dans

certaines parties concaves qui ne sont pas nécessaires, la trajectoire n’est pas lisse. Afin

d’assurer un mouvement fluide, la convexité de la châıne polygonale extraite doit être

satisfaite. Nous utilisons une zone du triangle signé dans l’algorithme split-et-fusion

pour extraire uniquement la courbe convexe. Notre idée est similaire à Han [61]. La

figure 5 illustre l’extraction convexe de la châıne polygonale.

(a) (b)

Figure 5: Extraction de courbe convexe.

Approximation par des B-splines Pour obtenir une approximation de la représentation

lisse de la limite de l’obstacle, on représente la limite d’obstacle par une courbe B-

spline cubique paramétrique en interpolant les sommets de la châıne polygonale con-

vexe. L’avantage d’utiliser les courbes B-splines, est qu’elles permettent une continuité

d’ordre arbitraire pour représenter les frontières de l’obstacle, ce qui est très approprié

pour le contrôle de mouvement de robot pendant l’évitement d’obstacles. En outre, les

B-splines peuvent s’adapter à n’importe quelle courbe définie par les points de contrôle,

et sa production est intuitive. En outre, ce sont des polynômes par morceaux, de sorte

qu’ils peuvent effectuer une bonne approximation avec un faible degré, tout en évitant

l’instabilité due à un phénomène Runges. La figure 6 illustre un résultat interpolé

(dessiné en vert) à partir d’une analyse réelle de relevé appliquée à la châıne polygo-

nale sélectionnée (dessinée en rouge) correspondant à l’obstacle à éviter par le robot

mobile.
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Figure 6: Sélection d’obstacles et raccord aux limites

2.3 Approches d’évitement d’obstacles réactif

Soit u = [υ ω]⊤ comme entrées de commande pour le système de robot. υ et ω sont

respectivement les vitesses linéaires et angulaires (positifs dans le sens antihoraire) du

robot. Par conséquent, le modèle cinématique monocycle est donné par




ẋ

ẏ

θ̇


 =




cos θ 0

sin θ 0

0 1




(
υ

ω

)
(3)

Nous considérons le suivi de chemin pour traiter l’évitement d’obstacle suivant.

Deux enveloppes ξ0 et ξ+ sont générées en étendant l’enveloppe ξobs comme illustré

dans la figure 7. Soit ξobs représentant le rapprochement de la frontière de l’obstacle.

ξ0 et ξ+ entourent l’obstacle à la distance |d0| < |d+| représentant le risque de collision.
ξ+ définit une zone à l’intérieur de laquelle l’obstacle est détecté. Nous supposons

que la distance entre deux obstacles est plus grande que 2|d+|, ce qui assure que le

robot traite un obstacle à chaque fois. ξ0 est le chemin de référence à suivre lorsque le

robot contourne l’obstacle. Un cadre de référence F0 est fixé à ξ0 et le vecteur d’erreur

(δ, α, χ) est ensuite calculé. (Voir la figure 7 pour les composants de vecteur d’erreur.)

Figure 7: Évitement des collisions en utilisant le suivi de chemin
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Afin de contrôler le robot suivant le chemin ξ0, nous utilisons la loi de commande

proposée dans la littérature [136]. La loi de commande peut être décrite par une mise

en vitesse linéaire non nulle et une vitesse angulaire

ω = −υ(kδ + α+ 2k sinα− χ cosα) (4)

où k est un gain positif à ajuster. La vitesse linéaire peut être une valeur constante ou

peut être un profil souhaité.

Naturellement, la tache d’évitement est fusionnée avec une tache principale (chemin

suivant, asservissement visuel, ... etc). Folio et al. dans [50] propose une méthode de

commande hybride pour fusionner l’asservissement visuel avec des taches d’évitement

d’obstacle au niveau de la commande. Ici, nous construisons un contrôleur similaire à

celui présenté dans [50]. Soit q̇go est la loi de commande pour la tache orientée objectifs,

et q̇glb est l’entrée de commande d’évitement de collision. Le contrôleur q̇glb peut être

défini par

q̇glb = (1− λ)q̇go + λq̇co, λ ∈ [0, 1] (5)

où λ est une fonction permettant de basculer entre les deux contrôleurs. Afin de faciliter

le contrôle global, la limite ξ+ est prise en compte pour définir la zone dangereuse de

collision et changer progressivement λ comme indiqué dans [50]. Le λ peut être modifié

facilement

λ =





0, if |δobs| ≥ d+
d+−|δobs|
d+−d0

, si d0 ≤ |δobs| < d+ et évasion = faux
d+−|δobs|
d+−de

, si de ≤ |δobs| < d+ et évasion = vrai

1, autrement

(6)

La condition d’échappement “ évasion = vrai ” est satisfaite lorsque l’obstacle n’est

plus dangereux pour le robot, à savoir quand

{
le robot évite l’obstacle dans le sens antihoraire et ωgo < ωco

ou le robot évite l’obstacle dans le sens horaire et ωgo > ωco

(7)

2.4 Résultats Expérimentaux

Nous avons mis en œuvre la détection d’obstacle proposée, la représentation et la

méthode d’évitement sur notre plate-forme de robot mobile nommée Lina. Le robot

mobile est équipé d’un télémètre laser de Hokuyo Ltd., qui a une portée maximale
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de mesure de 5 m et est capable de balayer un angle de 240◦. Dans cette expérience,

nous utilisons un schéma de contrôle d’asservissement visuel pour faire naviguer le robot

vers une cible donnée. La tache de navigation est fusionnée avec l’approche d’évitement

d’obstacles proposé. Les obstacles sont placés entre la position initiale du robot mobile

et une souhaitée.

Trois positions du robot sont représentées dans la figure 8 des cercles rouges avec

un nombre de 1 à 3. Les croix noires sont les données laser. La ligne bleue est la

trajectoire du robot. Deux B-Spline tracées en vert modélisant la limite d’obstacles

sont indiquées par rapport à la position 1 et 2. La figure 9 montre le résultat dans

l’espace du laser aux trois positions. Au début, le robot est en dehors de la zone

dangereuse des obstacles. Comme il va de l’avant contrôlé par asservissement visuel, il

rencontre un obstacle (position 1). L’obstacle est alors segmenté, et la courbe convexe

est extraite. Ensuite, l’obstacle segmenté est modélisé par la courbe B-spline (voir la

figure 9(a)). Le contrôleur global commute progressivement à l’unité de commande

d’évitement d’obstacle, ce qui fait passer le robot autour de l’obstacle en douceur.

Lorsque le robot peut atteindre l’objectif sans collision (position 2), le contrôleur global

revient au contrôleur de l’asservissement visuel, et le robot s’arrête lorsque l’objectif

est atteint (position 3). Le résultat expérimental montre que le robot peut se déplacer

en douceur sans être piégé dans la partie concave de l’obstacle.

Figure 8: Résultat expérimental: navigation
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(a) position 1 (b) position 2 (c) position 3

Figure 9: Résultat expérimental: données laser

Chapitre 3

Contrôle basé sur la Vision pour les Robots Mobiles

Ce chapitre examine le problème de l’asservissement visuel d’un robot mobile à en-

trâınement différentiel. Le but est de positionner le robot vers une position souhaitée

à l’aide de l’asservissement visuel tout en considérant trois contraintes: (1) Les con-

traintes de champ de vision (FOV) imposées par le système de caméra; (2) des con-

traintes imposées par la non-holonomie cinématique du robot; (3) les contraintes de

sécurité imposées par les environnements encombrés. Les schémas proposés sont testés

dans les taches de navigation d’un robot mobile réel.

3.1 Asservissement Visuel Pour Robot Mobile

Nous considérons un robot mobile à deux roues motrices équipé d’une caméra non

orientable, un télémètre laser 2D et un odomètre. Soit vc = [υx υy υz ωx ωy ωz]
⊤ soit

le torseur cinématique de la caméra, et vr = [υ ω]⊤ l’entrée de commande du robot

mobile. Pour cette configuration, ils sont liés comme

vc = Jvr (8)

avec

J =
[
Jυ Jω

]
(9)

oùJυ et Jω sont les première et seconde colonnes de J respectivement.

Les caractéristiques visuelles de contrôle basé sur la vision sont définies sur le plan de

l’image et la tache de commande s’effectue directement dans le plan de l’image. Soit Ls

la matrice d’interaction liée à un point. Tenant compte de la jacobienne robot-système
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de vision donnée dans l’équation (8), nous obtenons

ṡ = Ls,υ υ + Ls,ω ω (10)

où Ls,υ = LsJυ et Ls,ω = LsJω. Pour une vitesse linéaire υ, la vitesse angulaire peut

être obtenue sous la forme

ω = −L+
s,ω(λe+ Ls,υ υ) (11)

Notez que la vitesse linéaire υ peut être affectée à une valeur constante ou calculée à

partir d’un profil de vitesse défini.

3.2 Asservissement Visuel Based Navigation avec Perte Complète de

Cible

3.2.1 Énoncé du problème

Lorsque le robot exécute la navigation basée sur la vision dans un environnement in-

connu et encombré, il est nécessaire non seulement de préserver la visibilité des car-

actéristiques de l’image lors de l’exécution de l’asservissement visuel mais aussi de

prévenir le robot mobile de la collision avec les obstacles de la manière décrite dans le

deuxième chapitre. Toutefois, lorsque le robot contourne les obstacles, la cible peut être

perdue en raison du fait que la caméra est fixe et que son champ de vision est limitée.

Dans cette situation, l’asservissement visuel échouera. C’est un problème difficile à

résoudre dans le cadre de l’asser asservissement visuel basé sur l’image et la navigation

basée apparence. Dans cette section, nous nous concentrons sur le problème de la perte

de cible visuelle dans le champ de vision de la caméra. Inspiré par l’intégration de

chemin et la réaction à des repères visuels dans la navigation des animaux, nous pro-

posons une stratégie pour faire face à la perte de caractéristiques visuelles en profitant

des données odométriques.

3.2.2 Cadre de Notre Système de Navigation

Notre système de navigation basée sur la vision peut être décomposé en quatre grands

blocs (voir la figure 10):

– Génération de comportements: ce bloc génère un comportement adapté à la

génération de mouvements et de perception. Le comportement généré est une

tache prédéfinie pour ces deux composants. Il fonctionne comme une machine

13
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d’état, qui décompose une tache de navigation en plusieurs comportements de

base (voir la figure 10). Ces comportements de base comprennent le suivi de cible

visuelle et l’asservissement, la détection de collision, l’évitement d’obstacles, la

réacquisition de cible, et l’arrêt du robot. La machine d’état va sélectionner une

tache en raison des résultats de perception actuels et le comportement précédent.

– Génération de mouvements: cette composante se compose de plusieurs contrôleurs,

y compris le contrôleur par objectifs basée sur l’asservissement visuel, le contrôleur

d’évitement d’obstacle sur la base des données du télémètre laser et le contrôleur

de réacquisition de la cible. Le contrôleur d’asservissement visuel entrâıne le robot

mobile en direction de la configuration souhaitée. Le dispositif de commande

d’évitement d’obstacles assure la sécurité de mouvement en présence d’obstacles.

Le contrôleur de réacquisition de la cible peut aligner le robot en direction de la

cible perdue si nécessaire. Chaque contrôleur calcule un résultat à partir de la

perception de l’information en cours. Les résultats de chaque contrôleur sont en-

suite combinés pour entrâıner le robot mobile à réaliser la configuration souhaitée

tout en assurant l’évitement de collision. La combinaison est calculée avec le com-

portement donné.

– Perception & Estimation: la composante de perception et estimation traite les

données provenant de différents capteurs afin de détecter et de suivre les repères

visuels, et de détecter les obstacles qui approchent. Les résultats du traite-

ment sont ensuite utilisés par d’autres composants. Les résultats de suivi visuel

sont utilisés pour le contrôle de l’asservissement visuel. La détection de collision

et la modélisation d’obstacles sont utilisées pour invoquer la tâche d’évitement

d’obstacles.

– Capteurs & Actionneurs: Ce composant fournit un moyen d’interagir avec l’environnement.

Notre système de robot mobile comprend un système stéréo de vision, un télémètre

laser et deux actionneurs. Nous utilisons la vision mono pour détecter et suivre

la cible visuelle. Nous utilisons le système de vision stéréo pour estimer le mou-

vement du robot, pour simuler les données odomètriques, les codeurs du système

odométrique du robot étant déficients. Le télémètre 2D est utilisé pour détecter

et modéliser les obstacles.
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Figure 10: Notre système de navigation.

3.2.3 Algorithme de génération de comportements

La composante génération de comportement est conçue sur la base des exigences pour

accomplir la tache de navigation. Notre tache de navigation, est que le robot se déplace

vers une configuration désirée tout en évitant les obstacles. Pour accomplir la tache

de navigation, nous concevons six comportements de base: comportement détection

d’objets, le comportement d’attraction par le but, le comportement de prédiction de

mouvement, le comportement d’évitement d’obstacle, le comportement d’estimation

de données visuelles et le comportement de ré-acquisition de cible. La génération de

comportement fonctionne comme une machine d’état. Elle sélectionne le comportement

actuel approprié en raison des résultats de la perception actuelle et le comportement

précédent. Le comportement de détection d’objet est toujours au début de la tache

de navigation. Le résultat de détection est d’initialiser le comportement d’attraction

par le but en utilisant le contrôle de l’asservissement visuel. Pendant le comportement

d’attraction par le but, si une collision potentielle est détectée, éviter les obstacles et les

comportements d’estimation de mouvement sont invoquées. Le robot mobile contourne

l’obstacle détecté et estimé la cible dans l’espace de l’image en cas de perte. Lorsque

l’obstacle est évité, le comportement de ré-acquisition de la cible est exécuté pour

aligner le robot en direction de la cible, alors le comportement de détection d’objet est

15
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redémarré.

3.2.4 Algorithme de génération de mouvements

Compte tenu du comportement sélectionné, le composant de génération de mouvement

est dédié à la conception des contrôleurs et calcule la vitesse angulaire et linéaire pour

le mouvement. Il y a trois contrôleurs: le contrôleur de l’asservissement visuel, le

contrôleur d’évitement d’obstacles et le contrôleur objet ré-acquisition. Le contrôleur

de l’asservissement visuel est décrit au début de ce chapitre. Le contrôleur d’évitement

d’obstacle est introduit dans le deuxième chapitre. Ici, nous concevons le comportement

de ré-acquisition de la cible.

Le comportement de ré-acquisition de la cible peut orienter le robot en direction

du centre de la cible afin d’amener cette extrémité dans le champ de vision. Soit ∆θ

l’erreur angulaire, qui est la différence entre les orientations courante et souhaitée.

L’orientation désirée est donnée par rapport à la position lorsque le robot fait face au

centre de la cible visuelle. Le contrôleur de cap est

ωh = −λh∆θ, (12)

où λh est un gain positif à régler.

L’erreur ∆θ peut être calculée en utilisant les points visuels estimés dans le plan

de l’image normalisée. L’objectif principal de la ré-acquisition de la cible est alors de

déplacer la projection de l’image du centre de masse (xmc, ymc) de la cible vers l’axe de

y du plan de l’image normalisée. L’erreur angulaire est définie comme

∆θ = arctan(−xmc). (13)

L’estimation des données visuelles sera présenté dans la section suivante.

3.2.5 L’estimation des données visuelles en cas de Perte Cible

Si la cible est en dehors du champ de vision de la caméra, le contrôleur d’asservissement

visuel échoue. Pour résoudre ce problème, nous proposons une stratégie prenant l’avantage

des techniques d’intégration de chemin et des techniques de reconnaissance de la réaction

de cible visuelle. Une cible plane observée dans deux images définit une relation

d’homographie. Si nous connaissons la cible dans une image de référence et la trans-

formation d’homographie entre l’image de référence et l’image courante, la cible peut

être récupérée dans l’image courante. Si la cible est hors du champ de vue actuel, nous
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pouvons toujours le récupérer virtuellement. La stratégie est illustrée à la figure 11. Le

travail principal est d’estimer la transformation de la caméra (R, t) et la structure de

la cible plane (n, d). Dans la suite, nous allons introduire la méthodes de calcul de ces

paramètres.

Figure 11: Suivi de l’homographie en cas d’invisibilité de la cible

Estimation du mouvement de la caméra

Le mouvement de la caméra peut être estimé en utilisant les systèmes de vision stéréo

comme décrit dans l’annexe B.6 intégrant les mesures odométriques. Lorsque on con-

sidère un système monovision, la rotation de la caméra peut être récupérée et la direc-

tion de la translation obtenue. Sans perte de généralité, nous décrivons le mouvement

estimé de la caméra tel que (R̂, λt̂), où λ = 1 si l’odométrie est utilisée.

Estimation de la structure planaire à partir du suivi visuel

Lorsque la cible est visible, le suivi fournit la relation d’homographie H entre le repère

actuel de la caméra et le précédent. La structure de la cible plane peut être calculée en

décomposant l’homographie H dans (RH, tH,n). Notez que le vecteur de translation

tH est normalisé par la distance au plan cible d. Le mouvement estimé de la caméra
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peut être décrit comme (RH, d tH). La structure de la cible est (n, d). La valeur

d est obtenue en utilisant les résultats de l’estimation de mouvement. Considérant

l’estimation de mouvement, nous avons λ t̂ = d tH. puis

d = λ t̂ / tH. (14)

Si λ est inconnue, nous attribuons une valeur arbitraire. d est attribuée en conséquence.

La structure (n, d) est mémorisée avant la perte de cible.

Recherche de la cible visuelle

En utilisant la mémoire de la structure de l’objet (nrem, drem) et le mouvement estimé

de la caméra (R̂lost, λt̂lost) quand la cible perdue, l’homographie peut être retrouvée

Hlost = R̂lost +
λt̂lost
drem

n⊤
rem

= R̂lost +
Htremt̂lost

t̂rem
n⊤
rem (15)

Nous pouvons noter que pour retrouver l’homographie Hlost perdue la distance d et le

facteur d’échelle λ ne sont pas nécessaires. Tout ce qui est nécessaire est le mouvement

estimé de la caméra (R̂lost, λt̂lost) depuis la perte de la cible, la normale mémorisée de

la cible plane, la transformation provenant de la décomposition de l’homographie [45] et

l’estimation de mouvement avant la perte de cible. Le figure 12 illustre les résultats de

la récupération de la cible perdue. Les quatre points de couleur sont les quatre coins de

l’objet suivi. Les figures 12(b) à 12(h) sont les résultats de suivi utilisant l’estimation.

Les figures 12(d) à 12(f) montrent que la stratégie proposée peut gérer la cible perdue.

3.2.6 Résultats Expérimentaux

Le figure 13 montre les étapes de navigation où les différentes positions sont données

dans les cercles rouges et les chiffres (1-5). La trajectoire du robot mobile est tracée en

bleu. Les obstacles détectés par le télémètre laser sont donnés dans la couleur noire.

On suppose que la cible est visible par la caméra à la position de départ. Tout d’abord,

la cible est détectée en comparant l’image en cours avec l’une de référence (acquis à la

position désirée). Ensuite, le suivi visuel est initialisé à la position 1. Le robot mobile

commence à atteindre l’objectif en utilisant le système de contrôle de l’asservissement

visuel. Lorsque le robot se déplace à la position 2, un obstacle est détecté et l’évitement

d’obstacle est invoqué. Et la structure du plan de référence (le vecteur normal et
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12: Récupération de la cible inconnue en estimant l’homographie.

sa distance par rapport au repère de la caméra) sont des estimations. Au cours de

l’évitement de l’obstacle de la position 2 à 3, la position du robot mobile est récupérée

en utilisant des données d’odométrie. Lorsque l’obstacle est totalement évité en position

3, le robot mobile est tourné vers la cible en utilisant la cible virtuelle estimée. Lorsque

le robot arrive à la position 4, la cible est à peu près au centre du champ de vue. Puis

l’asservissement visuel est redémarré pour atteindre l’objectif en position 5. La figure

14 montre des images et des données de laser à différentes étapes (1-5) comme décrit

dans la figure 13. Une vidéo de l’expérience réelle est disponible à http://aramis.

iup.univ-evry.fr:8080/~hadj-abdelkader/Videos/Wenhao/video_MMAR2013.wmv.

Conclusion

Cette thèse a présenté un ensemble cohérent d’algorithmes permettant à un robot mo-

bile autonome de se déplacer dans un environnement intérieur en présence d’obstacles,

en tout sécurité. Le robot peut détecter des images planes de référence, utilisées

comme amers, à grande distance. La détection est basée sur l’appariement de points

d’intérêt qui sont sont ensuite suivis à l’aide d’une méthode utilisant l’homographie.

L’asservissement visuel est adopté pour contrôler le robot vers l’image de référence.

Pendant le contrôle visuel, on considère les contraintes de sécurité imposées par l’environnement

et le champ de vision imposé par la caméra, ainsi que les contraintes imposées par la
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Figure 13: Navigation basée sur la vision

non-holonomie cinématique du robot.

Dans le contexte de la détection d’objet, nous avons présenté une approche homo-

graphique RANSAC deux-points pour la détection d’objets plan posés verticalement.

Cet algorithme qui prend en compte les contraintes de notre application présente de

très bonnes performances. Pour éviter les collisions, nous avons présenté des méthodes

efficaces de détection, de représentation et d’évitement d’obstacles utilisant des données

d’un télémètre laser 2D. nous avons modélisé les frontières des obstacles modélisés par

des châınes polygonales avec de B-splines de lissage. Nous avons ensuite un évitement

d’obstacles réactif comme un suivi de chemin matérialisé par les B-splines. Le résultat

expérimental montre que le robot peut se déplacer en douceur sans être piégé dans

la partie concave d’obstacles. Enfin, nous avons discuté de la navigation basée sur la

vision considérant trois contraintes, la non-holonomie, l’évitement des collisions et le

champ de vision restreint de la caméra. Nous avons proposé une stratégie, qui peut

traiter la perte complète de cible pendant le contrôle par vision. Nous avons prolongé

la stratégie proposée à l’image sphérique pour résoudre l’inconvénient du modèle de

projection perspective.
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(1)

(2)

(3)

(4)

(5)

Figure 14: Données de capteur
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Introduction

Autonomous Mobile Robot Navigation

Autonomous mobile robots answer to a wide range of applications. In the military field,

they can go to the battlefield instead of soldier, significantly reduce the casualties of

soldiers. DARPA Grand Challenge (see Figure 15(a)) is a prize competition for Amer-

ican autonomous vehicles, aiming to bridge the gap between fundamental discoveries

and military use. In the person service, a particular application domain is assistance to

elderly and disabled people, and the systems are typically named assistive robotics (see

Figure 15(b)). Some kinds of mobile robots serve in the public place such as tour guides

in museums or exhibitions. They can move autonomously acquiring the attention of

the visitors and interact with them efficiently. For example, RoboX is a tour-guide

robot at the Swiss National Exhibition Expo.02 as shown in Figure 15(c).

(a) Tartan Racing in the DARPA Ur-
ban Challenge 2007.

(b) Assistive robotics research of
The Georgia Tech.

(c) RobotX a tour guide
robot.

Fig. 15: Examples of autonomous mobile robots.

In order to move autonomously and safely, the mobile robot systems should have the

capability of navigation. Autonomous mobile robot navigation can be roughly described

as the process of perceiving environments and determining a suitable and safe path
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between a starting and a goal position for a robot traveling between them. Different

sensors have been used to this purpose. Vision not only provides rich information, but

also has the advantages of low cost, small size, and high resolution. It is very useful

for autonomous navigation capability of mobile robots [37] [16]. Even through vision

encounters some challenging problems, it would seem to be the most promising one for

the intelligent systems in the long term. In the context of vision based mobile robot

navigation, the environment can be generally represented by geometric model, graphic,

a dataset of images, or some semantic objects. According to the configuration of the

camera, there are monocular systems, binocular (stereo) systems, and omnidirectional

cameras.

Much work deals with navigation by using or building the map (such as SLAM)

of the environment and then planning the trajectory in the map. Many SLAM and

path planning methods have been proposed in the literature. However, a human would

need neither the exactly whole metric model of the environment nor the exact location,

but would still know how to go to the destination with visual landmarks. In the

other hand, in order to accomplish a navigation task, it is not necessary to construct

the whole model with precise geometrical details of the environment. Inspired by

this, topological representation are proposed and widely used. And mapless navigation

systems are proposed. These systems mostly include reactive techniques based on

visual clues derived from the segmentation of an image, appearance-based localization,

optical flow, features tracking, plane ground detection/tracking, etc. More recently,

many works have been carried out to solve the navigation by tracking a visual path.

These works refer to appearance-based navigation dealing with the image retrieval

and the design of visual controllers. Different with map-based navigation, appearance-

based navigation can control the mobile robot by matching the current image with

the datasets and computing the control parameters directly from the matched images

without knowning any information of the environment model. Hence, appearance-based

mobile robot navigation approaches avoid environment modeling, loop closing problem

and the time consuming planning algorithms, which are required in the metric map-

based navigation approaches. However, a global map of the environment is necessary

for a complete autonomy. Appearance-based navigation approaches are sufficient for

some defined navigation applications, since this kind of navigation approach is limited

to the given visual path. And currently, in the appearance-based navigation, seldom

works consider collision avoidance, which can make the robot deviate from the given

visual path. We aim to extend this method.
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0.3. Objective

Objective of the Thesis

Our research work aims to develop autonomous mobile robot systems to assist elder

or handicapped people in everyday situations. Our area of research focuses on the

scenarios for domestic use. We want to design a mobile robot which can autonomously

and safely move from one room to the other room with visual landmarks in the envi-

ronment. Figure 16 illustrates our environment with the visual landmarks. The visual

landmarks are posed on the walls near the doors. The environment is presented by

the images of those visual landmarks. The images are stored in the memory of the

robot as the database. The mobile robot can navigate between visual landmarks in

presence of obstacles. We suppose that the robot has a fixed pinhole camera, a 2-D

Figure 16: Illustration of the environment representation using visual landmarks (Some
room of the IBISC LAB).

laser range finder and an odometry. However, in our platform the odometry does not

provide sufficiently accurate motion measurements. Because our mobile robot platform

is equipped with a stereo vision system, we use stereo visual odometry to circumvent

this problem. With the pinhole camera, the robot can move autonomously by detect-

ing and tracking the visual landmarks. During the motion the safety is ensured using

the 2-D laser range finder. This somewhat alleviates the responsibility of the vision

perception software, but also encounter the problem of 3-D obstacle detection. Smooth

motion is important, as sharp movement produces motion blur in the image and the

human anticipate the movement when interactive with the robot. The obstacle avoid-

ance should run in real-time in order to leave enough processing resource for the vision

system. Because of field-of-view (FOV) constraints imposed by the camera system, the

visual target can be lost during the vision-based navigation, especially when the robot
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0.3. Contributions

encounters an obstacle and moving around it. In order to handle the target loss, the

robot estimates the lost target using the visual odometry.

We focus on the challenge of each step in appearance-based navigation, which is

navigating to a visual landmark while considering the collision free constraints and field

of view constraints as well as the nonholonomic constraints. One step of navigation is

described in Figure 17. In each step, three principally tasks are considered: (1)detecting

and tracking visual landmarks in order to navigate between them. The motion of the

robot is controlled by vision-based approaches. This task drives the robot toward a

desired goal. Thus it is called goal-driven task. (2) collision detection and avoidance,

in which the safety of robot motion is considered. This task is called collision avoidance

task. (3) the target estimation when it is lost due to collision avoidance, in order to

reacquire it after the obstacle is avoided.

Figure 17: Illustration of appearance-based navigation challenges.

Contributions

Appearance-based approaches are limited to the given visual path. However, the un-

known obstacles may make the robot deviate from the trained visual path so that the

visual path can be lost in the camera field of view. As far as we known, there is not so

many works to handle the visual path lost during vision-based navigation. The princi-

pal contribution of this thesis is the solution to handle the visual path lost caused by

collision avoidance during the vision-based navigation. In details, the following areas

are original works:

– Development of an efficient obstacle representation and avoidance approach to
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enable smooth motion during collision avoidance.

– Development of a homography-based object detection and tracking system able

to track a natural planar object from a large distance.

– Designing a vision-based navigation system and strategies in present of obstacles.

– Development of a homography-based visual servoing which can handle the target

loss due to field of view constraints and collision safety constraints.

– Extension to the use of spherical image based visual servoing for the target lost

problem.

Overview

The rest of the thesis are organized as follows:

Chapter 1 studies the method of planar object recognition and tracking. It is

crucial to detect and track the landmarks during mobile robot navigation. It can

be particularly challenging in the face of changes in perspective, size, or scale, and

when the object is partially obstructed from view. There is an extensive body of work

in computer vision about object recognition. We choose local feature-based object

recognition methods after overview the object recognition approaches. Then the object

recognition is changed into image matching problems. It is known that the performance

of feature-based methods related to application. Therefore, we introduce the criteria of

local feature selection for our navigation tasks. Local feature-based methods consist of

three steps: feature detection, feature description, and feature matching. We introduce

the theoretical bases in Section 1.2. The state of the art and the representative methods

about local feature detection, description and matching are overviewed in Section 1.3

and Section 1.4. We select the appropriated methods with the defined criteria. In

Section 1.5, we show experiments of local feature-based method used in our navigation

scene. Section 1.6 present the visual target tracking method in our vision system.

Section 1.7 concludes the chapter.

Chapter 2 addresses the problem of motion safety for mobile robots in unknown

dynamic environments. This refers to collision avoidance. We study two methods for

reactive collision avoidance. For the first one, we formulate collision avoidance by path

following with respect to the obstacle boundary. For the second, we formulate it as

potential field method. In order to ensure a good performance of robot motion, we aim

to find a smooth representation for arbitrary obstacle boundaries which can adaptive
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to the measurements when the robot reacts to unknown dynamic environments. We

respectively introduce the problem and overview the state of the art in Section 2.1 and

Section 2.2. We propose our obstacle detection and representation methods in Section

2.3. We formulate the obstacle avoidance approach and simulate it in Section 2.4. We

present the experimental result in Section 2.5. Section 2.6 concludes the chapter.

Chapter 3 dedicates the challenging problems of visual navigation. The motion of

robot during navigation is controlled by visual servoing approach, which is set up by the

output of visual target tracking. The challenge is that visual target may be lost when

the robot avoids obstacles. The loss of target can be due to the limited camera field

for view or front objects. We design a strategy using path integration to estimate the

lost target. The estimated virtual target can be used to continue the visual servoing.

However, the estimation effect from the errors. The error can be minimized by reset the

object recognition. The strategy has the ability of reacquiring the lost target after the

collision is free. On the observation that the visual target may come to the backward

of the image plane using perspective projection model. We find solution using spherical

projection model, and spherical image-based visual servoing methods are discussed.

The conclusion concludes the thesis with recalling the problems and main results,

general discussion, and perspectives for future work both in short-term and long-term.
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Chapter 1

Feature Selection for Object

Recognition and Visual tracking

1.1 Introduction

In the topological map, the nodes are defined in the image space, which are a set

of images. The mobile robot navigates using these images as visual landmarks. By

recognizing and tracking these landmarks, the robot can locate itself in the map and

move toward them. This chapter discusses these vision abilities of our navigation

system.

For increasing robustness and efficiency, artificial markers like Data Matrix can be

used as landmarks. However, it is generally undesirable to place this kind of markers

in the environment. Thanks to the modern computer vision algorithms, the working

environments of a mobile robot are not limited to artificial markers. It is possible

to use more normal objects as landmarks. We consider more complex visual targets

such as posters or paintings, which are common in indoor environments, for instance,

office and home. In order to use the visual landmarks for location and motion control,

the robot needs to recognize and track the landmarks efficiently. Our vision system

recognizes the landmarks by extracting and matching local features. Then a template-

based visual tracker is initialized by the recognition result. The result of the tracker

encodes the relative pose of the robot, for example, a homography matrix. It can be

used for motion control over the navigation. So the vision system performs as the

front-end of a vision-based controller. In this chapter, we introduce the details of our

vision system for landmark recognition and tracking.

We organize the rest of this chapter as follows. Section 1.2 introduces some con-
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ceptions about homogeneous transformation, image formation, and homography. The

conceptions are the basics of geometric computer vision and vision-based control for the

following sections and chapters. Local feature extraction and matching are described

in Section 1.3 and 1.4 before landmark recognition in Section 1.5. In Section 1.6, a

visual tracking framework is presented. The tracking is initialized by the recognition

results.

1.2 Theoretical Bases

In this section, we introduce some basic conceptions, including homogeneous transfor-

mation, image formation, and homography. Homogeneous transformation is important

to describe the relationship between different frames, for example, the sensor frames

and the robot frame, or the sensor frames and object frames. Image formation gives the

relationship between the object and the image with camera parameters. Homography

illustrates multiple view geometry for planar objects. Image formation and homography

will be used for vision tasks in the thesis such as landmark recognition and vision-based

control.

1.2.1 Homogeneous Transformation

The relationship between two coordinate frames can be expressed by

T = (R, t) ∈ SE(3) (1.1)

or by a homogenous transformation matrix

T =

[
I t

0 1

][
R 0

0 1

]
=

[
R t

0 1

]
. (1.2)

It is noted that the homogenous transformation consists of a pure rotation R followed

by a pure translation t. The inverse homogeneous transformation is

T−1 =

[
R⊤ −R⊤ t

0 1

]
. (1.3)

We use the transformation matrix with subscripts 2T1 to note the transformation from

the frame F1 to the frame F2 or the transformation of the frame F1 with respect to

the frame F2. Suppose a point P in the world frame. If we note X1 and X2 as the
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normalized homogenous coordinates of the points P in the frame F1 and the frame F2

respectively, we have the transformation between the two coordinates

X2 = T2 1X1. (1.4)

A homogeneous transformation can be divided into a sequence of transformations

T2 0 = T2 1 T1 0. (1.5)

We will remove the upper and lower standards of T in case there is no ambiguity of

frame transformations.

1.2.2 Image Formation

Image formation describes the mapping from world points to the corresponding image

points. Here we describe the image formation of planar perspective projection. In the

planar perspective projection, a world point P with coordinates X0 is projected into

an image plane Πm with coordinates m in pixels as illustrated in Figure 1.1. The

projection can be divided into three steps:

1. Homogeneous transformation of the point from the world frame to the camera

frame using equation 1.4 and equation 1.3

X = TC
W X0 = ( TW

C)
−1X0, (1.6)

where X is the coordinates of the point P in the camera frame. We note the

transformation as g, where we have

X = gX0. (1.7)

2. Perspective projection of the point P with the coordinates X = [X Y Z]⊤ in the

camera frame to a point p on the normalized image plane Πx with the image

coordinates x = [x y]⊤ in meters,

{
x = X

Z

y = Y
Z

. (1.8)

This projection uses an ideal pin-hole camera model. It supposes that the image

plane Πx is parallel to the xy plane of the camera frame FC , and the projection
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transforms the coordinates linearly without any distortion. The projected image

point p with the coordinates x is the intersection of the line, passing through C

and P, with the image plane Πx. The distance of the center projection C to the

image plane Πx is f , referred to the focal length. Since the normalized or canonical

image plane is considered, here we have f = 1. Note that the dimension related

to the depth is lost through this process. This projection can also be written in

the matrix form

λx = Π0X (1.9)

where X and x are the normalized homogeneous coordinates, λ = Z is the depth

of X, and Π0 is the standard projection matrix

Π0 = [ I | 0 ] =




1 0 0 0

0 1 0 0

0 0 1 0


 . (1.10)

An alternative expression of equation 1.9 is

x = λ′X, (1.11)

where only x is the normalized homogeneous coordinates, and λ′ = 1/Z.

3. Conversion from the normalized image coordinates x = [x y]⊤ in meters to the

coordinates m = [u v]⊤ in pixels considering the effect of an actual camera. The

effect of the camera is expressed by its intrinsic parameters. First, the focal

length f is considered to move the projected point p from the normalized image

plane to the factual image plane. Then the scaling factors or even distortions

are considered to obtain the coordinates in pixels. The two processes without
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distortions can be described by

m =




su sθ uc

0 sv vc

0 0 1







f 0 0

0 f 0

0 0 1


x

=




fsu fsθ uc

0 fsv vc

0 0 1


x

=




fu α uc

0 fv vc

0 0 1


x, (1.12)

where [fu fv]
⊤ is the vector of focal length in pixels. [uc vc] is the vector of

the principal point coordinates in pixels. α is the skew coefficient equaling the

angle between the x and y pixel axes with a scale fu. The matrix of parameters

describes the camera model. That is the intrinsic parameter matrix of the camera.

If this matrix is noted as K, we have

m = Kx, (1.13)

Figure 1.1: Planar perspective projection.

The first two steps are related to extrinsic parameters, which is a set of geometric

parameters. While the third step is related to intrinsic parameters, which characterize

the optical, geometrical distortion and digital characteristics of the camera. They
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are necessary to link the pixel coordinates of an image point with the corresponding

coordinates in the camera reference frame. The main goal of camera calibration is to

identify these parameters.

The whole planar perspective projection can be described by the following equation:

λm = KΠ0gX0 = PX0 (1.14)

where P is a 3 × 4 matrix. The matrix P is the projection matrix, which transforms

a 3-D point on an image plane with coordinates in pixels. Camera calibration, both

intrinsic and extrinsic, aims to calculate the matrix P.

Although the direct measurement of a point is the image coordinates m in pixels,

from equation 1.13 we can always know the relative coordinates x = K−1m. Because

sensors are generally calibrated before used in robotics. Therefore, if there are no

special instructions, we use the coordinates x as the image measurements in the thesis.

1.2.3 Homography Transformation

The relationship between two camera frames with respect to a planar object as shown

in Figure 1.2 can be described by homography transformation. In Euclidean space,

let a 3-D point P in the world frame with coordinates X = (X,Y, Z). The point P

is observed from two different camera frames F1 and F2. The corresponding camera

coordinates are X1 = (X1, Y1, Z1) and X2 = (X2, Y2, Z2) individually. The projections

of P onto the two image planes are p1 and p2 with coordinates x1 and x2 respectively.

The projection coordinates in pixels are m1 and m2.

Figure 1.2: A special case of the two-view configuration: points on a plane

Suppose the homogeneous transformation between F1 and F2 is T2 1. We have the
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relation in the homogeneous form

X2 = T2 1X1. (1.15)

If we note the rotation matrix and translation vector as R2 1 and t2 1 respectively, we

also have

X2 = R2 1X1 + t2 1. (1.16)

In the frame F1, if we know the structure of the plane target, namely the normal vector

n1 and the distance d1 from the origin of F1 to the plane Π, we have the plane function

at point P1

n ⊤
1 X1 = d1. (1.17)

Then we have
n ⊤
1 X1

d1
= 1. (1.18)

Inserting the above equation in the transformation equation 1.16, we have

X2 = R2 1X1 +
t2 1

d1
n ⊤
1 X1 = ( R2 1 +

t2 1

d1
n ⊤
1 )X1, (1.19)

which represents a transformation of a point in two different frames. It can be noted

as

X2 = H2 1X1 (1.20)

where H2 1 is the homography matrix in Euclidean space

H2 1 = R+ tn⊤. (1.21)

where 



R = R2 1

t =
t2
1

d1

n = n1

. (1.22)

We will remove the upper and lower standards of H in case there is no ambiguity.

When considering the coordinates on the image plane, we insert equation 1.11 into

equation 1.20

x2 =
λ2

λ1
Hx1, (1.23)

which can also be simplified as

x2 = HNx1, (1.24)
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where HN is the homography matrix in the normalized coordinates space

HN =
λ2

λ1
H = λH. (1.25)

where λ equals the middle eigenvalue of HN [94]

λ = σ2(HN ) (1.26)

When considering the coordinates on the image plane in pixels, we insert equation

1.13 into equation 1.25

m2 = K2HNK −1
1 m1. (1.27)

which can also be written as

m2 = Gm1, (1.28)

where G is the homography matrix in the image space with pixel coordinates

G = K2HNK −1
1 . (1.29)

1.3 Local Feature Detection and Description

Local feature has a wide application, including wide baseline matching for stereo pairs

[126] [155] [101], image retrieval from large databases [139], object retrieval in video

[150], robot localization [140] and servoing [154]. This section reviews the literature of

detecting and describing features from an image, and introduces some representative

methods. This section aims to provide the background of this area in order to choose

a suitable method for landmark recognition, which will be discussed in Section 1.5.

1.3.1 Local Feature Detectors

A feature detector refers to an algorithm that processes an image and finds subsets of

the image. The subsets encode representative information and satisfy the given type of

feature. The detected features are typically points or regions. In this section, we will

give an overview of feature detectors. We then introduce the representative algorithms.

1.3.1.1 Overview of the State of the Art

A wide variety of local feature detectors have been proposed in the literature. A

comprehensive survey of this area has been given in the literature [153]. We review
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some of the typical detectors, which had a particularly significant impact in this research

field. The review focuses on corner feature and blob features detectors, since these kind

detectors are distinctive, intuitive, and utilized in a wide range of applications. These

features typically present where the image intensity change rapidly. The intensity

changes can be detected using differential approaches, commonly first- and second-

order gray-value derivatives. That is the underlying idea in most of the local feature

detection methods.

A popular corner detector is Harris corner [62]. Harris corners are detected by

the eigenvalues of the second-moment matrix, in which the components are the first-

order derivatives of Gaussian smoothed image intensity. The accuracy of this detector

can be improved to subpixel precision by approximating the cornerness function in

the neighborhood of a local maximum through a quadratic function. In the literature

[143], Shi and Tomasi proposed the scheme to select the good features strongly based

on Harris corner detector. Lindeberg et al. have proposed a scale selection technique

in feature detection [81] [83] and affine region estimation [82] [84]. Based on these

techniques, Mikolajczyk et al. have extended Harris corner detector to scale and affine

invariant, namely Harris-Laplace detector and Harris-affine detector [107].

Blob features are typically detected based on Hessian matrix, in which the com-

ponents are second-order derivatives of Gaussian smoothed image intensity. A earlist

work of Hessian-based detector was proposed by Beaudet [8]. Hessian matrix encodes

the structure of image intensity. The image structure can be analyzed by the deter-

minant and the trace of Hessian matrix. Blob features can be detected by finding the

local maxima of the determinant or the trace. The trace of Hessian matrix is referred to

the Laplace operator. SIFT [88] detector effectively approximates the Laplace operator

by a Difference of Gaussians (DoG) filter. SURF [7] detector efficiently approximates

the determinant of Hessian matrix with box-type filters and integral images. SURF

performs comparably to SIFT at much lower computational cost. Mikolajczyk et al.

detected local features using both the trace and the determinant, and have proposed

Hessian-Laplace and Hessian-affine detectors in the literature [107].

A very efficient keypoint detector is FAST [131]. A FAST feature is detected by

comparing pixels on a ring centered at the feature point. Its variants include ORB [134]

detector and BRISK [79] detector. ORB detector extends FAST with an orientation

assignment efficiently computed by intensity centroid moment. BRISK detector extends

the FAST detection framework to scale-space in order to achieve invariance to scale.

An extensive performance evaluation of affine region detectors has been presented

by Mikolajczyk et al. [106]. The evaluation is analyzed using the repeatability cri-
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terion under different imaging conditions, including viewpoint change, scale, lighting

change, defocus/blur, rotation and image compression. It has reported that MSER is

particularly robust to viewpoint and lighting changes. In the literature [108] [64], the

evaluation includes recent efficient methods.

1.3.1.2 Representative Feature Detectors

We introduce two popular detectors: Harris corner and Difference of Gaussians (DoG).

Harris detector is a corner detector, while DoG is a blob detector.

Harris Corners The Harris corner detector, proposed by Harris and Stephens [62],

is based on first-order derivatives to find local extrema. The detector can be expressed

by the second-moment matrix, also called the auto-correlation matrix:

M = σ2
DG(σI) ∗

[
I2u(m, σD) Iu(m, σD)Iv(m, σD)

Iu(m, σD)Iv(m, σD) I2v (m, σD)

]
, (1.30)

where σI and σD are the scales of the Gaussian kernels for integration and differentia-

tion, which is an effective edge detector. Iu(m, σD), Iv(m, σD) are the convolutions of

the Gaussian first order derivatives with the image at the coordinates m

Iu(m, σD) =
∂

∂u
G(σD) ∗ I(m), (1.31)

G(σD) =
1

2πσ2
e−

u2+v2

2σ2 . (1.32)

The matrix M is positive semidefinite, thus it has two nonnegative eigenvalues

λ1 and λ2. The eigenvectors of M encode the dominant change directions, which

are orthogonal, while the eigenvalues encode the variational strengths. Rather than

computing the eigenvalues directly, which is computationally expensive, the Harris

cornerness function is given by the determination det(M) and the trace tr(M):

cornerness = det(M)− κ tr2(M). (1.33)

where κ is a scale gain, typically set as 0.04.

Harris corner is invariant to 2D image rotations, since the filter window is a circular

symmetric Gaussian function. It is invariant to affine intensity changes. However, it is

not invariant to geometric affine transformations or scale changes.
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Difference of Gaussians (DoG) DoG is a scale invariant detector used in SIFT.

DoG provides a close and efficient approximation to LoG as studied by Lindeberg in

the literature [81]. The detector finds local extrema in Gaussian scale space. That is

both in space and scale, referred 3-D extrema. The relationship between DoG and LoG

can be deduced from the heat diffusion equation. Replacing the parameter t by σ2, we

have
∂G

∂σ
− σ∇2G = 0, (1.34)

Approximating the first derivative ∂G
∂σ

by difference of nearby scales at kσ and σ, we

obtain

σ∇2G =
∂G

∂σ
≈ G(x, y, kσ)−G(x, y, σ)

kσ − σ
. (1.35)

where (x, y) is the variable of space, σ is the variable of scale. Therefore

DoG = G(x, y, kσ)−G(x, y, σ) ≈ (kt− t)σ2∇2G. (1.36)

The Gaussian scale space is generated by smoothing the image several times with

a Gaussian convolution kernel as well as sampling to different octaves. The 3-D local

extrema are selected both over space and scales with non-maximal suppression. The

local extrema are detected in all the octaves. The detailed scheme is illustrated in

Figure 1.3. SIFT detector is based on DoG detector. Rather than detecting upright

scale and invariant features using DoG detector, SIFT detector uses refinement steps

to remain more stable features. The detected features are refined by eliminating low-

contrast responses or responses close to edges, which are likely to be unstable. Figure

1.4 shows the results of each refine step to detect local features in DoG scale space.

Fig. 1.3: An illustration of DoG scale invariant detector [153].
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(a) (b) (c) (d)

Fig. 1.4: This figure shows the stages of SIFT feature selection in DoG scale space.

1.3.2 Local Feature Descriptors

In order to match the detected feature point, we need a descriptor to represent the

feature point. The descriptor is a vector extracted from the patch defined by the

feature point. The descriptor typically encodes the distinctive information about the

patch such as appearance, color, or contour shape. The descriptor should be robust to

changes in viewing conditions as well as errors of the detector.

1.3.2.1 Overview of the State of the Art

Many different local feature descriptors have also been proposed in the literature. A

comprehensive survey can be found in [105] [80]. The most influencing one is the

SIFT descriptor, proposed by Lowe [88]. The SIFT descriptor has been shown to be

one of the most effective [105]. It is a histogram-type descriptor, which is based on the

spatial distribution of the image gradient within the interest point neighborhood. SIFT

descriptor is computational complexity, also time consuming for matching because of

its high dimension. Therefore, SIFT is unsuitable for real-time application.

Over the past decade, a variety of methods have been proposed to improve the

efficiency and matching quality. The SURF [7] descriptor as its detector approximates

the gradient calculation by box-type filters and integral images.

Recently several papers have extended the SIFT descriptor. The SURF descriptor,

proposed in [7], is based on histograms of Haar wavelet responses. SURF is as an

efficient variant of SIFT. It has been shown in [158] that combining color to the SIFT

descriptor can increase illumination invariance and distinctive power. Hence, Color

SIFT outperforms intensity-based SIFT. Arandjelovic has presented in the literature

[4] that normalizing the SIFT descriptor with square root transformation, referred to

RootSIFT, yields superior performance in object retrieval without increasing processing

or storage requirements.

SIFT and SURF reveal good performances, but they are usually in high dimen-
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sions. For instance, SIFT is 128-dimension. These descriptors have issues of memory

and computation time, especially for smart phone applications, which have lower com-

putation power. To solve it, the high dimensional local features can be quantized or

clustered into a vocabulary of visual words [150]. An alternative way is to use binary

descriptors. The binary descriptors are fast and compact. The most common binary

descriptors are LBP [120] [121], BRIEF [22] [21], ORB [134], BRISK [79]. ORB is an

extension of BRIEF descriptor by introducing orientation invariance. Other various

methods include CARD [3], FREAK [122], and LDB [163]. FREAK means Fast Retina

Keypoint. It is a standalone keypoint descriptor. It is biologically inspired by the

retinal pattern in the eye. Compared with vector-based descriptors, they are efficient

to compute, more compact to store and faster to compare with each other.

In the literature [105], Mikolajczyk and Schmid have evaluated various feature de-

scriptors under different image transformations, such as affine transformation, scale

changes, rotation, blur, jpeg compression and illumination changes. The results have

shown that SIFT descriptors as well as gradient location and orientation histogram

(GLOH) outperform the others such as shape context [11], PCA-SIFT [67], spin im-

ages [77], steerable filters [53], differential invariants [71], complex filters [138], moment

invariants [159], and cross-correlation of sampled pixel values.

1.3.2.2 Representative Feature Descriptors

Here we introduce the SIFT descriptor which is wildly used in computer vision and

robotics. SIFT descriptor, proposed by Lowe [88], is scale invariant. Given a region

with respect to the detected interest points and the scales, SIFT descriptor constructs

a 3-D spacial histogram of local gradient locations and orientations. The histogram

is a 128 dimension vector representing the distribution of spatial gradient orientations

in the detected regions around interest point and scales. The local region around a

detected interest point is divided into 4 × 4 spatial bins and 8 orientation bins. The

ordination invariant is accomplished by assigning keypoints orientation to the dominant

gradient orientation of the histogram. The illuminance invariant is accomplished by

normalizing the vector of the histogram to unit length. SIFT descriptors can be used

for matching by comparing the distance. The details of SIFT descriptor is illustrated in

Figure 1.5 in which 2×2 spatial bins and 8 orientation bins are demonstrated. Feature-

point orientation is usually computed as a direction of the dominant image gradient in

a particular area.
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Fig. 1.5: An illustration of SIFT descriptor [88].

1.4 Matching

Matching aims to associate the extracted features between different images or date

sets in order to accomplish high level tasks such as image or object recognition. The

association measures the similarity between the descriptors. For two feature descriptors,

the similarity is computed with a score that defines the closeness between the two

vectors. Usually L1-norm, L2-norm as well as Mahalanobis distances are used, or

hamming distance is used for binary feature vectors. For two images or date sets, the

matching is to search the nearest neighbor from one set of descriptors for every element

of another set. Hence, matching can be formulated by the nearest neighbor searching.

1.4.1 Overview of the State of the Art

Nearest neighbor searching for high-dimensional vectors and large data sets is challeng-

ing. In order to searching efficiently, various schemes have been proposed to minimize

the searching space or data sets. Those schemes typically perform a hierarchical parti-

tion of the searching space or the data points to eliminate the unnecessary calculation,

which can support faster processing. The k-d tree [54] is a representative example, and

widely used for nearest-neighbor search. K-d tree search approach can find the exact

nearest neighbor. Nevertheless, it is not efficient for finding the nearest neighbor in

high dimensional spaces. It performs no speedup as dimensionality increases. Fuku-

naga and Narendra [55] have proposed an algorithm to partition the searching space by

clustering the data points with the k-mean algorithm. Then the searching is recursively

for each clustered group.

To obtain speedup, numerous approximate nearest neighbor (ANN) search algo-
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rithms are proposed in the literature. The underlying ideas are to cluster the data

points and/or use tree-search schemes, which are extended from the work of Riedman

et al. [54] and Fukunaga et al. [55]. The approximate algorithms obtain large speedups

at the cost of the optimum precision. While the approximated neighbors should be close

to the exact neighbors to provide near-optimal accuracy. The most promising method

of approximate nearest neighbor search is the multiple randomized kd-tree algorithm

[147]. Randomized kd-tree splits the searching space randomly. Muja and Lowe [116]

have proposed a system to select an approximate algorithm automatically and its pa-

rameters with respect to a given dataset and desired degree of precision. An alternative

scheme to speedup is to reduce the dimension of searching space by clustering the data

points. For example, a local image feature can be clustered into a visual word by k-

means or similar algorithms. Then an object or an image is represented by a bag of

words, which is a set of feature words. Feature matching or object recognition prob-

lems are reduced to word retrieval, which is similar and inspired from the text retrieval

system. Bag of word representation is widely used for the image retrieval from large

datasets.

In the case of binary-value features, the approximate nearest-neighbor algorithms

described above for the vector-based descriptors are unsuitable. Since they assume

the features exist within a vector space where each dimension of the features can be

continuously averaged. The approximate nearest neighbor search algorithms used in

the literature are mostly based on various hashing techniques such as locality sensi-

tive hashing [134], semantic hashing [135] or min-hash [164]. Muja and Lowe have

introduced an algorithm in [117]. It is based on priority search of multiple hierarchical

clustering trees. It performs well for large datasets, both in terms of speed and memory

efficiency.

Moreover, Lepetit and Fua [78] formulate the keypoints matching as a classification

problem using Randomized Trees as classifiers.

1.4.2 Outlier Removal using RANSAC

The nearest neighbor searching compares only feature descriptors and gives the putative

matches, which includes both inliers and outliers. Inliers are correct matches, which

fit well the transformation model between two cameras such as Fundamental matrix,

Essential matrix if the camera is calibrated, or even homography transformation if

the target is planar. Outliers do not fit the transformation model. Outliers come

from true-false matches or noises. In order to select the inliers from the putative
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matches, it is needed to estimate the model and verify the matches. Classical estimation

methods such as the least square for data fitting use all the putative matches. That will

produce a model with a bad fit to the inliers. In order to estimate the transformation

robustly, the outliers are needed to be removed from putative matches. Only inliers are

remained. RANSAC, abbreviated for ”Random Sample Consensus”, is for this aim. It

finds the inliers using a distance threshold and the transformation constraint between

the putative matches to eliminate outliers. The RANSAC algorithm was first published

by Fischler and Bolles in 1981 [47]. It is robust and widely used in computer vision.

RANSAC assumes that given a set of data even including inliers, there exist a

procedure which can estimate the parameters of a model that optimally fit these inliers.

RANSAC finds the inliers in the sense of a hypothesize-and-verify way. That is a

minimum independent set of data is randomly selected and supposed as inliers, with

which a transformation is fitted. Other data are verified with this fitted model with a

distance threshold. If they fit well with this model, they are selected as inliers, otherwise

outliers. This process is repeat several times so that the probability of choosing only

inliers in the sampled data is sufficiently high. The minimum iteration time is decided

by a given confidence.

k =
log(1− p)

1− wn
, (1.37)

where n is the minimum number needed for fitting a model (at least four matches

to estimate homography.), p is the probability that the RANSAC algorithm in some

iteration selects only inliers from the input data set, and w is the rate of inliers with

respect to the data.

Note that RANSAC needs initializing the number of interaction k. However, k

depends upon the probability of inliers p. p is unknown before the interaction. Any-

way, k can be initialized by any value and updated during the iteration. In addition,

RANSAC can only estimate one model for a particular data set. If more than one

model are presented, RANSAC may fail. If that is the case, the Hough transform is an

alternative robust estimation technique to find the solution [89].

1.5 Feature Selection for Object Recognition

As described in the above sections, many different feature detectors and descriptors have

been proposed in the literature. Each of them has its own superiority and weakness.

Their performance depends on the application and the type of the image data. In

order to decide which feature extraction method is appropriate for our application,
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we evaluate the performance of some promising approaches of feature detection and

description with our own data set. In the experiment for evaluation, we consider some

criteria related with our mobile robot application.

1.5.1 Experimental Framework

From the literature, SIFT is absolutely the most influencing method. SURF, similar to

SIFT, results in the efficient computation. MSER is particularly robust to viewpoint

and lighting changes reported in [106]. BRIEF, ORB, BRISK and FREAK are the re-

cent wave of feature extractors providing robustness while achieving high computational

efficiency. Therefore, we select these methods for comparison.

In indoor mobile robot application, the performances of these local features with

changes in scale, viewpoint and motion blur are the main considered factors. Thus,

the performance evaluation of these features detectors and descriptors is carried out

with three datasets: scale change, viewpoint change, and image blur (see Figure 1.6 to

Figure 1.8). In each test, we use the first image of the dataset as the reference image.

We compare the matching quality and the computation time through the following

criteria:

– time per frame: absolute total time in milliseconds spent to the feature extrac-

tion of a single frame.

– time per keypoint: extraction time for a single keypoint. Evaluated as total

extraction time divided to number of detected keypoints.

– number of true matches: the inliers of the putative matches.

– percent of true matches: evaluated as the number of true matches divided to

the minimum keypoints of the reference and scene images.

1.5.2 Experimental Results

In the experiments, we test the methods: SIFT, SURF, MSER, BRIEF, BRISK, ORB,

FREAK. The tests are on the three image sequences (Figure 1.6 to Figure 1.8). The

performances are evaluated with computation times, number of true matches ans per-

cent of true matches.

Figure 1.9 shows the average results of computation times (in millisecond) both

for a frame and an individual feature. It notes that SIFT, SURF and MSER are not

23



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.6: Test images change in scale.

24



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.7: Test images change in viewpoint.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.8: Test images change in image blur.

(a) Average time per Frame (b) Average time per Keypoint

Figure 1.9: Computation times.
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efficient for time-constrained application. BRISK, BRIEF, ORB as well as FREAK

satisfy the time-constrained requirement.

Figure 1.10 and 1.11 respectively illustrate the number of true matches and the

percent of true matches. The results show that SIFT provide sufficient true matches

especially in case of scaling and viewpoint changes. The percent of true matches are

also high for SIFT. It is noted that ORB can compare with SIFT in case of viewpoint

changes and image blur while achieving computational efficiency. But it can not provide

sufficient good matches for scale changes.

The visual landmark detection method is expected performing both effectively and

efficiently at the same time. The method should effectively detect a visual landmark

under different viewing conditions as well as efficiently in running time. From the

experimental results, no method can perform both effectiveness and efficiency at the

same time. Consider that recognizing a visual landmark effectively is the first impor-

tant. So we choose SIFT. SIFT is hard for real-time application. We use it to initialize

a template-based visual tracking. The details of visual tracking will be introduced in

section 1.6.

1.5.3 Constraint RANSAC for Homography Estimation

In our experiments of planar visual landmark detection, unexpected results can happen

as illustrated in Figure 2. On the left of the figure is the reference image, in which a

poster is the object. On the right is the scene image. The matches are represented by

straight lines. The green lines represent the inliers satisfying a homography transfor-

mation, which is selected by the 4-points RANSAC algorithm. The pink lines represent

the outliers, which are not satisfied the estimated homography. The matching result

obviously shows that the standard 4-points RANSAC algorithm for homography esti-

mation can select the false model. Hence, the real inliears are not selected. This is

because the RANSAC algorithm works randomly and selects a model with minimum

error. And the homography encode the camera motion between two viewpoints and

the structure of the planar object. The 4-points RANSAC algorithm considers 6 DoF

camera motion with respect to an arbitrary oriented planar object.

However, in our indoor environment application, the robot moves in a plane. For

our camera-robot configuration, the camera is fixed on the mobile robot and its motion

is parallel with the ground. Hence, the camera motion has 3 DoF, two translation and

one rotation. The planar object is placed in parallel with the wall and vertically to the

ground. Hence, the normal vector of the planar object is also parallel to the ground.
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(a) Scaling

(b) Viewpoint

(c) Image blur

Figure 1.10: Number of correct matches.
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(a) Scaling

(b) Viewpoint

(c) Image blur

Figure 1.11: Percent of correct matches.
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Figure 1.12: The problem of 4-Points RANSAC for object recognition.

In order to improve the detection result, we consider the constrained motion of the

camera and the constrained orientation of the planar object to formulate a constrained

homography. In order to improve the detection result, we use the RANSAC algorithm

to estimate the constrained homography in the matching step.

Consider the motion constraint configuration, in which the camera is fixed on a

mobile robot. The motion of the camera and its xz-plane are both parallel with the

ground, the transformation matrix of the camera is decreased by:

T =

[
R(θy) txz

0 1

]

=




cos θ 0 sin θ tx

0 1 0 0

− sin θ 0 cos θ tz

0 0 0 1



. (1.38)

The observed vertical planar target gives the special structure norm nxz = [nx 0 nz]
⊤

in the camera frame. Hence, the homography is:

H = R+
t

d
n⊤

=




cos θ + txnx

d
0 sin θ + txnz

d

0 1 0

− sin θ + tznx

d
0 cos θ + tznz

d


 . (1.39)
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From equation (1.25), we have

HN = λH

=




λ(cos θ + txnx

d
) 0 λ(sin θ + txnz

d
)

0 λ 0

λ(− sin θ + tznx

d
) 0 λ(cos θ + tznz

d
)




=




h11 0 h13

0 h22 0

h31 0 h33


 . (1.40)

For each correspondence (x1,x2) with homogeneous coordinates, considering equation

(1.24), we have x2 = HNx1, which is equivalent to

x2 ×HNx1 = 0. (1.41)

If we note the jth row of HN using a row vector hT
j , all the items of HN presented by

a vector h = [h⊤
1 h⊤

2 h⊤
3 ]

⊤. The cross product can be written as

x2 ×HNx1 =




0T −z2x
T
1 y2x

T
1

z2x
T
1 0T −x2x

T
1

−y2x
T
1 x2x

T
1 0T







hT
1

hT
2

hT
3




= 0, (1.42)

Note that in equation (1.42), the third row can be obtained by the first and the second

row linearly. Only two rows are linearly independent. Hence, each match gives two

equations in the elements of HN . If we omit the third row of the equation (1.42), it

can be written as
[

0T −z2x
T
1 y2x

T
1

z2x
T
1 0T −x2x

T
1

]


hT
1

hT
2

hT
3


 = 0. (1.43)

In matrix form, equation (1.43) is

Ah = 0, (1.44)

where A is the matrix of the parameters in equation (1.43). Considering equation

(1.40), the vector h is reduced to hr = [h11 h13 h22 h31 h33]
⊤. So the matrix A will be
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reduced to

Ar =

[
0 0 −y1z2 x1y2 z1y2

x1z2 z1z2 0 −x1x2 −z1x2

]
(1.45)

For N matches, just stack each matrix Ai into a matrix A:

Ahr =




A0

...

AN−1


h = 0, (1.46)

where the 2N × 5 matrix A depends on all the coordinates of the matches. The vector

hr has 5 entries. Each correspondence gives two equations. Therefore only 2 matches

are enough to solve hr up to a scale factor. Equation (1.46) is a linear homogeneous

system, which can be solved using SVD decomposition svd(A) = USV⊤. The least

square solution of h is the eigenvector with respect to the least eigenvalue of S, that

is 5th column of the matrix V. More detail about SVD is described in Appendix

B.3. Hence, we adapt the homography estimation with only 2 points considering the

constraints of the camera motion and the normal vector of the planar object. The

experimental result with the 2-Points RANSAC algorithm is illustrated in Figure 1.13.

The result shows that considering the constrains can increase the probability of selecting

the expected model in the random process.

Figure 1.13: The result of visual landmark detection using 2-points RANSAC.

1.5.4 Discussion

For the experiment results, we get that SIFT almost performs best than others, es-

pecially for large scale changes. However, it is time consuming. BRIEF, BRISK and

ORB are efficient. But they are at the expense of the qualities of matching. In order

to ensure a good detection result we select SIFT.
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1.6 Planar Object Tracking

This section illustrates efficient ways of visual tracking. Visual tracking is to estimate

the object motion in consecutive frames of a video sequence. Different from object

recognition, the properties of tracking can be enhanced using the associations between

two consecutive frames. The tracking results can be used for visual servoing and motion

estimation. It will be seen in Chapter 3 how the visual tracking is used for vision-

based mobile robot navigation. In this section, an overview of visual tracking and the

representative tracking approaches are presented followed by the development of our

tracking scheme, which can track an unknown planar objects efficiently.

1.6.1 Overview of Tracking Approaches in the Literature

Visual tracking is crucial for many applications such as visual odometry [119], visual

Simultaneous Localization and Mapping (SLAM) [33], Augmented Reality (AR) [70],

and visual servoing [13], etc. Numerous algorithms have been proposed in this context.

The underlying schemes of those proposed methods can be typically classified into

feature-based tracking and template-based tracking.

Feature-based tracking approaches use a tracking by detection scheme. They detect

the visual object by extracting and matching local features in every frame indepen-

dently. Many feature extraction methods can be used. Harris points [62] and FAST

features [132] provide plentiful local features. But they have difficulties tracking objects

that exhibit wide-baseline changes. SIFT [89] and SURF [7] features perform well for

wide-baseline matching and in clutter environments. They are time consuming, and not

satisfied for high frequent vision-based control tasks. Moreover, there is learning-based

technique [78], which formulates the wide-baseline matching problem as a more generic

classification problem. This method leads to solutions that are much less computation-

ally demanding. However, it is not as robust as SIFT especially in case of large scale

changes.

Template-based tracking approaches describe the object by a target template, for

example, an image patch or a color histogram. The object motion is calculated as

a transformation that minimizes the mismatch between the target template and the

candidate patch. In the minimization step, a well-known method uses sum-of-squared

differences (SSD). It can be traced back to the work by Lucas, Kanade [91] and later

Shi and Tomasi [143]. The work of Benhimane and Malis [14] presents a homography-

based tracking method. The method computes the parameterized homography using

a minimization method, which efficiently approximates the second-order of the cost
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function without computing Hessian matrices. This method is also extended with

central catadioptric cameras [1].

The template-based tracking methods are generally faster and more precise than

feature-based tracking methods. They are particularly well adapted to robotic tasks,

such as visual servoing and motion estimation. But they are more sensitive to occlusion

and less well adapted to large inter-frame displacement.

In addition, there are also some paradigms to strengthen the tracking results, for

example, combining the detection and pure tracking. Because detection and track-

ing are closely related, recent tracking-by-detection paradigm leads to several of the

most successful tracking methods. Tracking-by-detection is to use the output of object

detectors serves as observation for tracking, to cope with difficult scenarios.

1.6.2 Template-Based Tracking

Template-based tracking matches between image templates Pr and Pc in a reference

image Ir and a current image Ic respectively. Suppose that the relation of the two

image template can be presented by a transform function F(x), where x is a vector

consisting all the parameters of F. F can be any transformation such as translation

transformation, affine transformation or even homography matrix. F transforms each

pixel mr of the reference image template Pr into its corresponding pixel mc in the

current image template Pc, with the equation:

mr = F (mc,x) (1.47)

The measurement of the mismatch between Pr and Pc is defined as the sum of

squared differences on intensity (SSD) over the templates:

y(x) =
∑

mc∈Pc

(Ir(F(mc,x))− Ic(mc))
2. (1.48)

If the two image templates are perfectly matched, the measurement y(x) will be zero.

Template-based tracking problem is reduced to find an optimal transformation F(x0),

especially it parameter vector x = x0, while minimizing the object function y(x),

defined in equation (1.48). The function can be minimized using different methods.

Here we focus on an efficient second-order minimization method, the so-called ESM

tracking, to solve the tracking problem.

In order to minimize the object function 1.48 using numerical calculation methods,
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the Taylor series expansion of y(x) about a point x = 0 is:

y(x) = y(0) +∇y(0)x+
1

2
x⊤∇∇y(0)x+ . . . . (1.49)

First order approaches approximate the function y(x) by truncating to the linear term:

y(x) = y(0) +∇y(0)x. (1.50)

Second order approaches approximate the function y(x) by truncating the quadratic

term:

y(x) = y(0) +∇y(0)x+
1

2
x⊤∇∇y(0)x. (1.51)

During the iteration of minimization process, the pixels of Pc flow to the reference pix-

els of Pr. First order approach performs low convergence rate. Second order approach

performs high convergence rate, however it needs to calculate Hessian matrix which is

computational complexity. ESM uses homography matrix, defined in equation (1.28),

as the transformation F, and uses an efficient second-order minimization method. It

performs high convergence rate and computes efficiently in each iteration. It approx-

imates the second order derivatives by the first order derivatives. The Taylor series

expansion of ∇y(x) about a point x = 0 is:

∇y(x) = ∇y(0) + x⊤∇∇y(0) + . . . . (1.52)

Hence x⊤∇∇y(0) can be approximated as:

x⊤∇∇y(0) ≈ ∇y(x)−∇y(0). (1.53)

Equating the approximation of x⊤∇∇y(0) in equation (1.51), we can approximate

y(x) as:

y(x) ≈ y(0) +
1

2
(J(0) + J(x0))x0. (1.54)

Equation (1.54) is the underlying idea of ESM tracking.

1.6.3 Our Visual Tracking System

After recognizing the target region using SIFT, we find the N best features in the initial

image limited in the identified target region.

Figure 1.14 shows the results of ESM tracking. Eight frames were sampled from

the test sequence with 769 images. Figure 1.14(a) is the initialization step. The target
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to track (the poster) is shown on the left-up sub-region of the image. Figure 1.14(b) to

1.14(h) are the tracking process.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.14: ESM tracking experimental results.

1.7 Conclusion

In this chapter, we have presented the theoretical bases, overview the literature of fea-

ture detectors, descriptors and matching. We have compared the promising approaches

of detectors and descriptors to select the suitable one for the place recognition task.

In our evaluation, we found that it is hard for a method have robustness with respect

to viewing condition changing and computation efficiency at the same time. SIFT was

best with changes in scale and was successful in object recognition even when the scale

change is large. We select SIFT. However, SIFT is computational complexity. In order

to balance computation complexity and effectiveness, we have designed a framework

of tracking. In the tracking framework, the result of recognition by SIFT is used to

initialize a template-based tracking method, named ESM. The tracking framework can

recognize and track a landmark from a long distance. The tracking framework could

be a frond-end of vision-based control, which will be discussed in Chapter 3.
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Chapter 2

Real-time Reactive Obstacle

Avoidance

2.1 Introduction

Safe interaction with the environment is one of the essential components of a robot

system. Specifically, for service robots, a flexible, reactive and safety-oriented control

of interaction between robots and humans allows a closer cooperation [15]. Therefore,

obstacle detection and representation as well as avoidance are crucial tasks for indoor

and outdoor mobile robot navigation. This chapter is about reactive collision avoidance

for our mobile robot navigating in an unknown environment with obstacles. We aim to

seek efficient reactive collision avoidance approaches using a forward-looking 2-D laser

range finder. The proposed methods can ensure collision-free motion during mobile

robot navigation.

Planning or Reacting? There are mainly two paradigms to deal with collision

avoidance in the mobile robotics community: motion planning [74] and reactive obsta-

cle avoidance [69]. Motion planning generates a collision-free motion with differential

constraints, kinematic or dynamic constraints, from a start to a goal configuration

among obstacles. Motion planning methods provide complete and global solutions to

the free-collision problem. However, they assume accurate models of the environment

and the robot. Furthermore, these methods have difficulties in case that the environ-

ment is unknown and unpredictable. It is also impossible to do replanning in each

control loop, especially for large-scale navigation. As Khatib indicated in [69] that the

time required to perform global path planning computations may limit “the robot’s
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2.1. Introduction

real-time capabilities for precise, fast, and highly interactive operations in a cluttered

and evolving environment.”

Reactive obstacle avoidance is a complementary way to address the collision-free

problem. Reactive obstacle avoidance methods drive a robot towards a target configu-

ration without collision with obstacles detected by the sensors within the control loop.

Hence, reactive methods are suitable for the uncertain and dynamic environment. On

the other hand, since they perform locally, they are inability to generate an optimal

solution, even though they may encounter a trap situation without reaching a goal.

Motion planning provides complete and optimal trajectories using a map from a

global point of view, whereas obstacle avoidance generates motion reacting to evolving

surroundings based on sensor perception from a local point of view. They are parallel

approaches to address the collision-free problem. They have a strong complementarity.

Various works combine these two paradigms by considering sensor perception into the

planning level, namely sensor-based motion planning. For example, the BUG algorithm

[93] initially considered as sensor-based motion planning. Some methods deform the

planned path in real-time through the onboard sensor as the elastic band method [127]

[73].

What is suitable for us? In our vision-based mobile robot navigation framework,

which will be introduced in Chapter 3, the navigation task is defined with series of

positions defined in the image space without building a metric map. Collision avoidance

is used to adapt the robot motion to any contingency incompatible with the visual

trajectory. Therefore, we choose reactive obstacle avoidance techniques, which are

combined with the vision control in our robot system, to ensure the collision-free motion

in real time.

A complete collision avoidance framework is composed basically of three parts: (1)

Perception of the environment through the exteroceptive sensors; (2) Collision avoid-

ance algorithm; (3) Robot motion control. During the perception of the environment,

obstacles are detected and typically represented by models. The models are then used

by a collision avoidance algorithm to calculate the robot motion. In the end, the robot

motion is sent to the robot.

However, seldom obstacle avoidance approaches in the literature consider a repre-

sentation of the obstacle for smooth motion. An appropriate representation can provide

good performance in robot motion. This chapter aims at representation of obstacles

based on a 2-D laser range finder for unknown and dynamic environments, and applies

the proposed representation method to a reactive obstacle avoidance task.
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2.2. State of the art

The remainder of this chapter is organized as follows: it begins by presenting rel-

evant methods for obstacle detection and representation, and obstacle avoidance in

section 2.2. Section 2.3 focuses on the core of this chapter, by describing obstacle de-

tection and representation algorithms. We begin with the polygonal approximation.

Then we introduce a criterion to extract the convex polygonal chain. At last, we use

a cubic B-spline to interpolate a smooth curve to represent the obstacle contour. In

section 2.4, we present the obstacle avoidance methods based on our proposed obsta-

cle representation. The experimental results are provided in section 2.5. The chapter

concludes with a discussion in section 2.6.

2.2 Overview of the State of the Art

In robotics, obstacle avoidance has been a research topic for around three decades. The

amount of related work is relatively important. In this section, we present an overview

of literature relevant to obstacle representation and avoidance. We are not intended to

give an exhaustive overview on path planning and obstacle avoidance. We will limit the

scope to the reactive collision avoidance strategy, which is used in this thesis. Consult

the textbooks such as [146] [111] for more introductory details.

2.2.1 Obstacle Detection and Representation

The environment representation aims to model the objects in the robot working space

for collision checking and motion planning. There are primarily two approaches: config-

uration space and geometric representation. The configuration space of the robot refers

to the set of parameterized positions reachable by the robot system. It initially aims to

deal with path planning problems for collision avoidance [90], especially for a robot’s

end-effector. The planning is quite easy in configuration space, where the robot motion

is treated as a point moving in a High-dimensional space. However, configuration space

is hard to calculate, especially for a system with high degrees of freedom.

Here we mainly introduce the geometrical representation. In the context of geo-

metric representation, obstacles can be described through an occupancy grids map or

geometrical primitives.

Occupancy Grid An occupancy grid [41] or a certainty grid [114] is a matrix of

cells. Each cell holds a certainty value that indicates a belief that an obstacle resides

in the space represented by this cell. Occupancy grid concept was originally developed

by Moravec and Elfes, called certainty grid, in 1980’s [113] [40] [115] for mapping
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2.2. State of the art

at Carnegie Mellon University. This method uses a probability profile to calculate

the certainty value of each cell. It is efficient to handle the inaccuracy of sensors and

convenient for sensor fusion [114]. However, this procedure is computationally intensive.

Borenstein and Koren extended the certainty grid concept to the histogram grid for

obstacle representation [17], which is a two-dimensional Cartesian grid. They simplified

the certainty grid concept by a probabilistic distribution to reduce computation. This

approach is efficient for computation and suitable for real time obstacle avoidance and

robot navigation.

Occupancy grid method can easily be updated upon sensory input, and it can

efficiently deal with sensor noise. However, this approach suffers from discretization

problems. In addition, it becomes problematic if the robot maps a sizable environment,

where the map quickly becomes too large for processing and storage [76].

Geometric Primitives Various 2-D geometric representations of the obstacles are

used in practice, for example: points, lines, bounding boxes [148] [124] [161], ellipses

[123] [59], and polygonal lines [145] [160] [60].

Box and ellipse shapes are generally used in traffic scenarios with model-based as-

sumptions. They have limitations for unknown object representation, since they are

not able to approximate arbitrary data in a precise manner. Polygonal representation

is described by a sequence of line segments connected at their vertices. The line seg-

ment is the simplest feature among many geometric primitives. Line segment is easy

to be used for describing most indoor environments [58], whereas also used for outdoor

environment [95]. In the literature [76], polylines are used to represent an Absolute

Space Representation (ASR). In the literature [118], different popular line extraction

algorithms are evaluated for indoor environment. However, these works have not used

the information of the convex and concave of the polygonal line. In this thesis, we con-

sider the convex polygonal line for obstacle representation. Compared with Occupancy

grid, representations based on geometric primitives significantly reduce the size of the

data. Hence, they are more compact.

2.2.2 Obstacle Avoidance Approaches

In this section, we present the representative approaches that are commonly used in

robotics. Obstacle avoidance aims to adapt the robot motion to the current or recent

sensor measurements while taking into account the target configuration. The generated

motion makes the robot move to the target configuration while the generated trajectory

is free of collisions with the obstacles.
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2.2. State of the art

Khatib proposed an idea of imaginary forces acting on a robot, called potential

field method (PFM) [69]. In this method, obstacles exert repulsive forces, while the

target applies an attractive force to the robot. For a given robot position, a resultant

force vector is calculated by comprising the sum of a target-directed attractive force

and repulsive forces from obstacles. The result force vector acts as the accelerating

force on the robot. The robot’s new position is updated for a given time interval.

The algorithm is then repeated. In another word, a path to the goal is calculated

by searching through the valleys of the overall potential field. This approach can be

used for planning, and it has been proved popular in different domains. An extension

of PFM is the vortex field method, proposed in the literature [35] and used in [34]

for local incremental planning. The vortex field method uses a flow rotating around

an obstacle instead of the antigradient of the repulsive field. PFM is popular in the

field of robots and mobile robots, particularly due to its simplicity. However, PFM

has significantly inherent problems as reported in [72]: trap situation (traps to local

minima) and oscillations. Trap situations happen, for example, when the robot moves

inside a U-shape obstacle or attempts to pass between two closely spaced obstacles.

The trap problem can be resolved by heuristic or global recovery. Oscillations become

apparent when the PFM is used in a robot with high-speed and real-time performance.

Borenstein and Koren developed Vector Field Histogram (VFH) [18] method for

real-time obstacle avoidance at high speed. This method permits the detection of

unknown obstacles and avoids collisions while simultaneously steering the mobile robot

toward the target. The surrounding of the robot is represented by a histogram grid.

An one-dimensional polar histogram is computed from the histogram grid. And then

the most suitable open area is selected as the moving direction. VFH was improved

by taking into account the robot width and the trajectory of the mobile robot in the

literature [156]. It was improved to solve the problem of pure local obstacle avoidance

algorithm, dead-ends situation, by using look-ahead verification in the literature [157].

Both PFMs and VFHs do not take system dynamics into account. They aim to

select a suitable travel direction. The velocities are then generated based on the selected

direction. This will be problematic in cluttered environments and high speed situations.

To overcome this issue, some approaches formulate the obstacle avoidance problem in

the velocity space of the robot rather than Cartesian or configuration space. The

velocity space of a robot is the set of controllable velocities. Thus, these approaches

calculate the steering commands directly in the velocity space rather through a travel

direction. The representative methods are Curvature-Velocity Method (CVM) [149]

and Dynamic window approach (DWA) [52]. CVM treats obstacle avoidance as a
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2.3. Obstacle detection

constrained optimization in velocity space. The constrained optimization is defined in

terms of speed, safety, and goal-directedness. An optimal point in the velocity space

is chosen such that it satisfies all the constraints and maximizes an objective function.

DWA is very similar to the CVM in the sense that it uses constrained search in velocity

space to determine actuator commands. It also trades off speed, safety, and goal-

directedness. However, the grid-based representation makes it more straightforward to

compute velocity space obstacles, at the cost of increased memory requirements.

Nearness-Diagram Navigation (ND) is a new Real Time Collision Avoidance Ap-

proach proposed in the literature [110]. ND uses a sectored (polar) environment repre-

sentation that is used to express distances to obstacles and allows selecting an optimal

valley. As navigation strategy, five laws of motion are used, selected in an interpretation

step.

Randomized Kinodynamic Planning(RRT) [75] is a trajectory planning approach

that takes into account kinematic and dynamic constraints. It is approached using

Rapidly-exploring Random Trees (RRT), which allows for continuous-domain repre-

sentation and probabilistically complete planning at the cost of non-optimality. RRTs

is a randomized planning technique specially designed for nonholonomic constraints

and high dimensional.

The described approaches of representation and obstacle avoidance have advantages

and disadvantages depending on the navigation context, such as uncertain worlds, mo-

tion at high speeds, motion in confined or troublesome spaces, etc. VFH is suitable to

the uncertain worlds. Dynamic window is good at motion at high speed. ND can deal

with troublesome spaces. However, none of these methods analyzes the convex and

concave of the obstacle boundary when reacting with them. Therefore, in the following

sections, we reformulate the obstacle avoidance approaches considering the convex of

the obstacle boundary and seeing whether this information can make the robot motion

smoother during the obstacle avoidance execution.

2.3 Obstacle Detection and Representation

The statical or moving objects can be hit by the robot, which causes dangerous or

undesirable behavior. The objects are irrelevant if they are not in the path generated

by a navigation task. Hence, an object is an obstacle if it can be hit in the near future.

Our robot system senses obstacles through a 2-D laser range finder. The laser range

finder is accurate compared to sonar and radar. Moreover, it is efficient in processing,

and unaffected by illumination conditions compared to a vision system. In this section,
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2.3. Obstacle detection

we present our obstacle detection and representation approaches based on a 2-D laser

range finder. Unlike other obstacle representation methods, we detect and represent

obstacles using polygonal lines while analyzing the convex and concave of the obstacle

boundary.

2.3.1 Obstacle Detection

As shown in Figure 2.1, a 2-D laser scanner produces a set of 2-D points representing

the contour of the visible environment around the sensor. Obstacle detection is usually

through the point segmenting and clustering processes to identify each object around

the robot. The collision is then checked with the identified objects with a motion

prediction step. The process extracts a set of segments out of the raw laser range

measurements, and each segment corresponds to an object contour. We segment the

raw range measurements after data filtering and then merge the adjacent segments as

one using the distance parameters. At last, a predictor is used to select the one which

cuts the robot trajectory and can be considered as an obstacle.

Figure 2.1: Data from a 2-D laser range finder.

Laser Data Consider Mt a set of points representing the laser scan of an environment

at time t as Mt = {mi = (ρi, θi)
⊤ | i ∈ 0 . . . N − 1}, where (ρi, θi)

⊤ are the polar

coordinates of N points for each scan. The Cartesian coordinates of a laser point are

given by (
xi

yi

)
=

(
ρi cos θi

ρi sin θi

)
(2.1)
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The distance between two laser points is defined as

d(mi,mj) =‖ mi −mj ‖

=
√

ρ2i + ρ2j − 2ρiρj cos∆θ, with ∆θ = θi − θj . (2.2)

Laser range finders are a kind of time-of-flight active ranging sensor using laser light.

They provide easily interpreted outputs. They can directly measure the distances from

the robot to objects in the neighborhood with high accuracy depending on the quality

of the sensor. Ranges are estimated by measuring the difference between transmitted

and received signals, for instance, the phase shift. In the applications of occlusion

avoidance or collision avoidance, they are widely used on mobile robots.

Data Filtering The first step of obstacle detection based on a laser range finder is

to appropriately filter the raw data with sensing errors. For the laser scanner, the main

error is “salt and pepper” noise. Sensor errors, multi-path reflection, object surface

reflectance and occlusion are all possible causes of the noise.

The noises are the points occurring at stochastic intervals, so they are usually the

isolated points of time and space. To be efficient, here we filter the noise considering

only one scan. Hence, we primarily discard these spatial isolated points as noise. If

multi scans are considered, temporal isolated points can be identified and discard.

An spatial isolated point happens in a splitting position of the measurements where

there is a big jump with both the two adjacent points. Consider that the set of laser

measurements is ordered, and typically, the angular resolution is small cos∆θ ≈ 1.

Therefore, equation 2.2 could be simplified as

d(mi,mi+1) =‖ ρi+1 − ρi ‖ (2.3)

Then isolated points can be found by comparing the distances with a given threshold.

Figures 2.2 shows a result of noise filtering from a raw laser scan as shown in Figure

2.1. The threshold used for the result is fixed to 0.1m.

Data Segmentation The objective of segmentation is to divide a laser scan into

meaningful pieces. Each piece corresponds to a visible contour of a sensed object. We

use Successive Edge Following (SEF) algorithms described in the literature [144] to

segment the filtered laser scans. The SEF algorithm works directly on the distances

of the filtered laser scan measurements as illustrated in Figure 2.3. A segment is
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Figure 2.2: Filtered data of laser range finder.

completed when the different of the distance between two adjacent points exceeds a

given threshold. After segmentation, the filtered measurements are divided into groups

of close points. In order to obtain stable results against variations from the complexity

of the environment, the groups are discarded if they consist of too few points, for

instance, 3 close points. Figure 2.4 shows different segments in colors using a thresholds

0.2 m.

Fig. 2.3: Segmentation using Successive Edge Following algorithm.

Data Merging Due to the noise or occlusion, an object contour may be divided

into several adjacent segments, which should be one. In order to cope this issue, we

associate the adjacent groups using the angular deviation between two nearest points

of the two groups. If the angular deviation is big, the threshold is set to a small value.

Otherwise, the threshold is considered big. Figure 2.5 shows the final clustering result

with two thresholds 0.2 m and 0.6 m.
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Figure 2.4: Laser data segmentation.

Figure 2.5: Laser data clustering and merging.
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Collision Detection Collision detection consists in determining whether a predicted

trajectory is clear from obstructions for safe motion by a mobile robot. The prediction

simulates the robot motion taking into account the kinematics model of the mobile

robot inside a predetermined sampling period T = {ti | i ∈ 0 . . . n − 1} (n time inter-

vals) and identifies the interesting obstacles which are in the trajectory using collision

checking. In the prediction, the simulated controller is the same as the one used in the

real navigation task. The motion model will be introduced in more detail in Section

2.4.1. The given interval is selected to make sure that the robot can safely stop before

collision. In each time intervals, the collision is checked through the geometric rela-

tionship between the region of the robot and those of clustered objects. More formally,

if R(Qti , T )
⋂
O(qti) 6= ∅, with R the robot, O the detected objects and qt the config-

uration at time t, collision will happen. The object is directly modeled by their point

sets. This makes the collision checking simple. If collision is detected, the dangerous

obstacles are selected, and then the robot speed will be adjusted in reaction to the

obstacles. In order to obtain good performance during the reaction, we will analyze

the effects with different representations in the following section.

2.3.2 Obstacle Representation

Obstacle representation aims to find a model of the detected obstacle boundary. In this

section, we will model the obstacle boundary based on polygonal lines.

2.3.2.1 Polygonal Chain Representation

A polygonal chain or polygonal curve is a piecewise linear curve, which is a connected

series of line segments. More formally, let P be a polygonal chain. P is specified by a

sequence of points (P1,P2, ...,Pn) called its vertices so that the curve consists of the

line segments connecting the consecutive vertices. If the first vertex coincides with the

last one, or the first and the last vertices are also connected by a line segment, P is

a closed polygonal chain. Polygonal chains can be used to approximate other curves

[130] and boundaries of real-life objects. In the literature [142], closed planar shapes

are approximated by polygons in order to decompose 2-D shapes. They can thus also

be used to approximate the contours of obstacles. In the case of the 2-D laser scanning

parallel to the ground, the boundaries of objects are partly sensed due to occlusion.

Therefore, they are approximated by open and simple polygonal chains as shown in

Figure 2.6, in which only consecutive (or the first and the last) segments intersect and

only at their endpoints.
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Fig. 2.6: Illustration of a boundary representation by a polygonal chain.

The main goal of extracting polygonal chain with respect to a given curve C =

{Pi}Ni=1 is to identify the vertex locations. C is a segment based on adjacent groups of

range measurements. The polygonal chain extraction can be solved by a line extraction

algorithm. The main problem in line extraction algorithm in unknown environments

is how many line segments should be used to approximate the given data set, which

points assign to which line, and how accurate the line segments can be extracted. In

the case of range data, there are several methods to detect line features. A comparison

of six popular algorithms can be found in the literature [118]. We select a widely used

algorithm, named split-and-merge algorithm, which goes back to the work of Ramer

[128], and Douglas and Peucker [39], thanks to its speed and good correctness [118].

The main idea behind the algorithm can be illustrated in Figure 2.7. Suppose a

laser scan measurements M = {m0 . . .mn−1}. Initially the algorithm approximates the

set of points by the line segment that connects its two endpoints m0 and mn−1. This

approximation is evaluated using a distance criterion and a predefined threshold, noted

as thrp. In another word, the distances of all the points, except the two endpoints, are

calculated and compared with the given threshold. If the criterion is not verified, the

line segment is sub-divided into two segments at the measurement point mi, which is

the farthest point to the straight line segment. This procedure is recursively repeated

until the resulting approximation satisfies the error tolerance specified for the given

distance criterion. Figure 2.7(c) shows that M can be approximated by a polygonal

chain with vertices m0,mj ,mi,mn−1. P = {P0, P1, P2, P3} is the extracted polygonal

chain as shown in Figure 2.7(d), where Pi is the vertices of the polygonal chain.

To obtain a more accurate polygonal chain, each line segment can be refined using,
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(a) (b)

(c) (d)

Fig. 2.7: Split-and-merge algorithm applied to a point set.
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for example, least squares method to fit a linear regression line [109]. This can make

the polygonal chain fits the raw laser measurement much better.

2.3.2.2 Convex Polygonal Chain Representation

Polygonal chain can effectively approximate the boundaries of most objects. However,

concave vertices are inadequate for obstacle avoidance when the mobile robot goes

around the polygonal chain as shown in Figure 2.6. In order to avoid this situation, the

convexity of the extracted polygonal chain should be satisfied. Han proposes in [61] an

algorithm to detect convex and concave curves using a signed distance in the split-and-

merge algorithm. Similar as Han, in order to extract only convex curve, we use the

split-and-merge algorithm [61]. The sign of the distance is given by the relationship

between three ordered points, noted P0 = (x0, y0), P1 = (x1, y1) and P2 = (x2, y2). The

relationship can be established in two ways: in clockwise order or counterclockwise

order as shown in Figure 2.8. If P1 = (x1, y1) is left side of the vector P0P2, they are

in clockwise order, otherwise, they are in counterclockwise order.

(a) in clockwise order (b) in counterclockwise order

Fig. 2.8: Three points relationship.

The relationship can be identified by the area of the triangular

a =
1

2

∣∣∣∣∣∣∣

x0 x1 x2

y0 y1 y2

1 1 1

∣∣∣∣∣∣∣
(2.4)

Equation 2.4 implies the position relationship of the three vertices with the conclusions

– If the area is positive, the points occur in counterclockwise order, and P1 is right

side of the vector P0P2.
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– If the area is negative, then they are in clockwise order, and P1 is left side of the

vector P0P2.

As we aim to select the convex points, the point with positive area will be chosen.

Since the threshold is also positive, only the points with the biggest distances and

bigger than a given threshold thrp in each iteration are marked as convex points (see

Figure 2.9). And thus, convex polygonal chain can be obtained as illustrated in Figure

2.10.

(a) (b)

Figure 2.9: Convex curve extraction.

Figure 2.10: Illustration of convex chain.
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2.3.2.3 B-Spline Representation

To obtain a smooth representation approximating the obstacle boundary, we use a cubic

parametric B-spline curve to model the obstacle boundary by interpolating the vertices

of the extracted convex polygonal chain. The advantage of using B-spline curves is

that they can have arbitrary order continuity of the obstacle boundaries, which is very

suitable for robot motion control during obstacle avoidance. In addition, B-spline can

adapt to any curve defined by control points, and its generation is intuitive. Further-

more, they are piecewise polynomials, so they can perform a good approximation with

a low degree while avoiding instability due to Runges phenomenon as illustrated in A.1.

Consider n + 1 vertices points S = {S0 . . . Sn}, the objective is to fit them with

a B-spline curve S(t) of degree p with p <= n + 1. For the sake of simplicity and

convenience, we use Bezier curves as the segments of B-spline. We have





S0 = B0

S1 = 1
6B0 +

2
3B1 +

1
6B2

...

Si = 1
6Bi−1 +

2
3Bi +

1
6Bi+1

...

Sn−1 = 1
6Bn−2 +

2
3Bn−1 +

1
6Bn

Sn = Bn

. (2.5)

The details how to get equation 2.5 are given in the Appendix A.1. The system 2.5

can be written as

MB = S, (2.6)

where B = [B0 . . . Bn]
⊤, S = [S0 . . . Sn]

⊤ and the (n+1)× (n+1) coefficient matrix M

M =




1 0 0 0 · · · 0 0 0 0
1
6

2
3

1
6 0 · · · 0 0 0 0

0 1
6

2
3

1
6 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · 1
6

2
3

1
6 0

0 0 0 0 · · · 0 1
6

2
3

1
6

0 0 0 0 · · · 0 0 0 1




. (2.7)
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Hence, B can be obtained by

B = M−1S. (2.8)

In practice, we compute B by solving the linear system 2.6 as given in Appendix B.3

rather than computing the inverse matrix which is time consuming.

Figure 2.11 illustrates an interpolated result (drawn in green color) from a real laser

scan applied to the selected polygonal chain (drawn in red color) corresponding to the

obstacle to be avoided by the mobile robot.

Figure 2.11: Obstacle selecting and boundary fitting

2.3.3 Discussion

This section introduces our obstacle detection and representation approach using a

2-D laser range finder. The raw data is transformed into geometric features, from a

polygonal chain to a convex polygonal chain. At last, a cubic B-spline is interpolated

based on the extracted convex polygonal chain, and it instantaneously approximates

the convex boundary of the obstacle to be avoided. This transformation smoothes

the obstacle boundary, but they do not preserve the details of the real boundary of the

detected obstacle. The representation by a polygonal chain always leads to a certain loss

of information as it is an approximation of the raw data. Since the representation of the

convex polygonal chain looses concave features, which makes a rougher approximation.

The B-spline curve provides a smooth representation based on the rough approximation.

In the case of obstacle avoidance, we note that the B-spline interpolation based on the

convex polygonal chain is more interesting, which avoids the concave features and

smooths the boundary.
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2.4 Reactive Obstacle Avoidance Approaches

This section presents our reactive obstacle avoidance methods using the described rep-

resentations.

2.4.1 Motion Modeling

The kinematics of our differential drive mobile robot can be described as a unicycle

model, which applies to a large class of mobile robots.

With reference to Figure 2.12, let FR be the robot frame with the origin located

at mid-distance of the robot’s actuated wheels. x axis is chosen to assign the robot

heading. y axis is along the left. z axis is assigned to up. In the world frame FW ,

the workspace of the robot is the xy plane. Under this convention, the configuration

of the mobile robot is described by q = (x, y, θ) ∈ R
2 × S1, where (x, y) represents the

Cartesian position of the reference point R in FW , and the parameter θ ∈ [−π π] is the

robot heading (positive counterclockwise) with respect to the world frame x axis.

Figure 2.12: Illustration of robot configuration using unicycle model.

We choose u = [υ ω]⊤ as the control inputs for the robot system. υ and ω are

respectively the linear and angular velocities (positive counterclockwise) of the robot.

Hence, the kinematic model is given as




ẋ

ẏ

θ̇


 =




cos θ 0

sin θ 0

0 1




(
υ

ω

)
. (2.9)
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2.4.2 Obstacle Avoidance based on Path Following

Bug algorithm [92] is a typical obstacle avoidance algorithm which follows the contour

of each obstacle in the robot’s way and thus circumnavigates it. In this section, we also

formulate the obstacle avoidance as following the contour of the obstacle.

2.4.2.1 Formalism

In order to use path following method to deal with obstacle avoidance, two envelops ξ0

and ξ+ are generated expanding from envelope ξobs as illustrated in Figure 2.13. In the

following, we will see that using the multi envelopes the control can be smoothed when

switching between the obstacle avoidance controller and the navigation controller. Let

ξobs represent the approximation of the obstacle’s boundary. ξ0 and ξ+ surround the

obstacle at distance |d0| < |d+| representing the risk of collision. When generating ξ0

and ξ+, we suppose that a Frenet–Serret frame moves on ξobs aligning with the robot’s

moving direction, and d0 and d+ are the ordinates defined in the Frenet–Serret frame.

ξ+ defines a zone, inside which the obstacle is detected. We suppose that the distance

between each two obstacles is bigger than 2|d+|, which ensures that the robot deals

with one obstacle at each time. ξ0 is the reference path to follow when the robot

circumnavigates the obstacle. A reference frame F0 is attached to ξ0 and the error

vector (δ, α, χ) is then calculated.

As described in the section 2.3, we extract the boundary of the obstacle ξobs. Hence,

we, firstly, calculate the error vector (δobs, αobs, χobs) on ξobs. Then, the error vector e

can be computed as

δ = δobs − d0 (2.10a)

α = αobs (2.10b)

χ =
1

(robs + d0)
=

1
1

χobs
+ d0

(2.10c)

Path Following In order to control the robot following the path ξ0, we use the

control law proposed in the literature [136]. Here we give an introduction about the

path following method used in this thesis.

We assume, without loss of generality, the pre-defined path and the robot position

are represented in the global reference frame FO as illustrated in Figure 2.14. For a

given curve C, the error between the robot frame FR and C has to be stabilized to zero

during the path following. To define this error, a reference frame F′
R is attached to the
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Figure 2.13: Collision avoidance using path following

path C at point R′, obtained through the orthogonal projection of the origin point R

of FR onto C. Therefore, R′ is the closest point on the path C to the mobile robot.

Let r be the curvature radius of C at the point R′, and θr be the angular deviation

between frames F′
R and FO. Then, the error vector between FR and C can be chosen

as e = (δ, α, χ) with

– δ is the distance between FR and F′
R.

– α = θ− θr is the angle characterizing the orientation of the robot with respect to

the frame F′
R.

– χ is the curvature of C at the point R′: χ = 1
r
, where r is the turning radius. In

the case of straight line following, χ = 0.

Figure 2.14: Path following.

By using the task function formalism [137] and the path following approach [136],

the control law can be designed by setting a non-zero linear velocity and an angular
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velocity as

ω = −υ(kδ + α+ 2k sinα− χ cosα) (2.11)

where k is a positive gain to be tuned. The linear velocity can be a constant value or

can be a desired profile.

Figure 2.15 is a simulation result of path following with respect to a cubic B-spline

curve. The black path is the reference B-spline path. The mobile robot marked red

follows the path from the initial position right bottom. The motion of the robot is

marked with cyan-blue. We can see that after the robot starts to move, it converges to

the defined B-spline curve.

(a) trajectory of motion (b) parameters

Figure 2.15: Path following: cubic B-spline

Conjunction with a Navigation Task By using the control law (2.11), the robot

has the capability to move along the obstacle boundary represented by a B-spline when

the obstacle is detected during the navigation task. Naturally, the avoidance task is

merged with a main task (path following, visual servoing, ...etc). Folio et al. in [50]

propose a hybrid control method to merge visual servoing with obstacle avoidance tasks

at the control level. Here, we build a multi-task controller as presented in [50]. Here

we briefly introduce the control scheme.

Let q̇go be the control law for goal-driven task, and q̇co be the control input of

collision avoidance. The global controller q̇glb may be defined by

q̇glb = (1− λ)q̇go + λq̇co, λ ∈ [0, 1] (2.12)

where λ is a function allowing to switch between the both controllers. In order to
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smooth the global control, the boundary ξ+ is taken into account to define the collision

dangerous zone and to change progressively λ as given in [50]. The λ can be built in

two ways: direct switching 2.13 or smooth switching 2.14.

λ =





0, if |δobs| ≥ d0

1, if |δobs| < d0 and escape = false

0, if |δobs| < d0 and escape = true

(2.13)

λ =





0, if |δobs| ≥ d+
d+−|δobs|
d+−d0

, if d0 ≤ |δobs| < d+ and escape = false
d+−|δobs|
d+−de

, if de ≤ |δobs| < d+ and escape = true

1, otherwise

(2.14)

Escape Condition As indicated above, in order to combine the multi controllers, an

escape decision is needed to decide when the obstacle is no more dangerous to the robot.

Then the multi controller switches back to the goal-driven task. Consider the process

of obstacle avoidance. Two controllers are calculated: q̇go and q̇co. If the goal-driven

control q̇go makes the motion to conflict the obstacle, the collision avoidance controller

q̇co will aim to decrease the movement tendency or generates a reverse movement trend

toward the obstacle. Accordingly, during the collision avoidance process, when q̇go

generates a decreasing movement tendency or a reverse movement trend with respect to

the obstacle, the escape condition is contended. The movement trend can be evaluated

using the angular velocity with respect to the direction of the obstacle. Thus, the

escape is contended “escape = true” under the conditions

{
ωgo < ωco if the robot avoids the obstacle in counterclockwise

ωgo > ωco if the robot avoids the obstacle in clockwise
(2.15)

2.4.2.2 Simulation Results

We have simulated a mission whose objective is to navigate the robot along a straight

line while avoiding an obstacle placed on the line. The straight line is defined by

x = 0. The obstacle boundary is modeled by a B-spline, interpolated using four points

(−1, −1), (1, −1), (1, 1) and (−1, 1). The sample time is Ts = 100ms.

As showed in Figure 2.16(a), the first task is straight line following. The line is

defined as x = 0. The obstacle is placed on the line at the point (0, 0). The robot starts

at the point (−3, 0) heading to the obstacle with constant linear velocity υ = 0.2m/s.
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At the beginning, the robot does not detect the obstacle, so it follows the straight line.

As it moves forward, it encounters the obstacle and avoids it.

Figures 2.16 illustrates the simulation results using equation 2.13. Figure 2.16(a)

is the motion trajectory in the work space. Figure 2.16(b), 2.16(c), and 2.16(d) give

the α, δ and χ calculated from the two controls. Figure 2.16(e) shows the function of

λ using switch method. And 2.16(f) is the generated angular velocities.

(a) Motion trajectory (b) Error α (c) Error δ

(d) Error χ (e) Function λ (f) Angular velocity ω

Fig. 2.16: obstacle avoidance simulation: direct switching

The path following based obstacle avoidance could deal with collision avoidance in

conjunction with a main navigation task. The method assumes that the robot reacts

with one obstacle at one time. In order to adapt to a more cluttered environment, the

method should be extended. In addition, it only merges the motion at the control level,

not at the task level. It is hard to predict the motion of the robot.

2.4.3 Potential Field Method (PFM)

Path following based obstacle avoidance method is a model based method. The model

is the obstacle boundary. In this section, we introduce a model free obstacle avoidance

method, namely potential field technique.
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2.4.3.1 Formulation

The potential field method (PFM) models an obstacle as a particle moving in a potential

field in which the motion is under the influence of a force field. The robot is considered

as a particle. While the target generates a force that attracts the particle, and the

obstacles generate repulsive forces. The motion of the robot is computed to follow the

direction of the artificial force induced by the sum of both potentials. The potential

function U(dcoll) of the repulsive force is given as

U(dcoll) =

{
1
2k1

(
1

δobs
− 1

d+

)2
+ 1

2k2(δobs − d+)
2, if |δobs| ≤ d+

0, otherwise
(2.16)

where k1 and k2 are positive gains to be chosen. δobs and d+ are the same as defined

in Section 2.4.2. The modulus of the virtual repulsive force

F (δobs) = − ∂U

∂δobs
=

{
k1

1
δ2
obs

(
1

δobs
− 1

d+

)
− k2(δobs − d+), if |δobs| ≤ d+

0, otherwise
(2.17)

The orientation of the potential force is defined as

β =

{
α+ π

2 (1−
δobs
d0

), if clockwise

α− π
2 (1−

δobs
d0

), otherwise
(2.18)

Figure 2.17 illustrates the virtual repulsive force. Note that the virtual repulsive force

is related with the configuration of the robot. In order to simplify the illustration, we

suppose that the orientation of the robot is always parallel to the obstacle boundary.

Figure 2.17 illustrates this potential in the case of a circle obstacle.

(a) Clockwise (b) Counterclockwise

Fig. 2.17: Illustration of virtual repulsive force
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The control law can be defined as

q̇coll = (υcoll ωcoll)
⊤ = (kυF cosβ

kω
Dx

F sinβ)⊤. (2.19)

where kυ and kω are positive gains to be chosen.

As said in [69], the potential uses the shortest distance to an obstacle O. Thus, δobs

is the shortest distance to the obstacle O. In our work, we can follow the same idea.

We can use the closest point of the obstacle boundary to generate the repulsive force.

The value of the force is calculated using Equation 2.17. The force direction is set

as the normal of the point. Our approach of obstacle representation is convex, which

complies with the requirement that equation is continuous and differentiable. Hence,

we can calculate the normal of every point on the path.

Potential field approach can be used for path planning. It is accomplished through

finding the minimization energy by following the negated gradient of potential energy

function. The total repulsive potential field can be obtained by summing up the po-

tentials caused by all of the obstacles.

A local-minima free potential field method is proposed in the literature [5]. However,

this method has discretization problems. Navigation functions are used in [129]. These

functions have the only minimum at the goal position. Cherubini used a vortex potential

field, derived from an occupancy grid, in [27] [28] [29].

2.4.3.2 Simulation

A simulation of obstacle avoidance using potential field method is illustrated in Figure

2.18. The robot is following a straight line, while avoiding a circle obstacle on the

path. We use the path following control to replace the attracts force in the classical

PFM. The different boundaries of regions are used in order to have a smooth motion.

It can be noted that the motion is sharper than the direct path following method at

the beginning of obstacle avoidance.

2.4.3.3 Discussion

Compared to direct path following method, potential field method may have sharp

motion is some cases. However, it can consider multi obstacles. Hence, it is adapted to

cluttered environments with obstacles. As a local planar, PFM could encounter a trap-

situation, which may occur when the robot runs into a U-shaped obstacle. But this

problem can be solved by combining the PFM algorithm with our convex representation
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(a) Motion trajectory (b) Error α (c) Error δ

(d) Error χ (e) Function υ (f) Angular velocity ω

Fig. 2.18: obstacle avoidance simulation using PFM: smooth switching

for obstacles.

2.5 Experimental Results

We have implemented the proposed path following based obstacle avoidance method

on our mobile robot platform named Lina. The mobile robot is equipped with a laser

range finder from Hokuyo Ltd., which has a maximum measurement range of 5 m and

is able to scan an angle of 240◦. In this experiment, we use visual servoing control

scheme to navigate the robot towards a given target. The navigation task is merged

with the proposed obstacle avoidance approach to ensure collision free. The obstacles

are placed between the initial position of the mobile robot and the desired one.

Three positions of the robot are represented in red circles and number 1 to 3. The

black crosses are the laser data. The blue line is the trajectory of the robot. Two green

B-spline modeling the obstacle boundary are shown with respect to the position 1 and

2. Figure 2.20 shows the result at each position in the laser space. At the beginning, the

robot is outside the dangerous zone of the obstacles. As it moves forward controlled by

visual servoing, it encounters an obstacle (position 1). The obstacle is thus segmented,

and the convex curve is extracted. Then, the segmented obstacle is modeled through

the B-spline curve (see Figure 2.20(a)). The global controller progressively switches

to the obstacle avoidance controller, which makes the robot move around the obstacle
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smoothly. When the robot can reach the goal without collision (position 2), the global

controller goes back to visual servoing controller, and the robot stops when the goal is

reached (position 3). The experimental result shows that the robot can move smoothly

without being trapped in the concave part of obstacles.

Figure 2.19: Experimental result: navigation

(a) position 1 (b) position 2 (c) position 3

Figure 2.20: Experimental result: laser data

2.6 Conclusion

This chapter presented efficient obstacle detection and representation methods for mo-

bile robot reactive collision avoidance. In the case of unknown and unstructured en-

vironments, objects are usually partly sensed, which makes it challenging to have a

good representation of the object boundary, especially for an obstacle avoidance task.

To model the obstacle boundary, we have extracted the convex polygonal lines of the

obstacle boundary followed by B-spline interpolation of the convex polygonal lines.

Therefore, we have a smooth representation of the obstacle boundary, and the method

is computational efficient. The extracted B-spline is used with path following control

for the mobile robot circumnavigating the boundary of the obstacle to avoid it. Since
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the model of the obstacle boundary is extracted through convex polygonal lines, the

robot can move without being trapped in the concave part of obstacles. Our obstacle

modeling method is efficient, since the calculation uses only one frame of laser scan and

is inside the control loop. So it is not necessary to build the local map. The simula-

tional and experimental results show that our obstacle representation method performs

well enough for the smooth motion when the robot reactives with the potential collision

object.

In addition, we have also implemented potential field method, which is a model free

obstacle avoidance method. Compared with model-based obstacle avoidance methods,

it can be used for more complex environments, since not all the objects can be rep-

resented by a model like a B-splines. In the method of extracting convex boundary

with path following, we consider one obstacle at the avoidance process. This method

may encounter difficulty in the case that the robot needs to enter the concave part

of the obstacle boundary in order to avoid the dangerous of other obstacles. How-

ever, the convex boundary modeling can be extended to hierarchical obstacle boundary

representation to solve the problem.

In the next chapter, we will introduce vision based control for our mobile robot in

order to navigate with visual landmarks in the indoor environment.
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Chapter 3

Visual Servo Control for Mobile

Robots

This chapter considers the problem of visual servo control of a differential drive mobile

robot. The aim is to positioning the robot to a desired position using visual servo control

while considering three constraints: (1) Field-of-view (FOV) constraints imposed by

the camera system; (2) Nonholonomic constraints imposed by the robot kinematics;

(3) Safety constraints imposed by the clustered environments. The proposed schemes

are tested in real mobile robot navigation tasks.

3.1 Introduction

Most of the recent mobile robot navigation approaches are based on visual servoing

techniques. Visual servoing consists in using vision in the robot control loop [66] [26].

It can make the vision based navigation more efficient. Since, compared with model-

based mobile robot navigation, visual servoing directly operates in the sensor space

without requiring either a precise localization or a map of the environment. Moreover,

visual servoing can accomplish various robot tasks due to the vast information acquired

from the camera.

Visual servoing approaches were initially developed for 6 DOF manipulators. How-

ever, classical visual servoing techniques can not be directly applied to a mobile robot,

in particular, a nonholonomic mobile robot with a fixed camera system. For differential

drive mobile robots, they have a nonholonomic property that the DOF of the control

input, typically linear and angular velocities, is less than that of the robot configura-

tion. This property causes that a pure state feedback stabilization, namely image-based
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visual servoing, around a given reference configuration is impossible. Except nonholo-

nomic constraints, when a mobile robot executes a vision-based task in an unknown

environment, the robot generally executes multi tasks. Other tasks, notably collision

avoidance, are ensured as well as controlling the robot to a goal position using visual

servoing. Therefore, it is necessary to combine other controllers with the visual servoing

controllers. Moreover, visibility problems can occur due to the field-of-view constraints

of the camera system or visual occlusions. They can also come from the motion flex-

ibility limitation imposed by nonholonomic system or affected by the controllers from

other tasks.

Therefore, when we consider visual servoing based navigation of a mobile robot,

three critical issues should be taken into account: (1) Maneuvering the mobile robot

to a desired pose while considering nonholonomic constraints imposed by the robot

kinematics; (2) Combining visual servo controller with other tasks, especially the tasks

of other sensors such as laser range finder. (3) Visibility of the visual features during

servoing, namely field-of-view constraints and visual occlusions. Visibility is more crit-

ical when visual servoing is used to enable a mobile robot with a fixed pinhole camera.

In this chapter, we will discuss these issues of control a differential drive mobile robot

with respect to a goal image using visual seroving while executing collision avoidance

task. The visual servo control is based on homography relationship as described in

Chapter 1. In particular, we consider the case when the robot avoids the obstacles, the

camera could lose its target due to field-of-view constraints and the motion flexibility

limitation, which makes visual servoing fail. To handle this, we design strategies by

estimating the homography relationship.

The rest of this chapter is organized as follows. Section 3.2 gives an overview the

literatures of visual servoing. Section 3.4 presents the visual servoing methods for

mobile robots with nonholonomic constraints. Section 3.5 discuss the strategies using

visual servoing with complete target loss during collision avoidance. Section 3.6 shows

the advantages of using the spherical projection model. Finally, Section 3.7 gives the

main conclusions of this chapter.

3.2 State of the Art

Visual servoing designs motion controllers based on visual information using computer

vision methods. Visual servoing was initially applied to control manipulators. Vision-

based robot control can be classified, depending on the error used to compute the

control law, into three groups: position-based, image-based, and hybrid. In a position-
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based control system, the error is computed in the 3-D Cartesian space [2] [162] [99]

[56] (for this reason, this approach can be called 3-D visual servoing). The position

error can be computed using or not the model of the target. If the model of the target

is used, we call it model-based 3-D visual servoing. Otherwise, we call it model-free 3-D

visual servoing [6] [65]. The position-based visual servoing directly controls the camera

trajectory in Cartesian space, therefore it can generate nice behaviors. However, the

image features used in the pose estimation for the control law may leave the image,

since there is no control in the image. This can lead to servoing failure. Moreover, it

suffers from the calibration errors of the camera and the errors in the 3-D model of the

target. In an image-based control system, the error is computed in the 2-D image space

(for this reason, this approach can be called 2-D visual servoing) [63] [42]. It is robust

to the robot calibration errors [43] and other errors from the system, and is a model-free

approach. However, the system is coupled and non-linear, which brings the convergence

analysis difficult. In an hybrid control system, the error is composed of information

in the 2-D image space and in the 3-D space. For example, in [96] a hybrid approach

which is called 2 1/2 D visual servoing is proposed. Hybrid approaches can avoid

the drawbacks of both the position-based and image-based approaches. Compared to

position-based visual servoing, they have the control in the image which can remain the

target in the camera field of view. And they simplify the camera pose estimation by

estimating partial camera displacement from the current to the desired camera poses

without using the target model. Compared to image-based visual servoing, hybrid

approaches design a decoupled control law, and thus ensure the convergence of the

control law in the whole task space. For more details see [24] [25] for a comprehensive

review of state-of-the-art methods, an extensive bibliography and evaluations of each

method.

Visual servoing has been extended to mobile robots in many works, for example, by

adding extra degree of freedom provided by a hand-eye system [152]. Some works use

visual servoing to follow a visual path [100] [20] [133] [9] [141] [38]. Others use visual

servoing to position the robot to a desired configuration [98] [10] [86]. Positioning task

is more difficult than visual path following task due to the nonholonomic constraints.

In the literature [98] [10], epipolar geometry is used to accomplish desired configuration

alignment for a nonholonomic mobile robot.

However, all these methods have not take into account obstacle avoidance and the

visibility problem of visual targets (or visual features). When a mobile robot uses vision-

based control working in an unknown and cluttered environment, which is usually in the

presence of obstacles, it is necessary not only to preserve the visual features visibility
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during the visual servoing task but also to prevent the mobile robot from collision with

the obstacles. Hence, a second task is needed to ensure collision free. In order to

combine the vision-based controller with the obstacle avoidance controller, redundancy

is used in the literature [51] [27]. In these works, redundancy enable reactive obstacle

avoidance without requiring a model of the environment. A robot system is redundant

when it has more DOFs than those required for the primary task, so that a secondary

task can also be executed simultaneously. In the literature [30], visual navigation and

collision avoidance are achieved simultaneously. The camera pan angle is actuated to

maintain scene visibility during the collision avoidance. However, this kind of methods

normally requires an actuated camera system, which is able to move independently

from the robot base [125].

The visibility requires that a minimum number of visual features must remain in

the camera field of view (FOV) during the servoing [57]. If these features are lost,

visual servoing will fail. Feature loss can be caused by occlusion or by the control

generated from other tasks such as obstacle avoidance. Earlier methods, who deal with

this problem, are dedicated to avoiding occlusions and loss by preserving all visual

features or the whole object visible during the entire execution of the visual servoing

task [12] [31] [103] [104] [102] [151]. These methods are dedicated to manipulator arms

with 6 DOFs, and they benefit from redundancy. In case of mobile robots, Folio et al.

propose in [50] a method to take into account both visibility and collision avoidance.

Central catadioptric camera systems are now widely used in application of visual

servoing for increasing the field of view of camera systems. They combine mirrors with

a conventional imaging system. Contrary to keeping visibility of all the visual features,

a first approach in [57] allows the changes in visibility of the visual features during

the servoing. This method is limited to partial changes of visibility. If the appearing

visual features are less than a required minimum number or totally loss, the method

will also fail. Most of these methods require an actuated camera or an omnidirectional

camera systems, and they are dedicated to preserve the image features in the cam-

era field of view or select the visible features. In [85], a homography-based switching

control scheme is designed. Three path classes are defined: rotations, straight-line seg-

ments, and logarithmic spirals. The control laws as well as switching conditions are

defined directly in terms of the entries of homography matrices rather than decompos-

ing the homography to compute the pose parameters. The experimental results have

shown that the proposed switching scheme can handle nonholonomic and field-of-view

constraints.

However, most of these methods do not take into account the case of the target
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complete loss. Since, when the mobile robot circumnavigates the obstacles, the target

can be lost due to the motion flexibility limitation of the robot-camera system and

the field-of-view constraints of the camera system. In order to handle the total loss of

visual features, a method is introduced by Folio et al. in [49]. The method benefits

from a visual data estimation algorithm. It uses the previous visual measurements

and the control inputs to estimate the current visual features when they are lost. Our

work is similar to [49], where visual feature estimation enables the ability of target loss.

However, there are various differences with that work. First, Folio et al. use point-like

target while we use natural visual target. Second, Folio et al. proposed method is

subjected to estimation errors which may increase quickly. Moreover, Folio et al. used

a perspective camera model. However, this model is not adapted when a field of view

is greater than 180◦. Since in Equation 1.24, we suppose that the optical center of the

camera never passes through the plane. However, that case may happen during the

obstacle avoidance task. Therefore, the planar homography constraint is not suitable.

In order to solve this problem, we have adopted an spherical image representation.

3.3 Robot-Vision System Configuration

We consider a two wheeled differential drive mobile robot equipped with a fixed pinhole

camera, a 2D laser range finder and odometry sensor.

We consider the motion of the mobile robot in the inertial frame, namely world

frame FW . Let FR be the frame attached to the mobile robot. The origin R will be

termed reference point of the mobile robot. The x-axis is aligned with the heading of

the robot. The z-axis is perpendicular to the motion plane. For more details about the

mobile robot configuration definition see section 2.4.1.

We consider a perspective camera fixed on the mobile robot. Let FC be the camera

frame. The origin C will be termed optical center, and the z-axis is the optical axis

and is parallel to the x axis of the mobile robot frame. A pinhole camera model

is considered as shown in Figure 3.1(b). Let P be a 3-D point with homogeneous

coordinates X = [X Y Z 1]⊤ with respect to FC . The point P is projected into the

normalized image plane to a point of homogeneous coordinates x = [x y 1]⊤. The

image point m = [u, v, 1] is the homogeneous coordinates given in pixel as m = Kx,

where K is the camera intrinsic matrix, obtained after calibration.

Let vc = [υx υy υz ωx ωy ωz]
⊤ be the camera kinematic screw, and vr = [υ ω]⊤ be
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the control input of the mobile robot. For such configuration, they are related as

vc = Jvr (3.1)

with

J =
[
Jυ Jω

]
=

[
0 0 1 0 0 0

−tx 0 −ty 0 −1 0

]⊤

(3.2)

where Jυ and Jω include the first and the second columns of J respectively. The

parameters tx and ty are the displacements between the robot frame and the camera

frame.

(a) Model of non-holonomic wheeled mobile
robot with camera

(b) Pinhole camera model

Figure 3.1: System modeling

3.4 Visual Servoing for Mobile Robot

3.4.1 General Formulation of Visual Servoing

Visual servoing refers to control the motion of a robot using vision data. The vision

data may be acquired from a camera in different configurations. The camera can be

carried by the robot observing the target or fixed in the world observing both the

target and the robot. We consider only the former one, which is referred to eye-in-hand

configuration, since it is typically used in mobile robot navigation.

Vision-based control schemes can be generally described as minimizing an error

e(t), which is defined by

e(t) = s(m(t),a)− s∗, (3.3)
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with s is the current selected visual feature vector and s∗ is the desired one. As we

will see further, there are different ways to select s. Whatever the choice of s, they

are computed from image measurements m(t). The parameter a can be the camera

intrinsic parameters and/or 3-D model of objects. Thus, visual feature s can be noted

as function as s(m(t),a). After given a desired visual feature vector s∗, the error e(t)

can be calculated as in equation (3.3).

We consider here the case of controlling the six degrees of freedom (6 DOF), through

the velocity vc(υ,ω), where υ is the instantaneous linear velocities of the camera frame,

and ω is the instantaneous angular velocities. Since the motion of the camera causes

the motion of the observed visual features s, a relationship between the time variation

of s and the camera velocity vc can be established as

ṡ = Lsvc. (3.4)

with Ls ∈ R
k×6 is termed the interaction matrix related to s, k is the dimensions of

s. It encodes the relationship between the motion of visual features and the motion

of camera. Considering a motionless target and a fixed desired configuration, the time

variation of e is

ė = Lsvc. (3.5)

The velocity controller vc can be thus obtained using equation (3.5)

vc = L +
s ė, (3.6)

where L +
s ∈ R

6×k is the Moore-Penrose pseudoinverse of Ls (L +
s = (L ⊤

s Ls)
−1L ⊤

s ).

To ensure a solution of the linear system, Ls should be of full rank 6.

Equation (3.6) is the general form of control law namely used in VS. Since e is

defined in the space of features s, equation (3.6) indicates that the camera motion is

controlled in the feature space. Some special motions of s can be considered. This

refers to the works of path planning in the feature space or feature-based trajectory

generation [46] [102] [104]. A simple and straightforward approach is using a linear

controller in the feature space, given by

ṡ = λ(s∗ − s). (3.7)

Using this controller, the motion of s is expected to move along a straight line from

the initial state of s to the desired one s∗. Considering equation (3.3), the control law

71



3.4. visual servoing

in equation (3.6) can be rewritten as

vc = −λL +
s e. (3.8)

Note that an estimation of Ls or L +
s should be used. As we will see further, some

elements of Ls include the 3-D parameters that are not available directly from the

image measurements. We denote the approximation by L̂ +
e . Then, the control law in

real setup (or experiment) is given by

vc = −λL̂ +
s e = −λL̂ +

s (s− s∗). (3.9)

Equation (3.9) is the basic implementation of most visual servoing control. When

coming to a specific visual servoing task, we need to accomplish selecting a visual

feature s, deducing the interaction matrix Ls with respect to s, and then estimating

both e and Ls using computer vision data in order to calculate velocity controller vc.

Features vector s can be designed in any space, typically in the image space, the 3-D

Cartesian space, or both. In addition, they can consist of any information such as point,

line, pose or even combination of them. These are the rule, by which visual servoing is

commonly classified. Depending on the selected feature space, visual servoing schemes

are commonly classified into image-based visual servoing(IBVS), position-based visual

servoing(PBVS), and hybrid visual servoing(HVS).

In the following, we will introduce the three classes of visual servoing approaches:

IBVS, PBVS, and hybrid approach. For each class of approaches, we first give the

formulation for 6 DOF camera system. Then we explain how adapt them to control

mobile robots.

3.4.2 Image-Based Visual Servoing (IBVS)

In the camera imaging formation, the image of the target is a function of the relative

pose TC
T of the target with respect to the camera. The motion of camera causes the

motion in the image, which is known as optical flow. In other words, the features in

the image space imply the relative pose of the target and the camera, and the optical

flow involves the relative motion between them. It is possible to control the Cartesian

motion of the camera through directly the image features for positioning tasks. This

is referred to IBVS, where the visual features are defined on the image plane and the

control task is performed directly in the image plane.

We consider an image point feature with 2-D normalized coordinates p = (x, y)
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as the visual features. The image measurements m of p are the coordinates of the

image point in pixel. p is calculated by transforming the point coordinates from pixel

coordinates to normalized image coordinates with the camera intrinsic parameters. The

camera can be calibrated using for example the calibration toolbox [19].

The interaction matrix Lp related to the point feature p is given in [23] by

Lp =

[
− 1

Z
0 x

Z
xy −(1 + x2) y

0 − 1
Z

y
Z

1 + y2 −xy −x

]
(3.10)

Note that Lp includes the depth Z of the 3-D point corresponding to p. It is possible to

use an approximation of Z, since IBVS is remarkably tolerant to errors of Z in practice.

A number of approaches have been proposed to approximate Lp. The depth Z can be

simply given as a constant value, or can be estimated using computer vision techniques

[6].

Here we formulate IBVS for mobile robots taking into account the robot-vision

jacobian given in equation (3.1), which linking the camera velocity to the one of the

mobile robot, we obtain

ṡ = Ls,υ υ + Ls,ω ω (3.11)

where Ls,υ = LsJυ and Ls,ω = LsJω. For a desired linear velocity υ, the angular

velocity can be obtained as

ω = −L+
s,ω(λe+ Ls,υ υ) (3.12)

Note that the linear velocity υ can be assigned to a constant value or computed from

a designed velocity profile.

In the real experiments, the interaction matrix can be different depending on the

selections of features and the approximation of the depth Z. Here we give some desig-

nations.

Image jacobian points controller

In the image jacobian points controller (IJP), the visual features are the current image

coordinates of the image point. The interaction matrices Ls,υ and Ls,ω are given as

Ls,υ =

[
x

Ẑ
y

Ẑ

]
Ls,ω =

[
− tx

Ẑ
− xty

Ẑ
+ 1 + x2

xy

]
(3.13)

where Ẑ is the estimation of the depth Z.
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Image jacobian points controller with uniform depths

The image jacobian points controller with uniform depths (IJPU) uses uniform depths

instead of estimations of Z as in IJP. For example, the depths of all point features can

be set to a constant Z

Zi = Z ∀i = 1, . . . , n. (3.14)

Then we have the following interaction matrix

Ls,υ =

[
x

Z
y

Z

]
Ls,ω =

[
− tx

Z
− xty

Z
+ 1 + x2

xy

]
(3.15)

Image jacobian centroid controller

Image jacobian centroid controller (IJC) uses the current coordinates of the centroid

of the n points as the visual features, rather than directly the coordinates of points as

IJP. The visual feature is described thus by

s =

[
xg

yg

]
=

1

n

n∑

i=1

[
xi

yi

]
∈ R

2. (3.16)

The error to be minimized is given by

e =

[
xg − x∗g

yg − y∗g

]
∈ R

2. (3.17)

and the corresponding interaction matrix is given by

LC,υ =
1

n

n∑

i=1

[
xi

Zi
yi
Zi

]
LC,ω =

1

n

n∑

i=1

[
− tx

Zi
− xity

Zi
+ 1 + x2i

xiyi

]
(3.18)

Image jacobian centroid controller with uniform depths

In the same way as in IJPU, image jacobian centroid controller with uniform depths

(IJCU) uses uniform depths instead of estimations Zi = Z ∀i = 1, . . . , n.

3.4.3 Position-Based Visual Servoing (PBVS)

PBVS uses observed visual features to estimate the pose T̂C
T of the target with respect

to the camera. There are varied pose estimation algorithms. A typically way is the use

of observed visual features with the known information of camera calibration and the

target model. With a given desired pose TC∗

T , an error is calculated in the workspace,
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which is commonly SE(3). For example, as shown in Figure 3.2 the error is ∆T =

TC
C∗ = T̂C

T ( TC∗

T )
−1. The control is then performed in the workspace in order to

bring ∆T to identity. Hence, the camera is positioned toward the desired pose TC∗

O

and the robot moves to the expected pose.

Figure 3.2: The illustration of PBVS.

Position-based visual servoing select the visual features in the 3-D space. The visual

features s can be defined to be [t θu]⊤, where t is the translation vector and θu is the

orientation vector. The corresponding interaction matrix is given by

Le =

[
R 0

0 Lθu

]
. (3.19)

The control law is given by {
υc = −λR⊤t

ωc = −λθu
. (3.20)

To control the angular velocity, a direct way is to use a heading controller to align

the camera to the centroid of the visual object. The control error is defined by an

angular error ∆θ = θ − θ∗. Then, the control law has the following form

ω = −λ∆θ. (3.21)

Note that only the rotation matrix R is enough to derive the angular error.
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3.4.4 2D 1/2 Visual Servoing (HVS)

Hybrid visual servoing method [97] calculates the control error partially in image space

and partially in Cartesian space. It can avoid some of the limitations of the IBVS and

the PBVS.

The visual feature can be defined as [97]

s =
[
p⊤
e u⊤θ

]⊤
. (3.22)

where pe is the extended image coordinates as follows

pe =
[
x y log( Z

d∗
)
]⊤

. (3.23)

Here pe is assigned to a selected point, for example the center moment of the a set of

points.

The interaction matrix is

L =

[
Lυ Lω

03 Lθu

]
, (3.24)

with

Lυ = − 1

Z∗ρZ




−1 0 x

0 −1 y

0 0 −1


 , (3.25)

and

Lω =




xy −(1 + x2) y

1 + y2 −xy −x

−y x 0


 , (3.26)

The interaction matrix given in equation (3.24) has the triangular form. The hybrid vi-

sual servo scheme decouples the rotational motions from the translational ones. Hence,

the scheme exhibits decoupling properties.

3.5 Visual Servoing Based Navigation with Complete Tar-

get Loss

3.5.1 Problem Statement

We consider a mobile robot equipped with a fixed pin-hole camera and a forward-

looking laser range finder. The desired pose of the robot is defined by a natural image
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of the observed planar target previously taken at the goal pose. Visual servoing is used

to control the robot from an initial pose to the desired one. During the visual servoing

task, the current image at time t is captured at the current pose, which is related to

the desired pose by a rotation matrix R(t) and translation vector t(t). The current

and desired images are related by a homography matrix HN ∈ R
3×3 as described in

Section 1.2.3, and the vision-based controller we used is based on this relationship.

By supposing that the planar visual target is fixed, only rotation matrix R(t) and

translation vector t(t) change during the robot motion, while both the normal vector

n and the distance d are constant. Taking into account the planar motion and the

vertical planar target, the homography has the form given in equation (1.40).

When the robot executes vision-based navigation in an unknown and cluttered

environment, it is necessary not only to preserve the image features visibility during

the visual servoing execution but also to prevent the mobile robot from collision with

the obstacles as described in Chapter 2. However, when the robot circumnavigates the

obstacles, the target can be lost due to the fixed camera-robot configuration and the

field-of-view constraints of the camera system (see Figure 3.3). Visual servoing will

thus fail. This is a challenging problem in image-based visual servoing and appearance-

based navigation. The robot can not move without the information of the visual target.

Although some of the problems can be solved using omnidirectional vision enlarging

the field of view or actuated cameras preserving the visual features, it still has difficulty

to the entire lost case.

In this section, we focus on the problem of visual target loss in the camera field

of view, but it can adapted to general target lost situations, for example, occlusion.

Inspired by path integration and visual landmark reaction in animal navigation, we

propose a strategy to deal with the loss of visual features by taking advantage of the

odometric data sensing.

In order to solve the problem, we consider the animal navigation ability. Many an-

imals have strong navigation abilities of path integration and visual landmark reaction

[112]. Path integration refers to the ability that an animal can keep a continuously

updated record of its current direction and distance from some reference point as they

move away from that place. With such ability, the animal can reach other places of

which it knows the path integration coordinates. The precision of reaching the places

depends on the accuracy of its position estimation through path integration. Etienne

et al. [44] proved that the inevitable errors in path integration can be reduced through

information supplied by landmarks. And they show that hamsters use visual landmarks

to reset their path integrator.
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Figure 3.3: Illustration of visual servoing with complete target loss.

Inspired by animal navigation, the invisible visual targets can be recovered by path

integration during navigation in order to ensure visual servoing task or reacquire the

real target. Path integration can be accomplished by motion estimation methods. The

error of integration can be reduced through visual landmark reaction by an active

sensing process, and visual tracking is reset. This is the basic idea of our strategy to

deal with the problem of target loss during navigation. A similar work of using feature

estimation to handle feature loss during visual servoing control is described in [49]. Our

work has some differences which will be introduced in the sequel.

This section is organized as follows. Section 3.5.2 introduces the structure of our

navigation system. Section 3.5.3 and Section 3.5.4 describe the behavior designation

and motion generation components of the navigation system. Section 3.5.5 gives our

strategy to handle target complete loss. Section 3.5.6 shows the experimental results.

3.5.2 Navigation System

The system of our vision-based navigation can be decomposed into four major blocks

(see Figure 3.4):

– Behavior Generation: This block generates a suitable behavior for the Motion

Generation and Perception components in order to select a predefined task for
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those two components to solve. It works as a state machine, which decomposes

a navigation task into several basic behaviors (see Figure 3.5). These basic be-

haviors include visual target tracking and servoing, collision detection, collision

avoidance, target re-acquisition, and robot stop. The state machine will select a

task due to the current perception results and the previous behavior.

– Motion Generation: This component consists of several controllers, including

goal-driven controller based on visual servoing, collision avoidance controller based

on laser range finder and target re-acquisition controller. The visual servoing

controller drives the mobile robot toward the desired configuration. The colli-

sion avoidance controller ensures the motion safety in the presence of obstacles.

The target re-acquisition controller can align the robot heading to the lost tar-

get if necessary. Each controller computes a result from the current perception

information. The results from each controller are then combined to drive the

mobile robot achieving a desired configuration while ensuring collision free. The

combination is computed with the given behavior.

– Perception & Estimation: The Perception and Estimation component processes

the data from different sensors in order to detect and track the visual landmarks,

and detect approaching obstacles. The processing results are then used by other

components. The visual tracking results is used for visual servoing control. Col-

lision detection and obstacle modeling is used to invoke collision avoidance task.

– Sensors & Actuators: The Sensor & Actuators component provides a way to in-

teract with the environment. Our mobile robot system includes a stereo vision

system, a laser range finder, odometric sensors, and actuators. We use mono vi-

sion to detect and track visual target. The odometry does not provide sufficiently

accurate motion measurements, so we use the stereo vision system to estimate

the robot motion. A forward-looking range finder is used to detect collision and

modeling the obstacles.

3.5.3 Behavior Generation Algorithm

In the navigation system (see Figure 3.4), the Target Detection & Tracking is described

in Chapter 1. Collision Detection & Obstacle Modeling and Collision Avoidance are

described in Chapter 2. Here we give the algorithm of Behavior Generation. The rest

of parts of our navigation system will be given in the further.
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Figure 3.4: Structure of navigation system.

The Behavior Generation component is designed based on the requirements to ac-

complish the navigation task, which is moving towards a desired configuration while

avoiding obstacles. We consider a positioning task. In our designation (see Figure

3.5), six basic behaviors are object recognition behavior, goal-driven behavior, motion

prediction behavior, collision avoidance behavior, visual data estimation behavior and

target re-acquisition behavior. The motion prediction and collision detection behaviors

work during the entire navigation process, since safety is the most important. The

object recognition behavior always comes at the beginning of the navigation task. If

the object is recognized, the visual tracking is initialized and the goal driven behavior

is executed using visual servoing control. If the potential collision is detected, collision

avoidance and vision-based estimation behaviors are invoked. The mobile robot cir-

cumnavigates the detected obstacle and estimates the target in the image space if lost.

When the obstacle is avoided, target re-acquisition behavior is executed to align the

robot heading to the target, then the object recognition is restarted.

3.5.4 Motion Generation Algorithm

The motion generation component is dedicated to compute the linear and angular

velocities for the motion. There are three controllers: visual servoing controller, collision
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Figure 3.5: Behavior designation for positioning task.

avoidance controller and object re-acquisition controller. The visual servoing controller

is given in Section 3.4. The collision avoidance controller is introduced in Chapter 2.

Here we give the target re-acquisition controller.

The target re-acquisition controller is a heading controller, which can rotate the

robot facing the center of the target in order to bring this end in the field of view. Let

∆θ be the angular error. The heading controller is thus

ωh = −λh∆θ, (3.27)

where λh is a positive gain to be set.

The error ∆θ can be computed using the estimated visual points in the normalized

image plane. The visual data estimation will be introduced in the following section.

The main objective of target re-acquisition is then to move the image projection of the

mass center of the target to the y axis of the normalized image plane (see Figure 3.6).

The mass center (xmc, ymc) of the estimated target can be computed as

{
xmc = m10

m00

ymc = m01

m00

(3.28)

where mji is the spatial moments computed as mij =
∑

x,y x
iyj . Since the focal length

of the normalized image plane equals one, the angular error is defined as

∆θ = arctan(−xmc). (3.29)
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where xmc is illustrated in Figure 3.6.

The heading controller is terminated when the distance of the mass center to the y

axis of the normalized image plane less than a given threshold | − xmc| < thrHC .

Figure 3.6: Illustration of target reacquisition error.

3.5.5 Visual Data Estimation in Case of Target Loss

3.5.5.1 Using a Known Target

We suppose that the target information is remembered before loss and the motion of

the camera is estimated, the lost target can be recovered. A simple case is that the

target is known and the motion of the camera can be obtain directly through the visual

odometry. Using a known target, the pose of the camera with respect to the observed

target can be computed from a set of measurements in one image with the known

camera intrinsic parameters. This is the classical pose estimation problem in computer

vision which can be solved using linear methods [36] or nonlinear methods [87]. The

target pose with respect to the camera is remembered before loss. During the loss,

the remembered target pose and the measured camera motion is used to recovery the

current pose of the target with respect to the camera. Then the 3-D object is projected

onto the current image plane.

3.5.5.2 Using an Unknown Planar Target through Homography Recovery

Our image-based visual servoing is based on homography tracking. If the target is out

of the camera field of view, the homography tracking fails. To solve this problem, we
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Figure 3.7: Lost target recovery using a known target.

propose a strategy taking the advantage of path integration and visual target reaction

recognition.

A planar target observed in two images contents a homography relationship. If

the target is visible in both images with at least four matches or two matches in case

of a mobile robot with constrained motion, the homography can be calculated using

only the corresponding image points. If the homography is known, the target in one

image can be obtained from the other image through the homography transformation.

In case of the target loss in the current image, if we know the target in the reference

image and the homography transformation between these two images, the target can

still be recovered by generating a virtual target in the current image. The recovered

virtual target is then used to continue visual servoing control. The reference image can

be remembered before the target loss. While during the invisibility of the target in

the current image, we recover the homography. In equation (1.21), the transformation

of the camera (R, t) and the structure of the planar target (n, d) are needed. The

strategy is illustrated in Figure 3.8. In the sequel, we will introduce the methods of

computing these parameters.

Camera Motion Estimation

The camera motion can be estimated using stereo vision systems as described in Ap-

pendix B.6 or integrating odometric measurements. When mono vision systems is

considered, the rotation of the camera can be recovered, and only the direction of the

translation is obtained. Without loss of generality, we describe the estimated motion
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Figure 3.8: Homography tracking in case of invisibility

of camera as (R̂, λt̂), where λ = 1 if stereo vision systems or odometry are used.

Planar Structure Estimation from Visual Tracking

When the target is visible, the tracking provides the homography relationship H be-

tween the current camera frame and the previous one. The structure of the planar

target can be calculated by decomposing the homography H, using equation (1.21),

into (RH, tH,n). Note that the translation vector tH is normalized by the distance to

the target plane d as given in equation (1.22). The estimated motion of the camera

can be described as (RH, d tH). The structure of the target is (n, d). The value d is

waited to be assigned using the results from motion estimation. Considering motion

estimation, we have λ t̂ = d tH. Then

d = λ t̂ / tH. (3.30)

If λ is unknown, we assign an arbitrary value. d is assigned correspondingly. The

structure (n, d) is remembered before target loss.

Virtual Target Recovery
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Using the remembered structure of the object (nrem, drem) and the estimated motion

of camera (R̂lost, λt̂lost) during the target lost, the homography can be recovered using

equations (1.21), (1.22), and (3.30)

Hlost = R̂lost +
λt̂lost
drem

n⊤
rem

= R̂lost +
Htremt̂lost

t̂rem
n⊤
rem (3.31)

We can note that the distance d and the scale factor λ are not necessary to recovery the

homographyHlost . All that is needed are the estimated motion of camera (R̂lost, λt̂lost)

during the target lost, the remembered normal of the planar target, the transformation

from both homography decomposition [45] and the motion estimation in a duration

before the target loss. The interesting conclusion is that even we use mono vision

we can ignore the effect of scale factor and the distance indeed is offset. Figure 3.9

illustrates the results of lost target recovery. The four color points are the four corner

points of the tracked object. Figures 3.9(b) to 3.9(h) are the tracking results using

estimation. Figures 3.9(d) to 3.9(f) show that the proposed strategy can handle the

lost target.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.9: Unknown target recovery by estimating homography.
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3.5.5.3 Navigation Using Straight Line

Instead of retaining the visual servoing control using the estimated feature, another

efficient strategy for navigation motion prediction is to follow the straight line which

directs the target direction. As shown in Figure 3.10, a linear path can be defined using

the retained direction. A basic control law ωvirtual (using [136]) for linear path following

can thus be designed during collision avoidance task since the motion is estimated

between the current and collision avoidance activation times, thanks to the odometric

data. This control law aims to correct the lateral and the angular deviations (dl, αl) with

respect to the linear path. In our case, this control law is virtual since it is never applied

to control the mobile robot, and only used as a condition to decide when the collision

avoidance task can be deactivated. Indeed, the condition is based on a comparison

between the angular velocities of both controllers (virtual and collision avoidance). If

|ωcoll| > |ωvirtual| and sign(ωcoll) = sign(ωvirtual), then deactivate collision avoidance;

otherwise, continue collision avoidance.

Figure 3.10: Linear path following during target loss

3.5.6 Experimental Results

We have implemented the above methods on our mobile robot platform named Lina (see

Figure 3.11). Lina mobile robot is equipped with various exteroceptive and propriocep-

86



3.4. visual servoing

tive sensors such as odometry, laser range finder, two ACTi IP cameras of resolution

of 640× 480 where only one camera (left camera) is used in this experiment. All data

processing is done on a deported PC. Controls and data sensing are respectively sent

and received to the robot platform through a local network (wired or wireless). The

mobile robot is driven towards a goal represented in the image space by a natural im-

age (a poster of size 55.8 × 73.5 cm). The four corner points of the target image are

selected as visual features to build the visual servoing control. We use box-like objects

as obstacles. They are placed between the initial and desired positions of the mobile

robot.

Figure 3.11: Mobile robot Lina

Figure 3.12 shows the navigation steps where the different positions are given in red

circles and numbers (1 to 5). The trajectory of the mobile robot is drawn in blue color.

Obstacles detected by the laser range finder are given in black color. We suppose that

the target is visible by the camera at the starting position. First, the target is detected

by matching the current image with the reference one (acquired at the desired position).

Then, the template based tracking using the ESM tracking technique, is initialized (at

position 1). The mobile robot starts to reach the goal through the visual servoing

control scheme. During servoing, collision avoidance is considered in the mobile robot

control when obstacles are detected in the path towards the goal (at position 2). During

the obstacle avoidance (from position 2 to 3), the mobile robot position is recovered
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using the odometric data, and the reference plane parameters (the normal vector of the

reference plane and its distance with respect to the camera frame) are estimated. When

the obstacle is totally avoided (at position 3), the mobile robot is oriented towards the

target (position 4) and then the visual servoing is restarted to reach the goal (position

5).

Figure 3.13 shows images and laser data at different steps (1 to 5) as described

in Figure 3.12. A video of the real experiment is available at http://aramis.iup.

univ-evry.fr:8080/~hadj-abdelkader/Videos/Wenhao/video_MMAR2013.wmv.

Figure 3.12: Vision-based navigation

In summary a solution for mobile robot navigation in indoor environments has been

presented. Vision based navigation and laser range finder based obstacle avoidance have

been used to reach a desired position of the mobile robot safely. Visual target loss while

obstacle avoidance, has been solved by exploiting the visual odometry based motion

estimation and the homography relationship.

3.6 Spherical Image-Based Visual Servoing (SIBVS)

3.6.1 Why Spherical Projection

The planar perspective projection we used is the standard approach to define per-

spective cameras, which considers planar imaging surfaces. However, the perspective
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(1)

(2)

(3)

(4)

(5)

Figure 3.13: Sensor data
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imaging model has mainly two disadvantages as illustrated in Figure 3.14. First, this

model can not be adapted to the situations in which the field of view is greater than

180◦, and then the visual object comes to the backward of the image plane. As illus-

trated in Figure 3.14(a), the 3-D points P1 and P2 are projected onto the same image

point p. The projection will be ambiguous for the IBVS. Second, an infinity control

input will be generated for IBVS when the projection of the visual feature is to be

located at infinity on the image plane. As illustrated in Figure 3.14(b), a 3-D point P

projects at infinity when its depth is near to zero. In order to solve these problems,

we adopt an alternative projection model, named unified projection model. This is a

general model as motioned in [48]. The unified spherical projection model can distin-

guish the projections of the 3-D points P1 and P2 as ps1 and ps2 . It can also handle

the infinity projection on the unit sphere. In the following, we will discuss our solution

using spherical image model.

(a) Ambiguity in perspective projection. (b) Infinity in perspective projection.

Figure 3.14: The illustration of the problems for the perspective imaging model.

3.6.2 Spherical Projection Formulation

Spherical model Spherical projection model considers sphere imaging surfaces. It

is well adapted to wide angle views, even a field of view greater than 180◦.

Let P = (X,Y, Z) the coordinates of a 3-D point, represented in the frame attached

to the spherical image. P is projected onto the surface of the unit sphere at point
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ps = (x, y, z) by a ray passing through the center of the sphere





x = X
R

y = Y
R

z = Z
R

. (3.32)

where R =
√
X2 + Y 2 + Z2 is the distance from the origin of the sphere to the 3-D

point P.

An alternative coordinate system is the spherical coordinate (r, θ, ϕ). As shown in

Figure 3.15, r = 1 is the radial distance of ps from a the origin of the coordinates.

θ ∈ [0, π] is the polar angle, and ϕ ∈ [−π, π] is the azimuthal angle.

Figure 3.15: Spherical coordinate definition.

The relationships between these two coordinate systems are





ρ =
√

x2 + y2,

θ = arctan ρ
z
, θ ∈ [0, π]

ϕ = arctan y
x
, ϕ ∈ [−π, π]

. (3.33)

Perspective and spherical projection transformation Spherical projection model

projects a 3-D pointP(X,Y, Z) onto the unit sphere instead of projecting onto the plane

as perspective projection model. Let the point p(x, y, 1) be the perspective projection

of the 3-D point, and ps(xs, ys, zs) be its spherical projection. The spherical coordinates
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ps can be computed as 



h =
√
x2 + y2 + 1

xs = x
h

ys = y
h

zs = 1
h

. (3.34)

Figure 3.16: The convention spherical image coordinate.

In order to use spherical image based visual servoing, here we introduce spherical

image interaction matrix of point as given in [32]

Lsa =

[
− cosϕ cos θ

R
− sinϕ cos θ

R
sin θ
R

sinϕ − cosϕ 0
sinϕ
R sin θ

− cosϕ
R sin θ

0 cosϕ cos θ
sin θ

sinϕ cos θ
sin θ

−1

]
(3.35)

The homography for spherical imaging has the same form as the planar one. The

relationship between two spherical points is given as

ps = λHsp
∗
s. (3.36)

3.6.3 Adjustment of SIBVS

In order to use SIBVS for mobile robots, we test the properties of SIBVS with simula-

tional results in this section. In the simulations, the visual features are four points and

the desired frame are kept to a fixed frame. Figure 3.17 illustrate the four points and

the desired frame in the world frame. The four visual points are located in (−1, 0,−1),

(−1, 0, 1), (1, 0, 1) and (1, 0,−1). The initial camera frame is at (0, 2.5, 0) with orien-
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tation (π/2, 0, π) in roll-pitch-yaw angles.

Figure 3.17: Configuration of visual point and desired frame.

3.6.3.1 Coordinate Selection

We present the simulation results of SIBVS for the cases: pure z-axis translation, pure

z-axis rotation, z-axis rotation and translation, x-axis translation, pure x-axis rotation,

and x-axis rotation and translation (see Appendix C). From the simulation results, we

note that the camera performs unexpected motion for the cases of x-axis translation,

pure x-axis rotation, and x-axis rotation and translation while expected motion for the

cases pure z-axis translation, pure z-axis rotation, z-axis rotation and translation. This

is due to the decoupling of the third and the sixth columns in the interaction matrix

(see equation (3.35)). Considering the robot-camera configuration and the motion

constraints, translation in the xy-plane and rotation in the z-axis direction, different

with the conventional spherical image coordinate system (see Figure 3.16), we change

the coordinate system as illustrated in Figure 3.18. We assign the x-axis of the spherical

model to the camera optical axis. The positive orientation of the y-axis of the camera

frame is assign to the left side and positive orientation of the z-axis of the camera frame

is assign to the upside.

To illustrate the difference between the convention coordinate system and the

changed coordinate, here we give simulational results. The initial frame of the camera

is located at (2, 2.5, 0) with orientation (0, 0, π) in roll-pitch-yaw angles. The simulation

result with the conventional coordinate system is given in Figure 3.19. It shows that

the camera does not generate a nice behavior, especially a big shake at the beginning.

The trajectories of the visual features are not straight lines.
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Figure 3.18: Changed coordinate system of the spherical image.

(a) Camera view. (b) Error. (c) Camera velocities.

Figure 3.19: The simulation results of the conventional spherical image coordinate
system.
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The simulation result with changed coordinate system is given in Figure 3.20. Dif-

ferent with the conventional coordinate system, the velocities are more smooth and

with lower values. The camera has done a desired motion with rotation about z-axis

and translation in the x- and y- axes directions. The trajectories of the visual features

are approximately straight lines and the error approximately performs an exponential

decoupled decrease.

(a) Camera view. (b) Error. (c) Camera velocities.

Figure 3.20: The simulation results of the changed spherical image coordinate system.

3.6.3.2 Symmetric versus Nonsymmetric of Visual Point Position

In all the simulation we use the four visual points which are symmetric position around

coordinate axes. In the real experiments, it is not always sure in that case. We test the

difference between using the visual points in symmetric and nonsymmetric position.

The simulation of Figure 3.20 changes the position of the four visual points to be

nonsymmetric. Two conditions have been tested. One simulation only moves the four

visual point along z-axis to (−1, 0, 1), (−1, 0, 3), (1, 0, 3) and (1, 0, 1). The result is

given in Figure 3.21. It is shown that the camera has done an unwanted translational

motion in the z-axis direction and unwanted rotational motion about x- and y-axes

directions. The other set the four points in arbitrary positions such as (2, 0, 1), (1, 0, 3),

(−2, 0, 2) and (−1, 0,−1). The result is given in Figure 3.22. Compared Figure 3.21 and

3.22 with 3.20, the nonsymmetric of visual point position leads to unexpected camera

motion.

In order to handle the unexpected motion in Figure 3.21 and Figure 3.22, instead

of using the symmetric positions of the visual points, we can also constraint the motion

in the xy plane, and rotate along z axis. The velocity v has the form v = (υx, υy, ωz).

For the interaction matrix, we keep the items related to translation along xy axis and
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(a) Camera view. (b) Error. (c) Camera velocities.

Figure 3.21: A general initial configuration using modified coordinates and nonsym-
metric position of visual features with drift.

(a) Camera view. (b) Error. (c) Camera velocities.

Figure 3.22: A general initial configuration using modified coordinates and arbitrary
nonsymmetric position of visual features.
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rotation along z.

Lsa =

[
− cosϕ cos θ

R
− sinϕ cos θ

R
0

sinϕ
R sin θ

− cosϕ
R sin θ

−1

]
(3.37)

The simulation result is shown in Figure 3.23. The result is

(a) Camera view. (b) Error vector. (c) Camera velocities.

Figure 3.23: Redefine camera coordinates using spherical IBVS with respect to non-
symmetric features. The motion is constrained in xy plane and rotation along z axis.

In this section, the basic performances of SIBVS are discussed. We found that the

selection of camera coordinates and the position of the visual feature can effect the

result. In order to have a good performance, we change the selection of the camera

coordinates. We also found that using the visual feature in symmetric position performs

difference with using the nonsymmetric one. We see that using the symmetric visual

features improves the behavior of the camera motion. Hence, in the follows, we use

the symmetric visual features for simulations. If in the real case the visual features

are nonsymmetric, it is possible to transform them into the symmetric visual features

using the homography transformation.

3.6.4 Spherical Visual Servoing for Mobile Robot

In the last section we have evaluated the basic performance for SIBVS, and discussed

the selection of coordinate system. In this section, we will adapt the spherical visual

servoing to the mobile robot with nonholonomic constraints and the target loss.

3.6.4.1 System Modeling

Using the selected camera coordinate for spherical model, the robot-camera system is

presented in Figure 3.24. For such a configuration, the jacobin matrix J in equation
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Figure 3.24: Robot-camera configuration using the selected spherical image coordinate.

(3.1) is

J =
[
Jυ Jω

]
=

[
1 0 0 0 0 0

−ty tx 0 0 0 1

]⊤

. (3.38)

3.6.4.2 Control Law Using Constant Linear Velocity

We use the same control law as given in equation (3.12) while Ls is replaced by Lsa.

We set υ = 0.3 and λ = 0.1. We stop the camera when the norms of the error vector

begins to increase, since we use the constant linear velocity. The simulation result is

shown in Figure 3.25.

(a) Camera view. (b) Error vector. (c) Camera velocities.

Figure 3.25: SIBVS for mobile robot using constant linear velocity.
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3.6.4.3 Control Law Scaling the Error with Different Values

Instead using constant linear velocity, we can also use different scale for the error

function. For one visual feature, we define

ė =

[
λθ 0

0 λϕ

][
eθ

eϕ

]
, (3.39)

If we note the parameter matrix as Λ, which is a diagonal matrix of λθ and λϕ of

all features, we can write

ė = −Λe. (3.40)

From the relationship

ė = L JC
RvR, (3.41)

the control law is

vR = −(L JC
R)

+Λe. (3.42)

Figure 3.26 illustrates a simulation result of spherical IBVS forming the control law

with different scales. In the simulation (λθ, λϕ) = (0.01, 0.1).

(a) Camera view. (b) Error vector. (c) Camera velocities.

Figure 3.26: SIBVS for mobile robot using control law scaling the error with different
values.

3.6.4.4 Control Law Scaling the Velocity with Different Values

Rather than scaling the control law, we can also scale the velocities. To this aim, the

control law can be written

vR = −
[

λυ 0

0 λω

]
(L JC

R)
+e. (3.43)

99



3.4. visual servoing

Figure 3.27 has illustrated a simulation result of spherical IBVS scaling the velocity

with different values. In the simulation (λυ, λω) = (0.03, 0.1).

(a) Camera view. (b) Error vector. (c) Camera velocities.

Figure 3.27: SIBVS for mobile robot using control law scaling the velocity with different
values.

3.6.4.5 Switching Schemes

In order to optimize the performance, we design a switching scheme. It divides the

positioning task into several steps [98]. Each step uses a controller. The scheme is

to design the rule for multi steps and the switch condition of continuous steps. Our

designation of the behavior is illustrated in Figure 3.28.

Control law design To simplify our design,we first generate four symmetric virtual

features. Those virtual features can be warped to the current image using the same

homography transformation. The proposed control strategy is performed in four steps

as follows:

– Step one: A pure rotation in order to face to the x axis of the desired robot frame.

It means ncnd = 0.

– Step two: A Straight line motion in order to go to the straight backward of the

reference frame.

– Step three: A pure rotation in order to align to the direction of the reference

frame.

– Step four: A straight line motion in order to go the desired frame.

In step one, we select the feature as uθ. We have the relationship

uθ̇ ≃
[
03 I3

]
v. (3.44)
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3.4. visual servoing

We note the uθ along z axis as uzθ. In this step, the desired heading of the robot is

perpendicular face to the x axis of the desired frame. We have the desired uzθ as

θ∗ =

{
π
2 , if tan(tx, ty) < 0

−π
2 , if tan(tx, ty) > 0

(3.45)

The pure rotation control law is thus given by

ω = −λ(θ − θ∗)uz. (3.46)

It is not always needed that the robot runs from step one, for example, the robot is

near to the x axis of the desired frame. So we can give some conditions. If the initial

position of the robot in a defined region represented by a angle σ, the robot executes

the step one. The region is defined by td c in the condition | tan(tx, ty)| < π − σ.

In the second step, the pure translation is accomplished by aligning the center of

the gravity pg of the feature points to the y axis of the current frame. It is equally to

bring the feature ϕg to ϕ∗
g as follows:

ϕ∗
g =

{
−π

2 , if tan(tx, ty) < 0
π
2 , if tan(tx, ty) > 0

(3.47)

The pure translation control is

υ = −λL +
υ et (3.48)

with

Lυ =

[
− cosϕ cos θ

R
− sinϕ cos θ

R
sin θ
R

sinϕ
R sin θ

− cosϕ
R sin θ

0

]
(3.49)

The third step is similar as the first step. It is also a pure rotation control. The

difference is that the desired feature is θ∗ = 0. The forth step can use the control law

as given in equation (3.12). The simulation result is shown in Figure 3.29.

(a) Initial configu-
ration.

(b) Step one. (c) Step two. (d) Step three. (e) Step four.

Figure 3.28: Illustration of the switching scheme in four steps.
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3.4. visual servoing

(a) Camera view. (b) Camera view. (c) Error vector. (d) Camera velocities.

Figure 3.29: Switch scheme using spherical IBVS.

3.6.5 Discussion

There are mainly two reasons to use sphere projection model. First, sphere projection

model has no undesired back forward projection problem. Second, there is no infinity

projection problem on the image plane, which leads to an infinity control input for

visual servoing.

Spherical projection model has many advantages for visual servoing. Firstly, it

enlarges the field of view. Hence, it eliminates the need to explicitly keep features

in the field of view, which is a problem with PBVS, some hybrid schemes, and IBVS

combining with other tasks such as collision avoidance. Secondly, computing the control

law in terms of spherical coordinates can avoid the infinity control input. In the case

of planar projection model, when the feature points are near the image plane, the

imaging point may approach to infinity. Therefore, the control input will be also

closed to infinity, which is unattainable for actual systems. Furthermore, it is a unified

projection model. The information for any other projection models can be projected

onto spherical projection model.

In this section,we have designed different schemes of spherical IBVS. Using constant

linear velocity is hard to have a satisfaction result. The final configuration of the robot

is always differen with the desired one because of the nonholonomic constrain. However,

the scheme using different scales can enhance the flexibility of the system. They still

encounter the problem of parameters selecting. Rather than using a single control

law, the switching scheme can handle the nonholonomic constrain and considering the

desired condition as the same time by using the appropriate switching conditions. But

it is not an uniform control form. Moreover, in each of the designed scheme, we use

the property of symmetric visual features, which can be obtained by any given visual

features and a homography transformation relation.
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3.4. visual servoing

3.7 Conclusions

This chapter presents a solution to target loss and collision free during visual servoing

based navigation in an indoor environment. The proposed strategy remembers the

information as little as possible with a path integration to recover the lost target. It is

shown that interaction between different navigation strategies, especially active sensing,

can reduce navigation error, and may lead to new capacities.

In this section, we suppose that the object is in the field of view before the mobile

robot start navigation task. When the assumption is not met in the real cases, some

strategies can be used such as random moving and searching. The basic idea of the

strategy is not limited to planar visual target. If a 3-D target is choose, essential

matrix could be used instead of homography matrix. The controller to re-acquire the

lost target can be designed based on the error between a point to the related epipolar

line.

Spherical image is more adaptive to the navigation task, which can remove the

ambiguity between the front and the back of the camera in the conventional perspective

camera model.

In the navigation system, the object recognition is not real-time, and hence the robot

has to stop before re-initializing the visual tracking. This makes the system loss the

continuity in the motion. In order to solve this inefficiency, several alternative schemes

can be considered. For example, we can increase the number of ordered key images

in the database used for appearance-based navigation. Then the robust but inefficient

recognition algorithm can be replaced by more efficient algorithms. In addition, we can

consider to use graphics processing unit (GPU) or distributed Computing to have some

performance gain.
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Conclusion and future research

Summary of the Thesis

The final goal of this thesis is to design an autonomous mobile robot which can safely

navigate with the visual landmarks within the indoor environment in present of ob-

stacles. In the work, the robot can detect the planar visual landmark from a large

distance based on local feature matching, and then the landmark is tracked using a

homography-based method. Visual servoing is adopted to control the robot toward the

landmark. During the visual control, we consider the safety constraints imposed by the

environments and the field of view constraints imposed by the camera system, as well

as nonholonomic constraints imposed by the robot kinematics.

In the context of object recognition, the use of local features provided for a large

progress in terms of the robustness, efficiency and quality of results. We experimentally

evaluated the different standard algorithms usually used in this context. Robustness

and real-time performance are hard to be contented at same time. In the landmark

recognition and tracking framework, the landmark can be detected from a large dis-

tance, then the tracking is initialized. It is important for the robot to detect the visual

landmark robustly and accurately. So we adopted SIFT algorithm, which is robust and

has good performance for object detection.

For collision avoidance, we have presented an efficient obstacle detection and repre-

sentation method using 2-D laser range finder. We use line fitting techniques to extract

the polygonal chain to model the obstacle boundary. In the line fitting process, we

analyze the convex and the concave structure of the polygonal chain. We extract the

convex polygonal chain with B-spline interpolation to generate a smooth curve for the

obstacle boundary. We then formulated reactive obstacle avoidance as path following

with respect to the extracted convex curve. The experimental result shows that the

robot can move smoothly without being trapped in the concave part of obstacles.

We have discussed vision-based navigation considering three constraints, including
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3.4. visual servoing

nonholonomic constraints, collision free constraints and field of view constraints. We

principally described our strategies to handle target loss problem during vision-based

navigation. Visual odometry is used to estimate the lost target when the robot avoids

obstacles. However, the perspective projection model encounters difficulty when the

target is in the back forward of the image plane. We extend the proposed homography

based visual servoing to the spherical image. The simulation results show that the

feasibility of using spherical image.

We mainly proposed a strategy for vision-based mobile robot navigation which can

handle the target loss due to the field of view constraints and obstacle avoidance tasks.

In our strategy, the homography relationship is estimated through the visual odometry

measurement and the remembered planar target structure. We originally introduced

spherical imaging model into our framework for the target loss problem, which can

solve the drawback of the perspective projection model. In addition, we proposed

an efficient obstacle detection and representation methods through convex polygonal

chain and B-spline. The representation can provide a smooth modeling of the obstacle

boundary. Furthermore, we proposed a vision framework combining the feature-based

object detection and template-based target tracking, which can track a planar target

from a long distance.

Perspective of the Research Work

For the short-term of future work, we can continue our works as follows. Object recog-

nition is the basic in the appearance-based navigation system. In our experiments,

we aim to sparse landmarks. There may be a large distance between two landmarks.

Therefore, the object recognition is not real-time, which affects the performance of

the whole system. In order to improve the performances, we will shorten the distance

between the landmarks. Moreover, in this thesis, we focus on challenges in each step

of appearance-based navigation. We will extend our work for mobile robot navigation

between a sequence of landmarks in order to navigation the mobile robot moving from

one room to another one. We will consider to introduce the bag-of-the word techniques

for landmark detection in the appearance-based navigation to replace the detection and

tracking frame work used in our system.

In the work of reactive collision avoidance, we use convex polygonal curve and

B-spline to represent the boundary of the obstacle. This representation is combined

with path following techniques for obstacle avoidance. Using the approach, the mobile
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robot performs smooth motion efficiently in the sense of computational effort. The

representation can be also extended to be combined with other obstacle avoidance

approaches. However, the idea to find a model of the obstacle boundary is hard to be

adapted to clustered environments, since it is impossible to find a model for any scene.

We will consider more about model free based reactive collision avoidance approaches,

such as VFH or dynamic window approach for more complicated environments.

In the simulation and experiment of vision-based navigation, we thought that two

works can be continued. First, the trajectories of visual features have special patterns.

It is promising to plan the path for the visual features depending on the motion behav-

iors. To solve the positioning task in the context of visual servoing control, the fuzzy

Logic can be considered in the context of car backing problems.

Over the long term, we aim at designing a complete vision based mobile robot

navigation system. However, our system is not a complete vision-based navigation

system, since laser range finder is used for reactive collision avoidance. We will consider

using vision to solve obstacle detection problem so that all the functions of autonomous

navigation is based on vision. The motion estimation in our system uses stereo vision.

The estimation results are affected by the accuracy of calibration. And the stereo

camera system is needed to be calibrated regularly, since the two cameras are not tightly

fixed. It is interesting to use mono vision instead of stereo vision, since mono vision

is more compact and more common. However, for mono vision, it is a fundamental

problem that the camera moves on pure rotation.

In this thesis, we have discussed the target loss when the robot executes collision

avoidance task. However, the visibility problem can also occur due to occlusion. We

will take account visual occlusion detection in the future work.

In addition, appearance based navigation is limited to the given visual path. Even

thought we introduce visual odometry to estimate the deviation of the robot from the

visual path, the robot also depends on the given visual path to a large extent. While

humans have the reasoning ability based on the memorized knowledge when facing a

new scene. Humans can build the relationship between the known appearance and

the new appearance. Furthermore, humans perform more sematic-based and behavior-

based navigation in the daily life. Humans can get the semantic idea of where they

are and relate to specific behavior. These abilities can also strengthen the navigation

ability for a mobile robot. Therefore, in the future, we aim to strengthen the perception

module. The robot can identify the semantic meaning of the object in the environment

to do some high level tasks as humans. The robot has the ability to build the link

of known appearance and new appearance. In order to accomplish it, we will think
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about machine learning methods to reinforce the ability based on previous navigation

experience.

We are furthermore keen to give them more intelligence using vision to autonomously

navigation in challenging environments. This requires new methods for perception rep-

resentation and decision.
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Appendix A

B-spline Curve

A.1 Cubic B-spline interpolation

Problem statement Suppose that there are n data points D = {D0 . . . Dn−1} and

the objective is to fit them with a B-spline curve S(t) of degree p, where p <= n.

The interpolating spline passes all the data points D. More precisely, the values of

the interpolating spline at the give n data points equal to the data points themselves,

S(Di) = Di. Furthermore, the generated curve satisfies conditions such as continuous

and end point conditions.

Polynomials vs. Splines There are many different methods to interpolate smooth

curves. Among these method, polynomials and splines are widely used. Polynomi-

als are infinitely differentiable. They can approximate smooth curves when a smooth

function is to be approximated locally. However, if a function is to be approximated

on a larger interval and the approximated curve is more complicated, the degree of

the approximating polynomial may have to be chosen unacceptably large. Moreover,

the polynomial interpolation may exhibit oscillatory artifacts, especially at the end

points, which is known as Runge’s phenomenon. The alternative is to use piecewise

polynomials, namely splines, to interpolate curves. Spline subdivide the interval of ap-

proximation into sufficiently small intervals, so that, on each such interval, a polynomial

of relatively low degree can provide a good approximation while avoiding instability due

to Runge’s phenomenon, as shown in figure A.1. Continuity conditions are taken into

account so as to make a smooth approximating spline. Moreover, splines are popular
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curves, especially in computer graphic, because of the simplicity of their construction,

their ease and accuracy of evaluation, and their capacity to approximate complex shapes

through curve fitting and interactive curve design. There are generally two problems

relative to use B-spline: fitting and interpolation. In this section, we focus on the

application of interpolation.

Fig. A.1: Runge’s phenomenon

Bezier curve For the sake of simplicity and convenience, we use Bezier curves as

the segments of B-spline. A Bezier curve is defined by a set of control points P0 . . . Pn.

More formally:

B(t) =
n∑

i=0

bi,n(t)Pi, t ∈ [0, 1] (A.1)

where the polynomials

bi,n(t) =

(
n

i

)
ti(1− t)n−i, i = 0, . . . , n (A.2)

are known as Bernstein basis polynomials of degree n. Bezier curves can be accom-

plished using, for example De Casteljau’s algorithm. If n = 3, a cubic Bzier curve is

expressed as:

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3, t ∈ [0, 1] (A.3)
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The equation A.3 can be expanded the terms in t:

B(t) = (−P0+3P1−3P2+P3)t
3+(3P0−6P1+3P2)t

2+(−3P0+P1)t+P0, t ∈ [0, 1] (A.4)

Equation A.4 is written in matrix form as:

B(t) =
[
t3 t2 t 1

]




−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0







P0

P1

P2

P3




(A.5)

The first derivative is

B′(t) = 3(−P0+3P1−3P2+P3)t
2+2(3P0−6P1+3P2)t+(−3P0+P1), t ∈ [0, 1] (A.6)

The second derivative is

B′′(t) = 6(−P0 + 3P1 − 3P2 + P3)t+ 2(3P0 − 6P1 + 3P2), t ∈ [0, 1] (A.7)

Then we obtain the first derivatives at the end points t = 0 and t = 1 are

B′(0) = 3(P1 −P0)

B′(1) = 3(P3 −P2)
(A.8)

And the second derivatives at the end points are

B′′(0) = 6(P0 − 2P1 +P2)

B′′(1) = 6(P1 − 2P2 +P3)
(A.9)

A cubic spline curve is relaxed if its second derivative is zero at each end point. If

B′′(0) = 0, we have 2P1 = P0+P2, which means P1 is the midpoints of P0P2. A similar

relation holds in case B′′(1) = 0.

B-spline continuity We want to develop C2 splines (the 0th through 2th deriva-

tives are continuous). For each segment, the cubic Bezier curve is already C2 continues.
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Therefore, we only consider the continuity at the joints. First, we consider the case of

two cubic Bezier curves B1(t) with control points P 1
0 , P

1
1 , P

1
2 and P 1

3 and B2(t) with

control points P 2
0 , P

2
1 , P

2
2 and P 2

3 . The C2 continuity requires that

C
0 :B1(1) = B2(0) (A.10a)

C
1 :B′

1(1) = B′
2(0) (A.10b)

C
2 :B′′

1(1) = B′′
2(0) (A.10c)

With equations A.3, A.6 and A.7, we obtain:

C
0 :P 1

3 = P 2
0 (A.11a)

C
1 :P 1

3 − P 1
2 = P 2

1 − P 2
0 (A.11b)

C
2 :P 1

1 − 2P 1
2 + P 1

3 = P 2
0 − 2P 2

1 + P 2
2 (A.11c)

Equation A.11a means the joint, which can be noted as S, then S = P 1
3 = P 2

0 . Equation

A.11b means the S is the middle point of P 2
1 and P 1

2 , more formally 2S = (P 1
2 + P 2

1 ).

Equation A.11c can be equivalently written as 2P 1
2 − P 1

1 = 2P 2
1 − P 2

2 . If a point B

is assigned to B = 2P 1
2 − P 1

1 = 2P 2
1 − P 2

2 , the points P 1
1 , P

1
2 , B, P 2

1 and P 2
2 form a

structure, named A-frame as shown in figure A.2. In the A-frame, the joint S is the

midpoint of P 1
2P

2
1 , P

1
2 is the midpoint of P 1

1B, and P 2
1 is the midpoint of BP 2

2 . B

is called the control point or de Boor point of the interpolated B-spline. Each joint

corresponds to a control point.

Si =
1

2
(P i−1

2 + P i
1) =

1

2

(
(
1

3
Bi−1 +

2

3
Bi) + (

2

3
Bi +

1

3
Bi+1)

)
=

1

6
Bi−1 +

4

6
Bi +

1

6
Bi+1

(A.12)

B-spline interpolation Suppose that there are n + 1 data points S0 . . . Sn. A

relaxed cubic spline curve S(t) with 0 ≤ t ≤ n are interpolated passing all these data

points. More precisely, a piecewise-polynomial curve is found that satisfies S(i) = Si

for all 0 ≤ i ≤ n. S(t) is determined by a control polygon with control points

B0,B1, . . . ,Bn as shown in figure A.3. If these control points are known, taking into

account the C
2 continuity conditions (A-frame condition: equation A.12) and the re-

laxed end conditions, for ith piece, the four Bezier control points can be obtained as:
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Figure A.2: joint two Bezier curve

P i
0 = Si =

1

6
Bi−1 +

4

6
Bi +

1

6
Bi+1 (A.13a)

P i
1 =

2

3
Bi +

1

3
Bi+1 (A.13b)

P i
2 =

1

3
Bi +

2

3
Bi+1 (A.13c)

P i
3 = Si+1 =

1

6
Bi +

4

6
Bi+1 +

1

6
Bi+2 (A.13d)

Which can be written in matrix form as




P i
0

P i
1

P i
2

P i
3



=

1

6




1 4 1 0

0 4 2 0

0 2 4 0

0 1 4 1







Bi−1

Bi

Bi+1

Bi+2




(A.14)

Substituting A.13 into A.5, we obtain the B-spline representation of ith piece

Si(t) =
[
t3 t2 t 1

] 1
6




−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0







Bi−1

Bi

Bi+1

Bi+2




(A.15)
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The first method is to calculate B0, B1, . . . , Bn from the known S0 . . . Sn. Recall

that the two end points S0 = B0 and Sn = Bn, and the equation A.12:





S0 = B0

S1 = 1
6B0 +

2
3B1 +

1
6B2

...

Si = 1
6Bi−1 +

2
3Bi +

1
6Bi+1

...

Sn−1 = 1
6Bn−2 +

2
3Bn−1 +

1
6Bn

Sn = Bn

(A.16)

Here the Bi and Si are points, so that in R2 they are pairs of numbers. The equations

can be written as matrix form:




1 0 0 0 · · · 0 0 0 0
1
6

2
3

1
6 0 · · · 0 0 0 0

0 1
6

2
3

1
6 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · 1
6

2
3

1
6 0

0 0 0 0 · · · 0 1
6

2
3

1
6

0 0 0 0 · · · 0 0 0 1







B0

B1

B2

...

Bn−2

Bn−1

Bn




=




S0

S1

S2

...

Sn−2

Sn−1

Sn




(A.17)

Let M be the matrix of coefficients, let B be the matrix B = [B0 . . . Bn]
⊤, and let S

be the matrix S = [S0 . . . Sn]
⊤. Then equation can be simplified as

MB = S (A.18)

Note that the (n+1)× (n+1) matrix M is a strictly diagonally dominant matrix that

for every row of M, the magnitude of the diagonal entry in a row is larger than the sum

of the magnitudes of all the other. Recall that a strictly diagonally dominant matrix

is non-singular so that it is invertible. Hence, B can be obtained by

B = M−1S (A.19)

Having the B-spline control points, the Bezier control points for each segment can be
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calculated as indicated in equation A.13 or matrix form A.14. In some materials, the

coefficient matrix M can be derived as ”1 4 1” matrix from equation A.16.

Figure A.3: cubic B-spline interpolation: the first method

An alternative method can be accomplished without recover the control points of

B-spline. The idea behind is to set up C2 continuity constrains and solve for the first

derivatives (tangent vector) Di at each Si. Once D0 . . . Dn are known, Bezier control

points can be computed from them using equation A.8. We have:

P i
0 = Si (A.20a)

P i
1 = Si +

1

3
Di (A.20b)

P i
2 = Si+1 −

1

3
Di+1 (A.20c)

P i
3 = Si+1 (A.20d)

Because of S′′
i (1) = S′′

i+1(0), we have 6(P i
1 − P i

2 + P i
3) = 6(P i+1

0 − P i+1
1 + P i+1

2 ) ,and

taking into account A.20, we obtain Di+4Di+1+Di+2 = 3(Si+2−Si). Considering the

relax end conditions, we obtain D0+2D1 = 3(S1−S0) and Dn−1+2Dn = 3(Sn−Sn−1).

Therefore, we have the matrix form as




2
3

1
3 0 0 · · · 0 0 0 0

1
3

4
3

1
3 0 · · · 0 0 0 0

0 1
3

4
3

1
3 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · 1
3

4
3

1
3 0

0 0 0 0 · · · 0 1
3

4
3

1
3

0 0 0 0 · · · 0 0 1
3

2
3







D0

D1

D2

...

Dn−2

Dn−1

Dn




=




C1 − C0

C2 − C0

C3 − C1

...

Cn−1 − Cn−3

Cn − Cn−2

Cn − Cn−1




(A.21)

We can calculate D0 . . . Dn by inverse the coefficient matrix. Then we can obtain the
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control points of each Bezier piece by equation A.20. A simulation is illustrated in

figure A.4.

Figure A.4: Cubic B-spline interpolation: the second method
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Appendix B

Appendix B

B.1 Orientation and Rotation

The rotation of a rigid body in 3-D can be described in several ways. Here, we give the

descriptions of the methods used in this thesis.

Rotation matrix

A rotation is referred to a rotation matrix, which is an orthogonal matrix. The deter-

minant of rotation matrix is always 1.

Euler rotation

Euler rotation splits the complete rotation into three simpler constitutive rotations.

Depending on the rotation axex and the order of a series of rotations, there are 24

possible constitutive rotations to represent arbitrary 3-D rotations. The rotation axes

can be original fixed frame or rotated frame. For example, considering rotated frame,

using the xyz convention, a rotation matrix is

R = Rx(roll)Ry(pitch)Rz(yaw). (B.1)
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If using the zyx convention, the rotation matrix is

R = Rz(roll)Ry(pitch)Rx(yaw). (B.2)

If considering original fixed frame, using xyz convention, the rotation matrix is

R = Rz(yaw)Ry(pitch)Rx(roll), (B.3)

which is similar to the zyx convention, in rotated frame, and has the opposite order

with the xyz convention. For example, in Figure B.1, the current camera frame is

red. In order to get the rotation of current camera frame, the parameters of different

methods are given in Table B.1.

Table B.1: Parameters: an example of Euler rotation
Frame Convention R

In the rotated frame
xyz Rx(−π/2)Ry(π/6)Rz(0)
zyx Rz(−π/6)Ry(0)Rx(−π/2)

In the original fixed frame xyz Rz(−π/6)Ry(0)Rx(−π/2)

Figure B.1: Work space: an example of Euler rotations.
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Commonly rotations are represented by Euler angles

Rotations are also commonly represented by roll-pitch-yaw angles. For example,

considering rotated frame, the rotation matrix is R = Rx(roll)Ry(pitch)Rz(yaw) us-

ing xyz convention. If considering original fixed frame, the rotation matrix is R =

Rz(yaw)Ry(pitch)Rx(roll) using xyz convention.

Angular axis

Any rotation can be expressed in terms of a single rotation about some axis. This is

referred to angular axis representation (θ,u), where θ is the angle and u is unit vector

representing the direction of the rotation axis. The representation (θ,u) is typically

considered as a rotation vector:

v = θu, (B.4)

where
θ = |v|
u = v

θ

(B.5)

The relationship between rotation matrix R and angular-axis vector v is represented

by rodriguar equation.

R = cos θ I3 + (1− cos θ) uu⊤ + sin θ [u]× (B.6)

where I3 is a 3× 3 identity matrix and [u]× is the skew-symmetric matrix of u.

B.2 Robot Jacobian

The kinematic screw of the camera is the instantaneous forward kinematics VC =

[υ⊤
c ω

⊤
c ]

⊤. If the camera is fixed on the mobile robot, VC can be obtained from the

transformation of screws, which is given by [68]:

VC = T
C

RVR (B.7)
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where T
C

R is the (6× 6) transformation matrix between screws:

T
C

R =

[
AC

R − AC
R P̂C

R

0 AC
R

]
(B.8)

where P̂C
R is the 3 × 3 skew-symmetric matrix of the translation vector tC

R matrix.

P̂C
R is given by

tC
R =




0 −tz ty

tz 0 −tx

−ty tx 0


 (B.9)

Consider a simple configuration illustrated in Figure ??. We obtain:

TC
R =




0 −1 0 −tx

0 0 −1 −ty

1 0 0 −tz

0 0 0 1




(B.10)

then we obtain T
C

R:

T
C

R =




0 −1 0 tz 0 −tx

0 0 −1 −ty tx 0

1 0 0 0 tz −ty

0 0 0 0 −1 0

0 0 0 0 0 −1

0 0 0 1 0 0




(B.11)

B.3 Linear Least Square

Inhomogeneous Linear Least Squares Problem

Inhomogenous linear least square problem can be described as:

AX = b. (B.12)
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in which the x can be solve using the pseudoinverse or inverse of A.

Homogeneous Linear Least Squares Problem

Homogenous linear least square problem can be described as:

AX = 0. (B.13)

which is different with inhomogeneous case. The pseudoinverse or inverse does not

work. Instead, homogenous case can be solved using Singular Value Decomposition

(SVD).

B.4 Non-linear Least Squares Problem and Gaussian-Newton

Optimization

Non-linear least squares uses least squares analysis to fit a set of M observations with

a model, which is non-linear in N unknown parameters (N < M).

Suppose a model h(q) : x 7→ y, where qN×1 is the vector of parameters. Given a

set of M data points (X,Y ) = {(xi, yi)| ∀ i = 0, . . . ,M − 1}. The basis of the method

is to estimate the optimal q with which the model can fit best with the data points

(X,Y ) in the least square sense. That is, the approximation is evaluated using the sum

of squares

f(q) =
M−1∑

i=0

r2i = ‖r‖2, (B.14)

and f(q) should be minimized. In equation B.14, r = [r0 . . . rM−1]
⊤ is the vector of

residuals (or errors), which is given by:

ri = yi − h(xi,q), ∀ i = 0, . . . ,M − 1. (B.15)

Since h(xi,q) depends non-linearly on the vector of parameters q, each residual may

also depend non-linearly on q. That is the reason that the minimization of f(q) is a

non-linear least squares problem.
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The function f(q) gets the minimum value when the gradient vector g(q) is zero:

g(q)
.
= ∇f(q) =

[
∂f
∂q0

. . . ∂f
∂qN−1

]⊤
= 0. (B.16)

Using optimal methods, this equation (or equation B.14) can be approximated and the

parameters are refined iteratively. In each iteration step, expand the function f(q) by

its Taylor series expansion about the point qk

f(qk + δq) = f(qk) + g(qk)
⊤δq+

1

2
δq⊤H(qk)δq+ . . . . (B.17)

where H(q) is the Hessian matrix of f(q):

H(q)
.
= ∇∇f(q) =




∂2f

∂q2
0

· · · ∂2f
∂q0∂qN−1

...
. . .

...
∂2f

∂q0∂qN−1
· · · ∂2f

∂q2
N−1


 . (B.18)

Gaussian Newton algorithm approximate f(q) by truncating the quadratic term:

f(qk + δq) ≈ f(qk) + g(qk)
⊤δq+

1

2
δq⊤H(qk)δq. (B.19)

Find the δq which minimizes this quadratic approximation:

∇f(qk + δq) = g(qk) +H(qk)δq = 0. (B.20)

So the shift vector of parameters is:

δq = qk+1 − qk = −H(qk)
−1g(qk). (B.21)

In each iteration step, the predicted vector of parameters is:

qk+1 = qk −H(qk)
−1g(qk). (B.22)

Then mathbfqk is updated with qk+1 in the next iteration. The iteration is stopped
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when

‖δq
qk

‖ < τ, (B.23)

where τ is a given value.

Since ∀j = 0, . . . , N − 1

∂f

∂qj
=

∂

∂qj

M−1∑

i=0

r2i =

M−1∑

i=0

2ri
∂ri
∂qj

, (B.24)

hence

g(q) = 2Jr(q)
⊤r (B.25)

where Jr(q) is the M ×N Jacobian matrix of the vector of residuals r:

Jr(q) =




∂r0
q0

· · · ∂r0
qN−1

...
. . .

...
∂rM−1

q0
· · · ∂rM−1

qN−1


 . (B.26)

Since

∂2f

∂ql∂qk
=

∂2

∂ql∂qk

M−1∑

i=0

r2i = 2
∂

∂ql

M−1∑

i=0

ri
∂ri
∂qk

(B.27)

= 2

M−1∑

i=0

∂ri
∂qk∂ql

+ 2

M−1∑

i=0

ri
∂2ri

∂qk∂ql
, (B.28)

Suppose ri is very small, this equation can be approximated by

∂2f

∂ql∂qk
≈ 2

M−1∑

i=0

∂ri
∂qk∂ql

. (B.29)

Hence

Hr ≈ 2J⊤
r Jr. (B.30)
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Then the shift vector of parameters can be approximated by:

δq ≈ −(J⊤
r Jr)

−1J⊤
r r. (B.31)

Usually instead of computing the inverse matrix (J⊤
r Jr)

−1 directly, δq is obtained by

solving the function

J⊤
r Jrδq ≈ −J⊤

r r. (B.32)

which is called the normal equations.

B.5 Visual target moment

2-D basic moments are defined by

mij =

∫ ∫
xiyjdxdy (B.33)

If in the discrete space, the basic moments are defined by

mij =

n∑

k=1

xiky
j
k (B.34)

A useful moment is the gravity center. Let (xg, yg) be the coordinates of the gravity

center of object, whose maximum order is 1. These coordinates are defined as follows:

{
xg = m01

m00

yg = m10

m00

(B.35)

B.6 Motion Estimation using Visual Tracking

Efficient outlier removing Outliers removing by RANSAC is computational ex-

pensive especial for high dimensional data. An alternative way to remove outliers is

to use circle matching between consecutive frames in a closed way, which is common

in stereo vision systems. This scheme can not be guaranteed in theory. But it is prac-

tical and effective in the sense that it provides credible matching results. Figure B.2

illustrate an experimental results of circle matching for stereo vision systems.
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Fig. B.2: An efficient outliers removing using circle matching.
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Suppose the camera moves in 6-DoF. The motion is parameterized by a vector

[r⊤, t⊤]. r⊤ = [rx, ry, rz]
⊤ includes rotation angles with respect to x, y, and z axes

respectively. t⊤ is the translation vector. The vector of motion parameters is estimated

by minimizing the sum of re-projection errors.

The coordinate System is defined as illustrated in Figure B.3. The left previous

camera frame is selected as reference frame. The motion estimation is to compute the

transformation pTc between the previous and the current frames of the left camera. The

motion can be parameterized by a vector [r⊤, t⊤]. r⊤ = [rx, ry, rz]
⊤ includes rotation

angles with respect to x, y, and z axes respectively. t⊤ is the translation vector. The

vector of motion parameters is estimated by minimizing the sum of re-projection errors.

Fig. B.3: The illustration of stereo visual odometry.

For each two consecutive stereo pairs, the correspondences are found with image

matching. The 3-D points {Pi} are triangulated from the previous stereo images. The
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triangulation of stereo pairs in the left camera frame can be expressed:




X

Y

Z


 =




b(u1p−u1c)
d

b(v1p−v1c)
d
fb
d


 (B.36)

where b is the baseline of calibrated stereo cameras. (u1p − u1c) is the Parallax.

Fig. B.4: Stereo vision.

{Pi} are then transformed to the current left camera frame and re-projected to

the current left and right image planes with unknown vector of parameters q. The

re-projection is:




u

v

1


 =




f 0 cu

0 f cv

0 0 1






[R(r) t]




X

Y

Z

1



−




d

0

0






, (B.37)
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where

d =

{
0, for the left camera

b, for the right camera
. (B.38)

In the current left and right image planes, the re-projected image points are compared

with the matched image points to give the re-projection errors. The re-projection errors

are measurement as:

y(q) =
M−1∑

i=0

(‖ml
i −Πl(Xi,q)‖2 + ‖mr

i −Πr(Xi,q)‖2). (B.39)

The motion vector of parameters q can be estimated by minimizing this re-projection

errors. Gaussian-Newton algorithm B.4 is used to computer the optimal q when the

equation B.39 gets the minimum value. The scheme randomly selects a minimum

sample points. 3 independent correspondences are enough to estimate 6-dimensional

vector of parameters. These 3 correspondences are used to estimated the vector of

parameters q, and the rest of correspondences are evaluated inliers or outliers. This

step repeat a given times to select the best estimated inliers, which includes most

correspondences.
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Appendix C

Basic Performances of Spherical

Image-based Visual Servoing

Here, we present the simulation results of SIBVS for the cases: pure z-axis translation,

pure z-axis rotation, z-axis rotation and translation, x-axis translation, pure x-axis

rotation, and x-axis rotation and translation. The cases of pure y-axis translation,

pure y-axis rotation, and y-axis rotation and translation are not presented, as they are

similar to the cases of x-axis.

Pure z-axis Translation

We simulate a pure z-axis translation by positioning the initial camera frame at (0, 8, 0)

with orientation (π/2, 0, π) in roll-pitch-yaw angles. The simulation result is given in

Figure C.1. Figure C.1(a) shows that the visual features have moved along lines of

constant longitude. Figure C.1(b) shows that the error approximately performs an

exponential decoupled decrease. Figure C.1(c) shows that the camera has done a desired

pure translational motion in the z-axis.

Pure z-axis Rotation

We simulate a pure z-axis rotation by positioning the initial camera frame at (0, 2.5, 0)

with orientation (π/2, 0, 0) in roll-pitch-yaw angles. The simulation result is given by

Figure C.2, which shows that the camera has done a desired pure rotation without

camera retreat phenomenon, which happened using perspective projection model. The
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(a) Camera view. (b) Error. (c) Camera velocities.

Figure C.1: Pure translation in z-axis.

visual features only have motion along ϕ axis in the spherical image, and the error

approximately performs an exponential decoupled decrease.

(a) Camera view. (b) Error. (c) Camera velocities.

Figure C.2: Pure rotation along z-axis.

z-axis Translation and Rotation

We simulate a z-axis translation and rotation by positioning the initial camera frame

at (0, 8, 0) with orientation (π/2, 0, 0) in roll-pitch-yaw angles. The simulation result

is given by Figure C.3, which shows that the camera has done a desired translation

and rotation only with respect to z-axis. The trajectories of visual features are broken

lines in the spherical image. The trajectories should be straight lines. They are broken

because of the periodicity of angles. Broken points of the lines are located at boundary

values, where ϕ = −π or ϕ = π.

Pure x-axis Translation

We simulate a pure x-axis translation by positioning the initial camera frame at (2, 2.5, 0)

with orientation (π/2, 0, π) in roll-pitch-yaw angles. The simulation result is given in

Figure C.4. Figure C.4(a) shows that the trajectories of the visual features are approx-
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(a) Camera view. (b) Error vector. (c) Camera velocities.

Figure C.3: A combined translation and rotation about z-axis

imately straight lines. Figure C.4(b) shows that the error approximately performs an

exponential decoupled decrease. Figure C.4(c) shows that the camera has done an un-

expected translational motion in the z-axis direction and unexpected rotational motion

along the y-axis.

(a) Camera view. (b) Error. (c) Camera velocities.

Figure C.4: Pure translation about x-axis.

Pure x-axis Rotation

We simulate a pure x-axis rotation by positioning the initial camera frame at (0, 2.5, 0)

with orientation (0, 0, π) in roll-pitch-yaw angles. The simulation result is given in

Figure C.5. It shows that the camera has done an unexpected translational motion

in the y- and z-axes direction. This unexpected translation motion is also existed in

the IBVS using perspective projecton model as shown in Figure C.6. It is a result

of crosscoupling terms in the interaction matrix, equation 3.35 for spherical IBVS or

equation 3.10 for perspective IBVS.

x-axis Translation and Rotation

We simulate a x-axis translation and rotation by positioning the initial camera frame
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(a) Camera view. (b) Error. (c) Camera velocities.

Figure C.5: Pure rotation along x-axis.

(a) Camera view. (b) Error vector. (c) Camera velocities.

Figure C.6: Pure rotation about x-axis Rx(
π
9 ) using IBVS

at (2, 2.5, 0) with orientation (0, 0, π) in roll-pitch-yaw angles. The simulation result

is given by Figure C.7, which shows that the camera has unwanted translational and

rotational motion about the y- and z-axes.

(a) Camera view. (b) Error vector. (c) Camera velocities.

Figure C.7: A combined translation and rotation about x-axis
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