Méthode des impédances mécaniques virtuelles optimales pour le contrôle actif vibroacoustique d'un panneau aéronautique.

par Marc Michau

Thèse de doctorat en Acoustique

Sous la direction de Philippe Herzog et de Alain Berry.

Soutenue le 15-09-2014

à l'Ecole centrale de Marseille en cotutelle avec l'Université de Sherbrooke (Québec, Canada) , dans le cadre de Ecole Doctorale Sciences pour l'Ingénieur : Mécanique, Physique, Micro et Nanoélectronique (Marseille) , en partenariat avec Laboratoire de mécanique et d'acoustique (Marseille) (laboratoire) et de Laboratoire de Mécanique et d'Acoustique / LMA_ECM (laboratoire) .

Le président du jury était Patrice Masson.

Le jury était composé de Cédric Maury.

Les rapporteurs étaient Hervé Lissek.


  • Résumé

    L'utilisation de plus en plus fréquente de matériau composite, qui combine une raideur importante pour une faible masse, afin d'alléger les structures aéronautiques entraîne la dégradation des performances d'isolation acoustique aux bruits extérieurs. La plupart du temps, ces nuisances sonores sont réduites par l'installation de matériaux isolants. Ces méthodes, dites passives, deviennent inefficaces aux basses fréquences et il est possible de mettre en place un contrôle actif au moyen de transducteurs électromécaniques. Dans le but de réduire la puissance acoustique transmise à travers la double paroi aéronautique dans la cabine, des unités de contrôle composées d'un actionneur et d'un capteur colocalisé dual sont réparties sur le panneau intérieur afin d'en modifier la vibration. Cette stratégie de contrôle actif vibroacoustique permet, pour des perturbations primaires harmoniques, d'imposer localement une impédance mécanique virtuelle à la structure, au moyen d'un contrôleur décentralisé. Cependant, sans communication entre les unités, le contrôle peut difficilement minimiser un critère global comme la puissance acoustique rayonnée. Afin de calculer les impédances mécaniques virtuelles qui garantissent la minimisation de la puissance acoustique rayonnée par la structure, une approche en deux étapes est considérée : (1) la matrice diagonale des impédances mécaniques virtuelles optimales est calculée à partir de mesures acoustiques ou vibratoires de la perturbation primaire et des transferts avec les actionneurs secondaires, (2) l'objectif exprimé en terme d'impédances mécaniques virtuelles est atteint grâce à un contrôle en temps réel. Une attention particulière est portée à la comparaison de cette approche avec une stratégie classique d'amortissement actif réalisée par un contrôle par rétroaction sur la vitesse de la structure, où l'impédance mécanique virtuelle alors imposée est un réel positif. Le calcul optimal réalisé à l'issue de la première étape se faisant pour une perturbation primaire donnée, la robustesse de la méthode aux variations de la perturbation primaire est un aspect également développé dans cette étude. Des résultats théoriques et expérimentaux sont comparés dans le cas académique d'une plaque mince d'aluminium simplement appuyée et soumise à une onde plane incidente. Enfin, la méthode est appliquée au panneau intérieur d'une double paroi aéronautique, à savoir une structure courbée, en matériau composite, et composée d'un hublot. Contrairement à la majorité des études qui considèrent l'implantation d'impédances virtuelles dissipatives, il apparaît que dans certains cas, le contrôle optimal requiert l'injection d'énergie des unités à la structure.

  • Titre traduit

    Optimal virtual mechanical impedance approach for the active structural acoustic control of an aeronautic panel


  • Résumé

    Composite materials are widely used in the aeronautic industry for their low mass/stiffness ratio. However, this property tends to reduce the acoustic transmission loss, particularly at low frequencies. At these frequencies, active control is an effective mean of controlling sound transmission. Among the various approaches, Active Structural Acoustic Control (ASAC) has received considerable attention because transducers can be integrated to the structure. In order to reduce the acoustic power radiated by a flexible panel, dual colocated actuator sensor pairs are used to modify its vibration. The control strategy implemented for harmonic disturbances leads to locally impose a virtual mechanical impedance to the structure, using a decentralized controller. This virtual mechanical impedance is computed in order to minimise the radiated acoustic power. The challenging problem is then to find the local control to impose on each independent devices that minimizes the global acoustic radiation of the structure. The proposed approach consists in two steps : (1) the matrix of optimal virtual mechanical impedance is calculated by measuring the primary disturbance and the transfer functions between actuators and structural / acoustic sensors, (2) the virtual mechanical impedance objective is achieved using a real-time integral controller. Special focus is put on the discussion about such control approach versus a classical active damping strategy were the virtual mechanical impedance is defined as real positive. Considering that optimal control is computed during the first step for a given primary disturbance, the robustness of the method to variations of the primary disturbance between step 1 and step 2 is discussed. Theoretical and experimental results are compared in the case of a simply supported thin aluminum plate and a primary disturbance under the form of an incident plane wave. Then, the method is implemented on a curved composite aircraft panel comprising a window. Unlike most of previous studies where dissipative virtual mechanical impedance are imposed, it clearly appears that optimal control can require energy injection from the control units into the structure.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?