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Abstract

Late-onset sepsis, defined as a systemic infection in neonates older than 3 days, occurs in
approximately 7% to 10% of all neonates and in more than 25% of very low birth weight
infants who are hospitalized in Neonatal Intensive Care Units (NICU). In view of the high
morbidity and mortality associated with infection, reliable markers are needed.

Recurrent and severe spontaneous apneas and bradycardias is one of the major clinical early
indicators of systemic infection in the premature infant. It requires prompt laboratory
investigation so that treatment can start without delay. Various hematological and
biochemical markers have been evaluated for this indication but they are invasive procedures
that cannot be repeated several times.

The objective of this dissertation was to determine if heart rate behavior, respiratory
amplitude and the analysis of their relationships help to the diagnosis of infection in
premature infants with cardiac decelerations via non-invasive ways in a NICU context.
Therefore, we carried out two parts of research work in two selected groups of premature
infants (sepsis vs. non-sepsis):

» Analysis for RR series

» Analysis for relationship between RR series and respiration

First of all, we studied the RR interval series not only by distribution methods (moy, varn,
skew, kurt, med, SpAs), by linear methods — time domain (SD, RMSSD) and frequency
domain (p_VLF, p_LF, p HF), but also by non-linear methods — chaos theory (alpha$S, alphaF)
and information theory (AppEn, SamEn, PermEn, Regul). For each method, we attempt three
sizes of window 1024/2048/4096, and then compare these methods in order to find the
optimal ways to distinguish sepsis premature infants from non-sepsis ones. The results show
that alphaS, alphaF and SamEn are optimal parameters to recognize sepsis from the
diagnosis of late neonatal infection in premature infants with unusual and recurrent apnea-
bradycardia.

The question about the functional coupling of heart rate variability and nasal respiration is
addressed. Linear and non-linear relationships have been explored. Linear indexes were
correlation (%), coherence function (Cohere) and time-frequency index G ), while a non-
linear regression coefficient (4?) was used to analyze non-linear relationships. We calculated
two directions during evaluate the index 4 of non-linear regression. Finally, from the entire
analysis process, it is obvious that the three indexes (r2tf_rn_raw_0p2_0p4, h2_rn_raw and
h2_nr_raw) were complementary ways to diagnosticate sepsis in a non-invasive way, in such
delicate patients.

Furthermore, feasibility study is carried out on the candidate parameters selected from Mono-
Channel Analysis in Chapter B1 and Bi-Channel Analysis in Chapter B2 respectively. We
discovered that the proposed test based on optimal fusion of 6 features (alphaS, alphaF,
SamEn, r2tf rm_raw, h2 rn raw and h2 nr raw) shows good performance with the largest
Area Under Curves (AUC) and the least Probability of False Alarm (Pga).



As a conclusion, we believe that the selected measures from Mono-Channel and Bi-Channel
signal analysis have a good repeatability and accuracy to test for the diagnosis of sepsis via
non-invasive NICU monitoring system, which can reliably confirm or refute the diagnosis of
infection at an early stage.
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Résumé étendu du mémoire de These

Contexte de la thése et objectifs (Chap. 1)

Le sepsis tardif, défini comme une infection systémique chez les nouveaux nés agés de plus
de 3 jours, survient chez environ 7% a 10% de tous les nouveau-nés et chez plus de 25% des
nouveau-nés de trés faible poids de naissance qui sont hospitalisés dans les unités de soins
intensifs néonatals (USIN). Les manifestations cliniques du sepsis néonatal, quelle que soit la
source de l'infection, ne sont pas toujours si évidentes et par suite, les interventions précoces
et adaptées ne sont pas toujours mises en route au risque de complications séveres pour le
patient. Par conséquent, cette maladie est un probleme majeur de santé publique entrainant
une morbidité et la mortalité des nouveau-nés prématurés.

Les bébés prématurés malades ne montrent aucun signe de fiévre, c’est seulement avec une
analyse de culture sanguine que les signes de septicémie peuvent étre détectés. Cependant,
d'une part, les marqueurs hématologiques et biochimiques qui sont utilisés pour ce symptome,
non seulement s’appuient sur des procédures invasives qui ne devraient pas étre souvent
répétées, mais ont des valeurs prédictives faibles dans la phase précoce du sepsis. D'autre part,
il a été observé expérimentalement que les phénomenes d'apnée-bradycardie surviennent plus
souvent chez les prématurés atteints de sepsis que chez les prématurés sans sepsis. Cependant,
il est encore difficile de savoir si ces changements dans le comportement des signaux
physiologiques cardiorespiratoires peuvent étre utilisés pour diagnostiquer une septicémie
chez les prématurés. Par conséquent, l'objectif de cette thése est de trouver des critéres
objectifs (descripteurs quantitatifs) pour distinguer les nouveau-nés prématurés avec un sepsis
des nouveau-nés sains ouvrant ainsi la voie a une approche de surveillance non-invasive en
USIN.

Pour atteindre cet objectif, deux types d'analyses ont été réalisés :
- Analyse monovoie de la variabilité cardiaque par le biais de la série RR
- Analyse bi-voies considérant la série RR et le signal respiratoire

Dans la suite de ce chapitre, une revue bibliographique est présentée concernant les
techniques d’analyse de la série RR dans le cas particulier des nouveau-nés de méme que
I’analyse conjointe de la série RR et du signal respiratoire.

La suite du document est organisée de la maniére suivante.

La these a été divisée en deux parties. La partie A concerne les connaissances médicales et
regroupe 3 chapitres. Dans le chapitre Al, nous présentons certains problémes cliniques
associés a la prématurité. Surtout, nous passons en revue séparément les manifestations
cliniques de sepsis d'apparition précoce et d'infection d’apparition tardive chez les nouveau-
nés.

Dans le chapitre A2, nous passons en revue les fondements physiologiques du systéme
nerveux autonome, qui contrdlent la variabilité¢ du rythme cardiaque. Apres, nous discutons du
comportement du systéme de contrdle cardio-vasculaire, en particulier, nous nous concentrons
sur le comportement anormal 1i¢ au sepsis néonatal qu’est la bradycardie.

Dans le chapitre A3, nous présentons les concepts cliniques liés au systéme respiratoire et qui
sont a l’origine de la régulation du signal de respiration. Ensuite, nous discutons de la
variabilité respiratoire et, en particulier, nous nous concentrons sur le phénomeéne déviant



observé lors d’un sepsis néonatal qu’est 1'apnée. La relation entre 1'apnée et la bradycardie est
¢galement discutée.

La partie B regroupe 3 chapitres. Dans le chapitre B1, nous étudions des méthodes linéaires et
non linéaires dédiées a l'analyse de la série RR chez les nouveau-nés. Une analyse
comparative a été considérée : les patients du groupe « sepsis » ont été comparés au groupe
« non-sepsis », selon 1'age post-conception (PCA) et 1'age post-natal (PNA), dont les valeurs
sont assez proches pour étre comparées. Ceci nous permet de mettre en évidence les meilleurs
moyens d'établir une discrimination entre les nouveau-nés prématurés infectés et non infectés.
Dans le chapitre B2, nous nous intéressons au traitement bi-voies de mesure de relations
linéaires ou non lin€aires entre les séries RR et les signaux respiratoires chez les nouveau-nés.
De la méme cohorte explorée pour l'analyse des signaux RR, les nourrissons ont été retenus,
ceux ayant des signaux respiratoires enregistrés. Ceci nous permet d’envisager un autre
moyen pour diagnostiquer d'une maniére non-invasive le sepsis.

Dans le chapitre B3, nous avons effectu¢ une étude de faisabilité sur les descripteurs
sélectionnés aux chapitres B1 et B2, par rapport a leur fusion optimale, afin d’identifier
I’approche ou les approches susceptible(s) d’étre explorée(s) dans un systéme de surveillance
en USIN.

Le document se termine par une conclusion qui résume brieévement les travaux de recherche et

les principaux résultats présentés dans cette thése, et par une perspective pointant les
orientations futures a donner a ce travail.
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Prématurité et sepsis (Chap. Al)

L'objet de notre étude est le nouveau-né prématuré, de sorte que dans ce chapitre nous
discutons principalement de considérations médicales le concernant. Tout d'abord, la notion
de prématurité est introduite et les définitions des symptomes des sepsis sont données.

Les bébés prématurés sont nés entre la 24° et 37° semaines aprés la derniére menstruation
contrairement aux bébés nés a terme, qui ont un age post-menstruel entre 37 et 42 semaines
(Fig. A1 1). Un nouveau-né pesant moins de 1500 grammes a la naissance est considéré
comme un bébé de trés faible pesée (VLWB « very low weigh baby »).

Premature

newborn
Last
menstruation

o 2] 24 26 34 37 a1 az woeks
Ovulation

({Conception)
Full-term
newborn

Fig. Al-1 Gestational ages from the last menstrual period

Comme les nouveau-nés subissent des changements rapides apres la naissance, et en précisant
I'importance du degré de prématurité, il est important de définir clairement I'dge dans les
termes suivants, tel que recommand¢ par la terminologie standard (Fig. A1 -2):

» L'age gestationnel (AG) : temps écoulé¢ entre le premier jour de la derniére période
menstruelle et le jour de la délivrance.

* L'age chronologique (CA) : temps écoulé apres la naissance.

* L'age post-menstruel (PMA) : I'age gestationnel plus 1'dge chronologique.

(o )

(OSTMENSTRUAL A@/ >,
1
I
i
I
GESTATIONAL AGE CHRONOLOGICAL AGE :
A 1
!
I
First Day of Last :
Menstrual Period |
I Date of
1 ; 1 Assessment
Conception Birth  Expected Date /l\
(Implantation/Fertilization) of Delivery

l
I
CORRECTED AGE

Fig. A1-2 Standard terminology according the AAP

Les nouveau-nés grands prématurés doivent se battre pour survivre, depuis le premier instant
de leur vie extra-utérine. Pendant la gestation, de 1'oxygene et de la nourriture sont fournis par
le placenta, la température est toujours confortable et constante, les effets de la pesanteur sont
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imperceptibles et le bébé est bercé par le rythme des activités de la mére. Ses organes
sensoriels, en partie déja formés, ne sont pas soumis a des sollicitations directes comme des
sons, des lumiéres ou des contacts, les anticorps de la mére le protégent et ils vont passer dans
son corps dans les derni¢res semaines de la grossesse. Le grand prématuré de ce fait arrive
donc dans un environnement pas trés appropri¢ pour lui, et des complications peuvent
survenir tels que les sepsis.

Les Sepsis

Les manifestations cliniques de sepsis (ou septicémies néonatales), quelle que soit la source
de l'infection, sont souvent non spécifiques et comprennent la détresse respiratoire,
I’instabilit¢ de la température et la dépression cardio-vasculaire. Un gonflement de la
fontanelle peut étre aussi observé. Le sepsis et la méningite peuvent également étre précoces
ou tardifs. Il est difficile de diagnostiquer les sepsis en raison de la multiplicité des facteurs de
risque associés et les manifestations cliniques.

Le sepsis est défini comme la combinaison d'une réaction inflammatoire, a savoir un CRP
supérieure 2 5 mg par litre, 24 heures apres l'enregistrement, et d'hémocultures positives.
Alors que la non-sepsie est définie comme I'association d'une absence de réaction
inflammatoire, a savoir la CRP inférieure a 5 mg par litre 24 heures apres I'enregistrement, et
d’une hémoculture négative.

Les bébés de tout age gestationnel sont a risque €levé d'infections bactériennes aigués et ce
pour plusieurs raisons, a la fois innées et extrinséques. Les facteurs de risque d'infection sont
inversement proportionnels a la GA. En conséquence, les nouveau-nés prématurés sont plus
exposés. D'un point de vue clinique, deux types de sepsis sont définis en fonction de la
période de survenue : infection précoce et infection tardive.

Sepsis (a début) précoce

Une infection bactérienne aigué pendant les 3 premiers jours apres la naissance survient chez
1 a 10 pour 1000 de naissances. Bien que la majorité survienne chez les nouveau-nés a terme,
le risque d'infection est plus élevé chez les prématurés. Le sepsis précoce va se développer
dans environ 2% de tous les nourrissons avec un poids de naissance <1500 grammes, bien que
10 fois ce nombre soit trait¢ comme s'il était infecté. La détection rapide en vue d’une prise en
charge approfondie est essentielle pour la réussite du traitement médicamenteux.

La septicémie a début précoce est associée a un risque accru du syndrome de détresse
respiratoire, une maladie pulmonaire chronique, une hémorragie intraventriculaire sévere, et
une leucomalacie périventriculaire (LPV). Malgré les progrés en matiére de diagnostic et de
traitements thérapeutiques, le sepsis précoce est associ¢ a une forte mortalité et une morbidité
importante, les nouveau-nés prématurés sont plus sévérement touchés: parmi les grands
prématurés, la mortalité est d'environ 35%.

Sepsis tardif (apres l'dge de 3 jours)
Son incidence chez les nourrissons sains nés a terme est beaucoup plus importante que le

sepsis précoce. Toutefois, les prématurés et les enfants nés a terme avec diverses conditions
médicales ou chirurgicales sont plus a risque de sepsis tardif. Il survient dans environ 10% des

12



cas des nouveau-nés et dans plus de 25% des nourrissons de trés faible poids de naissance qui
sont hospitalisés dans les unités néonatales de soins intensifs.

Comme le sepsis précoce, le sepsis tardif est associé a une morbidité et une mortalité
importantes ; les nourrissons prématurés sont plus sévérement touchés avec un taux de
mortalité allant jusqu'a 20%. Le sepsis tardif est associé a un risque accru de persistance du
canal artériel, la dysplasie broncho-pulmonaire, I’entérocolite nécrosante et la mort.

Le sepsis tardif en USIN est un probléme majeur en termes de risques de morbidité et de
mortalité. Des marqueurs fiables permettant de 1’identifier sont donc nécessaires.

Les épisodes d’apnées et de bradycardies spontanés, par leurs récurrences et leurs gravités
révelent souvent une infection systémique chez le prématuré. Les marqueurs hématologiques
et biochimiques obtenus par des procédures invasives, qui ne peuvent étre répétées
fréquemment, ont une faible valeur prédictive dans la phase précoce du sepsis. Néanmoins, le
manque d'intervention précoce et adaptée peut conduire l'enfant a risquer sa vie, et, en outre,
la répétition des épisodes d'apnée-bradycardie compromet 1'oxygénation et la perfusion des
tissus.

13
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Systeme nerveux autonome et variabilité cardiaque (Chap. A2)

Les fondements physiologiques du systéme nerveux autonome (SNA) et de la variabilité du
rythme cardiaque (VRC) sont présentés dans le chapitre A2. En particulier, une analyse des
systémes et mécanismes de contrdle est proposée ainsi que la description des influences
cardio-vasculaires qu’ils induisent.

Tout d'abord, les sections A2.2 et A2.3 introduisent le systéme nerveux autonome et la
variabilité de la fréquence cardiaque séparément. Secondairement, le rythme cardiaque, son
controle par le SNA sont discutés dans les section A2.4 et A2.5. Finalement, la définition
clinique de la bradycardie et ses manifestations chez les nouveau-nés prématurés sont
rapportés dans la section A2.6. Ici quelques éléments clefs sont mentionnés au sujet du SNA
et de la bradycardie chez le nouveau-né.

Le systéme nerveux autonome n'est pas consciemment controlé. Il est communément divisé
en deux sous-systémes antagonistes : le systéme nerveux sympathique et parasympathique, et
implique I'homéostasie des organes et fonctions physiologiques. En général, le systéme
nerveux parasympathique (PNS) participe a la digestion et a la conservation de 1'énergie, alors
que le systéme nerveux sympathique (SNS) participe a la dépense énergétique. Le PNS et
SNS créent souvent des effets opposés dans les mémes organes ou systemes physiologiques,
et peuvent agir comme une aide a la création d'équilibre (homéostasie) dans le corps. Il est
bien connu que le SNA a une influence majeure sur le systéme cardio-vasculaire, et la
variabilité de la fréquence cardiaque en est un exemple.

Le principal moyen par lequel le rythme cardiaque est régulé est I'innervation
parasympathique via le nerf vague. En fait, le systéme nerveux parasympathique fournit un
niveau de fond constant d'activité au nceud sinusal. Cela signifie que si cette activité subit une
accélération, le ceeur ralentit (I’activité parasympathique agit comme un frein). Inversement,
lorsque l'activité de fond ralentit la fréquence cardiaque est tirée vers le haut.

Ce dernier effet peut étre également obtenu par l'activation du systéme nerveux sympathique.
Normalement, le PNS est le principal déterminant du rythme cardiaque basal. Mais, dans des
conditions particuliéres, comme le stress, la douleur ou la peur, le systéme sympathique peut
accélérer le rythme cardiaque.

Le SNA peut trouver rapidement la fagon de se conformer aux changements de la pression
artérielle (par l'intermédiaire du baroréflexe) afin de réguler ou de s'adapter a des stimulations
a la fois endogeénes ou exogenes). L'influence mutuelle entre les composantes sympathique et
parasympathique agit comme un mécanisme de commande en boucle fermée de la variabilité
de la fréquence cardiaque. C'est la raison pour laquelle la fréquence cardiaque (FC) et sa
variabilité (VFC) constituent I'un des quatre principaux signes vitaux (température, pression
artérielle et rythme respiratoire). Généralement, la fréquence cardiaque est déterminée a partir
du nombre de contractions du cceur (battements cardiaques) en une minute et exprimée par
"BPM" (battements par minute). Le développement neurologique est I'un des premiers
mécanismes a commencer et le dernier a étre complet, générant la structure la plus complexe
au sein de I'embryon. Puis il se poursuit tout au long de la vie embryonnaire, foetale, apres la
naissance, et il continue a €tre remodelé au niveau synaptique.

Comme il a été dit précédemment, la VFC est régulée par les systémes sympathique et vagal.
Ainsi, une bradycardie peut étre due a une augmentation du contréle vagal ou a une
diminution de l'activité sympathique, ou a leur interaction. Ce controle autonome joue un role
plus important dans les mécanismes d'adaptation cardio-vasculaires chez le feetus et le
nouveau-né. Les interactions entre les systémes nerveux sympathique et vagal sont assez
complexes, et modérées par les effets de la maturation. Ce processus normal de maturation
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implique des mécanismes de capture (barorécepteurs, chimio-récepteurs, volo-récepteurs,
stretch-récepteurs), le développement de l'innervation cardiaque autonome, des médiateurs
impliqués dans la régulation du rythme cardiaque (neuropeptide Y, 1'adénosine, la sérotonine,
les opioides), I'expression de différents types de récepteurs adrénergiques et muscariniques, la
transduction des signaux des cellules pacemaker au niveau du nceud sinusal (modulation
adrénergique de la réponse a une stimulation muscarinique) 1'expression et le fonctionnement
des canaux ioniques.

Un outil intéressant pour évaluer les mécanismes de controle du SNA de la FC est l'analyse
spectrale de la variabilité du RR. Classiquement, quatre bandes spectrales sont considérées :

* Ultra basse fréquence (ULF) : de 0,0001 a 0,003 Hz chez I'adulte. Rythmes spontanés tres
lents, calculés par conséquent sur des enregistrements trés longs (au moins 24h).

* Trés basse fréquence (VLF) : de 0,003 a 0,04 Hz chez l'adulte. De 0,002 a 0,02 Hz pour le
nouveau-né. Ces rythmes sont liés a la thermorégulation et a la régulation vasomotrice
périphérique.

* Basse fréquence (LF): de 0,04 4 0,15 Hz chez I'adulte. De 0,02 au 0,2 Hz chez le nouveau-né.
Les variations dans cette bande dépendent principalement du comportement du systéme
sympathique.

» Haute Fréquence (HF): de 0,15 a 0,4 Hz chez I'adulte. De 0,2 & 1,5 Hz chez le nouveau-né.
La VFC dans cette bande est essentiellement due a la respiration (fluctuation de la fréquence
cardiaque autour de la fréquence respiratoire). Cette variabilité est liée principalement a
l'activité du systéme parasympathique (action du nerf vague sur le cceur).

Ces bandes permettent 1'observation du comportement du SNA par le spectre de puissance de
la fréquence cardiaque. En particulier, le rapport LF/HF peut étre évalué pour refléter de
manicre non invasive la balance sympathovagale, utile pour mieux comprendre la réponse du
systeme nerveux a différentes stimulations. Ce rapport est couramment utilis¢é comme un
indice de I'équilibre entre la modulation sympathique et parasympathique du nceud sinusal.
Nous verrons dans le chapitre 5 que d'autres parametres extraits du domaine temporel, et en
exploitant notamment des approches non linéaires, peuvent tre utilisés pour quantifier la
VFC et les influences du SNA.

L’analyse spectrale de la variabilit¢ du RR a été étudiée chez les nouveau-nés prématurés et a
terme. Le ratio LF/HF diminue progressivement avec l'dge postnatal, ce qui indique une
augmentation de la contribution parasympathique pour le controle de la FC. Néanmoins, pour
une meilleure compréhension de ce type de relations, il est nécessaire d'aborder une analyse
multivariée des signaux cardiorespiratoires, comme celle menée dans ce travail et qui sera
abordée plus loin dans ce document.

La bradycardie chez les prématurés est définie comme une baisse de la fréquence cardiaque
sous 100 bpm, soit une baisse de 33% par rapport a la ligne de base, pour au moins 4 secondes.
Pour le nouveau-né, I'amplitude des bradycardies médiées par le systeme vague, diminue avec
la maturation. Avec l'augmentation de l'dge post-conception (somme de I'dge gestationnel et
post-natal), une diminution de la réponse de la fréquence cardiaque aux stimulations vagales,
comme la compression oculaire, a été observée. Une augmentation du tonus vagal apprécié
via la fréquence cardiaque de base et la VFC : Hautes fréquences, moyennes fréquences,
basses fréquences, ainsi que la fréquence cardiaque moyenne est observée avec 1'age. Les
différences entre le nouveau-né prématuré et le nouveau-né a terme sont plus marquées dans
leur ensemble, dans le sommeil paradoxal (REM) que dans le sommeil non-REM. En
particulier, il a ¢été constaté une forte augmentation du tonus vagal a 37-38 semaines
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d’aménorrhée (CA), avec une stabilité par la suite, et une hausse plus réguliére du tonus
sympathique a 31-41 semaines CA. Ces résultats suggerent une évolution inverse des
bradycardies et de l'importance du tonus vagal en période néonatale. Toutefois, les parts
respectives de l'activité sympathique ou parasympathique dans la survenue des bradycardies
sont encore peu connues. La survenue des bradycardies chez les nouveau-nés prématurés est
un événement fréquent. Elles peuvent débuter a tout moment d'une apnée, et plus souvent
dans les dix premiéres secondes, donc trop tot pour étre due a une hypoxie.
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Le systéeme respiratoire (Chap. A3)

Dans le chapitre A2, nous avons abordé la question de l'influence du SNA sur le systéme
cardiovasculaire. Ici, nous présentons le systéme respiratoire qui est également susceptible
d’étre affecté par un sepsis. Tout d'abord, la section A3.2 présente le systeme respiratoire.
Puis, la section A3.3 décrit la fréquence respiratoire et sa variabilité. Dans la section A3.4,
I'apnée du prématuré est abordée. Finalement, la relation entre 1'apnée et la bradycardie est
discutée dans la section A3.5. Dans ce qui suit, quelques ¢léments clés sont briévement
résumes.

Le systéme respiratoire est composé des voies aériennes respiratoires et des poumons. Le
diaphragme et les mouvements des muscles de la poitrine permettent I'expansion de la cavité
pulmonaire, ce qui provoque une dépression qui permet a l'air de se déplacer a partir de la
bouche ou du nez dans la trachée, dans les bronches et dans les alvéoles.

La régulation de la respiration est le résultat d'une interaction avec plusieurs capteurs formant
un systtme de commande complexe : un centre de controle de la respiration, un systeme
effecteur pour activer les muscles et les organes participant a la respiration. La régulation de
la respiration est un mécanisme de contréle homéostatique, ce qui signifie qu'il cherche
constamment a maintenir la stabilit¢ de l'environnement interne via des mécanismes de
rétroaction négative. Un haut niveau de dioxyde de carbone dans le corps (augmentation du
pH dans le sang veineux) implique une respiration rapide et profonde, qui a son tour diminue
le niveau de CO 2 en augmentant l'apport d'oxygene.

La respiration est un processus automatique déclenché dans un domaine complexe du cerveau,
le tronc cérébral, qui relie la moelle épinicre et ses nerfs. Il contient le centre de controle
respiratoire involontaire. Sinon, la respiration peut étre activée par un processus volontaire
lorsque le systéme nerveux central prend le controle du mécanisme respiratoire.

Le centre de contrdle respiratoire, au niveau du tronc cérébral, régule la respiration a l'aide
d'effecteurs (nerfs et muscles) et de capteurs (Chémorécepteurs et cellules spécialisées)
capables de détecter les substances chimiques dans le corps et transmettre 1'information aux
centres de controle.

Le signal respiratoire est l'enregistrement de 1'évolution temporelle de la respiration avec un
certain nombre de paramétres permettant de décrire cette activité, tels que la pression, le
volume d'air ou la tension produite par les muscles.

L'activité respiratoire peut étre monitorée de différentes fagons, a la fois invasives et non
invasives : la mesure du flux d'air (pneumotachometry, spirométrie), l'enregistrement de
l'activité électrique des muscles avec des électrodes (pletismography ou méme indirectement
en extrayant le signal d'un électrocardiogramme) ou en utilisant des capteurs de mouvement
pour mesurer la distension du thorax.

Des variables caractéristiques permettent de scruter la fonction respiratoire d’un individu.
Elles sont utiles pour identifier des anomalies ou des pathologies. Un ensemble important de
parametres caractérisant la fonction respiratoire est répertorié¢ dans la figure ci-dessous.
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La fréquence respiratoire est un des signes vitaux mesurés lorsque les médecins et les
infirmicres vérifient I'état de santé. La respiration est commandée par le cerveau. Une variété
de facteurs peut influer sur la respiration, comme un traumatisme cranien, une hémorragie, le
stress et la fievre, I’hypothermie, les médicaments, le contrdle volontaire ou 1'effort lors d'une
activité.

Arythmie sinusale respiratoire (RSA) est la variabilité de la fréquence cardiaque induite par la
respiration (l'intervalle RR est raccourci pendant l'inspiration et prolongé durant l'expiration).
La VRC a court terme, a la fréquence respiratoire (bande HF), est principalement due aux
fluctuations mécaniques du volume d'éjection systolique. Pendant I'inspiration, en raison de la
diminution de la pression intra-thoracique et de l'interdépendance ventriculaire, le débit
cardiaque (CO) et la pression artérielle diminuent tandis que la FC augmente. La bande HF
est donc essentiellement liée a l'activité du systéme vagal. Plusieurs mécanismes sont
impliqués dans cette modulation (baroréflexe artérielle, baroréflexe cardio-pulmonaires, ...).
Cependant, il est toujours possible d'avoir une modulation sympathique de la fréquence
cardiaque a la fréquence respiratoire dans la bande LF, si la fréquence respiratoire est lente ou
périodique, comme cela arrive généralement chez les prématurés. Par ailleurs, I'administration
de PB1 bloquants cardiosélectifs augmente la RSA indépendamment de la fréquence
respiratoire : cela signifie que la RSA dans la bande HF ne peut étre considérée comme
purement vagal, mais elle est également modulée par l'activité sympathique.

La fréquence respiratoire normale pour une personne adulte au repos est de 15 a 20
respirations (cycles) par minute. Les fréquences respiratoires de plus de 25 cycles par minute
ou moins de 12 cycles par minute (au repos) peuvent €tre considérées comme anormales. Les
nouveau-nés respirent plus rapidement que les enfants plus agés et les adultes, ils ont une
fréquence respiratoire normale de prés de 40 cycles par minute. Cela peut ralentir a 20 cycles
par minute quand le bébé dort (quand la plupart des troubles respiratoires apparaissent). La
forme du signal de respiration chez un bébé peut également étre différente de celle d’un adulte.
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Un nouveau-né peut respirer rapidement sur plusieurs cycles puis marquer une pose
respiratoire et reprendre de nouveau. C'est ce qu'on appelle la respiration périodique : les
pauses respiratoires durent plus de 3 secondes et sont séparées par des respirations normales
de moins de 20 secondes. Ce phénoméne est la conséquence du contrdle de la respiration
immature du bébé dans le cerveau, ce qui répond a la forte concentration de CO2 dans le sang.
La respiration rapide superficielle expulse le dioxyde de carbone a partir du sang et le centre
de contrdle respiratoire reste inactif jusqu'a ce que ce gaz augmente a nouveau. Ensuite, le
cycle global se répete. La respiration périodique est un phénomene normal, plus fréquent chez
les nouveau-nés prématurés, mais s’estompe progressivement pendant l'enfance. Il ne doit
pas étre confondu avec l'apnée, traitée dans la section A3.4.

L'apnée est généralement définie comme l'arrét de la respiration pendant plus de 20 secondes
ou la cessation de la respiration pendant moins de 20 secondes si elle est accompagnée par
une bradycardie ou une désaturation en oxygene. La bradycardie, pour un nouveau-né
prématuré, est considérée comme significative lorsque la fréquence cardiaque diminue d’au
moins de 30 battements par minute de la fréquence cardiaque au repos. Par ailleurs, parmi les
spécialistes, il est communément admis qu'un épisode d’arrét respiratoire est considéré
comme une apnée si au moins l'une des deux situations suivantes est avérée : Il y a un arrét de
la respiration équivalent a au moins trois cycles respiratoires consécutifs ; Il y a un arrét de la
respiration durant trois fois la moyenne d'un cycle respiratoire complet. Dans le présent travail,
ces définitions seront prises en considération pour trouver des épisodes d'apnée dans le signal
respiratoire.

Trois types d’apnée peuvent étre distingués :

* L'apnée centrale : Cessation du flux d'air et de 1'effort respiratoire. Il n'y a pas de mouvement
thoracique. Elle est causée par des irrégularités dans les signaux névralgiques du centre
respiratoire.

* Apnée obstructive: Cessation du flux d'air en raison d'une obstruction des voies
respiratoires supérieures. Il y a persistance d’un effort respiratoire continu. Elle est due a la
relaxation des tissus mous dans le fond de la gorge qui bloque le passage de l'air.

» Apnée mixte : Contient des ¢léments des deux apnées : centrale et obstructive.

L'apnée du prématuré (AOP) est le trouble le plus important du contrdle de la respiration dans
la période néonatale. Il se produit dans environ 7% des enfants nés a 34-35 semaines de
gestation, 14% a 32 a 33 semaines, 50 % a 30 et 31 semaines, et il est presque universelle
chez les nourrissons nés a moins de 28 semaines de gestation ou avec un poids inférieur a
1000 grammes a la naissance.

L’AOP cesse habituellement a 37 semaines d'dge gestationnel, mais persiste parfois plusieurs
semaines apres terme. En général, la gravité et la fréquence diminuent avec 1'augmentation de
la maturité. Bien que l'apnée du prématuré soit généralement associée a des neurones
incompletement organisés et interconnectés dans le tronc cérébral, elle peut aussi étre le signe
d'autres maladies qui affectent souvent les prématurés.

La répétition d'épisodes d'apnée-bradycardie compromet l'oxygénation des tissus et la
perfusion et induit des facteurs de risque pour le développement futur du bébé. Les épisodes
de bradycardie chez les nouveau-nés sont fréquents et normalement liés a des apnées et / ou
désaturations d'oxygene. La bradycardie peut commencer a moins de 1,5 a 2 secondes apres le
début de I'apnée. Cette diminution de la fréquence cardiaque (30% en dessous de la ligne de
base) peut étre produite indirectement, par la stimulation des chémorécepteurs carotidiens ou
directement, sous l'effet de I'hypoxie sur le cceur.
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On observe également que 1'apnée-bradycardie peut apparaitre spontanément en attribuant ce
phénoméne a la simple condition de la prématurité. Néanmoins, elle peut étre provoquée ou
devenir plus sévére lorsqu'une infection ou I'hypoxémie ou encore une pathologie cérébrale
est présente.

L'apnée-bradycardie peut compromettre la perfusion tissulaire et I'oxygénation. Une
diminution de la circulation sanguine cérébrale a été constatée, au moyen de flux Doppler
dans l'artére cérébrale antérieure ou par spectrométrie dans le proche infrarouge (NIRS), en
méme temps que l'apnée-bradycardie. La répétition d'apnée-bradycardie sur plusieurs jours
semble étre a 1’origine d’altérations neuropsychiatriques perceptibles a 1’dge de trois ans.
L'incapacité de prévoir la survenue d’une apnée-bradycardie grave rend nécessaire une
surveillance cardiorespiratoire continue des nouveau-nés prématurés (monitoring
polygraphique) et le maintien d’un niveau d'alerte élevé qui permette une aide rapide
(stimulation kinesthésique, oxygénation, ventilation au masque ou intubation), a chaque
instant. La prédiction sur un court terme de la survenue et de la gravité de tels événements
permettrait de mettre en ceuvre des mesures de prévention ou de thérapie afin de minimiser les
risques d'apnée-bradycardie profonde et prolongée, de diminuer le recours a des manceuvres
de réanimation (pouvant inclure une assistance respiratoire), de réduire le temps
d'hospitalisation (ou encore les besoins de surveillance a domicile), avec comme résultat final
I’amélioration de la qualité de vie a court et moyen termes du nouveau-né prématuré.

En conclusion pour cette premiére partie (Partie A), dans le premier chapitre, nous nous
concentrons sur les aspects médicaux fondamentaux concernant les nouveau-nés prématurés
et ceux avec un sepsis. En outre, nous indiquons de nombreux aspects de la septicémie, non
seulement l'apparition précoce de l'infection, mais aussi son apparition tardive. De toute
¢évidence, 1'apnée-bradycardie est la manifestation fréquente chez les prématurés atteints de
sepsis tardif.

Ensuite, nous décrivons le systétme nerveux autonome et son influence sur le systéme
cardiovasculaire. En outre, nous discutons le comportement du systétme de controle
cardiovasculaire. Une attention particuliere a été accordée a la bradycardie, surtout chez les
nouveaux nés. Le dernier chapitre a ét¢ consacré au systéme respiratoire. En particulier, nous
expliquons I'apnée du prématuré dans le signal respiratoire et nous avons parlé de la relation
entre I'apnée et la bradycardie. Aprés cette bréve revue de la littérature et des connaissances
médicales, nous voyons clairement que le sepsis est renforcé par deux facteurs: la
bradycardie et I'apnée. Le premier peut étre caractérisé par la variabilit¢ du RR tandis que le
second peut étre étudié a travers la respiration et sa relation avec la VFC.

C'est l'objet principal des prochains chapitres dans la partie B. Le chapitre Bl essaye de
montrer comment la HRV peut étre utilisée pour le diagnostic du sepsis et plusieurs
parametres sont étudiés dans une perspective d’utilisation dans l'unité de soins intensifs
néonatale. Le chapitre B2 s’inscrit dans la méme perspective mais s'étend aux relations
cardiorespiratoires. Enfin, le chapitre B3 étudie la mise en ceuvre en temps différé des
parametres extraits des chapitres B1 et B2 dans une perspective de déploiement sur le terrain
clinique.
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Analyse de la série RR de nouveau-nés prématurés (Chap. B1)

L'objectif de ce chapitre est d’identifier les meilleurs éléments qui sont en mesure de
distinguer un nouveau-né avec sepsis d’un nouveau-n¢ sans sepsis. Pour cela, nous étudions a
la fois des méthodes linéaires et non linéaires pour l'analyse et la caractérisation de la VFC,
puis nous comparons toutes ces méthodes (i.e. les descripteurs qui en sont issus) afin de
trouver les meilleures approches candidates a la discrimination entre les nouveau-nés
prématurés infectés et non infectés.

Ce chapitre est organisé de la manicre suivante. Tout d'abord, les méthodes de traitement du
signal et I'analyse statistique sont présentées respectivement dans les sections B1.2 et B1.3.
Deuxiémement, nous proposons un protocole expérimental dans la section Bl.4.
Troisiemement, d'une part, les résultats de l'analyse mono-variée sont présentés et discutés
dans la section B1.5, d'autre part, ceux de l'analyse multivariée sont présentés dans les section
B1.6 et B1.7. Enfin, nous concluons avec un résumé dans la section B1.8.

Un large panel de méthodes de traitement du signal et d’analyses statistiques est considéré
dans ce chapitre. Sans revenir dessus dans ce résumé, nous décrivons dans la suite les
conditions expérimentales et les résultats obtenus.

Tous les enregistrements ont été réalisés en USIN du CHU de Rennes dans les conditions
standard de monitoring. Les enregistrements ont été obtenus via le systéme « Powerlab
system ®, AD Instruments » et incluaient un enregistrement numérique (avec une fréquence
d’échantillonnage de 400 Hz) d'une heure de deux voies de 1’¢lectrocardiogramme (ECG), un
electrooculogram (EOG), une voie d’¢électroencéphalogramme (EEG), une voie pour
I'oxymétrie (Sa02), et une voie pour la respiration (le flux) nasale. Les données ont été
obtenues a partir de deux groupes de nouveau-nés prématurés (13 sepsis et 13 non sepsis)
hospitalisés en USIN entre 2004 et 2007. Cette recherche a été approuvée par le comité
d'éthique local (03/05-445). En outre, les parents de ces enfants ont été informés et ont donné
leur consentement. Il n'y avait pas de différences significatives entre les sexes, l'age
gestationnel, 1'age chronologique (> 72 heures), I'dge post-menstruel (<33 semaines), le poids
et 'hématocrite entre les groupes « sepsis » et « non-sepsis ».

Les séquences de la série RR avec bradycardie ont été¢ extraites des enregistrements ECG,
puis ré-échantillonnées a 4 Hz (Fig. B1 3 a) et nettoyées par le filtre Kaplan (Fig. B1 3 b).
Apres, elles ont été employées dans les domaines temporel, fréquentiel, de la théorie du chaos
et de la théorie de 1'information.
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Fig. BI-3. RR series

Les descripteurs ont été calculés a partir de la série RR sur des fenétres (fenétres d'analyse)
dont I’horizon est 1024/2048/4096. Nous avons comparé toutes les méthodes fournissant les
descripteurs en termes de classification de sepsis (S) versus non-Sepsis (NS) pour les trois
horizons.

En conclusion de ce chapitre, les manifestations cliniques de septicémie néonatale, quelle que
soit la source de I’infection, sont souvent non spécifiques. Dans ce chapitre, 1'objectif du
travail était de trouver des descripteurs quantitatifs permettant d’identifier les prématurés avec
sepsis par un moyen non invasif.

L’analyse de la série RR permet de répondre a cet objectif. La caractérisation de la VFC par
des descripteurs issus de I’analyse temporelle ou fréquentielle ne permet pas de trouver des
corrélations significatives avec le sepsis. Le recours a des indices (descripteurs) issus de la
théorie du chaos (alpha$S, alphaF) et de la théorie de I'information (AppEn, SamEn, PermEn et
Regul) permet d’améliorer les résultats.

Le parametre alphaF qui caractérise les corrélations a court terme (4-40 battements) dans la
série RR, ne change guere avec 1'dge et est presque stable a environ 1,5. Cette valeur indique
que le comportement a court terme du RR est similaire & un mouvement Brownien. D'autre
part, le parametre alphaS caractérisant les corrélations a long terme (40-1000 battements)
augmente significativement dans le groupe non-sepsis par rapport au groupe sepsis.

En ce qui concerne la théorie de l'information, les résultats ont confirmé la relation entre
I’apparition de la maladie et une réduction des informations véhiculées par les signaux
cardiovasculaires. AppEn, SamEn et PermEn ont montré qu'une diminution de I'entropie est
associée a un sepsis, et de maniere cohérente, l'indice Regul a statistiquement des valeurs
¢levées pour le groupe sepsis.

En outre, toutes les méthodes ont été décryptées a travers des analyses statistiques, non
seulement l'analyse univariée, mais aussi l'analyse multivariée (régression logistique,
régression pas a pas). Finalement, trois paramétres issus d’analyses non linéaires de la série
RR (alphaS, alphaF, SamEn) ont été sélectionnés en tant que candidats a la distinction entre
les deux groupes sepsis et non-sepsis quelle que soit la taille de la fenétre d'analyse.
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Analyse de la relation entre la série RR et le signal de respiration chez les nouveau-nés
prématurés (Chap. B2)

Différents mécanismes sont impliqués dans la génération de la variabilité¢ cardio-vasculaire.
IIs ont ét¢ largement étudiés comme marqueurs de l'interaction sympathovagal pour le
contrdle des fonctions cardio-vasculaires. Par conséquent, l'application des méthodes
d'analyse de signaux multivoies pourrait permettre d’extraire plus d'informations que les
techniques d'analyse monovoie a partir des signaux cardiorespiratoires.

Nous considérons dans ce chapitre I'é¢tude du couplage entre les signaux de VFC et de
respiration. Ce travail est basé sur une mesure de relations (linéaires ou non linéaires) et le
temps de retard entre la série RR et le signal respiratoire. La section B2.2 concerne des
méthodes linéaires. Dans la section B2.3, les méthodes non linéaires sont présentées en détail.
Le protocole expérimental est introduit dans la section B2.4. Les résultats des méthodes
linéaires et des méthodes non linéaires sont proposés et discutés dans les sections B2.5 et B2.6
respectivement. Enfin, nous discutons tous les résultats dans la section B2.7 et une conclusion
synthétique est présentée dans la section B2.8.

Ce chapitre constitue une nouvelle fagon d'aborder le probléeme du monitoring du sepsis chez
le nouveau-né. Dans la méme cohorte explorée par I’analyse de la série RR, les patients ayant
des signaux respiratoires enregistrés ont été retenus. Une recherche sur l'influence mutuelle
entre la variabilité du systéme cardiovasculaire et la respiration nasale a été réalisée.

Des relations linéaires et non linéaires ont été mesurées. Les approches linéaires que sont la
corrélation linéaire (1), la cohérence et la cohérence temps-fréquence R*( t, f) ont été étudiées
pour révéler le couplage entre les signaux cardiorespiratoires. Il en a été de méme avec le
coefficient de régression non linéaire (h?).

En ce qui concerne les estimations linéaires, nous confirmons statistiquement (p < 0,05 quels
que soient les tests statistiques) qu’une corrélation €levée est observée dans la bande de
fréquence basse pour le groupe non sepsis entre le RR et la respiration nasale (r2tf rn_raw).
Les résultats montrent que les relations sont circonscrites dans une région particuliere du plan
temps-fréquence (0,2 <f < 0,4 Hz) pour le groupe sepsis et dans une autre pour le groupe non
sepsis. Le seuil de 0,8 semble le plus discriminant entre les deux groupes avec comme mesure
le R?( t, ).

En ce qui concerne les estimations non linéaires, les résultats obtenus en utilisant I'indice h?
de régression non linéaire entre le RR et la respiration nasale dans les deux directions
(h2_rm_raw, h2 nr raw) montrent que les valeurs sont toujours importantes. En outre,
l'analyse de la relation non linéaire montre que les courbes présentent un pic dans le groupe
non sepsis et que pour le groupe sepsis, les formes des courbes de relation sont arbitraires.
Ces faits ont été observés pour tous les patients.

En conclusion, trois descripteurs sont présentés et étudiés. Ils peuvent étre considérés comme
complémentaires :
- R2tf rn_raw_0p2_0p4: la quantité R?(t, f) entre le RR et la respiration nasale
supérieure a un seuil fixé a 0,8 dans la sous-bande 0,2 <f < 0,4 Hz )
- H2_rn_raw (h? entre le RR et la respiration nasale)
- H2_nr_raw (h? entre la respiration nasale et le RR)
Ils peuvent €tre choisis comme parametres permettant de distinguer le sepsis du non sepsis
chez le grand prématuré et ceci de maniere non invasive.
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Détection des nouveau-nés avec sepsis par analyse de la VFC et de la relation entre la
série RR et le signal de respiration (Chap. B3)

Comme nous 1’avons déja mentionné, les épisodes transitoires de l'apnée et la bradycardie
sont fréquents chez les prématurés. Ces épisodes peuvent compromettre sérieusement
I'oxygénation et la perfusion tissulaire, et quand ils deviennent prolongés et répétitifs, ils
peuvent conduire a une morbidité neurologique ou méme a la mort infantile. Les bébés
prématurés dans les unités de soins intensifs néonatals (USIN) sont surveillés en permanence
par l'enregistrement polygraphique, afin de détecter des événements de bradycardie et d'initier
des actions de soins rapides (stimulation manuelle ou vibrotactile, oxygénation, ventilation a
travers un masque, ou intubation). Généralement, quand un enfant présente un cas de
bradycardie, une alarme est générée par un dispositif de surveillance et une infirmiére ou un
médecin disponible applique une stimulation manuelle a l'enfant en détresse. Le délai
d'intervention moyen entre l'activation de I'alarme et l'application de la thérapie a été estimé a
environ 33 secondes, avec une durée de stimulation manuelle moyenne de 13 secondes afin de
mettre fin a 1’événement d'apnée - bradycardie. Cependant, méme si les algorithmes de
détection de bradycardie ont été développés, ils sont inefficaces et produisent généralement de
fausses alarmes ou des retards a la détection.

L'objectif de ce chapitre est d’ajouter une nouvelle fonctionnalité aux dispositifs utilisés pour
la détection et le monitoring des apnées bradycardies. La fonctionnalité est focalisée sur la
détection du sepsis en USIN. Donc, nous ¢tudions la faisabilité de sa mise en ceuvre en USIN
avec les fonctionnalités proposées aux chapitres B1 et B2. Ici, une nouvelle architecture pour
la prise de décision par fusion est proposée. Ce principe de Fusion optimale est d'abord décrit
dans la section B3.2. Dans la section B3.3, les principes de la courbe de réception optimale
(ROC) sont rappelés. Le protocole expérimental pour les tests est présenté dans la section
B3.4. Les résultats exploitants les approches mono-voie et bi-voies sont illustrés et discutés
dans les sections B3.5 et B3.6 respectivement. Puis, la fusion de toutes les caractéristiques est
menée dans la section B3.7. Enfin, une conclusion est dressée dans la section B3.8.

En conclusion, ce chapitre a pour but de vérifier que la détection du sepsis en temps réel est
possible sur la base des deux chapitres précédents :

(i) Le chapitre B1 basé sur VFC;

(ii) Le chapitre B2 basé sur VFC et la respiration.
L'é¢tude de faisabilité est réalisée sur les paramétres candidats choisis parmi les analyses
conduites précédemment. Tout d'abord, nous générons de longues séries temporelles
mélangeant du sepsis et du non sepsis. Ensuite, nous conduisons 5 tests en vue d’une prise de
décision sur I'hypothése d’un sepsis sur tous les segments d’observation en considérant 3
horizons différents. Enfin, nous résumons les caractéristiques des courbes ROC tels que PFA,
PD et AUC dans les tableaux B3-2, B3-3 et B3-4 afin de comparer les 5 tests et d’identifier la
meilleure solution. En outre, le contraste entre les trois tailles de fenétre 1024/2048/4096
indique que I’horizon de 4096 points a la plus faible PFA et la plus grande valeur de 'AUC.

Globalement, parmi les cinq tests, le test n°5, basé sur la fusion optimale des 6 fonctions
(Alphas, alphaF, Samen, r2tf rn raw, h2 rn_raw et h2 nr raw), conduit a de bonnes
performances avec la plus grande surface sous les courbes (AUC) et la plus faible probabilité
de fausse alarme (PFA). Il peut étre utilisé pour fournir une alarme fiable lors de la survenue
d’un épisode d'apnée-bradycardie tout en exploitant les systemes de monitoring actuels en
USIN.
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Conclusions et perspectives (Chap. 8)

Dans le chapitre 8, nous résumons l'objectif et les méthodes proposées de cette thése. Nous
rappelons également quelques pistes pour améliorer et étendre nos recherches dans les travaux
futurs.

Le sepsis tardif, défini comme une infection systémique chez les nouveaux nés agés de plus
de 3 jours, survient chez environ 10% des nouveau-nés et dans plus de 25% des nourrissons
de tres faible poids de naissance qui sont hospitalisés dans les unités de soins intensifs
néonatals (USIN). Compte tenu du taux élevé de morbidité et de mortalité associée a
l'infection, des marqueurs fiables de celle-ci sont nécessaires.

Les apnées-bradycardies spontanées graves et récurrentes sont I'un des principaux indicateurs
cliniques précoces du sepsis. L'objectif de cette thése était de déterminer si le comportement
de la fréquence cardiaque, I'amplitude respiratoire et 1'analyse de leurs relations aident au
diagnostic de l'infection chez les nourrissons prématurés par des moyens non invasifs. Par
conséquent, nous avons mené des travaux sur deux groupes de patients prématurés (le groupe
sepsis et le groupe non sepsis) par le biais de ’analyse des séries RR et des relations entre ce
signal et la respiration.

Tout d'abord, nous avons étudié la série RR par des méthodes liées a sa distribution statistique
(essentiellement les moments), par des méthodes linéaires - dans le domaine temporel (SD,
RMSSD) et dans le domaine fréquentiel (p_ VLF, p LF, p HF), mais aussi par des méthodes
non linéaires - la théorie du chaos (alphas, alphaF) et la théorie de I’information (AppEn,
SamEn, PermEn, Regul). Pour chaque méthode, nous avons exploré et comparé trois tailles de
fenétre d’analyse (horizon) 1024/2048/4096 afin de trouver les meilleurs moyens pour
distinguer un sepsis d’un non sepsis chez les prématurés. Les résultats montrent que les
descripteurs alphaS, alphaF et SamEn sont les paramétres optimaux pour identifier un sepsis
tardif. Cependant, chez les prématurés malades, le mécanisme ne se résume probablement pas
a un simple changement dans la série RR. Les résultats cliniques montrent clairement que la
VFC, la respiration et leurs relations peuvent étre des outils de diagnostic efficaces et peuvent
aider a identifier le sepsis dans une population de nourrissons atteinte de bradycardies
récurrentes.

La question du couplage fonctionnel entre la variabilité du rythme cardiaque et la respiration
nasale est abordée. Trois descripteurs complémentaires ont ¢été identifiés et jugés
intéressants (r2tf rn_raw_Op2 Op4 h2 rn raw, h2 nr raw) pour le diagnostic non invasif du
sepsis.

En outre, une étude de faisabilité a été réalisée en termes de fusion optimale de descripteurs
en vue d’une prise de décision sur le sepsis a partir des approches explorées dans les chapitres
B1 et B2. Dans ce sens, la fusion optimale des 6 descripteurs alphaS, alphaF, SamEn,
r2tf rn_raw, h2 rn_raw et h2 nr raw montre de bonnes performances avec la plus grande
surface sous les courbes (AUC) et la plus faible probabilit¢ de fausse alarme (PFA) sur un
horizon d’analyse de 4096 points.

En termes de perspective, bien sir, il y a encore de nombreuses possibilités d’amélioration et
d’extension de ce travail dans cette thése. Des perspectives sont dressées concernant de
nouvelles approches permettant d’estimer les relations statistiques entre la respiration et la
variabilité cardiaque. Ces approches pourraient améliorer la sensibilité¢ de la discrimination
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entre les deux groupes et aussi fournir des algorithmes d’estimation plus rapides que ceux
exploités dans cette étude. Une dimension importante qui n’a pas été exploitée dans ce travail
est celle de 1’analyse de ’EEG du nouveau-né dans le contexte du diagnostic du sepsis et
comme outil prédictif du devenir neurologique a moyen et long terme des nouveau-nés
atteints.
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Chapter 1
Introduction

1.1 Objective of this dissertation

Late-onset sepsis, defined as a systemic infection in neonates older than 3 days, occurs in
approximately 7% to 10% of all neonates and in more than 25% of very low birth weight
newborns who are hospitalized in Neonatal Intensive Care Units (NICU) [1]. The clinical
manifestations of neonatal sepsis, whatever the source of infection, are always not so evident.
Accordingly, lacking in early and adapted interventions always leads to life risk. Therefore,
this disease is a major problem resulting in high morbidity and mortality for premature
newborns[2].

As we know, sick preterm infants do not show any fever, only with blood culture, the possible
signs of sepsis may be detected. However, on one hand, the hematological and biochemical
markers which have been used in this symptom, not only require invasive procedures which
should not be frequently repeated, but also have low predictive values in the early phase of
sepsis. On the other hand, it has been observed experimentally that phenomena of apnea-
bradycardia happened more frequently in sepsis preterm infants than in non-sepsis ones[3].

Now, it is still unclear whether these neonatal changes in behavior of physiological signals
can be used to diagnose sepsis in sick premature infants. Therefore, the objective of this
dissertation is to find the quantitative mathematical criteria to distinguish sepsis from non-
sepsis in premature newborns for non-invasive NICU monitoring system. In order to reach
our goal, two kinds of analysis were conducted:

> Mono-channel signal: considering RR series

> Bi-channel signal: considering both RR series and respiration

But before introducing, the general description of the problem, studied in the dissertation. A
literature review is first proposed.

1.2 Literature Reviews

1.2.1 Literature Reviews for RR series in newborns

The heart rate variability (HRV) analysis in neonatology is a useful tool to understand the
cardiovascular control system behavior in late-onset sepsis of premature newborns. Starting
from the obvious increase in apnea-bradycardia crisis related with the state of sickness, a way
to evaluate the relationship between the infection and its manifestation was investigated. In
particular, since apnea-bradycardia was an indication of altered mechanisms of cardiovascular
regulation, the HRV investigation on these subjects is an immediately consequent decision.
Therefore, two research groups investigated the RR interval series extracted from ECG
signals in newborns.

e Moorman Lab in University of Virginia

e Cerutti Lab in Politecnico di Milano
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1.2.1.1 Moorman Lab in University of Virginia

Cao and Lake [3] invented statistical methods for determining stationarity of HR data based
on the two-sample Kolmogorov—Smirnov (KS) test, and developed new HR measures based
on the empirical cumulative distribution function (ECDF) that are highly significantly
associated with sepsis, but are not correlated with HR measures such as moments or sample
entropy. They concluded that neonatal HR data cannot be assumed to be stationary, and
become even less stationary prior to sepsis.

Xiao and Griffin [4] proposed nearest-neighbor analysis in addition to logistic regression in
the early diagnosis of subacute, potentially catastrophic illnesses such as neonatal sepsis, and
they recommended it as an approach to the general problem of predicting a clinical event from
a multivariable data set.

Flower and Delos [5] developed a formalized wavelet-based template matching algorithm to
detect decelerations in HR time series. The new deceleration metrics added independent
information to our existing HRC analysis in predicting neonatal sepsis (p < 0.0001).
Interestingly, some asymptomatic infants had storms of large decelerations unaccompanied by
apnea at a rate of several per minute. Storms of frequent decelerations were highly predictive
and diagnostic of sepsis, with up to 10 or more-fold increase in severe clinical illness. This
new wavelet-based heart rate deceleration analysis improves heart rate characteristics
monitoring in predicting neonatal sepsis.

Methods for estimation of the entropy of a system represented by a time series are not,
however, well suited to analysis of the short and noisy data sets encountered in cardiovascular
and other biological studies. Pincus [6] introduced approximate entropy (AppEn), a set of
measures of system complexity closely related to entropy, which is easily applied to clinical
cardiovascular and other time series. AppEn statistics, however, lead to inconsistent results.
Richman and Moorman [7] developed a new and related complexity measure, sample entropy
(SamEn), and have compared AppEn and SamEn by using them to analyze sets of random
numbers with known probabilistic character. They also evaluated cross-AppEn and cross-
SamEn, which use cardiovascular data sets to measure the similarity of two distinct time
series. SamEn agreed with theory much more closely than AppEn over a broad range of
conditions. The improved accuracy of SamEn statistics should make them useful in the study
of experimental clinical cardiovascular and other biological time series.

Abnormal heart rate characteristics of reduced variability and transient decelerations are
present early in the course of neonatal sepsis. To investigate the dynamics, Lake and Richman
[8] calculated sample entropy, a similar but less biased measure than the popular approximate
entropy. Both calculate the probability that epochs of window length m that are similar within
a tolerance » remain similar at the next point. They studied 89 consecutive admissions to a
tertiary care neonatal intensive care unit, among whom there were 21 episodes of sepsis, and
they performed numerical simulations. They addressed the fundamental issues of optimal
selection of m and r and the impact of missing data. The major findings are that entropy falls
before clinical signs of neonatal sepsis and that missing points are well tolerated. The major
mechanism, surprisingly, is unrelated to the regularity of the data: entropy estimates
inevitably fall in any record with spikes. They proposed more informed selection of
parameters and re-examination of studies where approximate entropy was interpreted solely
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as a regularity measure. Richman and Lake [9] also proposed closed form estimates of the
variance of Sample Entropy.

1.2.1.2 Cerutti Lab in Politecnico di Milano

Signorini and De Angelis [10] proposed new classifiers based on fuzzy inference systems
(FISs) for analysis of the Fetal Heart Rate (FHR) signal. They include standard
cardiotocographic (CTG) parameters together with a set of frequency domain and nonlinear
indices. Results showed FISs predict normal and pathological fetal states even with 100% of
correct classifications. Their performance however is always higher than 80% in the whole
population, depending on the rule number. This approach can strongly help the automatic
CTG signal analysis improving the early discrimination among normal and pathological fetal
conditions.

Signorini and Marchetti [11] proposed an enhancement of these HRV components through the
application of a noise-reduction method in state space. The method works directly in an
embedding space and corrects noisy trajectories, projecting them onto local subspaces that are
a good approximation of the original surface of the system attractor. At any iteration, the
procedure returns a new time series with the relevant amount of subtracted noise. An
empirical criterion, originally proposed, estimates the optimum iteration number to reach a
good result in terms of signal-to-noise ratio. Ultimately, our goal is to verify a possible
improvement of the diagnostic and prognostic power of HRV analysis through the use of new
nonlinear approaches that appear as a promising tool in the early identification of dangerous
cardiovascular events.

The estimation of nonlinear parameters in time series whose model is unknown has to
consider the use of advanced analysis methods. Cerutti and Signorini [12] introduced time-
domain indexes, monofractal characteristics and a regularity statistic. Multifractal approaches
such as generalized structure functions have been also used to characterize the HRV signal. A
determinism test on the time series assesses the presence of nonlinear structures by a
hypothesis test based on surrogate data. In most cases, the multifractal spectrum of the
original HRV series significantly differs (t-test), from those obtained from surrogate signals.
Results in the HRV signal analysis confirm the presence of a nonlinear deterministic structure
in time series. Moreover, nonlinear parameters can be used to separate normal subjects from
patients suffering from cardiovascular diseases.

Antepartum fetal monitoring based on the classical cardiotocography is a non-invasive and
simple tool for checking fetal status. Its introduction in the clinical routine limited the
occurrence of fetal problems leading to a reduction of the precocious child mortality.
Nevertheless, very poor indications on fetal pathologies can be inferred from the even
automatic CTG analysis methods, which are actually employed. The feeling is that fetal heart
rate signals and uterine contractions carry much more information on fetal state than is
usually extracted by classical analysis methods. In particular, FHR signal contains indications
about the neural development of the fetus. However, the methods actually adopted for judging
a CTG trace as "abnormal" give weak predictive indications about fetal dangers. Signorini
and Magenes [13] proposed a new methodological approach for the CTG monitoring, based
on a multiparametric FHR analysis, which includes spectral parameters from autoregressive
models and nonlinear algorithms (approximate entropy). This preliminary study considers 14
normal fetuses, eight cases of gestational (maternal) diabetes, and 13 intrauterine growth
retarded fetuses. A comparison with the traditional time domain analysis is also included.

47



They showed that the proposed new parameters are able to separate normal from pathological
fetuses. Results constitute the first step for realizing a new clinical classification system for
the early diagnosis of most common fetal pathologies.

Ferrario and Signorini [14] proposed to study the heart rate variability time series complexity
by computing the Lempel Ziv (LZ) complexity measure. LZ is sensitive to the rate of pattern
recurrences in a time series. Analysis considers 24 h HRV time series of healthy subjects and
patients with cardiovascular diseases. Analysis with simulated signals showed the LZ measure
can vary depending on the adopted coding process. The binary coding, proposed in this work,
is sensitive to the different dynamical systems generating the time series, as the ternary coding
is sensitive to the presence of stationary states, i.e. a consecutive repetition of the same RR
interval value. LZ method reliably differentiates healthy vs. disease group. Further clinical
investigations on the LZ complexity and on its relationship to the risk of sudden death, can
supply new diagnostic indications.

Ferrario and Signorini [15] considered the multiscale entropy (MSE) approach for estimating
the regularity of time series at different scales. Sample entropy and approximate entropy are
evaluated in MSE analysis on simulated data to enhance the main features of both estimators.
They applied the approximate entropy and the sample entropy estimators to fetal heart rate
signals on both single and multiple scales for an early identification of fetal sufferance
antepartum. Their results show that the ApEn index significantly distinguishes suffering from
normal fetuses between the 30th and the 35th week of gestation. Furthermore, their data
shows that the MSE entropy values are reliable indicators of the fetal distress associated with
the presence of a pathological condition at birth.

1.2.2 Literature Reviews for RR series and Respiration in newborns

Different mechanisms are involved in the generation of cardiovascular variability rhythms
which have been extensively studied as markers of the sympathovagal interaction controlling
cardiovascular functions. Therefore, the application of methods of bi-channel signal analysis
can extract more information than it can be obtained by the usual techniques of mono-channel
analysis of variability signals. This is why the mono-channel approaches used to analyze heart
rate variability have been extended by several bi-channel approaches with respect to
cardiorespiratory coordination. In the second part of this study, Bi-channel analysis was
attempted, using both RR and respiratory signal.

An increase of apnea-bradycardia crisis is reported during sepsis manifestation, and they are
considered among the most relevant symptoms of sepsis. So both respiratory and
cardiovascular systems give their response to the sepsis onset. This is why, the relationship
between respiration and heart rate variability has to be investigated. Several research groups
carried on Bivariate Analysis for these two physiological signals in newborns.

Episodes of apnea, desaturation and bradycardia are a common occurrence in preterm infants
and are known to persist after hospital discharge. These events are typically detected by
clinical bedside monitoring, but the type and number of events depend on alarm settings, the
inclusion of continuous pulse oximetry and the mode of respiratory monitoring used. The
long-term effects of cardiorespiratory events remain controversial; however, some studies
have suggested an association between prolonged apnea and morbidity such as impaired
neurodevelopmental outcome. Common clinical practice requires an event-free period before
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hospital discharge, although the specific length of time varies between institutions. Therefore,
with the current demand to shorten hospital stay, the possible persistence of cardiorespiratory
events after hospital discharge and the potential consequences of these events,
cardiorespiratory monitoring remains a subject of considerable interest. Since
cardiorespiratory event detection is dependent on the mode of monitoring used, Di Fiore [17]
focused on both the respiratory patterns and types of cardiorespiratory events that occur in the
infant population and the modalities of cardiorespiratory monitoring currently available to
detect these events.

The diagnosis of late onset sepsis in premature infants remains difficult because clinical signs
are subtle and non-specific and none of the laboratory tests, including CRP and blood culture,
have high predictive accuracy. Heart rate variability analysis emerges as a promising
diagnostic tool. Entropy and long-range fractal correlation are decreased in premature infants
with proven sepsis. Besides this, respiration and its relations to HRV appear to be less. An
estimator of the linear relationship between nonstationary signals, recently introduced, is
explored. Carrault and Beuchée [18] found that the correlation in the low frequency band
tended to be higher in the sepsis group. The results told us that the analysis of time-frequency
correlations between the heart rate and respiration amplitude may help for the diagnosis of
infection in premature infants.

Maier and Rodler [19] compared the difference in these traces' phase relation found during
and after each obstructive apnea (OA) episode to the difference between the first and second
half of the OA and between split halves of epochs of normal respiration (NR), in order to
identify the potential indicators of OA in the ECG, based on the traces of QRS area from
multiple ECG leads.

Rassi and Mishin [20] investigated the correlation between heart rate variability and other
physiological parameters such as blood pressure and respiration in preterm neonates with the
aim of developing a numerical model to explain and predict heart rate variability. All the
required data are readily available for premature babies who are routinely monitored while
being nursed in intensive care, and they have collected large data sets for a random group of
such neonates. For the quantitative analysis of the data, they have developed a time domain
correlation method, which has a number of advantages over the more commonly used power
spectral analysis. They have been able to study the dynamics of the different frequency
components of HRV by this method. Highly correlated behavior of the different HRV
components, previously observed in their work on fetal HRV, is also present in the neonate,
with similar characteristic time constants. Furthermore, the correlation of High Frequency
(HF) oscillations of HRV with respiration and that of Low Frequency (LF) oscillations of
HRYV with blood pressure are demonstrated on timescales of a single oscillation. In neonates
receiving artificial ventilation, the correlation between HRV and respiration depends on the
type of ventilation involved and assumes opposite polarities for the two main types of
equipment currently in use. They demonstrated that it is possible to analyze HRV
quantitatively by calculating the relative gains and characteristic time constants for the
correlated parameters and components.

It is not known on which time scales the nonlinear respirocardial interactions occur. This
work’s aim is to quantitatively assess functional respirocardial organization during quiet and
active sleep of healthy full-term neonates by autonomic information flow (AIF) without
limitation on specific time scales. Representing respirocardial interactions on a global time
scale AIF carries information on a wider scope of interdependencies than known linear and
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nonlinear measures described. It assesses the complexity of heart rate fluctuations (HRF) and
respiratory movements (RM) and their interaction comprising both linear and nonlinear
properties. Thus, Frasch and Zwiener [21] hypothesized AIF to characterize novel aspects of
sleep state-dependent respirocardial interaction. RM and ECG-derived HRF of six healthy
full-term neonates were studied. They analyzed their power spectra, coherence, auto- and
cross-correlation and complexity estimated on local (“next sample” prediction) and global
time scales (an integral over AIF predicting for all time lags in HRF and RM). They found the
global AIF of HRF and RM to differ significantly between active and quiet sleep in all
neonates, whereas on a local time scale this applied to the HRF AIF only. HRF complexity
was larger in quiet than in active sleep. Respirocardial interaction was less complex in quiet
versus active sleep in the high frequency band only. Complex sleep state-related changes of
respirocardial interdependencies cannot be identified completely on the local time scale.
Considering the global time scale of respirocardial interactions allows a more complete
physiological interpretation with regard to the underlying autonomic dynamics.

1.3 Dissertation outline

As already mentioned in our introduction, our aim is to discover the benchmark to
discriminate between the sick and the healthy infants. Therefore this dissertation is organized
as follows, and Fig. 1-1 summarizes the organization of the Ph.D works.
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Fig. 1-1 Dissertation Outline
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In Chapter 1, first of all, we introduce our aim of this dissertation. Around this topic, literature
reviews are addressed and dissertation outline is sketched out.

Then the PhD thesis has been divided into two parts, the first part medical knowledge (called
Part A) regroup 3 chapters:

In Chapter A1, we present the medical concept of premature newborns and clinical problems
associated with prematurity. Especially, we review the clinical manifestations of early onset
sepsis and late onset sepsis in neonatal infants separately.

In Chapter A2, we introduce the physiological foundation of Autonomic Nervous System,
which control Heart Rate Variability. After, we discuss the cardiovascular control system
behavior, in particular, we focus on the abnormal behavior in neonatal sepsis —Bradycardia.

In Chapter A3, we evince the clinical theory of respiratory system, which regulate breathing
signal. Next, we discuss about the respiration rate, in particular, we concentrate on the deviant
phenomenon in neonatal sepsis Apnea. The relationship between apnea and bradycardia
is also mentioned.

The second part (called Part B) regroups 3 chapters:

In Chapter B1l, we study both linear methods and non-linear methods on RR analysis in
newborns. A comparative analysis was attempted: patients from sepsis group were compared
to the non-sepsis’ according to the post-conceptional age (PCA) and post-natal age (PNA),
whose values are close enough to be compared. Finally, we discover the optimal ways to
discriminate between infected and non-infected premature newborns.

In Chapter B2, we carry out the research of Bi-channel signals based on a measurement of
linear and non-linear relationships between RR series and Respiratory signals in Newborns.
From the same cohort used for RR analysis, infants were retained, those having respiratory
signals recorded. Eventually, we find out another valuable way to diagnosticate sepsis in a
non-invasive way.

In Chapter B3, we effectuate feasibility study among candidate parameters selected from

Chapter B1 and Chapter B2, compared with their optimal fusion, in order to help to decide
which of these methods is a reasonable diagnostic scheme for NICU monitoring system.

Conclusions and Perspectives briefly summarize the research work and the main results
presented in this dissertation, and then point out the future directions to extend our research.
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Chapter Al
Premature newborns and some related clinical problems

Al.1 Introduction

The subject of our study is premature newborns, so that we mainly discuss its medical
background in this chapter. First of all, section Al.2 introduces the concept of premature
newborns. Secondly, section Al.3 describes clinical problems associated with prematurity.
Thirdly, section A1.4 presents the definition of sepsis and related symptoms, furthermore, it tries
to enhance the main characteristic of the disease.

Al.2 Premature newborns

Premature or preterm infants are born between 24 and 37 weeks after the last menstrual period in
contrast to full-term infants, which have a post-menstrual age between 37 and 42 weeks (Fig.
Al-1). A neonate weighing less than 1500 grams at birth is considered as a very low weigh baby
(VLWB).

Premature

newborn
Last 1
menstruation

o 2] 24 26 Y a7 ai1 az wwesks
Ovulation

(Conceptian)
Full-term

newborn

Fig. Al-1 Gestational ages from the last menstrual period [1]

Since newborns undergo rapid changes as they are born, and stating the significance of the degree
of prematurity, it is important to clearly define the age in the following terms, as recommended
by the standard terminology [1] (Fig. A1-2):
e (estational Age (GA): time elapsed between the first day of the last menstrual period and
the day of delivery.
e Chronological Age (CA): time elapsed after birth.
e Post-menstrual Age (PMA): gestational age plus chronological age.
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A1.3 Clinical problems associated with prematurity

These newborns have to fight to survive, since the first moment of their extra-uterine life. During
gestation, oxygen and food are provided by mother’s placenta, and it is not necessary to breathe
or digest; temperature is always comfortable and constant, gravity effects are imperceptible and
the baby is rocked by mother’s activities thythm. His or her sensorial organs, although partly
already formed, are not submitted to direct solicitations as sounds, lights or contacts, mother’s
antibodies protect him/her and they will pass in his/her body in the last pregnancy weeks.

Preterm newborns hit on living in a world not much appropriate to them, and they can go toward
several problems described briefly in the next subsections:

A1.3.1 Low body temperature

They are not able to maintain an appropriate body temperature, thus they are put in an incubator,
for trying to recreate, at least partially, the ideal conditions for their survival.

A1.3.2 Sepsis infection

They are at high risk of infections, provoked by bacteria, in the most common case, virus or fungi;
when the infection is generalized or concerns the blood circulation, it is called sepsis.

Premature newborns are particularly exposed because they have a still incomplete immune
system, since the majority of antibodies passes from placenta to the baby during the last months
of pregnancy. Besides, catheters and respirators, always present in the Neonatal Intensive Care
Units (NICU), can be bacterial vectors.

A baby suffering from an infection is less reactive, more prone to apneas and respiration
problems, pale and feeding intolerant. Usually infections should be defeated quickly by focused
antibiotics administration, and they should not leave permanent problems. Since the problem of
sepsis is of central interest for this work, it is going to be developed further in the next section.
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A1.3.3 Respiratory Distress Syndrome

They are at risk of respiration problems, which are mainly caused by incomplete lungs
development. The most frequent trouble is the Respiratory Distress Syndrome (RDS). This
pathology arises because of scarce quantity of surfactant, produced by mature lungs: a surface-
active agent helping to maintain alveoli open. Lack of surfactant makes alveoli collapse and
makes respiration difficult. The pathology interests mainly extreme premature babies, long period
intubated, with an incidence between 4.2% and 40%. Usually, even the most serious situations
have the tendency to improve in the first years of baby’s life, with the growing lung development.

Al1l.3.4 Anemia

Premature newborns are particularly subjects to anemia (a deficiency of red blood cells), because
in neonatal period, the red blood cells have a shorter life and during the first weeks their
production is limited. Also the infections decrease the number of blood cells, as it does the small
blood control collecting necessary for monitoring the newborn clinical situation.

A1.3.5 Apnea and Bradycardia

They develop episodes of apnea and bradycardia. An apneic pause is as a cessation of breathing
movements and/or airflow for at least 4 seconds. It can be associated with bradycardia (defined as
a decrease in heart rate of 33% from the baseline, for at least 4 seconds ) and desaturation (a fall
in oxygen quantity in blood, SaO2, under 80%) [2].

The respiratory pause may be central (i.e., no respiratory effort), obstructive (usually due to upper
airway obstruction), or mixed.

Periodic breathing' and apnea are common in all the neonates, and the physiological mechanisms
involved are not clear yet [3]. A low arterial PO, might magnify peripheral chemoreceptor
contribution to breathing, with its baseline variability inducing major changes in ventilation,
leading to instability of the respiratory control system. It has been hypothesized as following:
(1) Neonates would depend on the peripheral chemoreceptor contribution to breathing much
more than adult subjects.
(2) Their baseline arterial PO, would sit on the steep portion of the ventilation/arterial PO,
relationship on the adult nomogram, making breathing prone to oscillate [4].

Moreover, premature babies have apneas because they have immature respiratory centers in the
brain. Preemies normally have bursts of big breaths followed by periods of shallow breathing or
pauses. Apnea is most common when the baby is sleeping. Although there is considerable
variation in incidence and severity of apnea in premature infants, both are inversely related to
gestational age.

Approximately 50% of infants less than 1500 grams birth weight require either pharmacologic
intervention or ventilatory support for recurrent prolonged apneic episodes. The peak incidence
occurs between 5 and 7 days postnatal age.

" Cluster of breaths separated by intervals of apnea or near-apnea. It tends to occur during sleep, it can occur in
healthy persons but it is typical in patients with congestive heart failure. The apnea in periodic breathing is usually
central rather than obstructive.
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Apnea of Prematurity is a specific diagnosis and usually resolves with the growth of the newborn,
disappearing in proximity of the presumed date of birth, but until this moment apneas represent
an high risk factor for mortality and morbidity of the baby.

Newborns with this pathology can be treated in several ways:

» Medications that stimulate breathing (as caffeine).

» CPAP or Continuous Positive Airway Pressure. This is air or oxygen delivered under
pressure through little tubes into the baby's nose.

» Mechanical ventilation (breathing machine). If apnea is severe, the baby may need a few
breaths from the ventilator every minute. These might be given at regular intervals or only
if apnea occurs.

» Periodic stimulation. [5]

Continuous monitoring allows the staff to realize the problem and intervene immediately.

A1.3.6 Others

Other pathologies correlated with prematurity are: Retinopathy of Prematurity (ROP), open
Bottallo’s duct, jaundice, brain troubles. [6] This is the reason why premature newborns need to
be put into an incubator for trying to recreate, at least partially, the ideal conditions for their
survival.

Al.4 Sepsis

The clinical manifestations of neonatal sepsis, whatever the source of infection, are frequently
nonspecific and include respiratory distress, unstable temperature and cardiovascular depression.
A bulging or tense fontanel may be observed in meningitis. Neonatal septicemia and meningitis
are also classified into early onset and late onset. It may be difficult to diagnose because of the
multiplicity of associated risk factors and clinical manifestations [7] [8].

“Sepsis” is defined as the combination of an inflammatory response, i.e. CRP higher than 5mg/1
24 hours after the recording, and positive blood cultures. While “No-sepsis” is defined as the
association of an absence of inflammatory response, i.e. CRP less than Smg/l 24 hours after the
recording, and negative blood cultures.

Infants of any gestational age are at high risk for acute bacterial infections for several reasons,
both innate and extrinsic. Risk factors for infection are inversely related to GA. As a consequence,
preterm infants acquire bacterial infections more readily than term infants, and morbidity and
mortality are greater for those born earlier in gestation. From a clinical point of view, two kinds
of sepsis are defined, depending on the onset period: Early Onset and Late Onset sepsis.

* Early Onset Sepsis (Section Al.4.1)

* Late Onset Sepsis (Section A1.4.2)

Al1.4.1 Early Onset Sepsis

Acute bacterial infection during the first 3 days after birth occurs in 1 to 10 per 1,000 live births.
Although the majority occurs in term infants, the likelihood of infection is greater among preterm
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infants. Culture proven early onset sepsis will develop in about 2% of all infants with birth
weight <1500 grams, although 10 times that number are treated as if they are infected.

Risk Factors interconnected with vertical transmission of causative organisms include:
e Premature and/or prolonged rupture of chorioamniotic membranes

Maternal colonization with Group B beta-hemolytic Streptococcus (GBS)

Intrapartum maternal fever

Prematurity

Chorioamnionitis (infection of mother’s placenta)

Since the advent of intrapartum antibiotic prophylaxis to prevent neonatal GBS infection, Gram-
negative organisms have become the most common pathogens, accounting for nearly 2/3 of all
infections. Among these, Escherichia coli are the most common. Among Gram-positive causative
organisms, GBS is most common. It is associated with rapid onset of respiratory disease and
shock being often fatal.

Signs are nonspecific and may include any of the following:
e Lethargy

Hypotonia

Irritability with hyperreflexia

Seizures

Apnea

Cyanosis

Respiratory distress

Metabolic acidosis

Hypoglycemia

Hyperglycemia

Shock

Early, rapid and thorough evaluation is essential for successful treatment. An asymptomatic-term
or near-term newborn with even one risk factor for sepsis requires careful physical examination
and a screening complete blood count (CBC) with differential and platelet count. In the presence
of multiple risk factors, also a blood culture is required, and it is considered to start antibiotic
therapy.

For a preterm infant with any risk factors, and for any symptomatic newborn, CBC is made, and
then blood culture and antibiotics have to be started.

As soon as cultures have been obtained, antibiotic therapy begins.
Early onset sepsis is associated with an increased likelihood of respiratory distress syndrome,

chronic lung disease, severe intraventricular hemorrhage, and periventricular leukomalacia
(PVL)?. Despite diagnostic and therapeutic advances, early onset sepsis is associated with a high

? Periventricular leukomalacia (PVL) is characterized by the death of the white matter of the brain due to softening of
the brain tissue. Premature babies are at the greatest risk of the disorder. PVL is caused by a lack of oxygen
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mortality and substantial morbidity; preterm newborns are more severely affected. Among very
preterm infants, mortality is about 35%.

Al1.4.2 Late Onset Sepsis (After age 3 days)

Incidence among healthy term infants is much less than early onset sepsis. However, preterm
infants and term infants with various medical or surgical conditions are at greater risk for late
onset sepsis. It occurs in approximately 7% to 10% of all neonates and in more than 25% of very
low birth weight infants who are hospitalized in neonatal intensive care units [9].

Risk Factors for late onset bacterial infection are closely related to horizontal transmission of
causative organisms and include endotracheal intubation, indwelling urinary and vascular
catheters (especially venous catheters), lack of enteric feeding and exposure to broad- spectrum
antibiotics, which may alter normal flora and permit overgrowth and dissemination of fungal
species and resistant bacteria.

In contrast to early onset infections, Gram-positive organisms predominate and account for
approximately 2/3 of cases. Coagulase-negative Staphylococcus species (common skin flora) are
the most common isolates, especially among very preterm infants. However, Gram-negative
bacteria (e.g., E. Coli, Klebsiella pneumonias, Pseudomonas aeruginosa) also cause a significant
proportion of late onset disease. Fungal infections (with Candida species) occur frequently in
small preterm infants

Presentation in most cases of late onset sepsis is gradual, rather than fulminant. The first
indications may be subtle signs such as feeding intolerance, need for increased environmental
oxygen. However, some infants become gravely sick very quickly and the presentation may
include any signs mentioned above in Early Onset Sepsis.

As with early onset sepsis, it is imperative to perform an early and thorough diagnostic evaluation
that should include CBC with differential and platelet count. Unlike early onset disease, urine
infection is frequent. Urine should be collected for urinalysis and culture. To prevent
contamination of the specimen, urine should be obtained by suprapubic needle aspiration. Urine
by bag collection should never be sent for culture. Also, in contrast to early onset sepsis, serial C-
reactive protein (CRP)’ levels may be useful to rule out late onset sepsis among infants of any
gestational age. If the CRP is <1.0 mg/dL at 12 and 36 hours after the onset of symptoms, the
likelihood of proven or probable sepsis is 2.4%.

As soon as cultures have been obtained, antibiotic therapy should be instituted without delay.
While the spectrum of causative organisms differs from early onset sepsis, ampicillin and
gentamicin are appropriate initial antibiotic therapy.

As with early-onset infection, late-onset disease is associated with significant morbidity and
mortality, thus preterm infants are more severely affected with a mortality of up to 20%. Late-
onset sepsis is associated with an increased likelihood of patent ductus arteriosus,

? C-reactive protein (CRP) is a special type of protein produced in the liver that is present during episodes of acute
inflammation or infection.

62



bronchopulmonary dysplasia, necrotizing enterocolitis and death. That is why we prefer to study
late-onset sepsis rather than early-onset sepsis.

Late-onset sepsis in the NICU is a major problem associated with high morbidity and mortality,
so reliable markers are needed.

Recurrent and severe spontaneous apneas and bradycardias frequently reveal systemic infection
in the premature infant [10]. It requires prompt laboratory investigation so that treatment can start
without delay.

The hematological and biochemical markers that have been described require invasive procedures
that cannot be frequently repeated and have low predictive value in the early phase of sepsis [11] .

Nevertheless, lack of early and adapted intervention can lead the baby to risk his life, and, besides,
apnea-bradycardia’ episodes repetition compromises tissue oxygenation and perfusion.

Having considered this kind of risk, prolonged hospitalization periods are up to babies that have
already had a long hospital path. Sometimes a house monitoring is also necessary [12].

A1.5 Bibliography

[1] W. A. Engle, "Age terminology during the perinatal period," Pediatrics, vol.114(5),
pp.1362-1364, Nov, 2004.

[2] C. F. Poets, V. A. Stebbens, M. P. Samuels, ef al., "The relationship between bradycardia,
apnea, and hypoxemia in preterm infants," Pediatr Res, vol.34(2), pp.144-147, Aug, 1993.

(3] Medical  dictionary  definitions  of  popular  medical  terms.  Available:
www.medterms.com/script/main/art.asp?articlekey=10902

[4] A. Al-Matary, 1. Kutbi, M. Qurashi, et al., "Increased peripheral chemoreceptor activity
may be critical in destabilizing breathing in neonates," Semin Perinatol, vol.28(4),
pp-264-272, Aug, 2004.

[5] Childrens  specialists of San Diego- Division of Neonatology. Available:
http://www.childrensspecialists.com/

[6] Sepsis in the Newborn. Available:
http://www.merckmanuals.com/home/sec23/ch264/ch264t.html

[7] A. G. S. Philip, Neonatal sepsis and meningitis, pp.1-5, Boston: GK Hall & Co, 1985.

[8] A. G. S. Philip, Diagnostic tests for bacterial infection in the newborn., vol.6, pp.49-59,
Chichester: John Wiley & Sons, 1990.

[9] C. M. Beck-Sague, P. Azimi, S. N. Fonseca, et al., "Bloodstream infections in neonatal
intensive care unit patients: results of a multicenter study," Pediatr Infect Dis J,
vol.13(12), pp.1110-1116, Dec, 1994.

[10] H. Cao, D. E. Lake, M. P. Griffin, et al., "Increased Nonstationarity of Neonatal Heart
Rate Before the Clinical Diagnosis of Sepsis," Annals of Biomedical Engineering,
vol.32(2), pp.233-244, 2004.

[11] A. Malik, C. P. Hui, R. A. Pennie, ef al., "Beyond the complete blood cell count and C-
reactive protein: a systematic review of modern diagnostic tests for neonatal sepsis," Arch
Pediatr Adolesc Med, vol.157(6), pp.511-516, Jun, 2003.

63


http://www.medterms.com/script/main/art.asp?articlekey=10902�
http://www.childrensspecialists.com/�
http://www.merckmanuals.com/home/sec23/ch264/ch264t.html�

[12] E. C. Eichenwald, M. Blackwell, J. S. Lloyd, et al., "Inter-neonatal intensive care unit
variation in discharge timing: influence of apnea and feeding management," Pediatrics,
vol.108(4), pp-928-933, Oct, 2001.

64



Chapter A2
Autonomic Nervous System and Heart Rate Variability

A2.1 Introduction

The physiological foundation of Autonomic Nervous System (ANS) and Heart Rate Variability
(HRV) are introduced in Chapter A2. In particular, a control systems behavior analysis is
approached, thus involving the cardiovascular and other mutual influences description.

First of all, section A2.2 and section A2.3 introduce the Autonomic Nervous System and Heart
Rate Variability separately. Secondly, Heart Rate controlled by ANS and its behaviour are
demonstrated in section A2.4 and section A2.5. Thirdly, the clinical definition of bradycardia and
its manifestation in premature newborns are reported in section A2.6.

A2.2 The Autonomic Nervous System

It is the part of the nervous system of the higher life forms that is not consciously controlled (Fig.
A2-1). It is commonly divided into two, usually antagonistic, subsystems: the sympathetic and
parasympathetic nervous system, and involves the homeostasis of organs and physiological
functions. A third and less commonly considered part of the autonomic nervous system is the
enteric nervous system, which controls the digestive organs, and is, for the most part,
independent of ANS input.
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Fig. A2-1 Autonomic nervous system innervation,
showing the sympathetic and parasympathetic systems, in red and blue respectively.
From Gray’s Anatomy

In general, parasympathetic nervous system (PNS) is involved with digestion and energy
conservation, while the sympathetic nervous system (SNS) is involved with energy expenditure
and the 'fight or flight' response. The PNS and SNS often create opposite effects in the same
organs or physiological systems, and can act as an aid in creating balance (homeostasis) within
the body.

It remains open to debate whether the term "involuntary" nervous system is a precise description
of the ANS. Many autonomic functions are beyond conscious control, but others are impacted
voluntarily including the sphincters in urination (micturition). It is well known that ANS has a
major influence of the cardiovascular system, and the heart rate variability is an example.

A2.3 Heart Rate Variability

Heart rate variability is a physiological phenomenon where the time interval between heart beats
varies. It is measured by the variation in the beat-to-beat interval [1].

Other terms used include: "cycle length variability", "heart period variability" and "RR

variability", where R is a point corresponding to the peak of the QRS complex of the ECG wave
(Fig. A2-2), and RR is the interval between successive Rs (Fig. A2-3).
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Fig. A2-3 RR extracted from ECG

Methods used to detect beats include: ECG, blood pressure, and the pulse wave signal derived
from a photoplethysmograph (PPG). ECG is considered superior because it provides a clear
waveform, which makes it easier to exclude heartbeats not originating in the sinoatrial (SA) node.
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The term "NN" is used in place of RR to emphasize the fact that the processed beats are "normal"
beats.

Reduced HRV has been shown to be a predictor of mortality after myocardial infarction [2]
[3] although others have shown that the information in HRV relevant to acute myocardial
infarction survival is fully contained in the mean heart rate (HR) [4]. A range of other
outcomes/conditions may also be associated with modified (usually lower) HRYV,
including congestive heart failure, diabetic neuropathy, depression post-cardiac transplant,
susceptibility to SIDS and poor survival in premature babies.

HRYV studies have also been used to examine autonomic function in the context of bodily pain.
Studies of patients with Fybromyalgic Syndrome (FMS) demonstrate reduced general ANS
activity and markedly reduced nocturnal ANS activity [5], increased baseline SNS activity
[6], and impaired SNS reactivity to stimuli including orthostatic and mental stress. [6]

A2.4 Heart Rate controlled by ANS

The primary means by which heart rate is regulated is that one through parasympathetic
innervations via the vagus nerve. In fact, the parasympathetic nervous system provides a constant
background level of activity to the sinoatrial node. It means that if it speeds up its activity, the
heart slows down (parasympathetic activity leads to rest). Conversely, when background activity
slows down, heart rate speeds up.

The latter effect can be also obtained through activation of the sympathetic nervous system.
Normally, the PNS is the major determinant of the basal HR. But, in particular conditions such as
stress, pain, or fear, the sympathetic system can speed up the heart rate. The postganglionic axons
of the sympathetic nervous system arrive at the heart through nerves that have been called
accelerator nerves.

The medulla of the brain contains a "cardiac center”: it determines how to change the heart rate
and which system to use. Since it is in the brain, it receives lots of other information upon which
to base its decision.

The ANS can find quickly the way to comply with changes in arterial pressure (via the baroreflex)
in order to regulate it or to adjust to stimulations both endogenous (chemoreflexes) or exogenous

(stress, emotions, etc).

The mutual influence between vagal and SNS acts as a closed loop control mechanism for heart
rate variability (Fig. A2-4).
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Fig. A2-4 Cardiovascular regulation loop model

This is the reason why HR and its variability constitute one of the main four vital signs (together
with temperature examination, blood pressure and respiratory rate): usually it is calculated as the
number of contractions (heart beats) of the heart in one minute and expressed in “bpm” (beats per
minute).

Neural development is one of the earliest to begin and the last to be complete, generating the
most complex structure within the embryo. Then it continues throughout our entire life, through
embryonic, fetal, newborn, postnatal, and it keeps being remodeled at the synaptic level.

A2.5 HRV and Cardiovascular control system behavior

As it has been said before, in physiologic conditions HRV is regulated by the sympathetic and
vagal system.

Thus, a bradycardia can be due to an increase in vagal control or to a decrease in sympathetic
activity, or to their interaction. This autonomic control of HR and vascular tone, plays a more
important role in cardiovascular adaptation mechanisms in the fetus [7] [8] and in the newborn [9]
[10] [11]. Interactions between sympathetic and vagal systems are quite complex, and subdued to
maturation effects. This normal process of maturation involve sensor mechanisms (baro-receptors,
chemo-receptors, volo-receptors, stretch-receptors) [12] [13], the development of the autonomic
heart innervations [14], mediators implicated in heart rhythm regulation (neuropeptide Y,
adenosine, serotonin, opioids) [15] [16] [17] [18], the expression of different kinds of receptors
adrenergic and muscarinic [14], the electrophysiology and the sinusal knot pacemaker cells’
signal transduction (adrenergic modulation of the response to a muscarinic stimulation) [14] [19],
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the expression and functioning of ionic channels, especially the different potassium ones. [20] [21]
[22] [23].

A useful tool for assessing ANS mechanisms controlling HR is the spectral analysis of RR
variability. According to previous HRV frequency analysis studies, four frequency bands have
been defined:

e Ultra Low Frequency (ULF): 0.0001 — 0.003 Hz in adult. The very slow spontaneous
rhythms are calculated on long recordings (24h at least).

e Very Low Frequency (VLF): 0.003 — 0.04 Hz in adult. 0.002 — 0.02 Hz in newborn [24].
These rhythms are bound with thermoregulation and peripheral vasomotor regulation.

e Low Frequency (LF): 0.04 — 0.15 Hz in adult. 0.02 — 0.2 Hz in newborn [24]. A LF
spectral peak, synchronous with Mayer waves in BP, occurs around 0.1 Hz and is
attributed to the BR (baro-receptor reflex) [25]: thus, this variability depends mainly by
the sympathetic system behavior.

e High Frequency (HF): 0.15 — 0.4 Hz in adult. 0.2 — 1.5 Hz in newborn [24] [26]. The
HRYV in this band is essentially the RSA, which is the heart rate fluctuation around the
respiratory frequency. This variability is bound mainly to the parasympathetic system
activity, which is to the vagus nerve action on heart. [27]

This kind of definition, allows observing the ANS behavior through the heart rate power
spectrum. In particular, the so called % can be valued, reflecting the “sympathovagal balance”,
useful to better understand the nervous system response to different stimulations. Though there is
no definite evidence that the autonomic nervous system exclusively affects the ratio % of HR

variability, this ratio is commonly used as an index of the balance between sympathetic and
parasympathetic modulation of the sinoatrial node [27] [28]. We will see in Chapter B1 that other
parameters extracted from the temporal domain and the non-linear theory can be used to quantify
HRYV and the influence of PNS and ANS.

Cardiovascular reflexes using spectral power analysis of RR interval have been studied in
preterm and full-term infants [29] [30].

LF : ) . e : .
The T ratio progressively decreases with postnatal age, indicating an increase in

parasympathetic contribution to control HR [24] [30] [31].
Power spectral analysis of beat-to-beat HR wvariability is a non-invasive method to assess
autonomic nervous system regulation of cardiovascular activity, of the degree of

interconnectivity and coupling between these two organ systems.

Nevertheless, for better understanding these kinds of relations, it is necessary to approach a
multivariate signal analysis, as the one conducted in this work and later explained.
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A2.6 Bradycardia

A2.6.1 Definition of Bradycardia

Bradycardia, in the context of medicine, is a slowness of the heart rate [32]. Normal heart rate is
showed in Fig. A2-5 and bradycardia in Fig. A2-6
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Fig. A2-5 Normal heart rate (evenly spaced)
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Fig. A2-6 Heart rate with bradycardia (First-degree A-V block) [32]

It may cause cardiac arrest in some patients, because those with bradycardia may not be pumping
enough oxygen to their heart. It sometimes results in fainting, shortness of breath, and if severe
enough, death.

Trained athletes or young healthy individuals may also have a slow resting heart rate. Resting
bradycardia is often considered normal if the individual has no other symptoms such as fatigue,
weakness, dizziness, light-headedness, fainting, chest discomfort, palpitations or shortness of
breath associated with it.

A2.6.2 Classification of Bradycardia

A2.6.2.1 Atrial Bradycardia

Atrial bradycardias come in three different types. One of types is sinus bradycardia, which is
usually found in young and healthy adults. The symptoms are linked with the
individual's respirations. Each inhalation corresponds with the heart rate
decrease. Expiration causes an increase in the heart rate. This is thought to be caused by changes
in the vagal tone during respiration. [33]

Sinus bradycardia is a sinus thythm of less than 60 bpm. It is a common condition found in both
healthy individuals and those who are considered well conditioned athletes. Studies have found
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that 50 - 85 percent of conditioned athletes have benign sinus bradycardia, as compared to 23
percent of the general population studied [34]. The reason for this is that their heart muscle has
become conditioned to have a higher stroke volume and therefore requires fewer contractions to
circulate the same volume of blood. [33]

Sick sinus syndrome covers conditions that include severe sinus bradycardia, sinoatrial block,
sinus arrest, and bradycardia-tachycardia syndrome (atrial fibrillation, flutter, and paroxysmal
supraventricular tachycardia). [33]

A2.6.2.2 Atrioventricular nodal

An atrioventricular (AV) nodal bradycardia or AV junction rhythm is usually caused by the
absence of the electrical impulse from the sinus node. This usually appears on an ECG with a
normal QRS complex accompanied with an inverted P wave before, during, or after the QRS
complex. [33]

An AV junctional escape is a delayed heartbeat originating from an ectopic focus somewhere in
the AV junction. It occurs when the rate of depolarization of the SA node falls below the rate of
the AV node [33]. This dysrhythmia also may occur when the electrical impulses from the SA
node fail to reach the AV node because of SA or AV block [35]. This is a protective mechanism
for the heart, to compensate for a SA node that is no longer handling the pace making activity,
and is one of a series of backup sites that can take over pacemaker function when the SA node
fails to do so. This would present with a longer PR interval. A junctional escape complex is a
normal response that may result from excessive vagal tone on the SA node. Pathological causes
include sinus bradycardia, sinus arrest, sinus exit block, or AV block. [33]

A2.6.2.3 Ventricular Bradycardia

A ventricular bradycardia, also known as ventricular escape rhythm or idioventricular rhythm, is
a heart rate of less than 50 beats a minute. This is a safety mechanism that arises when there is
lack of electrical impulse or stimuli from the atrium [33]. Impulses originating from or below the
bundle, also known as ventricular, will produce a wide QRS complex with heart rates between 20
and 40 beats a minute. Those above the bundle, also known as junctional, will typically range
between 40 and 60 bpm with a narrow QRS complex [36] [37]. In a third degree heart block,
approximately 61% take place at the bundle branch-Purkinje system, 21% at the AV node, and
15% at the bundle [37]. AV block maybe ruled out with an ECG indicating "a 1:1 relationship
between P waves and QRS complexes." [36] Ventricular bradycardias occurs with sinus
bradycardia, sinus arrest, and AV block. Treatment often consists of the administration
of atropine and cardiac pacing. [33]

A2.6.3 Bradycardia in adults

During bradycardia the heart beats at a rate slower than normal. A normal heart rate ranges from
60-100 bpm. Sometimes, like during sleep or in some athletes, the heart rate may be lower than
60 bpm, being completely normal. But often a slow beating heart is a medical condition that
requires treatment. A slower heart rate means less oxygen-rich blood is being pumped through
the body, and symptoms are related to this lack of oxygen.
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Most bradyarrhythmias are due to one of the two following of problems:
% Sinus bradycardia

«* Heart block.

Sinus bradycardia occurs when the SA node develops an abnormally slow rate of impulse
generation. The heartbeat is slow because the heart's "natural pacemaker" is operating slowly.

"Heart block" is a term for delay or interruption in the heart's conduction system, causing the
electrical impulses to travel too slowly or to be stopped. There are several different kinds of heart
block, classified according to location (where in the conduction system the block occurs) and
according to degree (whether the block is mild, causing delayed conduction or severe, causing
conduction to stop). [38]

Bradycardia can be caused by a variety of factors, including:
e Hypotension
Acutely altered mental status
Signs of shock
Ischemic chest discomfort
Congenital defect - Irregular heartbeat present at birth.
Aging - Degenerative process of aging can cause the heart to slow down.
Medication - Some cold medicines and diet pills have been known to cause arrhythmia.
Acute heart failure - Dysfunction of the electrical pathways of the heart can cause
bradycardia.

Tests for diagnosing bradycardias may include analysis of ECG signals, either during long-term
monitoring (portable ECG) or during provocative tests (stress test ECG or Electrophysiological
studies-EPS).

Treatment for bradycardia varies from person to person and depends upon the severity, frequency
and cause of the bradycardia. Medication to prevent blood clots, to control low blood pressure or
to control other medical conditions (such as thyroid disease) can be effective in preventing
bradycardia.

Various surgical procedures can also be effective in preventing bradycardia. Procedures include:
e Electric shocks - electrical shocks given to reset the heart rate
e Pacemaker - surgically inserted to regulate the heart beat

If for some reason severe bradycardia is not treated, it can lead to other serious problems,
including fainting and injuries from fainting, seizures*, and death [39] [40].

Reflected bradycardias are a common event in human clinic, especially in vaso-vagal syncope in
adult. These bradycardias have been studied according to different models, tilt test and oculo-
cardiac reflex (OCR) [41] [42] [43] [44] [45] [46], but they follow unfully explained mechanisms
[47].

4 Seizures are sudden bursts of abnormal electrical activity in the brain that may affect a person's muscle control,
movement, speech, vision, or awareness (consciousness).
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A2.6.4 Bradycardia in newborns

The pathogenesis of bradycardias in preterm infants is poorly understood. Bradycardia in preterm
infants is defined as a fall in heart rate under 100 bpm, or a decrease of 33% from the baseline,
for at least 4 seconds. In the newborn the amplitude of vagus-mediated bradycardias, decreases
with maturation. With the increase of post-conceptional age (sum of gestational and post-natal
age), a decrease of heart rate response to vagal stimulation, as ocular compression, has been
observed, and a rise in vagal tone valued in the baseline heart rate [15], and HRV : High
Frequencies, Medium Frequencies, Low Frequencies, and mean RR all increase with age; the
differences from the premature to the full-term are more marked, as a whole, in REM sleep (rapid
eye movement sleep) than in non-REM sleep. In particular, it has been noticed a steep increase in
vagal tone at 37-38 weeks CA, with stability afterwards, and a more regular increase in
sympathetic tone from 31 to 41 weeks CA [48]. These results suggest an inverse evolution of
reflected bradycardias and vagal tone importance in neonatal period. However, the respective
parts of sympathetic or parasympathetic activity in reflected bradycardias’ onset is still not much
known.
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Chapter A3
The Respiratory System

A3.1 Introduction

In the previous chapter, we have seen the influence of ANS on the cardiovascular system. Here,
we present the respiratory system which is also affected by sepsis. First of all, section A3.2
introduces the respiratory system. Secondly, section A3.3 describes respiration rate. Thirdly,
apnea of prematurity is demonstrated in section A3.4. Finally, the relationship between apnea and
bradycardia is discussed in section A3.5.

A3.2 The respiratory system

A3.2.1 Physiology of the respiratory system

The respiratory system consists in the respiratory airways and the lungs, which are composed by
left and right lung. The diaphragm and the chest muscles movements allow expanding the
pulmonary cavity, causing a negative pressure which allows the air to move from the mouth or
nose into the trachea, into the bronchi and eventually into the alveoli. (Fig. A3-1)

This process (inspiration) provides fresh air, rich in oxygen, and the inverse (exhalation) permits
to emit the waste air, rich in carbon dioxide, produced by the metabolic reactions of the organism.

The alveoli are the smallest functional structures into the lungs where takes place the gas
exchange: the oxygen contained in the air enters the blood and the carbon dioxide, comes out
through the capillary by a diffusion process.

Capilkary Pulmonary
network vein
surrounding  (lood to
ahvaoh heart)
{@raays)
within lung

Fig. A3-1 A: Lung and airways; B: alveoli; C: gas exchange at capillaries level [1]
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A3.2.2 Respiratory regulation

The regulation of respiration is the result of an interaction with several sensors forming a
complex control system: A respiratory control center, an effector system to activate the muscles
and organs involved in breathing. The regulation of breathing is a homeostatic control
mechanism, meaning that it seeks constantly to maintain the stability of the internal environment
via negative feedback mechanisms. High level of carbon dioxide in the body (increased pH in the
venous blood) implies a quicker and deeper breathing, which in turn decreases the level of CO,
by increasing the intake of oxygen.

Breathing is an automatic process triggered in a complex area of the brain, the brain stem, which
connects the spinal cord and its nerves. It contains the involuntary respiratory control center.
Otherwise, the respiration can be activated by a voluntary process when the central nervous
system takes control of the ventilatory mechanism.

The brain stem respiratory control center regulates breathing with the help of effectors (nerves
and muscles) and sensors (Chemoreceptors and specialized cells capable to detect chemical
substances in the body and pass the information to the control centers).

The respiratory control is the central controlling area for breathing (Fig. A3-2). It receives
information from other parts of the body and produces an automatic coordinated response, which
consists in a reaction triggering the various organs and muscles to act together. It is located in the
medulla oblongata, and there are two types of neurons: the inspiratory (active during inhaling and
inactive during exhaling) and the expiratory neurons (active during exhaling and inactive during
inhaling). This pair of neurons generates an automatic succession of ventilatory cycles which can
be modified (or even temporally stopped) depending on the information received by the
respiratory control from a variety of origins. The most important parts are:

e (Central chemoreceptors: located at the bottom of the fourth ventricle (region of the brain
stem), they respond to the acidity of the cerebrospinal fluid (CSF). When the pH changes
(alteration in the concentration of blood hydrogen ions) this chemoreceptors send the
information to the respiratory control center so it can have an effect on breathing.

e Peripheral arterial chemoreceptors: They are the carotid and aortic bodies, placed in the
carotid artery and aorta. It is a small specialized tissue that responds to the concentration
of the arterial blood O, and CO,, sending the information to the respiratory control center
with nerves.

e Brain: The cerebral cortex can activate the ventilatory mechanism consciously.

e Lung: Some receptors located in the bronchi can be irritated by inhaled substances
provoking responses as coughing and sneezing. There are also other receptors in the
flexible tissues of the lung and the chest wall (mechanoreceptors) related with various
reflexes.
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Fig. A3-2 Respiratory control diagram [1]

A3.2.3 The breathing signal

The respiratory signal is the registration of the temporal breathing evolution with some parameter
to describe its activity, such as the air pressure, volume or voltage generated by the muscles.

The breathing activity can be monitored in several ways, both invasive and noninvasive:
measuring the airflow (pneumotachometry, spirometry), registering the electrical activity of the
muscles with electrodes (pletismography or even indirectly by extracting the signal from an
electrocardiogram) or using movement sensors to measure the thorax distention.

The respiratory variables characterize the breathing features and pattern of an individual, and

they are useful to find abnormalities and pathology [1]. An important set of parameters to
determine the ventilatory function are the static lung volumes (see Fig. A3-3) [2]
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These parameters are:

Vital Capacity (VC): The maximal volume that can be expired.

Tidal Volume (VT): Volume inspired in each breath.

Inspiratory Capacity (IC): The maximal volume that can be inspired from resting
expiratory level.

Inspiratory Reserve Volume (IRV): The maximal volume of air inspired from end-tidal
inspiration.

Expiratory Reserve Volume (ERV): The maximal volume expired from the resting
expiratory level.

Functional Residual Capacity (FRC): The volume of air in lungs at resting expiratory
level.

Residual Volume (RV): Volume of gas in lungs at end of maximal expiration.

Total Lung Capacity (TLC): Volume in lungs at end of maximal inspiration.

The variables concerns breathing in a resting state and they are extracted from a piezoelectric
transducer signal (See Fig. A3-4):

Inspiratory time (#): The air enters the lung increasing the thorax volume to reach the
tidal volume. The signal has normally a rising value.

Expiratory time (#): The air comes out from the lung decreasing its volume to the
functional residual capacity. The signal has a downward trend.

Total time (#,,): The sum of ¢; and 7., completing a entire respiratory cycle.

Cycle ratio (¢/t.): Inspiratory to expiratory time ratio. Measure of the symmetry of the
breathing cycle: a value under the unity implies longer expiratory time.
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A3.3 Respiration Rate

The respiration rate is one of the vital signs measured when physicians and nurses check health
status. Respiration (breathing) is controlled by the brain. A variety of factors can influence
respiration such as head injury, bleeding, stress and fever, hypothermia, medications, voluntary
control or exertion from an activity.

Respiration rate is the number of breath per minute. This rate is usually determined by counting
the number of times the chest raises (inspirations) or falls (expirations) for one minute.

Respiration rate is also named as respiratory rate, pulmonary ventilation rate, ventilation rate or
breathing frequency. [3]

The human respiration rate is usually measured when a person is at rest and simply involves
counting the number of breaths for one minute by counting how many times the chest rises.
Respiration rates may increase with fever, illness, or other medical conditions. When checking
respiration, it is important to also note whether a person has any difficulty breathing.

It is ideal to measure the Respiration Rates for a full minute. Often times, respiration is observed
for only 30 seconds and then the doubled count represents the rate per minute. If pressed for time,
respiration can be observed for 15 seconds and then multiplying it by four to get the rate per
minute.

Respiratory Sinus Arrhythmia (RSA) is heart rate variability in synchrony with respiration, by
which the R-R interval is shortened during inspiration and prolonged during expiration. Short
term HRV, at the respiratory frequency (High Frequency band), is mainly due to mechanical
fluctuations of the stroke volume [4] [5]. During inspiration, because of the decrease in intrachest
pressure and of the ventricular inter-dependence, the cardiac output (CO) and the Arterial
Pressure decrease, while the HR increases [6]. HF band results are related to the vagal system
activity. Several mechanisms are involved in this modulation (arterial baroreflex, cardio-
pulmonary baroreflex, non reflexes mechanisms).
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However, it is still possible to have a sympathetic modulation of the heart rate at the respiratory
frequency in LF band, if the respiratory frequency is slow or periodic [7], as usually happens in
premature newborns. Besides, the administration of B1 cardioselective blockers increases the
RSA whatever it is the respiratory frequency: it means that RSA in HF band can not be
considered as purely vagal, but it is equally modulated by sympathetic activity [8].

The normal respiration rate for an adult person at rest is from 15 to 20 breaths per minute.
Respiration rates of more than 25 breaths per minute or under 12 breaths per minute (when at rest)
may be considered abnormal. Abnormal breathing may be characterized as deep breathing,
shallow breathing and rapid breathing [9].

The primary function of the respiratory system is to obtain oxygen for use by body cells. Change
in your respiratory rate happens, for instance, when an examinee is working, RR is 25 breaths per
minute; when you are sleeping, RR becomes lower or around 15 breaths per minute.

Newborns breathe much faster than older children and adults, having a normal breathing rate
about 40 times per minute. This may slow to 20 times per minute when the baby is sleeping,
when most respiratory disorders appear [10]. The pattern of breathing in a baby may also be
different.

A neonate may breathe fast several times, then have a brief rest and breathe again. This is called
periodic breathing, and it is designated when the breathing pause lasts over 3 seconds in duration
separated by regular respirations of less than 20 seconds [11]. This phenomenon is the
consequence of the baby's immature breathing control in the brain, which responds to high
concentration of CO, in the bloodstream. The superficial rapid breathing expels the carbon
dioxide from the blood, and the respiratory control center remains inactive until this gas rises
again. Then, the cycle repeats.

Periodic breathing is normal occurrence and more prevalent among premature newborns, but
gradually resolves during infancy [12]. It is not to be confused with apnea, treated in section A3.4.

A3.4 Apnea of prematurity

A3.4.1 Definitions of “Apnea of prematurity”

Apnea is generally defined as the cessation of breathing for more than 20 seconds or the cessation
of breathing for less than 20 seconds if it is accompanied by bradycardia or oxygen desaturation
[13].

Bradycardia in a premature neonate is considered significant when the heart rate decreases by
least 30 beats per minute from the resting heart rate.

Oxygen desaturation or hypoxemia implies an insufficient amount of oxygen in the bloodstream.

Normal oxygen saturation in the arteries is 95 to 100 percent, it is considered pathologic in a
neonate when the level is equal or below 80% more than 4 seconds [14].
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Even though this definition is accepted to classify severe apnea, there is no consensus about the
duration of apnea that should be considered pathologic, and there is no agreement regarding the
degree of change in oxygen saturation or severity of bradycardia. So, in the literature other
definitions can be found.

Moreover, among respiratory electrophysiologists is commonly accepted that an episode of apnea
can be considered if at least one of the two following situations are accomplished:
1. There is a cessation of breathing equivalent to at least three consecutive respiratory cycles.
2. There is a cessation of breathing lasting three times the average of a complete respiratory

cycle (¢:)-

In the present work, these definitions will be taken in consideration to find episodes of apnea in
the respiratory signal.

A3.4.2 Classification of apnea

According to apnea classification, three types can be differentiated: [15] (see Fig. A3-5)

e Central apnea: Cessation of both airflow and respiratory effort. There is no thoracic
movement. It is caused by irregularities in the neuralgic signals from the respiratory
center.

e Obstructive apnea: Cessation of airflow due to an obstruction in the upper airways. There
is a presence of continued respiratory effort. It is caused by relaxation of soft tissue in the
back of the throat that blocks the passage of air.

e Mixed apnea: Contains elements of both central and obstructive apnea.
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Fig. A3-5 different types of apnea [15]

A3.4.3 Incidence and problems

Apnea of prematurity (AOP) is the most important disorder of the control of breathing in the
newborn period. It occurs in approximately 7 percent of infants born at 34 to 35 weeks gestation,
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14 percent at 32 to 33 weeks, 50 percent at 30 to 31 week, and it is almost universal in infants
born at less than 28 weeks of gestation [16] or below 1000 grams at birth [17].

AOP usually ceases by 37 weeks gestational age, but occasionally persists to several weeks past
term. In general, its severity and frequency decreases with increasing maturity.

Although apnea of prematurity typically is associated with incompletely organized and
interconnected respiratory neurons in the brainstem, it also may be the presenting sign of other
diseases frequently affecting preterm infants.

The repetition of apnea-bradycardia episodes compromises tissue oxygenation and perfusion,
risking the future infant's development.

A3.5 Relationship between apnea and bradycardia

Bradycardia episodes in newborns are frequent and normally related to apneas and/or oxygen
desaturations. The bradycardia may begin within 1.5 to 2 seconds of the onset of apnea. This
decrease in the heart rate (30% below the baseline) can be produced indirectly, by the under
stimulation of the carotid body chemoreceptors or directly, by the effect of hypoxia (reduced
content of oxygen dissolved in blood) on the heart.

It is also observed that apnea-bradycardia may appear spontaneously, attributing these
phenomena to the mere condition of prematurity. Nevertheless, they can be provoked or become
more severe when an infection, hypoxemia, an intraskull pathology or cerebral pathology is
present [18].

Apnea-bradycardia can compromise tissue perfusion and oxygenation. A decrease in cerebral
blood stream has been observed, by means of doppler fluxes in the anterior cerebral artery [19],
or near infrared spectrometry (NIS) [20], concurrently with apnea-bradycardia.

Apnea-bradycardia’ repetition in several days seems to be associated to a neuropsychiatric
evolution’s alteration valued at three years old. The inability to predict a serious apnea-
bradycardia’s arrival makes necessary a continuous cardiorespiratory surveillance on premature
newborns with polygraphic monitoring and a high level of alert that makes possible a fast and
idoneous aid (manual or kinestetic, oxygenation, mask ventilation or intubation), in every
moment. The prediction of such events arrival and gravity, in short times, could be enough to
apply preventative or healing measures, thus enabling to minimize deep and prolonged apnea-
bradycardia’ risk, to diminish the recourse to reanimation manoeuvres and intubation for assisted
ventilation, equally decreasing the hospitalization time and the frequency of home monitoring
needs, with the final result to improve life quality.
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Part A Conclusion

In the first chapter of Part A, we focus on the fundamentals of preterm infants and those with
sepsis. Furthermore, we indicate many aspects of sepsis, not only from early-onset of the
infection, but also from late-onset.

Obviously, premature newborns with late-onset sepsis have more frequent apnea-bradycardia
than those with early-onset, consequently, the former is associated with higher morbidity and
mortality than the latter. Therefore, our research concentrates on late-onset sepsis.

Then, we describe the Autonomic Nervous System and its influence on the cardiovascular system
which produce Heart Rate Variability. Furthermore, we discuss the behavior of cardiovascular
control system. Particular attention was paid to Bradycardia, especially in newborns.

The ultimate chapter was dedicated to the respiratory system and its functional mechanism. In
particular, we explain apnea of prematurity in the respiratory signal and we mention about the
relationship between apnea and bradycardia.

In this part, we set all problems stated in this dissertation based on the essential bibliography.

After this brief literature review and medical knowledge, we clearly see that sepsis is enhanced
by two factors ---- Bradycardia and Apnea. The former can be characterized by the RR variability
while the latter can be studied through the respiration and its relationship with HRV.

This is the main object of the following chapters in Part B. Chapter B1 tries to show how HRV
can be used in the diagnosis of sepsis, and how several parameters are studied and can be used in
neonatal intensive care units. Chapter B2 takes the same point of view but extended to the
cardiorespiratory relationships. Finally, Chapter B3 is the art of this dissertation, which studied
the semi real time implementation of the parameters extracted from Chapter B1 and Chapter B2.
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Chapter B1
Analysis for RR series in Premature Newborns

B1.1 Introduction

In Part A, we showed that the sepsis has a direct influence on a number of bradycardias and then
disrupt the HRV. The objective of this chapter is to look for the best features which are able to
distinguish sepsis and non-sepsis. For this aim, we study both linear methods and non-linear
methods on HRV analysis, and then compare all of these methods in order to find the candidate
ways to discriminate between infected and non-infected premature newborns.

First of all, methods for signal processing and statistical analysis are presented respectively in
section B1.2 and section B1.3. Secondly, we offer experimental protocol in section B1.4. Thirdly,
on the one hand, results of univariate analysis are demonstrated and discussed in section B1.5; On
the other hand, those of multivariate analysis are reported in section B1.6 and section B1.7.
Finally, we conclude with summary in section B1.8.

B1.2 Methods for Signal Processing

We study the RR series by means of time-domain, frequency domain methods as well as methods
issued from non-linear system. We refer to these last methods as “non-linear methods™ [1]. After,
we compare these methods.

B1.2.1 Time Domain

These methods are measures that can be derived from the RR distribution.

The distribution of a random variable is the relative frequency of such a variable. The distribution
of a series can be described by moments (mean, variance, coefficient
asymmetry "skewness" and flattening "kurtosis", cf. Table BI-1), the median, and sample
asymmetry.

Table B1-1 Distribution parameters based on moments

Moment Geometry Formula Measure
1 N
1* moment 2 (RR;j) N D (RR) Mean
i=1
nd a2 1 S N2 .
2™ moment Z(RRA_RR) —Z(RRI.—RR) Variance
' N-173
d — 3 1 1 ul —_—.3
3" moment > (RRi-RR) ;‘H'Z(RRI'_RR) Skewness
i=1
4™ moment 2( —ﬁf R i (RR; —ﬁf -3 Kurtosis
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B1.2.1.1 Arithmetic Mean (the 1% moment)
In mathematics and statistics, the arithmetic mean (or simply the mean) of a list of numbers is the

. N
sum of the entire list divided by the number of items in the list. It is defined as RR = %z (RR)) -
i=l

The mean is the most commonly-used type of average and is often referred to simply as the
average. The term "mean" or "arithmetic mean" is preferred in mathematics and statistics to
distinguish it from other averages such as the median and the mode. The mean is more sensitive
than the median and it is not always representative of the signal series (especially when the
distribution is not normal).

B1.2.1.2 Variance (the 2" moment)

In probability theory and statistics, the variance (varn) of a random variable, probability
distribution, or sample is one measure of statistical dispersion, averaging the squared distance of
its possible values from the mean value. It is defined as the mean value of squared differences
between the observed and the mean value over a period given:

SR U TG
—N_lg(RR[—RR) (5.1)

o
A simple example of a time domain measure is the calculation of the standard deviation of beat-
to-beat intervals. In other words the time intervals between heart beats can be statistically
analyzed to obtain information about the autonomic nervous system. In probability and statistics,
the standard deviation (SD) is a measure of the dispersion of a collection of numbers. It can apply
to a data set as an estimation of global variability. It is defined as the square root of the variance.
N

1 _
SD=0=—— 1> (RR,~RR)’ (5.2)
N-1\V'=T

The standard deviation remains the most common measure of statistical dispersion, measuring
how widely spread the values in a data set are. A useful property of standard deviation is that,
unlike variance, it is expressed in the same units as the data.

Other time domain measure elects Root Mean Square of Successive Differences (RMSSD),
which is estimated as short term beat to beat variability.

1 N
RMSSD = m\/Z (RRi~ RR.)’ (5.3)
- i=1

This measure potentially has the property that, provided it proved to be stationary, an
equivalently longer duration and more accurate measure can be built up from short segments of
heart rhythm.
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B1.2.1.3 Skewness (the 3" moment)

In probability theory and statistics, skewness (skew) is a measure of the asymmetry of the
probability distribution of a real-valued random variable. It is defined as the sample third central
. y 11 ¢ —
moment divided by the cube of the standard deviationo : — - N1 (RR:— RR)3
o 1 =l

It is equal to 0, if the distribution is symmetrical.

less than 0, if the distribution is asymmetric to the left (mean is smaller than median)

greater than 0 if the distribution is asymmetric to the right (mean is greater than median)

B1.2.1.4 Kurtosis (the 4™ moment)

In probability theory and statistics, kurtosis (kurt) is a measure of the "peakedness" of the
probability distribution of a real-valued random variable. It is independent of the measurement
system unit and variance of the distribution. The kurtosis is calculated as the fourth moment
around the mean divided by the square of the variance of the probability distribution minus 3:

1 1 Y — 4

g v ;(RR,- RR) -3

If the bias is corrected (-3 in the formula above) is always greater than -3 and is:
* equaltoO, if the data come from normal distributions
* positive, if the distribution is called leptokurtic pointed "pointed"
* negative, if the distribution is called platykurtic relatively "crushed"
* closeto-1.2, for a rectangular distribution
e below -1.2, for a bimodal distribution.

It is difficult to interpret, if the bias is higher than 1.

B1.2.1.5 Median

In probability theory and statistics, a median (med) is described as the number separating the
higher half of a sample, a population, or a probability distribution, from the lower half. The
median of a finite list of numbers can be found by arranging all the observations from lowest
value to highest value and picking the middle one. If there is an even number of observations, the
median is not unique, so one often takes the mean of the two middle values.

B1.2.1.6 Sample Asymmetry

Sample Asymmetry (SpAs) is a measure of the symmetry of distributions. The method is based
on weighting individual deviations of the samples from its median value. More formally, let x be
a random variable with values in its sampling space X and unspecified distribution, and let m be a
point within the sampling Space X. For any m, we define a weighting function w(x;a) = (x —m)*,
where a > 0 is a parameter describing the degree of weighting of deviations from the reference
point m. For example, if a = 2, deviations from m will receive quadratically increasing weights.
We further define a left weighting function: whenever x < m and 0 otherwise, and a right
weighting function: whenever x> m and 0 otherwise. Further, given a sample x, x,,-:-x, of n
observations on x, we compute the sum of the weighted deviations to the left and to the right from
the reference point m as:

Ro=D (x;—m)’ (5.4)

xi>m
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Ri=2 (xi—m)’ (5.5)

xi<m

respectively, and we define Sample Asymmetry of the random variable x as the ratio R,/R; -

» If SpAs is greater than 1, then the distribution has a tail to the right;
* If SpAs is less than 1, the tail is to the left;
» If SpAs equals to 1, the distribution is symmetric.

B1.2.2 Frequency Domain

A common frequency domain method is the application of the discrete Fourier transform to the
beat-to-beat interval time series. This provides an estimation of the amount of variation at
specific frequencies. According to previous HRV frequency analysis studies, three frequency
bands of interest have been defined in newborns [2].

e VLF band between 0.002 and 0.02 Hz. The origin of VLF is not well known, but it had
been attributed to thermal regulation of the body's internal systems.

e LF band between 0.02 and 0.2 Hz. LF derives from both parasympathetic and sympathetic
activity and has been hypothesized to reflect the delay in the baro-receptor loop [3].

e HF band between 0.2 and 1.5 Hz. HF is driven by respiration and appears to derive
mainly from vagal activity or the parasympathetic nervous system [4] [5].

Here, we focus on power of VLF (p_VLF), power of LF (p_LF) and power of HF (p_HF).

B1.2.3 Non-linear Methods

We also use two kinds of non-linear methods: chaos theory and information theory, in order to
analyze the degree of correlation and randomness of the time series in cardiovascular studies.

B1.2.3.1 Chaos theory

Detrended fluctuation analysis (DFA) is a modified root-mean-square analysis of a random walk
in order to test the scale invariance [6]. In recent years, DFA method has become popular, and
has been widely used for detections of long-range correlation in non-stationary time series at
various fields [7] [8] [9]. In DFA, the scaling exponent referred to asa represents types and
degree of correlation presented in the time series. Let us briefly illustrate the DFA method. The
DFA includes the following six steps:

1. For a given correlated signal B(i), wherei=1,..., N » and N .. 1S the length of the signal,
we first integrate the signal B(i) to obtain y(k)as:

y(k) = Z(B(i)—g) (5.6)

where B is the mean. In this section, RR intervals (RRI) time series was used as the signal B(7) .
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2. The integrated signal y(k) is divided into boxes (intervals) of equal length n to obtain M

segments (the boxes) of length n (see Fig. B1-1). We basically look at the correlation within the
box for various box size (length) n.

3. In each box of length n, we fit y (k) (m =1,...,M ) using a polynomial function of the order 1,

which represents the “trend” in that box (a linear fit was used; see Fig. B1-1). When a polynomial
fit is of the order /, the algorithm is referred to as DFA(/). In this study, we set / = 1, i.e., we used
DFA(1).

4. The integrated signal y(k)is detrended by subtracting the local trend in each box of length n,
and variance of fluctuation f%(n)is calculated for each box as:

1L _
Fi(m) =—2 (y(k) =7, (6)° (5.7)
k=1
5. For a given box size n, the average root-mean-square fluctuation F'(n) for this integrated and

F = - i) (58)

6. The above computation is repeated for a broad range of box sizes n to obtain a relationship
between F'(n) and the box size n.

detrended signal is calculated as:

1200 T T T T T T T T T

1100

1000 -

600 -

500

400 WMWWM%

300 ! ! ! ! ! ! ! ! !
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

beat number x 10*
(a) An example of RR time series for 20000 beats from a preterm infant. For DFA methodology, the ith RR
interval corresponds to B(i)
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(b) The thick curve represents y(k), the integrated time series of B(i) as the function of the integration interval k

(see text). The vertical dotted lines illustrate a box in a case with its size n = 1024. The thin line for each box

represents “‘a trend” of y(k) in each box.
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(c) Plot of log F(n) vs. log n for the detrended version of y(k) obtained from (b). The thin and thick regression

40 beats and for the range 40—1000 beats. The slope of the former

was used as the index ¢ s,5; representing the short-range correlation of the detrended RRI, and the latter as the

lines were fitted, respectively, for the range 4—

index ¢y, representing the long-range correlation.

Fig. BI-1 Illustration of the behavior of the DFA Algorithm

96



A power-law relation between the average root mean-square fluctuation F'(n)and the box size n

indicates the presence of scaling: F'(n) = p*. The fluctuations can be characterized by the scaling

exponent , a self-similarity parameter representing the long-range fractal correlation properties
of the signal. The exponent o

a = 0.5 for white noise with uncorrelated randomness,

a =1 for 1/fnoise and long-range fractal correlations,
and a = 1.5 for Brownian motion [10] [11].

According to the preceding study, HRV for healthy adults has different scaling index a in short
and long-time scales [10] [11]. In most cases, the log-log plot was not strictly linear but rather
consisted of two distinct linear regions of different slopes separating at a break point near 40
beats. Therefore, in this study, we evaluated the fractal scaling exponent ¢, from the scale

from 40 to 1000 beats [12]. In addition to the VLF, LF and

HF obtained from the spectrum analysis as well as the mean and standard deviation of the RRI
time series, the two indices ¢ 4, and ¢, were used as the indices possibly characterizing

range n from 4 to 40 beats, and ¢

slow

autonomic nervous system development in the preterm infants.

B1.2.3.2 Information theory

Information theory is derived from the ideas about entropy of random variables and processes
provided by Claude E Shannon. Entropy is defined in terms of a discrete random event x, with
possible states /...n as:

n 1 n
H(x) = Zp(i)logz(—( _J =->_ p(i)log,(p(i)) (5.9)
i=1 pu i=1

The concept of entropy in information theory describes how much ‘uncertainty’ there is in a
signal or random event. An alternative way to look at this notion is to talk about how much
information is carried by the signal.

So, according to the same reasoning that led to the definition of entropy, it is possible to find the
same quantity for pairs of random events, which is called the joint entropy, written as H[x, y].

Then, when the state of one of the two variables, let us say, y is known, the possible states for the
x variable are expressed by the cross-conditional entropy, i.e. the entropy of x conditioned on y,
written as H[x/y].

Entropy, as it relates to dynamical systems, is the rate of information production. However,
methods for estimating the entropy of a system represented by a time series are not well suited to
analysis of the short and noisy data sets encountered in cardiovascular and other biological
studies.

Recently, it has been observed that non-linear indexes based on information theory may be useful
to discern sepsis from non-sepsis babies [13]. Thus, analysis of non-linear variables has been
performed in order to assess randomness of the series. Four metrics were considered:
Approximate Entropy, Sample Entropy, Permutation Entropy and Regularity.
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B1.2.3.2.1 Approximate Entropy

Pincus [14] introduced Approximate Entropy (AppEn), a set of measures about system
complexity closely related to entropy, which has been extensively applied to biological series
analysis. It allows discriminating signals depending on their regularity without considering the
model of the system. Consequently, regardless of their nature, whatever it is stochastic or purely
deterministic, linear or non-linear, AppEn allows calculating indirectly signal correlation and
persistence: low values of AppEn suggest high regularity and correlation.

Given a sequence Sy, consisting of N instantaneous Heart Rate measurements HR(i),
i=1,..,N. We must choose values for two input parameters—m and r, to compute the
AppEn(Sy,m,r) of the sequence, where m refers to the pattern length, and » defines the criterion of
similarity. We denote a pattern of m HR measurements, beginning at i within Sy, by the
vector x,,(i) . Two patterns, x,(i) and x,,(j), are similar if the difference between any pair of

corresponding measurements in the patterns is less than r, i.e., if

|HR(i+k)—HR(j+k)|<r (5.10)
In(5.10), 0<k<m

Now given the set x,, of all patterns of length m [x,.(1), xn(2),*, xn(N —m+1)] within Sy, it is
possible to define

Cinl7) =N”_—Z)+l (5.11)

Where n;,(7) is the number of patterns in x,, that are similar to x,,(i)(given the similarity criterion
r). The quantity C,,(r) is the fraction of patterns of length m that resemble the pattern of the same
length that begins at interval i. We can calculate C,,(r) for each pattern in x,, , and we define
C..(r)as the mean value of (C,,(r). The quantity C,(r)expresses the prevalence of repetitive
patterns of length m in Sy .

Finally, we define the AppEn of Sy, for patterns of length m and similarity criterion 7, as
following:

Cm(7)
AppEn(S y,m,r) =In| — 1>~ 5.12
ppEnN(S y,m,r) n{cmﬂ(r)} (5.12)

For example, the natural logarithm of the relative prevalence of repetitive patterns of length m is
compared with those of length m+1.

Thus, if we find similar patterns in a heart rate time series, AppEn estimates the logarithmic
likelihood that the next intervals after each of the patterns will differ (i.e., that the similarity of
the patterns i1s mere coincidence and lacks predictive value). Smaller values of AppEn imply a
greater likelihood that similar patterns of measurements will be followed by additional similar
measurements. If the time series is highly irregular, the occurrence of similar patterns will not be
predictive for the following measurements, and AppEn will be relatively large [15].
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B1.2.3.2.2 Sample Entropy

Sample Entropy (SamEn) is derived from approaches developed by Grassberger and his co-
workers [16] [17] [18] [19]. SamEn(m,r,N) is precisely the negative natural logarithm of the
conditional probability that two sequences similar for m points remain similar at the next point,
where self-matches are not included in calculating the probability. Thus a lower value of SamEn
also indicates more self-similarity in the time series. In addition to eliminating self-matches, the
SamEn algorithm is simpler than the AppEn algorithm, requiring approximately one-half as much
time to calculate. SamEn is largely independent of record length and displays relative consistency
under circumstances where AppEn does not.

We began from the work of Grassberger and Procaccia [18], who defined
N-—m-+1

C"(r=(N-m+1)" > Cr(r) (5.13)

i=1
The average of the C/'(r) is defined above. This differs from @”(r) only in thatd”(r)is the
average of the natural logarithms of the C/'(r). They suggest approximating the Kolmogorov
entropy of a process represented by a time series by

ling lim }]im— In[C™\(7) / c"(r)] (5.14)
Self-matches are counted and
| N-m N-m+1
"™/ =(N-m+1) Y. 4; / (N-m) D, Bi (5.15)
i=1 i=1

Where 4; is the number of vectors x,.,(j) within » of x,.,,(i), and B; is the number of
vectors x,,(j) within 7 of x,(7) .

In this form, however, the limits render it unsuitable for the analysis of finite time series with
noise. We therefore made two alterations to adapt it to this purpose. Firstly, we followed their
later practice in calculating correlation integrals [16] [17] [18] [19] and did not consider self-

matches when computing C"(r) . Secondly, we considered only the first N-m vectors of length m,
ensuring that, for1 <i< N —m, x,(i) and x,,,,(i) were defined.

We defined B"(r)as (N —m—1)" times the number of vectors () within 7 of x,.(i) , where j
ranges from / to N - m, and j # i to exclude self-matches. We then defined

B =(V-m) "3 Brr) (5.16)

Similarly, we defined 47(r) as(N —m—1)" times the number of vectors x,,,,( /) within 7 of x,,.,(i),
where j ranges from / to N - m (j # i), and set

2O =N -m) 3 ) (517)

B"(r)is then the probability that two sequences will match for m points, whereas 4”(7)is the
probability that two sequences will match for m+17 points. We then defined the parameter

SamEn(m,r) = lim {~In[ 4"()/B"(r) ]} (5.18)
which is estimated by the statistics
SamEn(m,r,N) =~In[ 4"(r)/ B"(r) ] (5.19)

Where there is no confusion about the parameter » and the length m of the template vector, we set
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B={[(N-m-1)(N-m)]/2} B"(r) (5.20)
And
A={[(N=m—1)(N-m)]/2} 4"(r) (5.21)

So that B is the total number of template matches of length m and A is the total number of
forward matches of length m+1. We note that 4/B = |: A"(r)/ B”’(r)] , 50 SamEn can be expressed

as
SamEn(m,r,N)=—In(A/B) (5.22)

The quantity 4/B is precisely the conditional probability that two sequences within a tolerance r
for m points remain within 7 of each other at the next point.

B1.2.3.2.3 Permutation Entropy

Permutation Entropy (PermEn) was introduced by Bandt, Keller and Pompe [20] as a convenient
means of mapping a continuous time series onto a symbolic sequence. To illustrate the idea, let
us first embed a scalar time series {x(i),i = 1,2,---} to a m-dimensional space [21]:

X, =[x(@),x(@+L), -, x(@+(m—-1)L)] (5.23)
where m is called the embedding dimension and L the delay time. For a given, but otherwise
arbitrary i, the m number of real values X; can be sorted in an increasing order:
[x(i +(j,~DL) < x(i+(j,~DL) -+ < x(i+(j, ~DL)]

When an equality occurs, e.g.
x(i+(jy=DL) = x(@+(j,,~DL) (5.24)

we order the quantities x according to the values of their corresponding j’s, namely if j;;<j;, we
write
x(i+(j,—DL)<x(i+(j,,—1)L) (5.25)

This way, the vector X; is mapped onto (j;,/,...,jm), Which is one of the m/ permutations of m
distinct symbols (/,2,...,m). It is clear that each point in the m-dimensional embedding space,
indexed by i, can be mapped to one of the m/ permutations. When each such permutation is
considered as a symbol, then the reconstructed trajectory in the m-dimensional space is
represented by a symbol sequence. The number of distinct symbols can be at most m/. Let the
probability distribution for the distinct symbols be P}, P,,...,Px, where K <m!. Then the PermEn
for the time series {x(i),i =1,2,---} is defined [20] as the Shannon entropy for the K distinct

symbols

H ,(m)= —i P;Inp; (5.26)

=

When P=1/m!, then H,(m) attains the maximum value In(m!). For convenience, we always
normalize H,(m) by In(m!), and denote

0< i ,=H (m)/In(m!) <1 (5.27)

Thus H, gives a measure of the departure of the time series under study from a complete random
one: the smaller the value of /1, the more regular the time series is.
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B1.2.3.2.4 Regularity

Regularity (Regul) can be defined as the degree of recurrence of a pattern in a signal. The
evaluation of the regularity for a process x is based on the calculation of the conditional entropy
(CE) over a normalized realization of x [22]. The CE, function measures the amount of

information carried by the most recent sample of x when its past L-/ samples are known: the
more informative are the past samples to predict the future behavior, the smaller isCE,. CE,1s a

function of the number (L) of past samples used in the prediction and it is defined as:
CE{L)== p logp,+> p, logp, (5.28)
L L-1

where p; is probability of the patterns of length L which may be extracted from x.

Unfortunately, when L increases, (5.28) produces unreliable estimation of CE,. To avoid this

problem, it has been proposed [22] to add a corrective term, thus defining a new function (the
corrected conditional entropy, CCE, ):

CCE.(L)=CE(L)+ perc(L)*E(x) (5.29)

Where perc(L) is the percentage of single points in the L-dimensional phase space and E(x)is the
Shannon Entropy of the process. When the CE, estimate becomes unreliable, the corrective term
forces the CE, to increase and to tend to the CE pattern of a white noise with the same
probability distribution of x. The minimum value of the CCE, is taken as an index of complexity
[22]: the larger the index, the more unpredictable and complex the series. To derive an index of
complexity which is independent of the different probability distribution of the processes,
the CCE, 1s normalized by the Shannon entropy of the process [23], thus obtaining the
normalized corrected conditional entropy ( NCCE. ). Independently of the distribution of the
process, the NCCE, ranges from 0 to 1. Therefore, the minimum of the NCCE, appears more
useful than that of the CCE, when processes with different probability distribution are analyzed.

In this case, the regularity index of the process x is defined as
Re gul =1-min( NCCE (L)) (5.30)

From(5.30), it is obvious that regularity ranges from 0 to 1. In detail, regularity tends to 0, if the
series is a fully unpredictable process. On the contrary, it tends to 1, if the series is a really
periodic signal. Besides, regularity assumes intermediate values for those processes that can be
partially predicted by the knowledge of the past samples. Applications of the regularity index to
cardiovascular variability series can be found in [23].

B1.3 Methods for Statistical Analysis

The previous paragraph has underlined the features that we could use. This section demonstrates
the interest of each feature for a diagnosis purpose. It also tries to enhance the best parameter
through Univariate Analysis or the best set of parameters through Multivariate Analysis. These
two approaches are described in this section.
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B1.3.1 Univariate Analysis

In univariate analysis, p value is calculated to test whether these parameters can discriminate
between the two groups—Sepsis vs. Non-Sepsis.

The following three hypothesis tests are chosen to calculate the p value for each method in order
to look for the best window size

* Analysis of Variance

* Kiruskal-Wallis test

*  Wilcoxon rank-sum test

In statistics, analysis of variance (ANOVA) is a collection of statistical models, and their
associated procedures, in which the observed variance in a particular variable is partitioned into
components attributable to different sources of variation. In its simplest form ANOVA provides a
statistical test of whether or not the means of several groups are all equal, and therefore
generalizes f-test to more than two groups. ANOVAs are helpful because they possess an
advantage over a two-sample t-test. Doing multiple two-sample t-tests would result in an
increased chance of committing a type I error. Other details are in Appendix I. [24]

The statistical analysis was carried out using Kruskal-Wallis test in order to evaluate p-value for
each method. The level of significance was set to p <0.05. The Kruskal-Wallis test (KruskWall)
1s a nonparametric version of one-way Analysis of Variance. The low p-value means the Kruskal-
Wallis test results agree with the one-way ANOVA results. The Kruskal-Wallis test evaluates the
null hypothesis HO (all samples come from populations that have the same median) against the
alternative hypothesis H1 (the medians are not all the same).

The Kruskal-Wallis test makes the following assumptions about the test data:
e All samples come from populations having the same continuous distribution, apart from
possibly different locations due to group effects.
e All observations are mutually independent.

The Kruskal-Wallis test is based on an analysis of variance using the ranks of the data values, not
the data values themselves. It is preferable to perform a test to determine which pairs are
significantly different, and which are not.

The nonparametric Wilcoxon rank-sum test (Wilrs) is generally used to quantify the test of equal
medians. It tests if two independent samples come from identical continuous (not necessarily
normal) distributions with equal medians, against the alternative that they do not have equal
medians.

B1.3.2 Multivariate Analysis

The purpose of multivariate analysis is to select candidate parameters and estimate the
relationship between these parameters. Here, we consider two methods:
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» Logistic Regression
+ Stepwise Regression

B1.3.2.1 Logistic Regression

In statistics, logistic regression (sometimes called the logistic model or logit model) is used for
prediction of the probability of occurrence of an event by fitting data to a logit function logistic
curve. It is a Generalized Linear Model (GLM) used for binomial regression. Like many forms of
regression analysis, it makes use of several predictor variables that may be either numerical or
categorical. For example, the probability that a person has a heart attack within a specified time
period might be predicted from knowledge of the person's age, sex and body mass index. Logistic
regression is used extensively in the biological sciences and medical fields. [25]

An explanation of logistic regression begins with an explanation of the logistic function, which,
like probabilities, always takes on values between zero and one:

flo=—2 =1

= 5.31
e+l 1+e7* ( )

A graph of the function is shown in Fig. B1-2. The input is z and the output is f(z). The logistic
function is useful because it can take as an input any value from negative infinity to positive
infinity, whereas the output is confined to values between 0 and 1. The variable z represents the
exposure to some set of independent variables, while f(z) represents the probability of a
particular outcome, given that set of explanatory variables. The variable z is a measure of the
total contribution of all the independent variables used in the model and is known as the logit.

}—

FD
n

| | |
—6 —4 —2 0 2 1 6

P

Fig. BI1-2 The logistic function, with z on the horizontal axis and f(z) on the vertical axis

The variable z is usually defined as
z= Lo+ Lixi+ Loxa+ Byxs++ Bixk (5.32)

Where Sy is called the "intercept" and f;, S, f3, and so on, are called the "regression coefficients"
of x,, x2, x3 respectively. The intercept is the value of z when the values of all independent
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variables are zeros (e.g. the value of z in someone with no risk factors). Each of the regression
coefficients describes the size of the contribution of risk factor. A positive regression coefficient
means that the explanatory variable increases the probability of outcome, while a negative
regression coefficient means that the variable decreases the probability of outcome; a large
regression coefficient means that the risk factor strongly influences the probability of outcome,
while a near-zero regression coefficient means that the risk factor has little influence on the
probability of outcome.

Logistic regression is a useful way of describing the relationship between one or more
independent variables (e.g., age, sex, etc.) and a binary response variable, expressed as a
probability, that has only two values, such as having sepsis ("has sepsis" or "doesn't have sepsis").

B1.3.2.2 Stepwise Regression

In statistics, stepwise regression includes regression models in which the choice of predictive
variables is carried out by an automatic procedure. [26] [27] [28] Usually, this takes the form of a
sequence of F-tests.

The main approaches are:
gl Forward selection, which involves starting with no variables in the model, trying out the
variables one by one and including them if they are 'statistically significant'.
gl Backward elimination, which involves starting with all candidate variables and testing
them one by one for statistical significance, deleting any that are not significant.
5l Methods that are a combination of the above, testing at each stage for variables to be
included or excluded.

A widely used algorithm was first proposed by Efroymson [29]. This is an automatic procedure
for statistical model selection in cases where there are a large number of potential explanatory
variables, and no underlying theory on which to base the model selection. The procedure is used
primarily in regression analysis, though the basic approach is applicable in many forms of model
selection. This is a variation on forward selection. At each stage in the process, after a new
variable is added, a test is made to check if some variables can be deleted without appreciably
increasing the residual sum of squares (RSS). The procedure terminates when the measure is
locally maximized, or when the available improvement falls below some critical value.

B1.4 Experimentation

All recordings were performed in the NICU and data were recorded in standard conditions. The
monitoring (Powerlab system®, AD Instruments) included one-hour recording of two
electrocardiogram (ECGQG), electrooculogram (EOG), electroencephalogram (EEG) leads, one
pulse oximetry saturation (SaO2), nasal respiration trace.

Data were obtained from two groups of premature newborns (13 sepsis vs. 13 non-sepsis)
hospitalized from the NICU in the Center of Hospital affiliated to University of Rennes 1 (CHU-
Rennes) between 2004 and 2007. This research was approved by the local ethics committee in
France (03/05-445). Furthermore, the parents of these babies were informed and gave common
consents.
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Continuous electrocardiogram signals were sampled at 400Hz, which was also carried on for the
other biological signals. There were no significant differences in gender, gestational age,
chronological age (>72 hours), post-menstrual age (<33 weeks), weight and haematocrit between
sepsis and non-sepsis groups.

Here are experimental criteria:
& Inclusion criteria: more than one bradycardia per hour and/or need for bag-and-mask
resuscitation and/or the intention of the attending physician to investigate for a suspected
infection.

= Exclusion criteria: ongoing inflammatory response with or without confirmed infection,
medication known to influence autonomic nervous system (ANS) including morphine,
catecholamine, sedative drugs, intra-tracheal respiratory support, intra-cerebral lesion or
malformation.

Data analysis was conducted on home-made signal processing tools designed with the software
MATLAB® R2010b (The Mathworks, Inc.) in the system of Windows® 7.

Consecutive sequences of successive RR series with bradycardia were extracted from ECG
recordings, and then resampled at 4 Hz> (Fig. B1-3 a) and cleaned by Kaplan filter (Fig. B1-3 b).
After, they are employed into time domain, frequency domain, chaos theory and information
theory.

RR series RR series after Kaplan filter
1600 1600

1400 - -7 --1--------F--f--794-9--f---F-1  M00F--f--j--q---—--F--f--7--9---

1200F - -7 --F--9---——-rF--r--T94-9--f-- - -

1000

800

600

o I ‘ :
1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
a) RR series extracted from ECG and resampled b) RR series after Kaplan filter

Fig. BI-3 RR series

The indexes were calculated in analysis windows (Fig. B1-4). Finally, we compared all methods
in terms of classification of Sepsis (S) versus Non-Sepsis (NS).

For each baby, analysis windows are used on RR series. The size of analysis window is chosen as
1024/2048/4096, steps have the same length as windows, showed in Fig. B1-4.

> RR series was resampled at 4 Hz in this dissertation: the unusual resampling is necessary in premature newborns
which exhibits higher heart rate (120-130 bpm) than adults.
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RR series for one baby
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Analysis windows=1024/2048/4096 Analysis windows=1024/2048/4096

Fig. BI-4 Analysis windows

Therefore, all observations are mutually independent, which makes it accurate to look for the
most discriminating parameters in these windows.

B1.5 Results and Discussion for Univariate Analysis —— p value

For this part of results, we consider four aspects:

1. with/without outliers, in order to verify the stability of the results taking into account some
outliers. An outlier is defined as the most extreme data point outside boxplot.

2. Analysis windows equal to 1024/2048/4096, in order to identify the best window size for the
diagnosis

3. Parameter by parameter, to extract the best features for sepsis discrimination

4. with/without baby effect, we used mixed effect ANOVA in which the baby is a random effect
such as the fact that the same baby is used several times is taken into account.

Then we will present our results according to these four points
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We carry out the same analysis for three sizes of window with/without outliers in detail. All these
results are reported in the Appendix II, and the synthesis of all the results are reported in the
following table.

Table B1-2 Univariate Analysis

With Outliers Without Outliers
1024 2048 4096 1024 2048 4096
moy
varn X
skew X X X
kurt
med
SpAs X X X X X
SD
RMSSD
p_HF
p_LF X X
p_VLF

PermEn X X X X

Regul

For each case in column, these parameters whose p value less than 0.2 are marked as “x”. We use
these p values in order to keep a maximum number of significant parameters for the multivariate
analysis

From Table B1-2, certain HRV characteristics such as SD, RMSSD, p HF, p LF, p VLF, were
unable to find a correlation between these parameters and sepsis. However, three indexes from
non-linear methods

e alphaS
e alphaF
e SamEn

are candidate parameters (highlighted in red horizontally) to recognize sepsis from non-sepsis
whatever the size of the window analysis. Their p values are shown in following table:

Table B1-3 p values of candidate parameters of Mono-Channel
~ WithOutlie,s ~ Without Outlies
1024 2048 4096 1024 2048 4096

alphas 0.0012 0.0045 0.0003 0.0047 0.01 0.0011
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alphaF
SamEn

0.0307
0.0840

0.1154
0.0507

0.0252
0.0410

0.0128
0.1931

0.04
0.03

0.0440
0.0006

For further details, we also boxplot alphaS, alphaF and SamEn (Fig. B1-5) as following:
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Fig. BI-5 Boxplot of optimal parameters

As for the methods of information theory, HRV analysis shows that the mean values of AppEn
(Fig. B1-6 a), SamEn (Fig. B1-5 ¢) and PermEn (Fig. B1-6 b) are lower in sepsis infants than in
non-sepsis ones, while, the mean values of Regul index (Fig. B1-6 c) give lower values for non-
sepsis than for sepsis. These performances above express a decrease in information content in the
newborns suffering from infection, because an increase in regularity coincides with a decrease in
entropy from sepsis. Univariate analysis confirmed the previous studies based on entropy analysis,
giving higher regularity values in sepsis cases. Results also confirmed the relationship between
the occurrence of disease and a reduction of information carried by cardiovascular signals.
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Fig. BI-6 Boxplot of parameters from information theory

B1.6 Results and Discussion for Multivariate Analysis —— Logistic
Regression

Logistic regression is a useful way of describing the relationship between one or more
independent variables (e.g., varn, skew, etc.). In this study, we should focus on the variables that
have p-values <0.2.

Each of the regression coefficients describes the size of the contribution of that risk factor. A
positive regression coefficient means that the explanatory variable increases the probability of
sepsis, while a negative regression coefficient means that the variable decreases the probability of
sepsis.

A large regression coefficient means that the risk factor strongly influences the probability of

sepsis, while a near-zero regression coefficient means that the risk factor has little influence on
the probability of sepsis.
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Table B1-4 shows the result of logistic regression, with outliers and with an analysis

window=1024.

Table B1-4 Logistic Regression, with outliers, window 1024

Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter | DF | Coefficient Error Chi-Square| Pr > ChiSq
Intercept 1 11.6551 8.0490 2.0967 0.1476
skew 1 -0.1631 0.4663 0.1223 0.7265
kurt 1 -0.00714 0.0453 0.0248 0.8748
SpAs 1 0.0500 0.0576 0.7534 0.3854
alphaF 1 0.1465 2.8801 0.0026 0.9594
PermEn 1 -8.5441 9.3547 0.8342 0.3611

* The first column represents the Intercept and the significant parameters chosen from
Table II-1 of univariate analysis in Appendix II.

* The second column denotes the degree of freedom (DF) with each parameter.

e The third column denotes the estimated coefficients of the parameter, which are
b1, B2, B3, .., Pr in Equation (5.32)

* The fourth column denotes the standard error of the coefficient.

e The fifth column denotes the Wald Chi-Square statistic, computed as the square of the
value obtained by dividing the parameter estimate by its standard error.

* The sixth column denotes the p-value (Pr > ChiSq) for the Wald Chi-square statistic with
1 DF, with a value below 0.2 indicating a significant effect of the associated model
parameter if a 20 percent significance level is chosen.

From Table B1-4, it is observed that the p-values (Pr>ChiSq) of alphaS and SamEn are less than
0.2 (marked in green), that is to say, both of them are significant variables. Since the coefficient
for alphaS and SamEn are negative, as alphaS or SamEn increases, the probability of sepsis
decreases.

We carry out the same analysis for three sizes of window with/without outliers in detail. All these
results are reported in Appendix III, and the synthesis of all the results are reported in the
following table.

Table B1-5 Significant Regression Coefficients of Logistic Regression

moy
varn
skew

-3.7032 -2.3937
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~ WithOutlies ~ Without Outliers
1024 2048 4096 1024 2048 4096
kurt 0.5575
med
SpAs 1.8309 0.6450
SD
RMSSD
p_HF
p_LF
p_VLF
alphaS -5.7189 -6.7654 -12.1747 -7.4428 -18.7639 -11.2460
alphaF 9.6729 16.9458
AppEn -16.9164
SamEn -9.9756 -37.0885
PermEn -23.1268
Regul

Table B1-5 lists Significant Regression Coefficients of Logistic Regression selected from
Appendix III (marked in green). From this table, we can see:

Firstly, it is obvious that alphaS is most frequently chosen as the significant variable with a
negative regression coefficient, which decreases the probability of sepsis. Furthermore, the
largest regression coefficient in absolute value means that alphaS strongly influence the
probability of sepsis.

Secondly, alphaF and SamEn are selected for two times. Positive regression coefficients mean
that alphaF increases the probability of sepsis, while negative regression coefficients mean that
SamEn decrease the probability of sepsis.

Thirdly, skew and SpAs are also picked for two times, but their absolute values of regression
coefficients are less than 4, so that we do not need to consider their impact.

B1.7 Results and Discussion for Multivariate Analysis —— Stepwise
Regression

We carry out the same analysis for three sizes of window with/without outliers in detail, and use
all the significant parameters on the whole population. Table B1-6 shows the result of stepwise
regression, with outliers and with an analysis window=1024.
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Table B1-6 Stepwise Regression, with outliers, window 1024

Summary of Stepwise Selection
i3l Number Score Wald Variable
Step | Entered | Removed | DF In| Chi-Square | Chi-Square | Pr > ChiSq | Label
1 alphaS 1 1 11.0066 0.0009 | alphaS
2 Samkn 1 2 6.6081 0.0102 | SamEn

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter | DF | Estimate Error | Chi-Square | Pr > ChiSq

Intercept 1 6.1324| 1.7289 12.5808 0.0004

alpha$S 1| -5.3019| 1.5784 11.2835 0.0008
SamEn 1-11.6893| 4.8646 5.7740 0.0163
For the upper table:

The first column denotes the number of step.

The second column represents the variables added to the model.

The third column represents the variables removed from the model.

The fourth column denotes the degree of freedom (DF) with each parameter.

The fifth column count on the number of the added variables.

The sixth column denotes the Score Chi-Square statistic.

The seventh column denotes the Wald Chi-Square statistic.

The eighth column denotes the p-value (Pr > ChiSq) for the Score/Wald Chi-square
statistic with 1 DF.

The ninth column denotes Variable Label.

For the down table

The first column represents the Intercept and the significant parameters chosen from
Stepwise Selection in the upper table.

The second column denotes the DF with each parameter.

The third column denotes the estimated coefficients of the parameter.

The fourth column denotes the standard error of the coefficient.

The fifth column denotes the Wald Chi-Square statistic, computed as the square of the
value obtained by dividing the parameter estimate by its standard error.

The sixth column denotes the p-value (Pr > ChiSq) for the Wald Chi-square statistic with
1 DF.

Stepwise regression is a modification of the forward selection technique in that variables already
in the model do not necessarily stay there. As in the forward selection technique, variables are
added one at a time to the model, as long as the F statistic p-value is below 0.05. After a variable
i1s added, however, the stepwise technique evaluates all of the variables already included in the
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model and removes any variable that has an insignificant F statistic p-value exceeding 0.05. Only
after this check is made and the identified variables have been removed can another variable be
added to the model. The stepwise process ends when none of the variables excluded from the
model has an F statistic significant at 0.05 and every variable included in the model is significant
at 0.05. For the case of Table B1-6, among all the parameters, ‘alphaS’ and ‘SamEn’ are chosen
as significant predictive variables by using stepwise regression. The other results are also
reported in Appendix I'V.

The synthesis of all the results is reported in the following table.

Table B1-7 Stepwise Regression

With Outliers Without Outliers
1024 2048 4096 1024 2048 4096

moy
varn
skew
kurt X
med
SpAs
SD
RMSSD
p_HF
p_LF

p_VLF x

alphaF
AppEN X
PermEn X

Regul

For each case in column, these parameters selected from Stepwise Regression are marked as “x”.
From Table B1-7, firstly, it is obvious that ‘alphaS’ is the most frequently chosen as a significant
predictor, that is to say, alphaS is added to the multi-linear model based on its statistical
significance in a regression and always stay in the model for all cases. Secondly, ‘SamEn’ is
selected for two times, so it can be considered as the second frequent choice. Thirdly, other
methods are chosen only for one time, or even some of them are not chosen, so that we can
ignore them.

B1.8 Conclusion

The clinical manifestations of neonatal sepsis, whatever the source of infection, are frequently
nonspecific. In this chapter, the aim of the work was to find quantitative mathematical criteria for
the diagnosis of late-onset sepsis happened in premature infants by a non-invasive way.
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The aim was achieved by means of RR signal analysis. HRV characteristics such as quantitative
estimates in Time Domain and in Frequency Domain, we were unable to find a correlation
between these parameters and sepsis. However, chaos indexes (alphaS, alphaF) and four metrics
from Information Theory were considered (AppEn, SamEn, PermEn and Regul).

Referring to the methods of Chaos Theory, the index alphaF obtained by DFA and characterizing
short-range (4—40 beats) correlation in the detrended RRI time series hardly changed with age
and was almost constant at about 1.5 in the mean. The alphaF value greater than unity in the
preterm infants indicated that the RRI fluctuation at short range was near to Brownian motion
(uncorrelated). On the other hand, the index alphaS characterizing the long-range (40—-1000 beats)
correlation increased, and showed the high correlation coefficient value and most statistically
significant between groups sepsis and non-sepsis, suggesting that alphaS could be a good and
robust index characterizing the ANS development.

With regard to the Information Theory, results confirmed the relationship between the occurrence
of disease and a reduction of information carried by cardiovascular signals. AppEn, SamEn and
PermEn showed that a decrease of entropy is associated with sepsis condition, and coherently, the
Regul index measured a higher value for the same group of patients.

Furthermore, all methods are screened through Statistical Analysis, not only Univariate Analysis,
but also Multivariate Analysis (Logistic Regression, Stepwise Regression). Finally, three indexes
from non-linear methods

— alphaS

— alphaF

— SamEn
are selected as candidate parameters to discriminate between the two groups—Sepsis vs. Non-
Sepsis, because these three are frequently significant whatever the size of the window analysis.

In conclusion, the distinctive variation in heart rate behavior related with sepsis could be useful in
the field of neonatology.
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Chapter B2
Analysis for Relationship between RR series and Respiration
in Premature Newborns

B2.1 Introduction

Different mechanisms are involved in the generation of cardiovascular variability rhythms which
have been extensively studied as markers of the sympathovagal interaction controlling
cardiovascular functions. Therefore, the application of methods of multichannel signal analysis
can extract more information than it can be obtained by the usual techniques of single-channel
analysis of variability signals [1]. This is why the Mono-channel signal approaches used to
analyze heart rate variability have recently been extended by several Bi-channel approaches with
respect to cardiorespiratory coordination.

Physiologists had already investigated cardiorespiratory coordination in the human organism as
early as the 1960’s. Calculating the distance between an inspiratory onset and its preceding R-
peak, they found intermittent coordination between heartbeat and respiration. In the 1970’s this
interesting topic was no longer followed up, presumably because the physiological interpretation
of the results was limited, although the last reviews of this period appeared in the late 1980°s [2]
[3]. The investigation of cardiorespiratory coordination has recently been revived mainly by
physicists and mathematicians [4].

The connections between biological control systems can be revealed sometimes by the presence
(in terms of concentration in blood) of mediator elements that can be found during infection
manifestation. They are vectors used by the control system, helping to regulate, modulate, and
“express” in general, the body’s response to some internal or external perturbation to the system.

In the examined case, sepsis constitutes the perturbation to the system and the role of the
Interleukin 1 (Il-1) as vector was investigated. It is one of the first fever effectors in adults. Some
studies have given certain results regarding the role of II-1 in the connection between infection
and respiratory control system: coinciding increase in Interleukin concentration and apnea’s crisis
was found.

On the other side, instead, no evidence is still present for the relationship between infection and
cardiac pacemaker through the Autonomic Nervous System (see Fig. B2-1). The only evidence
up to now is that there is an increase in bradycardias together with apneas, during sepsis
manifestation.
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Fig. B2-1 Interconnections between cardiovascular systems and respiration. Bi-channel signal analysis rule in their
interpretation, to find the infection — bradycardias possible relation.

Of course, giving an answer to this question, the intervention to be effected would change,
depending on the result. And new therapies could be arranged in order to prevent the possible
damages of bradycardia’ onset. Studies upon the incidence of Il-1 in respiratory pacemaker are in
act to find new therapies to prevent apnea by regulating I1-1 concentration.

We consider here the study of Bi-channel signals. This work is based on a measurement of linear
and non-linear relationships and delay times assessment between RR and Respiratory signals.
There are several techniques that allow discovering the relationship between these two channels
of signals. In the following, we review some representative approaches among those existing
ones.

Section B2.2 refers to linear methods. In section B2.3, non-linear methods are presented in details.
Experimental protocol is explained in detail in section B2.4. Results of linear methods and non-
linear methods are demonstrated and discussed in section B2.5 and section B2.6 respectively.
Finally, we discuss all results in section B2.7 and conclude with summary in section B2.8.
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B2.2 Linear Methods

Linear methods were developed first. Many estimators based on linear cross-correlation were
proposed by Chapman et al [5]. Works based on the coherence function were initiated by Brazier
[6]. They were followed by Gotman [7] who studied interhemispheric relations in partial seizures
and by Duckrow et al. [8] and Franaszczuk et al. [9] [10] who analyzed possible synchronization
mechanisms occurring at the seizure onset.

The basic problem, set in literature, is that of trying to estimate the delay and the level of the
relationship between two series, presumably generated from an equation model as:
X)) =S8@)+bi(0)

(6.1)
Xo(t) =T (s(t = D))+ by(?)

Where S(¢) is the source signal,
bi(t) and p,() are noises,
T, is a transformation, linear in this case, which links X ,(¢) to X (7).

In general, the delay estimator appeals to a function built on several time shifts, and to an
algorithm detecting the maximum value in this function, with its time delay. Several approaches
have been proposed in the past that are detailed in the following.

B2.2.1 Correlation Index (r?)

The most classical time-delay estimation method is that of looking for the maximum of the cross-
correlation function R X, Xz(z') . In fact, under the hypothesis that 7, (in the equation(6.1)) is

reduced to a parameter « of attenuation, it can be demonstrated that R Y Xz(r) estimation of

cross-correlation function has its maximumin =D

Ry (D) indicates the strength and direction of a linear relationship between two random

variables: in general, it refers to the departure of two variables from independence and equals. In
this broad sense, there are several coefficients which measure the degree of correlation and are
adapted to the nature of data. The best known is the Pearson product-moment correlation
coefficient, which is obtained by dividing the covariance of the two variables by the product of
their standard deviations:

E{(x (- E{x(ONX(t—1) - E{Xt—7)})}
[Var()(,(t)) * Var()(z(t))]E

Rix7)= (6.2)

pi= max Rix(7) (6.3)

Where Var(.)is the variance;
E(.)1s the expected value;
The process X ,(z) can be delayed with the time-lag (7);
Ri(7) is the normalized cross-correlation coefficient.
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So that ‘ rz‘ <1 and the equal is true if X ,(¢) and X ,(¢)are perfectly correlated.

B2.2.2 Coherence Function (Cohere)

Similarly to what it has been said for the correlation index, it is possible to measure the
convolutional relation between two signals, by means of the coherence function. The amount of
linear coupling between two signals in the frequency domain can be expressed by means of the
(squared) coherence function [11].

The coherence function is defined as

S v, )
S xS 4 ()

Coy ()= (6.4)

Where § ¥, Xl( f)and § Y, Xz( f)are the power spectral densities of X, and X, respectively,

Sy, Xz( f)is cross-spectral density between these two signals.
2
The maximum of HCXle(f)H is computed (%?).
Coherence is a function of frequency (f)and it ranges between 0 and 1 that indicate how well the

input X, corresponds to the output X, at each frequency. It provides both amplitude and phase
information about the frequencies held in common between the two sequences.

In the analysis, the squared coherence spectrum (SCS) is estimated in the system with input X,
and output X, :

1S (A
S e (S, ()

e (= (6.5)

And Welch's average periodogram method® has been used to calculate it [2].

A value of SCS close to 1 indicates that same rhythms in two signals have a constant phase
relationship, thus they may have a common origin or they can be linearly synchronized.

% One way of estimating the PSD of a process is to simply find the discrete-time Fourier transform of the samples of
the process (usually done on a grid with an FFT, Fast Fourier Transform) and take the magnitude squared of the
result. This estimate is called the periodogram. An improved estimator of the PSD is the one proposed by Welch.
The method consists of dividing the time series data into (possibly overlapping) segments, computing a modified
periodogram of each segment, and then averaging the PSD estimates. The result is Welch's PSD estimate.
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B2.2.3 Local Linear Correlation coefficient (rzt,f)

It is well known that HRV and respiration are non-stationary over time. To overcome these
difficulties, a new estimator was recently proposed and can be of interest for our purpose [12]. It
uses a local linear correlation coefficient, computed at the outputs of narrow band-pass filter, as
the function of frequency and time, which is maximized for time delay. To our knowledge, the
application of this latter method in the cardio-respiratory field has never been reported. Let us
briefly recall the method:

We consider two observations, x(z) the HRV signal and y(#) the respiration signal. The problem is
to characterize the statistical relationship, simultaneously in the time and frequency domains,
between the nonstationary signals x(?) and y(?). The estimation of the local linear correlation
coefficient is given by:

2

H
s
X r(k)y p(k+7)
=t et
Rt f)=  max i 2 = (6.6)
—Tm<T<tmy ? ?

Y X Yy

H H™
k=—"" fe=—""

2 2

Where x,(¢) and y (¢)are zero-mean and narrow band filtered signals over a sliding window of

duration H (Fig. B2-2) of an appropriate filter bank (Fig. B2-3). R (7, f) is computed with

different delays 7 between the two windows. This last one is derived from the Short-Time
Fourier Transform (STFT).

The parameter 77, s1s chosen and defined from R? (¢, f)as:
riy=max Ry, (L, f) 6.7)
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B2.3 Non-linear Methods

The previous methods suppose a linear relationship between the HRV and the respiration (see
equation(6.1)). In this section, one of non-linear indexes will be used: the non-linear regression
coefficient (also known as non-linear association index).

Non-linear regression coefficient (4°) allows to measure statistical dependence between
observations obtained in a bound temporal support. It is defined as:

) E{( Xz(z)—E{Xz(t)})z} ~E {(X (—f(X 1(t)))z}
o E {(X ()—E{X2(0)} )2}

(6.8)

_ Var(X») _”Xz _f(Xl)”2
Var(X»)

Where fis a non-linear regression function, allowing to measure the similarity, more or less linear,
between the two observed processes X, and X ,, thanks to three principal characteristics:

= For a perfectly linear transformation, hi{ tends to s, ;

1X2

= hi p is generally different from hi{ P whereas we have a non-linear transformation;
1 2 2 1

= hi p 1s a quantity that can assume values between 0 and 1, if || X.—f(x l)||2 <Var(X,)

Practically, we attempt to approximate f(X,) with treats of linear regression. To do that the X,
axis is dived into M identical intervals, or bins (see Fig. B2-4), and the expectation value of X,

given a certain value of X, is calculated and denoted as F )y

E /(o) = 2 X0 p(X (D)) X (D) € xi) (6.9)

Ey) Xlis a function of x;, where J indicates the J-th bin. The curve described in this way

represents the predicted value of X, given X, and it is, in general, a non-linear relationship.
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Fig. B2-4 Non-linear regression approximating curve

In particular, for each bin J, the average of the X ,-values is calculated, £(X,), as well as the
X, -value of the midpoint (x{ ). Then the points (x{, E v Xl(xi’ )) are connected by segments of

straight line to approximate the function f'( x,(¢)), as shown in Fig. B2-4.

The same procedure may also be carried out in the opposite way by subdividing the variable X,
into bins and computing the expected value of X, given a certain X, value, in order to test both
the causal directions.

The numerator of (6.8) represents the difference between the total variance of X, and the part of

variance of X, not explained by the interpolating function. Consequently, express the

2
X1 X
reduction of variance of X, obtained predicting the X, values on basis of X, : the better the

prediction, the minor the unexplained variance and the major the hi{ P index results.

The process X ,(¢) can be also delayed with the time-lag (7) and a non-linear hi{ P () function
can be computed. The maximum of hi{ P (7) is considered (4%), in other words:

2 2
pP=max i’ (7) (6.10)

B2.4 Experimentation

Experimental protocol and RR series pre-processing are the same as Section B1.4. Respiration
can be seen in a different way. This is the purpose of this part to discuss respiration signal pre-
processing and analysis window settings.
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B2.4.1 Respiration signal pre-processing

Nasal airflow (thermocouples measure air flow into and out of the lungs directly) and abdominal
movements (strain gauges measure of thoracic movement) are generally collected. Both of them
are useful in order to analyse the respiration pattern, avoiding movement artefacts, and
distinguishing obstructive apnea from the central one.

In this study, the abdominal respiration signals have a poor quality and we only use the nasal
airflow data. Here, it is calculated in two types:

22 Original Nasal Respiration (raw)
Envelope of Nasal Respiration (enp)

B2.4.1.1 Original Nasal Respiration

One of the original nasal respirations is shown in Fig. B2-5

Nasal respiration signal
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500 H -
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seconds

Fig. B2-5 Nasal respiration signal

B2.4.1.2 Envelope extraction

For respiration pattern amplitude modulation analysis, the envelope of the respiratory traces was
extracted. To evaluate the envelope, the signals absolute values were taken, and the Hilbert
transform was computed. In details, the Hilbert transform of a signal »(¢) is defined as:
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r%(t) = H(r(t)) = %j}):(—t)dr (6.11)

—00

Being
r%(t) =r(t)* L (6.12)
7t

The associated analytic signal z(¢) is:
z(t) =r(t)+ir%(t) (6.13)

And the signal envelope is defined as its module:

E(t) =|2(0)| = \Jr(t)* + r%(e)’ (6.14)

As a final step, the envelope was low-pass filtered. A Zero-phase forward and reverse FIR filter
was implemented, with a cut-off frequency of 0.02 Hz. This frequency was chosen to focus our
analysis on the VLF band of 0.002-0.02 Hz. Lots of studies have been already done on HF band,
because this is the typical Respiratory Sinus Arrhythmia (RSA) band. The LF too has been
explored: a sympathetic contributes has been found in RSA. Now the VLF band was used for
trying to observe the autonomic nervous system control in this new frequency pathway.

Fig. B2-6 is the envelope extracted from Fig. B2-5.

Envelop of Nasal respiration signal
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Fig. B2-6 Envelope of Nasal respiration signal
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Only for the Coherence analysis the signal was not enveloped: in this case, the entire signal
pattern has to be considered, since we don’t want to loose any frequency information. Besides,
coherence analysis was made to analyse the VLF relations between RR and respiration. Thus, the
sampling frequency was reduced to 0.1 Hz, and then no low-pass filtration has been necessary.

B2.4.2 Signal normalized

Both the RR series and respiration signals were normalized before analysis according to the
following equation:

¥y KOO 619

X

That is subtraction of the mean value, and division for the standard deviation of the signal.

Each signal has been divided in several intervals, and analysis has been computed for each
interval. Then, for each patient, the mean value on the different segments has been computed.

B2.4.3 Analysis windows

Signals recording lengths were variables: among babies, the longest record was 3 hours
recordings (around 45000 points, with a sampling frequency of 4 Hz), but average length was
about 1.5 hours.

Fig. B2-7 is the example of Bi-channel signal in 4Hz for one baby, where the blue signal is RR
series, and the red one is original nasal respiration.
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Fig. B2-7 RR and Original Nasal Respiration in 4Hz
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Analysis was performed on three kinds of window size (1024/2048/4096 points, Fig. B2-8), with
the same length of step accordingly. A sensitivity study was made to evaluate the performance of
the single segments in comparison to the entire signal, thus evaluating the index performances on
different signal’s lengths. This was necessary for trying to choose the most appropriate length to
consider. The bradycardias exclusion stage took long time in some cases, when the signals were
affected by lots of noise, since it is not always so easy to differentiate a spike simply generated by
an artefact, from one representing a sudden bradycardia event. This kind of analysis requires long
pre-processing time, especially in noisy recordings.

Normalized RR in 4Hz

1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Normalized Original Nasal Respiration in 4Hz

0 MWM e —— WW»««(WM« MWHWWHWM N‘M IWWWM ﬁw ]

Analysis windows=1024/2048/4096 Analysis windows=1024/2048/4096

Fig. B2-8 Analysis windows over Normalized RR and Original Nasal Respiration

B2.4.4 Flow chart

The flow chart Fig. B2-9 summarized the experimental procedure:
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Fig. B2-9 Flow chart of Bi-channel signal analysis: RR series and Nasal Respiration
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B2.5 Results and Discussion for Linear Methods

Here, most of the work was focused on the Bi-channel signal analysis, whose results are reported
in this section. The Bi-signal analysis includes linear and non-linear indexes and explores the RR
and Respiration signals series.

For Bi-signal analysis, all babies with respiration recordings were considered, in total 26 patients:
13 sepsis and 13 non-sepsis. The two groups had comparable post-conceptional age (PCA) and
post-natal age (PNA). This is a fundamental criterion for our analysis since in preterm newborns.
even small differences in these ages may entail very big differences from a physiological point of
view, which invalidate the comparative analysis.

B2.5.1 Correlation Index (r?)

The cross-correlation (%) between the RR and the respiratory series was computed (only for nasal
channel) over the range of -240 to 240 sample lags (1 minute) and it was normalized to have
ri(0)=1.

The maximum 7? values for each sequence were registered as well as the delay time at which
these values occurred. Table B2-1 reports the results of statistical analysis for 7 between RR and

nasal respiration on the entire population, in the window 1024 with step 1024.

Table B2-1 Results of statistical analysis for 7 between RR and nasal respiration, Window=1024,

Step=1024
r Sepsis Non Sepsis ANOVA |KruskWall| Wilrs
m_raw 0.0800 + 0.0872 0.0450 = 0.0383 0.0001 0.0011 0.0011
rn_enp 0.5135 + 0.1980 0.4953 + 0.1825 0.4528 0.4374 0.4379

The level of significance was set at p value
p<0.05 is marked in yellow

In Table B2-1, the second and third column present “Mean Value + Standard Deviation” of sepsis
and non-sepsis infants respectively. The fourth, fifth and sixth column bring forth the p value of
ANOVA, Kruskal-Wallis test and Wilcoxon rank-sum test respectively in each case.
4+ For the original nasal respiration and its envelope, correlation index #° is higher in sepsis
infants than in non-sepsis ones. That is to say, sepsis condition doesn’t influence on the
original nasal respiration signal and its envelope.
We carry out the same analysis for three sizes of window in detail. All these results are reported

in Appendix V.

B2.5.2 Coherence function (Cohere)

Coherence is a function of frequency with values between 0 and 1 that indicate how well the
input (the RR signal) corresponds to the output (the respiratory signal) at each frequency.
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The squared coherence estimate of the system has been computed using Welch's averaged
periodogram method.

A vector divides RR and Respiration signals into overlapping sections of 64 or 32 points
(depending on the signal length, here 64 is selected), and then windows each section with this
vector (hamming window).

As final results, the cumulative sum of the coherence values upon the frequency band of interest
(VLF =0.002 —0.02 Hz), normalized (divided by N points, correspondent to the frequency band
points, here N=256) to give a value between 0 and 1, was recorded as:

0.02

1
N ) z CRRresp(f) (616)

£=0.002
Table B2-2 shows the results of statistical analysis for Coherence between RR and nasal

respiration, in the window 1024 with step 1024.

Table B2-2 Results of statistical analysis for Cohere between RR and nasal respiration,
Window=1024, Step=1024

Cohere Sepsis Non Sepsis ANOVA |KruskWall| Wilrs

rn_raw 0.4375+ 0.1693 0.4149 = 0.1542 0.2742 0.2668 0.2672

In Table B2-2, the second and third column present “Mean Value + Standard Deviation” of sepsis
and non-sepsis infants respectively. The fourth, fifth and sixth column bring forth the p value of
ANOVA, Kruskal-Wallis test and Wilcoxon rank-sum test respectively in each case.

4 For original nasal respiration, coherence index is higher in sepsis infants than in non-
sepsis ones. That is to say, sepsis condition doesn’t influence on the original nasal

respiration signal and its envelope.

We carry out the same analysis for three sizes of window in detail. All these results are reported
in Appendix VL.

B2.5.3 Local Linear Correlation Coefficient (rzt,f)

B2.5.3.1 Time-Frequency plot

Representative examples (HRV, respiration signal and Time-Frequency linear correlation
coefficient) are displayed in the sepsis and non-sepsis group (Fig. B2-10) separately. Both signals
are nonstationary.
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Fig. B2-10 Time-Frequency plot

= In the left column, we demonstrate typical square modulus of Time-Frequency linear
correlation coefficient for a sepsis baby. The upper traces represent the Normalized RR
and Original/Envelope of Nasal Respiration separately. These Time-Frequency plots
indicate that a higher correlation coefficient for the sepsis group in the lower band around
0.5 Hz

& In the right column, we demonstrate typical square modulus of Time-Frequency linear
correlation coefficient for a non-sepsis baby. The upper traces represent the Normalized
RR and Original/Envelope of Nasal Respiration separately. These Time-Frequency plots
indicate that a strong relationship in the higher frequency band for the non-sepsis group.
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B2.5.3.2 Multi-Boxplot r% between RR and original nasal respiration

The following section reports the results of statistical analysis for 7, rbetween RR and original
nasal respiration frequency band by band. These qualitative findings were statistically verified.
Fig. B2-11 depicts the sub-band distribution of the time-frequency correlation coefficient 7, 7
over a threshold set to 0.8, in the window 1024 with step 1024.
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Fig. B2-11 Distribution of v*; between RR and original nasal respiration (greater than 0.8), Window=1024,

In Boxplot, red line is mean value.

Step=1024

Table B2-3 demonstrates the results of statistical analysis for rz, s between RR and nasal
respiration, in the window 1024 with step 1024.

Table B2-3 Statistical analysis for 17, s between RR and nasal respiration, Window=1024,

Step=1024
Band(Hz) Sepsis Non Sepsis ANOVA | KruskWall Wilrs
0-0.02 7.2308 £ 16.6841 1.3846 + 4.9923 0.2379 0.2704 0.2885
0.02-0.2 56.0769 +115.2595 109.5385 +188.1266 0.3909 0.6855 0.7055
0.2-0.4 8.6154 +11.3324 36.2308 +49.6154 0.0421 0.0445 0.0484
0.4-0.6 34.5385 + 94.6657 5.0000 + 8.5342 0.2736 0.1881 0.1975
0.6-0.8 29.1538 £ 53.2930 72.7692 + 82.2559 0.1217 0.1725 0.1807
0.8-1.0 1.7692 + 4.3235 18.5385 £ 26.0947 0.0314 0.0254 0.0275
1.0-1.2 105.6154 +£178.8689 79.2308 £100.9762 0.6474 0.5323 0.5495
1.2-14 10.3077 £ 16.1987 56.8462 +70.3253 0.0288 0.1547 0.1630
1.4-1.6 33.6154 + 55.3075 7.4615+11.1177 0.1076 0.3446 0.3585
1.6-1.8 21.0769 +37.8912 83.6154 £105.7848 0.0562 0.1995 0.2088

The level of significance was set at p value
p<0.05 is marked in yellow
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+ We confirm statistically (p<0.05 whatever the statistical tests) that the higher correlation
is retrieved in the two frequency bands for the non-sepsis group (0.2<f<0.4Hz and
0.8<f<1.0Hz).

We carry out the same analysis for three sizes of window in detail. All these results are reported
in Appendix VIIL.

B2.5.3.3 Multi-Boxplot r?; between RR and envelope of nasal respiration

The followings report the results of statistical analysis for s between RR and envelope of nasal
respiration frequency band by band. These qualitative findings were statistically verified. Fig.
B2-12 depicts the sub-band distribution of the time-frequency correlation coefficient rz,,f, over a

threshold set to 0.8, in the window 1024 with step 1024.
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Fig. B2-12 Distribution of rzt'f between RR and envelope of nasal respiration (greater than 0.8), Window=1024,

In Boxplot, red line is mean value.

Step=1024

Table B2-4 presents the results of statistical analysis for rz,,f between RR and envelope of nasal
respiration, in the window 1024 with step 1024.

Table B2-4 Statistical analysis for /7,  between RR and envelope of nasal respiration,
Window=1024, Step=1024

Band(Hz) Sepsis Non Sepsis ANOVA | KruskWall Wilrs
0-0.02 8.7692 £ 15.2050 12.6154 +£23.1572 0.6212 0.6946 0.7171
0.02-0.2 30.1538 + 95.8478 7.0769 + 25.5162 0.4098 0.0889 0.0956
0.2-0.4 37.3846 £123.1480 0.0000 = 0.0000 0.2846 0.0338 0.0373
0.4-0.6 97.0000 £123.1990 20.6923 +37.5730 0.0431 0.0167 0.0179
0.6-0.8 0.1538 = 0.5547 0.0000 = 0.0000 0.3273 0.3173 0.3560
0.8-1.0 72.2308 £102.8139 37.4615 +51.3235 0.2861 0.6582 0.6771
1.0-1.2 8.6923 + 14.0735 13.6154 £36.9110 0.6572 0.9318 0.9545
1.2-1.4 11.0769 + 31.9256 14.0000 + 33.1989 0.8209 1.0000 1.0000
1.4-1.6 101.5385 £128.5461 82.7692 £112.1169 0.6951 0.8573 0.8775
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Band(Hz)

Sepsis

Non Sepsis

ANOVA

KruskWall

Wilrs

1.6-1.8

0.6923 =+ 2.4962

0.7692 + 2.4884

0.9379

0.5791

0.6111

The level of significance was set at p value

p<0.05 is marked in yellow

+ We confirm statistically (p<0.05 whatever the statistical tests) that the higher correlation
is retrieved in the frequency band for the sepsis group (0.4<f<0.6Hz).

We carry out the same analysis for three sizes of window in detail. All these results are reported

in Appendix VIIL.

B2.6 Results and Discussion for Non-linear Methods

This section presents the results obtained for the non-linear regression coefficient (hz). As an
example, the curves of /° for a sepsis (figures on the left) and a non-sepsis (figures on the right)
patient are plotted in Fig. B2-13 below.

Tests have been conducted to evaluate 4°(7), considering two directions:
— RR vs. the nasal respiratory signal (upper subfigure)
< the nasal respiratory signal vs. RR (lower subfigure)
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Fig. B2-13 Curves of h? calculated on segments of 1024 points (around 4.3 minutes) with a delay window of (+240
points) between RR and Original/Envelope of Nasal Respiration separately. For each sub-figure, x-axis for the
numbers of points and y-axis stands for the max values of h’.

£ As it is evident from Fig. B2-13, there is a big difference in the maximum values of A’
function. The curves themselves are very different, with a great and very well-defined
peak for non-sepsis case and without a precise shape, or a defined peak in sepsis baby.

It’s the Table B2-5 of statistical analysis for 4° in one direction: RR vs. nasal respiration, in the
window 1024 with step 1024.

Table B2-5 Results of statistical analysis for #° between RR and nasal respiration,
Window=1024, Step=1024

W Sepsis Non Sepsis ANOVA |KruskWall| Wilrs
m_raw 0.0813 + 0.0779 0.0432 £ 0.0403 0.0000 0.0000 0.0000
rn_enp 0.4500 + 0.2011 0.4083 + 0.1620 0.0759 0.0937 0.0939

The level of significance was set at p value
p<0.05 is marked in yellow

In Table B2-5, the second and third column present “Mean Value & Standard Deviation” of sepsis

and non-sepsis infants respectively. The fourth, fifth and sixth column bring forth the p value of
ANOVA, Kruskal-Wallis test and Wilcoxon rank-sum test respectively in each case.

While Table B2-6 presents the statistical analysis in the other direction: nasal respiration vs. RR,
in the window 1024 with step 1024.
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Table B2-6 Results of statistical analysis for 4° between nasal respiration and RR, Window=1024,

Step=1024
% Sepsis Non Sepsis ANOVA |KruskWall| Wilrs
nr_raw 0.1887 + 0.2531 0.0975 + 0.0737 0.0003 0.0000 0.0000
nr_enp 0.5648 = 0.1808 0.5160 = 0.1502 0.0225 0.0062 0.0063

The level of significance was set at p value
p<0.05 is marked in yellow

In Table B2-6, the columns are identical to Table B2-5.

We carry out the same analysis for three sizes of window in detail. All these results are reported
in Appendix VIII.

B2.7 Discussion

Here, we recall that
Linear estimates:
= r2_rn_raw (+’ between RR and original nasal respiration)
= r2_n_enp ( between RR and envelope of nasal respiration)

= Cohere rn_raw (Coherence between RR and original nasal respiration)

= 12tf m_raw 0p0 O0p02 (the quantity of 7, s between RR and original nasal respiration
over a threshold set to 0.8 in the sub-band 0</<0.02 Hz)

= 12tf m_raw_0p02 Op2 (the quantity of rZ,!f between RR and original nasal respiration
over a threshold set to 0.8 in the sub-band 0.02</<0.2 Hz)

— 12tf m_raw Op2 Op4 (the quantity of /* s between RR and original nasal respiration over
a threshold set to 0.8 in the sub-band 0.2</<0.4 Hz)

= r2tf m_raw_Op4 Op6 (the quantity of 77, s between RR and original nasal respiration over
a threshold set to 0.8 in the sub-band 0.4<f<0.6 Hz)

= r2tf m_raw Op6 Op8 (the quantity of 77, s+ between RR and original nasal respiration over
a threshold set to 0.8 in the sub-band 0.6</<0.8 Hz)

= r2tf m_raw_Op8_1p0 (the quantity of 77, s between RR and original nasal respiration over
a threshold set to 0.8 in the sub-band 0.8<f<1.0 Hz)

= r2tf m_raw _1p0 1p2 (the quantity of 77, s between RR and original nasal respiration over
a threshold set to 0.8 in the sub-band /.0<f<1.2 Hz)

— 12tf m_raw_lp2 1p4 (the quantity of /* s between RR and original nasal respiration over
a threshold set to 0.8 in the sub-band /.2<f<1.4 Hz)

= 12tf m _raw_1p4 1p6 (the quantity of I"Zt,f between RR and original nasal respiration over
a threshold set to 0.8 in the sub-band /.4<f<1.6 Hz)

— 12tf m_raw_lp6 1p8 (the quantity of #* s between RR and original nasal respiration over
a threshold set to 0.8 in the sub-band 7.6<f<1.8 Hz)
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= 12tf m_enp Op0 OpO02 (the quantity of Vzt’f between RR and envelope of nasal respiration
over a threshold set to 0.8 in the sub-band 0<f<0.02 Hz)

— 12tf m_enp O0p02_0p2 (the quantity of s between RR and envelope of nasal respiration
over a threshold set to 0.8 in the sub-band 0.02</<0.2 Hz)

= 12tf m_enp Op2 Op4 (the quantity of rZ,,f between RR and envelope of nasal respiration
over a threshold set to 0.8 in the sub-band 0.2<f<0.4 Hz)

= 12tf m_enp Op4 Op6 (the quantity of 7, s between RR and envelope of nasal respiration
over a threshold set to 0.8 in the sub-band 0.4<f<0.6 Hz)

= r2tf m_enp Op6_Op8 (the quantity of s between RR and envelope of nasal respiration
over a threshold set to 0.8 in the sub-band 0.6<f<0.8 Hz)

= 12tf m_enp Op8 1p0 (the quantity of 7, + between RR and envelope of nasal respiration
over a threshold set to 0.8 in the sub-band 0.8<f<1.0 Hz)

— 12tf m_enp 1p0 1p2 (the quantity of /7, s between RR and envelope of nasal respiration
over a threshold set to 0.8 in the sub-band /.0<f</.2 Hz)

= 12tf m_enp 1p2 1p4 (the quantity of rZ,,f between RR and envelope of nasal respiration
over a threshold set to 0.8 in the sub-band /.2<f</.4 Hz)

— 12tf m_enp 1p4 1p6 (the quantity of /7, s between RR and envelope of nasal respiration
over a threshold set to 0.8 in the sub-band /.4<f<1.6 Hz)

= r2tf m_enp 1p6_1p8 (the quantity of + s between RR and envelope of nasal respiration
over a threshold set to 0.8 in the sub-band 1.6<f<1.8 Hz)

Non-linear estimates:
= h2_rn_raw (4’ between RR and original nasal respiration)
= h2_rn_enp (4’ between RR and envelope of nasal respiration)

= h2_nr_raw (4’ between original nasal respiration and RR)
— h2 nr_enp (4’ between envelope of nasal respiration and RR)

The synthesis of all the results is reported in the following table.

Table B2-7 Synthesis of all parameters between RR and nasal respiration

Window Size
1024 2048 4096
2 rn raw X
r2 rn_enp

Cohere rn raw

r2tf m_raw Op0 Op02
r2tf rm_raw Op02 Op2
[2fmrawop20p4 [ x [ x [ x
r2tf rm raw Op4 Op6
r2tf rn_raw Op6 Op8
r2tf m_raw Op8 1p0 X
r2tf m_raw _1p0 1p2
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Window Size

1024 2048 4096

2tf m_raw 1p2 1p4

2tf n_raw 1p4 1p6

r2tf rn raw Ip6 1p8

r2tf m_enp Op0 0p02

r2tf m_enp Op02 Op2

r2tf m_enp Op2 Op4

r2tf rn_enp Op4 Op6

2tf m_enp Op6 OpS8

r2tf rm _enp Op8 1p0

2tf m_enp 1p0 1p2

r2tf m_enp 1p2 1p4

2tf m_enp Ip4 1p6

2tf m _enp Ip6 1p8

h2 rm_enp

h2 nr enp

X

For each case in column, these parameters whose p value less than 0.05 are marked as “X”.

From Table B2-7, it is obvious that “r2tf rn_raw Op2 Op4”, “h2 rn raw” and “h2 nr raw” are
the most frequently selected as significant indexes during the process of statistical analysis. These
three indicators are regarded as candidate parameters (highlighted in red horizontally) to

discriminate between sepsis and non-sepsis. Their p values are shown in following table:

Table B2-8 p values of candidate parameters of Bi-Channel

r2tf m_raw_Op2 Op4
h2 r raw
h2 nr raw

Fig. B2-11 already gave the performance of Boxplot of “r2tf rn raw Op2 O0p4”. For
“h2 rn_raw” and “h2 nr raw”, Fig. B2-14 is schematically demonstrated in boxplot, where the

Window Size

1024 2048 4096
0.0421 0.0074 0.0107
0.0000 0.0002 0.0241
0.0003 0.0001 0.0194

red lines stand for mean values of the maximum correlation index /” for all segments.
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Fig. B2-14 Boxplot of optimal indexes
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. . . . 2. .
= In both left and right column, non-linear regression coefficient 4” is always lower in non-
sepsis infants than in sepsis ones, whichever size of windows.

B2.8 Conclusion

This chapter constitutes a new way of approaching to the problem of monitoring sepsis in the
newborns. From the same cohort used for RR analysis, patients were retained, those having
respiratory signals recorded. Research work on mutual influence between cardiovascular system
variability and nasal respiration was carried out.

Linear and non-linear relationships have been measured. Linear indexes were correlation (7,
coherence function (Cohere) and time-frequency index (7”2z,f ), while a non-linear regression
coefficient (4?) was used to analyze non-linear relationships.

Concerning linear estimates, we confirm statistically (p<0.05 whatever the statistical tests) that
the higher correlation is retrieved in the low frequency band for the non-sepsis group between RR
and nasal respiration (r2tf_rn_raw). Results show that the relationships are circumscribed within
a particular region of the time-frequency plane (0.2<f<(0.4 Hz) for the sepsis group and a
different one for the non-sepsis group. In addition, several s thresholds (0.6, 07, 0.8, 0.9) were
tested and the threshold 0.8 appears the most discriminative between the two groups.

Regarding non-linear estimates, having such a clinically interesting background, accordingly they
are used as mathematical and statistical tools to discriminate the two categories of sepsis and non-
sepsis signals. The result obtained using the index 4’ of non-linear regression between RR and
nasal respiration in two directions (h2_rn_raw, h2_nr_raw) were always significant during the
entire analysis process. Furthermore, the analysis of non-linear relationship shows that the curves
of maximum values of 4’ functions performance a defined peak for non-sepsis case, on the
contrary, an arbitrary shape in sepsis group. This fact was retrieved for all the patients.

In conclusion, three indexes from this chapter can be viewed as complementary:
= 12tf m_raw_0p2 Op4 (the quantity of I"Zt,f between RR and original nasal respiration over
a threshold set to 0.8 in the sub-band 0.2<f<0.4 Hz)
— h2 rn_raw (4’ between RR and original nasal respiration)
— h2 nr raw (4’ between original nasal respiration and RR)
They can be chosen as candidate parameters to distinguish sepsis from non-sepsis, which may be
a valuable way to diagnosticate sepsis in a non-invasive way, in such delicate patients.
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Chapter B3
Real time detection using HRV and interrelationship between
HRYV and respiratory signal

B3.1 Introduction

As already mentioned elsewhere in this PhD thesis, transient episodes of apnea and bradycardia
are common in preterm infants [1]. These episodes may seriously compromise oxygenation and
tissue perfusion and, when they become prolonged and repetitive, they may lead to neurological
morbidity or even infant death. Premature infants in Neonatal Intensive Care Units (NICU) are
continuously monitored through polygraphic recording, to detect bradycardia events and to
initiate quick nursing actions (manual or vibrotactile stimulation, oxygenation, ventilation
through a mask or intubation) [2]. Typically, when an infant presents a bradycardia event, an
alarm is generated by a monitoring device, an available nurse or physician goes to the appropriate
NICU room, washes his/her hands, and applies a manual stimulation to the infant in distress. The
mean intervention delay, measured from the activation of the alarm to the application of the
therapy has been estimated to be around 33 seconds, with a mean manual stimulation duration of
13 seconds, in order to terminate the event of apnea-bradycardia [3]. However, even if algorithms
for bradycardia detection have been developed, they are inefficient and usually produce false or
late alarms.

The objective of this chapter is to add a new device to the apnea-bradycardias detection of the
used monitors. The device is related to infection detection in NICU. So, we study the feasibility
of its implementation in NICU with the proposed features presented from Chapter B1 and
Chapter B2. Here, a new architecture for the decision level is proposed and based upon the
combination of several features, also called Decision Fusion. This principle of Optimal Fusion is
first described in section B3.2. In section B3.3, Receiver Operating Characteristic (ROC) space
and curve are recalled. We offer experimental protocol in section B3.4. Results of Mono-Channel
features and Bi-Channel features are demonstrated and discussed in section B3.5 and section
B3.6 respectively. And then, the fusion of all mix features is done and synthesis discussed in
section B3.7. Finally, we conclude with summary in section B3.8.

B3.2 Fusion Rules

Different fusion rules can be used to combine local detections (obtained from each algorithm)
into a final decision u. Some simple rules are based on a "k out of " function (k<n). Special cases
of this function include the AND, the OR and the MAJOR rules. However, there has been an
important effort to obtain the OPTIMAL FUSION rules, based often on the weighted
combination of each local detection, that provide a higher weight to the more reliable detectors.
In this work we have used the optimality criterion proposed by Chair and Varshney [4], which
has been seen relevant in several studies performed in our lab (Alfredo HERNANDEZ [5],
Miguel ALTUVE [6]). The principles are briefly recalled here.
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B3.2.1 Preliminaries

Let us consider a binary hypothesis testing problem with the following two hypotheses:
& Hy: signal is absent
@ H;: signal is present.

The a priori probabilities of the two hypotheses are denoted by P(Hy) = Py and P(H;) = P;. As
shown in Fig. B3-1, we assume that there are n detectors and the observations at each detector are
denoted by y;, i=1, ..., n.

Fig. B3-1 Distributed detection system with data fusion center

We further assume that the observations at the individual detectors are statistically independent
and that the conditional probability density function is denoted by

pOi| Hy),i=1,..,n,j=1,2. Each detector employs a decision rule g;(y;) to make a decision u;, 1
=1,..,n,

where

-1, / s declared
u,:{ if Hoisdeclare a1

+1,  if Hiisdeclared

We denote the probabilities of false alarm and miss of each detector by p, and p,, ,
respectively.

After processing the observations locally, the decisions u; are transmitted to the data fusion center.

The data fusion center determines the overall decision for the system u based on the individual
decisions, i.e. ,

u=f(u, - un)- (7.2)

In the next section, we consider the optimization of the data fusion algorithm.
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B3.2.2 Optimal Fusion

As indicated earlier, Tenney and Sandell [7] considered the Bayesian detection problem. They
did not, however, consider the optimization of the data fusion rule. We consider the problem of
optimization of the data fusion rule for given detectors, that is, when the individual detectors have
already been designed.

Data fusion rules are often implemented as "k out of n" logical functions. This means that if k or
more detectors decide hypothesis Hj, then the global decision is Hj, i.e.,

1 ; >k —
u={ ) fuitur+-+u, n (73)

-1, otherwise

Common logical functions such as AND, OR, and majority gate are special cases of the k£ out of
rule. In this section, we consider a more general formulation of the data fusion problem.

The data fusion problem can be viewed as a two hypothesis detection problem with individual
detector decisions being the observations. The optimum decision rule is given by the following
likelihood ratio test.

Hi
P(ui, - sun/H1) = Po(Cro—Coo)
P(u,sun/Ho) ]§0 P(Coi—Cn)

(7.4)

The quantity on the left-hand side is the likelihood ratio and the Bayes optimum threshold is on
the right-hand side. In our formulation we assume the minimum probability of error criterion, that
1S, Coo = C11 =0, and C;op = Cy; = 1. Therefore, we have

Hi
P(u/H)) = Po

(7.5)
P(u/Ho) < Py
Ho
Using Bayes rule to express the conditional probabilities, substituting and simplifying, we obtain
Hi
>
Pl ju) 2 (7.6)
P(H/u) <
Ho
The corresponding log-likelihood ratio test is
Hi
>
tog DU 1/1) 2 a7
P(H /u) 1§0

We found an expression for the left-hand side in order to implement the data fusion rule, and the
result is presented as the theorem in Appendix IX.

Therefore, the data fusion rule that we used in this study can be expressed by:
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n
L if ao+ ) am;> A
i=1

S un) = (7.8)
-1, otherwise
where the optimum weights are given by
P
ao=log—
0
1-pP, .
al-=10g PMI, !ful:-l_l (7.9)
Fi
1-pP,
Mi

The optimum data fusion rule can be implemented as shown in Fig. B3-2. As we can observe,
individual detector decisions are weighted according to their reliability, that is, the weights are
functions of probability of false alarm and probability of miss. The data fusion structure obtained
here attempts to optimally use the individual detector decisions by forming a weighted sum and
then comparing it to a threshold A.

Fig. B3-2 Optimum data fusion center structure
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B3.3 Receiver Operating Characteristic (ROC)

In signal detection theory, areceiver operating characteristic, or simply ROC curve, is
a graphical plot which illustrates the performance of abinary classifier system as its
discrimination threshold is varied. [8] The ROC is created by plotting the fraction of true
positives out of the positives (TPR = true positive rate) vs. the fraction of false positives out of
the negatives (FPR = false positive rate), at various threshold settings. (TPR is also known
as sensitivity, and FPR is one minus the specificity or true negative rate.)

ROC analysis provides tools to select possibly optimal models and to discard suboptimal ones
independently from (and prior to specifying) the cost context or the class distribution. ROC
analysis is related in a direct and natural way to cost/benefit analysis of diagnostic decision
making. The ROC curve was first developed by electrical engineers and radar engineers during
World War II for detecting enemy objects in battle fields and was soon introduced
to psychology to account for perceptual detection of stimuli. In medicine, ROC analysis has been
extensively used in the evaluation of diagnostic tests. [9] [10] ROC curves are also used
extensively in epidemiology and medical research and are frequently mentioned in conjunction
with evidence-based medicine. In addition, ROC analysis since then has been used in
radiology, biometrics, and other areas for many decades and is increasingly used in machine
learning and data mining research.

B3.3.1 Basic Concept

A classification model (classifier or diagnosis) is a mapping of instances between certain
classes/groups. The classifier or diagnosis result can be a real value (continuous output), in which
case the classifier boundary between classes must be determined by a threshold value (for
instance, to determine whether a person has hypertension based on a blood pressure measure). Or
it can be a discrete class label, indicating one of the classes.

Let us consider a two-class prediction problem (binary classification), in which the outcomes are
labeled either as positive (p) or negative (n). There are four possible outcomes from a binary
classifier. If the outcome from a prediction is p and the actual value is also p, then it is called
a true positive (TP); however if the actual value is n then it is said to be a false positive (FP).
Conversely, a true negative (TN) has occurred when both the prediction outcome and the actual
value are n, and false negative (FN) is when the prediction outcome is n while the actual value

1s p.

To get an appropriate example in a real-world problem, consider a diagnostic test that seeks to
determine whether a person has a certain disease. A false positive in this case occurs when the
person tests positive, but actually does not have the disease. A false negative, on the other hand,
occurs when the person tests negative, suggesting they are healthy, when they actually do have
the disease.

Let us define an experiment from P positive instances and N negative instances. The four
outcomes can be formulated in a 2x2 contingency table or confusion matrix, as follows:
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actual value

p n total
s True Positive False Positive P’
P (TP) (FP)
prediction
outcome

False Negative True Negative

(FN) (TN) N

total P N
Fig. B3-3 Principle of ROC Matrix

In our research, FPR values specify Probability of False Alarm (Pra), and TPR values imply
Probability of Detection (Pp).

B3.3.2 ROC Space

The contingency table can derive several evaluation "metrics". To draw an ROC curve, only the
TPR and FPR are needed (as functions of some classifier parameter). The TPR defines how many
correct positive results occur among all positive samples available during the test. FPR, on the
other hand, defines how many incorrect positive results occur among all negative samples
available during the test.

An ROC space is defined by FPR and TPR as x and y axes respectively, which depicts relative
trade-offs between true positive (benefits) and false positive (costs). Since TPR is equivalent
with sensitivity and FPR is equal to 1 — specificity, the ROC graph is sometimes called the
sensitivity vs. (1 — specificity) plot. Each prediction result or instance of a confusion matrix
represents one point in the ROC space.

The best possible prediction method would yield a point in the upper left corner or coordinate (0,
1) of the ROC space, representing 100% sensitivity (no false negatives) and 100% specificity (no
false positives). The (0, 1) point is also called a perfect classification. A completely random
guess would give a point along a diagonal line (the so-called line of no-discrimination) from the
left bottom to the top right corners (regardless of the positive and negative base rates). An
intuitive example of random guessing is a decision by flipping coins (heads or tails). As the size
of the sample increases, a random classifier's ROC point migrates towards (0.5, 0.5).

The diagonal divides the ROC space. Points above the diagonal represent good classification

results (better than random), points below the line poor results (worse than random). Note that the
output of a consistently poor predictor could simply be inverted to obtain a good predictor.
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B3.4 Experimentation

The objective in this chapter was to study the feasibility of real time detection for sepsis or non-
sepsis hypothesis. To reach this goal, firstly, we mix 13 sepsis and 13 non-sepsis infants and then
randomly select for 50 times. For each random selection, we connect 26 segments into one long
series including 30.3 hours (see Fig. B3-4). Therefore, the whole 50 time selections contain 1515
hours.

Random Selection

Fig. B3-4 Random Selection

Secondly, on the one hand, three features from Mono-Channel analysis in Chapter B1: alphaS
(alpha Slow), alphaF (alpha Fast) and SamEn (Sample Entropy) were selected. On the other hand,
three estimates from Bi-Channel analysis in Chapter B2, we denote them in the following:

— 12tf m _raw Op2_Op4 (the quantity of r*, s between RR and original nasal respiration over

a threshold set to 0.8 in the sub-band 0.2</<0.4 Hz)

— h2 rn raw (4’ between RR and original nasal respiration)

= h2_nr_raw (4’ between original nasal respiration and RR)
are recognized as optimal methods to distinguish sepsis from non-sepsis.

These candidate parameters are recalculated over these 50 long series in the sliding window with
the same length step using three sizes 1024/2048/4096 as depicted in Fig. B3-5. Finally, we did
five tests reported in Table B3-1 for these long series.
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Table B3-1 Five tests for Feasibility Study

Test || Features Explanations

For each long series, we compare alphaS values with 1000
thresholds and use ROC analysis in order to plot ROC curve
one by one. In total, there are 50 ROC curves for alphaS. So,
do the same for alphaF and SamEn.

Test 2 Optimal Fusion (| We combined alphaS, alphaF and SamEn by fusion rule:
©s Mono-Channel [J Optimal Fusion

2tf m_raw For each long series, we compare r2tf rn raw values with
1000 thresholds and use ROC analysis in order to plot ROC
curve one by one. In total, there are 50 ROC curves for
h2_nr_raw r2tf rn_raw. So, do the same for the two others.

Test 4 Optimal Fusion [ We combined r2tf rn raw, h2 rm raw and h2 nr raw by
Bi-Channel fusion rule: Optimal Fusion
Test 5 Optlmzllf USION 1l We combined all features by fusion rule: Optimal Fusion

h2 m raw

We recall here that a window size of 1024 samples is equivalent to 4.3mins duration, 2048
samples to 8.6mins and 4096 samples to 17.2mins respectively, which is a very acceptable value
in practice due to the fact actual evaluation are generally performed every 6 hours.
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Normalized RR in 4Hz
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in Table in Table in Table in Table
B3-1 B3-1 B3-1 B3-1
— —
Report the

experimentation 50 times
and compute
experimental Prs and Pp
for 1000 thresholds

Fig. B3-5 Analysis windows over Normalized RR and Original Nasal Respiration, NS stands for non-sepsis, while S
stands for sepsis

151



We summarized the experimental procedure in following flow chart (Fig. B3-6):

AR
50 random selections
from mix sepsis and

non-sepsis

l

Recalculate 3
features from
Chapter B1:
alphaS,
alphaF,
SamEn

152

Recalculate 3
features from
Chapter B2:
r2tf rn_raw,
h2 rn_raw,
h2 nr raw

Fig. B3-6 Flow chart of ROC Analysis



B3.5 Results and Discussion of ROC analysis for RR series features

We propose here to firstly describe the results and then we discuss all the performances at the end
of this chapter. Test 1 to Test 5 is reported in the following.

We retained here each time the same procedure:

1) Display of the ROC curves for the three window sizes.
i1) Comparative table of the optimal detection point.

B3.5.1Test 1

In Chapter B1, alphaS, alphaF and SamEn are identified as optimal methods to distinguish sepsis
from non-sepsis.The analysis procedure were already described in Section B2.4, and the ROC
curves computed 50 times selections over three different sizes of window.

In this case, the tactic for decision making is to compare the statistic S(x) to thresholds, let
S(x)> A1 (7.10)
where S(x) is either alphaS, alphaF or SamEn.

All results are reported in Fig. B3-7, Fig. B3-8 and Fig. B3-9 respectively.
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B3.5.1.1 Window=1024, Step=1024
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Fig. B3-7 ROC curves in Test 1, Window=1024, Step=1024
In Fig. B3-7, the left column displays 50 ROC curves for each feature, while the right column

shows the nearest-upper-left ROC curve, where the points the closest to upper left corner (0, 1) is
marked as round point.
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B3.5.1.2 Window=2048, Step=2048
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Fig. B3-8 ROC curves in Test 1, Window=2048, Step=2048
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B3.5.1.3 Window=4096, Step=4096
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Fig. B3-9 ROC curves in Test 1, Window=4096, Step=4096

156



B3.5.2 Test 2

We combined alphaS, alphaF and SamEn using Optimal Fusion in Mono-Channel, then its ROC
curves are illustrated in Fig. B3-10.

FusionMono:Receiver Operating Characteristic(ROC) for 50 Random Selections FusionMono: the 15 time Receiver Operating Characteristic(ROC)
1 T T T T T T T T T 1 T T T T T T T T T
09f = g 09 1
0.8 ‘, q 0.8r B
£ 0.7+ R T 0.7 B
o o
E{ 0.6 7 b % 0.6 (FPR 0.3019, /TPR 0.6636) 7
& &
_g 0.5+ B _g 0.5F B
2 8
o 041 q o 04r B
Q [}
= 2
= 0.3F 7 q ~ 0.3r B
o2t W) B 0.2t B
0.1+ R 0.1 B
0 | I | I | I | I | 0 | | | | | | I | I
0 0.1 02 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1
False Positive Rate(FPR) False Positive Rate(FPR)
(Win1024, Step1024) (Win1024, Step1024)
FusionMono:Receiver Operating Characteristic(ROC) for 50 Random Selections FusionMono: the 30 time Receiver Operating Characteristic(ROC)
1 T T T T T T T T — 1 T T T T T T T T T
0.9 B 09r i
0.8 B 0.8r B
T 0.7 B T 0.7 B
o o
= E
© 06 q T 061 (FPR 0.2547, TPR 0.6822) b
& &
g 0.5 B _g 0.5+ q
‘@ ‘@
£ 04 g £ 04t 4
(9] (]
= El
~ 0.3 q ~ 0.3r B
0.2 q 0.2 B
o1y 1 0.1 8
0 Il L L L L L L L L O L L L L L L L L L
0 0.1 02 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1
False Positive Rate(FPR) False Positive Rate(FPR)
(Win2048, Step2048) (Win2048, Step2048)
FusionMono:Receiver Operating Characteristic(ROC) for 50 Random Selections FusionMono: the 46 time Receiver Operating Characteristic(ROC)
1 T T T T T T T — 1 T T T T T T T T T
0.9 B 0.9 B
0.8 B 0.8 B
T 07 4 & 07r B
2 3
T 06 B T 06 (FPR 0.2453, TPR 0.7736) b
& &
205 g 2 05f i
% %
&£ 04 — & 04t B
Q Q
= 2
~ 0.3 R = 0.3+ B
0.2 B 0.2 B
0.1 q 0.1r B
0 g L L L L L L L L L O L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate(FPR) False Positive Rate(FPR)
(Win4096, Step4096) (Win4096, Step4096)

Fig. B3-10 ROC curves in Test 2
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In Fig. B3-10, the left column displays 50 ROC curves of Optimal Fusion for three features in
Mono-Channel, while the right column shows the nearest-upper-left ROC curve, where the points
the closest to upper left corner (0, 1) is marked as blue round point.

B3.6 Results and Discussion of ROC analysis for features of
relationship between RR series and Respiration

B3.6.1 Test 3

In Chapter B2, r2tf rn raw Op2 Op4, h2 rn raw and h2 nr raw are identified as optimal
methods to distinguish sepsis from non-sepsis.

In Test 3, there are two cases:

> In the case of 7, it counts the number of time that the value of 7°,;>0.8 in frequency band
[0.2 0.4], then the statistics S(x) compare this number to a threshold. The final statistic is

S(x)=No>>4 (7.11)
> In the case of 4°, the statistic S(x) compares the values of 4” to thresholds, let:

S(x)=h>>A (7.12)

The experimental condition of the previous section was re-conducted here, but using two
channels (HRV and respiration). Fig. B3-11, Fig. B3-12 and Fig. B3-13 depict the ROC curves of
crucial estimates in Bi-channel over three different sizes of window separately.
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B3.6.1.1 Window=1024, Step=1024
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Fig. B3-11 ROC curves in Test 3, Window=1024, Step=1024
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B3.6.1.2 Window=2048, Step=2048
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Fig. B3-12 ROC curves in Test 3, Window=2048, Step=2048
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B3.6.1.3 Window=4096, Step=4096
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B3.6.2 Test 4

We blended r2tf m _raw Op2 Op4, h2 rm raw and h2 nr raw using Optimal Fusion in Bi-

Channel, then its ROC curves are demonstrated in Fig. B3-14.
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Fig. B3-14 ROC curves in Test 4
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In Fig. B3-14, the left column displays 50 ROC curves of Optimal Fusion for three features in Bi-
Channel, while the right column shows the nearest-upper-left ROC curve, where the points the
closest to upper left corner (0, 1) is marked as blue round point.

B3.7 Synthesis and Discussion

The nearest-upper-left ROC curves of each candidate feature in Mono-Channel from Test 1 and
Test 2 are redrawn in Fig. B3-15 a) and those in Bi-Channel from Test 3 and Test 4 are done in
Fig. B3-15 b). Seemingly, performances are comparable and fusions look better than classic
methods.
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Fig. B3-15 The nearest-upper-left ROC curves, where the points the closest to upper left corner (0, 1) are marked as
colourful round points
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Test 5 is the results of mixed all significant features using Optimal Fusion. The following Fig.
B3-16. lists ROC curves of long sequences in Test 5 and its best ROC curve for 3 kinds of

window size:
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Furthermore, the important characteristics of ROC curves analysis are reported in Table B3-2,
Table B3-3 and Table B3-4 in order to dig out the best method for sepsis diagnosis.

The following is the explanations of Table B3-2, Table B3-3 and Table B3-4:
A The first column indicates the type of test.
The second column lists features of each test.
The third column delivers FPR values, which represent Pga.
The fourth column provides TPR values, which denote Pp,.
The fifth column presents the Area Under Curve (AUC), which is the most important
criteria to compare among all features. The larger the AUC is, the more convincing the
decision-making method is.
A The best performance is in bold in the table.

> > > >

Table B3-2 Characteristics of ROC curves, Window=1024, Step=1024

Test | Features | FPR(Pga) TPR(Pp) AUC |
0.2783 0.6075 0.6630
0.2919 0.6175 0.6684
0.3714 0.6759 0.6648
BNl 03019 | 06636 | 04191
0.4400 0.6309 0.4885
0.3333 0.7152 0.7185
0.2869 0.6645 0.7359
Test4  Optimal Fusion Bi-channel 02846 | 07152 |  0.5557
| Test5 Optimal Fusion All 02149 | 07516 | 07731

Table B3-3 Characteristics of ROC curves, Window=2048, Step=2048

Test | Features FPR(Pra) TPR(Pp) AUC |
0.3113 0.6916 0.7031
0.2736 0.6542 0.7055
0.2736 0.6262 0.6912
IR R e ol 02547 | 06822 | 04317
0.4098 0.6316 0.5837
0.3016 0.7027 0.7079
0.3492 0.6757 0.7143
Test4  Optimal Fusion Bi-channel 03443 | 07632 |  0.6059
Test5 Optimal Fusion All | 01803 | 07895 | 0.7813
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Table B3-4 Characteristics of ROC curves, Window=4096, Step=4096

Test | Features | FPR(Pra) TPR(Pp) NG
0.2453 0.7547 0.7593
0.2830 0.7358 0.7351
0.2941 0.7273 0.7048
B ool 02453 | 07736 | 04514
0.3871 0.6757 0.5763
0.2414 0.6923 0.7171
0.2414 0.6667 0.6941
Test 4 Optimal Fusion Bi-channel 02581 | 07568 | 0.7079
Test 5 Optimal Fusion All 0.1000 | 0.8421 | 0.8246

Furthermore, the synthesis of comparison among the three kinds of window size is reported in the
following table.

Table B3-5 Comparison among the three kinds of window size

Window Size minutes FPR(Pga) TPR(Pp) AUC
1024 4.3 0.2149 0.7516 0.7731
2048 8.6 0.1803 0.7895 0.7813
4096 17.2 0.1000 0.8421 0.8246

From Table B3-5, we can see that Window 4096 has the least Pra and the largest value of AUC.

From Table B3-2, Table B3-3 and Table B3-4, it is obvious that Test 5 has the least Pga and the
largest AUC, that is to say, both 3 features recommended from Mono-Channel and 3 features
from Bi-Channel are the significant parameters. However, optimal fusion of all the different
parameters rather than each parameter improves the performance. Consequently, we propose Test
5 as a new methodology.

B3.8 Conclusion

The problem of this chapter is to verify that real time detection is feasible based upon the two
previous chapters:

(1) Chapter B1 based on HRV;

(i1) Chapter B2 based on HRV and respiration.

Feasibility study is carried out on the candidate parameters selected from Mono-Channel

Analysis and Bi-Channel Analysis respectively, and their mixed condition. Firstly, we generate
long series mixing sepsis and non-sepsis case as real time series. Accordingly, we test the sepsis

167



or non-sepsis hypothesis on every segment of 3 kinds of window size by 5 types of Test. Finally,
we summarize characteristics of ROC curves such as Pra, Pp and AUC in Table B3-2, Table
B3-3 and Table B3-4 in order to compare these 5 tests and discover which the best solution is. In
addition, the contrast among the three window sizes 1024/2048/4096 indicates that Window 4096
has the least Pra and the largest value of AUC.

In conclusion, among five tests, the proposed Test 5 based on optimal fusion of all 6 features
(alphaS, alphaF, SamEn, r2tf rm raw, h2 m raw and h2 nr raw) shows good performance with
the least Pra and the largest AUC, which can be used to provide high-precision warning alerts of
apnea-bradycardia in neonatal monitoring system.
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Chapter 8
Conclusions and Perspectives

In Chapter 8, we summarize the goal and the proposed methods of this dissertation. We also point
out some possible ways to improve and extend our research in future work.

8.1 Conclusions

Late-onset sepsis, defined as a systemic infection in neonates older than 3 days, occurs in
approximately 7% to 10% of all neonates and in more than 25% of very low birth weight infants
who are hospitalized in NICU. In view of the high morbidity and mortality associated with
infection, reliable markers are needed.

Recurrent and severe spontaneous apneas and bradycardias is one of the major clinical early
indicators of systemic infection in the premature infant. It requires prompt laboratory
investigation so that treatment can start without delay. Various hematological and biochemical
markers have been evaluated for this indication but they are invasive procedures that cannot be
repeated several times.

The objective of this dissertation was to determine if heart rate behavior, respiratory amplitude
and the analysis of their relationships help to the diagnosis of infection in premature infants with
cardiac decelerations via non-invasive ways. Therefore, we carried out two parts of research work
in two selected groups of premature infants (sepsis vs. non-sepsis):
» Analysis for RR series

» Analysis for relationship between RR series and respiration

First of all, we studied the RR interval series not only by distribution methods (moy, varn, skew,
kurt, med, SpAs), by linear methods — time domain (SD, RMSSD) and frequency domain
(p_VLF, p LF, p HF), but also by non-linear methods — chaos theory (alphaS, alphaF) and
information theory (AppEn, SamEn, PermEn, Regul). For each method, we attempt three sizes of
window 1024/2048/4096, and then compare these methods in order to find the optimal ways to
distinguish sepsis premature infants from non-sepsis ones. The results show that alphaS, alphaF
and SamEn are optimal parameters to recognize sepsis from the diagnosis of late neonatal
infection in premature infants with unusual and recurrent apnea-bradycardia.

However, in sick premature infants, the mechanism is probably not just a change in RR series.
The clinical findings here clearly demonstrate that HRV, respiration and their relationship could
be efficient diagnosis tools and may help identifying culture-positive sepsis in a population of
infants with recurrent bradycardias. From the same cohort used for RR analysis, patients were
retained, those having respiratory signals recorded.

The question about the functional coupling of heart rate variability and nasal respiration is
addressed. Linear and non-linear relationships have been explored. Linear indexes were
correlation (72), coherence function (Cohere) and time-frequency index (7, ), while a non-linear
regression coefficient (4?) was used to analyze non-linear relationships. We calculated two
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directions during evaluate the index 4’ of non-linear regression. Finally, from the entire analysis
process, it is obvious that the three following indexes:
= the quantity of rZ,!f between RR and original nasal respiration over a threshold set to 0.8 in
the sub-band 0.2<f<0.4 Hz (r2tf m_raw_Op2 Op4)
— &’ between RR and original nasal respiration (h2_rn_raw)
— &’ between original nasal respiration and RR (h2_nr_raw)
were complementary ways to diagnosticate sepsis in a non-invasive way, in such delicate patients.

Furthermore, feasibility study is carried out on the candidate parameters selected from Mono-
Channel Analysis in Chapter B1 and Bi-Channel Analysis in Chapter B2 respectively. Firstly, we
generate long series mixing sepsis and non-sepsis case as real time series. Accordingly, we test
the sepsis or non-sepsis hypothesis on every segment of 3 kinds of window size by 5 types of
Test. Here, an optimal fusion law is proposed and based on the mixed condition of several
features. Finally, we summarize characteristics of ROC curves such as Pgs, Pp and AUC. By way
of comparing all these tests, we discovered that a proposed test based on optimal fusion of 6
features (alphaS, alphaF, SamEn, r2tf rn raw, h2 rm raw and h2 nr raw) shows good
performance with the least Pra and the largest AUC, which can be used to provide high-precision
warning alerts of apnea-bradycardia in neonatal monitoring system. In addition, the contrast
among the three window sizes 1024/2048/4096 indicates that Window 4096 has the least Py and
the largest value of AUC.

As a conclusion, we believe that the selected measures from Mono-Channel and Bi-Channel
signal analysis have a good repeatability and accuracy to test for the diagnosis of sepsis via non-
invasive NICU monitoring system, which can reliably confirm or refute the diagnosis of infection
at an early stage.

8.2 Perspectives

Of course, there are still many possibilities to improve and extend the work in this dissertation.
Here we list some perspectives:

8.2.1 Relationship between RR series and Respiration

Concerning analysis of relationship between RR series and Respiration in Chapter B2, it is
valuable to attempt several new methods.

Firstly, we plan to test a new and fast nonlinear method—the V measure proposed by Cunha and
Oliveira [1]. The features of this new measure when applied to biosignals are also shown using
simulated time series. V was found to be twice as fast and more robust to nonlinearities than the
classical cross-correlation ratio (+°) and more than 100 times faster than the nonlinear regression
coefficient (47), presenting similar behavior in the presence of nonlinear simulated situations.
This new measure is very fast and versatile. It is appropriate to deal with nonlinear relations
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presenting usually a sharp peak in the association function enabling a high degree of selectivity
for maxima detection. It seems to constitute an improvement over linear methods of association
which is faster and more robust to the existing nonlinearities. It can be used as an alternative to
more complex nonlinear association measures when computational speed is an important feature.

Secondly, we are interested in a novel correlation coefficient based on order statistics and
rearrangement inequality proposed by Xu and Chang [2]. The proposed coefficient represents a
compromise between the Pearson’s linear coefficient and the two rank-based coefficients, namely
Spearman’s rho and Kendall’s tau. Theoretical derivations show that their coefficient possesses
the same basic properties as the three classical coefficients. Experimental studies based on four
models and six biosignals show that the coefficient performs better than the two rank-based
coefficients when measuring linear associations; whereas it is well able to detect monotone
nonlinear associations like the two rank-based coefficients. Extensive statistical analyses also
suggest that the new coefficient has superior anti-noise robustness, small biases, and high
sensitivity to changes in association, accurate time-delay detection ability, fast computational
speed, and robustness under monotone nonlinear transformations.

Thirdly, synchronization index (S) need to be considered. Synchronization occurs when patterns
involving two signals contemporaneously are repetitive. Synchronization to a periodic input can
be observed when the activity of a self-sustained oscillator is perturbed by a periodic input. But
synchronization can be found not only to a periodic process; examples of synchronized chaotic
dynamics are given by Pecora and Carroll [3]. Quantification of the degree of synchronization
(i.e. the coupling strength) between two signals is considered an important goal, as different
levels of synchronization are found between the RR interval and respiration [4]. The method will
be applied to quantify the degree of coupling between the RR series and the respiration signals.

8.2.2 Analysis of EEG

Apnea-bradycardia’ repetition in several cases seems to be associated to a neuropsychiatric
evolution’s alteration valued in neonates. EEG is also an excellent tool to investigate the
longitudinal course and prognostic value of amplitude integrated EEG (aEEG) in infants with
neonatal sepsis [5].When used selectively through serial recordings, neonatal EEG's greatest
value is its potential for prediction of short- and long-term prognosis. [6]

The EEG background, static abnormalities, and EEG maturational indices are the best prognostic
factors. EEG may reflect the severity of brain injury in neonatal asphyxia, the degree of
abnormalities usually being consistent with the clinical grading of hypoxic-ischemic
encephalopathy (HIE). Therefore, in neonatal asphyxia, EEG background pattern especially is a
valuable predictor of future neurologic outcome in combination with clinical data such as
gestational age, birth weight, imaging, and HIE severity. Low birth weight amplitude of brain
electrical activity, duration of interburst intervals, and sleep-wake cycle disturbance were among
the most significant indexes of a poor long-term prognosis. [7]

Although some ictal discharges may have specific significance, a normal interictal EEG indicates
the greatest chance of favorable outcome, even in the case of early, recurrent seizures [8]. Several
studies have demonstrated the prognostic role of EEG in different diseases, ranging from
neonatal seizures to asphyxia and hemorrhage. [9]
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Appendix |

Analysis of Variance

To apply the test, assume random sampling of a variate Y with equal variances, independent
errors, and a normal distribution. Let n be the number of replicates (sets of identical observations)
within each of k factor levels (treatment groups), and y;; be the jth observation within factor level
i. Also assume that the ANOVA is "balanced" by restricting n to be the same for each factor level.

Now define the sum of square terms

k 2
N b

k
SST - —
SST—;Z_;yij P
=l j= n
2 2
1 k n 1 k n
SSA $$4==> (X yj) —(Z X yy)
o j=1 Knl'=1j=1
k n —
SSE:ZZ(J’Z‘]'_J/Z‘)
SSE =1

SSE = SST -S54

which are the total, treatment, and error sums of squares. Here, Yiis the mean of observations

within factor level i, and ¥ is the "group" mean (i.e., mean of means). Compute the entries in the
following table, obtaining the value corresponding to the calculated F-ratio of the mean squared

values

_ MS4
MSE
category °freed0mH SS H mean squared HF-ratio‘
Y| MSA4
model K-1 ||[SSA| MSA4= 55 S
K-1 || MSE
SSE
- MSE =
error K(n-1) ||SSE K(n—1)
T
total Kn-1 |(|SST|| MST = 55
Kn-1

If the F-ratio is small, reject the null hypothesis that all means are the same for the different

groups.
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Appendix Il
Results for Univariate Analysis

[1.1 With outliers

[1.1.1 Window=1024, Step=1024

We tested the link between sepsis/non-sepsis status and the parameters using ANOVA models.
The experiments were performed with and without taking into account the baby effects.

The results are reported in the Table II-1 below. The following is the table of univariate analysis.
With outliers, the size of analysis windows is 1024 with step 1024.

Table II-1 Univariate Analysis, p value, with outliers, Window=1024, Step=1024

Baby effect? Effect of group Sepsis?
hierarchical model with random model without random effect baby
effect baby (p-value) (p-value)
moy 0.0015 yes 0.7299 0.5455
varn 0.1856 no 0.2446 0.1931
skew 0.0110 yes 0.0273 0.0121
kurt 0.1891 no 0.1055 0.0925
med 0.0012 yes 0.9966 0.9605
SpAs 0.1005 no 0.0561 0.0282
SD 0.0442 yes 0.2243 0.1306
RMSSD 0.0511 lim 0.3243 0.1992
p_HF 0.0358 yes 0.2274 0.1084
p_LF 0.0140 yes 0.2129 0.0693
p_VLF 0.1420 no 0.8028 0.7929
alphaS 0.1002 no 0.0012 0.0007
alphaF 0.0051 yes 0.0307 0.0025
AppEn 0.0607 no 0.2745 0.2621
SamEn 0.0335 yes 0.0840 0.0556
PermEn 0.0042 yes 0.1654 0.0959
Regul 0.1159 no 0.6347 0.6841

The second column is to determine if there is an effect ‘baby’ on the parameters or if the
measurements can be considered from different babies. We used mixed effect ANOVA in which
the baby is a random effect such as the fact that the same baby is used several times is taken into
account.

The threshold of test is 0.05. If p value is less than the threshold, baby effect is considered
significant.

The third and fourth columns test whether the cardiac parameters are discriminating among

infants. The p values are reported here. In the third column, we assume that there is random baby
effect, considering whether this set of data is sepsis baby or not. In the fourth column, we assume
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that there is no baby effect on the parameters. The p value is only calculated by using
Generalized Linear Model (GLM).

We highlighted in yellow the significant results at the 5% level and in brown those up to 20%.

There are only a few parameters that seem to be related to the sepsis status. From Table 1I-1, we
can see that the methods ‘skew’, ’kurt’, ’SpAs’, * alphaS’, ’alphaF’, ‘SamEn’ and ‘PermEn’ are
significant. They can be introduced into a multivariate discriminant analysis or logistic regression
model.

[1.1.2 Window=2048, Step=2048

The results are in the Table II-2 below. The following is the table of univariate analysis. With
outliers, the size of analysis windows is 2048 with step 2048.

Table II-2 Univariate Analysis, p value, with outliers, Window=2048, Step=2048

Baby effect? Effect of group Sepsis?
hierarchical model with random model without random effect baby
effect baby (p-value) (p-value)
moy 0.0017 yes 0.8083 0.7633
varn 0.0440 yes 0.5311 0.3598
skew 0.0254 yes 0.5832 0.5321
kurt 0.3141 no 0.8510 0.8216
med 0.0007 yes 0.6169 0.4366
SpAs 0.3456 no 0.8610 0.8331
SD 0.0189 yes 0.5281 0.3150
RMSSD 0.0559 Iim 0.8338 0.7205
p_HF 0.0087 yes 0.6259 0.3774
p_LF 0.0066 yes 0.1808 0.0423
p_VLF 0.0275 yes 0.8180 0.6378
alphaS 0.0410 yes 0.0045 0.0009
alphaF 0.0076 yes 0.1154 0.0155
AppEn 0.0080 yes 0.0369 0.0044
SamEn 0.0122 yes 0.0507 0.0177
PermEn 0.0015 yes 0.0575 0.0123
Regul 0.0747 no 0.4257 0.3557

There are only a few parameters that seem to be related to the sepsis status. From Table 11-2, we
can see that the methods ’p LF’, ’ alphaS’, ’alphaF’, ‘AppEn’, ‘SamEn’ and ‘PermEn’ are
significant. They can be introduced into a multivariate discriminant analysis or logistic regression
model.
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[1.1.3 Window=4096, Step=4096

The results are in the Table II-3 below. The following is the table of univariate analysis. With
outliers, the size of analysis windows is 4096 with step 4096.

Table II-3 Univariate Analysis, p value, with outliers, Window=4096, Step=4096

Baby effect? Effect of group Sepsis?
hierarchical model with random model without random effect baby
effect baby (p-value) (p-value)
moy 0.0009 yes 0.8654 0.6066
varn 0.0494 lim 0.8738 0.4995
skew 0.4137 no 0.8583 0.8416
kurt . yes 0.7057 0.7046
med 0.0006 yes 0.6990 0.3311
SpAs 0.0264 yes 0.1830 0.0479
SD 0.0439 yes 0.9873 0.6315
RMSSD 0.4830 no 0.3595 0.3565
p_HF 0.0037 yes 0.8113 0.6630
p_LF 0.0022 yes 0.2420 0.0773
p_VLF 0.0123 yes 0.9066 0.9202
alpha$S 0.0240 yes 0.0003 <.0001
alphaF 0.0022 yes 0.0252 0.0010
AppEn 0.0075 yes 0.0043 0.0002
SamEn 0.0057 yes 0.0410 0.0081
PermEn 0.0008 yes 0.0503 0.0038
Regul 0.0318 yes 0.5016 0.3871

There are only a few parameters that seem to be related to the sepsis status. From Table II-3, we
can see that the methods ’SpAs’, ’ alphaS’, ’alphaF’, ‘AppEn’, ‘SamEn’ and ‘PermEn’ are
significant. They can be introduced into a multivariate discriminant analysis or logistic regression
model.

1.2 Without outliers

[1.2.1 Window=1024, Step=1024

The results are in the Table I1-4 below. The following is the table of univariate analysis. Without
outliers, the size of analysis windows is 1024 with step 1024.

Table II-4 Univariate Analysis, p value, without outliers, Window=1024, Step=1024

Baby effect? Effect of group Sepsis?
hierarchical model with random model without random effect baby
effect baby (p-value) (p-value)
moy 0.0019 yes 0.6968 0.5612
varn 0.0455 lim 0.9620 0.9820
skew 0.0025 yes 0.0002 <.0001
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Baby effect? Effect of group Sepsis?
hierarchical model with random model without random effect baby
effect baby (p-value) (p-value)
kurt 0.0278 yes 0.0002 <.0001
med 0.0018 yes 0.8509 0.7413
SpAs 0.0577 no 0.0022 0.0005
SD 0.0172 yes 0.6232 0.4699
RMSSD 0.0248 yes 0.8832 0.6911
p_HF 0.0083 yes 0.4155 0.1396
p LF 0.0039 yes 0.4656 0.0942
p_VLF 0.0345 yes 0.5186 0.5141
alphaS 0.0282 yes 0.0047 0.0003
alphaF 0.0226 yes 0.0128 0.0009
AppEn 0.0648 no 0.4410 0.5544
SamEn 0.2387 no 0.1931 0.1961
PermEn 0.0064 yes 0.1933 0.2717
Regul 0.3586 no 0.5258 0.4780

There are only a few parameters that seem to be related to the sepsis status. From Table 1I-4, we
can see that the methods ‘skew’, ‘kurt’, ‘SpAs’, ‘alphaS’, ‘alphaF’ and ‘SamEn’ are significant.
They can be introduced into a multivariate discriminant analysis or logistic regression model.

[1.2.2 Window=2048, Step=2048

The results are in the Table II-5 below. The following is the table of univariate analysis. Without
outliers, the size of analysis windows is 2048 with step 2048.

Table II-5 Univariate Analysis, p value, without outliers, Window=2048, Step=2048

Baby effect? Effect of group Sepsis?
hierarchical model with random model without random effect baby
effect baby (p-value) (p-value)
moy yes 0.7 0.61
varn no 0.23 0.23
skew yes 0.19 0.16
kurt no 0.46 0.45
med yes 0.89 0.83
SpAs no 0.02 0.01
SD no 0.25 0.23
RMSSD no 0.38 0.46
p_HF yes 0.32 0.43
p LF yes 0.11 0.06
p_VLF no 0.9 0.91
alphaS yes 0.01 0.001
alphaF yes 0.04 0.003
AppEn limite 0.12 0.05
SamEn no 0.03 0.017
PermEn yes 0.47 0.097
Regul no 0.84 0.67
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There are only a few parameters that seem to be related to the sepsis status. From Table 1I-5, we
can see that the methods ‘skew’, ‘SpAs’, ‘p LF’, ‘alphaS’, ‘alphaF’, ‘AppEn’ and ‘SamEn’ are
significant. They can be introduced into a multivariate discriminant analysis or logistic regression
model.

[1.2.3 Window=4096, Step=4096

The results are in the Table II-6 below. The following is the table of univariate analysis. Without
outliers, the size of analysis windows is 4096 with step 4096.

Table II-6 Univariate Analysis, p value, without outliers, Window=4096, Step=4096

Baby effect? Effect of group Sepsis?
hierarchical model with random model without random effect baby
effect baby (p-value) (p-value)
moy 0.0018 yes 0.8024 0.7425
varn 0.0098 yes 0.1704 0.0341
skew 0.2462 no 0.4186 0.3551
kurt 0.4765 no 0.9823 0.9775
med 0.0015 yes 0.5878 0.4541
SpAs 0.0327 yes 0.0220 0.0033
SD 0.0085 yes 0.2775 0.0757
RMSSD 0.0074 yes 0.6404 0.4030
p HF 0.0020 yes 0.7122 0.7504
p LF 0.0037 yes 0.3408 0.1615
p_VLF 0.0476 lim 0.8464 0.8588
alphaS 0.1099 no 0.0011 0.0004
alphaF 0.0026 yes 0.0440 0.0022
AppEN 0.0167 yes 0.0006 <.0001
SamEn 0.0471 lim 0.0006 <.0001
PermEn 0.0030 yes 0.0337 0.0043
Regul 0.1101 no 0.1751 0.1104

There are only a few parameters that seem to be related to the sepsis status. From Table 11-6, we
can see that the methods ‘varn’, ‘SpAs’, ‘alphaS’, ‘alphaF’, ‘AppEn’, ‘SamEn’, ‘PermEn’ and
‘Regul’ are significant. They can be introduced into a multivariate discriminant analysis or
logistic regression model.
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Appendix Il
Results for Multivariate Analysis —— Logistic Regression

1.1 With outliers

[1.1.1 Window=1024, Step=1024

It’s the Table III-1 of logistic regression, with outliers, analysis window=1024 with step 1024.

Table III-1 Logistic Regression, with outliers, Window=1024, Step=1024

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter | DF | Coefficient Error Chi-Square| Pr > ChiSq
Intercept 1 11.6551 8.0490 2.0967 0.1476
skew 1 -0.1631 0.4663 0.1223 0.7265
kurt 1 -0.00714 0.0453 0.0248 0.8748
SpAs 1 0.0500 0.0576 0.7534 0.3854
alphaF 1 0.1465 2.8801 0.0026 0.9594
PermEn 1 -8.5441 9.3547 0.8342 0.3611

* The first column represents the Intercept and the significant parameters chosen from
Table II-1 of univariate analysis in Appendix II.

* The second column denotes the degree of freedom (DF) with each parameter.

e The third column denotes the estimated coefficients of the parameter, which are
b1, B2, P3,..., Pr in Equation (5.32)

* The fourth column denotes the standard error of the coefficient.

* The fifth column denotes the Wald Chi-Square statistic, computed as the square of the
value obtained by dividing the parameter estimate by its standard error.

* The sixth column denotes the p-value (Pr > ChiSq) for the Wald Chi-square statistic with
1 DF, with a value below 0.2 indicating a significant effect of the associated model
parameter if a 20 percent significance level is chosen.

From Table III-1, it is observed that alphaS and SamEn have the significant regression

coefficients, which have p-values <0.2 and marked in green. Two negative regression coefficients
mean that alphaS and SamEn decrease the probability of sepsis.
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[1.1.2 Window=2048, Step=2048

It’s the Table III-2 of logistic regression, with outliers, analysis window=2048 with step 2048.
These significant parameters are chosen from Table II-2 of univariate analysis in Appendix II.

Table III-2 Logistic Regression, with outliers, Window=2048, Step=2048

Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter | DF | Coefficient Error| Chi-Square| Pr > ChiSq
Intercept 1 21.6149| 10.5761 4.1770 0.0410
p_LF 1 0.2730| 0.4249 0.4129 0.5205
aphaS | 1| 67654 2536 70473 00075
alphaF 1 -0.9702 3.1581 0.0944 0.7587
AppEn 1 -8.5973 6.8171 1.5905 0.2073
SamEn 1 -1.3363 8.9314 0.0224 0.8811

From Table III-2, it is observed that alphaS and PermEn have the significant regression
coefficients, which have p-values <0.2 and marked in green. Two negative regression coefficients
mean that alphaS and PermEn decrease the probability of sepsis.

[1.1.3 Window=4096, Step=4096

It’s the Table I11-3 of logistic regression, with outliers, analysis window=4096 with step 4096.
These significant parameters are chosen from Table II-3 of univariate analysis in Appendix II.

Table I1I-3 Logistic Regression, with outliers, Window=4096, Step=4096

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter | DF| Coefficient Error | Chi-Square| Pr > ChiSq

Intercept 1 27.0433| 15.2359 3.1505 0.0759

SpAs 1 0.0261 0.0396 0.4354 0.5094
alphaF 1 -0.0989| 4.5916 0.0005 0.9828
SamEn 1| -14.4850| 13.3648 1.1747 0.2784
PermEn 1| -18.7703| 17.1643 1.1959 0.2741
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From Table III-3, it is observed that alphaS and AppEn have the significant regression
coefficients, which have p-values <0.2 and marked in green. Two negative regression coefficients
mean that alphaS and AppEn decrease the probability of sepsis.

I11.2 Without outliers

[11.2.1 Window=1024, Step=1024

It’s the Table I1I-4 of logistic regression, without outliers, analysis window=1024 with step 1024.
These significant parameters are chosen from Table II-4 of univariate analysis in Appendix II.

Table I11-4 Logistic Regression, without outliers, Window=1024, Step=1024

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter | DF | Coefficient Error| Chi-Square| Pr > ChiSq
Intercept 1| -12.1413| 10.5073 1.3352 0.2479

From Table III-4, it is observed that skew, kurt, SpAs, alphaS, alphaF and SamEn have the
significant regression coefficients, which have p-values <0.2 and marked in green. Positive
regression coefficients mean that kurt, SpAs and alphaF increase the probability of sepsis, while
negative regression coefficients mean that skew, alphaS and SamEn decrease the probability of
sepsis.

Among these 6 variables, the largest regression coefficient means that SamEn strongly influences

the probability of sepsis, while a near-zero regression coefficient means that kurt has little
influence on the probability of sepsis.
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[11.2.2 Window=2048, Step=2048

It’s the Table III-5 of logistic regression, without outliers, analysis window=2048 with step 2048.
These significant parameters are chosen from Table II-5 of univariate analysis in Appendix II.

Table III-5 Logistic Regression, without outliers, Window=2048, Step=2048

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter | DF | Coefficient Error| Chi-Square| Pr > ChiSq
Intercept 1 -1.0472 17.7273 0.0035 0.9529

AppEn

—

33.3132

30.7536

1.1734

0.2787

SamEn

—

-35.0995

27.8890

1.5839

0.2082

From Table III-5, it is observed that skew, SpAs, alphaS and alphaF have the significant
regression coefficients, which have p-values <0.2 and marked in green. Two positive regression
coefficients mean that SpAs and alphaF increase the probability of sepsis, while two negative
regression coefficients mean that skew and alphaS decrease the probability of sepsis.

Among these 4 variables, the largest regression coefficient means that alphaS strongly influences

the probability of sepsis, while a near-zero regression coefficient means that SpAs has little
influence on the probability of sepsis.
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[1.2.3 Window=4096, Step=4096

It’s the Table I11-6 of logistic regression, without outliers, analysis window=4096 with step 4096.
These significant parameters are chosen from Table 11-6 of univariate analysis in Appendix II.

Table I1I-6 Logistic Regression, without outliers, Window=4096, Step=4096

Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter | DF | Coefficient Error | Chi-Square | Pr > ChiSq
Intercept 1 18.4547| 21.5344 0.7344 0.3915
varn 1| -0.00026 0.000885 0.0831 0.7732
SpAs 1 0.0889| 0.0903 0.9691 0.3249
alphas | 1] 112460 59626 33573 00593
alphaF 1 -0.2933| 5.5059 0.0028 0.9575
AppEn 1 -2.6563| 24.8865 0.0114 0.9150
SamEn 1 -29.2534) 334121 0.7666 0.3813
PermEn 1| -17.2851| 22.4517 0.5927 0.4414
Regul 1 9.0125 17.7172 0.2588 0.6110

From Table III-6, it is observed that alphaS has the significant regression coefficient, which has
p-values <0.2 and marked in green. A negative regression coefficient means that alphaS
decreases the probability of sepsis.
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Appendix IV
Results for Multivariate Analysis —— Stepwise Regression

V.1 With outliers

IV.1.1 Window=1024, Step=1024

It’s the Table IV-1 of stepwise regression, with outliers, analysis window=1024 with step 1024.

Table IV-1 Stepwise Regression, with outliers, Window=1024, Step=1024

Summary of Stepwise Selection
S Number Score Wald Variable
Step | Entered | Removed | DF In| Chi-Square | Chi-Square | Pr > ChiSq | Label
1 alphaS 1 1 11.0066 0.0009 | alphaS
2 SamEn 1 2 6.6081 0.0102 | SamEn

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter | DF | Estimate Error | Chi-Square | Pr > ChiSq

Intercept 1| 6.1324| 1.7289 12.5808 0.0004

alpha$S 1] -5.3019] 1.5784 11.2835 0.0008
SamEn 1-11.6893| 4.8646 5.7740 0.0163
For the upper table:

* The first column denotes the number of step.

* The second column represents the variables added to the model.

* The third column represents the variables removed from the model.

* The fourth column denotes the degree of freedom (DF) with each parameter.

* The fifth column count on the number of the added variables.

* The sixth column denotes the Score Chi-Square statistic.

* The seventh column denotes the Wald Chi-Square statistic.

e The eighth column denotes the p-value (Pr > ChiSq) for the Score/Wald Chi-square
statistic with 1 DF.

* The ninth column denotes Variable Label.

For the down table
* The first column represents the Intercept and the significant parameters chosen from
Stepwise Selection in the upper table.
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* The second column denotes the DF with each parameter.

* The third column denotes the estimated coefficients of the parameter.

* The fourth column denotes the standard error of the coefficient.

* The fifth column denotes the Wald Chi-Square statistic, computed as the square of the
value obtained by dividing the parameter estimate by its standard error.

* The sixth column denotes the p-value (Pr > ChiSq) for the Wald Chi-square statistic with
1 DF.

Among all the parameters, ‘alphaS’ and ‘SamEn’ are chosen as significant predictive variables by
using stepwise regression.

IV.1.2 Window=2048, Step=2048

It’s the Table V-2 of stepwise regression, with outliers, analysis window=2048 with step 2048.

Table IV-2 Stepwise Regression, with outliers, Window=2048, Step=2048

Summary of Stepwise Selection
e Number Score Wald Variable
Step | Entered |Removed | DF In Chi-Square | Chi-Square | Pr > ChiSq | Label
1|alphaS 1 1 10.5101 0.0012 | alphaS
2| PermEn 1 2 8.2362 0.0041 | PermEn

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter | DF | Estimate Error | Chi-Square | Pr > ChiSq

Intercept 11249272 7.6916 10.5029 0.0012
alphaS 1| -7.3475| 2.3004 10.2021 0.0014
PermEn 11-28.0728| 10.5029 7.1441 0.0075

Among all the parameters, ‘alphaS’ and ‘PermEn’ are chosen as significant predictive variables
by using stepwise regression.

IV.1.3 Window=4096, Step=4096

It’s the Table IV-3 of stepwise regression, with outliers, analysis window=4096 with step 4096.
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Table IV-3 Stepwise Regression, with outliers, Window=4096, Step=4096

Among all the parameters, ‘alphaS’ and ‘SamEn’ are chosen as significant predictive variables by

using stepwise regression.

V.2 Without outliers

IV.2.1 Window=1024, Step=1024

It’s the Table IV-4 of stepwise regression, without outliers, analysis window=1024 with step

Summary of Stepwise Selection
S Number Score Wald Variable
Step | Entered | Removed | DF In| Chi-Square | Chi-Square | Pr > ChiSq | Label
1 alphaS 1 1 16.2963 <.0001 | alphaS
2 SamEn 1 2 13.0092 0.0003 | SamEn
3 AppEn 1 3 4.6201 0.0316 | AppEn
4 AppEn 1 2 3.4910 0.0617 | AppEn
Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter | DF | Estimate Error | Chi-Square| Pr > ChiSq
Intercept 1| 14.7236| 3.7491 15.4235 <.0001
alpha$S 1/-13.1390 3.4558 14.4553 0.0001
SamEn 1/-31.5450| 9.8542 10.2475 0.0014

1024.
Table IV-4 Stepwise Regression, without outliers, Window=1024, Step=1024
Summary of Stepwise Selection
i3l Number Score Wald Variable
Step | Entered | Removed | DF In| Chi-Square | Chi-Square | Pr > ChiSq | Label
1 kurt 1 1 15.4348 <.0001 | kurt
2 alphaS 1 2 6.0667 0.0138 |alphaS
3 p_VLF 1 3 11.3656 0.0007 |p_VLF
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Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter | DF | Estimate Error | Chi-Square | Pr > ChiSq
Intercept 1/-18.7611| 8.6438 4.7109 0.0300
kurt 1 0.3930| 0.1206 10.6107 0.0011
p_VLF 1| -2.2262| 0.7512 8.7829 0.0030
alpha$S 1| 23.7444| 8.0431 8.7151 0.0032

Among all the parameters, ‘kurt’, ‘p VLF’ and ‘alphaS’ are chosen as significant predictive
variables by using stepwise regression.

IV.2.2 Window=2048, Step=2048

It’s the Table IV-5 of stepwise regression, without outliers, analysis window=2048 with step
2048.

Table IV-5 Stepwise Regression, without outliers, Window=2048, Step=2048

Summary of Stepwise Selection
= i3l Number Score Wald Variable
Step | Entered | Removed | DF In| Chi-Square | Chi-Square | Pr > ChiSq | Label
1 alphaS 1 1 9.9321 0.0016| alphaS
2 SpAs 1 2 7.5252 0.0061 | SpAs
3 SpAs 1 1 3.8242 0.0505 | SpAs

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter | DF | Estimate Error | Chi-Square | Pr > ChiSq

Intercept 1| 5.9008 2.1885 7.2702 0.0070
alphaS 1| -6.6680| 2.3695 7.9188 0.0049

Among all the parameters, ‘alphaS’ is chosen as significant predictive variables by using
stepwise regression.
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IV.2.3 Window=4096, Step=4096

It’s the Table V-6 of stepwise regression, without outliers, analysis window=4096 with step
4096.

Table IV-6 Stepwise Regression, without outliers, Window=4096, Step=4096

Summary of Stepwise Selection
SR Number Score Wald Variable
Step | Entered | Removed | DF In| Chi-Square | Chi-Square | Pr > ChiSq | Label
1 AppEn 1 1 14.6433 0.0001 | AppEn
2 alphaS 1 2 7.8846 0.0050 | alphaS

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter | DF | Estimate Error | Chi-Square | Pr > ChiSq

Intercept 1| 14.8063| 4.2478 12.1495 0.0005
alpha$S 1| -9.0556| 3.6030 6.3169 0.0120
AppEN 11-39.5236| 13.7163 8.3031 0.0040

Among all the parameters, ‘alphaS’ and ‘AppEn’ are chosen as significant predictive variables by
using stepwise regression.
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Appendix V
Results for Correlation Index (r?)

V.1 Window=1024, Step=1024

The cross-correlation (%) between the RR and the respiratory series was computed (only for nasal

channel) over the range of -240 to 240 sample lags (1 minute) and it was normalized to have
r(0)=1.

The maximum 7? values for each sequence were registered as well as the delay time at which
these values occurred. Table V-1 reports the results of statistical analysis for * between RR and

nasal respiration on the entire population, in the window 1024 with step 1024.

Table V-1 Results of statistical analysis for 7 between RR and nasal respiration, Window=1024,

Step=1024
¥ Sepsis Non Sepsis ANOVA |KruskWall| Wilrs
m_raw 0.0800 £ 0.0872 0.0450 + 0.0383 0.0001 0.0011 0.0011
rn_enp 0.5135+ 0.1980 0.4953 £ 0.1825 0.4528 0.4374 0.4379

The level of significance was set at p value
p<0.05 is marked in yellow

In Table V-1, the second and third column present “Mean Value + Standard Deviation” of sepsis
and non-sepsis infants respectively. The fourth, fifth and sixth column bring forth the p value of
ANOVA, Kruskal-Wallis test and Wilcoxon rank-sum test respectively in each case.

+ For the original nasal respiration and its envelope, correlation index #° is higher in sepsis

infants than in non-sepsis ones. That is to say, sepsis condition doesn’t influence on the
original nasal respiration signal and its envelope.

V.2 Window=2048, Step=2048

It’s the Table V-2 of statistical analysis for * between RR and nasal respiration, in the window
2048 with step 2048.

Table V-2 Results of statistical analysis for 7 between RR and nasal respiration, Window=2048,

Step=2048
P Sepsis Non Sepsis ANOVA |KruskWall| Wilrs
m_raw 0.0649 + 0.0774 0.0384 + 0.0336 0.0241 0.0551 0.0554
rn_enp 0.4447 + 0.2016 0.4104 + 0.1611 0.3231 0.3821 0.3836

The level of significance was set at p value
p<0.05 is marked in yellow
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4 For the original nasal respiration and its envelope, correlation index #° is higher in sepsis
infants than in non-sepsis ones. That is to say, sepsis condition doesn’t influence on the
original nasal respiration signal and its envelope.

V.3 Window=4096, Step=4096

It’s the Table V-3 of statistical analysis for * between RR and nasal respiration, in the window
4096 with step 4096.

Table V-3 Results of statistical analysis for 7 between RR and nasal respiration, Window=4096,

Step=4096
P Sepsis Non Sepsis ANOVA |KruskWall| Wilrs
rn_raw 0.0520 + 0.0653 0.0323 + 0.0263 0.2195 0.3626 0.3683
rn_enp 0.4040 + 0.1887 0.3382 + 0.1393 0.2012 0.2418 0.2461

The level of significance was set at p value
p<0.05 is marked in yellow

4+ For the original nasal respiration and its envelope, correlation index 7 is higher in sepsis

infants than in non-sepsis ones. That is to say, sepsis condition doesn’t influence on the
original nasal respiration signal and its envelope.
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Appendix VI
Results for Coherence function (Cohere)

V1.1 Window=1024, Step=1024

Coherence is a function of frequency with values between 0 and 1 that indicate how well the
input (the RR signal) corresponds to the output (the respiratory signal) at each frequency.

The squared coherence estimate of the system has been computed using Welch's averaged
periodogram method.

A vector divides RR and Respiration signals into overlapping sections of 64 or 32 points
(depending on the signal length, here 64 is selected), and then windows each section with this
vector (hamming window).

As final results, the cumulative sum of the coherence values upon the frequency band of interest
(VLF = 0.002 —0.02 Hz), normalized (divided by N points, correspondent to the frequency band
points, here N=256) to give a value between 0 and 1, was recorded as:

0.02

L D Cren( ) (VL1)

N £=0.002
Table VI-1 shows the results of statistical analysis for Coherence between RR and nasal

respiration, in the window 1024 with step 1024.

Table VI-1 Results of statistical analysis for Cohere between RR and nasal respiration,
Window=1024, Step=1024

Cohere Sepsis Non Sepsis ANOVA |KruskWall| Wilrs

rn_raw 0.4375+ 0.1693 0.4149 = 0.1542 0.2742 0.2668 0.2672

In Table VI-1, the second and third column present “Mean Value + Standard Deviation” of sepsis
and non-sepsis infants respectively. The fourth, fifth and sixth column bring forth the p value of
ANOVA, Kruskal-Wallis test and Wilcoxon rank-sum test respectively in each case.

+ For original nasal respiration, coherence index is higher in sepsis infants than in non-

sepsis ones. That is to say, sepsis condition doesn’t influence on the original nasal
respiration signal and its envelope.
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VI.2 Window=2048, Step=2048

Table VI-2 shows the results of statistical analysis for Coherence between RR and nasal
respiration, in the window 2048 with step 2048.

Table VI-2 Results of statistical analysis for Cohere between RR and nasal respiration,
Window=2048, Step=2048

Cohere Sepsis Non Sepsis ANOVA |KruskWall| Wilrs

rn_raw 0.2940 + 0.1534 0.2868 + 0.1535 0.8037 0.7127 0.7147

+ For original nasal respiration, coherence index is higher in sepsis infants than in non-
sepsis ones. That is to say, sepsis condition doesn’t influence on the original nasal
respiration signal and its envelope.

VI.3 Window=4096, Step=4096

Table VI-3 shows the results of statistical analysis for Coherence between RR and nasal
respiration, in the window 4096 with step 4096.

Table VI-3 Results of statistical analysis for Cohere between RR and nasal respiration,
Window=4096, Step=4096

Cohere Sepsis Non Sepsis ANOVA |KruskWall| Wilrs

rn_raw 0.1971 + 0.1342 0.2241 + 0.1611 0.5357 0.8965 0.9051

+ For original nasal respiration, coherence index is lower in sepsis infants than in non-sepsis
ones. Therefore, sepsis condition seems to destroy the informative content of the signal,
consequently influence the coherence properties with the original nasal respiration signal.
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Appendix VI
Results for Local Linear Correlation Coefficient (rzt,f)

VIl.1 Window=1024, Step=1024

VII.1.1 Multi-Boxplot r?; between RR and original nasal respiration

The following section reports the results of statistical analysis for 77, between RR and original
nasal respiration frequency band by band. These qualitative findings were statistically verified.
Fig. VII-1 depicts the sub-band distribution of the time-frequency correlation coefficient 17, 7
over a threshold set to 0.8, in the window 1024 with step 1024.
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Fig. VII-1 Distribution of rz,f between RR and original nasal respiration (greater than 0.8), Window=1024,

In Boxplot, red line is mean value.

Step=1024

Table VII-1 demonstrates the results of statistical analysis for 7°;; between RR and nasal
respiration, in the window 1024 with step 1024.

Table VII-1 Statistical analysis for 1%, s between RR and nasal respiration, Window=1024,

Step=1024
Band(Hz) Sepsis Non Sepsis ANOVA | KruskWall Wilrs
0-0.02 7.2308 £ 16.6841 1.3846 + 4.9923 0.2379 0.2704 0.2885
0.02-0.2 56.0769 £115.2595 109.5385 +188.1266 0.3909 0.6855 0.7055
0.2-0.4 8.6154 +11.3324 36.2308 +49.6154 0.0421 0.0445 0.0484
0.4-0.6 34.5385 + 94.6657 5.0000 + 8.5342 0.2736 0.1881 0.1975
0.6-0.8 29.1538 + 53.2930 72.7692 + 82.2559 0.1217 0.1725 0.1807
0.8-1.0 1.7692 + 4.3235 18.5385 +26.0947 0.0314 0.0254 0.0275
1.0-1.2 105.6154 £178.8689 79.2308 £100.9762 0.6474 0.5323 0.5495

197




Band(Hz)

Sepsis Non Sepsis ANOVA | KruskWall Wilrs
1.2-14 10.3077 £ 16.1987 56.8462 + 70.3253 0.0288 0.1547 0.1630
1.4-1.6 33.6154 +55.3075 7.4615+11.1177 0.1076 0.3446 0.3585
1.6-1.8 21.0769 = 37.8912 83.6154 £105.7848 0.0562 0.1995 0.2088

The level of significance was set at p value
p<0.05 is marked in yellow

+ We confirm statistically (p<0.05 whatever the statistical tests) that the higher correlation

is retrieved in the two frequency bands for the non-sepsis group (0.2<f<0.4Hz and
0.8<f<1.0Hz).

VII.1.2 Multi-Boxplot r?; between RR and envelop of nasal respiration

The followings report the results of statistical analysis for 77, s between RR and envelop of nasal
respiration frequency band by band. These qualitative findings were statistically verified. Fig.
VII-2 depicts the sub-band distribution of the time-frequency correlation coefficient rz,,f, over a
threshold set to 0.8, in the window 1024 with step 1024.
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Fig. VII-2 Distribution of /tf between RR and envelope of nasal respiration (greater than 0.8), Window=1024,

In Boxplot, red line is mean value.

Step=1024

Table VII-2 presents the results of statistical analysis for 17, s between RR and envelop of nasal
respiration, in the window 1024 with step 1024.
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Table VII-2 Statistical analysis for 7,  between RR and envelop of nasal respiration,
Window=1024, Step=1024

Band(Hz) Sepsis Non Sepsis ANOVA | KruskWall Wilrs
0-0.02 8.7692 + 15.2050 12.6154 £23.1572 0.6212 0.6946 0.7171
0.02-0.2 30.1538 £ 95.8478 7.0769 £ 25.5162 0.4098 0.0889 0.0956
0.2-0.4 37.3846 £123.1480 0.0000 £ 0.0000 0.2846 0.0338 0.0373
0.4-0.6 97.0000 £123.1990 20.6923 £37.5730 0.0431 0.0167 0.0179
0.6-0.8 0.1538 + 0.5547 0.0000 + 0.0000 0.3273 0.3173 0.3560
0.8-1.0 72.2308 £102.8139 37.4615 +51.3235 0.2861 0.6582 0.6771
1.0-1.2 8.6923 + 14.0735 13.6154 £36.9110 0.6572 0.9318 0.9545
1.2-1.4 11.0769 +£31.9256 14.0000 + 33.1989 0.8209 1.0000 1.0000
1.4-1.6 101.5385 £128.5461 82.7692 £112.1169 0.6951 0.8573 0.8775
1.6-1.8 0.6923 £ 2.4962 0.7692 + 2.4884 0.9379 0.5791 0.6111

The level of significance was set at p value
p<0.05 is marked in yellow

4+ We confirm statistically (p<0.05 whatever the statistical tests) that the higher correlation

is retrieved in the frequency band for the sepsis group (0.4<f<0.6Hz).

VII.2 Window=2048, Step=2048

VII.2.1 Multi-Boxplot r?; between RR and original nasal respiration

Fig. VII-3 depicts the sub-band distribution of the time-frequency correlation coefficient 77, 1
over a threshold set to 0.8, in the window 2048 with step 2048.
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Table VII-3 demonstrates the results of statistical analysis for rz,,f between RR and nasal
respiration, in the window 2048 with step 2048.

Table VII-3 Statistical analysis for 1%, s between RR and nasal respiration, Window=2048,

Step=2048
Band(Hz) Sepsis Non Sepsis ANOVA | KruskWall Wilrs
0-0.02 25.7692 £+ 60.6055 9.3846 + 25.4740 0.3778 0.5768 0.5995
0.02-0.2 149.1538 +£282.2180 211.0000 +£302.9101 0.5951 0.6626 0.6813
0.2-0.4 21.1538 = 18.8938 140.0000 +145.1626 0.0074 0.0158 0.0169
0.4-0.6 225.0769 £379.1566 68.0769 £ 87.6170 0.1587 0.6618 0.6806
0.6-0.8 117.5385 +£171.3941 319.1538 +£313.1724 0.0529 0.0858 0.0906
0.8-1.0 9.0769 + 12.3319 37.0000 + 42.3084 0.0315 0.0539 0.0573
1.0-1.2 260.6154 +£427.6366 108.0000 + 85.9787 0.2192 0.9386 0.9591
1.2-1.4 31.4615 +36.5208 86.8462 £146.9818 0.1998 0.2074 0.2168
1.4-1.6 56.8462 +142.7421 0.0769 + 0.2774 0.1645 0.0478 0.0518
1.6-1.8 39.9231 £124.0272 0.0000 = 0.0000 0.2572 0.0338 0.0373

The level of significance was set at p value

p<0.05 is marked in yellow

+ We confirm statistically (p<0.05 whatever the statistical tests) that the higher correlation
is retrieved in the low frequency band for the non-sepsis group (0.2<f<0.4Hz).

VII.2.2 Multi-Boxplot r? ; between RR and envelop of nasal respiration

Fig. VII-4 depicts the sub-band distribution of the time-frequency correlation coefficient 77, 1
over a threshold set to 0.8, in the window 2048 with step 2048.
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Table VII-4 presents the results of statistical analysis for 17, s between RR and envelop of nasal
respiration, in the window 2048 with step 2048.

Table VII-4 Statistical analysis for 1%, s between RR and envelop of nasal respiration,
Window=2048, Step=2048

Band(Hz) Sepsis Non Sepsis ANOVA | KruskWall Wilrs
0-0.02 39.4615 £ 59.9689 36.7692 + 54.0450 0.9053 09171 0.9378
0.02-0.2 26.8462 + 95.5954 7.0769 + 25.5162 0.4782 0.1678 0.1796
0.2-0.4 40.3077 £125.0329 0.0000 = 0.0000 0.2565 0.0338 0.0373
0.4-0.6 153.9231 £170.0140 56.6154 +£42.9467 0.0568 0.1653 0.1733
0.6-0.8 0.0000 £ 0.0000 0.6923 + 2.4962 0.3273 0.3173 0.3560
0.8-1.0 101.1538 £130.2061 120.3846 +£110.6545 0.6885 0.5553 0.5726
1.0-1.2 15.4615 £ 28.9471 37.1538 £ 62.1314 0.2651 0.1355 0.1425
1.2-14 4.1538 £ 6.8172 9.0769 + 20.5526 0.4204 0.5384 0.5579
1.4-1.6 68.4615 + 77.4689 52.1538 + 74.8608 0.5902 0.2628 0.2741
1.6-1.8 1.0000 + 3.3166 0.0000 = 0.0000 0.2878 0.1492 0.1655

The level of significance was set at p value
p< 0.05 is marked in yellow

4+ No frequency band has significant correlation

VII.3 Window=4096, Step=4096

VII.3.1 Multi-Boxplot r?; between RR and original nasal respiration

Fig. VII-5 depicts the sub-band distribution of the time-frequency correlation coefficient rzt,f,
over a threshold set to 0.8, in the window 4096 with step 4096.
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Table VII-5 demonstrates the results of statistical analysis for rz,,f between RR and nasal
respiration, in the window 4096 with step 4096.

Table VII-5 Statistical analysis for T’Zt’f between RR and nasal respiration, Window=4096,

Step=4096
Band(Hz) Sepsis Non Sepsis ANOVA | KruskWall Wilrs
0-0.02 64.3846 £141.4735 32.2308 £ 56.0344 0.4536 0.4715 0.4881
0.02-0.2 499.1538 +770.1144 543.0000 £579.0105 0.8710 0.2282 0.2382
0.2-0.4 81.6923 + 54.8625 291.6154 £267.9439 0.0107 0.0210 0.0224
0.4-0.6 150.5385 +405.6141 2.0769 £ 4.6630 0.1994 0.2214 0.2335
0.6-0.8 97.9231 +£253.0334 0.7692 + 2.7735 0.1790 0.0478 0.0518
0.8-1.0 14.0769 + 32.0558 0.0000 + 0.0000 0.1264 0.0716 0.0792
1.0-1.2 128.2308 +£208.9969 2.2308 £ 8.0432 0.0400 0.1091 0.1176
1.2-14 18.6923 + 33.6684 7.0769 +25.5162 0.3314 0.1680 0.1798
1.4-1.6 120.4615 £217.3590 2.9231 +10.5393 0.0633 0.1091 0.1176
1.6-1.8 90.6154 £176.0334 7.3077 +£26.3483 0.1045 0.1091 0.1176

The level of significance was set at p value
p<0.05 is marked in yellow

+ We confirm statistically (p<0.05 whatever the statistical tests) that the higher correlation
is retrieved in the low frequency band for the non-sepsis group (0.2<f<0.4Hz).

VI1.3.2 Multi-Boxplot r% ; between RR and envelop of nasal respiration

Fig. VII-6 depicts the sub-band distribution of the time-frequency correlation coefficient Vzt’f,
over a threshold set to 0.8, in the window 4096 with step 4096.
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Table VII-6 presents the results of statistical analysis for 17, s between RR and envelop of nasal
respiration, in the window 4096 with step 4096.

Table VII-6 Statistical analysis for 17, s between RR and envelop of nasal respiration,

Window=4096, Step=4096

Band(Hz) Sepsis Non Sepsis ANOVA | KruskWall Wilrs
0-0.02 123.4615 £152.6312 95.0769 £ 64.4120 0.5425 0.7976 0.8175
0.02-0.2 26.6154 + 95.6631 8.3846 + 30.2312 0.5186 0.5481 0.5793
0.2-0.4 35.0000 £125.5946 7.6154 +21.5543 0.4460 0.6281 0.6548
0.4-0.6 142.2308 £239.7172 45.6154 = 70.9678 0.1763 0.0888 0.0938
0.6-0.8 0.8462 + 3.0509 0.0000 = 0.0000 0.3273 0.3173 0.3560
0.8-1.0 45.6923 +97.3827 11.0769 +39.9384 0.2473 0.0766 0.0825
1.0-1.2 26.0000 + 59.5987 0.0000 + 0.0000 0.1288 0.0338 0.0373
1.2-14 12.3077 £44.3760 0.4615 + 1.6641 0.3457 0.9558 1.0000
1.4-1.6 66.9231 £117.1832 24.3077 + 87.6426 0.3042 0.1680 0.1798
1.6-1.8 0.1538 + 0.5547 0.0000 = 0.0000 0.3273 0.3173 0.3560

The level of significance was set at p value
p< 0.05 is marked in yellow

+ No frequency band has significant correlation
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Appendix VI
Results for Non-linear Regression Coefficient (h?)

This Appendix presents the results obtained for the non-linear regression coefficient (/7). Tests
have been conducted to evaluate 4°(7), considering two directions:

— RR vs. the nasal respiratory signal

< the nasal respiratory signal vs. RR

VIIL.1 Window=1024, Step=1024

It’s the Table VIII-1 of statistical analysis for 4° in one direction: RR vs. nasal respiration, in the
window 1024 with step 1024.

Table VIII-1 Results of statistical analysis for 4° between RR and nasal respiration,
Window=1024, Step=1024

W Sepsis Non Sepsis ANOVA |KruskWall| Wilrs
m_raw 0.0813 £ 0.0779 0.0432 £ 0.0403 0.0000 0.0000 0.0000
m_enp 0.4500 £ 0.2011 0.4083 £ 0.1620 0.0759 0.0937 0.0939

The level of significance was set at p value
p<0.05 is marked in yellow

In Table VIII-1, the second and third column present “Mean Value + Standard Deviation” of
sepsis and non-sepsis infants respectively. The fourth, fifth and sixth column bring forth the p
value of ANOVA, Kruskal-Wallis test and Wilcoxon rank-sum test respectively in each case.

While Table VIII-2 presents the statistical analysis in the other direction: nasal respiration vs. RR,
in the window 1024 with step 1024.

Table VIII-2 Results of statistical analysis for 4’ between nasal respiration and RR,
Window=1024, Step=1024

s Sepsis Non Sepsis ANOVA |KruskWall| Wilrs
nr_raw 0.1887 = 0.2531 0.0975 + 0.0737 0.0003 0.0000 0.0000
nr_enp 0.5648 + 0.1808 0.5160 + 0.1502 0.0225 0.0062 0.0063

The level of significance was set at p value
p<0.05 is marked in yellow

In Table VIII-2, the columns are identical to Table VIII-1.

In the case of (Win1024, Step1024), the non-linear relationship between HRV and respiration
signals is calculated as non-linear regression coefficient (4°). From these results, we can discover
that
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V' h2_rn_raw (4’ between RR and original nasal respiration)

V' h2_nr_raw (4’ between original nasal respiration and RR)

V' h2_nr_enp (4’ between envelop of nasal respiration and RR)
can discriminate sepsis from non-sepsis.

VIII.2 Window=2048, Step=2048

It’s the Table VIII-3 of statistical analysis for 4° in one direction: RR vs. nasal respiration, in the
window 2048 with step 2048.

Table VIII-3 Results of statistical analysis for 4° between RR and nasal respiration,
Window=2048, Step=2048

W Sepsis Non Sepsis ANOVA |KruskWall| Wilrs
m_raw 0.0454 £ 0.0470 0.0190 £ 0.0165 0.0002 0.0001 0.0001
m_enp 0.3226 + 0.1870 0.2656 £ 0.1424 0.0729 0.1265 0.1272

The level of significance was set at p value
p<0.05 is marked in yellow

In Table VIII-3, the columns are identical to Table VIII-1.
While Table VIII-4 presents the statistical analysis in the other direction: nasal respiration vs. RR,
in the window 2048 with step 2048.

Table VIII-4 Results of statistical analysis for 4’ between nasal respiration and RR,
Window=2048, Step=2048

s Sepsis Non Sepsis ANOVA |KruskWall| Wilrs
nr_raw 0.1253 + 0.1165 0.0563 = 0.0509 0.0001 0.0000 0.0000
nr_enp 0.4114 + 0.1906 0.3593 + 0.1962 0.1504 0.0680 0.0684

The level of significance was set at p value
p<0.05 is marked in yellow

In Table VIII-4, the columns are identical to Table VIII-1.

In the case of (Win2048, Step2048), the non-linear relationship between HRV and respiration
signals is calculated as non-linear regression coefficient (4°). From these results, we can discover
that

v h2 rn_raw (4’ between RR and original nasal respiration)

V' h2 nr raw (4 between original nasal respiration and RR)
can discriminate sepsis from non-sepsis
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VIIL.3 Window=4096, Step=4096

It’s the Table VIII-5 of statistical analysis for 4° in one direction: RR vs. nasal respiration, in the
window 4096 with step 4096.

Table VIII-5 Results of statistical analysis for #” between RR and nasal respiration,
Window=4096, Step=4096

W Sepsis Non Sepsis ANOVA |KruskWall| Wilrs
m_raw 0.0214 + 0.0215 0.0117 + 0.0123 0.0241 0.0256 0.0263
rn_enp 0.2904 + 0.1945 0.1675 £ 0.0891 0.0135 0.0355 0.0364

The level of significance was set at p value
p<0.05 is marked in yellow

In Table VIII-5, the columns are identical to Table VIII-1.
While Table VIII-6 presents the statistical analysis in the other direction: nasal respiration vs. RR,
in the window 4096 with step 4096.

Table VIII-6 Results of statistical analysis for 4° between nasal respiration and RR,
Window=4096, Step=4096

W Sepsis Non Sepsis ANOVA |KruskWall| Wilrs
nr raw 0.0944 + 0.0857 0.0436 + 0.0370 0.0194 0.0105 0.0109
nr_enp 0.3616 £ 0.2357 0.2444 £ 0.1532 0.0628 0.1238 0.1264

The level of significance was set at p value
p<0.05 is marked in yellow

In Table VIII-6, the columns are identical to Table VIII-1.

In the case of (Win4096, Step4096), the non-linear relationship between HRV and respiration
signals is calculated as non-linear regression coefficient (4°). From these results, we can discover
that

V' h2_rn_raw (4’ between RR and original nasal respiration)

v h2 . _enp (4’ between RR and envelop of nasal respiration)

\' h2 nr raw (4’ between original nasal respiration and RR)
can discriminate sepsis from non-sepsis
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Appendix IX
Theorem in Optimal Fusion

THEOREM. Given n detectors and the corresponding quantities as defined previously, we have

P(H,/u) Py, Py,
og—— = Ly 10g —+ ) log——— IX.1
P(Ho/u) Po z Py, ; 1-Pp, X1

where S is the set of all i such that u; = + I and S is the set of all i such that u; = -1.

PROOF. We have

P(Hl/u):P(PI-(I:)u) a0 )H Py, = +1/H1)Hp(u, —1/H1)—P( 1 PM)HPM
(IX.2)
In a similar manner,
P(H ofu) = PIE;) ,.)-];[PF,. (IX.3)
Thus
10g£8;[—$ P0+Zlog PF, +§1 g lflA?F,. (IX.4)

which completes the proof.
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Résumé

Le sepsis tardif, défini comme une infection systémique chez les nouveaux nés agés de plus de 3 jours, survient chez environ 7%
a 10% de tous les nouveau-nés et chez plus de 25% des nouveau-nés de tres faible poids de naissance qui sont hospitalisés dans
les unités de soins intensifs néonatals (USIN). Compte tenu du taux élevé de morbidité et de mortalité associée a I’infection, des
marqueurs fiables de cette infection sont nécessaires.

L'objectif de cette thése est de déterminer si la variabilité du rythme cardiaque (VRC), la respiration et I'analyse de leurs relations
aident au diagnostic de l'infection chez les nouveau-nés prématurés par des moyens non invasifs en USIN.

Tout d’abord, la RC a été étudiée, non seulement par des méthodes de distribution (moy, varn, skew, kurt, med, SpAs), par les
méthodes linéaires: le domaine temporel (SD, RMSSD) et dans le domaine fréquentiel (p_ VLF, p LF, p_HF), mais aussi par les
méthodes non-linéaires: la théorie du chaos (alphaS, alphaF) et la théorie de I’information (AppEn, SamEn, PermEn, Regul).
Pour chaque méthode, trois tailles de fenétre 1024/2048/4096 ont été étudiées afin d’identifier les meilleures fagons de distinguer
les bébés sepsis des non-sepsis. Les résultats montrent que les indices alphaS, alphaF et SamEn sont les paramétres optimaux pour
séparer les deux populations.

La question du couplage fonctionnel entre la VRC et la respiration nasale a été ensuite adressée. Des relations linéaires et non-
linéaires ont été explorées. Les indices linéaires sont la corrélation (?), l'indice de la fonction de cohérence (Cohere) et la
corrélation temps-fréquence (7 +/) » tandis que le coefficient de régression non-linéaire (4°) a été utilisé pour analyser des relations
non-linéaires. Nous avons évalué les deux directions de couplage pendant 1’évaluation de I'indice 4° de régression non-linéaire.
Les analyses démontrent que les relations non linéaires dans les deux directions de couplage ainsi que les relations dans le plan
temps-fréquence se modifient avec I’infection et représentent de fait des moyens complémentaires pour le diagnostic du sepsis de
facon non-invasive chez ces patients fragiles.

En outre, I'étude de faisabilité de la détection du sepsis en USIN en temps quasi-réel est réalisée sur la base des paramétres jugés
discriminants. Nous avons montré que le test proposé, basé sur la fusion optimale des six indices (alphaS, alphaF et SamEn, 2
parametres de couplages non linéaire et couplage dans le plan temps-fréquence) conduit & de bonnes performances statistiques,
présente une bonne répétabilité et permet de mettre en place un test en vue du diagnostic non invasif et précoce du sepsis.

Mots-clés: Unités de soins intensifs néonatals (USIN), nouveau-nés prématurés, sepsis, non-sepsis, variabilit¢ du rythme
cardiaque (VRC), respiration, couplage fonctionnel entre VRC et respiration nasale, fusion optimale

Abstract

Late-onset sepsis, defined as a systemic infection in neonates older than 3 days, occurs in approximately 7% to 10% of all
neonates and in more than 25% of very low birth weight infants who are hospitalized in Neonatal Intensive Care Units (NICU). In
view of the high morbidity and mortality associated with infection, reliable markers are needed.

Recurrent and severe spontaneous apneas and bradycardias (AB) is one of the major clinical early indicators of systemic infection
in the premature infant. It requires prompt laboratory investigation so that treatment can start without delay. Various
hematological and biochemical markers have been evaluated for this indication but they are invasive procedures that cannot be
repeated several times.

The objective of this Ph.D dissertation was to determine if heart rate variability (HRV), respiration and the analysis of their
relationships help to the diagnosis of infection in premature infants via non-invasive ways in NICU. Therefore, we carried out
Mono-Channel (MC) and Bi-Channel (BC) Analysis in two selected groups of premature infants: sepsis (S) vs. non-sepsis (NS).
Firstly, we studied the RR series not only by distribution methods (moy, varn, skew, kurt, med, SpAs), by linear methods: time
domain (SD, RMSSD) and frequency domain (p_VLF, p_LF, p HF), but also by non-linear methods: chaos theory (alphaS,
alphaF) and information theory (AppEn, SamEn, PermEn, Regul). For each method, we attempt three sizes of window
1024/2048/4096, and then compare these methods in order to find the optimal ways to distinguish S from NS. The results show
that alphaS, alphaF and SamEn are optimal parameters to recognize sepsis from the diagnosis of late neonatal infection in
premature infants with unusual and recurrent AB.

The question about the functional coupling of HRV and nasal respiration is addressed. Linear and non-linear relationships have
been explored. Linear indexes were correlation (r?), coherence function (Cohere) and time-frequency index (rz,f), while a non-
linear regression coefficient (4?) was used to analyze non-linear relationships. We calculated two directions during evaluate the
index A’ of non-linear regression. Finally, from the entire analysis process, it is obvious that the three indexes
(r2tf_rn_raw_0p2_0p4, h2_rn_raw and h2_nr_raw) were complementary ways to diagnosticate sepsis in a non-invasive way,
in such delicate patients.

Furthermore, feasibility study is carried out on the candidate parameters selected from MC and BC respectively. We discovered
that the proposed test based on optimal fusion of 6 features shows good performance with the largest Area Under Curves (AUC)
and the least Probability of False Alarm (Pg,).

As a conclusion, we believe that the selected measures from MC and BC signal analysis have a good repeatability and accuracy to
test for the diagnosis of sepsis via non-invasive NICU monitoring system, which can reliably confirm or refute the diagnosis of
infection at an early stage.

Keywords: Neonatal intensive care units (NICU), premature newborns, sepsis, non-sepsis, autonomic nervous system (ANS),

heart rate variability (HRV), respiratory system, respiration, linear methods, non-linear methods, statistical analysis, feasibility
study, optimal fusion, receiver operating characteristic (ROC), clinical decision making, medical informatics, prediction
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