Scalable view-based techniques for web data : algorithms and systems

par Asterios Katsifodimos

Thèse de doctorat en Informatique

Sous la direction de Ioana Gabriela Manolescu Goujot.

Soutenue le 03-07-2013

à Paris 11 , dans le cadre de Ecole doctorale Informatique de Paris-Sud , en partenariat avec Laboratoire de recherche en informatique (Orsay, Essonne) (laboratoire) et de OAK (Saclay) (équipe de recherche) .

Le président du jury était Alain Denise.

Le jury était composé de Ioana Gabriela Manolescu Goujot, Alain Denise, Philippe Rigaux, Yanlei Diao, Patrick Valduriez, Vasilis Vassalos.

Les rapporteurs étaient Philippe Rigaux, Yanlei Diao.

  • Titre traduit

    Techniques efficaces basées sur des vues matérialisées pour la gestion des données du Web : algorithmes et systèmes


  • Résumé

    Le langage XML, proposé par le W3C, est aujourd’hui utilisé comme un modèle de données pour le stockage et l’interrogation de grands volumes de données dans les systèmes de bases de données. En dépit d’importants travaux de recherche et le développement de systèmes efficace, le traitement de grands volumes de données XML pose encore des problèmes des performance dus à la complexité et hétérogénéité des données ainsi qu’à la complexité des langages courants d’interrogation XML. Les vues matérialisées sont employées depuis des décennies dans les bases de données afin de raccourcir les temps de traitement des requêtes. Elles peuvent être considérées les résultats de requêtes pré-calculées, que l’on réutilise afin d’éviter de recalculer (complètement ou partiellement) une nouvelle requête. Les vues matérialisées ont fait l’objet de nombreuses recherches, en particulier dans le contexte des entrepôts des données relationnelles.Cette thèse étudie l’applicabilité de techniques de vues matérialisées pour optimiser les performances des systèmes de gestion de données Web, et en particulier XML, dans des environnements distribués. Dans cette thèse, nos apportons trois contributions.D’abord, nous considérons le problème de la sélection des meilleures vues à matérialiser dans un espace de stockage donné, afin d’améliorer la performance d’une charge de travail des requêtes. Nous sommes les premiers à considérer un sous-langage de XQuery enrichi avec la possibilité de sélectionner des noeuds multiples et à de multiples niveaux de granularités. La difficulté dans ce contexte vient de la puissance expressive et des caractéristiques du langage des requêtes et des vues, et de la taille de l’espace de recherche de vues que l’on pourrait matérialiser.Alors que le problème général a une complexité prohibitive, nous proposons et étudions un algorithme heuristique et démontrer ses performances supérieures par rapport à l’état de l’art.Deuxièmement, nous considérons la gestion de grands corpus XML dans des réseaux pair à pair, basées sur des tables de hachage distribuées. Nous considérons la plateforme ViP2P dans laquelle des vues XML distribuées sont matérialisées à partir des données publiées dans le réseau, puis exploitées pour répondre efficacement aux requêtes émises par un pair du réseau. Nous y avons apporté d’importantes optimisations orientées sur le passage à l’échelle, et nous avons caractérisé la performance du système par une série d’expériences déployées dans un réseau à grande échelle. Ces expériences dépassent de plusieurs ordres de grandeur les systèmes similaires en termes de volumes de données et de débit de dissémination des données. Cette étude est à ce jour la plus complète concernant une plateforme de gestion de contenus XML déployée entièrement et testée à une échelle réelle.Enfin, nous présentons une nouvelle approche de dissémination de données dans un système d’abonnements, en présence de contraintes sur les ressources CPU et réseau disponibles; cette approche est mise en oeuvre dans le cadre de notre plateforme Delta. Le passage à l’échelle est obtenu en déchargeant le fournisseur de données de l’effort de répondre à une partie des abonnements. Pour cela, nous tirons profit de techniques de réécriture de requêtes à l’aide de vues afin de diffuser les données de ces abonnements, à partir d’autres abonnements.Notre contribution principale est un nouvel algorithme qui organise les vues dans un réseau de dissémination d’information multi-niveaux ; ce réseau est calculé à l’aide d’outils techniques de programmation linéaire afin de passer à l’échelle pour de grands nombres de vues, respecter les contraintes de capacité du système, et minimiser les délais de propagation des information. L’efficacité et la performance de notre algorithme est confirmée par notre évaluation expérimentale, qui inclut l’étude d’un déploiement réel dans un réseau WAN.


  • Résumé

    XML was recommended by W3C in 1998 as a markup language to be used by device- and system-independent methods of representing information. XML is nowadays used as a data model for storing and querying large volumes of data in database systems. In spite of significant research and systems development, many performance problems are raised by processing very large amounts of XML data. Materialized views have long been used in databases to speed up queries. Materialized views can be seen as precomputed query results that can be re-used to evaluate (part of) another query, and have been a topic of intensive research, in particular in the context of relational data warehousing. This thesis investigates the applicability of materialized views techniques to optimize the performance of Web data management tools, in particular in distributed settings, considering XML data and queries. We make three contributions.We first consider the problem of choosing the best views to materialize within a given space budget in order to improve the performance of a query workload. Our work is the first to address the view selection problem for a rich subset of XQuery. The challenges we face stem from the expressive power and features of both the query and view languages and from the size of the search space of candidate views to materialize. While the general problem has prohibitive complexity, we propose and study a heuristic algorithm and demonstrate its superior performance compared to the state of the art.Second, we consider the management of large XML corpora in peer-to-peer networks, based on distributed hash tables (or DHTs, in short). We consider a platform leveraging distributed materialized XML views, defined by arbitrary XML queries, filled in with data published anywhere in the network, and exploited to efficiently answer queries issued by any network peer. This thesis has contributed important scalability oriented optimizations, as well as a comprehensive set of experiments deployed in a country-wide WAN. These experiments outgrow by orders of magnitude similar competitor systems in terms of data volumes and data dissemination throughput. Thus, they are the most advanced in understanding the performance behavior of DHT-based XML content management in real settings.Finally, we present a novel approach for scalable content-based publish/subscribe (pub/sub, in short) in the presence of constraints on the available computational resources of data publishers. We achieve scalability by off-loading subscriptions from the publisher, and leveraging view-based query rewriting to feed these subscriptions from the data accumulated in others. Our main contribution is a novel algorithm for organizing subscriptions in a multi-level dissemination network in order to serve large numbers of subscriptions, respect capacity constraints, and minimize latency. The efficiency and effectiveness of our algorithm are confirmed through extensive experiments and a large deployment in a WAN.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.