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RESUME

Cette these se compose de quatre chapitres:

Le chapitre 1 étudie la distribution du temps de coalescence (plus récent ancétre
commun) de deux individus tirés au hasard (uniformément) dans la génération actuelle
d’un processus de Bienaymé-Galton-Watson en temps continu.

Dans le chapitre 2, nous obtenons une représentation de la diffusion de Feller
logistique en termes des temps locaux d’'un mouvement brownien réfléchi H avec une
dérive qui est affine en le temps local accumulé par H a son niveau actuel.

Le chapitre 3 considere la diffusion de Feller avec compétition générale. Nous
donnons des conditions précises sur le terme de la concurrence, pour le but de décider
si le temps d’extinction (qui est aussi la hauteur du processus) reste borné ou non
lorsque la taille initiale de la population tend vers I'infini, et de méme pour la masse
totale du processus.

Dans le chapitre 4, nous généralisons les résultats du chapitre 3 pour le cas du
processus de branchement a espace d’état continu a trajectoires discontinues avec
compétition.

Mots-Clés: Processus de Bienaymé-Galton-Watson, coalescence, diffusion de
Feller logistique, temps local, théoreme de Ray-Knight, processus de branchement,

compétition, temps d’extinction, masse totale



ABSTRACT

This thesis consists of four chapters:

Chapter 1 investigates the distribution of the coalescence time (most recent com-
mon ancestor) for two individuals picked at random (uniformly) in the current gener-
ation of a continuous time Bienaymé-Galton-Watson process.

In chapter 2 we obtain a Ray-Knight representation of Feller’s branching diffusion
with logistic growth in terms of the local times of a reflected Brownian motion H with
a drift that is affine in the local time accumulated by H at its current level.

Chapter 3 considers the Feller’s branching diffusion with general competition.
We give precise conditions on the competition term, in order to decide whether the
extinction time (which is also the height of the process) remains or not bounded as
the initial population size tends to infinity, and similarly for the total mass of the
process.

In chapter 4 we generalize the results of chapter 3 to the case of continuous state
branching process with competition which has discontinuous paths.

Keywords: Bienaymé-Galton-Watson process, coalescence, Feller diffusion with
logistic growth, local time, Ray-Knight theorem, branching process, competition,

extinction time, total mass
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PRESENTATION

It was about one hundred forty years ago that Galton and Watson, in treating
the problem of the extincsion of family names, showed how probability theory could
be applied to study the effects of chance on the development of populations. Galton-
Watson model and its generalizations have been treated extensively in the twentieth
century. Now Galton-Watson tree (which is also called Bienaymé- Galton-Watson tree)
plays a fundamental role in both the theory and applications of stochastic processes.

Our goal for the first chapter is to investigate the distributions of coalescence times
for Bienaymé-Galton-Watson (BGW) tree. This goal was also that of various other
works such as [1, 2, 4, 10, 11]. In Lambert [4], fine results were obtained for BGW
process in the discrete setting. Here we want to extend those results to the case of
continuous time BGW process. More precisely, Chapter 1 studies the distribution
of the coalescence time (most recent common ancestor) for two individuals picked
at random (uniformly) in the current generation of a continuous time BGW process
founded ¢ units of time ago. Here we also obtain limiting distributions as ¢ — oo
in the subcritical case and generalize our results for two individuals to the joint
distribution of coalescence times for any finite number of individuals sampled in the
current generation.

We next consider a BGW tree to which we superimpose a logistic interaction
between the branches (which destroys the independence, and hence also the branching
property). We proceed to a renormalization of the model parameters and get in limit

a diffusion which is solution of the SDE
dZ, = o/ Z; dW;, + (02, — v Z?) dt, Zy = .

This is called Feller’s branching diffusion with logistic growth which has been studied



in detail by Lambert [5]. In chapter 2 we obtain a representation of Feller’s branching
diffusion with logistic growth in terms of the local times of a reflected Brownian motion
H with a drift that is affine in the local time accumulated by H at its current level.
As in the classical Ray-Knight representation, the excursions of H are the exploration
paths of the trees of descendants of the ancestors at time t = 0, and the local time
of H at height ¢t measures the population size at time t (see e.g. [6]). We cope with
the dependence in the reproduction by introducing a pecking order of individuals: an
individual explored at time s and living at time ¢ = H, is prone to be killed by any of
its contemporaneans that have been explored so far. The proof of our main result of
chapter 2 relies on approximating H with a sequence of Harris paths H” which figure
in a Ray-Knight representation of the total mass of a branching particle system. We
obtain a suitable joint convergence of H”" together with its local times and with the
Girsanov densities that introduce the dependence in the reproduction.

In chapter 3 we consider a discrete model of population with interaction where the
birth and death rates are non linear functions of the population size. According to [3],
after proceeding to renormalization of the model parameters, we obtain in the limit
of large population that the population size evolves as a Feller’s branching diffusion

with general competition which is solution of the SDE

¢ t oo
70 = x—i—/ f(Zf)ds+2/ / W (ds, du),
0 0 0

where W (ds, du) is a time space white noise on ([0, 00))%. We give precise conditions
on the function f, in order to decide whether the extinction time of the process remains
or not bounded as the ancestral population size tends to infinity, and similarly for the
total mass of the process.

In chapter 4 we generalize the results of chapter 3 for Feller’s branching diffu-
ston with general competition to the case of continuous state branching process with
competition which has discontinuous paths.

These chapters is completely written in English. In fact, Chapter 1, Chapter 2 and



Chapter 3 are three articles accepted for publication in Journal of Applied Probability,
Probability Theory & Related Fields and ESAIM Probability and Statistics respec-
tively (see [7, 8, 9]). In the first part of this thesis we present the results obtained
during the thesis, which are detailed in the following four chapters. This part is

completely written in French.



BIBLIOGRAPHY

[1] Athreya K. B. Ancestor problem for branching trees, Math. Newsletters: Special
issue Commemorating ICM 2010 in India 19(1), 1-10, 2010.

[2] Athreya K. B. Coalescence in critical and subcritical Galton-Watson branching
processes, J. Appl. Probab. 49(3), 627-638, 2012.

[3] Ba M. , Pardoux E. Branching processes with interaction and generalized Ray
Knight theorem, Ann. Inst. H. Poincaré Probab. Statist. (2014), to appear.

[4] Lambert A. Coalescence times for the branching process, Adv. Appl. Probab. 35,
1071-1089, 2003.

[5] Lambert A. The branching process with logistic growth, Ann. Appl. Probab. 15,
1506-1535, 2005.

(6] Le Gall J-F. Itd’s excursion theory and random trees, Stochastic Process. Appl.
120, 721-749, 2010.

[7] Le V. Coalescence times for the Bienaymé-Galton-Watson process, J. Appl. Probab.
51(1), 209-218, 2014.

[8] Le V., Pardoux E. Height and the total mass of the forest of genealogical trees of
a large population with general competition, ESAIM Probability and Statistics, to
appear, 2014.

9] Le V., Pardoux E. and Wakolbinger A. Trees under attack: a Ray Knight repre-
sentation of Feller’s branching diffusion with logistic growth, Probab. Theory and
Relat. Fields 155, 583-619, 2013.

[10] O’Connell N. The genealogy of branching processes and the age of our most
recent common ancestor, Adv. Appl. Probab. 27, 418-442, 1995.

[11] Schweinsberg J. Coalescent processes obtained from supercritical Galton-Watson
processes, Stoch. Process. Appl. 106, 107-139, 2003.



INTRODUCTION

Dans l'introduction nous exposons les résultats obtenus au cours de cette these,

lesquels sont détaillés dans les quatre chapitres suivants.
0.1 Temps de coalescence pour le processus de Bienaymé-Galton-Watson

L’objectif du premier chapitre est d’étudier la distribution du temps de coalescence
pour le processus de Bienaymé-Galton-Watson (BGW). Cet objectif était également
celui d’autres travaux comme [1, 2, 6, 9, 11]. Dans Lambert [6], les bons résultats ont
été obtenus pour le processus de BGW en temps discret. Ici, nous voulons étendre

ces résultats pour le cas du processus de BGW en temps continu.

0.1.1 La distribution du temps de coalescence

Nous considérons un processus de branchement en temps continu Z = {Z;,t > 0}
a valeurs dans N. Un tel processus est un processus de BGW dans lequel a chaque
individu est attaché un vecteur aléatoire décrivant sa durée de vie et le nombre de
ses descendants. Nous supposons que ces vecteurs aléatoires sont i.i.d. Le taux de
reproduction est gouverné par une mesure finie u sur N, satisfaisant p(1) = 0. Plus
précisément, chaque individu vit un temps exponentiel de parametre p(N), et est
remplacé par un nombre aléatoire d’enfants selon la probabilité u(N)~1u. Alors la
dynamique du processus de Markov en temps continu Z est entierement caractérisée
par la mesure u. Pour z € N, dénotons par P, la loi de Z quand Zy = z. On a la

proposition suivante, qui peut étre trouvée dans [3], page 106.

Proposition 0.1.1. La fonction génératrice du processus Z est donnée par

E,(s%) = 9,(s)*, se€ 0,1,z € N,



()
ot

et la fonction ® est définie par

= ®(Wi(s)):  Hols) =s,

O(s) = (s"—s)u(n), se[0,1].

Nous considérons deux individus o1, 09 & la génération actuelle ¢ > 0, et demandons
quand ils fusionnent, c’est-a-dire, combien de temps s’est écoulé depuis leur ancétre
commun. D’une maniére plus rigoureuse, pour 0 < u < ¢, dénotons par 7,(0;) la mere
(unique) de o; au temps (t — u),i = 1,2. Le temps de coalescence T(01, 09) de 01,09

est déterminé uniquement par
T(o1,09) :=1nf{u: 0 <u <t ,7,(01) = 7(02)},

avec la convention inf() = oo. Nous dénotons par T le temps de coalescence de
deux individus tirés au hasard (uniformément) parmi les individus présents dans la
génération actuelle. Si la génération actuelle contient moins de deux individus, on
pose T' = oo.

Si la notation P® indique que t est la génération actuelle, la distribution de T" est

donnée dans le théoréme suivant.

Théoreme 0.1.1. Pour tout 0 <t; <ty <t,y>1,y €N,

EO(Z(Z — )% T <ty | Ziw = y) =y, () (s)1 2 5 e f0,1),

V()

La fonction génératrice précédente peut étre inversée comme suit, pour tout p > 2

P(t)<Zt =p, T e dtl | Zt—t2 = y)/dtl =

zZP1)zP(n-1)
y Y m(B(Z e 20 = 1)+ 20 () + 20 (0= 1) =),
n>2

ot les processus Z©, 7MW 73 sont des copies indépendantes de Z, et la notation

Zt(zo) (y — 1) désigne la valeur au temps to du processus ZO) jssu de y — 1.



Une conséquence du Théoreme 0.1.1 est

Corollaire 0.1.2. Pour tout 0 < t; <'t,

Wy, ()

w£1 (5) Uy (s)e(s)" .

1
PO(T < ;) = x/ ds(1— s)
0

En particulier,
Pé) (Au moins deux individus sont en vie a l'instant t, une paire aléatoire n’a aucun

ancétre commun) =
z(x —1) /01 ds(1 — $)tb,(5)%1hy(s)* 2.

0.1.2 La distribution quasi-stationnaire

Dans cette sous-section, on obtient la limite de la loi conditionnelle du temps de
coalescence sachant que {Z; > 2}. Informellement, cette limite incarne la situation ou
la généalogie a été fondée il y a longtemps et n’est pas encore éteinte, avec au moins
deux descendants a l'instant actuel.

Nous considérons le cas ¢} (1) = E;(Z;) < 1 (cas sous-critique) quand E, (7, log(Z,)) <
co. A partir du Théoreme 6 de [12], il existe une suite non négative (o, k > 1) dont

la somme est égale a 1 tel que
lmP(Z=j|Z>0)=a;, VeeNjzL (0.1.1)
—00

La suite (ag, k > 1) s’appelle la limite de Yaglom du processus Z. Si on définit

g(s) = Zaksk, s € 0,1],

alors (0.1.1) en déduit que

9(8) = Jim B, (6% | 2, > 0) = lim 21~ 0)

=0 s € [0,1].

Le résultat suivant peut étre trouvé dans [3], chapitre IV (page 170).



Proposition 0.1.3. Dans le cas sous-critique quand B, (Z; log(Z1)) < oo, on a pour
tout s € [0, 1],

’

tlim E.(Zis? 1| Z, > 0) =g (s) < g'(1) < o0.
—00

Notons par Z la limite de Z; conditionnée a {Z; > 2} quand t — co. On a le

Théoréme 0.1.2. Dans le cas sous-critique quand E,(Z; log(Zy)) < oo, la distribution

quasi-stationnaire P de T et Z est définie par

P¥(Z =p, T edh)=lmPY(Z, =p,Tedh|Z >2), p>2h>0.

t—o00

Alors P9 définit une loi de probabilité qui ne dépend pas de x et satisfait

En particulier,

wh<8)g’(8)-

P(T < h)= W/o ds(1—s)

0.1.3 Coalescence multivariée

Supposons que la génération actuelle contient au moins n + 1 individus, n > 1. Nous
allons présenter la distribution des temps de coalescence, lorsque n + 1 individus
sont échantillonnés uniformément et indépendamment & l'instant actuel £. Pour
k =1,2,...,n, on note par T} le temps de coalescence du premier individu avec le

(k + 1)-ieme individu, et par 7} le k-iéme temps de coalescence. On a le

Théoreme 0.1.3. Pour tout 0 < ty; <ty < ... < t, <t, la distribution conjointe des

temps de coalescence T}, est donnée par
EO(Z(Z, = 1)..(Z — n)sZ "L Ty € dty, ..., T, € dt,)/dt,...dt, =

2y (s)9e(s)" H U () [ D Rk = Dulk)n,()*7%], s € [0,1).

k>2



Théoreme 0.1.4. Pour tout 0 < t; <ty < ... < t, <t, la distribution conjointe des

temps de coalescence T} est donnée par

EO(Z(Zy —1)...(Z — n)sZ L Tr € dty, ..., T € dt,)/dt,...dt, =
P D (s “Hm Skl — D) ()7, s € [0,1).

k>2

0.2 “Les arbres sous attaque’: une représentation de Ray-Knight de la
diffusion de Feller logistique

La diffusion de Feller logistique est gouvernée par I’'EDS
dZt = 0\/ Zt th -+ (QZt — ")/ZE) dt, ZO =x > O, (021)

avec o, 0 et v des constantes positives. Elle a été étudié en détail par Lambert [7], et
modélise I'évolution de la taille d'une population avec compétition. Dans le chapitre
2, nous obtenons une représentation de la diffusion de Feller logistique en termes des
temps locaux d’un mouvement brownien réfléchi H avec une dérive qui est affine en
le temps local accumulé par H a son niveau actuel. Plus précisément, on considere
I’EDS

2 1 20 s
Ho= 2B, S L0, H) + 25 - 7/ L.(H,, Hydr, >0, (0.2.2)
o o2 0

ot B est un mouvement brownien standard, et pour s,t > 0, L(t, H) désigne le
(semi—martingale) temps local accumulé par H au niveau ¢ a 'instant s. D’apres [10],

I'EDS (0.2.2) admet une unique solution en loi. On définit
S, = inf{s > 0: (¢%/4)L,(0, H) > x}. (0.2.3)
Le résultat principal du chapitre 2 est

Théoreme 0.2.1. Supposons que H est solution de l’équation (0.2.2), et soit, pour
x>0, S, défini par (0.2.3). Alors (02/4)Ls,(t, H), t > 0, est solution de l’équation
(0.2.1).
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0.2.1 Une approximation discréte

Le but de cette sous-section est de donner des approximations discrétes de (0.2.1) et
(0.2.2).

Pour x > 0 et N € N I'approximation de (0.2.1) sera donnée par la masse totale
ZN:# d"une population dont chaque individu a une masse de 1/N. La masse initiale est

ZN" = |Nxz|/N, et ZN* est un processus de Markov: si & un instant ¢, Z,""* = k/N,

(k+1)/N au taux kNo?/2 + k6
ZN* saute de k/N & (0.2.4)

(k —1)/N au taux kNo?/2 + k(k — 1)y/N.

Pour v = 0, c’est (& une constante multiplicative prés) comme un processus de
Galton-Watson en temps continu: chaque individu, indépendamment des autres donne
naissance au taux No?/2 + 6, et meurt au taux No?/2. Pour v # 0, le taux de mort
quadratique détruit I'indépendance, et par conséquent détruit aussi la propriété de
branchement. Cependant, en regardant les individus vivants & l'instant ¢ comme
étant arrangés “de gauche a droite”, et en décrétant que chacun des combats deux
a deux (qui se passe au taux 2v) est gagné par l'individu a la gauche, on obtient le
taux de mort supplémentaire 2v£;(t)/N pour U'individu 7, ou £;(¢) désigne le nombre
d’individus situés a gauche de l'individu 7 a l'instant ¢.

La dynamique de reproduction qui vient d’étre décrite donne lieu & une foret FN-*
d’arbres planaires (voir la Figure 1). A tout point de branchement, on imagine la
“nouvelle branche” étant placée a la droite de la branche mere. En raison du massacre
asymétrique, les arbres plus loins a droite ont une tendance a rester plus petits: ils
sont “sous attaque” par les arbres a leur gauche. On note que, avec la construction
décrite ci-dessus, les FN¥, 2 > 0, sont couplées: quand x est augmenté de 1/N, un
nouvel arbre est ajouté a la droite. On note I'union des F¥* x > 0, par FV.

On peut associer a la forét FY un processus HY = (HY) continu et linéaire par
morceaux a valeurs dans R, (qui s’appelle la trajectoire d’exploration de F) de la

maniere suivante:
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Figure 1: Une réalisation de (les deux premiers arbres de) F' et (les deux premieres
excursions de) son exploration HY.

A partir de la racine de arbre le plus & gauche, on va vers le haut a vitesse de 2N
jusqu’a ce qu’on touche le haut de la premiére branche meére (c’est la feuille marquée
par L dans Figure 1). Ensuite on tourne et va vers le bas, & méme vitesse de 2N,
jusqu’a ce qu’on arrive au prochain point de branchement (qui est marqué par B dans
Figure 1). De la, on va vers le haut a la branche suivante, et procede d’une maniere
similaire jusqu’a ce qu’on revient a la hauteur 0, ce qui signifie que ’exploration de
I’arbre le plus a gauche est terminée. Ensuite on explore I'arbre suivant, et ainsi de
suite.

Pour z > 0 on note par SY linstant auquel I'exploration de la forét FV* est
terminée. Evidemment, pour chaque ¢ > 0, le nombre de branches dans FN* qui sont
vivantes a l'instant ¢ est égal a la moitié du nombre d’intersections de la trajectoire
d’exploration de F¥ arrétée a SY avec la droite horizontale & la hauteur t. Rappelant

que la pente de H" est +2N, on définit

1
AN(t) = ﬂ# de t-intersections de H”Y entre les temps d’exploration 0 et s,
(0.2.5)

oll nous comptons un minimum local de HY & t comme deux t-intersections, et
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un maximum local comme zéro. Notons que, par notre convention, tous les deux
s+ AN(t) et t — AN(t) sont continues a droite, et en particulier AY(0) = 0. On
appelle AY(¢) le temps local non normalisé accumulé par HY au niveau ¢ a l'instant

s. Le temps d’exploration S peut étre exprimé comme
SN =inf{s: AY(0) > |[Nz|/N}. (0.2.6)
On a

Proposition 0.2.1. La trajectoire d’exploration s — HY obéit a la dynamique stochas-

tique suivante:

A Uinstant s = 0, HY commence a zéro et avec une pente 2N .

Alors que HY wa vers le haut, sa pente saute de 2N a —2N au taux N?o?+4yN/,

ou £ = AN(HYN) est le temps local accumulé par HY au niveau actuel HY a

linstant actuel s.

Alors que HN wva vers le bas, sa pente saute de —2N & 2N au taux N?0? +2N46.

Chaque fois que HY revient & zéro, il est réfléchi au-dessus de zéro.

Le corollaire suivant est une version discrete du Théoreme 0.2.1, et sera utilisé

pour la démonstration du Théoreme 0.2.1 en prenant N — oo.

Corollaire 0.2.2. Soit HY le processus stochastique suivant la dynamique spécifiée
dans la Proposition 0.2.1, et AN son temps local tel que défini par (0.2.5). Pour z > 0,
soit SN le temps d’arrét défini par (0.2.6). Alors t — Agiv (t) suit la dynamique
(0.2.4).

0.2.2 La convergence des processus Z™* quand N — oo

Dans cette sous-section, nous montrons que
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Proposition 0.2.3. Quand N — oo, ZN* = Z% ou Z* est l'unique solution de

I’EDS (0.2.1) et est donc une diffusion de Feller logistique.

0.2.3 La convergence de la trajectoire d’exploration dans le cas @ =~ = 0.

Soit HY le processus stochastique comme dans la Proposition 0.2.1 avec § = v = 0.

On définit le temps local normalisé accumulé par HV au niveau ¢ & I'instant s comme

4 1 [°
LY (t) = ;lﬂ%g . Lycny <iteydu

Notons que ce processus n’est pas une fonction continue ni a droite ni a gauche de s.

Toutefois, parce que les sauts sont de taille O(1/N), la limite de L™ quand N — oo

sera continue. Il est facile de vérifier que L{), (0) = 125, et
N 4 N
LY (1) = SAY(D), Ys2 0,620,

ot AN a été défini par (0.2.5). Alors avec SY défini par (0.2.6), nous pouvons récrire
4

Sy =inf{s > 0: LY(0) > < |Nz|/N}. (0.2.7)
o

Soit {VN, s > 0} le processus cadlag a valeurs dans {—1, 1} qui satisfait pour presque

tout s > 0,
dHY
ds

=2NVN. (0.2.8)

A partir de la Proposition 0.2.1 on a
No?

VN =1+ 2/0 Loyy—_ydBY — 2/0 Loyn—ydBY + (LY (0) — L. (0)), (0.2.9)

ot {PY,s > 0} est un processus de Poisson d’intensité N202. On écrit V.V dans
(0.2.8) comme

Lvy =iy = Ly =
et désigne par MY la martingale PY — N20%s, on déduit de (0.2.9) que

N ‘/SN 1,N 2,N 1 N 1 N
Hs +N_0'2:M57 _‘]\457 +§Ls (0)_§L0+(0)7
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ou

2 [* 2 [
MEN = / Lyn— ydMY et M2V = o3 / Lyn —gydMY (0.2.10)
0 0

5 No?

sont deux martingales orthogonales. Le résultat principal de cette sous-sectione est le

théoréme suivant.

Théoreme 0.2.2. Pour tout x > 0, quand N — oo,

({HYN, MPN M2N s > 0}, {LY(t), s, > 0}, SY)

N ({H ?Bg, ?Bg, s> 0}, (Ly(t),5,t > 0}, Sx>

pour la topologie de la convergence localement uniforme. B! et B? sont deux mouve-

ments browniens standards indépendants, H est la solution de I’EDS

2 1
H, = =B, + = L,(0),
~ B, + 5Ls(0)

dont le mouvement brownien B est donné par

1
By, = —(B; — BY),
\/5( s s)

L est le temps local de H, et S, a été défini par (0.2.3).
Une conséquence immédiate de ce résultat est
Corollaire 0.2.4. Pour tout x > 0, quand N — oo,

2 2
H,, £B1 V2
g

({HSN’ Msl’N>Ms2’N7 52 0}7 {Lgi\’(t%t > 0}) = ({ s 7337 52 0}7 {LSz(t)at > 0})

dans C([0,00)) x (D([0,0)))3.

0.2.4 Changement de mesure et la preuve du Théoreme 0.2.1

Comme dans la section précédente, pour N € N fixe, soit H le processus suivant la

dynamique spécifiée dans la Proposition 0.2.1 avec # = v = 0. On note la mesure de
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probabilité par P, et la filtration par F = (F;). Notre premier objectif est de construire
une mesure PV sous laquelle HY suit la dynamique spécifiée dans la Proposition 0.2.1
pour 6,v > 0.

Ici, un role crucial est joué par le processus ponctuel PV des maxima et minima
locaux successifs de H", excluant les minima & hauteur 0. Sous IP, il est un processus de
Poisson d’intensité 02/ N2. Plus précisément, le processus Q%Y qui compte les minima
locaux successifs de HYV (hormis ceux a la hauteur 0) est un processus ponctuel avec
une intensité prévisible A1V := N20%1 (v~ —_1}, et le processus Q*N qui compte les
maxima locaux successifs de HY est un processus ponctuel avec une intensité prévisible

)\z’N = N2O'21{VSJX:+1}.

29)

A partir de la Proposition 0.2.1 nous voulons changer le taux ALY en ALV (14 -2,

et le taux A2Y en A2V (1 + %) On aura besoin des deux versions du théoréme
de Girsanov et quelques résultats concernant I’exponentielle de Doléans et “goodness”

qui peuvent étre trouvés dans [8]. On considere les martingales locales

s 20 S ~LN(HN)
N, . N N2 . __ T T
Xs — ) Wl{VTI\iZ*l}dMT 5 Xs — /0 T

XN = XN X2,

Ly MY,

Soit YV := &(XY) I'exponentielle de Doléans de X*. On a

Proposition 0.2.5. YV est une (F,P)-martingale. Soit PN la mesure de probabilité

sur F dont la restriction a Fy, s > 0, a la densité YN par rapport a P

5,. Alors
sous PN e processus HY suit la dynamique spécifiée dans la Proposition 0.2.1 pour

0,y > 0.

Ensuite, nous allons analyser le comportement des densités de Girsanov quand
N — oo. Pour cela on utilise les martingales MY et M*" définis dans (0.2.10), et

note que

vo Ly (HY

XV = / (6dMN + r)gngz .
0
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11 est facile de vérifier que deux suites {M5N}ysq et {M>N} s sont “good”. A partir

du Théoréme 0.2.2 on obtient

/{\/_edBl \/_VUg( Bz} _

De plus, { XN} x> est “good’ aussi, alors
YV =¢XM) = &(X) =Y.
En combinant ces faits avec le Corollaire 0.2.4, on déduit que
(HY, LGy, YY) = (H, Ls,,Y).

Parce que B! et B? sont orthogonales,

Y.=¢ /{\/_edBl V2oL, (H )dB2}>S

2
_ (ﬂB / fWL )dB>
= exp { Bl / WWL V2oLiHy) g / S [z—ZJr”QZQLT(HT)?}dr}

On a les résultats suivants

Proposition 0.2.6. Y est une (F,P)-martingale. Soit P la mesure de probabilité sur

g.. Alors sous P le

processus H est la solution de I’EDS (0.2.2) avec By est remplacé par
1
V2

qut est un mouvement brownien standard sous IP.

Q 229 L

By =
2 0

(B! - B?) -

Théoréme 0.2.3. Soit HY le processus suivant la dynamique spécifiée dans la Propo-

sition 0.2.1, et soit H lunique solution faible de I’EDS (0.2.2). On a
(HY, Lgy) = (H,Ls,) in C([0,00]) x D([0, 0]), (0.2.11)

ou SN et S, sont définis dans (0.2.7) et (0.2.3).
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On peut maintenant démontrer le Théoreme 0.2.1.

Preuve du Théoréme 0.2.1 : On définit Z* := "TQLé,VN (t). D’apres le Corollaire
0.2.2, ZN¥* suit la dynamique (0.2.4). A partir de (0.2.11), "TQLSx est la limite en loi
de ZN* quand N — oo. D’apres la Proposition 0.2.3, ¢ — "IZLSZ (t) est une solution

faible de ’'EDS (0.2.1), qui compléte la preuve du Théoréme 0.2.1.

0.3 La hauteur et la masse totale de la forét d’arbres généalogiques
d’une grande population avec compétition

Considérons un processus de branchement en temps continu, qui est a valeurs soit dans
Z. soit dans R, (dans ce dernier cas on parle de processus de branchement a espace
d’état continu, et dans ce cas nous nous limitons aux diffusions de Feller). De tels
processus peuvent étre utilisés comme des modeles d’évolution de population. Ici, nous
voulons modéliser les interactions entre les individus (par exemple compétition pour
des ressources limitées) qui détruit la propriété de branchement. Cettes interactions
peuvent augmenter le nombre de naissances, ou augmenter le nombre de déces. Dans
le chapitre 3, on définit cette interaction par une fonction f satisfaisant I’hypothese

suivante.

Hypothese (H1): f € C(R.,R), f(0) =0, et il existe # > 0 tel que
fla+y) - fly) <Oz Va,y>0.

Nous donnons des conditions explicites sur f qui entrainent que le temps d’extinction
(qui est aussi la hauteur de la forét d’arbres généalogiques) reste ou non borné quand
la taille initiale de la population tend vers I'infini, et nous discutons la méme question

en ce qui concerne la masse totale de la forét d’arbres généalogiques.
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0.3.1 Le modéle de population discret avec interaction

On consideére un processus de population en temps continu { X;", ¢t > 0} & valeurs dans
Z. partant a I'instant zéro de X" = m > 1, c’est-a-dire, m est le nombre d’ancétres
de la population. {X/",t > 0} est un processus de Markov en temps continu a valeurs
dans Z., qui évolue de la maniere suivante. Si X" = 0, alors X" = 0 pour tout s > t.

Si a un instant ¢, X" =k > 1

E+1, autaux M+ FT(k)
X" saute de k a

k—1, autaux pk+ F~(k),

ou f est une fonction satisfaisant (H1), A, u sont des constantes positives, et

Frk) =) (f(O = f(L=1)F,  F (k)= _(f(O)— f(t—1))".

1 1

On décrit maintenant une évolution conjointe de tous {X;*, ¢t > 0},,>1, ou en d’autres
termes du processus & deux parametres { X", ¢t > 0,m > 1}. Supposons que les m
ancétres sont arrangés de gauche a droite. Cet ordre est transmis a leurs descendants:
Les descendants d’un individu sont placés a sa droite et si a un instant ¢ donné
I'individu ¢ est placé a droite de I'individu 7, alors toute la descendance de 'individu
1 a partir de cet instant t sera placée a droite de toute la descendance de l'individu
j. Cela veut dire que la forét d’arbres généalogiques de cette population est une forét
d’arbres planaires ou I’arbre issu du premier ancétre (dans l'ordre gauche-droite) est
placé tout a fait a gauche, 'arbre du deuxieme ancétre est placé a droite du premier
et ainsi de suite.

On décrete que a tout instant ¢, I'individu ¢ dans la population donne naissance
par interaction au taux (f(L;(t) +1) — f(£s(t)))" et meurt & cause de la compétition
au taux (f(L;(t) + 1) — f(Li(t)))", ou L;(t) désigne le nombre d’individus situés a
gauche de 'individu ¢ & 'instant ¢. Cela signifie que 'individu 7 est sous attaque par
les autres situés a sa gauche si f(£;(t) + 1) — f(Li(t)) < 0 tandis que l'interaction
améliore sa fertilité si f(L;(t) +1) — f(L;(t)) > 0.
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On définit la hauteur et la longueur de la forét des arbres généalogiques par
HTrL
H™ = inf{t > 0, X]" = 0}, L™= X[dt, pour m > 1.
0
Notons que notre couplage des {X™, m > 1} entraine que H™ et L™ sont p.s.

croissantes comme fonctions de m. On veut étudier les limites de H™ et L™ quand

m — Q.

0.3.2 Modeéle avec interaction dans le cas continu

On fait une renormalisation adéquate du modele discret ci-dessus. Si on choisit
= [Nz], remplace A par Ay = 2N, p par uy = 2N, f par fy(z) = Nf(x/N), et
définit le processus Z¥ = N71XN il est montré dans [4] que ZV converge en loi vers

I'unique solution de I'EDS (voir Dawson, Li [5])

Z.’IJ
—$+/fods+2/ W(ds, du),

ot W est un bruit blanc sur Ry xR . Cette EDS couple I’évolution de tous {Z7, ¢t > 0}
conjointement pour toutes les valeurs de x > 0.

A partir de [4], {Z*, > 0} est un processus de Markov & valeurs dans C'(R,, R, )
(lespace des fonctions continues de R, & valeurs dans R, ) partant de 0 & z = 0. De
plus, on a que pour 0 < z < y, Z/ > ZF pour tout t > 0 p.s. Pour z > 0, on définit
T* le temps d’extinction du processus Z@ (il est aussi appelé la hauteur du processus

Z*) par
T =inf{t > 0,77 = 0}.
Et définit S* la masse totale de Z* par

Tx
W:/ Zrdt.
0

Notons que notre couplage des {Z*, x > 0} entraine que T” et S” sont p.s. croissants.

On veut étudier les limites de T% et S* quand z — oo.
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0.3.3 Les résultats principaux

Les résultats principaux du chapitre 3 sont suivants.

Théoreme 0.3.1. Supposons que f est une fonction satisfaisant (H1) et il existe

ag > 0 tel que f(z) # 0 pour tout x > ag. On a
1) Si [ T )lda: 0o, alors

sup H" =00 p.s., supT® =00 p.s.

m>0 >0

2) Si fao |f Ty de < oo, alors

sup H" < o0 p.s., supT® < oo p.s.
m>0 >0

De plus, il existe une constante positive ¢ tel que

sup E(e < 00, supE(eCTx) < 00.

ch)
m>0 >0

Théoreme 0.3.2. Supposons que la fonction ("T satisfait (H1) et il existe ag > 0 tel
que f(x) # 0 pour tout © > ag. On a

1) Si fao Fyde = oo, alors

sup L™ =00 p.s., supS¥ =00 p.s.
m>0 x>0

2) Si [ iy do < 00, alors

sup L™ < oo p.s., sup S < oo p.s.
m>0 x>0

De plus, il existe une constante positive c tel que

sup E(ecm) < 00, sup]E(eCSm) < 00.
m>0 >0
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0.4 Temps d’extinction et la masse totale du processus de branchement
a espace d’état continu avec compétition

Dans le chapitre 4, nous généralisons les résultats du chapitre 3 obtenus dans le cas
de la diffusion de Feller avec compétition pour le cas du processus de branchement a
espace d’état continu (CSBP) avec compétition (dont les trajectoires sont discontinues).
Plus précisément, supposons que o > 0 est une constante, et (r A 72)m(dr) est une

mesure finie sur (0, 00). Soit ¥ la fonction donnée par

1 o0
Y(A) = 502)\2 +/ (e™ — 14 Xr)m(dr), A>0.
0

Soit W (ds, du) le bruit blanc sur (0, 00)? muni de la mesure de Lebesgue dsdu, et soit
N(ds,dz,du) la mesure aléatoire de Poisson sur (0, 00)® d’intensité dsm(dz)du. Soit

N(ds,dz,du) la mesure compensée de N(ds, dz,du). Nous allons considérer le CSBP

avec compétition caractérisé par le mécanisme de branchement v, qui est gouverné

par 'EDS

¢ t pze t poo pZE
Z =x+ / f(Z%)ds + 0/ / W (ds, du) + / / / zN(ds,dz, du),
0 0 Jo o Jo Jo

(0.4.1)

ott la fonction f satisfait (H1). D’aprés Dawson, Li [5], I'équation (0.4.1) a une unique
solution forte. Cette EDS couple I'évolution des {ZF, ¢ > 0} conjointement pour
toutes les valeurs de > 0.

Pour = > 0, on définit 7% le temps d’extinction du processus Z* par
T* = inf{t > 0, Z = 0}.
Et définit S la masse totale de Z* par

Tﬂ')
W:/ Zrdt.
0

Notons que notre couplage des {Z*, x > 0} entraine que T” et S” sont p.s. croissants.

On étudie ensuite les limites de T et S* quand x — oc.
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0.4.1 Temps d’extinction du CSBP avec compétition

On montre que

@) S

Théoréeme 0.4.1. Supposons que f est une fonction vérifiant (H1) tel que lim,_,o+ e

—o00 et [ dA/1(N) = o0o. On a pour tout x > 0, T® = 0o p.s.

Théoreme 0.4.2. Supposons que f est une fonction vérifiant (H1) et il existe ag > 0
tel que f(y) # 0 pour tout y > ag. Si

/OO dN/Y(N) < o0, /OO %dy < 00,

alors on a

sup E(T%) < oo.
>0

0.4.2 La masse totale du CSBP avec compétition

Dans cette sous-section, nous supposerons que

Hypothese (H2): f est une fonction satisfaisant (H1) tel que
i (@

u—0t U

)

pour un certain —oo < a < 0, et la fonction fi(u) := @ — « satisfait (H1).

On a le

Théoreme 0.4.3. Supposons que f est une fonction vérifiant (H2) et il existe ag > 0

tel que f(u) # 0 pour tout u > ag. Si f;: U(“—u)‘du = 00, alors

S* =00 p.s. quand T — 0.

c 1. . [e’s) .
Nous considérons maintenant le cas fao mdu < 00. Nous allons voir que dans

ce cas sup,.oS® < oo p.s. En fait, nous pouvons montrer qu’il a des moments finis.
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Soit 7 la constante tel que fa(u) := yu— fi(u) est une fonction positive et croissante

(on peut choisir par exemple v > 6, par Hypothese (H2)). 1l est facile de voir que

/a:o fziu) du < oo.

Soit g(y) = yoo ol du pour y > ag. Alors g est décroissante et g(y) — 0 quand

y — oo. Dans la sulte, nous ferons I’hypothese suivante:

Hypothese (H3): La fonction fy est C* sur (ag, 00) et il existe des constantes

d>0,c> ap tel que
g(y)fé(y) >1+d pourtout y > c.

Définit la fonction h € C(R,,R;) comme suit.

Alors h est croissante et est C? sur (¢, 00), h(y) — oo quand y — 0o, et

—dlg ( )foly) —d —1]
f2(y)? (y)d+2

4

h(y) =

<0 pour tout y>c

On a
Théoreme 0.4.4. Supposons qu’il existe ag > 0 tel que f(u) # 0 pour tout u > ag et
que (H2), (H3) sont valides. Si

/ “ du < oo et limM:oo,
a | f(u)] Aoo A

alors

E(h(sup 5%)) < oc.

>0
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Chapter 1

COALESCENCE TIMES FOR THE
BIENAYME-GALTON-WATSON PROCESS

1.1 Introduction

Random trees are mathematical objects that play an important role in many areas
of mathematics and other sciences. One of the most celebrated random trees is the
Bienaymé- Galton-Watson (BGW) tree, where the offspring of each vertex of the tree
are independent and indentically distributed (i.i.d) random integers. BGW tree plays
a fundamental role in both the theory and applications of stochastic processes. For

more details, see e.g. [1, 12].

One interesting and important approach to random trees is coalescence. In [7],
Lambert has investigated the distribution of coalescence time for two individuals
picked at random (uniformly) in the current generation of a BGW process in the
discrete setting. The purpose of this note is to extend these results of Lambert to the
case of continuous time BGW process. The basic idea is the same as used in Lambert
[7], but we need some other techniques. We start a continuous time BGW process
from a number x of individuals at time 0. Its law is denoted by P, and P;t) indicates
that the current time is time ¢. If the current time contains at least two individuals,
we pick uniformly within it two individuals, without replacement. We then compute
the distribution of their coalescence time 7" (if the current time contains less than two
individuals, T" is set to 0o). In the subcritical case, the law P? denoting the limit of
the distributions IP’gf)(~ | T' < o0) as t — oo does not depend on x and is called the
quasi-stationary distribution. In section 1.3, we specify the law of T" under P%°. In

section 1.4, we extend our results to multivariate coalescence when n individuals are
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sampled at the current time.
In this chapter, the Lambert’s results are not recalled. The reader should read
again [7] to compare the results in the discrete and continuous time cases. We also

refer the reader to several interesting closely related results [5, 9, 10, 13, 14].
1.2 Distribution of the coalescence time

Let N be the set of all natural numbers N = {0, 1,2, ...}. We consider a continuous time
N-valued branching process Z = {Z;,t > 0}, where ¢ denotes time. Such a process is
a Bienaymé-Galton-Watson process in which to each individual is attached a random
vector describing its lifetime and its numbers of offspring. We assume that those
random vectors are i.i.d.. The rate of reproduction is governed by a finite measure p
on N, satisfying p(1) = 0. More precisely, each individual lives for an exponential time
with parameter u(N), and is replaced by a random number of children according to
the probability u(N)~!u. Hence the dynamics of the continuous time Markov process
Z is entirely characterized by the measure p. For x € N, denote by P, the law of Z
when Zy = x. We have the following proposition, which can be seen in [1], chapter III

(page 106).
Proposition 1.2.1. The generating function of the process Z is given by
E,(s7t) = 1y (s)", s€[0,1],x € N,
where
Oy(s)
ot
and the function ® is defined by

= (I)(wt(s))a ¢0<S) =5

o0

O(s) = Z(s” —s)u(n), se€]0,1].

n=0
The continuous time BGW process Z is called immortal if ;(0) = 0. In this
chapter, we always assume that p(0) > 0. Let n := inf{u > 0 : &(u) = 0}. Since
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®(0) = p(0) > 0, then we have n > 0. Put

F(t) ::/0 %, t<m.

Then the mapping F': (0,17) — (0, 00) is bijective. We call ¢ to be its inverse mapping.

Moreover, t — 1,(s) is the unique nonnegative solution of the integral equation
t
o(t) —/ S(o(u))du=s, se[0,1,t>0,
0

so that

Pe(s) g
/ " —t, sel01],s<nt>0.

Hence

U(s) = p(t + F(s)), s€0,1],s <n,t >0.

Note that the branching property implies that ¥y, 4, = ¥y, 0 Vy,.

Now, assume that the current generation is generation ¢,t > 0. We consider two
individuals o1, 09 at the present time, and ask when they coalesce, that is, how much
time has elapsed since their common ancestor. In a more rigorous way, for 0 < u < t,
denote by 7,(0;) the (unique) parent of o; at time (¢t — u),i = 1,2. The coalescence

time T'(01, 09) of 01,05 is uniquely determined by
T(o1,09) :==1inf{u: 0 <u <t 7(01) = Tu(02)},

with the convention inf ) = co. We denote by T the coalescence time of two individuals
picked at random (uniformly) among the individuals which present in the current
generation. If the current generation contains less than two individuals, 7" is set to
00.

With the notation P®) indicates that ¢ is the current time, the distribution of T is

given in the following statement.

Theorem 1.2.1. For any 0 <t; <ty <t,y>1,y € N,

AC
i ()’

ED(Z,(Z — 1)s% 72T <ty | Ziyy = y) = gty ()01, () s e [0,1).
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The previous p.q.f can be inverted as follows, for any p > 2

PO(Z, =p, T € dty | Ziy, = y)/dt; =

ZNM)zP (n -1

v mume( 22 =) o, 3 200) + 2P0 - 1) =p).
= p(p—1)

where Z©, ZW 7 are i.i.d branching processes distributed as Z, and the notation

Zt(QO) (y — 1) denotes the value taken by Z©) at time ty when started at y — 1.

Remark 1.2.2. When t, = 1, the above equation can be interpreted as follows. The
amount p of population at time ¢ is divided in three parts. An individual is marked
at generation ¢t — t; (y possible choices), which is the candidate for the common
ancestor of two random individuals of generation ¢ on {7 € dt;}. The first part is the
descendance at the current time of the y — 1 remaining individuals. On {T" € dt;}
the marked individual must be replaced immediately by n offspring, n > 2. Then an
individual is marked among the n possible offspring of the previously marked ancestor.
The descendance of this individual is the second part, and the descendance of the
n — 1 remaining others is the third part. On {T € dt;}, one of the two individuals
sampled must be in the second part, and the other in the third part.

Proof. To get the first equation, we use the same argument used in the proof of

Theorem 1 in [7]. The second equation of the theorem is equivalent to

EO(Z,(Z, —1)s? 2T € dty | Zy_y, = y)/dt; =

yZnu(n)E(ij)(l)fo)(n—1)5Z$)(y*”*Zg)(1)+Z§12)("*1)*2> Vs e (0,1). (L2.1)

n>2

Using the first result of the theorem, the left-hand side of (1.2.1) equals

, 2 (4
B2, = 1)s" 3T € dty | Ziay = y) /b = g}, ()0 (5" 5 (zt53>
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From the Proposition 1.2.1 we have

8¢t1 (8) o

8—t1 - q’(¢t1 (S))

Oy, (s) _ ,

T = (), ()

_a : " 4 ’ "

%}1(8) = O (31, (8))1r, (8)° + (Y1, ()1, (9,
so that
o (i) vh(9)2aD (o2 |
oty (%(s)) B b (s)? =@ (Y1, (8))1hy, (9)-

Then

ED(Z,(Z, — 1)s? 2T € dty | Ziy, = y)/dt,
= Y, (8)Un, (5) 10" (¢, (5))ly, (5)
= Yy, (5) 0, (5)Y " g, (8) D mln — 1)pu(n)i, (s)" 2.

n>2
Finally, the right-hand side of (1.2.1) equals

(1) (2)
y Z nM(n)E(SZt(S)(y_l))E(Zt(Ql)(1>3Zt2 (1)_1)E(Zt(12) (n . 1)SZt1 (n—l)—1>

n>2
=y (B (7B (Ziys™e T o1 (Ziys™ )
n>2
=y ) ()t (), (5)(n — 1) ()" 24, (9),
n>2
which ends the proof. 0

Corollary 1.2.3. For any 0 < t; <t,

Wy, (5)
Uy, (s)

POT <) = [ st = ) Eulepis)

In particular,

pY) (At least two extant individuals, a random pair has no common ancestor) =

z(xr — 1)/0 ds(1 — 3)@/};(3)2%(3)‘”—2.

Proof. See the proof of the corollary 1 in [7]. O
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1.3 Quasi-stationary distribution

In this section, we consider the limiting distribution of the coalescence time when the
process is conditioned on {Z; > 2} and ¢t — oo. Informally, this limit embodies the
situation where the genealogy was founded a long time ago and is still not extinct,
with at least two descendants at the present time. We will need some results on
quasi-stationary distributions for the continuous time BGW process, which can be
found in [1, 4, 16]. The reader may see more general results on quasi-stationary
distributions, which have been obtained for continuous time Markov chains by [15]
and for semi-Markov processes by [3]. We also refer the reader to [2, 8, 11] for the
results on quasi-stationary distributions for population processes.

We consider the case ¢;(1) = Ei(Z;) < 1 (subcritical case) when E,(Z; log(Z,)) <
00. According to Theorem 6 in [16], there is a nonnegative sequence (ay, k > 1)

summing to 1 such that
ImPy(Z=j|Z>0)=a;, VeeNj>L (1.3.1)
—00

The sequence (ay, k > 1) is called the Yaglom limit of the process Z. If we define

g(s) = Z as”, s € [0,1],

then (1.3.1) deduces

T 74 1 77Z)t(5) _¢t(0)
9(s) = tligloEx(S | 2> 0) = tliglo 1 —1(0) ~

We have the result:

s €10,1].

Proposition 1.3.1. In the subcritical case when E,(Z1log(Z,)) < oo, we have for
any s € [0, 1],
tlim E.(Zis? 1 Z, > 0) =g (s) < ¢(1) < 0. (1.3.2)
—00

The proof of Proposition 1.3.1 can be found in [1], chapter IV (page 170). Under
more restrictive hypothesis that E;(Z?) < oo, we can give a very elementary and

interesting proof of (1.3.2), which is provided by two following lemmas.
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Lemma 1.3.2. Fort >0, let ¢(s) be the function defined by

11_1_“8(3) =,(1) —ea(s), s€l0,1). (1.3.3)

Then €,(s) is monotone decreasing, tend to zero when s tend to one.

Proof. 1t follows from the fact that, for each ¢, (s) is increasing, convex, and

The equality (1.3.3) is equivalent to

L—tu(s) _ als) (1.3.4)

(1= s)¢i(1) (1)
Replacing s by 15(s) in (1.3.4) we obtain

L= dlinls) _ | alin(s) _

(1 = ¢n(s))¥i(1) di(1) T
Note that ¢4, (s) = ¢u(¥n(s)), and ¥, (1) = 1, (1)¢, (1), then

it
1 —4rin(s) 1—hu(¢nls) 1 —¢n(s) 1 — ¢n(s)

DO o) O AR (D A

This implies that the sequence (1 — /,(s))/((1 — s)¥,(1)) is monotone decreasing in ¢

t.h>0.

t,h > 0.

and thus converges to a function x(s). Letting s = 0 we have

. P(Z > 0)
X0 = fin = 20

Lemma 1.3.3. x(0) is positive and for all x € N

. / 1
Proof. We will follow the proof idea of Joffe as given in [6]. Note that
XO) = lim =5y =,
n—1
= lim H [1 — El(z,ﬁk(o))}
IS (1)
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Hence it follows that x(0) > 0 if and only if the series Y -, €1(¢(0)) converges. Since
€i(s) > 0 we get
1— @Dt(S)

Letting s = 0 we obtain

G(0) > 1=y (1), >0
a(yr(0) < a(l—¢(1), k=0 (1.3.5)

On the other hand, E;(Z?) < oo implies that ¢, (1) < oo, then there exists a constant
C > 0 such that

e1(s) < C(1—s), s €[0,1). (1.3.6)
From (1.3.5) and (1.3.6) we deduce that the series > ;- €1(¢%(0)) converges, so that

x(0) > 0. This implies that ¢,(0) — 1 as t — co. Therefore

L 1/)15 h(O) - ¢h<0)
9(r(0)) = fim ==
(1~ a0 + (1~ 4 (0)

= i 1= 4n(0)
() +40)

U (1)
= —,(1) + 1.

Thus

gD -1 )
g(1)= tl—>oo P (0) — 1 t1—>oo 0 (0) =1 x(0)

O]
Denote by Z the limiting value of Z, conditioned on {Z, > 2} as t — co. We have

Theorem 1.3.1. In the subcritical case when E1(Z; log(Zy)) < oo, the quasi-stationary
distribution P9 of T and Z is defined by

P*(Z =p,T € dh) = lim PO(Z, =p,T€dh|Z,>2), p>2h>0.
—00
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Then P defines a probability distribution which does not depend on x and satisfies

In particular,
Un(s)
an?

Proof. See the proof of Theorem 2 in [7]. O

P¥(T <h)= 1_;9,(0)/0 ds(1—s)

1.4 Multivariate coalescence

Assume that the current generation contains at least n + 1 individuals, n > 1. We
will present the distribution of coalescence times, when n + 1 individuals are sampled
uniformly and independently at the current time ¢. For kK = 1,2,...,n, we denote by
Ty the coalescence time of the first individual and the (k + 1)-th individual, and by

T} the k-th coalescence time. We have

Theorem 1.4.1. For any 0 < t; < ty < ... < t, < t, the joint distribution of

coalescence times Ty, is given by
E(Z,(Z, — 1)..(Z, —n)sZ 7L Ty € dty, ..., T, € dt,)/dt,...dt, =

ey ()i () [ [ e () [ D Rk = Du(k)n (5)*7%], s €10,1).
i=1 k>2
Proof. We will prove this theorem by induction since the formula holds when n =1

by Theorem 1.2.1. We first condition on {Z;,_; = y}. We apply the second formula

of Theorem 1.2.1 to the last coalescence time T,,

PO(Z, =p, Ty € dty, .., T, € dty | Zioy, = y)/dtn =y Y kp(k)x

k>2

Z0y - 1)+ 20 + 22 (k- 1) = p,

E<Z§i’<1>Z§E><k ~DA(Z)(k =) —nt D)
p(p—1)..(p—n)
T, Gdti,ign—1>,
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where the interpretation is as for n = 1 (see Remark 1.2.2): y corresponds to the
choice of the common ancestor of all individuals in generation ¢t — t,,, k is the number
of offspring this ancestor had instantaneously at time t — T}, and corresponds to the
choice of the ancestor of the last individual within this offspring. The n remaining

individuals have to be found in the descendance of the k£ — 1 remaining offspring. Then

ED(Zy(Zy = 1)..(Zy —n)s” "' Ty € dty, ... Ty € dty | Zyy, = y)/dtn =y > kp(k)x

k>2
E(Zt(l)(l)Zfz)(kz - 1)...<Z§3’(k —1) = o 1) GDTA RN T i <n - 1)
(1) 1)
=y Y hp(R)E(s%m OE(Z) (1)s%0 D7)
k>2
E(Z2(k—1)..(Z2(k — 1) — n+1)s%: &=V T e dt; i <n— 1)
= ytbu, ()", () ) ou(k
k>2
E(Z2(k — 1).(Z2 (k= 1) —n + 1)s% ®-D" T, € dtyyi < n — 1),
By the induction hypothesis, the last expression equals
Yy, (s)V "y (s Z ku(k
k>2
n—1 A
(k — 1)y, (), ()2 T () [ 325G = Db (s 2] iyt
i=1 Jj=2
= yiby, ()" ", ( Hwt VS kk — D)p(k)we,(s)*2)dt...dt,y 1.
k>2

Hence the result follows by integrating w.r.t. to the distribution of Z;_;, conditional

on {Zy = x}. O

Theorem 1.4.2. For any 0 < t; < ty < ... < t, < t, the joint distribution of

coalescence times T} is given by

EO(Z(Z, — 1)..(Z, — n)s? "L TF € dty, .., T € dt,)/dt,..dt, =

Tl (8)bi(s “Hwt [ (k= Dp(k), ()52, se0,1).

k>2

(n+1)



35

Proof. The proof is similar to that of Theorem 1.4.1 above. We reason by induction
since the formula holds when n = 1 by Theorem 1.2.1. We first condition on {Z;_;, =
y} and apply the second formula of Theorem 1.2.1 to the last coalescence time T},

1
PO(Z, = p, T € dty,....,TF € dty, | Zo_y, = y)/dt, = —yzkﬂ Z (n;t ) Z

k>2 1<j1<.<gi—1<n—1

E<Z§j>(1)..(2§3(1) — i+ 1) 20 =1).(Z2 (k= 1) —n+1)
p(p—1)...(p — n)

=p, Ty (i) € dty, for h € {j1,..,ji1} and Ty (n+ 1 — i) € dt;, for h & {j1,..,Ji_1}, h<n—1>

IOy = 1)+ 2000 + 22 (k- 1)

where the interpretation is as follows: y corresponds to the choice of the common
ancestor of all individuals in generation ¢t —t,,, k is the number of offspring this ancestor
had instantaneously at time ¢ — 7" and corresponds to the choice of the ancestor of the
last 7 individuals within this offspring (there are ("H) possible choices for the last ¢
individuals). The n+ 1 — i remaining individuals have to be found in the descendance
of the £ — 1 remaining offspring. For m = 1,..,4 — 1,7}, (i) is the m-th coalescence
time of the last ¢ individuals, and for h & {j1,..,Ji-1},h <n—1,T;(n+1—1i)is a
coalescence time of the n + 1 — ¢ remaining individuals. And we have to divide the

expression by 2 because each sample has been counted twice. We then have

E(t)(Zt(Zt —1)(Zy —n)s? VT e dty, . T € dty, | Ziy, =) /dty

iy (7Y ¥

k>2 1<1<..<gi—1<n—1

E( 280 (128 (1) =i + D2 (= 1) (28 (k= 1) = )% 02 2 o),

T;:(Z) S dth for h € {jl, ..,ji_l} and T;:(n +1-— Z) S dth for h g {jl, ..,ji_l}, h <n-— 1>

= —kau Z (n;r 1) > E (5% 0D x

k>2 1<1<..<gi—1<n—1
(1)
E(Z(1).(ZP(1) — i+ 1)s% D= T (i) € dty, for h € {ju, .., jia}) %
E(Z2 (k= 1).(ZP(k — 1) — n + )% 5=D=m4-1 Te(n 4 1 —4) € db,

for g {jla "7ji—1}ah <n-— 1)
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By the induction hypothesis, the last expression equals

DML Z (") X e
k>2 1</ <.<ji—1<n—1
- 1 ! . /
%wtn<8) H ¢th Z] J = Dpu(i), (s ) ]
he{ji,..ji—1} j>2
e D e o (o TT (9[22 50 — D (7

1<h<n—1,h&{j1,-,Ji-1} Jj=2

dtydts..dt,

= 2y kulh Z(nzﬂ) y, o U DRE D Ry (o, (5

k>2 1<j1<..<ji—1<n—1

n—1
(k — 1)w£n(s>¢tn(s)’“‘2ﬂwth (575G — DuG)y, ()2 dtrdts..dt,,

j>2
- gy bl Z (n . 1) (Z: | > (ol O =T D (s, ()
k>2
n—1

(k — 1)w£n(s)¢tn(s)’“‘2ﬂwth (575G — DuG)n, (s) 2] dtrdts..dt,,

j>2

(n+ U Y, (), (5) Hwth [D 3G = Duli)ibu, (s ] dtrdty. b, .
j>2

Hence the result follows by integrating w.r.t. to the distribution of Z;_; conditional

on {Zy = x}. O
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Chapter 2

“TREES UNDER ATTACK”: A RAY-KNIGHT
REPRESENTATION OF FELLER’S BRANCHING
DIFFUSION WITH LOGISTIC GROWTH

2.1 Introduction

Feller’s branching diffusion with logistic growth is governed by the SDE
dZ, = o/ Z; dW, + (02, — v Z?) dt, Zy=1x>0, (2.1.1)

with positive constants o, § and . It has been studied in detail by Lambert [9],
and models the evolution of the size of a large population with competition. The
diffusion term in (2.1.1) incorporates the individual offspring variance, and the drift
term includes a super—criticality in the branching that is counteracted by a Kkilling
with a rate proportional to the “number of pairs of individuals”.

For § =~ =0, equation (2.1.1) is the SDE of Feller’s critical branching diffusion
with variance parameter 0. In this case, a celebrated theorem due to Ray and Knight
says that Z has a representation in terms of the local times of reflected Brownian
motion. To be specific, let H = (Hy)s>0 be a Brownian motion on R, with variance
parameter 4/02, reflected at the origin, and for s,t > 0 let L (¢, H) be the (semi-

martingale) local time accumulated by H at level ¢ up to time s. Define
S, :=inf{s > 0: (¢?/4)Ly(0, H) > z}. (2.1.2)

Then (02/4)Lg, (t, H), t > 0, is a weak solution of (2.1.1) with # = v = 0, and is
called the Ray-Knight representation of Feller’s critical branching diffusion.
The Ray-Knight representation has a beautiful interpretation in an individual-

based picture. Reflected Brownian motion H = (Hy)s>¢ arises as a concatenation
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of excursions, and each of these excursions codes a continuum random tree, the
genealogical tree of the progeny of an individual that was present at time t = 0.
The size of this progeny at time ¢ > 0 is 02/4 times the (total) local time spent by
this excursion at level ¢. Starting with mass z at time ¢ = 0 amounts to collecting
a local time (4/0?)x of H at level 0. The local time of H at level ¢ then arises as
a sum over the local time of the excursions, just as the state at time ¢ of Feller’s
branching diffusion, Z,, arises as a sum of the masses of countably many families, each
of which belongs to the progeny of one ancestor that lived at time ¢ = 0. The path
(Hs)o<s<s, can be viewed as the exploration path of the genealogical forest arising from
the ancestral mass x. We will briefly illustrate this in Section 2.2 along a discrete
mass — continuous time approximation. For a more detailed explanation and some

historical background we refer to the survey [13].

The motivation of the present paper was the question whether a similar picture is
true also for (2.1.1) with strictly positive § and v, and whether also in this case a Ray-
Knight representation is available for a suitably re-defined dynamics of an exploration
process H. At first sight this seems prohibiting since the nonlinear term in (2.1.1)
destroys the independence in the reproduction. However, it turns out that introducing
an order among the individuals helps to overcome this hurdle. We will think of the
individuals as being arranged “from left to right”, and decree that the pairwise fights
are always won by the individual “to the left”, and lethal for the individual “to the
right”. In this way we arrive at a population dynamics which leaves the evolution
(2.1.1) of the total mass unchanged, see again the explanation in Section 2.2. The
death rate coming from the pairwise fights leads in the exploration process of the
genealogical forest to a downward drift which is proportional to Ls(H,, H), that is,
proportional to the amount of mass seen to the left of the individual encountered at
exploration time s (and living at real time H,) — more rigorously, L,(t, H) denotes
the local time accumulated by the semimartingale H up to time r at level ¢. For the

reader’s convenience, we recall a possible definition (borrowed from [16], Theorem
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VI.1.2) of that quantity:

Ly(t) :=2(Hy, —t)* — 2/ 1(p, >0 dH,.
0

As a consequence, those excursions of H which come later in the exploration tend to
be smaller - the trees to the right are “under attack from those to the left”.

In quantitative terms, we will consider the stochastic differential equation

2 1 20 s
H, = —Bs+—L3(O,H)+—25—7/ L.(H,, H)dr, s >0, (2.1.3)

o 2 o 0
where B is a standard Brownian motion. The last two terms are the above described
components of the drift in the exploration process, and the term L,(0, H)/2 takes

care of the reflection of H at the origin. The following result is proved in [14] using

Girsanovs theorem.
Proposition 2.1.1. The SDE (2.1.3) has a unique weak solution.
Our main result is the

Theorem 2.1.1. Assume that H solves the SDE (2.1.3), and let, for x > 0, S, be
defined as in (2.1.2). Then (c*/4)Ls,(t,H), t > 0, solves (2.1.1).

We will prove Proposition 2.1.1 by a Girsanov argument, and Theorem 2.1.1 along
a discrete mass—continuous time approximation that is presented in Section 2.2. In
section 2.3 we take the limit in the total population process along the discrete mass
approximation. An important step in the proof of Theorem 2.1.1, and interesting in
its own right, is Theorem 2.4.1 in Section 2.4, in which we obtain a convergence in
distribution, in the case 6 = v = 0, of processes that approximate reflected Brownian
motion, together with their local times (considered as random fields indexed by their
two parameters, time and level). A similar convergence result was proved in [15] for
piecewise linear interpolation of discrete time random walks and their local time. The

proof of Theorem 2.1.1 is completed in Section 2.5, using again Girsanov’s theorem,



42

this time for Poisson point processes. In that section we will also prove Theorem 2.5.1,
which says that in the case 6,7 > 0, the exploration process together with its local
time (now evaluated at a certain random time, while the parameter for the various
levels is varying) converges along the discrete mass approximation. Finally, for the
convenience of the reader, we collect in an Appendix, at the end of this paper, several
results from the literature, concerning tightness and weak convergence in the space D,
the Doléans exponential and “goodness”, and the two versions of Girsanov’s theorem
which we need : the one for Brownian motion and the one for Poisson point processes.

When this work was already completed, our attention was drawn by Jean—Francois
Le Gall on the article [12] by J. Norris, L.C.G. Rogers and D. Willams, who proved
a Ray—Knight theorem for a Brownian motion with a “local time drift”, using tools
from stochastic analysis, in particular the “excursion filtration”. With a similar
methodology we were recently able to establish another, shorter but less intuitive,

proof of the main result of this paper [14].
2.2 A discrete mass approximation

The aim of this section is to set up a “discrete mass - continuous time” approximation
of (2.1.1) and (2.1.3). This will explain the intuition behind Theorem 2.1.1, and also
will prepare for its proof.

For z > 0 and N € N the approximation of (2.1.1) will be given by the total mass
ZN: of a population of individuals, each of which has mass 1/N. The initial mass

is Z)" = | Nz| /N, and ZN* follows a Markovian jump dynamics: from its current

state k/N,

k+1)/N at rate kNo?/2 + k0
ZN* jumps to ( )/ / (2.2.1)

(k—1)/N at rate kNo?/2 + k(k — 1)/N.

For v = 0, this is (up to the mass factor 1/N) as a Galton-Watson process in

continuous time: each individual independently spawns a child at rate No?/2 + 6,
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and dies (childless) at rate No?/2. For v # 0, the additional quadratic death rate
destroys the independence, and hence also the branching property. However, when
viewing the individuals alive at time t as being arranged “from left to right”, and by
decreeing that each of the pairwise fights (which happen at rate 2y and always end
lethal for one of the two involved individuals) is won by the individual to the left, we
arrive at the additional death rate 2y£;(t)/N for individual i, where £;(t) denotes

the number of individuals living at time ¢ to the left of individual 4.

The just described reproduction dynamics gives rise to a forest FN® of trees of
descent, drawn into the plane as sketched in Figure 2.1. At any branch point, we
imagine the “new” branch being placed to the right of the mother branch. Because of
the asymmetric killing, the trees further to the right have a tendency to stay smaller:
they are “under attack” by the trees to their left. Note also that, with the above
described construction, the F'™* x> 0, are coupled: when z is increased by 1/N, a

new tree is added to the right. We denote the union of the F¥* x > 0, by FV.

From FV we read off a continuous and piecewise linear R, -valued path HY = (HY)

(called the exploration path of FV) in the following way:

Starting from the root of the leftmost tree, one goes upwards at speed 2/N until
one hits the top of the first mother branch (this is the leaf marked with L in Figure
2.1). There one turns and goes downwards, again at speed 2N, until arriving at the
next branch point (which is B in Figure 2.1). From there one goes upwards into the
(yet unexplored) next branch, and proceeds in a similar fashion until being back at
height 0, which means that the exploration of the leftmost tree is completed. Then

explore the next tree, and so on.

For z > 0 we denote by SY the time at which the exploration of the forest FV:* is
completed. Obviously, for each ¢ > 0, the number of branches in F¥'* that are alive

at time ¢ equals half the number of t-crossings of the exploration path of F'V stopped
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Figure 2.1: A realization of (the first two trees of) FV and (the first two excursions
of) its exploration path H”. The t-axis is real time as well as exploration height, the
s-axis is exploration time.

at SY. Recalling that the slope of HY is £2N, we define

1
AN (t) = W# of t-crossings of HY between exploration times 0 and s,  (2.2.2)

where we count a local minimum of H” at t as two t-crossings, and a local maximum
as none. Note that by our convention both s — AN(t) and ¢ — AY(¢) are right
continuous, and in particular A (0) = 0. We call AY(¢) the (unscaled) local time of
HY accumulated at height ¢ up to time s. This name is justified also by the following

occupation times formula, valid for all measurable f: R, — R,

/Osf(H,{V) dr = /OOO fOAN@)dt,  s>0. (2.2.3)

The exploration time S% which it takes to traverse all of the | Nz| trees in FV® can
be expressed as

SN =inf{s: AY(0) > | Nz|/N}. (2.2.4)

Proposition 2.2.1. The exploration path s — HY obeys the following stochastic

dynamics:

o At time s =0, HV starts at height 0 and with slope 2N .
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o While HN moves upwards, its slope jumps from 2N to —2N at rate N?0>+4yNY,
where £ = AN (HYN) is the local time accumulated by HY at the current height

HXN up to the current exploration time s.

o While HN moves downwards, its slope jumps from —2N to 2N at rate N?0? +
2N6.

o Whenever HY reaches height 0, it is reflected above 0.

Proof. We give here an informal proof which contains the essential ideas. (A more
formal proof can be carried out along the arguments of the proof of Theorem 2.4 in
[1].)

Recall that the death rate of an individual 7 living at real time ¢ is No?/2 +
29L;(t)/N, where L£;(t) is the number of individuals living at time ¢ to the left of
individual i. Assume the individual ¢ living at time ¢ is explored first at time s,
hence H, = t, and H has slope 2N at time s. Because of (2.2.2), while HY goes
upward, we have £;(t) = NA,(HY). The rate in ¢ is the rate in s multiplied by
the factor 2N which is the absolute value of the slope. This gives the claimed jump
rate 2N (No?/2 + 2yA,(HY)) from slope 2N to slope —2N, which can be seen as the
rate at which the “death clock” rings (and leads to a downward jump of the slope)
along the rising pieces of the exploration path HY. On the other hand, the “birth
clock” rings along the falling pieces of HY its rate being No?/2 + 6 in real time
and 2N (No?/2 + 6) in exploration time, as claimed in the proposition. Note that
the process of birth times along an individual’s lifetime is a homogeneous Poisson
process which (in distribution) can as well be run backwards from the individual’s
death time. Also note that, due to the “depth-first-search”-construction of H”, along
falling pieces of HY always yet unexplored parts of the forest are visited as far as the

birth points are concerned. O
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The next statement is a discrete version of Theorem 2.1.1, and will later be used

for the proof of Theorem 2.1.1 by taking N — oc.

Corollary 2.2.2. Let HY be a stochastic process following the dynamics specified in
Proposition 2.2.1, and AN be its local time as defined by (2.2.2). For x > 0, let SY
be the stopping time defined by (2.2.4). Then t — Aggy (t) follows the jump dynamics
(2.2.1).

Proof. By Proposition 2.2.1, H” is equal in distribution to the exploration path of
the random forest F¥. Hence Agn () is equal in distribution to ZN"  where NZ*
is the number of branches alive in F¥'* at time ¢. Since ZV* follows the dynamics

(2.2.1), so does Afy. O

The next lemma will also be important in the proof of Theorem 2.1.1.

Lemma 2.2.3. Let HY and SY be as in Corollary 2.2.2. Then SY — oo a.s. as

T —r OQ.

Proof. Consider x = a/N for a = 1,2.... Applying (2.2.3) with s = SY and f =1
we obtain the equality S} = [ Afy(t) dt.

According to Corollary 2.2.2, Aggy (t) follows the jump dynamics (2.2.1), with initial
condition Agn(t) = a/N. By coupling Agév (t) with a “pure death process” K% that
starts in a/N and jumps from k/N to (k — 1)/N at rate k(k — 1)(No?/2 + v/N),
we see that fooo Agy(t) dt is stochastically bounded from below by f0T2 KNdt, where
T, is the first time at which K% comes down to 2/N. The latter integral equals
a sum of independent exponentially distributed random variables with parameters

(5 — 1)(N?02/2+7)), j =2,...,a. This sum diverges as a — oo. O
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2.3 Convergence of the mass processes ZV* as N — oo

The process {Z*, t > 0} with dynamics (2.2.1) is a Markov process with values in
the set E := {k/N, k > 1}, starting from | Nz|/N, with generator AV given by

ANf(2) = Nz (NU—Q + 9) {f (z + %) - f(z)] (2.3.1)

(0 (2 [ (-2 0]

for any f: Exy — R, z € Ey. (Note that the distinction between symmetric and
ordered killing is irrelevant here.) Applying successively the above formula to the

cases f(z) = z and f(z) = 22, we get that

t 1
zNe = gl +/ {azﬂx —yZN" (Zﬁv’” B N)} dr + M7, (2.3.2)
0

2 2 t 1
(z7) = (2) +2 / ZN* {ezﬁﬂf — N (Zﬂvvx = N)] dr
0

t 0 Y 1
2yNae Y gNa 0 (gNa 2\ gNa| ge 0 @ (933
+/O‘ |:O— r + N r + N T N T r + t ) ( )

where {M", t > 0} and {M?, ¢t > 0} are local martingales. It follows from (2.3.2)

and (2.3.3) that

t 0 0 1
AWy, / 2gNa U gNa T ( gNa 2\ pNal g 2.3.4
< >t 0 0 4, +N r +N r N r T ( 3 )

We now prove

Lemma 2.3.1. For any T > 0,

sup sup E [(Zﬁv’xr} < o0.

N>10<t<T

An immediate Corollary of this Lemma is that {Mt(l)} and {Mt@)} are in fact martin-

gales.

Proof. The same computation as above, but now with f(z) = 2%, gives

4 4 t
() = (7)o 22y ar 0 209
0
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where {Mt(4), t > 0} is a local martingale and for some ¢ > 0 independent of N,
Dy(2) <e(l+2Y). (2.3.6)

We note that NZ;"* is bounded by the value at time ¢ of a Yule process (which arises
when suppressing the deaths), which is a finite sum of mutually independent geometric
random variables, hence has finite moments of any order. Hence M@ is in fact a
martingale. We then can take the expectation in (2.3.5), and deduce from (2.3.6) and

Gronwall’s Lemma that for 0 <t < T,
Naz\? Na\?
E {(Zt x> } < [(ZO x) + CT:| et
which implies the result. O
We shall also need below the

Lemma 2.3.2. For any T > 0,

< 00.

2
sup E [ sup (ZtNx>

N>1  |0<t<T

Proof. Since from (2.3.2), 2" < Zy"" + 0 [} ZN=dr + MY,
t
sup |22 < 3120712+ 3t6* | | ZN"dr + 3sup |[MWY|2.
r<t 0 r<t
This together with (2.3.4), Doob’s L*inequality for martingales and Lemma 2.3.1
implies the result. O

Remark 2.6.8 in the Appendix combined with (2.3.2), (2.3.4) and Lemma 2.3.1
guarantees that the tightness of {Z'},>; implies that of {Z"}n>; in D([0, +00)).
Standard arguments exploiting (2.3.2) and (2.3.3) now allow us to deduce the

convergence of the mass processes (for a detailed proof, see e.g. Theorem 18 in [11]).

Proposition 2.3.3. As N — oo, ZN® = Z% where Z® is the unique solution of the

SDE (2.1.1) and thus is a Feller diffusion with logistic growth.
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2.4 Convergence of the exploration path in the case § =y = 0.

Let HY be a stochastic process as in Proposition 2.2.1 with § = v = 0. The aim of
this section is to provide a version of the joint convergence (as N — oo) of HY and
its local time which is suitable for the change of measure that will be carried through
in Section 2.5. This is achieved in Theorem 2.4.1 and its Corollary 2.4.1. The proof
of Theorem 2.4.1 is carried out in two major parts. The first part (Proposition 2.4.3)
provides a refined version of the joint convergence of HV and its local time at level 0,
the second part (starting from Lemma 2.4.5) extends this to the other levels as well.
We define the (scaled) local time accumulated by HY at level t up to time s as

4 1 [°
LY(t) = gll_{% - . Livcny <t+eydu

Note that this process is neither right— nor left—continuous as a function of s. However
since the jumps are of size O(1/N), the limit of LY as N — oo will turn out to be
continuous. In fact, we will show that LY converges as N — oo to the semi-martingale
local time of the limiting process H, hence the scaling factor 4/02. Tt is readily checked

that L), (0) 2, and

— No2»

4
LY (t) = AN (t), Vs>0,t>0, (2.4.1)
o
where AV was defined in (2.2.2). Then with SY defined in (2.2.4), we may rewrite
. 4
SN =inf{s >0:LY(0) > ;[ij /N}. (2.4.2)
From (2.4.1) and Corollary 2.2.2 we see that

N o’
ZT = ZL%(t)

follows the jump dynamics (2.2.1) in the case § = v = 0.
Let {VY s > 0} be the cadlag {—1,1}-valued process which is such that for a. a.
s> 0,
dHY

= 2NV,
ds s
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We can express LY in terms of HY and V¥V as

4 1 1
L(t) = 29N > Loy <1 + §(VTN - V}JX)) + 1{H§V_t}1{VSN—1}]

0<r<s

where we put Vo_ = +1. Note that any r < s at which ¢ is a local minimum of H¥
counts twice in the sum of the last line, while any r < s at which ¢ is a local maximum
of HY is not counted in the sum.

We have
HY =2N / V¥dr,
0

No?
2

VV=1+ 2/ Ly _ydPY — 2/ Loyw_ydPY + (L (0) = Ly (0)),
0 0

(2.4.3)

where {PY,s > 0} is a Poisson process with intensity N?02. Note that MY =
PN — N20%s, s > 0, is a martingale. The second equation is prescribed by the
statement of Proposition 2.2.1 (in fact its simplified version in case § = v = 0) : the
initial velocity is positive, whenever V¥ = 1, it jumps to -1 (i. e. makes a jump of
size -2) at rate N%0?, whenever VY = —1, it jumps to +1 (i. e. makes a jump of

size +2) at rate N?0?, and in addition it makes a jump of size 2 whenever H™ hits 0.

Writing V.V in the first line of (2.4.3) as

Ly —y = Ly —y

and denoting by MY the martingale P — N2?0%s, we deduce from (2.4.3)

VN 1 1
HY 4 < = MY = MY 4 2L (0) = L (0), (2.44)

where

2 s 2 s
MY = / 1,8 ndMYN d M>N = / 1ron_ndMY (245
s No2 0 {VN=-1} r an s No2 0 {vN =1} r ( )

are two mutually orthogonal martingales. Thanks to an averaging property of the V¥

(see step 2 in the proof of Proposition 2.4.3 below) these two martingales will converge
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as N — oo to two independent Brownian motions with variance parameter 2/0?% each.
Together with the appropriate convergence of LY (0), (2.4.4) then gives the required
convergence of HY, see Proposition 2.4.3. We are now ready to state the main result

of this section.

Theorem 2.4.1. For any x > 0, as N — o0,
({HSJ;V7 M817N7 MS2’N7 S Z 0}7 {Lé\](t)?SJt Z 0}755)
2 2
= ({H £le, £B§, 5> 0}, (Ly(t),s,t > 0},596)
o o

for the topology of locally uniform convergence in s andt. B and B? are two mutually
independent standard Brownian motions, H solves the SDE

2 1
H, = —Bs+ =L(0),
o 2

whose driving Brownian motion B is given as

1
B, = —(B! — B?),
\/5( s — B;)

L is the semi—-martingale local time of H, and S, has been defined in (2.1.2).
An immediate consequence of this result is

Corollary 2.4.1. For any x > 0, as N — o0,

{HY, MY, M2N, s > 0}, {Liw(1),t > 0}) = ({

2 2
1, Y28 V2B o 0) Ls ()0 > 0))
g g

in C([0,00)) x (D([0,00)))3.

Recall (see Lemma 2.6.1 in the Appendix) that convergence in D(]0, 00)) is equiva-
lent to locally uniform convergence, provided the limit is continuous. Also note that in
the absence of reflection, the weak convergence of HY to Brownian motion would be
a consequence of Theorem 7.1.4 in [5], and would be a variant of “Rayleigh’s random
flight model”, see Corollary 3.3.25 in [17].

A first preparation for the proof of Theorem 2.4.1 is
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Lemma 2.4.2. The sequence {HN} is tight in C([0,0)).

Proof. To get rid of the local time term in (2.4.4), we consider a process R of which
HY is the absolute value. More explicitly, let (RY, W) be the R x {—1,1}-valued

process that solves the system (which is exactly (2.4.3) without reflection)
S
RY = 2N / Wxdr,
0
WS]V:1—|—2/O‘ 1{er\i:_1}dPTN_2/0‘ 1{Wﬁ:+1}dP1JN

We observe that

(HY, V) = (|RY], sgn(RY)WY).

Clearly tightness of { RN} will imply that of {HY}, since |[HN — HN| < |RN — RN|

for all s,t > 0. Now we have

N 1 2 s
N, W N gagN
RN + WL dM.".
*  No?2 No? N02/0 T

By Proposition 2.6.6 in the Appendix, the sequence {R"Y}ys is tight, and so is
{HN}N21. ]

Proposition 2.4.3. Fizx > 0. As N — o0,

(HN, MM, M>N LV (0), SY) =><H, @Bl, \/;B?, L(0), Sx>

in C([0,00)) x (D([0,00)))” x [0, 0),

where B' and B? are two mutually independent standard Brownian motions, and H

solves the SDE
2 1
Hs = EBS + 5Ls(0)7 S Z 0, (246)

with By == (1/v/2)(B} — B?), and L(0) denoting the local time at level 0 of H. (Note

that B is again a standard Brownian motion.)
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Proof. The proof is organized as follows. Step 1 establishes the weak convergence of
(HN, MYN M2N LN (0)) along a subsequence. Step 2 and step 3 together characterize
the law of the limiting two—dimensional martingale, step 4 identifies the limit of the
local time term. In step 5 we note that the entire sequence converges. Finally step 6

takes the limit in the quintuple (including S¥).
STEP 1. Note that

i) from Lemma 2.4.2, the sequence { H, N > 1} is tight in C([0, o0]);

ii) sup,sq DVV—;VQ' — 0 in probability as N — oo;

iii) from Proposition 2.6.6, {M"Y N > 1} and {M>"¥ N > 1} are tight in D([0, o0]),

any limiting martingales M' and M? being continuous;

iv) it follows from the first 3 items, (2.4.4) and Proposition 2.6.5 that {LY(0), N > 1}
is tight in D([0, 00]), the limit K of any converging subsequence being continuous

and increasing.

Working along a diagonal subsequence we can extract a subsequence, still denoted as

an abuse like the original sequence, such that along that subsequence
(HN, MBN MY LY(0)) = (H,M', M* K).
STEP 2. We claim that for any s > 0,

/ 1{VN:1}dT’ — f, / ]_{VN:_I}dT — f
0 ’ 2 0 ’ 2

in probability, as N — oo. This follows by taking the limit in the sum and the

difference of the two following identities :

/ ]-{VTN:l}dT"i_/ l{VTszl}d’f‘:S,
0 0

/ ]_{VTN_l}dT—/ ]_{VTN:_l}d’I" == (QN)_lHéV,
0 0
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since HY /N — 0 in probability, as N — oo, thanks to Lemma 2.4.2.

1 1,N
STEP 3. By Step 1 iii), M = |, the weak limit of ° along the chosen
M2 M2N

subsequence, is a 2-dimensional continuous martingale. In order to identify it, we first
introduce some useful notation. We write M®? for the 2 x 2 matrix whose (4, j)-entry
equals M!x M7, and ((M)), for the 2 x 2 matrix—valued predictable increasing process
which is such that

MZ* — (M)

is a martingale, and note that the (i, j)—entry of the matrix ((M)), equals (M, M7),.
We adopt similar notations for the pair M5, M2V,

From Step 2 we deduce that, as N — oo,

MI’N > _i s 1{VrN:_1} 0 dr
MQ’N 0-2 0 0 1{VTN=1}
2
— ;Sl

in probability, locally uniformly in s, where I denotes the 2 x 2 identity matrix.

Consequently
®2 ®2
MLN MN M} 2
- ( s = — sl
MSQ,N M2,N Ms2 g

in D([0,00);R?) as N — oo, and since the weak limit of martingales is a local
martingale, there exist two mutually independent standard Brownian motions B! and

B? such that

V2
o
Taking the weak limit in (2.4.4) we deduce that

5 1
H, = \/—_(B; - BY)+ K,
o

) 1
- £BS + oK,
o 2

2
B!, M? = \[Bg, s> 0.

g

M} =

S
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where B, = (B! — B?)/\/2 is also a standard Brownian motion.

STEP 4. For each ¢ > 1, we define the function f, : Ry — [0,1] by fi(z) = (1 — fx)™".

We have that for each N,¢ > 1,s > 0, since LY (0) increases only when HY = 0,

IE(/O Fo(HN)ALY (0) — L;V(o)) > 0.

Thanks to Lemma 2.6.3 in the Appendix we can take the limit in this last inequality

as N — oo, yielding
E(/ fZ(HT)dKr - Ks) > 0.
0

Then taking the limit as ¢ — oo yields

IE(/ L, -0y, — K,) > 0.
0

But the random variable under the expectation is clearly nonpositive, hence it is zero

a.s., in other words
Ks = / ]-{HT:O}dKr, Vs 2 0,
0

which means that the process K increases only when H, = 0.

From the occupation times formula

4 S

a? Jo

g(H,)dr = / " ) La(t)dt

applied to the function g(h) = 1g,—0}, we deduce that the time spent by the process

H at 0 has a.s. zero Lebesgue measure. Consequently

/ lig,—ydB, =0 a.s.
0
hence a.s.
Bs = / l{Hr>0}dBr,« Vs 2 0.
0

It then follows from Tanaka’s formula applied to the process H and the function

h — h* that K = L(0).
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STEP 5. We have proved so far that QV = @ along some subsequence, where
QN = (HN,M"N M>N IN(0)), Q = (H,*2B',¥2B% L(0)). Note that not only
subsequences but the entire sequence Q', Q?, Q?, ... converges, since the limit law is

uniquely characterized.
STEP 6. It remains to check that for any x > 0, as N — oo,
(QY,8Y) = (Q,S,) in C([0,00]) x (D([0,00]))" x [0, 0].

To this end, let us define the function ® from Ry x Cy(Ry) into R, by

4

O(z,y) =inf{s > 0:y(s) > ;x}

For any x fixed, the function ®(x,.) is continuous in the neighborhood of a function
y which is strictly increasing at the time when it first reaches the value x. Clearly
Sy = ®(z, L(0)). Define

SN = & (x, LV(0)).

We note that for any x > 0,s — L,(0) is a.s. strictly increasing at time S, which
is a stopping time. This fact follows from the strong Markov property, the fact that
Hg, =0, and L.(0) > 0, for all € > 0. Consequently S, is a.s. a continuous function

of the trajectory L (0) , then also of @), and

QY. SN) = (Q,S.).

It remains to prove that S;N — SN — 0 in probability. For any y < z and N large
enough

0< SN -8V <gN—gsN

Clearly SNV — SN = S, — S, hence for any & > 0,

0 < limsupP(S,N — SN > &) < limsup P(S,~ — S;JN >¢e) <P(S,— S, >¢).
N N

The result follows, since S, = S,— asy — z,y < z, and S,_ = 5, a.s. n
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For the proof of Theorem 2.4.1 we will need the following lemma:

Lemma 2.4.4. For any s > 0, t > 0, the following identities hold a.s.

(Y =" =2N [ V1 egdr
0

S

o’N s
VNLigney = TLﬁV(t) +/ LigysgdV,Y.
0

Proof. The first identity is elementary, and is true along any piecewise linear, continu-
ous trajectory { HN} satisfying dHY /ds = 2NVX for almost all s, with VN € {—1,1}.
The other identities which we will state in this proof are true a.s. In these identities
we exclude the trajectories of H" which have a local maximum or minimum at the
level t. This implies that the two processes s — V¥ and s — 14N~y do not jump at

the same time. Hence from

Liysn = D Lmy—n Vi = Lwyv—n gy —n
0<r<s
2N s
=7 [ v,
2 Jo

we deduce by differentiating the product that

UQfV s s
V¥ = T [0 + [ gV
0 0
Since (V,V)? = 1, this is the second identity in the lemma. ]

Lemma 2.4.5. Denote by Lg(t) the local time at level t up to time s of H. Then with

probability one (s,t) — Lg(t) is continuous from R, x R, into R.
Proof. This is Theorem VI.1.7 page 225 of Revuz, Yor [16]. O

Proposition 2.4.6. For each d > 1, 0 <t <ty < - - < ty,

{(HN, LY (t1), LY (t2), .., LY (ta)), s > 0} = {(H,, Ls(t1), Ls(t2), .., Ls(ta)), s > 0}
in C([0,00)) x (D(]0, 00)))4.
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Proof. We prove the result in case d = 1 only, the proof of the general case being very

similar. From (2.4.3) and Lemma 2.4.4 we deduce that for any ¢ > 0, a. s.

2 S
LY(@t) =2(HN — )" + o3 VNLignvagy — 2 / Lignsn (@MY —dMPN), s > 0.
0
(2.4.7)
Let
Uy = / Loy sy (dMY — dMEY).
0
By Proposition 2.6.6 we have that {U"}y>; is tight in D([0,00)). Moreover,
4
1,N 2Ny _
(MY — M=) = 5 (2.4.8)
4 S
(UNY, = (UN, MY — M2y, = — [ Lmysndr. (2.4.9)
0

From the occupation times formula

s 2 00
/ Lipg,—pdr = UZ/ 1penLs(r)dr =0 a.s.
0 0

Then by Lemma 2.6.2 from the Appendix we deduce that along an appropriate

sequence

{/ Lmpsndr,s > 0} = {/ L, wydrys > 0 (2.4.10)
0 0

From (2.4.8), (2.4.9) and (2.4.10), we have again along an appropriate subsequence

(UN, MY Ny = (2 /0 LnodBy, 2B,) i (D(0,00))"

o
Moreover, arguments similar to that used in the proof of Proposition 2.4.3 establish

that
2 S
(H;V,U;V):>(Hs,;/ 1iy,>1dB,) in (D([O,oo)))Q.
0

Now from any subsequence, we can extract a subsequence along which we can take

the weak limit in (2.4.7). But Tanaka’s formula gives us the identity
4 S
Ls(t) = Q(HS — t)+ — —/ 1{Hr>t}dBr7
7 Jo

which characterizes the limit of LY as the local time of H. Since the law of H is

uniquely characterized, the whole sequence converges. O
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Proposition 2.4.7. For each s > 0 fized, {LY(t),t > 0} n>1 is tight in D([0,00)).

Proof. We have

2 4 [*
N _ N + N N N
LI (6) = 2(HY = )" + 5V, 1{H§V>t}+—N02/O V2l sydM, (2.4.11)

= KN +GY,
where
Y =o(HY =)+ VM g,
4 S
GN — VN1 dM> .
t No2 /0 r—+{HN>t} r
From
2
(K} =2HY + WVSNl{HNW}? N > 1} is tight and
0. S
limsup |[KY — K| < 2|t — 1|,

N—oo

it follows from Theorem 15.1 in [3] that the sequence { K"}y is tight, and any limit
of a converging subsequence is a. s. continuous.

We next show that the sequence {G™} > satisfies the conditions of Proposition
2.6.4.

Condition (1) follows easily from the fact that E(|G}'[*) < 16s/0?. In order to
verify condition (2), we will show that for any 7" > 0, there exists C' > 0 such that for

any 0 <t <T,e>0,
E[(GY. — GIGY = G < O(E*2 + &%),
In order to simplify the notations below we let

907]“\[ = V;°]\—[1{t—£<H£V§t}7

l/%{v = V;]X loenv<ite-
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An essential property, which will be crucial below, is that pN¢N = 0. Also (¢V)? =
||, and similarly for 1"V, since those functions take their values in the set {—1,0,1}.

The quantity we want to compute equals up to a fixed multiplicative constant
S S
NE[( [ pNan ([ uran)
0 0
We note that we have the identity

( / SNAMN) =2 / / SN AMN NN / (oMY + o? N / o dr,
0 0 0 0 0

and similarly with ¢V replace by ¥"V. Because ¢N9Y = 0, the expectation of the
product of

/ / ANAMN N AMY o / oNjanry
0

| [ eraerany o [eday
0 Jo 0

vanishes. We only need to estimate the expectations

B([ [ eaaelany / o i) B [eXlan [ o).
0 0
and B( [ 1Niar [ o).
0 0

together with similar quantities with " and " interchanged. The estimates of the

with

first two expectations are very similar. We estimate the second one as follows, using

the Cauchy-Schwarz inequality, and Lemma 2.4.8 below :

B( [ ety [ ar) ¢ | tertacary \/ ([ wriar)’

< ONe¥/?

Finally, again from Lemma 2.4.8,

E(/ ]gp,{v\dr/ Wﬂv\dr) < Ce2.
0 0

The first quantity should be multiplied by N2, and the second by N*, and then both

should be divided by N*. The proposition now follows from Proposition 2.6.5. O
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Lemma 2.4.8. Let s,e, T > 0. Then there exists a constant C' such that for all N > 1
and 0 < t,t' < T,

E(/ 1{t—e<H}N§t}dr> < Ckg,
0

E(/ 1{t5<H£V<t}dr/ 1{t/76<HTI‘V§t/}dT> S 082.
0 0

Proof. We will prove the second inequality, the first one follows from the second one
with t =t and the Cauchy-Schwarz inequality.
For s,t > 0 define FN(t) := [ 1jo<mgn<ydr. It follows readily from the definition

of LY that

OFN o?
B =210,

Hence

s s 4 t N t’ N
E(/O 1{t_a<H7gV<t}d7°/0 1{t/_€<HTN§t/}dr> - 16E(/t G )dr/ LY )du>
- —E / / LY LY( )drdu)
t—e Jt'—
= —/ / LY (w))drdu
t—e Jt/

—52 sup E(LN( )LN( ))
16 0<r,u<T
4

o
= —¢? sup E((Lév(r))Q)
16 o<r<t

<

On the other hand, since by Itd’s formula there exists a martingale MY such that
(HY)? + — HNVN = 251 0
s Ng2 75 '3 o2 s
we conclude that

sup E((H))?) < oc.
N>1

The second inequality now follows from (2.4.11). H

Proposition 2.4.9. For alld > 1,0 < 51 < 89 < -+ < Sg,

(HY,LY,..., LYY= (H,L,,,...,Ly,) in C([0,00)) x (D([0,00)))%

517
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Proof. We prove the result in the case d = 1 only, the proof in the general case
being very similar. From Proposition 2.4.6 there follows in particular that for all

kE>1,0<t; <ty <---<tg, we have
(HNa L:]qv<t1)7 Lév(tQ)v 7Lév(tk)) = (H> Ls(tl)vLS(t2>7 7L8<tk))

That is, { L} converges in finite-dimensional distributions to {L,}, jointly with H.

By Proposition 2.4.7, { LY (t),t > 0} x> is tight. The result follows. O

We are now prepared to complete the
PROOF OF THEOREM 2.4.1: The main task is to combine the assertions of Proposi-
tions 2.4.6 and 2.4.9, which means to turn the “partial” convergences asserted for LV
in these propositions into a convergence that is joint in s and ¢. We will also combine
this result with Proposition 2.4.3 in order to get joint convergence of all our processes.

To facilitate the reading, we will divide the proof into several steps.

STEP 1. Let {s,,n > 1} denote a countable dense subset of R;. Our first claim is

that for all n € N,

2 .2
HN, MY PN LY LY SN = (H, ;Bl, ;B{le, oL, Sy (24.12)

in C(R;) x D(R,)"" x R,.
To make the core of the argument clear, let us write just for the moment
YN = (MUY MY SN Y = (%Bl, 532,5;), AV = (LY, L)), A= (L, ..., Ls,).
Then (2.4.12) translates into

(HY, YN, AN) = (H,Y, ). (2.4.13)

By Proposition 2.4.3, (HY, YY) = (H,Y), and by Proposition 2.4.9, (HY,AY) =

(H,A). Because in our situation A is a.s. a function of H, these two convergences
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imply (2.4.13). (More generally, this implication would be true if Y and A would be

conditionally independent given H.)

STEP 2. Now having established (2.4.12), it follows from a well known theorem due
to Skorohod that all the processes appearing there can be constructed on a joint

probability space, such that there exists an event N with P(N) = 0 and for all w ¢ N,

SN (w) = Sp(w), (2.4.14)
2 2
(HN (w), M}N(w), M2N(w)) = (H,s(w), =B (w), =B%(w)) locally uniformly in s > 0,
o o
(2.4.15)
and for all n > 1,
LY (t)(w) = Ly, (t)(w) locally uniformly in ¢t > 0, (2.4.16)

as N — oo. Here we have made use of Lemma 2.4.5, which allows us to assume that
(s,t) — Lg(t)(w) is continuous from R, x Ry into R for all w ¢ N, possibly at the
price of enlarging the null set N, and of Lemma 2.6.1 from the Appendix.

STEP 3. We claim that in the situation described in the previous step one even has
for all C, T > 0,w ¢ N,

sup |LY(t,w) — Ly(t,w)| — 0, (2.4.17)

0<s<C,0<t<T
as N — oo. In other words, in Skorokhod’s construction there is a.s. convergence of
LY(t) to Lg(t), locally uniformly in s and ¢. To prove (2.4.17), we will make use of
the fact that for any w ¢ N, and all N, t, the mapping s — LY (¢)(w) is increasing and
the mapping s — L4(t)(w) is continuous and increasing. Moreover, since the mapping
(s,t) — Lg(t,w) is continuous from the compact set [0, C] x [0,T] into Ry, for any
e > 0, there exists § > 0 such that 0 < s < s <(C,0<¢t<T and s’ — s < ¢ implies
that
Ly(t,w) — Ls(t,w) < e.
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Hence there exists £ > 1 and 0 =: sg < 1 < -+ < 1 := C such that {r;,0 < i <

k} C {sn,n > 1} and moreover, r; —r;_1 < 6 for all 1 <i < k. We have

sup LY (t,w) — Ly(t,w)| < sup [An; + Bn.i]

0<s<C,0<t<T 1<i<k
where
AN,Z’ = sup (Liv(ta CU) - Ls(t> w))+
ri—1<s<r;,0<t<T
BN,i = sup (Lév(ta w) - LS(t’ w))_'

oYt

For ri_y < s <,

(Lév(t7w) - L5<t7w))+ S

(LY (t,w) — Ly(t,w))” < (LY (t,w) — Ly(t,w))”

Finally,

sup [LN(tw) = Lo(t,w)| <2 sup sup LY (E,w) — Ly, (t,w)] + 2.
0<s<C,0<t<T 0<i<k 0<t<T

while from (2.4.16),

limsup  sup  |LY(t,w) — Ly(t,w)| < 2e.
N—oo 0<s<C,0<t<T

This implies (2.4.17), since € > 0 is arbitrary. The assertion of Theorem 2.4.1 is now

immediate by combining (2.4.14), (2.4.15) and (2.4.17).

2.5 Change of measure and proof of Theorem 2.1.1

As in the previous section, let, for fixed N € N, HY be a process that follows the

dynamics described in Proposition 2.2.1 for § = v = 0. We denote the underlying
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probability measure by P, and the filtration by F = (F,). Our first aim is to construct,

7., a measure PV under which HY

by a Girsanov reweighting of the restrictions P
follows the dynamics from Proposition 2.2.1 for a prescribed 6 > 0 and v > 0.

Here, a crucial role is played by the point process PV of the successive local
maxima and minima of H”, excluding the minima at height 0. Under P, this is a
Poisson process with intensity o2 N2. More precisely, the process Q" which counts
the successive local minima of HY (except those at height 0) is a point process
with predictable intensity ALY := N2521 (VN =1} and the process Q%" which counts
the successive local maxima of H” is a point process with predictable intensity
APN = N?0°1y~ _iqy. (Recall that the process VY is the (cadlag) sign of the slope
of HN.)

For the rest of this section we fix ¢ > 0 and v > 0. In view of Proposition 2.2.1 we

want to change the rate ALY to ALV (1+ -2%) and the rate A2V to A2V (1 + %)

As in Section 2.4 we will use the process MY = PN — No?s, s > 0, which is a
martingale under P. Taking the route designed by Proposition 2.6.13 in the Appendix,

we consider the local martingales

* 20
XNL.—
s o No?

s LN HN
1{VT]\i:—1}dM7]-V> XéV,Z ::/ %1{‘/}7:1}(1]\41\7’ XN — XN’1+XN’2.
0

T

Let YV := &(X?) denote the Doléans exponential of X». Proposition 2.6.9 in the

Appendix recalls this concept and the fact that YV is the solution of

s 20 LN(HN
YV =1 +/ vy (Nagl{w’i:l} + %1{%{:1}) dM,", 5>0. (25.1)
0

We will show that YV is a martingale, which from Proposition 2.6.13 will directly

render the required change of measure.
Proposition 2.5.1. YV is a (F,P)-martingale.

Proof. Under P, Y¥ is a positive super-martingale and a local martingale. It is a
martingale if and only if

EYY =y =1, (2.5.2)
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which we will show. A key idea is to work along the excursions of H”, that is, along
the sequence of stopping times 7V := SC]L\;N ANs,a=0,1,2,... Since N and s are

fixed, we will suppress the superscripts N and s for brevity and write 7, instead of

N,s
Ty

STEP 1. We want to show that

EYNM =1, a=1,2,... (2.5.3)

Ta

Between 7, 1 and 7,, the solution of (2.5.1) is bounded above by the solution of the
same equation with MY replaced by PV, which takes the form dYN = Y NaNdPN. If
we denote by {T}, k > 1} the successive jump times of the Poisson process PV, we

have or each k }N/T]Z = ?TJZ_(l + ay, ). Consequently for all 7,y <7 < 7,

vy 20 7Ly, (H1,)
s 1 Oty o+ —5 1oy )

Ta=l k>l 1<Tp<7a

Within the excursion of HY between the times 7,_; and 7,, these jump times coincide

with the times of the local maxima and minima of H” in the time interval (7,_1, 7,)-

Since for a > 1 there are reflections of X* at 0 in the time interval (0, 7,_1), the parity

of those k for which V%Z _=1,71,1<T; <7, depends on a. However, noting that
LY (Hp) < ik, (2.5.4)

No?

we infer the existence of a constant ¢ > 0 such that

Y;N PN N

o Scomex (P 4+, 1 <r <1, (2.5.5)

Ta—1
where we define for k e Nkl =1-3-5.--kif kisodd, and k!! =1-3-5---(k —1) if
k is even.

Now

Ta }/;]X
Vi =Yl <1+ / vV [p(r>+LiV_(H£V)q<r)]dMiV), (2.5.6)

Ta—1
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where 0 < p(r) < %N 2,0 < q(r) < %, pand g are predictable. The claimed equalities
E[YN]=1,a=1,2,..., follow by induction on a from (2.5.6), provided the process
N

s Y;_
M = [ty () o) + LY (Y)Y, s =0,
0

Ta—1

is a martingale. From Theorem T8 in Brémaud [4] page 27, this is a consequence of

the fact that

B [ N i) o) + L (H oty <

Ta—1

In order to verify the latter inequality, we compute

Ta YN N
E / () + L (HY)g(r)]dr | < CysE | x (P +1)1(1+ PL)]

< OysE [cPsN < (PN £ 1)1 + PSN)}

< OnsChs,

where we have used (2.5.5), (2.5.4) and 7, < s, and where Cy and Cy  are constants
which depend only on N and (N, s), respectively. The fact that Cn s < oo follows

from
(N252%s)*

E[cgg(P;V + )IPYN] = exp{—N?c?s} ch(k‘ + Dk o

Since

k! 2.4...(2[8])

we deduce that ]E[cj;sN (PN + 1)!'"PN] < co. This completes the proof of (2.5.3).

STEP 2. We can now define a consistent family of probability measures PN5¢ on .,

a=1,2,... by putting

d]f»N,s,a
=YY eN.
dP |§Ta Ta ? a
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We write PV* for the probability measure on the o-field generated by union of the

o-fields F,,, a = 1,2, ..., whose restriction to J,, is PNsa for all a = 1,2, ..., and put
A:=inf{la e N: 1, = s}.
We will now show that

1. (i) A<oo PV as. (and consequently 74 = s PN*- as.),

2. (i) under PN*, (HN)ocp<r, = (HN)o<r<s is a stochastic process following the

dynamics specified in Proposition 2.2.1.

Indeed, applying Girsanov’s theorem (Proposition 2.6.13 in the Appendix) to the

2-variate point process

@6 = (/ 1{Vﬁ:1}dpév’/ 1{vﬁ_:1}dpiv) , 0<r<T,  (257)
0 0
we have that under PN5@

QLY has intensity (N20? + 20N) 1w —_yydr

Q*"  has intensity o*[N? + WNquV(HfV)]l{‘/;gX:l}dr.

Thus, for all @ € N, (HY)o<,<7, is, under PN:sa 5 stochastic process following the
dynamics from Proposition 2.2.1 up to the stopping time 7,. Considering the sequence
of excursions (HN);.  <y<r., a = 1,2, ... under P¥*  we infer from Lemma 2.2.3 the

validity of the claims (i) and (ii).
STEP 3. We now prove (2.5.2). For this we observe that

ED/SN] _ ZED/SN,A _ a] — ZE[ervA = a] = ZPN’S<A = a) :IF)N’S(A < OO) =1.

a>1 a>1 a>1

]



69

Corollary 2.5.2. Let PN be the probability measure on F whose restriction to Fs,

s > 0, has density YN (given by (2.5.1)) with respect to P|y,. Then under PN the

process HN follows the dynamics from Proposition 2.2.1 for the prescribed 6 and .

Proof. This is immediate from Proposition 2.5.1 and the discussion preceding it,
combined with Proposition 2.6.13 in the Appendix applied to the process defined in
(2.5.7), now with 0 < r < 0. O

Next we will analyze the behaviour of the Girsanov densities as N — oo. For this
we use the two martingales MY and M?*" defined in (2.4.5), and note that (2.5.1)

can be rewritten as

yo LY (H)Y

YSN:H/ yN{0dMN + - >de’N}, s> 0.
0

The two (pure jump) martingales MY and M?*" have jump sizes 2/(No?), hence
the random variable under the expectation in formula (2.6.6) vanishes for suitably
large N. Thus (see Definition 2.6.10 in the Appendix), the sequences { MV} >, and
{M?¥} N>1 have uniformly controlled variations, and because of Proposition 2.6.11

(1) they are “good”. Hence

xvs | (V2 gy V2L gy k.
0 O-

Moreover, by Proposition 2.6.11 (3), {XN}x>1 is also a good sequence, hence by
Proposition 2.6.11 (2)

YN =¢XM) = &(X) =Y.
Combining these facts with Corollary 2.4.1, we deduce, again from Proposition 2.6.11
(3), that

(HY, Lgn, YY) = (H, Ls,,Y). (2.5.8)



70

Since B! and B? are mutually orthogonal, by Proposition 2.6.9 we have

" V20 L
Ys=8</ {f apt 4 V2oL )d32}>

0 2

20 L.(
_ a(i / ‘[W V2ol () g 3)

Lo s p2 2 2
= exp{ 131 / f”" V2oLiHy) g / (o5 + = Lo(H,)?)dr }

0

o2 4

s

Let us recall two lemmas. The first one is Theorem 1.1, chapter 7 (page 152) in [6].

Lemma 2.5.3. Assume that the quadratic variation of the continuous local martingale
M is of the form (M)s = fos R, dr, and that for all s > 0 there exist constants a > 0

and ¢ < oo such that

Eexp(aR,) <c, 0<r<s.
Then
1
E exp (M —§<M)S) =1, s> 0,
holds.

The next lemma is proved in [14].

Lemma 2.5.4. Let H be a Brownian motion on Ry reflected at the origin, with

variance parameter v2.

Then for all s > 0 there exists a = a(s,v) > 0 and a constant
c < oo such that

E (exp(aL,(H,)?)) <e, 0<r<s.

Applying those two lemmas, we deduce that Y is a martingale. In particular

E[Y,] = 1 for all s > 0. Define the probability measure P by

—%:Y% VSZOa

then H, under P, solves the SDE (2.1.3) with B, there replaced by

0 Yo

(Bl — B2)——s+ 5 LT(HT)dr,
0

&IH
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which is a standard Brownian motion under P due to Proposition 2.6.12.
The following general and elementary Lemma will allow us to conclude the required

convergence under the transformed measures.

Lemma 2.5.5. Let ({n,nn), (§,m) be random pairs defined on a probability space
(Q,F,P), with ny, n nonnegative scalar random variables, and &y, & taking values
in some complete separable metric space X. Assume that Elny] = E[n] = 1. Write
(En,7in) for the random pair (Ex,1n) defined under the probability measure PN which
has density ny with respect to P, and (7, €) for the random pair (n,€) defined under the
probability measure P which has density n with respect to P. Then (éN,ﬁN) converges
in distribution to (71, ), provided that (Ex,my) converges in distribution to (€,7).

Proof. Due to the equality E[ny| = E[n] = 1 and a variant of Scheffé’s theorem (see
Thm. 16.12 in [2]), the sequence ny is uniformly integrable. Hence for all bounded

continuous F': X x R, — R,

E[F (En,in)] = E[F(En, nv)nn] = E[F(E,m)n] = E[F(€,7)].

Combining (2.5.8) with Lemma 2.5.5 yields the

Theorem 2.5.1. Let HY be a stochastic process following the dynamics specified in

Proposition 2.2.1, and let H be the unique weak solution of the SDE (2.1.3). We have
(HY, Lgy) = (H,Ls,) in C([0,00]) x D([0, o0]), (2.5.9)
where SY and S, are defined in (2.4.2) and (2.1.2).

We can now proceed with the
COMPLETION OF THE PROOF OF THEOREM 2.1.1 : Define Z* := %LQN (t). By

Corollary 2.2.2, ZN* follows the dynamics (2.2.1). From (2.5.9), %QLSI is the limit in
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distribution of ZV¥* as N — oo. Hence by Proposition 2.3.3, t "IQLSE (t) is a weak

solution of the SDE (2.1.1), which completes the proof of Theorem 2.1.1.

O

Remark 2.5.6. Theorem 2.1.1 establishes a correspondence between the solution H
of the SDE (2.1.3) and the logistic Feller process, i.e. the solution of (2.1.1). This
connection can be expressed in particular through the occupation times formula for
H | which states that for any Borel measurable and positive valued function f,

Sz 00
F(H,)ds = / f()Zzd.

0

This formula in the particular case f = 1 states that

S, = / Zrdt.
0

The quantity on the right is the area under the trajectory Z*. It is the limit of the
properly scaled total branch length of the approximating forests F'V defined in Section
2.2. We now establish another identity concerning this same quantity, with the help

of a time change introduced by Lambert in [9]. Consider the additive functional

t
At:/ Zfd’r,
0

ap = inf{r >0, A, >t}.

and the associated time change

As noted in [9], the process Uf := ZZ is an Ornstein-Uhlenbeck process, solution of
the SDE
AUl = (0 — U/ )dt + 0dB;, Ui = x.

Of course this identification is valid only for 0 < ¢ < 7., where 7, := inf{t > 0, U; = 0}.

Let T}, be the extinction time of the logistic Feller process Z;. We clearly have a,, = T,

Tx:/ Zydr.
0

and consequently
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We have identified the time at which the local time at 0 of the exploration process
H reaches x with the area under the logistic Feller trajectory starting from z, and
with the time taken by the Ornstein—Uhlenbeck process U* to reach 0. The reader
may notice that in the particular case v = 0, the identity S, = 7, is not a surprise,

see also the discussion and the references in [13] Section 6.
2.6 Appendix

2.6.1 Skorohod’s topology and tightness in D([0,00))

We denote by D([0,00)) the space of functions from [0,00) into R which are right
continuous and have left limits at any ¢ > 0 (as usual such a function is called cadlag).
We briefly write D for the space of adapted, cadlag stochastic processes. We shall
always equip the space D([0,00)) with the Skorohod topology, for the definition of
which we refer the reader to Billingsley [3] or Joffe, Métivier [7]. The next Lemma

follows from considerations which can be found in [3], bottom of page 124.

Lemma 2.6.1. Suppose {x,,n > 1} C D(]|0,00)) and x,, — x in the Skorohod
topology.

(i) If x is continuous, then x, converges to x locally uniformly.
(i) If each x, is continuous, then so is x, and x, converges to x locally uniformly.

In particular, the space C(]0,00)) is closed in D([0,00)) equipped with the Skorohod
topology.

The following two lemmas are used in the proofs of Propositions 2.4.6 and 2.4.3:

Lemma 2.6.2. Fizt > 0. Let z,,z € C([0,00)),n > 1 be such that

1. z, — x locally uniformly, as n — oo.
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2. for each s > 0,

/ 1{I(r):t}d7“ =0.
0

Then

/ L P / Lizy>pdr  locally uniformly in s > 0.
0 0

Proof. We prove convergence for each s > 0. The local uniformity is then easy. Given
€ > 0, there exists Ny such that
sup |z,(r) —z(r)| <e ¥n> Ny.

0<r<s

Then for all n > Nj,

1Lz, m)>ty — Vo>t < Limcca(r)<tte}

‘ / Lz, (my>npdr — / 1{z(r)>t}dr‘ < / i cca(ry<tteydr.
0 0 0

The result follows from

s

lim 1{t—8<x(7‘)<t+8}dr = / 1{ar(r):t}dr = 0.
0

e—0 0

Lemma 2.6.3. Let z,,y, € D([0,00)),n > 1 and z,y € C([0,00)) be such that
1. for alln > 1, the function t — y,(t) is increasing;
2. x, — x and y, — y, both locally uniformly.

Then y is increasing and

t t
/ T (8)dyn(s) — / x(s)dy(s), locally uniformly in t > 0.
0 0
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Proof. We prove convergence for each ¢ > 0. The local uniformity is then easy.

[ arists) = [ ants)in(o)

g‘/ ) — ()l +\/ ) = dy ()]
< 1 [1(5) = a5 ) / 2(5) — £:(5) [dy(s) — dya(s / £.(5) [dy(s) — dyn(s)],

where & is a step function which is such that supg,<; |7(s) — &(s)| < e. The first

and last term of the above right hand side clearly tend to 0 as n — oo. Then

t t
iimsup | [ a(5)du(s) ~ [ an(5)da(s)] < elimsuplya(0) + y(0)
n—00 0 0 n—00

< 2y(t) x e
It remains to let € — 0. []

We first state a tightness criterion, which is Theorem 13.5 from [3] :

Proposition 2.6.4. Let {X*, t > 0},>1 be a sequence of random elements of
D([0,00)). A sufficient condition for {X™} to be tight is that the two conditions
(1) and (ii) be satisfied :

(1) For each t > 0, the sequence of random variables {X[*, n > 1} is tight in R;
(i) for each T > 0, there exists §,C >0 and § > 1 such that
E (|0 - X017 |xr - xim,)7) < o,
forall0<t<T,0<h<t, n>1.

Note that convergence in D([0,00)) is not additive : z, — z and y, — ¥y in
D([0,00)) does not imply that z,, + ¢, — = + y in D([0, 00)). This is due to the fact
that to the sequence x,, is attached a sequence of time changes, and to the sequence v,

is attached another sequence of time changes, such that the time changed x,, and v,
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converge uniformly. But there may not exist a sequence of time changes which makes
T, + yn converge. If now { X[, t > 0},>1 and {Y;", t > 0},,>1 are two tight sequences
of random elements of D([0,00)), we cannot conclude that {X}" + Y/, ¢t > 0},,>1 is
tight. However, if z, — x and y, — y in D([0,00)) and z is continuous, then we

deduce easily from Lemma 2.6.1 that x,, + vy, — x + vy in D(]0,00)). It follows

Proposition 2.6.5. If {X}", t > 0},>1 and {Y;"*, t > 0},>1 are two tight sequences of
random elements of D([0,00)) such that any limit of a weakly converging subsequence
of the sequence { X', t > 0},>1 is a. s. continuous, then {X] + Y, t > 0},>1 is

tight in D(]0, 00)).
Consider a sequence {X[',t > 0},>; of one-dimensional semi—martingales, which
is such that for each n > 1,

¢
X7 =Xy +/ on(X)ds + M, t>0;
0

.= [ U (XD)ds, £ 0

where for each n > 1, M™ is a locally square-integrable martingale, ¢, and ¥, are
Borel measurable functions from R into R and R respectively.

The following result is an easy consequence of Theorems 16.10 and 13.4 from [3].

Proposition 2.6.6. A sufficient condition for the above sequence {X}*,t > 0},>1 of

semi—-martingales to be tight in D([0,00)) is that both
the sequence of r.v.’s {X{',n > 1} is tight; (2.6.1)
and for some p > 1,

VT > 0, the sequence of r.v.’s {/TH On(X7) |+ (X)]PdE, 0 > 1} is tight.
’ (2.6.2)
Those conditions imply that both the bounded variation parts {V"™,n > 1} and the mar-
tingale parts {M"™ n > 1} are tight, and that the limit of any converging subsequence

of {V"} is a.s. continuous.
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If moreover, for any T >0, as n — oo,
SUpg<icr | Mi* — M |— 0 in probability,

then any limit X of a converging subsequence of the original sequence {X"},>; is a.s.

continuous.

Remark 2.6.7. A sufficient condition for (2.6.2) is that for all 7" > 0,

{ sup [Jen(X7)] + ¥n(X7)], n = 1} is tight. (2.6.3)

0<t<T

Remark 2.6.8. A sufficient condition for (2.6.2) is that for all 7" > 0

limsup sup E[p? (X)) + ¢ (X}")] < oo. (2.6.4)

n>1  0<t<T

Indeed, (2.6.4) yields

T
lim supE / [on(XI)] + (X2t < oo,
n 0

which in turn implies (2.6.2).

2.6.2 Doléans exponential and “goodness”

For a cadlag semi-martingale X = (X, ¢ > 0), consider the stochastic linear equation

of Doléans

t
Y, =1 +/ Y, dX,. (2.6.5)
0
The following proposition follows from Theorem 1 and Theorem 2 in [10], page 122.
Proposition 2.6.9. (1) Equation (2.6.5) has a unique solution (up to indistinguisha-

bility) within the class of semi-martingales. This solution is denoted by E(X) and is

called the Doléans exponential of X. It has the following representation

E(X); =exp{X, — Xo — %(X%} [Ja+AaXx)e 2%

r<t
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(2) If U and X are two semi-martingales, then
EUREX)=EU+ X+ U X))

(3) If X is a local martingale, then E(X) is a nonnegative local martingale and a

super—martingale.

For § > 0 we define hs : Ry — Ry by hs(r) = (1 —§/r)*. For x € D([0,00)), we
define 2° € D(]0,00)) by

2l =1y — Z hs(| Axs |)Aws.

0<s<t

Definition 2.6.10. (1) Let G,G" in D, {G",n > 1} be a sequence of semimartingales
adapted to a given filtration (F;) and assume G™ = G asn — co. The sequence (G™) is
called good if for any sequence {I™,n > 1} of (F;)—progressively measurable processes
in D such that (I",G") = (I,G) as n — oo, then G is a semi-martingale for a
filtration with respect to which I is adapted, and (I",G", [ I*dG") = (I,G, [ I,_dGy)
as n — 0o.

(2) A sequence of semi-martingales {G"},>1 is said to have uniformly controlled
variations if there exists 6 > 0, and for each o > 0,n > 1, there ewists a semi—
martingale decomposition G™0 = M™% + A™ and a stopping time T™* such that

P{T™ < a}) < L and furthermore
AT
sup ]E{[M""S, M™% ppn.a +/ | dA™° | } < 00. (2.6.6)
n 0

It follows from pages 32 ff. in [§]

Proposition 2.6.11. Let G,G™ in D, {G",n > 1} be a sequence of semi-martingales

and assume G"™ = @G.

(1) The sequence {G™} is good if and only if it has uniformly controlled variations.
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(2) If {G™} is good, then (G, E(G™)) = (G, E(Q)).

(3) Suppose (I",G") = (I,G), and {G"} is good. Then J" = [I" dG"

S’

n=12,...,
1s also a good sequence of semi—martingales. Moreover under the same conditions,

(I",G", E(G™)) = (I,G,E(Q)).

2.6.3 Two Girsanov theorems

We state two multivariate versions of the Girsanov theorem, one for the Brownian
and one for the point process case. The second one combines Theorems T2 and T3

from [4], pages 165-166.

Proposition 2.6.12. Let {(Bgl),...,Bgd)), s > 0} be a d-dimensional standard
Brownian motion defined on the filtered probability space (0, F,P). Moreover, let
¢ = (1, ..., 0a) be an F-progressively measurable process with [ ¢;(r)*dr < oo for all
1<i<dands>0. Let X\ := NG dB" and put Y = EXW 4o X)) o

i other words

Vi—ew{ [om)an) - [ o) P ar}.

IfE[Y,] =1, s > 0, then By := B, — Jy #(r)dr, s >0, is a d-dimensional standard
Brownian motion under the probability measure P defined by dP |5, /dP |5, = Y,, s > 0.

Proposition 2.6.13. Let {(le), s di)), s > 0} be a d-variate point process adapted
to some filtration &, and let {AS), s > 0} be the predictable (P, F)-intensity of Q©,1 <
i < d. Assume that none of the QW , QU), i # j, jump simultaneously. Let {ug), r>
0},1 <1 < d, be nonnegative F-predictable processes such that for all s > 0 and all
1<i<d
/S DN dr < 0o P -a.s.
0

Fori=1,...,d and s > 0 define

s

X :/(M@—ndM,ﬂi), YO .=g(X®), v=&XW4. +X@),
0
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Then, with {T}, k = 1,2...} denoting the jump times of Q)

s d
vO = TI w)exp {/0 (1= pAdrf and Y, =T[YY, szo0.
j=1

E>1:Ti<s
IfE[Y,] =1, s >0, then, for each 1 < i < d, the process Q¥ has the (P, F)-intensity

AD = 4OAD r >0, where the probability measure P is defined by dP g, /dP |5, = Y,

s > 0.



1]

[10]

[11]

[12]

81

BIBLIOGRAPHY

Ba M., Pardoux E., Sow A.B. Binary trees, exploration processes, and an extended
Ray—Knight Theorem, J. Appl. Probab. 49, 201-216, 2012.

Billingsley P. Probability and measure, 3rd. ed., John Wiley and Sons Inc., New
York, 1995.

Billingsley P. Convergence of Probability Measures, 2d ed., John Wiley and Sons
Inc., New York, 1999.

Brémaud P. Point processes and queues: martingale dynamics, Springer-Verlag
New York, 1981.

Ethier S., Kurtz Th. Markov processes: characterization and convergence, John
Wiley and Sons Inc., New York, 1986.

Friedman A. Stochastic differential equations and applications, vol 1, Academic
Press, 1975.

Joffe A., Métivier M. Weak convergence of sequences of semi—martingales with
applications to multitype branching processes, Adv. Appl. Prob. 18, 20-65, 1986.

Kurtz Th., Protter Ph. Weak convergence of stochastic integrals and differential

equations, Probabilistic models for nonlinear partial differential equations, Lecture
Notes in Math 1627, 1-41, 1996.

Lambert A. The branching process with logistic growth, Ann. Appl. Probab. 15,
1506-1535, 2005.

Liptser R. S., Shiryayev A. N. Theory of martingales, Kluwer Academic Publish-
ers, 1989.

Méléard S., Villemonais D. Quasi-stationary distributions for population pro-
cesses, Probab. Surveys 9, 340-410, 2012.

Norris J. R., Rogers L. C. G., Williams D. Self-avoiding random walk: a Brownian
motion model with local time drift, Probab. Th. Rel. Fields 74, 271-287, 1987.



82

[13] Pardoux E., Wakolbinger A. From exploration paths to mass excursions - varia-
tions on a theme of Ray and Knight, in Surveys in Stochastic Processes, Proceed-
ings of the 33rd SPA Conference in Berlin, 2009, J. Blath, P. Imkeller, S. Roelly
(eds.), 87-106, EMS 2011.

[14] Pardoux E. and Wakolbinger A. From Brownian motion with a local time drift
to Feller’s branching diffusion with logistic growth, Elec. Comm. in Probab. 16,
720-731, 2011.

[15] Perkins E. Weak invariance principles for local time, Z. Wahrscheinlichkeitstheorie
verw. Gebiete 60, 437-451, 1982.

[16] Revuz D., Yor M. Continuous martingales and Brownian motion, 3rd ed., Spinger
Verlag, New York, 1999.

[17] Stroock D. W. Probability theory: an analytic view, Cambridge University Press,
1993.



83

Chapter 3

HEIGHT AND THE TOTAL MASS OF THE FOREST OF
GENEALOGICAL TREES OF A LARGE POPULATION
WITH GENERAL COMPETITION

3.1 Introduction

Consider a continuous time branching process, which takes values either in N or in
R, (in the second case one speaks of a continuous state branching process, and we
shall consider only those such processes with continuous paths). Such processes can
be used as models of population growth. However, in that context one might want
to model interactions between the individuals (e.g. competition for limited resources)
so that we no longer have a branching process. Such interactions can increase the
number of births, or in contrary increase the number of deaths. The popular logistic
competition has been considered in Le, Pardoux, Wakolbinger [10], while a much more

general type of interaction appears in Ba, Pardoux [4].

We will assume that for large population size the interaction is of the type of a
competition, which limits the size of the population. One may then wonder in which
cases the interaction is strong enough so that the extinction time (or equivalently the
height of the forest of genealogical trees) remains finite, as the number of ancestors
tends to infinity, or even such that the length of the forest of genealogical trees (which
in the case of continuous state is rather called its total mass) remains finite, as the
population size tends to infinity.

This question has been addressed in the case of a polynomial interaction in Ba,
Pardoux [3]. Here we want to generalize those results to a very general type of

competition, and we will also show that whenever our condition enforces a finite
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extinction time (resp. total mass) for the process started with infinite mass, that
random variable has some finite exponential moments.

Let us describe the two classes of models which we will consider.

We first describe the discrete state model. Consider a population evolving in con-
tinuous time with m ancestors at time ¢ = 0, in which each individual, independently
of the others, gives birth to one child at a constant rate A, and dies after an expo-
nential time with parameter . For each individual we superimpose additional birth
and death rates due to interactions with others at a certain rate which depends upon
the other individuals in the population. More precisely, given a function f: R, — R
which satisfies assumption (H1) below, whenever the total size of the population is k,
the total additional birth rate due to interactions is Zle(f(]) — f(7 = 1))*, while
the total additional death rate due to interactions is Z§:1(f(j) —f(7—1))". Let X"
denote the population size at time ¢ > 0, originating from m ancestors at time 0. The
above description is good enough for prescribing the evolution of {X}", ¢ > 0} with
one value of m. There is a natural way to couple those evolutions for different values
of m which will be described in section 3.2 below, such that m — X" is increasing
for all t > 0, a.s.

If we consider this population with m = [Nzx] ancestors at time ¢t = 0, replace
A by Ay = 2N, u by uy = 2N, f by fy(z) = Nf(z/N), and define the weighted
population size process Z¥ = N71 XN it is shown in [4] that Z% converges weakly to

the unique solution of the SDE (see Dawson, Li [7
ZZL‘
Z’”—x+/fZ”ds+2/ W (ds, du), (3.1.1)

where W is space-time white noise on R, x R,. This SDE couples the evolution of
the various {Z7, ¢t > 0} jointly for all values of x > 0.
We will use the fact that for a given value of x > 0, there exists a standard

Brownian motion W, such that

t t
ZF = +/ F(Z%)ds + 2/ VZrdW,. (3.1.2)
0 0
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There is a natural way of describing the genealogical tree of the discrete population.
The notion of genealogical tree is discussed for the limiting continuous population as
well in [10, 12], in terms of continuous random trees in the sense of Aldous [1]. Clearly
one can define the height H™ and the length L™ of the discrete forest of genealogical
trees, as well as the height of the continuous “forest of genealogical trees”, equal to
the lifetime T™ of the process Z*, and the total mass of the same forest of trees, given
by S* = [\ Zzdt.
Our assumption concerning the function f will be

Hypothesis (H1): f € C(R;,R), f(0) =0, and there exists § > 0 such that
flx+y) = fly) <0z Vr,y=>0.

Note that the hypothesis (H1) implies that the function 6z — f(z) is increasing. In
particular, we have

flz) < 0x Vo > 0.

This chapter is organized as follows. Section 3.2 studies the discrete case, i.e. the
case of N—valued processes, while section 3.3 studies the continuous case, i.e. the case
of R-valued processes. Each of those two sections starts with a subsection presenting
necessary preliminary material. The main results in the discrete case are Theorem
3.2.3 and 3.2.4, while the main results in the continuous case are Theorem 3.3.2, 3.3.3

and 3.3.4. Section 3.4 gives some examples to illustrate our results.

Remark 3.1.1. This remark aims at helping the reader to build his intuition about
our results. Take first a locally Lipschitz function f : R — R, such that for simplicity
f(z) >0, for all z, and consider the ODE & = f(x). It is easily seen that the solution
x explodes in finite time iff [;° dz/f(z) < oo, and in that case, denoting ¢« the time
of explosion, [~ x(t)dt < oo iff [ wdz/f(x) < cc.

Reversing time, we deduce that if now f(z) < 0 for all x (or all = sufficiently

large), the same ODE has a solution which satisfies z(¢) € R for all ¢t € (0;7] for



36

some 7" > 0 and z(t) — 400 as t — 0 (i.e. in a sense x(0) = +o0) iff for some
M >0, [,/ dx/|f(x)] < oo, and that solution is locally integrable near t = 0 iff
[ @dz/|f(z)] < oo. The fact that these results can be extended to certain SDEs
is essentially our argument in the continuous population case, see section 3.3 below.
Once this is understood, it is clear that similar results might be expected to hold true

in the finite population case, which is the content of section 3.2.
3.2 The discrete case

3.2.1 Preliminaries

We consider a continuous time Z,—valued population process {X[",t > 0,m > 1},
which starts at time zero from the initial condition X§* = m, i.e. m is the number
of ancestors of the whole population. {X;",¢ > 0} is a continuous time Z,—valued
Markov process, which evolves as follows. If X;" = 0, then X" = 0 for all s > ¢.
While at state £ > 1, the process

k41, atrate M+ FT(k)
X" jumps to

k—1, atrate pk+ F~(k),

where f is a function satisfying (H1), A, u are positive constants, and

Frk) =) (f(O) = f=1)%  F(k):=) (f(O)—f(t=1)"

(=1 =1
We now describe a joint evolution of all {X]*,t > 0},,>1, or in other words of the
two-parameter process {X;",t > 0,m > 1}, which is consistent with the above
prescriptions. Suppose that the m ancestors are arranged from left to right. The
left /right order is passed on to their offsprings: the daughters are placed on the right
of their mothers and if at a time ¢ the individual 7 is located at the right of individual j,
then all the offsprings of ¢ after time ¢ will be placed on the right of all the offsprings of j.

Since we have excluded multiple births at any given time, this means that the forest of
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genealogical trees of the population is a planar forest of trees, where the ancestor of the
population X} is placed on the far left, the ancestor of X?— X} immediately on his right,
etc... Moreover, we draw the genealogical trees in such a way that distinct branches
never cross. This defines in a non—ambiguous way an order from left to right within the
population alive at each time t. We decree that each individual feels the interaction
with the others placed on his left but not with those on his right. Precisely, at any time
t, the individual 7 has an interaction death rate equal to (f(L;(t) +1) — f(Li(t)))™
or an interaction birth rate equal to (f(L;(t) + 1) — f(£s(t)))", where £;(t) denotes
the number of individuals alive at time ¢ who are located on the left of ¢ in the above
planar picture. This means that the individual ¢ is under attack by the others located
at his left if f(£;(t) +1) — f(Li(t)) < 0 while the interaction improves his fertility if
f(Li(t) +1) — f(L;(t)) > 0. Of course, conditionally upon £;(-), the occurence of a
“competition death event” or an “interaction birth event” for individual ¢ is independent
of the other birth/death events and of what happens to the other individuals. In
order to simplify our formulas, we suppose moreover that the first individual in the
left /right order has a birth rate equal to A+ f(1) and a death rate equal to pu+ f~(1).

It is plain that with this definition, m — {X]*, ¢ > 0} is increasing, since the
progeny of the m + 1-th ancestor does not modify the fate of the progeny of the m
first ancestors. Let us moreover verify that this description of the evolution of the
two-parameter process {X;",t > 0,m > 1} is consistent with the jump rates from k
to k 4+ 1 and k£ — 1 which have been indicated above. This is a consequence of the
fact that the rate at which X" jumps from k to k 4 1 is the sum of the individual
birth rates of k£ individuals, one having zero left neighbour, a second one having one
left neighbour, etc..., the last one having k — 1 left neighbours. A similar argument

applies for the rate of jump from k to k — 1, replacing birth rates by death rates.

Remark 3.2.1. The functions F* and F~ may look a bit strange. However, if f

is either increasing or decreasing, which is the case in particular if f is linear, then
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Ft=ftand F- = f~.

Define the height and length of the genealogical forest of trees by
Hm
H™ = inf{t > 0, X]" = 0}, L™= X[dt, for m > 1.
0
Note that our coupling of the various X™’s makes H™ and L™ a.s. increasing

w.r. to m. We now study the limits of H™ and L™ as m — oo. We first recall some

preliminary results on birth and death processes, which can be found in [2, 6, 9].

Let Y be a birth and death process with birth rate A\, > 0 and death rate u,, > 0

when in state n,n > 1. Let

A=Y s=X oY T

. A
n>1 n>1 " a1
where
A A1 A
m =1, Ty = —— " >2.
2.y

We denote by T," the first time the process Y hits y € [0,00) when starting from
Yy =m.

T =inf{t >0:Y; =y | Yy =mj}.

We say that oo is an entrance boundary for Y (see, for instance, Anderson [2], section
8.1) if there is y > 0 and a time ¢ > 0 such that
lim P(T)" < t) > 0.

mToo

We have the following result (see [6], Proposition 7.10)

Proposition 3.2.2. The following are equivalent:

1) oo is an entrance boundary forY .

2) A=o00,5 < .
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3) limpe E(TF?) < 00.

We now want to apply the above result to the process X;", in which case A, =

An+ FT(n), p, = pn+ F~(n),n > 1. We will need the following lemmas.

Lemma 3.2.3. Let [ be a function satisfying (H1), a € R be a constant. If there
exists ag > 0 such that f(x) # 0, f(z) + ax # 0 for all x > ag, then we have that

© 1 o0 1
/ao 7@ |dx<°“:*/ao far 1 @) | <

and when those equivalent conditions are satisfied, we have

lim M =—
r—o0 I

Proof. We need only show that

/ R dz < 0o = / h ! dz <

——dr < 00 ————dz < 0.

aw | f(2)] 0w |az+ f(2)]

Indeed, this will imply the same implication for pair f'(z) = f(z) + ax, f'(z) — ax,

which is the conversed result. Because f(z) < 0z for all x > 0, we can easily deduce
o 1
from fao mdm < oo that

flz) <0 Va > ayg.

Let B be a constant such that g > 6. We have

©© 1 0 1
W B @S / “Fa) S

2z
lim ;du =0.

=00 Jo Bu - f(u)

But since the function z — Sz — f(x) is increasing,

1 _ f2x)\
| gtz @00

We deduce that lim,_, @ = —o0. Hence there exists a; > ag such that f(z) <

It implies that

—2|alz for all x > a;. The result follows from

0 1 0 2
/al far 1 @) ™ S / “Fa)
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Lemma 3.2.4. Let f be a function satisfying (H1). For all n > 1 we have the two

inequalities
FT(n) <6n
—f(n) < F~(n) <6n— f(n).
Proof. The result follows from the facts that for all n > 1
(f(n) = fln—1))" <0
(f(n) = f(n=1))" = f(n—1) = f(n)
F~(n) = F"(n) = —f(n).
O

Proposition 3.2.5. Assume f is a function satisfying (H1) and there exists ag > 0
such that f(x) # 0 for all x > ag. Then oo is an entrance boundary for X if and only

if
e 1
/ao )

Proof. 1f f Fade = oo, then (recall that since p > 0, (u+6)z— f(z) is non—negative

and 1ncreasmg)

ua o0
ao ( ) ( )

g > Z Tn+1

n+17Tn
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Therefore, co is not an entrance boundary for X, by Proposition 3.2.2. On the other

hand, if fa ‘f(x d:l: < 00, then lim, @ = —o00, by Lemma 3.2.3. By Lemma 3.2.4
we have
n A FT A+0
lim L — i L(n)g lim wZQ’
n—oo 1, n—oo un + F'~ (n) n—o00 (N — f(n)
so that

Set a, = An/pin, then there exists ng > 1 such that a,, < 1 for all n > ny. The inequal-

ity of arithmetic and geometric means states that for all m > 0 and x1, s, ..., z,, > 0,

T+ 2o+ ...+ Ty,
m

> N/ T1X9... Ty,

so that for all £ >n > 0,
k—n k—n
ap i+ tal " > (k= n)ang...a.

Then

YooY EY Y %+

n>no k> +1 n>ng k>n+1

<_Z > WE ) §;7+...+a’,§—”)

n>ng k>n+1
k—ng
n
§ § akfnJrl + .t ag)
k>n0+1 n=1
n—1+41

;X >a Z,m

i>ng+1 n>1
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1 a;
<T 2D
i>no+1 n>1
- 1 a;
A i>no+1 i1~ a)
1 i
X2 T
i>no+1

N+ FT(7)
Z Ni(pi — i + F=(i) — F+(4))

i>ng+1
A il (e i — f(7)
< 00,

where we have used Lemma 3.2.3 to conclude. Hence S < co. The result follows from

Proposition 3.2.2. O
We can now prove

Theorem 3.2.1. Assume [ is a function satisfying (H1) and there exists ag > 0 such
that f(x) # 0 for all x > ag. We have

) If f dx = 00, then
supTy* =00 a.s.
m>0
) If f Ty de < oo, then
E(sup T§") < oc.
m>0
Proof. 1f f da; oo, then by Proposition 3.2.5, oo is not an entrance boundary

for X. It means that for all t > 0,
li%n P(Ty" < t) = 0.
Hence for all ¢ > 0, since m — 1" is increasing a.s.,

P(sup Ty < t) =0,

m>0
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hence

sup 1" = oo a.s.
m>0

The second part of the theorem is a consequence of Proposition 3.2.5 and Proposition

3.2.2. [l

Remark 3.2.6. The first part of Theorem 3.2.1 is still true when A\, =0,n > 1. In

fact, in this case we have
m
=Y,
n=1

where = denotes equality in law, 6, represents the first passage time from state n to
state n — 1,

O, =inf{t>0: X, =n—-1]| Xy =n}.

Recalling the fact that 6,, is exponentially distributed with parameter pun + F~(n),
we have (see Lemma 4.3, Chapter 7 in [11] )

1
supTy" =00 a.s. <& ———— = 00.
m>I?] 0 Zun—i—F—(n)
The result follows by Lemma 3.2.3 and Lemma 3.2.4.
Here a question arises: in the case f dx < 00, whether higher moments of

sup,,-o 1y" are also finite or not. We will see that the answer is Yes. Indeed, we can

prove that it has some finite exponential moments.

Theorem 3.2.2. Suppose that f is a function satisfying (H1) and there exists ag > 0
such that f(x) # 0 for all x > ay. [ff da: < 0o we have

1) For any a > 0, there exists y, € Z such that

sup E(e“T@z) < Q.

m>yYq

2) There exists some positive constant ¢ such that

sup ]E(eCTf;ﬂ) < 00.

m>0
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Proof. 1) There exists n, € Z, large enough so that
Yoy sy
n=ng T k>n+1 k a
Let J be the nonnegative increasing function defined by
w1 7T
J(m) = — —k, m > ng + 1.
" 77;{1 M k;—l A a

Set now y, = n, + 1. Note that sup,,., T," < oo a.s., then for any m >y, we

have
AT
J(Xpm ) — J(m) — / AJ(XM)ds

Ya 0

is a martingale, where A is the generator of the process X;" which is given by
Ag(n) = An(g(n+1) —g(n)) + pm(g(n —1) —g(n)),  n=1,
for any R, -valued, bounded function g. Therefore, by Ito’s formula
AT

ea(t/\T;;)J(XZXTﬂ) — J(m) — /0 e (aJ(X™) + AJ(X™))ds

is also a martingale. It implies that
AT
E(ea(“\TzTZ)J(Xt’XTm)) — J(m) + IE( / ¢ (] (X™) + AJ(X;"))ds).
Ya 0
We have for m > y,, J(X]") < J(c0) <+ Vs <T", and for any n > y,,

AJ(n) = M(J(n+ 1) — J(n)) + pu(J(n — 1) — J(n))

1 e 1 e
A\ — =, R
" k>n+1 A 8 Mn—1 ; A
o M2 fin T H2.--Hn Tk
Attt A A At i A
H2-- b T
ISV NEDW
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So that
E(e“(MTﬂ)J(Xt’XT;n)) <J(m)  Vm >y

But J is increasing, hence for any m > y, one gets

1
0 < J(ya) < J(m) < J(o0) < —.
a
From this we deduce that
E(ea(t/\Tyn;)> < 1 Vm > ya'
- aJ(ya)
Hence
m 1
E(eaTya) S Ym > Ya,
aJ(Ya)

by the monotone convergence theorem. The result follows.

Using the first result of the theorem, there exists a constant M € Z, such that

sup ]E(eTJW) < 00,
m>M

or E(eTM) < 00, where Ty 1= sup,,,~ I3}

Given any fixed T' > 0, let p denote the probability that starting from M at
time ¢t = 0, X hits zero before time 7. Clearly p > 0. Let ¢ be a geometric
random variable with success probability p, which is defined as follows. Let X
start from M at time 0. If X hits zero before time T, then ( = 1. If not, we
look the position X7 of X at time 7.

If X > M, we wait until X goes back to M. The time needed is stochastically
dominated by the random variable Tj;, which is the time needed for X to
descend to M, when starting from co. If however X < M, we start afresh from
there, since the probability to reach zero in less than T' is greater than or equal
to p, for all starting points in the interval (0, M].

So either at time T, or at time less than T + T);, we start again from a level
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which is less than or equal to M. If zero is reached during the next time interval
of length 7', then ( = 2... Repeating this procedure, we see that sup,,., 15" is
stochastically dominated by

¢

i=1
where the random variables n; are i.i.d, with the same law as T}, globally
independent of (. We have

supE(ed") <E (eC(CTJFZf:l ™))

m>0

< E(€QC(T) E<62025:1 Th‘)'

Since ( is a geometric(p) random variable, then

o)

E(eQCCT) _ _Z (eZCT(l —p))k < 00,

1_pk:1

3

provided that ¢ < —log(1 — p)/2T.

Moreover, we have

E(e2X=m)P(¢ = k)

WK

]E (620 21;:1 77i) —

k=1

[E(*M)] B¢ = k)

WE

B
Il
—

S

= =Y [E(@™)-p)"

P4
Since E(eTM ) < 00, it follows from the monotone convergence theorem that
E(e*™) — 1 as ¢ — 0. Hence we can choose 0 < ¢ < —log(1 — p)/2T such
that

E(e*™)(1—p) <1,

. . ¢
in which case E(ezczizl ’7@) < 00.

Then sup,,~ E(BCT(;” ) < 00. The result follows.
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3.2.2  Height and length of the genealogical forest of trees in the discrete case

The following result follows from Theorem 3.2.1 and Theorem 3.2.2

Theorem 3.2.3. Suppose that f is a function satisfying (H1) and there exists ag > 0
such that f(x) # 0 for all z > ay. We have

[ff x)| = 00, then

sup H" =00 a.s.
m>0

Iff dx < 00, then

sup H" < oo a.s.,
m>0

and moreover, there exists some positive constant ¢ such that

sup ]E(eCHm) < 00.

m>0
Concerning the length of the genealogical tree we have

Theorem 3.2.4. Suppose that the function (z satisfies (H1) and there exists ag > 0
such that f(x) # 0 for all x > ag. We have

1) If faooo 7 de = oo, then

sup L™ =00 a.s.
m>0

]ff d$ < 00, then

sup L™ < o0 a.s.,
m>0

and moreover, there exists some positive constant ¢ such that

sup E(eCLm) < Q.
m>0

To prove Theorem 3.2.4 we need the following result, which is Theorem 1 in

Bhaskaran [5].
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Proposition 3.2.7. Let Y be a birth and death process with birth rates {)\,(f)}nzl and
death rates {,ug)}nzl (i=1,2), where \ and u\ satisfy the condition
1 “ Tk

ZW—nZA—k = 0. (3.2.1)

n>1 k=1
Suppose that

)\7(11) > Aff) and ug) < u,(f), n > 1.

Then one can construct two processes Y1 and Y2 on the same probability space such that
{Yi(k),k >0} and {Y(k),k > 0} have the same law fori = 1,2, and Y (k) > Y2(k)
a.s. for all k > 0.

Remark 3.2.8. 1) Condition (3.2.1) implies that the birth and death process does

not explode in finite time a.s. Note that

- 1 n
DI D D

n>1 n>1
-y €
= %
n>1
Then (3.2.1) is satisfied if there exists a constant v > 0 such that
An <, Vn > 1.
2) Proposition 3.2.7 is still true when A2 = 0,n > 1. In fact, the proof of Bhaskaran

(as given in [5]) still works in this case.

Now we will apply Proposition 3.2.7 to prove Theorem 3.2.4. In the proof, we will
not bother to check condition (3.2.1), which is obviously satisfied here.

Proof of Theorem 3.2.4

1) Let
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By Lemma 3.2.9 below we have for all n > 1,

pin = pin + F~(n) < pm + 20n° — f(n)
f)

n

< (u+20)n* —
< (pu+20)n* + Fy (n)n.
Let XY™ be a birth and death process which starts from Xé ™ = m, with birth

rate AL = 0 and death rate p) = (¢ + 20)n® + F; (n)n when in state n,n > 1.

From Proposition 3.2.7 we deduce that for all m > 1,
X™ > XPM(in dist.), H™ > H""(in dist.), L™ > L"™(in dist.),
and moreover, since both m — L™ and m — LY™ are a.s. increasing,

sup L™ > sup L™ (in dist.),

m>0 m>0

where H'™, L™ are the height and the length of the genealogical tree of the

population X5™ respectively.

We now use a random time-change to transform the length of a forest of ge-
nealogical trees into the height of another forest of genealogical trees, so that

we can apply Theorem 3.2.1. We define
t
AP = / Xmdr, n™ = inf{s > 0, AL™ > t},
0

and consider the process U™ := X1™ o pl™_ Let S1™ be the stopping time
defined by
St = inf{r > 0,U™ = 0},

then we have

Hl,m
Stm — / X} mdr = L™ a.s.
0

The process X ™ can be expressed using a standard Poisson processes P, as

t
X" =m P ( [+ 25+ B i) ’m]‘”> |
0
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Consequently the process UN™ satisfies

t
U™ =m— P( / (1 +20)U™ + Ff(USv’”)]dr) :
0
Applying Theorem 3.2.1 and Remark 3.2.6 we have

sup L' = sup ST = oo a.s.,
m>0 m>0

hence sup,,~o L™ = 00 a.s. The result follows.

For the second part of the theorem, we note that in the case fa(? @l f(xxﬂ
f(x)

we have 5 — —00 as ¥ — 00, by Lemma 3.2.3. Then there exists a constant

dr < o0,

u > 0 such that for all n > u (using again Lemma 3.2.9),

pn + F~(n) > —f(n) > 0n? — @

We can choose ¢ € (0,1) such that for all 1 <n <u

)

> g(On® —
un > e(0n 5

).
It implies that for all n > 1,

fn)

pn + F~(n) > e(0n* — 5

).

Let X%™ be a birth and death process which starts from ngm = m, with birth
rate A2 = (A + 20)n? and death rate u2 = £(0n? — L42) when in state n,n > 1.

From Lemma 3.2.9 and Proposition 3.2.7 we deduce that for all m > 1,
X™ < X®™M(in dist.), H™ < H*™(in dist.), L™ < L*™(in dist.),

where H?™, [>™ are the height and the length of the genealogical tree of the

population X 2™ respectively. We define

t
AP = / X2mdr,  pP™ =inf{s > 0, A>™ > t},
0
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and consider the process U™ := X?™ o n>™, Let S*™ be the stopping time
defined by
SEM = inf{r > 0,U>™ = 0},

then we have

H2,m
§m = / X2dr = L™ as.
0

(M

£
2 x

Denote fo(z) :=
that for all n > 1,

— 0x), then fs is a negative and decreasing function, so

n n

Fyf(n) =) (k)= falk=1))" =0,  Fy(n):=) (fo(k)=folk=1))" = = fa(n).

The process X>™ can be expressed using two mutually independent standard

Poisson processes P, and P, as

XP™ =m+P ( /O t[()\+26)(X3’m)2]dr) —P ( /0 t[?(xﬁm)%rg (Xf’m)Xf’m]dr)

Consequently the process U™ satisfies

t t-f
U>m :m+P1< / [()\+2(9)Uf’m+F2+(Uf7m)]dr> —P2< / [%U}MF;(UE’"‘)MT)-
0 0

By Theorem 3.2.2, there exists some positive constant ¢ such that

sup E(eCLQ’m) = sup E(eCSQ’m)

m>0 m>0

< 00,

hence

sup E(eCLm) < sup ]E(eCLZm) < 00.
m>0 m>0

The result follows.

It remains to prove
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Lemma 3.2.9. Suppose that the function @ satisfies (H1). For allm > 1 we have
the following inequalities

Ft(n) < 20n?,

—f(n) < F~(n) < 20n” — f(n).

Proof. Note that for all £ > 1,

($) = £k =) = (- (52 - Bl )
k k

Then
F¥(n) < 20k =6n(n+1) < 20n°.

k=1

The second result now follows from the fact that for all n > 1

(f(n)=f(n=1))" = f(n—1) — f(n)
F~(n) = F"(n) = —f(n).

3.3 The continuous case

3.8.1 Preliminaries

We now consider the R, —valued two—parameter stochastic process {ZF,t > 0,2 > 0}
which solves the SDE (3.1.1), where the function f satisfies (H1). We note that this
coupling of the {Z7, t > 0}’s for various x’s is consistent with that used in the discrete

population case in the sense that as N — oo,

(N Xt >02>00 = {27, t>0,2 >0},
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see [4], where the topology for which this is valid is made precise.

According again to [4], the process {Z%, x > 0} is a Markov process with values
in C(Ry,R,), the space of continuous functions from R, into R, starting from 0 at
x = 0. Moreover, we have that whenever 0 < = <y, 2}/ > Z¥ for all t > 0 a.s. For
x > 0, define T* the extinction time of the process Z* (it is also called the height of

the process Z%) by
T® = inf{t > 0, Z" = 0}.

And define S* the total mass of Z* by

Tfl)
W:/ Zrdt.
0

We next study the limits of 7% and S* as x — oo. We want to show that under a spe-
cific assumption 7% — oo (resp. S* — o0) as & — 0o, and under the complementary
assumption sup,.E(eI") < oo for some ¢ > 0 (resp. sup,.,E(e®*") < oo for some
¢ > 0). Because both mappings x — T7% and x +— S® are a.s. increasing, the result
will follow for the same result proved for any collection of r.v.’s {7,z > 0} (resp.
{S* x > 0}) which has the same monotonicity property, and has the same marginal
laws as the original one. More precisely, we will consider the Z*’s solutions of (3.1.2)
instead of (3.1.1), with the same W for all = > 0.

We first need to recall some preliminary results on a class of one-dimensional

Kolmogorov diffusions (drifted Brownian motions), which can also be found in [6].

Consider a one-dimensional drifted Brownian motion with values in [0, 0c0) which
is killed when it first hits zero

dXt = q(Xt>dt + dBt, XO =T > 0,

where ¢ is defined and is C' on (0, 00), and {B;,t > 0} is a standard one- dimensional

Brownian motion. In particular, q is allowed to explode at the origin. In this section,
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we shall assume that

Hypothesis (H2): There exists xy > 0 such that ¢(z) <0 Vz >z, and

lim sup ¢(x) < oc.
z—0t

The condition (H2) implies that ¢ is bounded from above by some constant. It ensures
that oo is inaccessible, in the sense that a.s. oo can not be reached in finite time from
Xo =z € (0,00).
We denote by T the first time the process X hits y € [0, 00) when starting from
Xo==x
Ty =inf{t >0: X; =y | Xo =z}
We say that oo is an entrance boundary for X (see, for instance, Revuz and Yor [13],

page 305) if there is y > 0 and a time ¢ > 0 such that
lim P(T,; < t) > 0.

zToo

Let us introduce the following condition

Hypothesis (H3):

/ —QW) / QO dzdy < oo,
1 Yy

where Q(y) =2 [ q(z)dz,y > 1.

Tonelli’s theorem ensures that (H3) is equivalent to

We have the following result which is Proposition 7.6 in [6].

Proposition 3.3.1. The following are equivalent:

1) oo is an entrance boundary for X.
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2) (H3) holds.

3) For any a > 0, there exists y, > 0 such that

sup E(e“TJa) < 00.
T>Yq

We now state the main result of this subsection

Theorem 3.3.1. Assume that (H2) holds. We have
1) If (H3) does not hold, then for all y > 0,

supT,’ = oo a.s.
>y

2) If (H3) holds, then for all y > 0,

sup T, < oo a.s.,
>y
and moreover, there exists some positive constant ¢ such that

sup]E(eCTg) < Q.
x>0

Proof. 1) If (H3) does not hold, then by Proposition 3.3.1, co is not an entrance
boundary for X. It means that for all y > 0,¢ > 0,

lim P(T7 < t) = 0.

oo

Hence for all ¢ > 0, since x — T} is increasing a.s.,
P(sup T, <t) =0,
x>y

hence

supT,’ = oo a.s.
>y
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2) The result is a consequence of Proposition 3.3.1. We can prove it by using the
same argument as used in the proof of Theorem 3.2.2.

]

It is not obvious when (H3) holds. But from the following result, if ¢ satisfies some

explicit conditions, we can decide whether (H3) holds or not.

Proposition 3.3.2. Suppose that (H2) holds. We have

1) If

0 1 /
/ ——dxr = —00 and lim sup q (SLZ < 00,
z0 q(z) 200 q(T)

then (H3) does not hold.

2) If there exists qo < 0 such that q(x) < qo for all x > xy,

0o 1 /
/ ——dx > —0 and lim inf g (x)2
v 4(7T) zoo q(x)

> -2,

then (H3) holds.

3) If

<1
/ ——dr > —00 and q(z) <0 Vo > x,
z 4(7)

then (H3) holds.

Proof. 1) Define s(y) := fyoo eQ@dz. If s(xy) = oo, then s(y) = oo for all y > g,
so that (H3) does not hold.

We consider the case s(zp) < co. Integrating by parts on [ se~Qdy gives

[e’¢) 0 B [e'e) s 0 B —3 0 oo o] 1 o] 0 q
se “dy —/ —e “2qdy = —e —/ —dy —/ se “——=dy
/ 2q 2¢ p Jo 24 20 2¢?

xo o
From f;o ﬁdm = —o0 and g—;e*Q(oo) >0, (3.3.1) implies that

’

<o q
/ se”9(1 + 2—q2)dy = 0.
zo
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’

Since limsup, ., %) < oo, then f;oo se~%dy = co. Condition (H3) does not

q(z)?
hold.

2) We can easily deduce from ¢(x) < g for all > x, that s(y) tends to zero as y

1
q(z)

(3.3.1) implies that se=@(1 + %) is integrable. Then thanks to the condition

tends to infinity, and s(y)e~%®) is bounded in y > x,. Because f;: dr > —o0,

/

liminf, .. % > —2, we conclude that (H3) holds.

3) From ¢(z) < q(zo) < 0 for all z > x, we can easily deduce that Q(y) — —o0
and s(y) — 0 as y — oo. Applying Cauchy’s mean value theorem to s(y) and

q1(y) := e®W) we have for all y > x, there exists & € (y, 00) such that
e G

QW (&) 2(&)

Because ¢ (z) < 0 for all x > x4, we obtain

1
s(y)e_Q(y) < —m, for all y > .
Hence
o0 oo 1
s(y)e Wdy < —/ ——dy < 0.
LO xo QQ(y)

Then (H3) holds.
[l

Example 3.3.3. We are interested in the case that ¢ is a polynomial. More precisely,

we consider the function ¢ satisfying (H2) and for all x > x,

q(z) = —a* a>—1.
We have
! a—1
i 40 o @ Y
Z—00 q(x)2 r—00 T2 r—o0 rotl

Hence condition (H3) holds if and only if

<1
/ ——dr > —00 & a > 1.
o —x®
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3.3.2  Height of the continuous forest of trees

We consider the process {Z7,t > 0} solution of (3.1.2). It follows from the Ito formula
that the process Y,* = \/Z} solves the SDE

Y7)2) — 1
Ay = %dt +dW,,  YP =z (3.3.2)
t

Note that the height of the process Z% is
T* =inf{t > 0,7 = 0} = inf{t > 0,Y;" = 0}.
We now establish the large x behaviour of 7.

Theorem 3.3.2. Assume that [ is a function satisfying (H1) and that there exists
ag > 0 such that f(z) # 0 for all x > ay. If faooo Wlm)‘dx = o0, then

T - 00 a.s. as T — 0.

Proof. Let [ be a constant such that g > 6. By a well-known comparison theorem,
Y > Y," where Y, solves

B2 — F(Y0)?) +
21/;1,90

1
dy,"" = — dt + dW,, Yot = /x,

Note that the function fx — f(x) 4+ 1 is positive and increasing, then fi(z) :=

B JEOHL gatisfies (H2), and

mFméﬁ%

Moreover there exists 7 > 0 such that Sz — f(z) > 1 for all x > 24, hence

* 1 > 2%
l[ ﬁ@ﬂx_ﬁiﬁﬂ—f@%+lm
_/m___j___dx
L BT+l
> 1

T 1
S_A)ﬁm—ﬂ@+1w_2anﬂx—ﬂ@
— 0

< 00

dx

9
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again by Lemma 3.2.3. The result now follows readily from Theorem 3.3.1 and

Proposition 3.3.2. O

Theorem 3.3.3. Assume that f is a function satisfying (H1) and that there exists

ag > 0 such that f(x) #0 for all x > ay. If f;)o md:v < 00, then

supT® < oo a.s.,
>0

and moreover, there exists some positive constant ¢ such that
supIE(eCTI) < 0.
x>0

Proof. We can rewrite the SDE (3.3.2) as (with again 8 > 0)

Yx2_h Y:):Q
t

where h(z) := fx — f(x) + 1 is a positive and increasing function. By Lemma 3.2.3,

1
h(x)

dz < oo which is equivalent to Y °7 - < co. Let

we have fl n=1 h(n)

a; = h(1), a, = min{h(n),2a,-1} Yn > 1.

It is easy to see that for all n > 1,

ap_1 < a, < h(n), <2
Apn—1
We also have

1

aq N h(l)

1 < 1 N 1 N 1

az ~ h(2)  2a;  h(2)  2h(1)

1 < 1 N 1 < 1 N 1 N 1

az — h(3)  2ay T h(3)  2h(2) 4h(1)

£
=
—
2
[\
<
S
L
=
<
[\
=
S
|
N
[\
3
L
>
—~
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Therefore
| = 1
YDESEE) S RN
n=1 n n=1 h(n)
Now, we define a continuous increasing function g as follows. We first draw a broken

line which joins the points (n,a,) and is the graph of h;. Define the function hsy as

follows.

hi(z), =>1.
We then smoothen all the nodal points of the graph of hy to obtain a smooth curve
which is the graph of an increasing function g,. Let g(x) = 3g1(x). We have for all

n>1and z € [n,n+1),

() > hn) > a0 > Sanir = gln+1) > g().

By the comparison theorem, Y,* < YQ’QC where Y;f”” solves

YQr . Y2x 2
d}/t2733 — /8( ) g(( ) >dt+th, %2,1 — \/E

2Y22m

Since
=1 =1
Z_:<—: z_;a—n<00,

we deduce that fl e d;v < 00, and g( — 00 as * — oo, by Lemma 3.2.3. Let

fo(z) == &”;—;’(), then there exists x1 > 0,¢; < 0 such that fo(z) < ¢ for all z >

and
< 1 e 2x & 1
——dzx = / ——dx = / ——dx > —00.
/:pl f2<$> T ﬁx2_9($2) x% 6x_g<x>
Moreover,
lim inf f2(x)2 = lim inf —4x—g(2$)

But for all x € [n,n + 1),
g(x)x (n+1) , ol (n+1)gn+2)  4(n+1)
g(x)? = g(n)? ie{ngi}fn-&-l}{g(z 1) =9} < g(n)? = g(n)

as n — 00. The result follows from Theorem 3.3.1 and Proposition 3.3.2.

— 0,
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3.3.8 Total mass of the continuous forest of trees

Recall that in the continuous case, the total mass of the forest of genealogical trees is
Tflf
St = / Zydt
0

t
AT = / Zrds,t >0,
0

given as

Consider the increasing process

and the associated time change
n(t) = inf{s > 0, A; > t}.

We now define UF = 327 o n"(t),t > 0. It is easily seen that the process U” solves
the SDE
f2U7)

t

Let 7% := inf{t > 0,U} = 0}. It follows from above that n*(7*) = T, hence S* = 7*.
We have

Theorem 3.3.4. Suppose that the function @ satisfies (H1) and there exists ag > 0
such that f(x) # 0 for all z > ay.

0 If [ Tyde = oo then

S*¥ =~ 00 a.s. as T — 0.

2) If faooo Feorde < oo then

sup S* < oo a.s.,
x>0

and moreover, there exists some positive constant ¢ such that

sup E(ecsm) < Q.
x>0
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Proof. Note that we can rewrite the SDE (3.3.3) as
AUy = (BU — h(UY))dt +dW,,  Ug = g

where h(zx) := fx — ! (42;), with again § > 60, is a positive and increasing function.

1) By the comparison theorem, U? > UM, where UM solves

T

dU" = —h(U")dt +dW,,  Uy” ==,

[\

The result follows from Theorem 3.3.1, Proposition 3.3.2 and Lemma 3.2.3.

2) The result is a consequence of Theorem 3.3.1 and Proposition 3.3.2. We can

prove it by using the same argument as used in the proof of Theorem 3.3.3.

3.4 Some examples

In this section we will discuss some special cases to illustrate our results.

Example 3.4.1. An important example is the case of a logistic interaction, where
f(z) := ax — ba?, aceRbeR,.
There exists a positive constant ay such that f(z) < 0 for all z > ay, and

* 1 * 1 < 0 x
dx:/ ——dxr < o0, / dx:/ ——dr = 0.
Lo ‘ f(.l’) | ao br? — ax ao ’ f(QJ) | ao bx? — ax

Hence in this case, there exists some positive constant ¢ such that

supE(eCHm) < 00, supIE(eCTz) < 00,
m>0 >0

and
sup L™ =0 a.s., sup S¥ =00 a.s.

m>0 >0
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Example 3.4.2. We consider the case where f is a function satisfying (H1) and for

all z > 2,
f(z) = —x%(log x)7, a>0,v>0.
Note that
oo 1 =00, if a<l or a=1v<1
/ o (log o @
2 @%(log) <oo, if a>1 or a=1,v>1
Hence
sup H" =00 a.s., supT® =00 a.s.
m>0 >0

if o <1ora=1,y <1, while there exists some positive constant ¢ such that

ch) CTI>

supE(e < 00, supE(e < 00

m>0 >0

if « >1ora=1,7 > 1. Concerning the length (resp. the total mass) of the

genealogical forest of trees we have

sup L™ = a.s., sup S* =0  a.s.
m>0 >0

if @ <2ora=2,v <1, while there exists some positive constant ¢ such that

sup ]E(e < 00, supE(eCSx) < 00

ch)
m>0 x>0

ifa>2ora=2v>1.
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Chapter 4

EXTINCTION TIME AND THE TOTAL MASS OF THE
CONTINUOUS STATE BRANCHING PROCESSES WITH
COMPETITION

4.1 Introduction

Consider a continuous state branching process (CSBP) with continuous paths. Such
process can be used as model of population growth, with the notion of genealogical
tree of population is described by using continuous random trees in the sense of
Aldous [1]. However, in that context one might want to model interactions between
the individuals (e.g. competition for limited resources) so that we no longer have a
branching process. Such interactions can increase the number of births, or in contrary
increase the number of deaths. The popular logistic competition has been considered
in Le, Pardoux, Wakolbinger [11], while a much more general type of interaction

appears in Ba, Pardoux [3].

We will assume that for large population size the interaction is of the type of a
competition, which limits the size of the population. One may then wonder in which
cases the interaction is strong enough so that the extinction time (or equivalently the
height of the forest of genealogical trees) remains finite, as the number of ancestors
tends to infinity, or even such that the total mass of the forest of genealogical trees
remains finite, as the population size tends to infinity.

This question has been addressed in the case of a polynomial interaction in Ba,
Pardoux [2], and in more general case of competition in Le, Pardoux [10]. Here we
want to generalize those results to the case of CSBP with discontinuous paths. More

precisely, suppose that o > 0 is a constant, and (r A r?)m(dr) is a finite measure on



117

(0,00). Let 1 be a function given by

() = %02)\2 + /Ooo(e_’\r — 1+ Ar)m(dr), A > 0. (4.1.1)

Let W (ds, du) be a white noise on (0,00)? based on the Lebesgue measure dsdu, and
let N(ds,dz,du) be Poisson random measure on (0,00)* with intensity dsm(dz)du.
Let N(ds,dz, du) be the compensated measure of N(ds,dz,du). We will consider
the CSBP with competition characterised by the branching mechanism 1, which is
governed by the SDE

¢ t pze t poo pZE
Z =x+ / f(Z%)ds + 0/ / W (ds, du) + / / / zN(ds,dz, du),
0 0 Jo o Jo Jo

(4.1.2)

where the function f satisfies the following hypothesis.
Hypothesis (H1): f € C(R;,R), f(0) = 0. There exists # > 0 such that

fla+y) - f(z) <0y  Va,y>0.

The hypothesis (H1) implies that the function 6y — f(y) is increasing. In particular,

we have
fly) <0y  Vy=>0.

The equation (4.1.2) has a unique strong solution (see Dawson, Li [5]). This SDE
couples the evolution of the various {Z7, ¢t > 0} jointly for all values of x > 0.

For z > 0, define 7" the extinction time of the process Z* by
T* = inf{t > 0, Z = 0}.
And define S* the total mass of Z* by

TI
W:/ Zrdt,
0

Note that our coupling of the various Z*’s makes T* and S” a.s. increasing. We next

study the limits of 7% and S* as x — oo. This chapter is organized as follows. Section
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4.2 studies the extinction time, while section 4.3 studies the total mass of the CSBP
with competition. The main results are Theorem 4.2.1, 4.2.2, 4.3.1 and 4.3.2. Section
4.4 gives some examples to illustrate our results and gives a counterexample to see
that the results obtained in the case of CSBP with continuous paths may no longer

be true for the case of CSBP with discontinuous paths.

4.2 Extinction time of the CSBP with competition

We now study the extinction time of the process Z”. In the logistic case where
f(y) = ay — by?,b > 0, Lambert [8] has proved the process Z? either remains positive,
or is absorbed at 0 at finite time, depending solely on the branching mechanism,
i.e. according to a criterion that does not involve a and b: absorption occurs with
probability 1 if [ d\/1()\) < oo, with probability 0 otherwise. In the case of Feller’s
branching diffusion with competition where 1)(\) = 2A? (the condition [~ d)\/¥(\) <

oo is satisfied in this case), it is showed in Le and Pardoux [10] that

o 1
supTz<oo<:>/ ——dy < 0.
x>0 ’ f(y) ‘

Hence it is intuitive to see that in the general case if

/00 d\/P(N) < o0, /OO | f(ly) ldy < 00, (4.2.1)

we have sup,., 7" < oo. Indeed, under the condition (4.2.1), we can prove that

sup,.o 1™ has finite expectation.

We first need the following lemma, which is Lemma 2.3 in [10].

Lemma 4.2.1. Let [ be a function satisfying (H1), a € R be a constant. If there
exists ag > 0 such that f(y) # 0, f(y) + ay # 0 for all y > ag, then we have that

o 1 e 1
—d —d
/ao 70 | y<°‘”:’/a0 fay+ )] =

and when those equivalent conditions are satisfied, we have

i L (y)

Y—r00 y
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We now establish the main results of this section

Theorem 4.2.1. Suppose that f is a function satisfying (H1) such that lim,,_,q+ % >
—o00 and [ dN/P(N\) = co. We have for all x > 0, T® = o0 a.s.

Proof. From the condition (H1) and lim, o+ %y) > —oo there exists a positive con-

stant 0 such that

—0y < f(y) <6y  Vye[0,22].
Define 7 := inf{t > 0 : ZF > 2z}, then f(ZF) > —0Z} for all t € [0, 7). By the
comparison theorem (see Dawson, Li [5]) we have ZF > Z}"* a.s. for all t € [0,7y),

1
where Z," solves

ZtM:x—é/ Z”d8+a// stdu /// N(ds, dz, du).

The process Zt ™ is a CSBP characterised by the branching mechanism ;(\) =
W(A) + 0. By Lemma 4.2.1 we have [*d)/11(\) = 00, so that Z;** remains positive
a.s. (see Kyprianou [7], page 279). Hence ZF remains positive a.s. on [0, 7).
Assume that we have the opposite result P(7% < oo) > 0. We condition on
{T* < 00}. We have 7y is finite and therefore we can define 7 := inf{t > 7y : ZF < x}.

Clearly 7 is finite and Z7 = x because the process Z; has no negative jumps. Define
Topr1 := Inf{t > o : Z7 > 22}, Topyo = Inf{t > 11 : ZF <z}, k>1,

then every 7 are finite by the above argument. But it is easy to see that

(o]
Z Tok+1 — Tgk = a.S.
k=1
This contradicts our initial assumption. The result follows. O

Theorem 4.2.2. Assume that f is a function satisfying (H1) and that there exists
ag > 0 such that f(y) # 0 for all y > ag. If the condition (4.2.1) is satisfied, we have

sup E(T") < o0

>0
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Proof. From Lemma 4.2.1 we get
fw)

lim —== = —
y—oo Y

then there is a constant M > a such that f(y) < —y for all y > M. Define for
x> M,

)

Ty =inf{t > 0,2} < M}.
We have for z > M,

VA o] zZE B
dz¥ = f(Z8)dt + o W (dt, du) +/ / zN(dt,dz, du),
0

—?(ZZF‘“”/OZ ~fizp) ") / / t_

Hence

TN dz® THyNt  pZ3 1
= = —(Ty Nt +U/ /
/0 —f(Z%) T5 ) —f( Z?

A

N(ds,dz du)]] < E[/OT&M —f(mZ )ds /100 zm(dz)]

Observe also that

TEAE 22 ) Tt e
IE \/ / 5V (ds, du) ] :E[/O f(Zz)st]

/TW/ / _f N(ds, dz, du)| ] :E[/OTW f(ZZi;)st/ol zﬁm(dz)]

The above expectations are ﬁmte then

TNt rZs 1 T At
t r—)/ / W (ds,du) + / / /
0 0 —f(Z;ﬂ)

is a martingale. From (4.2.2) we get

A

N(dt,dz, du).

W(ds, du)

N(ds,dz,du).  (4.2.2)

It is easy to show that

ST

N(ds,dz, du)
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We deduce that for all x > M,t > 0,
> du
E(Ty; At) < / — .
M v —f(w)
Taking the limit as * — oo and ¢t — oo we have
sup E(T3;) < oo,
x>M
or E(T) < oo, where Ty 1= sup,,; I/
We have just proved that the process Z comes down from infinity. For proving
that sup,-o E(T*) < oo, it remains to show that the time taken by Z to descend from
M to 0 is integrable,which we now establish. By the comparison theorem we have

zM < ZPM as. for all t > 0, where Z2™ solves

t t ZSQ’]M t ) ZSQ’,]u ~
th,M _ M+9/ Zf’Mds—l—J/ / W(ds,du)+/ / / zN(ds, dz, du).
0 0o Jo o Jo Jo

The process Z;" is a CSBP characterised by the branching mechanism o) =
¥(A) — 0. By Lemma 4.2.1 we obtain [~ d\/12(\) < oo, so that Z*M is absorbed
at 0 in finite time with positive probability (see Kyprianou [7], page 279). Then there
is a constant T > 0 such that Z*>™ is absorbed at 0 before time 7' with positive
probability. Let p denote the probability that starting from M at time ¢ = 0, Z hits
zero before time T'. Clearly p > 0. Let ¢ be a geometric random variable with success
probability p, which is defined as follows. Let Z start from M at time 0. If Z hits
zero before time T', then ¢ = 1. If not, we look the position Zr of Z at time T'.

If Zp > M, we wait until Z goes back to M. The time needed is stochastically
dominated by the random variable T;, which is the time needed for Z to descend to
M, when starting from oo. If however Zr < M, we start afresh from there, since the
probability to reach zero in less than T is greater than or equal to p, for all starting
points in the interval (0, M].

So either at time T, or at time less than 1"+ Ty, we start again from a level which

is less than or equal to M. If zero is reached during the next time interval of length
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T, then ¢ = 2... Repeating this procedure, we see that sup,.,7" is stochastically
dominated by

¢
i=1
where the random variables n; are i.i.d, with the same law as T}, globally independent

of (. Therefore

¢
sup B(T") < E(CT + > i)
=1

x>0
T 1
= —+ -E(Tu)
p p
< OQ.
The result follows. O

4.3 Total mass of the CSBP with competition

In this section, we shall assume that

Hypothesis (H2): f is a function satisfying (H1) such that
lim _f(u)

u—0t U

)

for some —oo < a < 0, and the function f(u) := @ — « satisfies (H1).

4.3.1 The Lamperti transform

We will study the total mass S* of the process Z*. In this subsection we remind the
reader of a celebrated result of Lamperti [9] which relates CSBP and Lévy processes
with no negative jumps. This result will allow us to give a representation of CSBP
with competition in terms of spectrally positive Lévy processes with drift.

Let X be a real-valued Lévy process with no negative jumps and initial position

Xo =2 > 0. Let Tj be the first hitting time of zero by X. Then define

ToNt dS
= — t>0
Pt /0 XS )
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and (Cy,t > 0) its right-inverse. Lamperti’s result then states that if
Y; = X(CY) t >0,
then Y is a CSBP with initial value Yy = x. Moreover,
¢
Ct = / mdé’ t > 0.
0

Conversely, suppose that Y is a CSBP such that Yy = x > 0. If C' is defined as above,
and p is the right-inverse of C, then Y o p is a Lévy process with no negative jumps
which starts at  and is killed when it hits 0.

We now time-change the CSBP with competition Z* in Lamperti’s fashion to

obtain a Lévy process with drift. Consider the increasing process
t
cy :/ Zids, t >0,
0
and its right-inverse pf. We define U* = Z” o p*. We have

Proposition 4.3.1. Assume that the function f satisfies (H2). Then U® is the unique

strong solution of the following SDE

Uy = %dt +dX,, Uf=u (4.3.1)
t

where X is a Lévy process with Laplace exponent ).

Proof. The process Z* is a cadlag homogeneous strong Markov processes (see e.g.
[5]). By standard theory of Markov processes (see e.g. [6, 12]), U” is then a cadlag
homogeneous strong Markov process. We denote A (resp. @, L) the infinitesimal
generator of X (resp. U?, Z*). Using It6 ’s formula one can see that Z* solves the

martingale problem associated with the infinitesimal generator L given by

1

Lotw) = 50%5" )+ F0)g )+ | Deglyymids

= yAg(y) + f(y)g (v).
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Furthermore, we deduce Qg(y) = ngfy) from the fact that for any time ¢t > 0, with

r=ps,
E(g(Uy)) = E(9(Z;:))
— / " Lg(z2)dr)

- E(/O ng{:) ds)

— ([ Qo(v7)as)
Hence
Qg(y) = Agly) + %g' (y)-
This shows that U? is a solution of the SDE (4.3.1). It remains to prove the uniqueness

of solution of (4.3.1). Suppose that U* and U be two solutions of (4.3.1), we have
for all t > 0,

e [ s
0

Then by Ito’s formula and Hypothesis (H1) we get
(U = U = / 2(UL — U (UL~ A(UR))ds
0
< /t 20(UN" — U2™)%ds.
0
The result follows from Gronwall’s inequality. n

Let 7@ :=inf{t > 0,U} = 0}. It is easy to see that p”(7%) = T*, hence S* = 7*.
We next study the limits of S* as z — co. We want to show that under a specific
assumption 5% — oo a.s. as x — oo, and under the complementary assumption
sup,.o oS¢ < 0o a.s. Because the mapping x — S% is a.s. increasing, the result will
follow for the same result proved for any collection of r.v.’s {S* x > 0} which has
the same monotonicity property, and has the same marginal laws as the original one.
More precisely, we will consider the U*’s solutions of (4.3.1) with the same X for all

z > 0.
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4.8.2  About the Lévy process X

In this subsection we establish some preliminary results on Lévy processes which
will be used later. Recall that X is a spectrally positive Lévy process with Laplace
exponent ¥ given by (4.1.1), so that for all A > 0,

E(e *Xt) = ™ (4.3.2)

Because v is continuous and has a continuous derivative, 1(0) = 0 and ) is increasing
on R, so that ¢ has a unique inverse ¢ which is defined and continuous on R, and

satisfies ¢(0) = 0. From (4.3.2) we get for any t > 0,

E(X,) = —t' (0) = 0.
Hence for any stopping time 7 which is a.s. positive and integrable,

E(X,) = E(E(X, | 1) = —E(n)¢'(0) = 0. (4.3.3)
Furthermore we have (see Theorem 7.2 in [7])
h?ligp X, =— litm_>i£1th =00 a.s.
So that if we define for y > 0,
7,7 =inf{t > 0,X; >y}, 7, = inf{t >0, X; < -y},

then Ter and 7, are a.s. positive and finite. We have

Proposition 4.3.2. T; — 00 a.s. and T, — 00 a.s. asy — oo, and for any

y > 0,6 >0 we have

Proof. Define for t > 0,
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Then for all g > 0,

Sy 0 %y 4 99— B
B T e R G ATy ) B

where ¢, is an independent and exponentially distributed random variable with param-
eter ¢ > 0 (see Kyprianou [7], page 213). Letting ( tend to zero in the first expression
of (4.3.4) we see that

P(X,, > —o0) =1

We have
P(zg;o) T, <€) = ylggo P(r, <eg)

= lim P(X, < —v)

Yy—r00

=0.
Therefore for all ¢ > 0,9 > 0,

P(sup7, <t) <P(supt, <eg)+Ple; <t)=1—e""
y>0 y>0

Then taking ¢ to zero we get P(sup,.,7, <t) =0 for all ¢ > 0, so that
P(sup7, =oc0) = 1.
y>0
Hence 7,7 — 00 a.s. as y — oo. Similarly, from the second expression of (4.3.4) we
can prove Ty+ — 00 a.s. as y — 00.

For proving the last result of the Proposition, it is enough to show that

E((r,)™) < o0 for all n € N*.

Yy

Note that (see [7], page 212) the process {7, ,y > 0} is a subordinator with Laplace
exponent ¢, and

E(e™™) = e~ for all s > 0. (4.3.5)



127

It is easy to see that for all s > 0,n € N*

E((r,)"e™™ ) = Fu(s),

Yy

where
Fi(s) = / e WYy and F,1(s) = / F,(u)du for all n > 1.
By Lemma 4.3.3 below we have that for any n > 1, F},(s) is finite. Hence for all n > 1,
E((Ty_)_n) = E(<Ty_)_n1{TJS1}) +1

< eS]E((T;)_”e_STy_ 1{T;g1}) +1
<eF(s)+1
< Q0.

The result follows. [

Lemma 4.3.3. For n > 1, there exist positive constants m{, mY,..,m;. which depend

upon y such that
F,(s) < e ¢ (m§ + mio(s) + ...+ mpo(s)"), s > 0.
Proof. We will prove this lemma by induction on n. It is easily seen that
V(s) <bis+by,  s>0, (4.3.6)

where
e8] 1
by = / rm(dr), b = o’ +/ r*m(dr).
1 0

We have for any s > 0, with u = ¥(r),
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We deduce that the lemma holds for n = 1 from the fact that for all a > 0,m > 1,

o0 1 o0
/ e "rdr = —e"%a" + m/ e "r™ ., (4.3.7)
a Y Y Ja

Assume that the lemma holds for n = k. Hence for any s > 0, with u = ¢(r),

Frii(s) < / e~y (mf + mio(u) + ... + mio(u)*)du
- / e (mE + mbr 4+ .+ mErF)y (r)dr
b(s)

< / e " (mE + mbr 4 .+ mir®) (byr + bo)dr,
¢(s)

where we have used (4.3.6) for the last inequality. From (4.3.7) we have the lemma

holds for n = k 4+ 1. The result follows. O
Lemma 4.3.4. Fort >0, define I'y = inf{s > 0, X, — s < —t}. We have E(I'}) =t.

Proof. Note that X, — s is a spectrally positive Lévy process with Laplace exponent
Yo(A) = () + A. Denote ¢y the unique inverse of y. It is well known that the

process {I';,¢ > 0} is a subordinator with Laplace exponent ¢, and
]E(e’srt) = g %) for all s > 0,t > 0.
Therefore E(T';) = ¢,(0)t. The result follows from the fact that
Go(0) =1 and  ;(0)¢(0) =1.
O

Lemma 4.3.5. Assume that (H) the paths of X are of infinite variation a.s. Then

for all positive constants a,b we have

P(a + inf X, < 0) > 0.
0.)
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Proof. According to [4] (Corollary VIL.5), assumption (H) holds iff

)\11_}1{)10 @ = 00. (4.3.8)

Note that (4.3.8) happens iff at least one of the following two conditions is satisfied:

/0 Crm(dr) = oo,

If P(a + infj 5 X, < 0) = 0, we have 7,7 > b a.s. Hence E(e*“‘;) < e % for all s > 0.

By (4.3.5) we get

o>0,or

€—¢>(s)a < e—bs
o(s)a > bs. (4.3.9)
Let s = ¢(r) in (4.3.9) we obtain ar > by(r) for all » > 0. This contradicts (4.3.8),

so that
P(a + inf X, <0) > 0.

(0,]

4.8.8 Main results
We now establish the main results of this section

Theorem 4.3.1. Suppose that f is a function satisfying (H2) and that there exists

ag > 0 such that f(u) #0 for all u > ay. If fazo Fardu = oo, then

ST 300 a.s. as T — 0.

Proof. Let v be a constant such that fo(u) := yu — fi(u) is a positive and increasing
function (we can choose e.g. v > 6, by Hypothesis (H2)). We can rewrite the SDE
(4.3.1) as

dUP = (o + U7 — fo(U7))dt + dX;, Uy =,
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Setting V,* = U — X3, then V* solves the ODE

avye

7 =a+y(V'+ Xy) = f(V7+ X)), Vo = .

Let {z,,n > 1} be an increasing sequence of positive real numbers such that x, — oo
as n — oo. For any y > 0, there exists n, > 0 such that z, > 2y for all n > n,,.
Define

Ry :=inf{t >0,V <2y} forany y>0,n>n,.

+
For n > n,, we have on the time interval [0, Ry A 7,7 A 7],

—-y<X; <y

y<Vim+ X, <V +y

dvir i
o~ 2~ la| =1 +y)
i< f v
“Jo lal+f(Vin+y)
Tn+y d
t > / I (4.3.10)
vengy Lo +fa(u)

Consider now the integral [~ ‘a|+f2 I |a|+f ; < 00, then by Lemma 4.2.1 we
have

lim | a| +folu)

U—00 u

We deduce that there exists a constant a; > ag such that
u
—M2a+|a\+’yu for all u > a;.
u
Therefore

0< /°° —u /°° du /°° du -
—du < = _— Q.
o 2f(u) o o+ | a|+yu— f(“) a o]+ (u)

= 00. From (4.3.10) we get

This contradiction shows that [~ m
ot
lim V™ = oo a.s. forall t € [0, R A7, A -=].

n—oo 2
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Hence
7.+
lim R” > 7, A 7 a.s.

n—oo
+
Moreover, because U™ = V™" + X; > 0 a.s. for all t € [0, R} A7, A %], then

+
7
St = ""”">R”/\7' /\738

+

7
th"—hme">hmR"/\T AL as.
n—00 n—00 n—00 2

> /\7—+
T, £ as.
2

Letting y tend to infinity, the result follows from Proposition 4.3.2. [

| fZLu du < o0o. We will see that in this case

Sup,~o 5% < 0o a.s. Indeed, we can prove that it has some finite moments.

We next consider the case fa

)

It is easy to see that L% — —cc as u — 00, so that there exists a constant ay > ag

such that £ < —2 | | for all u > a,. Hence

o0 1 o 1  2u
du—/ —duﬁ/ ———du < 0.
/ A1 T S e @M= ), @

By Lemma 4.2.1 we have

/az fz(U)du - /a2 ’Vu——fl(u)du < 00. (4.3.11)

Let g(y) == fy % (u) ——du for y > ag. Then g is decreasing and g(y) — 0 as y — co. We

suppose that the following hypothesis holds:

Hypothesis (H3): The function f5 is C! on (ag, 00) and there exist some con-

stants d > 0, ¢ > ag such that

g faly) >1+d forall y>ec.
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Define the function h € C(R4, R, ) as follows.

Then h is increasing and is C* on (¢, 00), h(y) — oo as y — oo, and

v, =dlg(y) foly) — d —1]
hly) = fa(y)2g(y)*+2

Therefore h'(y) is decreasing on (c,00). From the fact that for y > 2c, there exists

<0 forall y>c

¢ € (2¢,y) such that
h(y) — h(2c) = B'(€)(y — 2¢) < B'(26)(y — 2¢) < W' (20)y,
we easily deduce that
h(y) < h(2¢) 4+ A (2¢)y for all y > 0. (4.3.12)
We have
Lemma 4.3.6. There exists a positive constant ¢, such that
h(a+b) < h(a) + h(b) +¢1  for all a,b>0.

Proof. For all 0 < a,b < 2¢ we have h(a+b) < h(4c). For a > 2¢, define the function
hi € C((¢,00), Ry) by
hi(y) = h(y +b) — h(y).

We have h)(y) = h'(y +b) — h'(y) <0 for all y > c. Then

h(a +b) — h(a) = hi(a) < hi(2¢) = h(2c + b) — h(2¢) < h(2¢ + b)
h(a+b) — h(a) — h(b) < h(2¢+b) — h(b).

But A(2c¢+b) < h(4c) for 0 < b < 2¢, and h(2¢ + b) — h(b) < h(4c) — h(2¢) for b > 2¢,

by the same argument from above. The result follows by choosing ¢; = h(4c). O
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Theorem 4.3.2. Suppose that there exists ag > 0 such that f(u) # 0 for all u > ag
and that (H2), (H3) hold. If

/Ldu<oo and limw:oo,
a | ()] Ao A

then
E(h(sup S*)) < oc.

>0

Proof. From (4.3.11) and Lemma 4.2.1 we deduce that

lim M:

u—o0 U

Therefore there exists a constant M > ag such that fo(u) > 2yu + 2« for all u > M.
Let {x,,n > 1} be an increasing sequence of positive real numbers such that x,, — oo

as n — 0o. There exists ng > 0 such that z,, > 2M for all n > ny. Hence
Ry, = inf{t >0,V <2M} > 0 a.s. for any n > ny.
For n > ng, we have on the time interval [0, R}, A 7],
-M < X,
1
M <V SV + X
a+ (V" +Xe) = (V™ +X) < —5 (Vi +Xi) < —5~GV ")
dV"’“"" 1

1
< —§f2(§Vtz”)

/ V‘”" 1
< ——t

f2 V‘r" - 2
/%xn du
Lygn fo(u)

1 T
g(évt ")

~

v

v
e i e

t. (4.3.13)

Now, for proving E(h(supwo Sz)) < oo we follow the following five steps:
Step 1. We first show that for all n > ng, R}, A7), is a.s. bounded above by 4¢g(M).
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Indeed, if R}, A 71y, > 4g(M) then

Vigiary > 2M.

49
So that
1 €T
because g is decreasing. This contradicts (4.3.13).

Step 2. We show that for all n > ny,

E(h(VZIr _)) < oo.

Ry ATy
Note that on the set {R}, < 7}, Vi = 2M. Consequently,
MM
Vannee = 2MUpn <oy V2 Lm ory

Therefore

h(Vie o) = h2M)1 g -y + (V)1

Ry ATy
1 T
< h(2M) + 2’1(5‘@;1)1{%2@} +
2d+1
S h(2M) + —d —|—Cl,

(Tar)

v {RT]\L4 ZT}\?[}

where we have used Lemma 4.3.6 and (4.3.13) for the last two inequalities. Hence

E(R(VE ) < h(2M) + ¢ + 2 E(——

Ry ATy
Step 2 follows from Proposition 4.3.2.

Step 3. We show that for all n > ny,
E(h(Uz: ) < oo.

RY ATy,

From (4.3.3) and Step 1 we get

E(XRT&/\T&:[{XRR/[AT;{>O} +X 7]\L4ATA7[1{XR" e <03
E(XR%/\TJ;}{X

n
RM/\TI\/I

E(*XR;(/[ATI;I l{XRR -~ >0}

)

(4.3.14)

(4.3.15)
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We have
h(URZL/I/\T]CI ) = h(VR%LI/\T;[ + XR’;\L/I/\T]CI )

< h(Vx" _+ X *1{X

T
Ry ATy Ry AT

< h(Vie )+ (X - Lix

Ry ATy

<h(Vige )+ h‘/(zC)XRR{/\T;[]‘{X

n
Ry Aty RY AT

_soy + h(2c) +ci,
M

where we have used Lemma 4.3.6 and (4.3.12) for the last two inequalities. Hence by

(4.3.15) and Step 2

E(h(UZ ) <EVEZ ) +h (20)M + h(2e) + 1 (4.3.16)

Ry ATy Ry ATy

Step 4. For n > ng, we denote 73, the time for U*" to hit level M
Ty o= 1inf{t > 0, U < M}.

We will show that E(h(T]’\‘/[)) < oo. Note that we can choose M large enough such

that
&S—l for all u > M.
u
Conseqently, Uz <Y, forall 0 <r <7f, — R}y ATy, a.s., where Y solves

Ry ATy T

dY, = —dr + dX,,  Yo=U" .
T+ 0 UR;\%/\TM
Let A%, :==1inf{r > 0,Y, < M}. Clearly 73, < Ry, A1y, + Ay < 4g(M)+ A}, Hence

h(ty) < h(4g(M)) + h(A%)) + c1, (4.3.17)

by Lemma 4.3.6. We now prove that E(h(A%,)) < oo, from which Step 4 will follow.
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Indeed, we have for ¢ > 0 (recall that I'; = inf{s > 0, X, — s < —t})

P(h(A}y) > t) = P(A}, > h (1))

—P(Yp+ inf (X,—s)>M
(“ﬂﬁgm( s) )

<P( inf (X,— —Y,
__ﬂ@gw( s) > —Yp)

=P(Ty, > h'(t))
=P(h(Ty,) > t).

Hence

Eﬁmﬁﬁy—AwP@@ﬁﬁ>tmu§Awa@%y>@—Emu%». (4.3.18)

Furthermore, since h is a concave function on (¢, 00), we can use Jensen’s inequality

and Lemma 4.3.4 to get for all £ > 0,

Therefore

< E(h(Yp)) + h(2¢) + ¢4, (4.3.19)

where we have used Lemma 4.3.6 for the last inequality. Step 4 then follows from
(4.3.18), (4.3.19) and Step 3.
Step 5. From (4.3.17), (4.3.18), (4.3.19), (4.3.16) and (4.3.14) we deduce that for all

n2n07

Emwﬁngh@Mj+M@u@y+%@@+H@@M44q+2%ﬁmziﬁy
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Hence

E(h(tp)) < 00, where 7y := sup 1.
n>no

Let T be a positive constant. Let p denote the probability that starting from M at

time ¢ = 0, U hits zero before time T'. There exists a constant K > 0 such that

MSK for all «w > 0.
u

We have
p> ]P’(M+KT+[inf]Xt <0) >0,
0,7

by Lemma 4.3.5. Using the same argument used in the proof of Theorem 4.2.2 we

obtain that sup,., 7" is stochastically dominated by

¢
T+ Z M5
i=1

where ( is a geometric random variable with success probability p, the random variables

n; are i.i.d, with the same law as 7, globally independent of (. Therefore

¢
]E(h(sg}g 5%)) = E(h(sglg ™)) <E(h(CT + Z 7))
r * i=1
¢
< E(CH(T) + ) him) +(2¢ = 1)ex)
i=1
MT) 1 2
< = 4 “E(h(rn)) + (= = 1)c
P (h(ar)) (p Jer
< 00,
where we have used Lemma 4.3.6 for the second inequality. The result follows. O]

4.4 Some examples

In this section we will discuss some special cases to illustrate our results.

Example 4.4.1. An important example is the case of a logistic interaction where

f(u) == au — bu?, a€cR,b>0.
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It is easily seen that f satisfies (H2). There exists a positive constant ag such that

f(u) <0 for all u > ay, and

du:/ —du < 0, / du:/ — " du= .
\/ao ‘ f(“) ’ ao bu? — au ao ’ f(u) | ao bu? — au

Hence in this case, from Theorem 4.2.1, 4.2.2 and 4.3.1 we have

sup,.oI* =00 as. if [Td\/Y(N) =0
E(sup,q 1) < 00 if  [Td\Y(N) < oo,
and

sup S¥ = o0 a.s.
>0

Example 4.4.2. We consider the case of a polynomial interaction where
f(u) = au — bu”, a€eR,b>0,6>1.
Then f satisfies (H2) and there exists a positive constant ag such that f(u) < 0 for

< <
du:/ — du< oo,
/ao | f(u) | w U —au

from Theorem 4.2.1 and 4.2.2 we have

all u > ag. Since

sup,.o 7% =00 as. if [T d\/P(N\) =00

E(sup,-q17%) < 00 it [Td\y(\) < oo
Concerning the total mass we note that

[e%¢] o0 = 00, lf BSQ
[t e [T
ag | f(U) | ag u- — au if B > 2.

< 00,

Hence sup,.,S* = 0o a.s. for 8 < 2, by Theorem 4.3.1. For 8 > 2, we can choose

fo(u) := bu®L.
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Therefore for all u > ay,

<1 1
g(u) = /u fQ(T)dT - b(B — 2)uP—2

Since for all u > aq,

/ p—1
o) f30) = 5=,
(H3) holds for d = ﬁ So that for u > ay,
1
h(u) = = (b(B —2))"2u.
(1) = oy = (3~ 2)
Hence from Theorem 4.3.2, if limy_,o, @ = 00 we have

E(sup S*) < oc.
>0

Example 4.4.3. According to Theorem 3.7 in [10], in the case of Feller’s branching

diffusion with interaction where

f(u) == —ue®,

there exists some positive constant ¢ such that

supE (") < oo. (4.4.1)

>0
We will give a counterexample to see that (4.4.1) is no longer true for the case of
CSBP with competition which has discontinuous paths. Let ¢ be the function given
by (4.1.1) such that

oc>0 and / r*m(dr) = cc. (4.4.2)
1

In this case U?* is the solution of the following SDE
dU? = =V dt + d X, Up =, (4.4.3)

where X is a Lévy process with Laplace exponent 1. It is easily seen that an explicit

formula for the unique strong solution of (4.4.3) is

t
Ul =z + Xy —log(1 + / eXeds).
0
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Recall that for x,y > 0,
L, =inf{t >0,X; —t < —x}, 7, =inf{t >0, X, > y}.
We have on the time interval [0,T", A %],
y>X;>t—vo
X; —log(1+ /t eXeds) >t — x — log(1 + te¥)
0

>t—x—log(l+t)—y

> —x —y.
Therefore for all z,y > 0,
+
7Y = inf{t > 0,U7Y =0} > T, A % a.s.

By Proposition 4.3.2, we have T; — 00 a.s. as y — oo, hence

sup7® >supl’, a.s.
>0 >0

We deduce from Lemma 4.4.4 below that

E((sup 5*)*) = E((sup7*)?) = oo.

>0 x>0
Lemma 4.4.4. Suppose that the condition (4.4.2) is satisfied. For all x > 0 we have

E((I',)?%) = oc.

Proof. Recall that X; —t is a spectrally positive Lévy process with Laplace exponent
o(s) = ¥(s) + s and ¢y is the unique inverse of ¥. It is well known that the process

{T';,z > 0} is a subordinator with Laplace exponent ¢q, and
E(e’srz) = ¢ P(3)z for all s,z > 0.
Hence

E(e=*(I,)?) = 6_¢0(8)x(<¢6(5))2x2 _ ¢g(3)x) for all s,z > 0. (4.4.4)



On the other hand, we have for all s > 0

Yo(go(s)) = s

Yo(o(s))dg(s) = 1

o(00(3)) 8o (5) + L (d0(5)) (¢ (s))* = 0
o () + U (9o(5)) (0(5))* = 0.

It is easy to check that

$o(0) = ¢o(0) =0,  1(0) = ¢o(0) =1,

and

o) o

lim ¢, (s) = 0 + lim r?e”*"m(dr) = o* +/ r*m(dr) = oo.

s—0t s—0t 0 0
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(4.4.5)

(4.4.6)

(4.4.7)

From the monotone convergence theorem and (4.4.4), (4.4.5), (4.4.6), (4.4.7) we deduce

that
E((Iy)?) = lim E(e *"*(I',)*) = oo.

s—0t

The result follows.
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