Thèse soutenue

Micro/nano-cristallisation orientée dans des verres silices sous le champ thermique ou du laser pour maîtriser les propriétés optique nonlinéaire en volume
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Xuan He
Direction : Bertrand PoumellecQiming Liu
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 01/12/2013
Etablissement(s) : Paris 11 en cotutelle avec Wuhan University of Technology
Ecole(s) doctorale(s) : Ecole doctorale Chimie de Paris-Sud (Orsay, Essonne ; 2006-2015)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Physico-Chimie de l'Etat Solide (Orsay) - Laboratoire de Physico-Chimie de l'Etat Solide
Jury : Président / Présidente : Changzhong Jiang
Examinateurs / Examinatrices : Bertrand Poumellec, Qiming Liu, Changzhong Jiang, Jinyan Li, Haizheng Tao, Matthieu Lancry
Rapporteurs / Rapporteuses : Jinyan Li, Haizheng Tao

Résumé

FR  |  
EN

Au cours des dernières années, les matériaux optiques non linéaires ont attiré beaucoup d'attention en raison de leur application dans les télécommunications optiques. Les vitro-céramiques pour l’optique non-linéaire, ayant une microstructure alignée, présentent des propriétés physiques anisotropes. Il est donc intéressant de maîtriser la cristallisation dans ce genre de verre. Nous avons étudié ici la distribution, la taille et l'orientation sous un champ supplémentaire, en particulier par l’irradiation femtoseconde, de verres silicatés. Ce travail est important pour la conception et la production de nouveaux matériaux optiques non linéaires multi- fonction. Dans cette thèse, le champ thermique a été utilisé pour produire des cristaux dans un verre SrO-TiO₂-SiO₂. L’analyse a été menée à l’aide de la méthode des franges de Maker et de de diffraction des rayons X pour étudier la cristallisation et les propriétés optiques non-linéaires. Il a montré que les cristaux non linéaires Sr₂TiSi₂O₈ peut être obtenue dans la couche de surface par traitement thermique. L'axe polaire de cristaux orientés est perpendiculaire à la surface du verre. En augmentant la température ou en prolongeant la durée de traitement thermique, l’apparition d’une intensité non-nulle de génération de second harmonique (GSH) en incidence perpendiculaire indique la présence de cristaux orientés de manière aléatoire dans le volume du verre. Etant donné la cristallisation, spatialement difficile à contrôler par traitement thermique, l’irradiation laser femtoseconde pour contrôler la cristallisation dans le verre sont proposée en raison de son contrôle précis du dépôt d'énergie dans le temps et dans l'espace. Il ouvre des possibilités fantastiques pour la fabrication de matériaux multifonctionnels par maîtrisant la cristallization des cristaux non linéaires dans le verre. Nous avons précipité des cristaux orientés de LiNbO₃ et de Sr₂TiSi₂O₈ en volume par irradiation laser femtoseconde à haute cadence (typ. 300 kHz). Dans le verre Li₂O-Nb₂O₅-SiO₂, les micro-/nano-cristaux en variant l'énergie d'impulsion et la direction de polarisation ont obtenu. En particulier, lors de l'application à basse énergie et de la polarisation parallèle à la direction d'inscription du laser, la cristallization orientée en nanomètre a été démontrée par EBSD (Electron diffraction rétro-diffusée). Le mesure microscopique de SH a prouvé l’orientation préférentielle de cristallisation parallèlement à la direction de déplacement du faisceau laser. Afin de comprendre l'orientation exacte des cristaux par rapport à la direction d'écriture, une série de mesurer les signaux cohérent de SH ont été réalisés dans des paires de lignes de laser avec des orientations de déplacement opposées. EDS (spectromètre à dispersion d'énergie) et la micro-sonde nucléaire ont été utilisées pour réaliser l'analyse chimique dans les lignes de laser. Nous discutons aussi le mécanisme de cristallisation orientée en mode statique et en mode dynamique en illustrant la distribution des gradients différents. Pour le système SrO-TiO₂-SiO₂, l'irradiation du laser a été appliquée dans les verres stoechiométrique et non-stoechiométrique. Dans le premier cas, non seulement la taille et la distribution peuvent être contrôlées en variant les paramètres du laser, mais aussi la phase peuvent être choisis dans l'échantillon. La mesure de SH a montré que l'axe polaire de cristaux est toujours dans le sens de l'écriture. Pour le verre non-stoechiométrique, des purs cristaux de Sr₂TiSi₂O₈ ont été obtenus seulement. En utilisant EBSD, l'écriture asymétrique ont été étudiés en variant l’orientation de la polarisation et de l'écriture. On a montré ainsi que le mécanisme d'orientation est probablement dû à l'action combinée du front « tilté » de l’impulsion et à l’orientation du plan de polarisation qui conduit à une photosensibilité anisotrope. En conséquence, cela induit une distribution asymétrique des gradients thermiques et chimiques.