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Introduction gÈnÈrale

Le commencement de toutes les sciences, cíest líÈtonnement que les choses sont ce

quíelles sont.

Aristote, in Metaphysics.

Les marchÈs des Ènergies, dans leur conception gÈnÈrale, englobent un certain nombre

de commoditÈs ayant chacune des spÈciÖcitÈs propres. Nous pouvons gÈnÈralement les

classer en deux catÈgories distinctes:

 Les Ènergies de type "fuel": pÈtrole, gaz, charbon et leurs dÈrivÈs;

 Le marchÈ de líÈlectricitÈ.

La raison de cette classiÖcation tient autant ‡ la nature spÈciÖque de chacun de ces

marchÈs, quíau rythme historique avec lequel ils se sont ouverts ‡ la concurrence. Les

marchÈs de type "fuel", et plus prÈcisÈment les marchÈs du pÈtrole et du gaz se sont

transformÈs en des marchÈs concurrentiels de gros dans les annÈes 1980. Le marchÈ de

líÈlectricitÈ síest quant ‡ lui ouvert ‡ la concurrence dans plusieurs pays au milieu des

annÈes 1990.

MalgrÈ leurs di§Èrences fondamentales, ces marchÈs impliquent trois niveaux díactivitÈs

traditionnelles communs: production, distribution et consommation. Initialement,
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ces activitÈs Ètaient organisÈes par une seule entitÈ qui contrÙlait líensemble du sys-

tËme local de distribution dans un contexte monopolistique. Líine¢cience appar-

ente de ce fonctionnement a donnÈ lieu ‡ une dÈrÈgulation progressive des di§Èrents

marchÈs entrainant un dÈgroupage des services et la crÈation de marchÈs jouant le rÙle

díintermÈdiaire. Líobjectif principal de cette initiative f˚t bien s˚r de dissoudre les

monopoles en assurant une sÈcuritÈ díapprovisionnement de líÈnergie ‡ un prix abord-

able ‡ tous les consommateurs dans le respect de la protection de líenvironnement et

de la promotion díune concurrence non dÈloyale.1

Au-del‡ de ces aspects concurrentiels, ce processus de dÈrÈgulation a Ègalement donnÈ

lieu, pour líensemble des marchÈs ÈnergÈtiques, au dÈveloppement progressif de marchÈs

dÈrivÈs et díinstruments de couverture trËs sophistiquÈs (options, swaps,...) rendant

les transactions toujours plus complexes, et avec elles une participation croissante

díintervenants aux multiples horizons. En e§et, aux prix comptants dits spot, re-

prÈsentant líÈtat du marchÈ pour une transaction dÈterminÈe, en un lieu gÈographique

et ‡ un instant donnÈs sans prÈsager des conditions futures, se sont ajoutÈs des marchÈs

plus ÈlaborÈs faisant intervenir la notion díanticipation temporelle: les prix futures et

forward. Le marchÈ des futures, contrairement au marchÈ spot, constitue une anticipa-

tion dans le futur du prix comptant compte tenu de líinformation disponible ‡ une date

donnÈe. Ce marchÈ standardisÈ apparaÓt Ítre Ètroitement liÈ au marchÈ du sous-jacent

dans la mesure o˘ la relation entre prix comptants et prix ‡ terme est rendue possible

par un phÈnomËne de propagation des chocs díun marchÈ ‡ líautre. Díune maniËre

gÈnÈrale, líutilitÈ de ces marchÈs futures rÈside dans leurs capacitÈs de valorisation des

livraisons futures conditionnelles ‡ líinformation disponible, dans líamÈlioration de la

gestion des stocks, mais aussi et surtout dans líautorisation díopÈrations de couverture

de risques.2 Un investisseur dit physique, actif sur le marchÈ du pÈtrole, va alors pouvoir

1Voir Hansen et Percebois (2011).
2En e§et, la base (la di§Èrence entre le prix au comptant et le prix ‡ terme) tend ‡ devenir nulle

‡ mesure que líon síapproche de líÈchÈance du contrat considÈrÈ. Les pertes sur le marchÈ sous-jacent
peuvent alors Ítre compensÈes par les gains sur le marchÈ ‡ terme, et rÈciproquement.
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e§ectuer des opÈrations de couverture en prenant position sur le marchÈ physique tout

en se couvrant sur les marchÈs futures.

Le prix forward, quant ‡ lui, malgrÈ de nombreuses similaritÈs avec les futures, a

la spÈciÖcitÈ díÍtre plus opaque et plus sujet ‡ des comportements de manipulation.

En e§et, contrairement aux prix futures, le marchÈ forward níest pas un marchÈ o˘

les transactions sont standardisÈes et o˘ les prix sont publiquement et gratuitement

disponibles. Ils se caractÈrisent davantage comme des Èchanges bilatÈraux de con-

trats sur mesure. Il est alors frÈquent díavoir des situations o˘ les opÈrateurs de

marchÈ de grÈ ‡ grÈ prennent des positions en totale opacitÈ. Le dÈveloppement de

ces di§Èrents marchÈs des dÈrivÈs síest accompagnÈ díune modiÖcation des stratÈgies

díinvestissement. Aux investisseurs dits "commerciaux" qui produisent de líÈnergie et

utilisent les marchÈs dÈrivÈs pour se protÈger contre les risques physiques, viennent

síajouter des investisseurs "non commerciaux ou institutionnels", qui, níayant aucune

considÈration fondamentale, se protËgent via des instruments sophistiquÈs contre les

áuctuations des marchÈs des actions en diversiÖant leurs portefeuilles par des actifs de

type commoditÈs (Creti et al., 2013). Cela a parfois pour consÈquence de rendre les

prix des commoditÈs en totale dÈconnexion de leurs fondamentaux.

De par líuniformisation des contrats sur lesquels ils portent, les prix ‡ terme servent

cependant souvent de base ‡ la valorisation des contrats sur les marchÈs physiques,

au comptant comme en di§ÈrÈ. En outre, la structure par terme des prix permet,

pour un actif donnÈ, líexistence díune valorisation sur plusieurs maturitÈs rendant le

fontionnement des marchÈs des Ènergies similaire ‡ celui des marchÈs Önanciers tradi-

tionnels. SíintÈresser aux prix forward des commoditÈs cíest alors mettre en exergue

les liens potentiels existants entre le monde de líÈnergie et le monde de la Önance. Le

dÈveloppement de ces instruments et les phÈnomËnes qui les accompagnent se trouvent

dËs lors au coeur de nombre de questions acadÈmiques et publiques rÈcentes liant les

marchÈs des commoditÈs aux marchÈs Önanciers.
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Ce phÈnomËne en marche au sein des marchÈs ÈnergÈtiques tend ‡ modiÖer la

nature profonde et intrinsËque des prix. En e§et, partant díun constat historique,

depuis plusieurs dÈcennies, les prix des Ènergies spot et ‡ terme sont sujets ‡ une volat-

ilitÈ croissante3 pesant considÈrablement sur líensemble de líÈconomie.4 ComparÈe aux

prix des autres matiËres premiËres (comme, par exemple, les mÈtaux prÈcieux, ou en-

core les produits agricoles), líÈvolution des produits ÈnergÈtiques et principalement celle

du pÈtrole, du gaz et de líÈlectricitÈ est apparue exceptionnellement incertaine, tant ‡

long terme quí‡ court terme. Comme illustrÈe par la Table 1, cette volatilitÈ des prix

ÈnergÈtiques síest accrue sensiblement sur líensemble de la pÈriode 1980-2010, et plus

signiÖcativement depuis le dÈbut des annÈes 2000 renforÁant líincertitude ambiante sur

les marchÈs physiques, sans commune mesure avec les autres marchÈs de commoditÈs.

En comparaison, cette Èvolution est díun ordre de grandeur supÈrieur ‡ celles constatÈes

pour certaines sÈries macroeconomiques ou ÖnanciËres, ainsi que líillustrent les Ögures

0-1, 0-2, 0-3, et 0-4, retraÁant respectivement la volatilitÈ des sÈries de rendements du

prix du pÈtrole WTI (West Texas Intermediate), du Nasdaq, du Standard & Poorís,

ainsi que du taux de change dollar/euro depuis le dÈbut des annÈes 2000. LíÈvolution

comparÈe de la volatilitÈ de chacune des sÈries met en lumiËre le caractËre extrÍmement

erratique des prix du pÈtrole.

CouplÈe ‡ cette intensitÈ accrue, les prix des Ènergies et plus particuliËrement ceux du

pÈtrole prÈsentent des mouvements brusques díamplitudes trËs ÈlÈvÈes. Ce phÈnomËne

díenvergure internationale semble síÈtendre ‡ díautres matiËres premiËres gÈnÈrale-

ment moins enclines ‡ de fortes perturbations. Quelles pourraient Ítre les raisons

Èconomiques expliquant cette dynamique? Dans un contexte Èconomique global, cette

question díintÈrÍt public acquiert toute son importance tant les dommages sur líÈconomie

rÈelle díune forte variation des prix des matiËres premiËres peuvent Ítre consÈquents

3Voir Regnier (2007).
4Nombre de travaux acadÈmiques ont en e§et mis en avant líimpact des prix des Ènergies sur

líÈconomie rÈelle (Sadorsky (1999), Hamilton (2003), Edelstein et Kilian (2007), Kilian (2008), ...).
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(voir les travaux de Hamilton (2003), Edelstein et Kilian (2007), Kilian (2008)). Díun

point de vue macroÈconomique, les variations des prix des Ènergies peuvent agir sur

les dÈsÈquilibres des comptes courants ‡ líÈchelle mondiale, ainsi que sur les positions

extÈrieures nettes des pays. Une augmentation substantielle des prix du pÈtrole, par

exemple, est identiÖÈe comme un transfert de richesses des pays importateurs vers les

pays exportateurs crÈant un dÈsÈquilibre courant entre o§reurs et demandeurs via le

canal commercial et les áux internationaux de capitaux. Ces dÈsÈquilibres sont díautant

plus importants compte tenu du contexte díÈpuisabilitÈ des ressources dans lequel ils

síinscrivent.5

En outre, líimpact relatif des prix des Ènergies sur líÈconomie rÈelle est aussi et surtout

conditionnÈ par le mix, la dÈpendance ÈnergÈtique et líintensitÈ de la consommation

et de la production des pays, ainsi que par la maniËre dont les Èconomies síajustent ‡

court comme ‡ long terme suite ‡ des chocs des prix de líÈnergie. Pour des Èconomies

ouvertes telles que les Èconomies de la Zone franc par exemple, cette volatilitÈ des prix

ÈnergÈtiques et leurs capacitÈs díabsorption des chocs constituent un enjeu majeur de

politique Èconomique, compte tenu des nombreuses implications, notamment sur la

gestion des Önances publiques ou la sÈcuritÈ alimentaire. Cet enjeu est díautant plus

crucial que ces pays ne disposent gÈnÈralement pas de la taille nÈcessaire pour ináuer

sur la dÈtermination des prix internationaux (situation de price taker) et en subis-

sent donc directement les variations. Líimportance des enjeux associÈs ‡ cette extrÍme

volatilitÈ des prix et les causes profondes de ces mouvements expliquent la position

adoptÈe par la France ‡ ce sujet lors de sa prÈsidence du G20 en 2011 .

Aux Etats-Unis, cette question fait Ègalement líobjet de nombreux et vifs dÈbats

au parlement amÈricain, notamment depuis líinstauration en Juillet 2010 par le PrÈsid-

ent Obama du Dodd-Frank Wall Street Reform and Consumer Protection Act vis-

5Voir Brown et Y¸cel (2002), Jones, Leiby et Paik (2004), Lardic et Mignon (2006), et Lescaroux
et Mignon (2008).
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Table 1: Evolution de la volatilitÈ supra-annuelle des prix depuis 1980, par
catÈgorie de produits (source FMI et Banque de France).

1980-1989 1990-1999 2000-2010
Produits ÈnergÈtiques 19:43 18:32 34:90
MÈtaux 20:24 17:70 29:90
Produits agricoles 17:07 16:33 18:10

Notes: La volatilitÈ supra-annuelle est calculÈe comme líÈcart-type des taux de croissance
annuels des prix calculÈ par sous-pÈriode de 5 ans. Sources: FMI et Banque de France

Figure 0-1: VolatilitÈ des rendements des prix spot du pÈtrole brut WTI (03/01/2001-
18/02/2013)
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Figure 0-2: VolatilitÈ des rendements de líindice Nasdaq (03/01/2001-18/02/2013)
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Figure 0-3: VolatilitÈ des rendements de líindice Standard & Poorís 500 (03/01/2001-
18/02/2013)
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Figure 0-4: VolatilitÈ des rendements du taux de change US$/euro (03/01/2001-
18/02/2013)
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ant ‡ limiter les mouvements extrÍmes de prix des matiËres premiËres en restreignant

líutilisation díinstruments díinvestissement sophistiquÈs. En Europe, elle se pose avec

une acuitÈ toute aussi particuliËre en raison du processus de libÈralisation des marchÈs

dans lequel elle síinscrit. Cette ouverture progressive ‡ la concurrence a, comme nous

líavons signalÈ prÈcÈdemment, incitÈ de nouvelles opportunitÈs díÈchanges au travers

díinstruments Önanciers complexes, favorisant un contexte de Önanciarisation crois-

sante des marchÈs ÈnergÈtiques.

Nombreuses et cruciales sont alors les questions que se posent les pouvoirs publics et

les acadÈmiques. Parmi ces questions Ögurent celles (i) du mÈcanisme de formation des

prix des Ènergies aux niveaux international et europÈen; (ii) de la place des marchÈs

Önanciers dans le changement profond qui síopËre dans le paysage ÈnergÈtique mon-

dial; (iii) de la vÈritable nature des mouvements des prix des Ènergies, ou encore (iv)

de líÈvolution des marchÈs ÈnergÈtiques et des matiËres premiËres vers des marchÈs Ön-

anciers traditionnels. Plus gÈnÈralement, quel est le rÙle jouÈ par les di§Èrents acteurs

Èconomiques et Önanciers dans cette mutation? Y-a-tíil rÈellement une Önanciarisation

des marchÈs de líÈnergie? Dans lía¢rmative, est-elle dommageable en termes de bien

Ítre social? Ces questions en appellent bien díautres, que ce soit en termes de poli-

tique ÈnergÈtique, transfert de technologies, politique environnementale ou rÈgulation

ÖnanciËre face auxquelles il convient de trouver des rÈponses.

Face ‡ ces Èvolutions majeures sur les marchÈs ÈnergÈtiques, nombreux sont les

dÈÖs qui se posent aux chercheurs concernant la comprÈhension conjointe des mÈcan-

ismes et des dynamiques des marchÈs ÈnergÈtiques et Önanciers dans un contexte en-

vironnemental toujours plus instable. Force est de constater que, jusquí‡ prÈsent,

la recherche existante síinscrit dans un cadre dichotomique cloisonnÈ sÈparant ces

di§Èrents aspects, que sont les marchÈs des Ènergies, les politiques macroÈconomiques

et industrielles, et les institutions ÖnanciËres. Mieux, la plupart des Ètudes sur le sujet

ne síaccordent pas sur les causes profondes des áuctuations des prix. Les principales
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divergences se caractÈrisent dans les fondements mÍme de líanalyse, certains auteurs

Èvoluant dans un cadre de complËte rationalitÈ o˘ les agents Èconomiques ont une con-

naissance totale de líinformation dont ils disposent et líutilisent de maniËre optimale

(B¸y¸ksahin et al. (2009, 2010a,b, 2011a,b), Silvennoinen et Thorp (2010), Kilian et

Murphy (2012), Baumeister et Kilian (2012), Creti et al. (2013),...) alors que díautres

envisagent une rationalitÈ limitÈe o˘ les áuctuations des prix peuvent Ítre le rÈsultat

díune non reprÈsentativitÈ des comportements (Reitz et Westerho§ (2009), Reitz et

Slopek (2009), Ellen et Zwinkels (2010),...).

Ainsi, au-del‡ mÍme de la complexitÈ du phÈnomËne de Önanciarisation, cette ana-

lyse rend la comprÈhension encore plus di¢cile et paradoxale puisque ne reposant

pas sur un cadre structurel global. Ce paradoxe peut donner lieu ‡ des situations

"indÈcidables" Èconomiquement (voir Ögure 0-5), puisque trop contradictoires et trop

restrictives en terme díapproche. Notre objectif dans cette thËse est díanalyser

le rÙle de la Önance dans la dynamique des marchÈs ÈnergÈtiques et de cla-

riÖer cette question de fond quíest la Önanciarisation des commoditÈs et

les phÈnomËnes qui líaccompagnent. Plus gÈnÈralement, notre thËse cherche ‡

apporter un cadre díanalyse global combinant Èconomie de líÈnergie, thÈories macroÈ-

conomique et ÖnanciËre, et techniques quantitatives. Bien entendu, nous ne prÈtendons

pas rÈpondre ‡ líensemble des interrogations auxquelles nous faisons face, mais nous

ambitionnons díanalyser les ÈlÈments factuels caractÈrisant la formation des prix des

matiËres premiËres.

Plus formellement, notre thËse cherche ‡ comprendre la nature profonde des marchÈs et

va au-del‡ du cadre restreint proposÈ jusquí‡ prÈsent. Líobjet est ainsi díanalyser

les relations Ètroites entre Ènergie et Önance, díabord díun point de vue ra-

tionnel et systÈmatique ‡ travers des techniques quantitatives sophistiquÈes,

puis en síÈloignant du cadre tradtionnel par une analyse comportementale et

Èmotionnelle des marchÈs. En nous Ècartant progressivement du cadre Èconomique

traditionnel aÖn de tenir compte du "caractËre humain" des marchÈs, nous ambi-
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tionnons díavoir une rÈáexion "dÈcidable" Èconomiquement (voir Ögure 0-6), ‡ mÍme

díexpliquer la particularitÈ des prix des Ènergies. De maniËre rigoureuse, au-del‡ díune

analyse dÈtaillÈe des dynamiques conjointes pouvant exister entre energie et Önance,

notre thËse cherche ‡ montrer si des comportements "díÈxubÈrance irrationnelle et

Èmotionnelle" existent dans le processus de formation des prix. Si tel est le cas, cela

justiÖerait que les marchÈs des Ènergies, malgrÈ leur caractËre physique, peuvent ‡

maints Ègards se comporter comme des marchÈs Önanciers traditionnels et Ítre sujets

‡ nombre díanomalies. Cela appelle bien s˚r un cadre conceptuel Èlargi de líÈconomie

de líÈnergie, en perpetuelle Èvolution, et une reáexion moins concessive quí‡ líordinaire

cherchant ‡ relever le dÈÖ de trouver les rÈponses aux questions en unissant les savoirs

dans les di§Èrents champs de líÈnergie, de líÈconomÈtrie, de la Önance et de la psycho-

logie.

AÖn de rÈpondre ‡ cet objectif, notre thËse síarticule autour de trois thËmes: díune

part la relation entre les prix des di§Èrentes Ènergies et leurs propriÈtÈs ÖnanciËres est

analysÈe, díautre part les aspects Èmotionnels et comportementaux des marchÈs sont

ÈtudiÈs, enÖn les liens directs entre marchÈs boursiers et marchÈs des commoditÈs sont

abordÈs. Ces trois thËmes síorganisent en cinq chapitres.

Le premier chapitre Ètudie les relations de long terme entre les prix forward europÈens

du pÈtrole, du gaz, du charbon et de líÈlectricitÈ sur plusieurs maturitÈs ‡ travers

líutilisation de techniques de cointÈgration non linÈaire en panel. A cet e§et, nous con-

sidÈrons un panel de 35 maturitÈs et une variable de contrÙle, le Dow Jones Euro Stoxx

50 proxy de líenvironnement Èconomique et Önancier. Les estimations ÈconomÈtriques

nous rÈvËlent que les prix du pÈtrole, du gaz et du charbon sont liÈs positivement,

alors que la relation nÈgative entre les prix du pÈtrole et de líÈlectricitÈ est cohÈrente

avec un e§et de substitution entre les deux Ènergies ‡ long terme. Les estimations du

modËle de regression ‡ transition lisse en panel (Panel Smooth Transition Regression

(PSTR)) mettent en Èvidence un ajustement des prix forward du pÈtrole non linÈaire
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et asymÈtrique, ce qui rÈvËle le rÙle important des anticipations auto-rÈalisatrices et de

la spÈculation.

Le deuxËme chapitre síinscrit dans le prolongement du prÈcÈdent puisquíil síintÈresse

aux co-mouvements entre les prix des Ènergies. Il propose une nouvelle procÈdure

díÈvaluation des causalitÈs ‡ court terme basÈe sur líapproche traditionnelle de Granger

pour plusieurs niveaux de risque dans les queues de distribution.6 Les propriÈtÈs

asymptotiques et díÈchantillon du test sont proposÈes et ce dernier est appliquÈ ‡

deux problÈmatiques en Èconomie de líÈnergie: (i) líintÈgration des marchÈs du pÈtrole,

et (ii) la transmission entre les prix forward des Ènergies.

Concernant líhypothËse díintÈgration des marchÈs internationaux du pÈtrole, notre test

de causalitÈ nous permet de rÈpondre ‡ deux questions: (i) si les di§Èrents marchÈs du

pÈtrole sont plus ou moins intÈgrÈs durant les pÈriodes díextrÍmes áuctuations des prix,

et (ii) si les propriÈtÈs des price setter changent durant cette pÈriode. Nos rÈsultats

rÈvËlent que le niveau díintÈgration des di§Èrents marchÈs du pÈtrole diminue durant les

pÈriodes díextrÍme áuctuation des prix, conduisant ‡ des situations de diversiÖcation

potentiellement plus proÖtables. Par ailleurs, le comportement des marchÈs price-setter

apparaÓt Ítre di§Èrent selon líintensitÈ des áuctuations.

La problÈmatique relative aux co-mouvements entre les prix des Ènergies est evoquÈe

dans un second temps. La question sous-jacente ici abordÈe concerne les propriÈtÈs

ÖnanciËres des prix des Ènergies. Nous cherchons ‡ dÈterminer si les mÈcanismes de

transmission entre les prix forward europÈens ‡ di§Èrentes maturitÈs sont plus ou moins

importants durant les phases díextrÍmes áuctuations des prix comparÈes aux pÈriodes

dites "calmes" des marchÈs. Il apparaÓt alors une absence de lien causal entre les

marchÈs durant les pÈriodes de "calmes", alors quíune Ètroite relation semble exister

durant les pÈriodes díextrÍmes áuctuations ‡ la baisse. Plus prÈcisemment, cette caus-

alitÈ semble Ítre davantage signiÖcative ‡ une courte maturitÈ (prix forward ‡ 1 mois)

6Techniquement, ce test est une extension en multivariÈ de líapproche proposÈe par Hong et al.
(2009).
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quí‡ des maturitÈs plus ÈloignÈes (prix forward ‡ 10, 20 et 30 mois), tÈmoignant díun

e§et de type Samuelson dans la courbe ‡ terme des prix. Les stratÈgies de diversiÖca-

tion seraient alors plus e¢cientes ‡ mesure que les maturitÈs augmentent.

Le troisiËme chapitre síintÈresse, par une approche biorhytmique, ‡ la relation entre les

Èmotions et les prix forward europÈens du pÈtrole, du gaz, du charbon et de líÈlectricitÈ

durant les pÈriodes "calme" et díextrÍme áuctuation des prix. Pour ce faire, nous util-

isons la variable SAD (Seasonal A§ective Disorder) proposÈe par Kamstra et al. (2003)

comme proxy des Èmotions pour Èvaluer cet impact sur la dynamique des marchÈs Èner-

gÈtiques. Nos rÈsultats rÈvËlent que les tendances saisonniËres ont un impact signiÖcatif

sur les prix uniquement durant les pÈriodes díextrÍmes mouvements. Une Ètude plus

approfondie montre un e§et asymÈtrique de la variable SAD entre les phases de hausse

ou de baisse des marchÈs. Finalement, nous Èvaluons les propriÈtÈs out-of-sample de

cette variable SAD dans la prÈvision des áuctuations des prix et nous montrons que

cette derniËre surperforme de maniËre signiÖcative le modËle utilisÈ comme bench-

mark.7

Le quatriËme chapitre síintÈresse plus spÈciÖquement ‡ líimpact potentiel de la Önan-

ciarisation sur la dynamique des prix ÈnergÈtiques en fournissant un modËle thÈorique

comportemental et Èmotionnel, o˘ di§Èrentes catÈgories díagents (i.e. fondamental-

istes et chartistes) co-existent sur les marchÈs ÈnergÈtiques et sont soumis au regret et ‡

líincertitude. Le modËle thÈorique est ensuite estimÈ sur les prix forward europÈens des

Ènergies (pÈtrole, gaz, charbon et ÈlectricitÈ) durant les pÈriodes de calme et díextrÍmes

áuctuations des prix. Nos rÈsultats montrent que les marchÈs des Ènergies sont com-

posÈs díagents hÈtÈrogËnes qui se comportent di§Èremment selon líintensitÈ des áuctu-

ations et le dÈgrÈ díincertitude. En particulier, durant les pÈriodes de "calme", les prix

des Ènergies apparaÓssent Ítre gouvernÈs par des fondamentalistes et chartistes neutres

7Le modËle de comparaison est un modËle "macroÈconomique" o˘ les prix sont expliquÈs par le
taux de change euro/dollar US et líindice boursier Dow Jones Euro Stoxx 50.
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‡ líincertitude, en revanche ils semblent davantage dictÈs par des chartistes irrationnels

averse ‡ líincertitude pendant les phases díintenses mouvements. Dans cette perspect-

ive, les áuctuations rÈcentes observÈes sur les marchÈs pourraient Ítre, en partie, la

consÈquence díune exhubÈrance irrationnelle. En terme de prÈvision, notre modËle

comportemental et Èmotionnel surperforme la marche alÈatoire.

Le cinquiËme et dernier chapitre adopte une conception plus traditionnelle de líÈconomie

et síintÈresse aux relations existantes entre marchÈs boursiers et marchÈs des matiËres

premiËres. Nous considÈrons alors une gamme plus large de marchÈs des commoditÈs,

regroupant 25 secteurs di§Èrents8 sur la pÈriode janvier 2001 ‡ novembre 2011. Par

une approche multivariÈe de type DCC-GARCH, nous montrons que les corrÈlations

dynamiques entre les marchÈs des commoditÈs et líindice Standard & Poorís sont ex-

trÍmement volatiles, particuliËrement durant la pÈriode 2007-2008 de crise ÖnanciËre.

Plus prÈcisÈmment, ce phÈnomËne semble Ítre de plus ou moins grande ampleur selon

les phases de hausse ou de baisse des marchÈs Önanciers, particuliËrement pour les

sÈries du pÈtrole, du cafÈ et du cacao. En outre, le marchÈ de líor semble conserver son

rÙle de valeur refuge car ses corrÈlations avec le marchÈ des actions sont nÈgatives et

diminuent durant les pÈriodes de baisse de líindice. Certaines commoditÈs apparaÓssent

alors Ítre caractÈrisÈes par un phÈnomËne de spÈculation.

8Les marchÈs considÈrÈs correspondent aux secteurs suivants: Ènergie, mÈtaux prÈcieux, agro-
industriel, mÈtaux non-ferreux, alimentaire, olÈagineux, exotique et bÈtail.



Figure 0-5: SchÈma díindÈcidabilitÈ Èconomique



Figure 0-6: SchÈma de dÈcidabilitÈ Èconomique
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Introduction 1

Investigating the interactions between energy markets if of crucial importance to
correctly apprehend and understand their price dynamics. Indeed, energy prices are
obviously connected through the production process, and economic theory suggests
that a relationship should exist between input and output prices. Besides, oilódue to
its physical properties and the importance of its marketóis often viewed as an eco-
nomic ìdriverî ináuencing the other energy prices, such as coal, gas, and electricity.

However, energy markets recently experienced signiÖcant developments that are likely
to modify the potential interactions between energy prices. European gas and elec-
tricity markets have freshly known a liberalization process allowing the emergence of
new contracts making prices more likely to be ináuenced by market participants rather
than regulators (Mjelde and Bessler, 2009). While various studies2 have investigated
the links between energy prices on spot markets, they generally do not consider the
Önancial dimension of energy markets. This may be viewed as an important limitation
since along with these major evolutions in the Öeld of energy, the development of new
products promotes the Önancialization of the energy markets. The long-term challenge
of these changes then becomes crucial because such Önancialization is likely to have a
signiÖcant impact on price dynamics. Indeed, apart from any physical considerations,
oil, like gas, electricity and coal, can be considered as a Önancial asset. Speculators
seeking signiÖcant proÖts would then intervene in these markets and would maintain
high prices through their long positions.

In this chapter, we account for the term structure of energy prices through an ana-
lysis of forward prices. More speciÖcally, we consider forward prices of oil, coal, gas
and electricity at 35 maturities, and aim at modelling the relationship between these
four energy sources for all maturities in a panel data cointegration setting. Relying
on forward prices presents several advantages. First, this approach allows us to study
the links within and between heterogeneous maturities by accounting for arbitrage in-
vestorsí behavior over the long runóthe contracts being not only traded by agents
who need physical energy delivery, but also by speculators with purely Önancial mo-
tivation. Second, while relying on spot models based on long-term price relationships
often requires knowledge of the convenience yield for risk-neutral valuation which is
not observable and di¢cult to obtain, this is not the case for forward price models (Ey-
deland and Wolyniec, 2003). Third, in addition to these economic arguments, using
various maturities provides more observations, which is useful when implementing unit

1A Örst version of this chapter has been published as JoÎts, M. and Mignon, V., 2011, On the
link between forward energy prices: A nonlinear panel cointegration approach, Energy Economics, 33,
1170-1175.

2See references in Section 1.1.
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root and cointegration tests.

It is worth mentioning that, given the various factors that may ináuence energy mar-
kets, the dynamics of energy prices is likely to be characterized by nonlinearities. Such
nonlinearities may come from both fundamental factors or speculative forces. Regard-
ing the Örst point, the recent huge increase in the Chinese oil demand coupled with an
unexpected halt of non-OPEC production, as well as the loss of OPEC spare capacity
since 2004 (Kaufmann, 2011) are examples of fundamental shocks that may generate
nonlinearities and regime-switching. Turning to the speculative factors, investors may
hold long-run positions that encourage increasing energy prices, and switch between
investment strategies (Ellen and Zwinkels, 2010). These elements play in favor of non-
linear, regime-switching models.

Various speciÖcations exist in the class of nonlinear regime-switching models. In addi-
tion to the category of (stochastic) Markov-switching models, the most popular models
are (deterministic) threshold processes. These models are characterized by two (or
more) regimes, determined by a threshold variable and a threshold value. The obser-
vations in the panel are then divided into these two regimes, depending on whether the
threshold variable is lower or larger than the threshold value. In the panel threshold
regression (PTR) model introduced by Hansen (1999), the transition from one regime
to the other is abrupt and the model implicitly supposes that the two sub-samples
of observations are clearly identiÖed and distinguished, which is not always feasible
in practice. To overcome this di¢culty and to allow for possible smooth and gradual
transitions, we consider here the panel smooth transition regression (PSTR) model
introduced by Gonz·lez et al. (2005). These models are particularly appropriate for
our purpose since they allow us to model the nonlinear behavior of the forward energy
prices adjustment process to the equilibrium value, by accounting for gradual changes
rather than abrupt ones. It seems indeed reasonable to think that smooth transitions
are more suitable than abrupt ones in our case, since changes in energy markets are
generally not sudden and tend to take some time.

To sum up, and given the key role played by oil in energy markets, the aim of this
chapter is to investigate the nonlinear adjustment process of the forward oil price to-
ward its equilibrium value given by the estimated long-term relationship between oil,
gas, coal and electricity forward prices. To our best knowledge, our contribution is
the Örst to account for interactions between energy prices at various maturities in a
nonlinear panel data framework.

The rest of the chapter is organized as follows. Section 1.1 presents some stylized facts
and reviews the literature on the links between energy prices. Data and results of panel
unit root and cointegration tests are displayed in Section 1.2. Section 1.3 reports the
estimation results, and Section 1.4 concludes the article.
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1.1 Relationships between energy prices: stylized
facts and literature review

The natural gas market is often considered to be potentially linked to other primary
energy sources by di§erent ways. Technically, gas is extracted from the soils either alone
(ìdry gasî), or associated with the oil exploration (ìassociated gasî). Consequently,
natural gas and oil have the same extraction/exploration process, and oil producers
are often gas producers too, creating an implicit link between prices. Usually, the
natural gas is used for domestic needs and as an input to the electricity production
process. However, it has no captive use and is in constant competition with other en-
ergy sources (with domestic and heavy fuel oil in domestic needs, and with coal in the
power production). These characteristics explain the existence of (i) an input-output
relationship between natural gas and electricity, and (ii) competitive relation between
oil, gas, and coal. Despite the close relationship between energy markets, the entry of
the gas market in the liberalization process is likely to exacerbate short-run decorrela-
tion between oil and gas prices. Indeed, long-term gas contracts are no longer indexed
to oil contracts, but to spot and futures prices, rending prices more sensitive to the
behavior of market participants.

Turning to coal, due to its apparent abundance,3 it is dominant in two speciÖc sectors:
manufacture of cement and steel, and electricity generation (IEA, 2010a and British
Petroleum, 2010). It is the main input to the electricity production, making energy
prices potentially connected through an input-output relationship. However, coal be-
ing extremely pollutant, it is in competition with gas and oil in the power production,
likely to create substitution e§ects. Besides, due to its solid state and its inert nature,
coal transportation is very expensive4 because it requires seaborne trade. Then, coal
prices strongly depend on the variability of the freight rates, which are signiÖcantly
variable since the 1950s (Lundgren, 1996). Consequently, oil and coal prices may be
indirectly related each other through the áuctuations of the transport fuel derived from
oil.

Unlike oil, natural gas and coal, electricity is not a fossil energy. It can be produced
either as primary energy from natural sources (like hydro, wind, solar, ...), or as sec-
ondary energy from the heat of nuclear Össion, the geothermal and solar thermal heat,
or by the combustion of fossil fuels (coal, natural gas, and oil) (IEA, 2010b). Accord-
ingly, and as previously mentioned, electricity prices may be related to its products
through an input-output relationship. Moreover, power energy is used for most hu-
man activities (heating, lighting, computers, powering machines, transport, ...) and

3The reserves/production ratio is equal to 145 years (British Petroleum, 2010), and reserves are
also well distributed (no cartel exists).

4This is one of the reasons explaining the fact that the coal market was initially regional.
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in several sectors (transformation and energy sectors, transmission and distribution of
electricity sectors, and Önal consumption5). Thus, in addition to an obvious relation
through the production process, electricity, gas, oil and coal prices may be interrelated
by competition and substitution links.

On the whole, various factors may explain the interactions between energy prices.
Turning to the empirical literature, Serletis and Rangel-Ruiz (2004) investigate the
strength of shared dynamics between North American daily spot Henry Hub gas and
WTI crude oil prices over the period after the deregulation, from January 1991 to April
2001. They found that while the US market deregulation has ëdecoupledí the pricesí re-
lationship, North American natural gas prices are largely deÖned by the US Henry Hub
prices trends. Focusing on the UK, Panagiotidis and Rutledge (2007) examine whether
oil and gas prices ëdecoupledí during the post market deregulation period (1996-2003).
Using cointegration techniques, they show that a cointegrating relationship is present
throughout the sample period, especially between 1999 and 2000. Relying on daily ICE
futures prices of gas and Brent for Öve contracts, Westgaard et al. (2011) Önd that
a long-term relationship exists between prices depending on the length of the contracts.

Considering more energy sources, Bachmeier and Gri¢n (2006) investigate the degree
of integration between crude oil, coal, and natural gas markets. Using data from Janu-
ary 1990 to August 2003, and relying on the estimation of bivariate error correction
models, they Önd a weak degree of integration between energy markets. Investigating
the relationship between weekly spot prices among US electricity and its major fuel
inputs (natural gas, uranium, coal and crude oil) over the period from June 6, 2001
to April 23, 2008, Mjelde and Bessler (2009) put forward that electricity prices ináu-
ence natural gas prices, which in turn a§ect crude oil prices. Ma and Oxley (2010)
investigate energy prices comovements in China from January 1995 to December 2005,
and show that coal and electricity prices have comoved since 1997. Finally, one can
mention the study by Chevallier (2012) concerning time-varying correlations between
oil, gas and CO2 markets using CCC, BEKK and DCC-GARCH models.

To sum up, the previous literature globally puts forward some links between energy
markets, depending on the market location and the type of energy considered. However,
most of them deal with spot prices. Consequently, they do not investigate the potential
relationships at various maturities, a fact that is of considerable importance when one
wishes to account for the Önancial dimension of energy markets. Furthermore, relying
on spot models based on long-term price relationships often requires knowledge of the
convenience yield for risk-neutral valuation. However, the later is not observable and
di¢cult to deduce, whereas this is not the case for forward prices models (Eydeland
and Wolyniec, 2003). For these reasons, and to account for the Önancial dimension of

5The Önal consumption sector represents the main sector for electricity consumption.
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energy markets, it seems particularly relevant to focus on forward prices data, which
is the aim of the present contribution.

1.2 Data, unit root and cointegration tests

We consider daily data over the January 3, 2005 to December 31, 2010 period.
We rely on European forward prices of oil, gas, coal, and electricity for 35 maturities.6

Using such a large sample of maturities allows us to account for possible heterogen-
eity in the relationship between energy prices,7 as well as long-run arbitrage behavior
of market participants. Energy price data are extracted from the Plattís Information
Energy Agency. To control for the economic and Önancial environment that may im-
pact all energy price series, we rely on a European equity futures price indexówhich
has the advantage of being available at a daily frequency. This variable also allows
considering oil as a Önancial asset and controls for the recent Önancial turmoil. Our
retained equity variable is the Dow Jones Euro Stoxx 50, the European leading stock in-
dex for futures contracts, extracted from Datastream. All price series are in logarithms.

We start by estimating the equilibrium value of forward oil price, given the values of
the other forward energy prices and the equity futures price index. More speciÖcally,
we estimate the following long-term relationship:

poili;t = ai + b1p
elec
i;t + b2p

gas
i;t + b3p

coal
i;t + b4p

Stoxx
i;t + i;t (1.1)

where i = 1; :::; 35 denotes the maturity, and t = 1; :::; T the time. poili;t , p
elec
i;t , p

gas
i;t and

pcoali;t respectively denote the forward prices of oil, electricity, gas and coal. pStoxxi;t stands
for the equity futures price index.

Before estimating Equation (1.1), panel unit root and cointegration tests have to be
applied. To overcome the cross-sectional independence hypothesis among the panel
members (i.e. among the various maturities), we apply second-generation panel unit
root tests8 that relax this restrictive assumption required by Örst-generation tests.9

6As an example, Figure 1-1 in Appendix depicts the one-month forward energy prices (in logs).
7See JoÎts (2010).
8See Hurlin and Mignon (2006) and Hurlin (2010) for a detailed presentation of panel unit root

tests.
9Cross-section dependence can arise for several reasons, such as spatial spillovers, Önancial conta-

gion, socioeconomic interactions, and common factors (Pesaran, 2004). In the presence of cross-section
correlations in the panel, Örst-generation tests su§er from size distortions. Regarding our panel, the
application of the CD test developed by Pesaran (2004)óbased on the average of pair-wise correlation
coe¢cients of OLS residuals from the individual regressionsóshows that such correlations exist in our
sample (results available upon request to the authors).
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Results are reported in Table 1.1, all tests considering the unit root as the null hy-
pothesis.10 The Pesaran (2007) CIPS test is based on Dickey-Fuller-type regressions
augmented with the cross-section averages of lagged levels and Örst di§erences of the
individual series. Regarding the Moon and Perron (2004) test, it is constructed on
de-factored observationsódeviations from the common componentsóand the factor
loadings are estimated by principal component analysis. The Choi (2002) test relies on
an error-components panel model and removes the cross-section dependence by elimin-
ating (i) individual e§ects using the Elliott, Rothenberg and Stock (1996) methodology
(ERS), and (ii) the time trend e§ect by centering on the individual mean. As shown
in Table 1.1, all tests conclude in favor of the unit root hypothesis meaning that all
forward energy price series entering in Equation (1.1) are I(1).

Table 1.1: Second-generation panel unit root tests

CIPS Moon-Perron Choi
t t Pm Z L

poili;t -2.480 (0.25) -1.805 (0.03) -0.700 (0.24) -3.829 (0.99) 3.393 (0.99) 3.059 (0.99)
pcoali;t -2.078 (0.95) 0.047 (0.51) 0.016 (0.50) -3.358 (0.99) 2.299 (0.98) 2.041 (0.97)
peleci;t -3.162 (0.01) -1.287 (0.09) -0.783 (0.21) -5.308 (1.00) 7.894 (1.00) 7.557 (1.00)
pgasi;t -2.707 (0.02) 1.355(0.91) 0.543 (0.70) -2.152 (0.98) 1.090 (0.98) 0.993 (0.83)

Notes: Between parentheses: p-values. (a) For the CIPS test, all statistics are based on
univariate AR(p) speciÖcations with p  8 including individual e§ects and time trends; the
critical values tabulated in Pesaran (2007) are -2.769, -2.653, and -2.589, at 1%, 5%, and
10% signiÖcance levels respectively. (b) For the Moon and Perronís tests, the long-run

variance used in the construction of t and t

 is computed using the Andrews and Monahan

(1992)ís estimator; the maximum number of common factors selected using AIC is 8 (see
Bai and Ng, 2002); all statistics are computed with individual e§ects and time trends; the
Moon-Perron statistics are standard Normal for large T under the unit root hypothesis. (c)

For the Choiís test, the optimal lag orders in the individual ERS statistics (Elliott,
Rothenberg and Stock, 1996) for each series are determined with pmax = 12; all tests are
computed with individual e§ects and time trends speciÖcations; under the unit root

hypothesis the Choiís statistics are standard Normal when T and N converge jointly to
inÖnity.

10We use the Matlab codes (Version 7.00) provided by Christophe Hurlin for implementing second-
generation panel unit root tests (http://www.univ-orleans.fr/deg/masters/ESA/CH/churlin_R.htm).
Westerlund (2007)ís cointegration tests have been implemented using our own Stata codes based on
the algorithm developed by Damyan Persyn, and we rely on the Gauss codes provided by Joakim
Westerlund for implementing Westerlund and Edgertonís tests.
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Turning now to the cointegration case, we also apply second-generation tests account-
ing for cross-sectional dependence. The four panel error correction-based tests pro-
posed by Westerlund (2007) rely on structural dynamics and are a panel extension of
the Banerjee et al. (1998) tests developped in the time series context. Among the
four Westerlundís tests, two consider an homogeneous cointegrating relation under the
alternative, while the two others allow for an heterogeneous long-term relationship.
Results reported in Table 1.2 show that forward oil prices and the four considered vari-
ables are cointegrated. Finally, given that our sample covers a quite turbulent period,
we implement the Westerlund and Edgerton (2007) second-generation panel cointeg-
ration test that is robust to unknown heterogeneous breaks in both the intercept and
slope of the cointegrating regression. Our Öndings reported in Table 1.2 conÖrm that
energy prices are cointegrated.

Table 1.2: Second-generation panel cointegration tests

Westerlund Westerlund & Edgerton
Group-mean statistics Panel statistics Model N N
G G P P No break -20.85 (0) -43.54 (0)

32.462 1.7e+03 -192.407 1.7e+03 Level break -18.59 (0) -40.82 (0)
(0) (0) (0) (0) Regime break -21.28 (0) -41.60 (0)

Notes: (1) For the Westerlundís test: (a) between parentheses: p-values with cross-section
dependence based on bootstrapped distribution (100 bootstrap replications). (b) Tests are
computed with individual e§ects and time trends. (c) The Bartlett kernel is used for the
semiparametric corrections. (d) The leads and lags in the error correction test are chosen
using Akaike criterion. (e) The number of common factors is determined by IC1 criterion
(see Bai and Ng, 2004) with a maximum factor number of 5. (2) For the Westerlund and
Edgertonís test: (a) between parentheses: p-values. (b) All tests statistics are limiting
Normal distributions free of nuisance parameters under the null hypothesis. (c) The tests
are implemented using the Campbell and Perron (1991) automatic procedure to select the

lag length. (d) We use three breaks, which are determined by grid search.

1.3 Estimating the links between energy prices: Meth-
odology and results

1.3.1 Estimation of the cointegrating relationship

Our considered series being I(1) and cointegrated, we Örst proceed to the estimation
of the cointegrating relationship (1.1). Given that the distributions of the OLS estim-
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ates corresponding to Equation (1.1) are biased and dependent on nuisance parameters
associated with the serial correlation properties of the data, it is necessary to use an
e¢cient estimation procedure. We rely here on the panel Dynamic OLS (DOLS) pro-
cedure developed by Kao and Chiang (2000) and Mark and Sul (2003), which consists
in augmenting the cointegrating relationship with lead and lagged di§erences of the
regressors to control for the endogenous feedback e§ect.11

The estimated cointegrating relationship is given by:

p̂oili;t = âi  0:126peleci;t + 0:149p
gas
i;t + 0:610p

coal
i;t + 0:428pStoxxi;t (1.2)

This estimated relationship between oil, gas and coal forward prices is positive, while
the link between oil and electricity forward prices is negative. It should however be
mentioned that interpreting separately the estimated coe¢cients should be done with
caution given that our relationship includes simultaneously three energy prices: the
coe¢cients of the prices variables in Equation (1.2) do not thus directly represent struc-
tural estimates of the e§ect of each variable on the oil price.12 Having this precaution
in mind, the relationship between gas and oil prices has the expected sign given that
the gas extraction process is very similar to that of oil. As a consequence, there exists a
strong link across the two energies. Turning to coal, which is mainly used for electricity
production, an increase in its price leads to a rise in oil price on the long run, due to
an increasing demand for electricity and heating. Regarding electricity, two facts have
to be highlighted. First, there exists an input-output relationship between this energy
and oil. Second, electricity is used in various activities, mainly for Önal consumption.
In Europe, speciÖcally, electricity is intensively used for heating purposes and is thus
in competition with oil. The negative link between oil and electricity forward prices on
the long run may be interpreted in terms of a substitution e§ect, rather than in terms
of an input-output e§ect. Finally, given that equity prices may be viewed as a proxy
for the economic and Önancial environment, the positive relationship between oil and
equity prices may be interpreted as follows: a rise in equity futures prices refers to
a period of growing economic activity, leading to an increase in oil consumption and,
consequently, in oil price.

11As a robustness check, we also estimate Equation (1.1) using the Fully-ModiÖed OLS (FM-OLS)
method proposed by Phillips and Hansen (1990). The results were very similar to those obtained with
the DOLS procedure and are available upon request to the authors.
12As a consequence and for the sake of robustness, we have also estimated bivariate relationships

between oil price and each other price variable. With the exception of electricity, the same positive
signs are obtained for the three other estimated coe¢cients, showing that positive relationships exist
between oil price and coal, gas, and stock prices. Regarding electricity, the negative sign may thus
come from an indirect impact of the other energy prices, reáecting a possible substitution e§ect (see
below).
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1.3.2 The linear error-correction model

The existence of a cointegrating relationship between our variables allows us to estimate
an error-correction model (ECM). The estimation of Equation (1.1) gives the forward
oil price equilibrium value, denoted as p̂oili;t . The di§erence between the observed and
the equilibrium value of the oil price deÖnes the misalignment for each maturity i:

zi;t = poili;t  p̂oili;t (1.3)

Considering the standard linear case, the estimation of the corresponding ECM leads
to the following results:

[poili;t = 0:0304
(6:01)

zi;t1+0:2400
(1:77)

poili;t11:1496
(7:12)

peleci;t1+0:8674
(8:21)

pgasi;t1+0:7583
(2:90)

pcoali;t1+0:6582
(4:19)

pStoxxi;t1

(1.4)
Given that Equation (1.4) is a dynamic panel data model, we estimate it by the General-
ized Method of Moments (GMM), which provides a convenient framework for obtaining
e¢cient estimators in this context.13 As expected, we Önd a negative and statistically
signiÖcant error-correction term, implying that if the ìfundamentalsî in the last period
dictate a lower (resp. upper) oil price than that observed, then the price will decrease
(resp. increase) in the current period. The linear ECM implicitly assumes that the ad-
justment speed towards equilibrium is both continuous and constant, regardless of the
extend of the misalignment. However, as mentioned before, given the various factors
that may ináuence energy markets, the adjustment process is likely to be character-
ized by nonlinearities. As an example, the convergence speed may depend on the size
and/or the sign of the deviation from equilibrium, a feature that the previous linear
model would not be able to capture. To investigate this possibility, linearity tests
should be applied, which is done in the next subsection.

1.3.3 Estimation of the nonlinear oil price dynamics

1.3.3.1 Methodology

To account for the potential nonlinear adjustment of the forward oil price toward
its equilibrium value, the corresponding error-correction model has to be speciÖed in
a nonlinear form. To this end, we rely on the PSTR model introduced by Gonz·lez et
al. (2005):

yi;t = i + 01xi;t + 02xi;tg (si;t; ; c) + "i;t (1.5)

13See Arellano and Bond (1991) among others.
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where g (si;t; ; c) is the transition function, normalized and bounded between 0 and
1. si;t denotes the transition variableówhich may be an exogenous variable or a com-
bination of the lagged endogenous oneó,  the speed of transition from one regime
to the other and c the threshold parameter. As it is clear from Equation (1.5), the
observations in the panel are divided into two regimes depending on whether the trans-
ition variable is lower or larger than c. The logistic speciÖcation can be used for the
transition function to account for a smooth and gradual change from one regime to the
other:

g (si;t; ; c) =

"
1 + exp

 


mY

l=1

(si;t  cl)

!#1
(1.6)

with  > 0 and c1  c2  :::  cm. Turning to empirical considerations, it is su¢-
cient to consider only the cases of m = 1 (logistic PSTR) or m = 2 (logistic quadratic
PSTR) to capture the nonlinearities due to regime switching (see Gonz·lez et al., 2005).

Following the methodology used in the time series context, Gonz·lez et al. (2005) pro-
pose a three-step strategy to apply PSTR models: (i) the identiÖcation step aiming at
testing for homogeneity against the PSTR alternative and selecting both the transition
variable and the order m, (ii) the estimation step based on nonlinear least squares,14

and (iii) the evaluation step that consists in applying misspeciÖcation tests to check
the validity of the estimated PSTR model.

On the whole, the model that will be estimated is given by:

poili;t = i + (1zi;t1 +B1Xi;t) + (2zi;t1 +B2Xi;t)g(si;t; ; c) + "i;t (1.7)

where Xi;t represents the vector of contemporaneous and lagged Örst-di§erenced for-
ward oil price determinants, namely peleci;t , p

gas
i;t , p

coal
i;t , and p

Stoxx
i;t . Depending

on the value of the transition variable, the link between poili;t and its determinants
evolves between B1 and 1 in Regime 1 (corresponding to g(:) = 0) and B1 + B2 and
1 + 2 in Regime 2 (corresponding to g(:) = 1). Three transition variables will be
considered: the oil price misalignment, the oil price variation, and the economic and
Önancial environment proxied by the equity futures price returns.

14Strictly speaking, the estimation involves two steps. We Örst remove the Öxed e§ects by centering
the variables on their individual means, and then estimate the parameters with nonlinear least squares
(NLLS). Using NLLS requires the choice of starting values, which is done by relying on a grid search
of initial values for the slope () and threshold (c) parameters. For the slope parameter, we use a list
of various possible positive values. Turning to the threshold parameter, the choice of initial values is
made such that they have to be comprised between the minimum and the maximum values taken by the
transition variable. Given these grids, the estimation of the model is performed for all possible com-
binations of the initial values. We use the Matlab code (Version 7.01) provided by Christophe Hurlin
for the estimation of PSTR models. Note that a similar code is also available for the RATS software
on Gilbert Colletazís web page (http://www.univ-orleans.fr/deg/masters/ESA/GC/gcolletaz_R.htm).
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1.3.3.2 Results

Following the three-step strategy proposed by Gonz·lez et al. (2005), we start by ap-
plying linearity tests. We test the null hypothesis of linearity in Equation (1.7) using
three transition variables: equity futures returns, the forward oil price misalignment,
and the forward oil price variation. For all three variables, the null of linearity is
strongly rejected in favor of the PSTR alternative,15 meaning that the linear model
(1.4) is not appropriate to describe the price adjustment process. Results correspond-
ing to the estimation of the PSTR models are reported in Table 1.3.

Table 1.3: Estimation of PSTR models

si;t pStoxxi;t1 zi;t1 poili;t1
Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2

zi;t1 -0.0040 -0.0479 -0.0111 0.0097 -0.0074 0.0174
(-4.80) (-1.64) (-2.37) (1.67) (-6.07) (3.45)

poili;t1 0.0060 -2.33 -0.1303 0.1639 0.0288 -0.1232
(1.16) (-8.63) (-3.23) (3.36) (3.75) (-6.26)

peleci;t1 0.0163 1.9036 0.0484 -0.0288 0.0526 -0.2360
(5.43) (14.43) (1.57) (-0.78) (9.71) (-8.28)

pgasi;t1 0.0134 0.1585 0.0569 -0.0561 0.0105 0.0068
(5.27) (1.11) (1.82) (-1.51) (2.57) (0.33)

pcoali;t1 0.0506 0.3725 0.5266 -0.5606 0.0174 0.3197
(7.28) (3.44) (6.63) (-5.96) (1.89) (8.90)

pStoxxi;t1 -0.0855 0.0315 -0.7727 0.8407 -0.1254 0.2058
(-12.40) (0.44) (-9.84) (9.05) (-11.70) (4.94)

̂ 106.8853 4.7058 60.1668
ĉ 0.0736 -0.3623 0.0358

Between parentheses: t-statistics.

Let us Örst consider the model with equity futures returns as the transition variable. In
this case, forward oil price tends to reverts to its equilibrium value whatever the con-
sidered regime. This mean-reverting behavior is slower in the Örst state corresponding
to a stock market which is decreasing or weakly increasing (until a threshold equal to
7%). Assuming that the stock market is a proxy for economic activity, this result is lo-
gical in the sense that reversion to the equilibrium is harder and takes a longer time in a
depressing period than in an expansion state. Moreover, the other forward energy price
returns positively a§ect oil price returns in both regimes, with a stronger impact in

15Detailed results are available upon request to the authors.
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Regime 2. This result shows that when Önancial markets are booming, forward energy
prices tend to augment. This may be explained by two reasons: (i) the need for more
energy in periods of intense economic activity, and (ii) speculation purposes. Specu-
lation on energy products goes along with speculation on Önancial assets. Expecting
that the growing trend will continue, traders tend to take long positions on long-term
contracts, selling them at higher prices before the expiry date and re-investing in new
ones; a behavior that produces self-sustaining dynamics (Cifarelli and Paladino, 2010).

When the oil price misalignment acts as the transition variable, the estimated threshold
is equal to -36%, corresponding to a 36% undervaluation of the forward oil price com-
pared to its equilibrium value given by the cointegrating relationship. When oil price
is strongly undervalued, a mean-reversion dynamics takes place (Regime 1). The more
the reduction of the misalignment, the weaker the mean-reverting speed. In other
words, corrections of disequilibria appear when oil price tends to strongly decrease,
while it is not the case when oil price strongly augments compared to its fundamentals.
This illustrates an asymmetric phenomenon: the adjustment process is at play only for
high undervaluations, not for overvaluations. Regarding forward energy price returns,
they vary in the same way as oil in case of strong undervaluations, with a decreasing
ináuence when the magnitude of undervaluation tends to diminish. In the later case,
the variable which has the strongest impact is the equity returns, again putting forward
the importance of the speculation phenomenon: when oil price rises, the links across
markets tend to be stronger, encouraging speculation. From a speculative viewpoint,
it is reasonable to think that when oil prices are highly undervalued, the market is
dominated by irrational speculators (chartists), who base their expectations on past
prices áuctuations and believe trends to continue in the same direction. These speculat-
ors have a destabilizing e§ect, making prices deviate from their long-run fundamental
equilibrium. However, when the threshold of -36% is reached, chartists no longer be-
lieve on the undervaluation and rational speculators (fundamentalists)ówho base their
expectations on economic fundamentalsóbecome more prevalent. Fundamentalists be-
lieve that energy prices will revert to the intrinsic long-run equilibrium and therefore
have a stabilizing e§ect. Consequently, chartists change their expectations and become
followers of the fundamentalists. When prices tend to be overvalued, an asymmetric
phenomenon occurs, that may be explained by the loss aversion behavior. Indeed,
investors react di§erently when they are facing potential losses and proÖts. According
to the prospect theory, agents are more hesitant to sell during overvaluation than to
buy during undervaluation (Kahneman and Tversky, 1979).

Consider now the third case, with the forward oil price variations as the transition
variable. The mean-reverting behavior is observed only in Regime 1, characterized by
an oil price growth rate lower than 3%. This means that there exists a áoor price under
which oil producers decide to not produce due to proÖtability considerations. On the
contrary, in periods of oil price boom, there is no mean-reverting behavior: the growing
price tends to go away from its fundamental value, leading to self-sustaining behaviors.
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The other forward energy price returns are positively linked to oil price returns, except
in Regime 2 for electricity. Again, this can be interpreted in terms of a substitution
e§ect between electricity and oil when the later reaches very high values. Finally, note
the positive relationship between oil and stock returns, a fact that is consistent with
speculating dynamics.

1.4 Conclusion

This chapter investigates the relationship between daily forward prices of oil, gas, coal
and electricity. Relying on a panel of 35 maturities and controlling for the economic and
Önancial environment using equity futures prices, we test whether energy prices evolve
toward a common long-run relationship. Using panel cointegration techniques, we show
that all forward price series are cointegrated. More speciÖcally, while oil, gas and coal
forward prices are positively linked, oil and electricity display a negative relationship,
consistent with a substitution e§ect between the two energy sources on long horizons.
Paying a particular attention to the Önancial dimension of energy markets, we account
for potential nonlinearities notably induced by market participantsí behavior. To this
end, we estimate panel smooth transition regression models, and show that the forward
oil price adjustment process toward its equilibrium value is nonlinear and asymmetric.
More precisely, our Öndings put forward the key role played by speculative factors and
self-sustaining dynamics in phases of booming oil prices and growing economic activity.
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Figure 1-1: One-month forward energy prices (in logarithms)
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Introduction 1

Since the seminal paper of Granger (1969), many studies have proposed to extend

the concept of Granger-Causality. A Örst stream of literature deals with extensions

of Granger-causality in mean.2 An alternative route has been taken more recently in

Önance at the light of the recent Önancial crisis. It proposes to investigate Granger-

causality in higher moments (e.g. tail risk) in order to evaluate the transmission of

extreme Önancial markets movements. In this vein, Hong et al. (2009) recently put

forward the concept of Granger-causality in risk to test for downside risk spillovers

across Önancial markets. More precisely, they use a kernel-based test to check whether

a large downside risk in one market will Granger-cause a large downside risk in an-

other market. Hong et al. (2009) characterize as downside risk a situation where asset

returns are lower than the Value-at-Risk (VaR) at a prespeciÖed level ().

Hong et al. (2009) consider thus the concept of Granger-causality in downside risk

between two markets only at a particular risk level. This assumption appears to be re-

strictive. In particular, as noticed by Engle and Manganelli (2004), dynamics of down-

side risk can vary considerably across the di§erent risk levels, so a Granger-causality

test which does not consider the whole distribution tails, would be much too restrict-

ive. Besides, our multivariate extension has the merit to consider cross-causality: for

e.g., causality from one market at risk level  = 10% to another market at risk level

 = 1%. The rejection of the null hypothesis of causality in distribution tails can be

due to this particular cross-causality which has a major importance in risk manage-

ment, as it suggests that moderate extreme downside movements from the Örst market

1This chapter is based on two papers: Candelon, B., JoÎts, M., and Tokpavi, S., 2013, Test-
ing for Granger causality in distribution tails: An application to Oil Market Integration, Economic
Modelling, 33, 276-285; and JoÎts, M., 2012, Energy price transmissions during extreme movements,
USAEE/IAEE Working Paper series, nµr12-133.

2They discriminate in particular for long vs short-run causality (Granger and Lin, 1995), test for
frequency domain causality (Breitung and Candelon, 2006) or panel Granger-causality (Dumitrescu
and Hurlin, 2012).
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can Granger-cause large extreme downside movements in the second market.

This chapter proposes thus an original procedure which allows for testing for Granger-

causality in down- and upside risk for multiple risk levels across tail distributions. The

procedure can be also extended to test for causality in risk for n markets, with n > 2.

Following Hong at al. (2009) the estimation of extreme down- and upside risks relies

on the Conditional Autoregressive Value-at-Risk (CAViaR) model introduced by Engle

and Manganelli (2004) in which the VaRs are estimated directly using an autoregressive

speciÖcation for the quantiles rather than inverting a conditional distribution as usual

in a purely parametric framework (for e.g., a GARCH model under a Student-t distri-

bution). We then consider the multivariate extension of the classical Granger-causality

test in mean proposed by Gelper and Croux (2007) and Barret et al. (2010) to build a

Granger-causality test for a set of hit functions3 at di§erent risk levels i, i = 1; ::; n.

A potential uncertainty problem may arise from our two step procedure, where VaRs

are estimated beforehand the causality test in risk. Such an issue should not a§ect the

asymptotic properties of the test but its Önite sample ones. This issue is investigated

via simulation experiments and to minimize this potential bias, critical regions are ob-

tained using the Monte-Carlo approach proposed by Dufour (2006).

This new Granger-causality framework is applied to investigate two relevant issues

in energy markets: (i) the oil market integration process; and (ii) the energy price

co-movements. Considering the oil market integration hypothesis, the question is of

primary importance since even if oil market is often considered as a global market, it is

characterized by regional disparities. For example the crude oil price quoted in Texas

(WTI) is not the same as the one quoted in London. Besides, these dissimilarities vary

when oil prices are on average extremely high or low and for di§erent qualities of crude

3A hit function is an indicator function with value 1 (resp. 0) when the market return at a given
time is lower (resp. higher) than the prediction of VaR.
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oil. The new causality test in risk can then be implemented to check if causal linkages

are more or less important during such periods, i.e. whether the markets are more

or less integrated during periods of extreme energy prices movements. Furthermore,

it is well known that some regional markets are leaders (price-setters) whereas other

ones are followers (price-takers). This feature has important implications for the en-

ergy policy in many countries to design an optimal set of providers (it should not be

exclusively composed by a single category of market) and/or to evaluate any political

implication (embargo, war,..) on the global oil market (if the regional oil market is a

price-setter, global oil market will be a§ected whereas it would not be the case if it is

price-taker). The implementation of the causality test in risk can put some light on this

question and indicate whether price-setter markets change during such periods. Turn-

ing to the gereral question of energy price co-movements during extreme movements,

we propose to investigate whether potential transmissions between European forward

prices of oil, gas, coal and electricity markets exist and can be di§erent depending on

both intensity and maturity of the markets.

The rest of the chapter is organized as follows. Section 2.1 describes the concept of

Granger-causality in distribution tails, and present the Önite sample properties of our

tests. Section 2.2 studies the international crude oil markets globalization. Section 2.3

investigates energy price co-movements. Section 2.4 concludes the chapter.

2.1 Granger causality in distribution tails

In this section we develop a framework to test for Granger-causality in distribution

tails, that is, whether the occurrence of any tail event for a given time series can help

predict the occurrence of any tail event for another time series. The section is divided

into two parts. In the Örst part we describe the econometric environment, give an
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overview of our testing approach and present the test statistics, while in the second

part we simulate its Önite sample properties via Monte Carlo studies.

2.1.1 Econometric environment and testable hypotheses

We consider a stochastic process X  fXt : ! R2; t = 1; :::; Tg deÖned on a

probability space (;F ; P ) where F fFt; t = 1; :::; Tg and Ft is the -Öeld Ft =

fXs; s  tg. We partition the observed vector Xt as Xt = (X1;t; X2;t) where both X1;t

and X2;t are continuous random variables of interest. The information set available at

time t has the following structure Ft  fF1;tg [ fF2;tg with F1;t = fX1;s; s  tg and

F2;t = fX2;s; s  tg. Our test is related to the concept of Granger-causality deÖned

in terms of the entire conditional distribution (Granger, 1980; Granger and Newbold,

1986). Using our notations, X2;t does not Granger-cause X1;t in distribution if and

only if

Pr [X1;t < x jFt1 ] = Pr [X1;t < x jF1;t1 ] a.s. for all x: (2.1)

In this case, past values of X2;t in the information set Ft1 do not carry any useful

information that helps predict the conditional distribution of X1;t. This deÖnition is

rather broad since in many practical situations, a user with a speciÖc objective may

be concerned with whether causality occurs or not in particular regions of the distri-

butions of both variables. For example, in the context of downside risk monitoring

and diversiÖcation, risk managers are usually aware of whether a loss for a business

line in their managed portfolio will exceed a Öxed large value given that a large loss

for another business line has occurred. In the international crude oil markets, prices

have experienced strong áuctuations a§ecting the proÖle of risk. For investors with

long (resp. short) positions in these energy assets, measuring the associated downside

(resp. upside) risks and their spillover e§ect is primordial. From a macroprudential

point of view, the recent episode of market turmoil gives many evidence that regulators



Chapter 2 : Testing for Granger causality in distribution tails: An application to
energy markets 55

should also take care about downside risk spillover between Önancial institutions.

Hong et al. (2009) introduced a formal statistical procedure to test for Granger-

causality in downside risk quantiÖed by Value-at-Risk (VaR), the most popular metric

of risk in the banking and Önancial industry. The VaR of a time series at the risk level

 2 (0; 1) is deÖned as the -quantile of the conditional distribution of the given time

series. For the two time series we thus have

Pr [X1;t < Q1;t (1;) jF1;t1 ] = ; (2.2)

Pr [X2;t < Q2;t (2;) jF2;t1 ] = ; (2.3)

with Q1;t (1;) and Q2;t (2;) the anticipated VaR of X1;t and X2;t respectively at time

t  1, 1; and 2; two Önite-dimensional parameters from the speciÖcation of the

dynamics of both variables. Consider the following two tail-events time series

Z1;t (1;) =

8
<

:
1 if X1;t < Q1;t (1;)

0 else,
(2.4)

Z2;t (2;) =

8
<

:
1 if X2;t < Q2;t (2;)

0 else.
(2.5)
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In Hong et al. (2009), the time series fX2;tg does not Granger-cause the time series

fX1;tg in downside risk at level  if the following hypothesis holds4

H0 : E [Z1;t (1;) jGt1 ] = E [Z1;t (1;) jG1t1 ] ; (2.6)

where the two information sets are deÖned as

Gt = f(Z1;s (1;) ; Z2;s (2;)) ; s  tg ; (2.7)

G1t = fZ1;s (1;) ; s  tg : (2.8)

Hence, Granger-causality in downside risk for the two-time series fX1tg and fX2tg is

equivalent to Granger-causality in mean for the two tail-events time series fZ1;t (1;)g

and fZ2;t (2;)g. It is worth noting that (2.6) is not a testable hypothesis since the

two tail-events time series which depend on the unknown VaRs, Qi;t (i;), i = 1; 2, are

not observable. Hence a model is required for both series, to generate the in-sample

VaRs and the corresponding tail-events time series. Hong et al. (2009) rely on the

Conditional Autoregressive Value-at-Risk (CAViaR) model introduced by Engle and

Manganelli (2004) in which the VaRs are estimated directly using an autoregressive

speciÖcation for the quantiles rather than inverting a conditional distribution as usual

in a purely parametric framework (for e.g., a GARCH model under a Student-t dis-

tribution). More precisely, the following speciÖcations are retained to estimate the

4Note that both causality in downside and upside risk can be handled in the framework of Hong et
al. (2009). In the former case the risk level or coverage rate is set to a small value (for e.g.,  = 1%,
5% or 10% ). In the latter case, a high value is retained (for e.g., 90%, 95% or 99%) and the tail-events
time series are properly deÖned as follows

Zi;t (i;) =


1 if Xi;t > Qi;t (1;), i = 1; 2,
0 else.
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VaRs

Qi;t (i;) = 
(0)
i; + 

(1)
i;Qi;t1 (i;) + 

(2)
i; (Xi;t1)

+ + 
(3)
i; (Xi;t1)

 ; (2.9)

where (Xi;t)
+ = max (Xi;t; 0), (Xi;t)

 = min (Xi;t; 0), i; =


(0)
i;; 

(1)
i;; 

(2)
i;; 

(3)
i;


,

i = 1; 2. Note that the autoregressive nature of the CAViaR model captures (dir-

ectly) in the tails of the distributions some stylized facts in empirical Önance with

many compelling evidence, such as autocorrelation in daily returns arising from mar-

ket microstructure biases and partial price adjustment (Boudoukh et al., 1994; Ahn

et al., 2002; Eom et al., 2004), volatility clustering (Engle, 1982; Bollerslev, 1986),

and time-varying skewness and kurtosis (Hansen, 1994; Harvey and Siddique, 1999,

2000; Jondeau and Rockinger, 2003). Moreover the asymmetric speciÖcation in (2.9)

adresses the asymmetric response of volatility to news (Black, 1976; Christie, 1982).

The parameters of the CAViaR model are estimated by minimizing with respect to the

unknown parameters the "check" loss function of Koenker and Bassett (1978), i.e.,

bi; = argmin
i;

1

T

PT
t=2


 I


ui;t < 0


ui;t; i = 1; 2; (2.10)

ui;t = Xi;t Qi;t (i;) ; (2.11)

with I (:) the usual indicator function and T the estimation sample length. The testable

hypothesis of non-Granger causality in downside risk can thus be written as

H0 : E
h
Z1;t


b1;

jHt1

i
= E

h
Z1;t


b1;

jH1t1

i
; (2.12)

with the observable information sets

H1t =
n
Z1;s


b1;

; s  t

o
; (2.13)
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Ht =
n
Z1;s


b1;

; Z2;s


b2;


; s  t
o
: (2.14)

Hong et al. (2009) adopted a kernel-based nonparametric test which checks for the

nullity of the standardized sample cross covariances between the two processes
n
Z1;t


b1;
o

and
n
Z2;t


b2;
o
, under the hypothesis of non-Granger causality in downside risk.5

The test statistic has a standard asymptotic distribution under the null hypothesis

which is not a§ected by parameter uncertainty in the estimated CAViaR models.

The test developed by Hong et al. (2009) is suitable to check for the existence of

Granger-causality in extreme movements of two time series, but at a given risk level .

Our objective in the sequel is to extend this setup, by testing simultaneously Granger-

causality in downside risk for multiple risk levels across the distribution tails. Two main

reasons motivate our extension. First, it is apparent that when focusing on downside

risk spillover e§ect, what really counts is to check whether causality exists between the

left tail distributions of the two time series, and not between quantiles for a single risk

level . Second, estimation results of CAViaR models in Engle and Manganelli (2004)

show that the process governing the dynamics of VaRs can vary remarquably across

risk levels. Hence, application of the Hong et al. (2009) test can lead to contradictory

results with respect to the risk levels, for example at 1%, 5% or 10%. In such a case,

it is more suitable to make inference jointly for the three risk levels. From a statistical

point of view, this strategy will improve the power properties of the Granger-causality

test as more information is exploited. Moreover, our multivariate extension has the

merit to consider cross-causality: for e.g., causality from X2;t at risk level  = 10% to

X1;t at risk level  = 1%. The rejection of the null hypothesis of causality in distribu-

tion tails can be due to this particular cross-causality which has a major importance

in risk management, as it suggests that moderate extreme downside movements of X2;t

5Note that Hong et al. (2009) also consider in their paper a regression-based approach to test
for Granger-causality in downside risk. As we will see in the sequel, our Granger-causality test in
distribution tails is a multivariate extension of the latter approach.
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can Granger-cause large extreme movements of X1;t.

Our testing procedure is based on the multivariate extension of the classical Granger-

causality test in mean, where the purpose is to make inference on interactions that

take place among groups of variables (Gelper and Croux, 2007; Barret et al., 2010). To

present the methodology, let A = f1; :::; mg be a discrete set of m risk levels, strictly

between 0 and 1 and considered as relevant for downside risk analysis. For i = 1; 2,

let Wi;t (i;A) = [Zi;t (i;1) ; :::; Zi;t (i;m)] be the vector of dimension (m; 1) collection

of the tail-events variables Zi;t (i;k) associated to these m risk levels at time t, where

i;A =

0i;1 ; :::; 

0
i;m

0
is the vector of dimension (4m; 1) with elements the parameters

of the m CAViaR models, each at the risk level k, k = 1; :::;m. The null hypothesis

of our non-Granger causality test in distribution tails can be stated as follows

H0 : E [W1;t (1;A) jIt1 ] = E [W1;t (1;A) jI1;t1 ] ; (2.15)

where the sets I1;t and It correspond respectively to

I1;t =

W1;s (1;A) ; s  t


; (2.16)

It =
n
W 0
1;s (1;A) ;W

0
2;s (2;A)

0
; s  t

o
: (2.17)

If the null hypothesis holds, this means that whatever the risk levels k, k = 1; :::;m,

spillover of extreme downside movements (from X2t to X1t) does not exist. Hence in

our setup, Granger-causality in distribution tails is nothing but Granger-causality in

mean for the two multivariate processes Wi;t (i;A), i = 1; 2. Following Gelper and

Croux (2007) and Barret et al. (2010), the test statistic is easily built by considering
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the following multivariate linear regression model6

W1;t (1;A) =  0 +  1W2;t1 (2;A) + :::+  pW2;tp (2;A) + "1t; (2.18)

where  0 is a vector (m; 1) of constants,  s, s = 1; :::; p, are (m;m)matrices of paramet-

ers, and "1t the (m; 1) residuals vector with covariance matrix 1. The null hypothesis

of non-Granger causality in distribution tails corresponds to

H0 :  1 =  2 = :::: =  p = 0: (2.19)

When this null hypothesis holds, the multivariate regression in (2.18) reduces to

W1;t (1;A) =  0 + "2t; (2.20)

with "2t the (m; 1) residuals vector with covariance matrix 2. As a consequence, the

multivariate likelihood ratio test statistic deÖned as follows7

LR = [T (mp+ 1)] [log (j"02"2j) log (j"
0
1"1j)] ; (2.21)

can be used to test for the null hypothesis of non-Granger causality in distribution tails

as stated in (2.15) or equivalently in (2.19). This test statistic follows under the null

hypothesis a chi-squared distribution with degree of freedom equal to pm2.

6It is worth noting that we do not include lagged values of W1;t (1;A) in the regression equation
(2.18), because under the null hypothesis, the m components of W1;t (1;A) are independent, each
following an i.i.d. Bernoulli distribution. This latter property is usually used to backtest Value-at-
Risk models (see, Christo§ersen, 1998; Engle and Manganelli, 2004; Berkowitz et al., 2011; Candelon
et al., 2011; etc.).

7Remark that a Fisher version of the LR test can be instead used, when data are scarce.
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Let us remark that the above testing approach is not computationally feasible, because

the two multivariate processes W1;t (1;A) and W2;t (2;A) depend respectively on the

unknown vector of the CaViaR models parameters 1;A and 2;A. An operational test

can be conducted by considering the following null hypothesis

H0 : 1 = 2 = :::: = p = 0; (2.22)

in the multivariate regression:

W1;t


b1;A


= 0 + 1W2;t1


b2;A


+ :::+ pW2;tp


b2;A


+ "1t; (2.23)

where the true vector of parameters i;A, i = 1; 2, are replaced by their respective

consistent estimators bi;A. However, uncertainty about the values of bi;A, i = 1; 2, could

a§ect the distribution of the test statistic. This problem is referred to as parameter

uncertainty in the framework of hypothesis testing, and can be mitigated relying on

robust methods such as Monte Carlo tests. The latters are exact tests, in the sense

that the actual probability of Type I error is equal to the nominal signiÖcance level.

Formally, Monte Carlo tests are performed by generating M independent realizations

of the test statistic - say Si, i = 1; :::M - under the null hypothesis. If we denote S0 the

value of the test statistic obtained for the original sample, as shown by Dufour (2006)

in a general case, the Monte Carlo critical region is obtained as bpM (S0)   with 1 

the conÖdence level and bpM (S0) deÖned as

bpM (S0) =
M bGM (S0) + 1

M + 1
; (2.24)

where

bGM (S0) =
1

M

MP
i=1

I (Si  S0) ; (2.25)



62
Chapter 2 : Testing for Granger causality in distribution tails: An application to

energy markets

when Pr (Si = Sj) 6= 0, and otherwise

bGM (S0) = 1
1

M

MP
i=1

I (Si  S0) +
1

M

MP
i=1

I (Si = S0) I (Ui  U0) : (2.26)

Variables U0 and U1 are uniform draws from the interval [0; 1]. In our framework,

application of the Monte Carlo test procedure of Dufour (2006) requires simulating the

two multivariate processesWi;t (i;A) i = 1; 2, under the null hypothesis of non-Granger

causality in distribution tails, in order to compute the M independent realizations of

the test statistic LMi, i = 1; :::;M , under H0. This task can be achieved very easily

noting that for well-speciÖed CAViaR models, each element of Wi;t (i;A) ; i = 1; 2, i.e.,

the tail-event variables Zi;t (i;k), k = 1; :::;m, follows an i.i.d. Bernoulli distribution

with a success probability equal to k. We will show in the sequel that inference

based on the Monte Carlo framework is more relevant than the one that relies on the

asymptotic chi-square distribution.

2.1.2 Analysis of Önite sample properties

This section is devoted to Monte Carlo simulations studies with the objective of

evaluating the small sample properties of our Granger-causality test in distribution

tails. We evaluate inference both with the asymptotic chi-squared critical region and

the Monte Carlo critical region of Dufour (2006).

2.1.2.1 Finite sample size analysis

To illustrate the size performance of our test, we follow Hong et al. (2009) simulating

the two time series X1;t and X2;t using the following data generating process (DGP):
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8
>>>>>>>>><

>>>>>>>>>:

Xi;t = 0:5Xi;t1 + ui;t; i = 1; 2,

ui;t = i;tvi;t;

2i;t = 0:1 + 0:6
2
i;t1 + 0:2u

2
i;t1;

vi;t  m:d:s: (0; 1) :

Hence, each time series Xi;t, i = 1; 2, follows an AR(1)-GARCH model. The two pro-

cesses are independent and there is no-Granger causality in distribution tails between

them. We simulate the size of the test considering three di§erent sample sizes (T = 500, 1000, 1500),

which correspond roughly to two, four and six years of daily data. For a given value

of T , and for each simulation, CAViaR models are estimated to compute the two mul-

tivariate tail-events variablesWi;t


bi;A

, i = 1; 2, with A the discrete set of them VaRs

risk levels, A = f1; :::; mg. With the two multivariate processes Wi;t


bi;A

, i = 1; 2,

we test the null hypothesis of non-Granger causality in distribution tails checking via

the LM statistic the restriction (2.22) in the multivariate regression (2.23).

Table 2.2 in Appendix A reports the empirical sizes of our multivariate LM test statistic

(over 500 simulations) for di§erent values of p 2 f5; 10; 15g the lag order in the regres-

sion equation (2.23). The set A of the m VaRs risk levels is set to A = f1%; 5%; 10%g.

These values correspond to the usual risk levels considered when focusing on downside

risk analysis.8 For each simulation, the null hypothesis of non-Granger causality in

distribution tails is rejected relying on the asymptotic chi-squared critical region, with

two di§erent nominal risk levels  = 5%, 10%. Results in Table 2.2 indicate that our

Granger-causality test in distribution tails is oversized whatever the sample size T and

the value of the lag-order parameter p. For example, with a nominal risk level  = 5%

8Of course, one can extend the set A by considering more risk levels, for example A =
f1%; 2:5%; 5%; 7:5%; 10%g. The advantage of this extension is to consider more information in the
inferential procedure. However, when the size of the set A increases, the considered risk levels are more
closer, and there is a non zero probability to face a problem of multicollinearity in the multivariate
regression (2.23). This reason also motivates our choice of the set A.
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and two years of daily data (T = 500), the rejection frequency of the null hypothesis

is around 15% when p = 5 and 17% with p = 10. These results show that our re-

gression testing procedure is a§ected by parameter uncertainty. The problem seems to

be more prominent in small samples where the estimated parameters in the CAViaR

models fail to converge to the correct model parameters because of data scarcity. The

failure of convergence should be more acute at the 1% VaRs risk level compared to the

other two VaRs risk levels (5%; 10%). Therefore, the parameter uncertainty problem

which a§ects the empirical sizes of our test should come mainly from the estimation

errors of the CAViaR models at the 1% VaRs risk level. To conÖrm this analysis, we

report in Table 2.3 (see Appendix A) the empirical sizes of the LM test statistic with

A = f5%; 10%g. The presentation is similar to Table 2.2. We observe that the reported

rejection frequencies of the null hypothesis are much closer to the nominal risk levels

 = 5%, 10%.

The above results suggest that for our testing procedure, inference using the asymptotic

chi-squared distribution should be conducted only for moderate VaRs risk levels in the

left-tail distribution. More precisely, one should not include the 1% VaRs risk level

in the set A. Nevertheless, in the analysis of spillover e§ect in downside movements,

considering the extreme case of 1% risk level is crucial, because in Önancial markets,

market prices movements at this risk level have major consequences on the values

of assets and the solvability of assets owners. Hence, we propose to make inference

with the three VaRs risk levels, i.e., A = f1%; 5%; 10%g, simulating the critical region

through the Monte Carlo approach of Dufour (2006). As already stressed, this testing

procedure helps to alleviate the problem of parameter uncertainty by simulating via

Monte Carlo experiments, the exact distribution of the test statistic under the null

hypothesis. Table 2.4 in Appendix A displays the empirical sizes with the Monte Carlo

critical region, where the parameter M (see equations 2.24-2.26) is set to 9; 999. The

overall picture from Table 2.4 is that our LM test statistic, used in conjonction with

the Monte Carlo procedure of Dufour (2006), is correctly sized. For each sample size

T , the choice of the lag-order parameter p has little impact on the sizes of the test.
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2.1.2.2 Finite sample power analysis

We now investigate the power of the test. Since causality in distribution tails or

in extreme movements is mainly due to causality in mean, variance or higher order

moments such as kurtosis and skewness, we assume the following DGPs for the two

time series X1;t and X2;t, in order to generate data under the alternative hypothesis:

8
>>>>><

>>>>>:

X2;t = 0:5X2;t1 + u2;t;

u2;t = 2;tv2;t;

22;t = 0:1 + 0:6
2
2;t1 + 0:2u

2
2;t1;

(2.27)

8
>>>>><

>>>>>:

X1;t = 0:5X1;t1 + 0:2X2;t1 + u1;t;

u1;t = 1;tv1;t;

21;t = 0:1 + 0:6
2
1;t1 + 0:2u

2
1;t1 + 0:7u

2
2;t1;

(2.28)

where both v1;t and v2;t are martingale di§erence sequences with mean 0 and variance

1. Under this setting, the time series X2;t Granger causes the time series X1;t in

distribution tails via causality in both mean and variance. The empirical powers of

our multivariate LM test statistic are computed over 500 simulations, for di§erent

values of p the lag-order parameter, and for two nominal risk levels  = 5%, 10%.

The results are reported in Tables 2.5 and 2.6 for A = f1%; 5%; 10%g. To stress the

relevance of our multivariate approach, we also display in these tables the power of

the univariate testing approach of Hong et al. (2009), where A is reduced to the sets

f1%g, f5%g and f10%g respectively. The rejection frequencies are computed using the

Monte Carlo critical region of Dufour (2006), with the parameterM set to 9; 999. Our

multivariate test displays fairly good power properties. For example, with T = 1000

and p = 5, the test rejects the null of non-Granger causality in distribution tails 82%
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(resp. 89%) of time when  = 5% (resp.  = 10%). As expected, the power increases

as the sample size T increases. As usual in the setting of parametric Granger-causality

test, increasing the lag-order parameter p lowers the power of the test. Finally and

importantly, the advantage of the multivariate approach over the univariate testing

procedure of Hong et al. (2009) is clear-cut. Indeed, for a given value of the sample

T and the lag-order parameter p, the multivariate test rejects more strongly the null

hypothesis of non-Granger causality in distribution tails. For instance, with  = 5%,

and (T; p) = (500; 10), the rejection frequency is equal to 51% for A = f1%; 5%; 10%g,

whereas it is only equal to 15%, 41%, and 41% for A equal to f1%g, f5%g, and f10%g

respectively.

2.2 Crude oil markets globalization

The oil market constitutes without any doubt the most strategic row commodity

market. Periods of extreme high energetic price (often label as oil shock) are usually

associated with recession and/or ináationnary pressure (Sadorsky, 1999; Hamilton,

2003; Kilian, 2008; among others). Hence, understanding how oil price is Öxed and

evolved is a key issue for policy makers in order to implement adequate economic

stabilization policies.

Unfortunately this issue is not simple as the oil market is not homogenous and is com-

posed by numerous local markets, sometimes organized into cartels (the most famous

being the OPEC9) and trading di§erent oil qualities (depending on the API (American

Petroleum Institute)10 and the sulfur content11). Di§erent types of crude oils fetch

9See BrÈmond et al. (2011).
10The higher the API degree, the lighter (and the better) the crude. Crudes with API higher than

35 are considered light, API between 26 and 35 are medium, whereas all API smaller than 26 are
considered heavy.
11Crudes with high content in sulphur are said to be sour and are generally avoided, as they produce

more pollution and are more harmful for the environment. Crudes are considered to be sweet when
the sulphur content does not exceed 0.5% and sour when they do.
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distinct prices, and these prices are usually set as a discount or premium to a marker

or reference crude oil according to their characteristics (Mabro, 2005; Fattouh, 2006,

2010, 2011; among others).12 Many observers consider the world oil market as íone

great poolí (Adelman, 1984) in the sense that supply and demand shocks that a§ect

prices in one region are transmitted into other regional markets. Several papers have

therefore tested the integration hypothesis of the di§erent crude oil markets (see inter

alii Weiner, 1991; G¸len, 1997, 1999; Kleit, 2001; Milonas and Henker, 2001; Lanza et

al., 2003; Hammoudeh et al., 2008; Fattouh, 2010) which assumes that same quality

crude oil prices should be nearly identical or at least co-move in di§erent regions such

as their price di§erentials would be more or less constant. This perspective has strong

implications in terms of energy policy and market e¢ciency.

Nevertheless, as a consensus is not reached since marker crudes su§er from serious

doubts about their ability to generate a marker price,13 Wlazlowski, Hagstromer, and

Giulietti (2011), hereafter WHM, prefer to analyze global market dependencies, Önd-

ing out if a particular crude oil market can be regarded as benchmark or follower.

It is then possible to draw a distinction between price taker markets, which are af-

fected by the variation on other local markets, and price setter markets, which give

the pace for price changes. This distinction is therefore essential for policy makers,

to evaluate for example the price consequences of an embargo on an oil producer. If

this market is price setter (resp. taker) it should (resp. should not) impact the prices

on the other local markets. Besides, WHM distinguish 4 qualities and 32 crude oil

markets, concluding that widely used benchmarks such as WTI and Brent are indeed

in fact global price setters joined by a third crude, the Mediterranean Russian Urals.

The Asia Dubai Fateh and the Oman Blend Önally act as benchmarks for their segment.

12The expansion of the crude oil market allowed the development of market-referencing pricing
o§ spot crude oil markers such as WTI (West Texas Intermediate), Brent and Dubai, which are
theoretically considered as benchmarks due to their ownership diversiÖcation properties (see, Horsnell
and Mabro, 1993).
13See Fattouh (2006).
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Cook (1998)14 stresses that integration hypothesis is especially and almost uniquely

important when crude oil price movements (upward or downward) are extreme indic-

ating tension either on the demand or supply side. The general feeling is that price

di§erentials would tend to widen across the markets during extreme movements, and

decrease otherwise. Thus, the diversiÖcation strategy aiming at limiting the impact of

an oil shock would be more e¢cient during extreme prices periods, whereas it would

be more di¢cult and less beneÖcial in "regular" times. Indeed, the empirical justiÖc-

ation of such a theory separating regular and extreme times would have strong policy

implications.

This section proposes to investigate this issue by analyzing the global market depend-

ence during extreme crude oil price movements using our new Granger-causality test in

distribution tails. To this aim and following WHM, we consider the weekly prices of 32

crude oils extracted from the Energy Information Agency for the period April 21, 2000

to October 20, 2011.15 Out of the total of 32 crude oils in our sample, 15 fall into the

jurisdiction of the OPEC bloc, whereas 17 are not part of it (non-OPEC countries).

Each crude oil is also characterized by its quality deÖned both by its density and its

sulphur content.

2.2.1 Results

We implement our Granger-causality test in distribution tails to understand the

global architecture of the international crude oil market during extreme movements.

Statistically, our goal is to identify for each couple of crude oils, which market (Granger)

causes in the distribution tails the others. Economically, our approach investigates the

behavior of oil markets during extreme downward and upward (left and right tails)

14ConÖrmed by several reports of the BMO Commodity Derivatives Group. In particular
the one published in 2004 entitled ìManaging Heavy Oil Price Riskî and available at corpor-
ate.bmo.com/cm/market/cdcom/images/Managing_Heavy_Oil_Price_Risk.pdf.
15Crude oils included in our data are reported in Table 2.7.
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price variations. More precisely, the distinct roles (i.e. leader and follower) for the

di§erent varieties of crude oils as well as the global market integration are examined.

Results are displayed in Table 2.8 for both left and right tails, corresponding respect-

ively to extreme downside and upside movements. For each side (downside or upside),

the Örst column presents the proportion of time a market Granger-causes other mar-

kets.16 Symmetrically, the second column presents the proportion of time a market is

Granger-caused by other ones. The last column displayed the di§erence between the

values reported in the Örst and the second columns. The results can be analyzed as

follows: a crude oil is identiÖed as benchmark or exhibits price setter characteristics

in extreme movements, if it causes other crude oils without being caused (or weakly

caused) reciprocally. These crude oils are thus highly sensitive to oil market shocks

(i.e. they respond to oil market news). On the contrary, crude oils with high price

taker and low price setter characteristics follow the trend of the global market, and

are less sensitive to oil market shocks. Lastly, crude oils with both high setter and

taker dynamics are intermediate between leaders and followers, and can be considered

as perfectly integrated. It is worth noting that these three categories can be easily

identiÖed focusing on the di§erence between the proportions displayed in the third

column: markets with a large positive (resp. negative) di§erence in proportions are

benchmarks (resp. followers), whereas small absolute values indicate that markets are

well integrated in the general market.

Results in Table 2.8 indicate that di§erent varieties of crude oil can have distinct be-

haviors depending on the direction of the prices changes. Indeed, it appears that both

WTI and Europe Brent behave as benchmarks (they cause other crude oils and are

weakly a§ected reciprocally) for the international crude oil market. However, WTI

seems to be price setter mainly in downside movements indicating the well known

16Inferences are conducted at the 5% nominal risk level. Following WHM, we set the value of the
lag-order parameter p to 16 (4 months). Results available from the authors upon request show that
our Öndings are robust with respect to p.
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predominant role of this market. Furthermore, unlike WHMís analysis, we Önd that

Mediterranean Russian Urals is a benchmark only in extreme downside movements.

Europe Forcados also appears as benchmark in downside movements. Ecuador Oriente,

and to a lesser extent, Mexico Isthmus and Mexico Maya, turn out to be benchmarks

in extreme upside movements. Colombia Cano Limon, Malaysia Tapis, Saudi Arabia

Saudi Light, Saudi Arabia Arab Medium, and Ecuador Oriente are followers in periods

of large price decrease, whereas Mediterranean Russian Urals and Kuwait Blend show

the same characteristic in periods of large price increase. Besides, and importantly,

Asia Dubai Fateh and Oman Blend which are considered in practice as benchmarks for

their segment, do not exhibit price setter characteristics in the universe of the 32 crude

oils considered. To summarize, our results in Table 2.8 suggest that crude oils that

yield a higher proportion of the more valuable Önal petroleum products and require

a simple reÖning process (i.e. WTI, Brent, Europe Forcados,...) usually drive prices

over those that yield lower fraction of petroleum products and require more reÖning

process (i.e. heavy/sour crude markets). Moreover, oil price di§erentials and lead-

ership characteristics vary according to price directions. As documented by Fattouh

(2010), these phenomena can result from non-parallel movements coming from the local

condition of each market. The relative demand for various Önal petroleum products is

driven by seasonal component which is likely to a§ect crude oil markets in disctinct way.

Is the crude oil markets less or more integrated in periods of extreme movements?

The question whether the international oil market is one great pool or is regionalized

during extreme movements has important implications for policy makers and portfolio

managers. For instance, Weiner (1991) argues that the e§ectiveness of energy policies

depends to the fact that the impact of such policy can be extend to other regions or

not. From an energy portfolio managers viewpoint, the issue of the diversiÖcation in the

international crude oil markets during extreme áuctuations is of primary importance

to manage their intrinsic risks. In the literature, the intuition is that crude oil mar-

kets are less integrated in extreme situations. The rationale of this claim (see, Cook,
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1998; BMO, 2004; Bacon and Tordo, 2005) is that if the demands for all petroleum

products increased proportionately, and all product prices and the general crude price

also increased proportionately, then crudes with the largest proportion of high value

products would increase in price relative to crudes with a lower proportion of high value

products, with the result that price di§erential would tend to widen across the crude

oil markets. The symmetric reasoning holds in the case of general fall in demands and

prices. To conÖrm this analysis, we report in Table 2.9 the same statistics as in Table

2.8, with the di§erence that we consider Granger-causality test in mean rather than in

distribution tails. In both tables, we measure the level of markets integration by the

mean of the absolute value of the di§erences between the two percentages (setter and

taker). The lower the value of this statistic, the more integrated are crude oil markets.

Our results conÖrm the intuition that crude oil markets are less integrated in extreme

situations. Indeed, the price di§erentials between various pairs of crude follow very dif-

ferent patterns depending on the type of crude oil as well as if the crude is linked to an

liquid futures market. Theoretically, the presence of liquid futures market strengthen-

ing the cost-of-carry relationship between crude oils helps make more distant markets

more uniÖed. Nevertheless, long-run arbitrage across international oil markets, during

extreme movements periods, is not costless and shifts in the standard benchmarks can

cause temporary decoupling prices, and so improve the possibility of diversiÖcation.

Hence, the possibility of diversiÖcation turns out to be enhanced during the periods of

extreme movements in crude oil prices.

To go deeper beyond these results, we implement our analysis conditional to the quality

segment of crude oils. Following WHM, we consider three quality segments: light &

sweet, medium & sweet, and medium & sour. From table 2.7, it is easy to see that the

light & sweet group has 9 crude oils, the medium & sour group contains 13 crude oils,

while the medium & sweet group has 6 crude oils. Further potential groups, in partic-

ular those involving sour crudes, were discarded given limitations of the sample size.

Results are displayed in Tables 2.10, 2.11 and 2.12. Regarding to the light density and
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sweet crude oils (Table 2.10), WTI and Europe Brent are leaders in extreme price falls,

WTI being the dominant crude oil, while in extreme price rises, only WTI behaves as

benchmark. All other crude oils in this quality segment can be considered as followers

(low setter and high taker proportions) or integrated to di§erent extent (high setter

and taker proportions), in periods of extreme downside movements. Malaysia Tapis

appears clearly as a follower in extreme upside movements. Concerning the medium

density and sweet crude oils (Table 2.11), Europe Forcados (resp. Colombia Cano Li-

mon) can be considered as benchmark in extreme downside (resp. upside) movements.

Finally, for the medium density and sour crude oils (Table 2.12), two markets, that

is, Mediterranean Russian Urals and Mediterranean Seri K Iran Light appear to be

preponderant in extreme downside movements, whereas Ecuador Oriente and Mexico

Isthmus are the leaders in extreme upside movements. These Öndings are di§erent from

those reported by Montepeque (2005) and WHM about the lack of leading benchmarks

and a high degree of integration in this group.

Our analysis goes on, distinguishing OPEC from non-OPEC members. Table 2.13

gathers the outcomes of the Granger-causality test and indicates a very high degree of

integration in periods of positive extreme movements, with a lack of leading benchmark

in the group of OPEC countries. For negative extreme movements, Europe Forcados,

Algeria Saharan Blend, and Europe Libyan Es Sider are the dominant markets, whereas

Asia Dubai Fateh and Saudi Arabia Arab Medium are clearly followers. When con-

sidering the non-OPEC members, WTI and Europe Brent are dominant in extreme

downside movements, with WTI being the leader. Both markets dominate other crude

oils equally in extreme upside movements. These distinct results depending on the side

of the distribution (upside or downside), would be the consequence of fundamental and

speculative speciÖcities of each market. Indeed, unlike WTI crude oil, which prices

are largely reáected by market fundamentals, Europe Brent oil market is relatively

opaque (Miller et al., 2010), with inherent lack of transparency and illiquidity in price

determination processes. Consequently, the market could become unhinged from phys-
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ical factors by action of market participants. Moreover, since several years, Brent and

more generally North Sea crude oils have known a sharp decline in production, and

more of the supply is now mainly absorbed locally in Europe. Therefore, Brent has

become disconnected from US and Asian markets (Miller et al., 2010). In this context,

two types of extreme risk could exist in international oil market depending on down-

side and upside circumstances: "speculative risk" and "fundamental risk". First, in

periods of price decreases, fundamental mechanisms would dominate speculative ones.

The fundamental mechanisms would be based on the international oil demand from

North American and Asian emerging countries on NYMEX rather than IPE markets

leading to the dominance of WTI crude oil. Second, in periods of price increases,

fundamental and speculative mechanisms would operate equally in oil markets, where

Önancial investors without any physical interests could ináuence benchmarks through

speculative purpose. This makes both crude oil markets to be dominant to the same

extent. Note that in the group of non-OPEC countries, Mediterranean Russian Urals

(resp. Ecuador Oriente) appears as a third benchmark in extreme price falls (resp.

rises). These results are consistent with those reported in Table 2.8 where all the 32

crude oils are considered. It is worth noting that these benchmarks once established,

attract liquidity; and liquidity attracts further liquidity. Such circularity creates an

exceptional inertia making extremely di¢cult for alternative benchmarks to arise, even

if the latter becomes unreliable. However, permanent dominance cannot exist and

natural market equilibrium and realities will impose alternative setter.

To sum up, several interesting conclusions can be drawn from our analysis: extreme

crude oil prices are governed by non-OPEC markets rather than OPEC ones. More

precisely, WTI and Brent crude oils are price setters both in downside and upside price

movements, due to the fundamental and speculative components of each market. Sur-

prisingly, Mediterranean Russian Urals and Europe Forcados (resp. Ecuador Oriente)

also act as benchmarks in periods of extreme downside (resp. upside) price movements.

Asia Dubai Fateh and Oman Blend, the acclaimed crude oil benchmarks act as follow-
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ers rather than leaders. Besides, we observe that the integration level between crude

oil markets tends to decrease during extreme periods.

2.3 Energy price transmissions during extrememove-

ments

Energy price dynamics are known to be frequently volatile with extensive amplitude

a§ecting the whole economy (Sadorsky (1999), Hamilton (2003), Edelstein and Kilian

(2007), Kilian (2008), among others). In the literature, these áuctuations are attrib-

uted to both real and Önancial factors, such as international energy demand/supply

conditions and market manipulation (Kilian (2008), Hamilton (2009), Kaufmann and

Ullman (2009), Kilian (2009), Cifarelli and Paladino (2010), Ellen and Zwinkels (2010),

Lombardi and Van Robays (2011), Kilian and Murphy (2012) among others), leading

to extreme market risks for energy participants and governments. Moreover, energy

markets have recently experienced signiÖcant developments likely to ináuence price

dynamics. European gas and electricity markets, initially monopolistic, have become

competitive due to the recent deregulation process, allowing the emergence of new

contracts making prices more ináuenced by participants than regulators (Mjelde and

Bessler (2009)). In this light, market volatility may increase and the quantiÖcation of

the maximum prices appears to be primordial in risk management for oneís ability to

make proper investment, operational, and contractual decisions.

Due to the globalization process, economies are related to each other notably through

trade and investment, so any news about economic fundamentals in one country most

likely have implications in other countries (Lin et al. (1994), Ding et al. (2011), among

others). From a general viewpoint, this perspective may obviously be extended to

energy market behaviors which are known to be interrelated through production, sub-

stitution and competitive processes. Indeed, several studies have validated the fact that
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oil, gas, coal and electricity prices may be interconnected in the long run (Bachmeier

and Gri¢n (2006), Mjelde and Bessler (2009), Mohammadi (2009), Ma and Oxley

(2010), and JoÎts and Mignon (2011), among others). However, previous analyses

mainly focus on "regular" time17 áuctuations without considering periods of extreme

price movements (upward and downard) whereas energy prices are often characterized

by intense dynamics. The general feeling along this way is that correlations between

assets tend to be stronger during excessive áuctuations periods. This phenomenon,

which has been largely studied in the Önancial literature18 suggests that comovements

are larger when we focus on large absolute-value returns, and seem more important in

bear markets. Under this market-comovement scenario, price movements are driven by

fads and a herd behavior may be transmittable across markets (in the sense of Black

(1986) and Delong et al. (1990)). High volatility is therefore coupled with highly

interrelated markets making diversiÖcation almost impossible under uncertain move-

ments. These comovements in absolute price changes are often associated with belief

dispersion (Shalen (1993)) resulting in a lack of conÖdence in market fundamentals.

When new information occurs, distinct prior beliefs give incitation to trade leading to

price changes. When traders revise their prior beliefs according to new information,

it takes time for the market to "resolve" these heterogeneous behaviors which con-

tribute to volatility clustering (Shalen (1993) and Lin, Engle and Ito (1994) among

others). Thus, the diversiÖcation strategy aiming at limiting the impact of excessive

movements would be almost impossible because of the markets integration, whereas it

has more sense in "regular" times. As periods of extreme high energy prices have been

proved to be economically detrimental (Sadorsky (1999), Oberndorfer (2009), among

others), this section proposes to extend this issue by analysing energy price comove-

ments during periods of erratic áuctuations. This phenomenon would have important

macroeconomic and microeconomic implications since absence of diversiÖcation can

17Regular periods are subjectively deÖned by times of low áuctuations.
18See King and Wadhwani (1990), Lin, Engle and Ito (1994), Longin and Solnik (1995), Karolyi

and Stulz (1996), Longin and Solnik (2001), Ramchand and Susmel (1998), Ang and Bekaert (2002),
Hong et al. (2007), Amira et al. (2009), and Ding et al. (2011) to name few.
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lead to heavy potential losses for market participants and governements. For instance,

from a macroeconomic viewpoint, a perfect perception of price movements and market

risk are of primary importance for policy targeting of energy-importing or exporting

countries. At a microeconomic level, the price behavior, market risk and their potential

transmission mechanisms are relevant to evaluating real investment decisions using the

well-known asset pricing model.

In order to apprehend extreme movements, the Value-at-Risk (VaR) approach is an

important tool and is widely used in Önancial markets.19 VaR is often used to measure

market risk with a single numeric value by means of the probability distribution of a

random variable. It is deÖned as the expected maximum loss over a target horizon for

a given conÖdence interval (see Jorion (2007)). Due to the strong volatility of commod-

ity markets, this methodology has been recently extended to oil marketsósee, Cadebo

and Moya (2003), Giot and Laurent (2003), Feng et al. (2004), Sadeghi and Shavval-

pour (2006), and Fan et al. (2008)óand to the oil and gas marketsósee, Aloui and

Mabrouk (2006)ó which evaluate the risk losses in WTI, Brent crude oil and gas mar-

kets using di§erent techniques (Historical simulation standard approach, RiskMetrics

(RM), variance-covariance method based on various GARCH models, among others).

However, these methodologies are quite restrictive because they are based on several

strong assumptions. For instance, the nonparametric Historical simulation approach is

based on a time-constant returns unconditional distribution and fractile. The paramet-

ric RM approach is based on the linear risk and the normality of price changes, which is

not consistent with the market reality. Finally, GARCH methodologies su§er from the

positivity and/or symmetry constraints often imposed on the coe¢cient parameters.20

We improve this literature by considering extreme movements (upward and downward)

of European oil, gas, coal and electricity markets using the semiparametric Conditional

19One of the main advantage of VaR cited in literature is its user friendly way to concisely presents
risk supported by the regulatory authorities.
20Recent GARCH approaches have been developed to remove these assumptions, such as E-GARCH,

GJR-GARCH, and GARCH models under a Student-t distribution to name few.
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Autoregressive VaR (CAViaR) approach developed by Engle and Manganelli (2004),

which is considered to be less restrictive than other methodologies.

Despite the apparent market globalization, transmission e§ects among energy mar-

kets during extensive periods have been scarcely studied. Lin and Tamvakis (2001)

Örst studied spillover e§ects among NYMEX and IPE crude oil contracts in both non-

overlapping and simultaneous trading hours, and found signiÖcant transmission e§ects.

However, they do not use the crucial information about the quantile of the distribution,

which is of primary importance to apprehend tremendous variations.21 More recently,

Fan et al. (2008) evaluate the market risk of daily Brent and WTI crude oil returns

from May 20th, 1987 to August 1st, 2006 using a GED-GARCH model. They exam-

ine the downside and upside extreme risk spillover between both markets using the

Granger causality test developed by Hong et al. (2009). Results show that the VaR

model based on GED method performs relatively well, and that the WTI and Brent

returns have signiÖcant two-way causality e§ect in both downside and upside risks at

95% or 99% conÖdence levels. Further analysis reveals that at the conÖdence level of

99%, the WTI market risk information can help to forecast extreme Brent market risk

when negative news occur, but the reverse e§ect does not exist. However, their results

are based on a restrictive parametric GARCH approach which is again not consistent

with market reality, and authors investigate risk spillover at speciÖc conÖdence level

(95% and 99%) while the information in tails distribution is of primary importance.22

Our test that we develop in Section 2.1 (hereafter CJT test) allows to overcome this

problem by considering a multivariate extension of the Granger causality approach.

In this chapter, our aim is to investigate energy price return transmissions during both

"normal" and extreme áuctuations periods by using the traditional Granger causality

21According to GouriÈroux and Jasiak (2001), volatility cannot be considered as a statisfactory
measure of risk when extreme market movements occur.
22According to Engle and Manganelli (2004), dynamics of VaRs can vary considerably across risk

levels.
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test (in mean) and its multivariate CJT extension  the later focusing on causality in

distribution tails rather than quantile at speciÖc level. Relying on European forward

energy prices rather than spot data, we purge short-run demand and supply from noise

that a§ects market áuctuations and account for both fundamental and speculative

pressures (JoÎts and Mignon (2011)).23 Because comovements between markets can

vary considerably over time and in order to see if diversiÖcation can be more proÖtable

as maturity increases, we propose to investigate forward price transmission mechanims

at 1, 10, 20, and 30 months.

2.3.1 Risk measurement

We consider daily data over the January 3, 2005 to December 31, 2010 period. In

order to allow for both fundamental and speculative pressures, we rely on European

forward price returns at 1, 10, 20, 30 months for oil, gas, coal and electricity markets.24

Energy prices are quoted in US dollars per tonne of oil equivalent ($/toe) and are ex-

tracted from the Plattís Information Energy Agency. Figure 1 in Appendix B depicts

the one month forward returns (deÖned as prices in Örst log di§erence) in the whole

sample and reveals the volatility clustering of energy markets.25,26 Basic descriptive

statistics for prices at 1 month are computed and reported in Table 2.1. They reveal

that each return series, compared to the standard normal distribution, are asymmetric

(oil, gas and electricity returns are right skewed while coal returns are left skewed) and

leptokurtic, revealing fat tail distributions. Due to the speciÖc nature of its market (i.e.

non-storablility, inelasticity of the supply,...) electricity returns are frequently a§ected

23Indeed, the forward energy markets can result in both physical delivery and speculative purposes.
24Due to space constraints, we only report results corresponding to 1 month. The results for the

other maturities are similar and are available upon request to the author.
25The volatility clustering is e§ective when strong áuctuations (resp. low) are followed by strong

(resp. low) perturbations.
26Energy forward prices at 10, 20, and 30 month (not reported here) are characterized by the same

clustering property.
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by regime switching causing tail behavior higher than fossil energies (1.7 and 25 for

skewness and kurtosis respectively).

The energy returns seem to behave as strongly volatile Önancial assets. The Önancial

properties of forward energy markets lead us to use an asymmetric CAViaR speciÖca-

tion to model energy VaRs. From Table 2.15 to Table 2.18 in Appendix B, estimations

and backtesting for each return series (at 1 month) are reported at 1%, 5% and 10%

quantile levels for both downside and upside risks. Results conÖrm the asymmetric

behavior of each market for both downside and upside risks ((2) and (3) are signiÖc-

ant for all series). This asymmetric component appears between bullish and bearish

markets and between left and right tails, which reveals that energy price behaviors are

di§erent depending on the mood of the market. Generally, for fossil energies, negative

returns are predominant in downside risk while positive returns are higher in upside

one. Moreover, left tail behavior (downside risk) seems to be higher than right tail dy-

namic (upside risk). For electricity returns, relying to CAViaR estimation, asymmetric

dynamic seems to be less pronounced. It may come from a misspeciÖed risk model.

Indeed, the dynamic quantile (DQ) test is applied to check the adequacy of the VaRs

estimation, and results show that our models are well speciÖed for energy fossil only.

The misspeciÖcation of electricity VaR model may be due to the high occurrence of

extreme values and potential regime switching. In our analysis, the misspeciÖed prob-

lem is not a constraint because risk apprehension is more widely a§ected by parameter

incertainty. Risk estimation is therefore strongly ináuenced by model assumptions and

parameterizations. In our Granger causality context, CJT approach deals with this is-

sue by using Monte Carlo procedure to compute p-values of test. In this way, p-values

are simulated and the misspeciÖed parameters of electricity VaR model are corrected.
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Table 2.1: Summary statistics for the daily forward energy returns at 1 month
Brent Gas Coal Electricity

Mean 0:00053 0:00017 0:00038 0:00062
Variance 0:00053 0:00035 0:00033 0:00088
Skewness 0:13679 0:00327 0:57407 1:76840
Kurtosis 8:97939 6:47279 9:93896 25:31240

Jarque-Bera test 2333:29
(0:00)

785:431
(0:00)

3221:56
(0:00)

33236:7
(0:00)

Notes: p-values for corresponding null hypotheses are reported in parentheses. The
statistics are computed over the period 2005-01-04 : 2010-12-30.

2.3.2 Energy price transmission

Using Granger causality approach, we propose to investigate transmission mech-

anisms between energy price returns during both regular times and extreme volatility

periods. Table 2.19 in Appendix B reports results of Granger causality in mean, to

investigate energy price interactions at 1 month during normal times. It reveals that,

except for oil and coal prices, no short-run causalities exist across energy markets

conÖrming the results in favor of long-run interactions rather than short-term comove-

ments. The same result (not reported here) is also observable for prices at 10, 20, and

30 months. Considering extreme occurrences, Table 2.20 gathers Granger causality

test in tails distribution for prices at 1 month through CJT approach. It shows that

comovements are higher between markets during periods of price decrease, while during

situations of price increase no signiÖcant causalities exist. These relations appear to

be relevant mainly across fossil energies. Energy prices at 1 month behave as stock re-

turns which are characterized by asymmetric causalities between downturn and upturn

situations making diversiÖcation almost impossible during extreme volatility periods.

According to Ding et al. (2011) for Önancial markets, this asymmetric phenomenon

could be attributed to several fundamental and speculative factors. For instance, a pop-

ular incidence documented by many studies (Kim et al., 2008; Campbell and Diebold,
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2009, among others) is that when economy experiences negative shock, the volatility

of fundamental variables is usually higher and accompanied by an increase of funda-

mental risk. Moreover, Campbell and Hentschel (1992) Önd that during extreme price

movements, market downturn is more likely associated with high market risk. This

Önding is consistent with our results on energy market behaviors.

Furthermore, Demirer and Lien (2004) Önd that during periods of extreme prices de-

crease, individual Örm returns tend to comove more closely causing stronger trans-

mission mechanism between companies. It is therefore reasonable to think that such

behaviors also exist across energy industries.

The energy market causality dynamics could also be explained by various behavioral

considerations. Indeed, there is evidence that investors react more sensitively to bad

news than good news. According to Barberis et al. (1998), following a string of positive

shocks, the investors expect that the trend will continue in the same way (i.e. they

expect another positive shock). If good news is announced, the positive shock is largely

anticipated and the market response appears to be relatively small. However, negative

shocks impact returns signiÖcanlty since bad news appears more as a surprise. In the

same context, the popular prospect theory of Kahneman and Tversky (1979) shows that

investors react di§erently to market circumstances due to the notion of loss aversion.

They are more hesitant to sell in overvaluation than to buy in undervaluation (they

are more sensitive to undervaluation) causing asymmetric dynamics between bearish

and bullish markets. Another possible explanation could be relative to the emotion

component of energy markets. Recent researches have found that feelings can have

signiÖcant impact on equity returns under uncertain and risky environment even if

emotions are unrelated to the decision context.27 According to Forgas (1995), feelings

will become predominant as risk and uncertainty increase. Considering that market

risk increases during downturn periods, investors should be more ináuenced by their

27See Saunders (1993), Hirshleifer and Shumway (2003), Cao and Wei (2002), Kamstra et al. (2000),
Kamstra et al. (2003), and Dowling and Lucey (2005, 2008), among others.
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emotions during extreme prices decrease. In this context, JoÎts (2012) conÖrms that

energy market dynamics tend to be more ináuenced by emotions when extreme bearish

market movements occur. This phenomenon is likely to cause asymmetric causality

behaviors making diversiÖcation almost impossible.

2.3.3 Maturity e§ect

While energy forward prices at 1 month appear to be characterized by an asymmet-

ric comovement with a downturn predominence, energy markets dynamic seems to be

di§erent as maturities increase. Considering comovements during extreme áuctuations,

Table 2.21 to Table 2.23 gather CJT Granger causality tests for energy forward prices

at 10, 20, 30 months respectively.28 They show that causality between markets varies

strongly over time. Indeed, compared to the 1 month prices maturity, energy market

interactions seem to be less pronounced as maturity increases. For instance, asym-

metric downturn causality remains signiÖcant for energy prices at 10 months, while

this dynamic fades strongly at 20 and 30 months making diversiÖcation more proÖt-

able at longer maturities. This phenomenon could be attributable to the well known

Samuelson e§ect which reveals an eventual prices maturity segmentation across energy

markets. This e§ect would tend to ináuence the volatility of the series across maturity

leading to a decrease of comovements between energy markets.

On the whole, our analysis shows that energy price return relationships increase dur-

ing periods of extreme movements, especially in bear markets circumstances. Indeed,

while almost no causality exists during "normal" times, price comovements are higher

during market downturns as compared to upturns. This phenomenon leads to asym-

metric interactions in energy price returns, showing that energy markets behave as

stock markets making diversiÖcation almost impossible during high volatility periods.

28Granger causality tests in mean (normal times) are also computed showing no signiÖcant energy
price relationship (results available upon request to the author).
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However, this phenomenon tends to disappear as maturity increases, indicating that

diversiÖcation could be more proÖtable at longer horizons (such as 20 and 30 months).

2.4 Conclusion

This chapter develops a novel Granger-causality test in risk. Elaborating on Hong

et al. (2009) who consider the concept of Granger-causality in risk between two mar-

kets only at a particular risk level, we elaborate an original procedure which allows for

testing for Granger-causality in down- and upside risk for multiple risk levels across

tail distributions. After presenting the asymptotic distribution, a simulation exercise

shows that applying the Dufour (2006) Monte-Carlo technique to calculate critical re-

gions, tackles the potential uncertainty problem which may arise from our two-step

procedure. This new test is illustrated by two applications. The Örst one deals with

the oil markets. We implement our test to check if causal linkages are more or less im-

portant during extreme price movements periods and to determine if local markets are

price-setters or price-takers. This last issue has important implications for the energy

policy in many countries to design an optimal set of providers and/or to evaluate any

political implication (embargo, war,..) on the global oil market.

Several interesting results can be drawn: extreme crude oil prices are governed by non-

OPEC markets rather than OPEC ones. More precisely, WTI and Brent crude oils are

price setters both in downside and upside price movements, due to the fundamental

and speculative components of each market. Surprisingly, Mediterranean Russian Ur-

als and Europe Forcados (resp. Ecuador Oriente) also act as benchmarks in periods of

extreme downside (resp. upside) price movements. Asia Dubai Fateh and Oman Blend,

the acclaimed crude oil benchmarks act as followers rather than leaders. Besides, we

observe that the integration level between crude oil markets tends to decrease during
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extreme periods.

These results highlight the leading role played by the US and UK markets in the

determination of crude oil prices. Understanding and forecasting crude oil price evol-

utions in periods of extreme price occurences would require a precise analysis of these

two high quality markets. Nevertheless, attention should be payed to additional lead-

ing markets which have lower quality: Mediterranean Russian Urals, Europe Forcados,

and Ecuador Oriente. This chapter also paves the way to important advices for energy

policy as it indicates that diversiÖcation strategies are the more relevant in periods of

sharp variations in crude oil prices.

Our second applications is devoted to the investigation of energy transmission mech-

anisms across forward price returns of oil, gas, coal, and electricity during both normal

and extreme volatility periods. Using Granger causality approach in mean as well as

in tails distribution, we show that energy price comovements increase during extreme

áuctuations, while they are almost nonexistent in regular times. More precisely, energy

market causalities appear to be stronger during bear markets, indicating a possible re-

lation between volatility and comovements at shorter maturities. The phenomenon

could be attributed to several fundamental and speculative factors, showing that en-

ergy markets behave as Önancial assets. Regarding portfolio diversiÖcation, unstable

asset relationships might lead energy risk managers to exaggerate the beneÖts of diver-

siÖcation during extreme downturn variations making suboptimal portfolio allocations.

However, probably due to a Samuelson e§ect, energy markets comovements vary from

shorter to longer maturity and seem to be fading as maturity increases. This maturity

e§ect shows that, contrary to short maturity, diversiÖcation could be more proÖtable

at longer ones.
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A Sample properties

Table 2.2: Empirical sizes with the asymptotic critical re-
gion: A = f1%; 5%; 10%g

p = 5 p = 10 p = 15

Nominal risk level  = 5%

T = 500 0:1503 0:1703 0:1523

T = 1000 0:1122 0:1222 0:1022

T = 1500 0:1142 0:1002 0:1122

Nominal risk level  = 10%

T = 500 0:2144 0:2044 0:2064

T = 1000 0:1523 0:1743 0:1583

T = 1500 0:1743 0:1663 0:1764

Notes: The table displays the empirical rejection frequencies of
the multivariate LM statistic under the null of non-Granger causality
in distribution tails. The statistics are reported for di§erent sample
sizes, values of the lag order p in the multivariate regression (23), and
nominal risk level . The rejection frequencies are computed using
the chi-squared asymptotic distribution.
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Table 2.3: Empirical sizes with the asymptotic critical re-
gion: A = f5%; 10%g

p = 5 p = 10 p = 15

Nominal risk level  = 5%

T = 500 0:0802 0:0701 0:0782

T = 1000 0:0782 0:0661 0:0621

T = 1500 0:0441 0:0621 0:0701

Nominal risk level  = 10%

T = 500 0:1343 0:1303 0:1343

T = 1000 0:1222 0:1162 0:1222

T = 1500 0:0922 0:1162 0:1263

Notes: The table displays the empirical rejection frequencies of
the multivariate LM statistic under the null of non-Granger causality
in distribution tails. The statistics are reported for di§erent sample
sizes, values of the lag order p in the multivariate regression (23), and
nominal risk level . The rejection frequencies are computed using
the chi-squared asymptotic distribution.
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Table 2.4: Empirical sizes with the Monte Carlo critical
region: A = f1%; 5%; 10%g

p = 5 p = 10 p = 15

Nominal risk level  = 5%

T = 500 0:0441 0:0401 0:0501

T = 1000 0:0461 0:0501 0:0641

T = 1500 0:0721 0:0661 0:0721

Nominal risk level  = 10%

T = 500 0:1022 0:1102 0:1182

T = 1000 0:1082 0:1242 0:1222

T = 1500 0:1242 0:0962 0:1303

Notes: The table displays the empirical rejection frequencies of
the multivariate LM statistic under the null of non-Granger causality
in distribution tails. The statistics are reported for di§erent sample
sizes, values of the lag order p in the multivariate regression (23), and
nominal risk level . The rejection frequencies are computed relying
on the Monte Carlo critical region.
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Table 2.5: Empirical powers with the Monte Carlo critical
region: nominal risk level = 5%

p = 5 p = 10 p = 15

A = f1%; 5%; 10%g

T = 500 0:5331 0:5150 0:5030

T = 1000 0:8216 0:7355 0:7094

T = 1500 0:9319 0:9238 0:8617

A = f1%g

T = 500 0:2164 0:1543 0:1182

T = 1000 0:3166 0:2946 0:2565

T = 1500 0:4790 0:5190 0:4569

A = f5%g

T = 500 0:4910 0:4148 0:3607

T = 1000 0:6774 0:6814 0:6232

T = 1500 0:8737 0:8297 0:7996

A = f10%g

T = 500 0:5230 0:4128 0:3928

T = 1000 0:7255 0:7054 0:6112

T = 1500 0:8978 0:8657 0:8176

Notes: The Örst panel of the Table displays the empirical rejec-
tion frequencies of the multivaraite LM statistic under the alternative
of Granger-causality in distribution tails. The statistics are reported
for di§erent sample sizes, values of the lag order p in the multivariate
regression (23), and nominal risk level . For comparison, the follow-
ing panels present the same statistics for the univariate test of Hong
et al. (2009). The rejection frequencies are computed relying on the
Monte Carlo critical region.
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Table 2.6: Empirical powers with the Monte Carlo critical
region: nominal risk level = 10%

p = 5 p = 10 p = 15

A = f1%; 5%; 10%g

T = 500 0:6874 0:6754 0:6072

T = 1000 0:8938 0:8637 0:8196

T = 1500 0:9739 0:9519 0:9259

A = f1%g

T = 500 0:3868 0:2525 0:2585

T = 1000 0:5311 0:4890 0:3868

T = 1500 0:6032 0:6052 0:5792

A = f5%g

T = 500 0:6393 0:5772 0:4890

T = 1000 0:7896 0:7756 0:7315

T = 1500 0:9158 0:9038 0:8517

A = f10%g

T = 500 0:6553 0:5731 0:5210

T = 1000 0:8056 0:8036 0:7255

T = 1500 0:9399 0:9178 0:8818

Notes: The Örst panel of the Table displays the empirical rejec-
tion frequencies of the multivariate LM statistic under the alternative
of Granger-causality in distribution tails. The statistics are reported
for di§erent sample sizes, values of the lag order p in the multivariate
regression (23), and nominal risk level . For comparison, the follow-
ing panels present the same statistics for the univariate test of Hong
et al. (2009). The rejection frequencies are computed relying on the
Monte Carlo critical region.
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B Oil markets globalization
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Table 2.7: Details of Crudes analyzed

Crude API Sulphur (%)
Non-OPEC

WTI Cushing 40-light 0.2-sweet
Europe Brent 38-light 0.4-sweet
Europe Norwegian EkoÖsk 43-light 0.1-sweet
Canadian Par 40-light 0.3-sweet
Canada Lloyd Blend 22-heavy 3.1-sour
Mexico Isthmus 35-medium 1.5-sour
Mexico Maya 22-heavy 3.3-sour
Colombia Cano Limon 30-medium 0.5-sweet
Ecuator Oriente 29-medium 1.0-sour
Angola Cabinda 32-medium 0.2-sweet
Cameroon Kole 35-medium 0.3-sweet
Egypt Suez Blend 32-medium 1.5-sour
Oman Blend 34-medium 0.8-sour
Australia Gippsland 45-light 0.1-sweet
Malaysia Tapis 44-light 0.1-sweet
Mediterranean Russian Urals 32-medium 1.3-sour
China Daqing 33-medium 0.1-sweet

OPEC
Saudi Arabia Saudi Light 34-medium 1.7-sour
Saudi Arabia Arab Medium 31-medium 2.3-sour
Saudi Arabia Saudi Heavy 28-medium 2.8-sour
Asia Murban 40-light 0.8-sour
Asia Dubai Fateh 32-medium 1.9-sour
Qatar Dukhan 40-light 1.2-sour
Mediterranean Seri Kerir Iran Light 34-medium 1.4-sour
Mediterranean Seri Kerir Iran Heavy 31-medium 1.6-sour
Kuwait Blend 31-medium 2.5-sour
Algeria Saharan Blend 44-light 0.1-sweet
Europe Nigerian Bonny Light 37-light 0.1-sweet
Europe Forcados 30-medium 0.3-sweet
Europe Libyan Es Sider 37-light 0.4-sweet
Indonesia Minas 34-medium 0.1-sweet
Venezuela Tia Juana 31-medium 1.1-sour
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Table 2.8: Results of Granger-causality test in distribution tails

Crude Left Tail Right Tail
Setter
(1)

Taker
(2)

(1)-(2) Setter
(1)

Taker
(2)

(1)-(2)

WTI 0:9677 0:0000 0:9677 0:9677 0:3226 0:6452
Europe Brent 0:9677 0:0968 0:8710 0:9677 0:3548 0:6129

Europe Norwegian EkoÖsk 0:8387 0:7097 0:1290 0:0968 0:1290 0:0323
Canadian Par 0:6452 0:8710 0:2258 0:1935 0:0645 0:1290

Canada Lloyd Blend 0:0323 0:1613 0:1290 0:0323 0:0645 0:0323
Mexico Isthmus 0:5484 0:8710 0:3226 0:5484 0:1613 0:3871
Mexico Maya 0:5806 0:8387 0:2581 0:4839 0:1290 0:3548

Colombia Cano Limon 0:2581 0:9355 0:6774 0:3871 0:1290 0:2581
Ecuador Oriente 0:5484 0:9355 0:3871 0:7419 0:0645 0:6774
Angola Cabinda 0:8065 0:6774 0:1290 0:1613 0:0968 0:0645
Cameroon Kole 0:9355 0:7419 0:1935 0:0323 0:1935 0:1613
Egypt Suez Blend 0:8710 0:9032 0:0323 0:0968 0:0968 0:0000
Oman Blend 0:9032 0:8065 0:0968 0:0645 0:3871 0:3226

Australia Gippsland 0:7097 0:6452 0:0645 0:1935 0:2903 0:0968
Malaysia Tapis 0:4516 0:9677 0:5161 0:5484 0:8065 0:2581

Mediter. Russian Urals 0:9355 0:4516 0:4839 0:2581 0:6774 0:4194
China Daqing 0:7742 0:9032 0:1290 0:0323 0:3226 0:2903

Saudi Arabia Saudi Light 0:3548 0:7742 0:4194 0:0968 0:1290 0:0323
Saudi Arabia Arab Medium 0:4194 0:8065 0:3871 0:0968 0:2258 0:1290
Saudi Arabia Saudi Heavy 0:6452 0:6774 0:0323 0:0968 0:1290 0:0323

Asia Murban 0:6774 0:8065 0:1290 0:0968 0:2903 0:1935
Asia Dubai Fateh 0:6129 0:9355 0:3226 0:0645 0:3548 0:2903
Qatar Dukhan 0:8065 0:7419 0:0645 0:1290 0:4516 0:3226

Mediter. Seri K Iran Light 0:6129 0:4194 0:1935 0:0968 0:0968 0:0000
Mediter. Seri K Iran Heavy 0:4194 0:6129 0:1935 0:1935 0:2903 0:0968

Kuwait Blend 0:8387 0:8710 0:0323 0:1290 0:5806 0:4516
Algeria Saharan Blend 0:8065 0:5806 0:2258 0:0968 0:1613 0:0645

Europe Nigerian Bonny Light 0:8387 0:7742 0:0645 0:1613 0:0968 0:0645
Europe Forcados 0:8387 0:3548 0:4839 0:1290 0:0968 0:0323

Europe Libyan Es Sider 0:9032 0:6452 0:2581 0:1290 0:0645 0:0645
Indonesia Minas 0:8065 0:5806 0:2258 0:0968 0:2903 0:1935

Venezuela Tia Juana 0:6452 0:9032 0:2581 0:3226 0:1935 0:1290
Mean absolute value 0:2782 0:2137

Note: For each crude oil, the table displays the proportion of time the Granger-causality test in
distribution tails rejects the null of no-causality for the system of pair markets. Nominal size is set to
5 percent.



Appendix Chapter 2 103

Table 2.9: Results of Granger-causality test in mean

Crude Setter
(1)

Taker
(2)

(1)-(2)

WTI 1:0000 0:8065 0:1935
Europe Brent 1:0000 0:0323 0:9677

Europe Norwegian EkoÖsk 0:8065 0:7742 0:0323
Canadian Par 0:9355 0:9677 0:0323

Canada Lloyd Blend 0:8387 0:6129 0:2258
Mexico Isthmus 0:9032 0:9355 0:0323
Mexico Maya 0:9355 0:9677 0:0323

Colombia Cano Limon 0:9032 0:9355 0:0323
Ecuador Oriente 0:8387 0:8710 0:0323
Angola Cabinda 0:7742 0:8065 0:0323
Cameroon Kole 0:7097 0:6774 0:0323
Egypt Suez Blend 0:7097 0:7742 0:0645
Oman Blend 0:8387 0:9355 0:0968

Australia Gippsland 0:9355 0:9677 0:0323
Malaysia Tapis 0:4839 0:9677 0:4839

Mediter. Russian Urals 0:9677 0:9677 0:0000
China Daqing 0:9355 0:9677 0:0323

Saudi Arabia Saudi Light 0:9355 0:9677 0:0323
Saudi Arabia Arab Medium 0:9355 0:9355 0:0000
Saudi Arabia Saudi Heavy 0:9355 0:8710 0:0645

Asia Murban 0:8710 0:8387 0:0323
Asia Dubai Fateh 0:8387 0:8387 0:0000
Qatar Dukhan 0:8387 0:9032 0:0645

Mediter. Seri K Iran Light 0:9355 0:8710 0:0645
Mediter. Seri K Iran Heavy 0:9355 0:8065 0:1290

Kuwait Blend 0:8065 0:8387 0:0323
Algeria Saharan Blend 0:7097 0:8065 0:0968

Europe Nigerian Bonny Light 0:8065 0:9032 0:0968
Europe Forcados 0:9032 0:8710 0:0323

Europe Libyan Es Sider 0:7097 0:8710 0:1613
Indonesia Minas 0:9355 0:9677 0:0323

Venezuela Tia Juana 0:6452 1:0000 0:3548
Mean absolute value 0:1109

Note: For each crude oil, the table displays the proportion of time the Granger-
causality test in mean rejects the null of no-causality for the system of pair markets.
Nominal size is set to 5 percent.
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Table 2.10: Results of Granger-causality test in distribution tails: Light density and
sweet

Crude Left Tail Right Tail
Setter
(1)

Taker
(2)

(1)-(2) Setter
(1)

Taker
(2)

(1)-(2)

WTI 0:8750 0:0000 0:8750 0:8750 0:1250 0:7500
Europe Brent 0:8750 0:1250 0:7500 0:8750 0:5000 0:3750

Europe Norwegian EkoÖsk 0:7500 0:8750 0:1250 0:1250 0:3750 0:2500
Canadian Par 0:7500 1:0000 0:2500 0:2500 0:2500 0:0000

Australia Gippsland 0:7500 0:8750 0:1250 0:2500 0:2500 0:0000
Malaysia Tapis 0:7500 1:0000 0:2500 0:2500 0:8750 0:6250

Algeria Saharan Blend 0:6250 1:0000 0:3750 0:2500 0:3750 0:1250
Europe Nigerian Bonny Light 0:7500 1:0000 0:2500 0:1250 0:3750 0:2500
Europe Libyan Es Sider 0:7500 1:0000 0:2500 0:3750 0:2500 0:1250
Mean absolute value 0:3611 0:2778

Note: For each crude oil, the table displays the proportion of time the Granger-causality test
in distribution tails rejects the null of no-causality for the system of pair markets. Nominal size is
set to 5 percent.

Table 2.11: Results of Granger-causality test in distribution tails: Medium
density and sweet

Crude Left Tail Right Tail
Setter
(1)

Taker
(2)

(1)-(2) Setter
(1)

Taker
(2)

(1)-(2)

Colombia Cano Limon 0:2000 1:0000 0:8000 0:4000 0:0000 0:4000
Angola Cabinda 0:8000 0:8000 0:0000 0:2000 0:0000 0:2000
Cameroon Kole 1:0000 1:0000 0:0000 0:0000 0:0000 0:0000
China Daqing 0:8000 0:8000 0:0000 0:0000 0:4000 0:4000
Europe Forcados 1:0000 0:4000 0:6000 0:0000 0:0000 0:0000
Indonesia Minas 1:0000 0:8000 0:2000 0:0000 0:2000 0:2000

Mean absolute value 0:2667 0:2000

Note: For each crude oil, the table displays the proportion of time the Granger-causality
test in distribution tails rejects the null of no-causality for the system of pair markets.
Nominal size is set to 5 percent.
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Table 2.12: Results of Granger-causality test in distribution tails: Medium density
and sour

Crude Left Tail Right Tail
Setter
(1)

Taker
(2)

(1)-(2) Setter
(1)

Taker
(2)

(1)-(2)

Mexico Isthmus 0:8333 0:9167 0:0833 0:5833 0:0833 0:5000
Ecuador Oriente 0:5000 1:0000 0:5000 0:8333 0:0000 0:8333
Egypt Suez Blend 1:0000 1:0000 0:0000 0:1667 0:0000 0:1667
Oman Blend 1:0000 1:0000 0:0000 0:0000 0:4167 0:4167

Mediter. Russian Urals 1:0000 0:2500 0:7500 0:2500 0:6667 0:4167
Saudi Arabia Saudi Light 0:5000 0:7500 0:2500 0:1667 0:0833 0:0833
Saudi Arabia Arab Medium 0:5000 0:6667 0:1667 0:1667 0:2500 0:0833
Saudi Arabia Saudi Heavy 0:8333 0:5833 0:2500 0:0833 0:0833 0:0000

Asia Dubai Fateh 0:5000 1:0000 0:5000 0:0000 0:4167 0:4167
Mediter. Seri K Iran Light 0:8333 0:3333 0:5000 0:1667 0:0000 0:1667
Mediter. Seri K Iran Heavy 0:5833 0:4167 0:1667 0:3333 0:2500 0:0833

Kuwait Blend 0:8333 0:9167 0:0833 0:0833 0:7500 0:6667
Venezuela Tia Juana 0:7500 0:8333 0:0833 0:3333 0:1667 0:1667
Mean absolute value 0:2564 0:3077

Note: For each crude oil, the table displays the proportion of time the Granger-causality test
in distribution tails rejects the null of no-causality for the system of pair markets. Nominal size is
set to 5 percent.
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Table 2.13: Results of Granger-causality test in distribution tails: OPEC

Crude Left Tail Right Tail
Setter
(1)

Taker
(2)

(1)-(2) Setter
(1)

Taker
(2)

(1)-(2)

Saudi Arabia Saudi Light 0:2857 0:8571 0:5714 0:0714 0:0000 0:0714
Saudi Arabia Arab Medium 0:2857 0:7857 0:5000 0:0714 0:1429 0:0714
Saudi Arabia Saudi Heavy 0:5714 0:5000 0:0714 0:0714 0:0000 0:0714

Asia Murban 0:7143 0:8571 0:1429 0:0000 0:0714 0:0714
Asia Dubai Fateh 0:5000 1:0000 0:5000 0:0000 0:1429 0:1429
Qatar Dukhan 0:8571 0:7857 0:0714 0:0714 0:2857 0:2143

Mediterranean Seri K Iran Light 0:5714 0:2857 0:2857 0:0714 0:0000 0:0714
Mediterranean Seri K Iran Heavy 0:4286 0:5714 0:1429 0:2143 0:0000 0:2143

Kuwait Blend 0:9286 0:9286 0:0000 0:0714 0:6429 0:5714
Algeria Saharan Blend 0:9286 0:5000 0:4286 0:0714 0:0000 0:0714

Europe Nigerian Bonny Light 0:8571 0:7143 0:1429 0:2143 0:0714 0:1429
Europe Forcados 0:8571 0:2857 0:5714 0:0714 0:0000 0:0714

Europe Libyan Es Sider 1:0000 0:5714 0:4286 0:0714 0:0000 0:0714
Indonesia Minas 0:7143 0:5000 0:2143 0:0000 0:0714 0:0714

Venezuela Tia Juana 0:5714 0:9286 0:3571 0:3571 0:0000 0:3571
Mean absolute value 0:2952 0:1524

Notes: For each crude oil, the table displays the proportion of time the Granger-causality test in
distribution tails rejects the null of no-causality for the system of pair markets. Nominal size is set to 5
percent.
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Table 2.14: Results of Granger-causality test in distribution tails: Non-OPEC

Crude Left Tail Right Tail
Setter
(1)

Taker
(2)

(1)-(2) Setter
(1)

Taker
(2)

(1)-(2)

WTI 0:9375 0:0000 0:9375 0:9375 0:4375 0:5000
Europe Brent 0:9375 0:1250 0:8125 0:9375 0:4375 0:5000

Europe Norwegian EkoÖsk 0:8125 0:7500 0:0625 0:1250 0:1875 0:0625
Canadian Par 0:6250 0:8750 0:2500 0:1875 0:1250 0:0625

Canada Lloyd Blend 0:0000 0:2500 0:2500 0:0625 0:1250 0:0625
Mexico Isthmus 0:5625 0:8125 0:2500 0:5625 0:3125 0:2500
Mexico Maya 0:5625 0:8750 0:3125 0:3750 0:2500 0:1250

Colombia Cano Limon 0:3125 0:8750 0:5625 0:3750 0:2500 0:1250
Ecuador Oriente 0:6250 0:8750 0:2500 0:7500 0:1250 0:6250
Angola Cabinda 0:7500 0:6875 0:0625 0:2500 0:1875 0:0625
Cameroon Kole 0:8750 0:7500 0:1250 0:0625 0:3750 0:3125
Egypt Suez Blend 0:8125 0:8125 0:0000 0:1250 0:1875 0:0625
Oman Blend 0:8125 0:6875 0:1250 0:1250 0:5000 0:3750

Australia Gippsland 0:6875 0:6875 0:0000 0:1875 0:3750 0:1875
Malaysia Tapis 0:3750 0:9375 0:5625 0:5000 0:6875 0:1875

Mediterranean Russian Urals 0:8750 0:5000 0:3750 0:1875 0:6875 0:5000
China Daqing 0:7500 0:8125 0:0625 0:0625 0:5625 0:5000

Mean absolute value 0:2941 0:2647

Notes: For each crude oil, the table displays the proportion of time the Granger-causality test in
distribution tails rejects the null of no-causality for the system of pair markets. Nominal size is set to
5 percent.
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C Energy price transmissions
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Figure 2-1: One month forward energy returns (prices in Örst log di§erence)
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Table 2.15: CAViaR estimation results for daily oil returns at 1 month

Downside Risk Upside Risk
 = 1%  = 5%  = 10%  = 10%  = 5%  = 1%

(0) 0:0012
[0:0002]
(0:0154)

0:0013
[0:0002]
[0:0000]

0:0009
[0:0002]
(0:0001)

0:0004
[0:0001]
(0:0000)

0:0005
[0:0002]
(0:0007)

0:0008
[0:0005]
(0:0715)

(1) 0:9653
[0:0104]
(0:0000)

0:9411
[0:0199]
(0:0000)

0:9439
[0:0120]
(0:0000)

0:9771
[0:0081]
(0:0000)

0:9793
[0:0082]
(0:0000)

0:9730
[0:0114]
(0:0000)

(2) 0:4880
[0:0359]
(0:0000)

0:4635
[0:0478]
(0:0000)

0:4443
[0:0476]
(0:0000)

1:2285
[0:0186]
(0:0000)

1:2759
[0:0150]
(0:0000)

2:1296
[0:0387]
(0:0000)

(3) 2:4313
[0:00314]
(0:0000)

2:2109
[0:0524]
(0:0000)

1:7239
[0:0196]
(0=0000)

0:4087
[0:0177]
(0:0000)

0:3987
[0:0196]
(0:0000)

0:0140
[0:0435]
(0:3735)

% Hit 0.0102 0.0505 0.0997 0.1004 0.0505 0.0090
DQ test Stat 4.8256 1.3346 2.2793 5.5953 4.5916 0.3617
DQ test P-value 0.3057 0.8555 0.6845 0.2315 0.3318 0.9855

Notes: The values in brackets (resp. parentheses) are the standard errors (resp.
p-values) of the estimated parameters. Engle and Manganelliís DQ test is applied to
check the adequacy of the speciÖed VaR model, where the Örst four lagged hits are

used as instruments.



110 Appendix Chapter 2

Table 2.16: CAViaR estimation results for daily gas returns at 1 month

Downside Risk Upside Risk
 = 1%  = 5%  = 10%  = 10%  = 5%  = 1%

(0) 0:0739
[0:0297]
(0:0064)

0:0461
[0:0461]
[0:2813]

0:0349
[0:0044]
(0:0000)

0:0399
[0:0034]
(0:0000)

0:0667
[0:0060]
(0:0000)

0:0013
[0:0011]
(0:1105)

(1) 0:0974
[0:3091]
(0:3763)

0:0429
[1:5356]
(0:4889)

0:0146
[0:1087]
(0:4468)

0:0579
[0:0174]
(0:0004)

0:0725
[0:0210]
(0:0003)

1:0081
[0:0036]
(0:0000)

(2) 2:5281
[0:0443]
(0:0000)

2:8731
[0:0439]
(0:0000)

1:7770
[0:0482]
(0:0000)

0:1407
[0:0282]
(0:0000)

0:2504
[0:0549]
(0:0000)

0:4449
[0:0453]
(0:0000)

(3) 7:8342
[0:1187]
(0:0000)

7:2216
[0:1727]
(0:0505)

6:4634
[0:1164]
(0=0000)

2:1672
[0:1241]
(0:0000)

3:4997
[0:1301]
(0:0000)

0:5623
[0:0581]
(0:0000)

% Hit 0.0096 0.0505 0.1010 0.1004 0.0499 0.0077
DQ test Stat 0.7554 2.2095 3.4373 15.8352 16.4263 7.2900
DQ test P-value 0.9443 0.6973 0.4875 0.0032 0.0025 0.1213

Notes: The values in brackets (resp. parentheses) are the standard errors (resp.
p-values) of the estimated parameters. Engle and Manganelliís DQ test is applied to
check the adequacy of the speciÖed VaR model, where the Örst four lagged hits are

used as instruments.
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Table 2.17: CAViaR estimation results for daily coal returns at 1 month

Downside Risk Upside Risk
 = 1%  = 5%  = 10%  = 10%  = 5%  = 1%

(0) 0:0015
[0:0007]
(0:0166)

0:0018
[0:0005]
[0:0001]

0:0012
[0:0002]
(0:0000)

0:0008
[0:0002]
(0:0002)

0:0015
[0:0003]
(0:0000)

0:0024
[0:0008]
(0:0018)

(1) 0:9205
[0:0422]
(0:0000)

0:8737
[0:0339]
(0:0000)

0:8685
[0:0255]
(0:0000)

0:9339
[0:0212]
(0:0000)

0:9043
[0:0187]
(0:0000)

0:9154
[0:0275]
(0:0000)

(2) 6:5207
[0:0729]
(0:0000)

4:8475
[0:0733]
(0:0000)

3:0796
[0:0433]
(0:0000)

1:2313
[0:0213]
(0:0000)

1:8592
[0:0593]
(0:0000)

1:6271
[0:0367]
(0:0000)

(3) 5:1929
[0:0897]
(0:0000)

5:7090
[0:1048]
(0:0000)

4:5016
[0:0405]
(0=0000)

1:6186
[0:0317]
(0:0000)

4:8571
[0:0491]
(0:0000)

5:6179
[0:0801]
(0:0000)

% Hit 0.0096 0.0518 0.1010 0.0991 0.0492 0.0102
DQ test Stat 6.2437 1.0565 5.0378 8.5870 2.1926 4.8216
DQ test P-value 0.1817 0.9011 0.2834 0.0723 0.7004 0.3061

Notes: The values in brackets (resp. parentheses) are the standard errors (resp.
p-values) of the estimated parameters. Engle and Manganelliís DQ test is applied to
check the adequacy of the speciÖed VaR model, where the Örst four lagged hits are

used as instruments.
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Table 2.18: CAViaR estimation results for daily electricity returns at 1 month

Downside Risk Upside Risk
 = 1%  = 5%  = 10%  = 10%  = 5%  = 1%

(0) 0:0216
[0:0162]
(0:0911)

0:0010
[0:0003]
[0:0003]

0:0023
[0:0003]
(0:0000)

0:0001
[0:0000]
(0:0000)

0:0002
[0:0001]
(0:0001)

0:0003
[0:0001]
(0:0150)

(1) 0:5554
[0:3317]
(0:0470)

0:9450
[0:0150]
(0:0000)

0:8440
[0:0204]
(0:0000)

0:9888
[0:0036]
(0:0000)

0:9811
[0:0055]
(0:0000)

1:0070
[0:0012]
(0:0000)

(2) 10:1970
[0:3303]
(0:0000)

0:5385
[0:0142]
(0:0000)

0:6816
[0:0110]
(0:0000)

0:1351
[0:0050]
(0:0000)

0:0713
[0:0229]
(0:0009)

0:4042
[0:0172]
(0:0000)

(3) 6:2203
[0:3773]
(0:0000)

1:8982
[0:0099]
(0:0000)

3:7098
[0:0151]
(0=0000)

0:3443
[0:0068]
(0:0000)

0:8840
[0:0159]
(0:0000)

0:9902
[0:0197]
(0:0000)

% Hit 0.0102 0.0505 0.1004 0.1017 0.0512 0.0090
DQ test Stat 6.5967 46.4104 80.6409 45.1708 19.3953 7.1560
DQ test P-value 0.1588 0.0000 0.0000 0.0000 0.0007 0.1279

Notes: The values in brackets (resp. parentheses) are the standard errors (resp.
p-values) of the estimated parameters. Engle and Manganelliís DQ test is applied to
check the adequacy of the speciÖed VaR model, where the Örst four lagged hits are

used as instruments.
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Table 2.19: Results of Granger causality test in mean at 1 month ("normal" times)

X ) Y Oil Gas Coal Electricity
Oil X 1:10

(0:31)
4:05

(0:00)
0:77
(0:80)

Gas 1:32
(0:11)

X 0:67
(0:90)

0:94
(0:35)

Coal 1:07
(0:35)

1:29
(0:12)

X 0:54
(0:98)

Electricity 0:79
(0:77)

1:22
(0:19)

0:87
(0:66)

X

Notes: Between parentheses p-values. *** denotes rejection of the null hypothesis at 1%
signiÖcance level. Granger causality tests are computed using p=30 lags. Causality run

from the left series to the top series.



114 Appendix Chapter 2

Table 2.20: Results of Granger causality test in distribution tails at 1 month (extreme
movements)

DR
X ) Y Oil Gas Coal Electricity
Oil X 301:6

(0:09)
347:6
(0:00)

325:7
(0:05)

DR Gas 360:49
(0:00)

X 372:5
(0:00)

340:02
(0:05)

Coal 2:03
(0:99)

6:05
(0:68)

X 328:27
(0:03)

Electricity 11:10
(0:25)

4:29
(0:70)

9:08
(0:38)

X

UR
Oil X 7:83

(0:38)
4:25
(0:86)

4:85
(0:81)

UR Gas 4:28
(0:86)

X 6:83
(0:15)

15:25
(0:10)

Coal 4:26
(0:83)

4:96
(0:79)

X 2:44
(0:98)

Electricity 3:92
(0:89)

12:92
(0:17)

13:67
(0:14)

X

Notes: Between parentheses p-values. *** (resp. **,*) denotes rejection of the null
hypothesis at 1% signiÖcance level (resp. 5%, 10%). Granger causality tests are computed
using p=30 lags. DR and UR denote Downside and Upside Risks respectively. Causality

run from the left series to the top series.
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Table 2.21: Results of Granger causality test in distribution tails at 10 month (extreme
movements)

DR
X ) Y Oil Gas Coal Electricity
Oil X 317:23

(0:02)
376:4
(0:00)

387:7
(0:00)

DR Gas 230:40
(0:96)

X 246:9
(0:83)

245:47
(0:85)

Coal 225:81
(0:97)

305:27
(0:06)

X 245:30
(0:85)

Electricity 462:14
(0:33)

482:04
(0:10)

439:55
(0:62)

X

UR
Oil X 256:08

(0:71)
464:70
(0:30)

286:80
(0:23)

UR Gas 271:20
(0:46)

X 266:16
(0:55)

299:62
(0:10)

Coal 288:93
(0:20)

259:11
(0:67)

X 260:18
(0:65)

Electricity 390:62
(0:12)

497:56
(0:17)

225:10
(0:97)

X

Notes: Between parentheses p-values. *** (resp. **,*) denotes rejection of the null
hypothesis at 1% signiÖcance level (resp. 5%, 10%). Granger causality tests are computed
using p=30 lags. DR and UR denote Downside and Upside Risks respectively. Causality

run from the left series to the top series.
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Table 2.22: Results of Granger causality test in distribution tails at 20 month (extreme
movements)

DR
X ) Y Oil Gas Coal Electricity
Oil X 324:79

(0:01)
385:15
(0:00)

461:91
(0:18)

DR Gas 278:93
(0:34)

X 276:11
(0:38)

570:51
(0:17)

Coal 238:69
(0:91)

306:85
(0:06)

X 247:59
(0:83)

Electricity 463:15
(0:32)

575:02
(0:14)

581:14
(0:10)

X

UR
Oil X 280:16

(0:32)
466:49
(0:28)

324:26
(0:01)

UR Gas 243:67
(0:87)

X 496:49
(0:06)

323:88
(0:01)

Coal 249:15
(0:81)

295:93
(0:13)

X 552:77
(0:34)

Electricity 451:93
(0:46)

481:14
(0:14)

252:99
(0:76)

X

Notes: Between parentheses p-values. *** (resp. **,*) denotes rejection of the null
hypothesis at 1% signiÖcance level (resp. 5%, 10%). Granger causality tests are computed
using p=30 lags. DR and UR denote Downside and Upside Risks respectively. Causality

run from the left series to the top series.
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Table 2.23: Results of Granger causality test in distribution tails at 30 month (extreme
movements)

DR
X ) Y Oil Gas Coal Electricity
Oil X 357:99

(0:00)
468:71
(0:26)

291:42
(0:17)

DR Gas 226:62
(0:97)

X 568:08
(0:19)

398:27
(0:96)

Coal 236:01
(0:93)

275:22
(0:40)

X 243:78
(0:87)

Electricity 280:55
(0:31)

311:31
(0:04)

537:86
(0:51)

X

UR
Oil X 572:70

(0:15)
327:41
(0:00)

668:19
(0:14)

UR Gas 275:01
(0:40)

X 455:79
(0:41)

268:84
(0:50)

Coal 267:81
(0:52)

381:29
(0:13)

X 272:98
(0:43)

Electricity 446:29
(0:54)

562:14
(0:00)

476:28
(0:28)

X

Notes: Between parentheses p-values. *** (resp. **,*) denotes rejection of the null
hypothesis at 1% signiÖcance level (resp. 5%, 10%). Granger causality tests are computed
using p=30 lags. DR and UR denote Downside and Upside Risks respectively. Causality

run from the left series to the top series.
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Introduction 1

Energy price dynamics are known to be frequently volatile with extensive amplitude

a§ecting the whole economy (Sadorsky, 1999; Hamilton, 2003; Kilian, 2008, among

others). However, understanding strong energy market áuctuations is a rather dif-

Öcult task given its apparent erratic behavior and the various potential factors that

may be at play. In the literature, these áuctuations are often attributed to both

real and Önancial factors, such as international energy demand/supply conditions and

market manipulation (Hamilton, 2009; Kaufmann and Ullman, 2009; Kilian, 2009; Ci-

farelli and Paladino, 2010; Ellen and Zwinkels, 2010; Lombardi and Van Robays, 2011,

among others), leading to extreme market risks for energy participants and govern-

ments. This phenomenon would have macroeconomic and microeconomic implications

since the increasing market risks may lead in turn to distinct market apprehension

and perception a§ecting the decision-making of participants. This question can be

investigate in di§erent ways depending the underlying assumption about the behavior

of economic agents. Regarding the traditional economic and Önancial approaches, a

rational agent is deÖned as someone who used all available information to anticipate

future evolutions and allocate his portfolio, so that anticipations are well established

on average. Under this hypothesis, rational investors will always choose equities with

the best beneÖt-risk trade o§ in the E¢cient Market Hypothesis (EMH) sense.

However, with regard to the development of behavioral Önance (Shleifer, 2000; Thaler,

2005, among others), this traditional approach seems to be too restrictive in the sense

that individual rationality appears to be bounded (Simon, 1982, 1987a and 1987b). In

this context, the economic agent is not a simple calculator but a human with biaises

whose decision-making process is ináuenced by cognitive and emotional resentments.

1A Örst version of this chapter has been published as JoÎts, M., 2012, Mood-misattribution ef-
fect on energy Önance: A biorhythm approach, in International Symposia in Economic Theory and
Econometrics, ed. William Barnett et Fredj Jawadi, Emerald Publishing, Bingley, Vol. 22.
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This characteristic leads to distinct asset valuations among investors which can cre-

ate excess volatility in Önancial markets (Black, 1986). The seminal work of Damasio

(1994) shows that emotions can a§ect behavior and play a crucial role in the decision

process where lack of feelings leads to suboptimal choices. In this way, recent researches

in behavioral Önance have studied the ináuence of emotions through the mood misattri-

bution impact on decision-making. According to Loewentein et al. (2001), the mood

misattribution perspective relies on the hypothesis that individuals who take their

decision under risk and uncertainty are unconsciously ináuenced by their relative emo-

tional states even if moods are unrelated to their choices (Schwarz and Clore, 1983).

Therefore, emotions could provide some explanations to irrational Önancial markets

áuctuations.

In Önance, recent studies have shown signiÖcant mood impact on equity pricing.2 How-

ever, they focus on speciÖc classes of assets. In order to bring new elements to the recent

energy prices increase and assuming that excess volatility could be due partly to some

investors ináuenced by their emotional states, we investigate the impact of mood misat-

tribution on energy Önance3 by considering forward energy market dynamics such as

oil, gas, coal and electricity during both "normal times" and periods of extreme (up-

ward and downward) price movements. By relying on forward energy prices, we are

able to account for both fundamental and speculative pressures (JoÎts and Mignon,

2011).4

In order to investigate mood e§ect, a biorhythm approach is adopted considering the

Seasonal A§ective Disorder (SAD) framework developed by Kamstra et al. (2003).

This approach known as íwinter bluesí considers that seasonal variation in the number

of hours of sunlight per day can lead to anxious state which in turn can a§ect risk

2See references in Section 3.2.
3This approach is relatively new since it combines both energy market phenomena and theory of

Önancial markets.
4Indeed, the forward energy market can result in both physical delivery and speculative purposes.
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apprehension and decision-making of investors. Therefore, the SAD variable can be

seen as an approximation of emotion which can a§ect the energy market áuctuations

through the psychology of participants. Assuming that feelings ináuence behavior and

risk perception of investors, we analyze mood e§ect on energy market variations in

in-sample and out-of-sample contexts. Both normal and extreme volatility periods are

considered using OLS and quantile regression approaches.

Our contribution is fourfold. First, the relationship between emotion and energy mar-

kets is studied using biorhythm approach through the SAD proxy variable. Second,

by relying on European forward prices of oil, coal, gas and electricity, we purge short-

run demand and supply from noise that a§ects market áuctuations, and account for

both fundamental and speculative pressures. Third, we investigate the emotional phe-

nomenon of energy market dynamics considering normal and extreme market circum-

stances. Finally, we compare the out-of-sample properties of our SAD model against

a pure macroeconomic model in terms of predictive ability to see which strategy is the

more Ötted and can be used to improve energy porfolio allocation.

The rest of the chapter is organized as follows. Section 3.1 presents the theoretical

research background on which the investigation of investorsí feelings is based. Section

3.2 reviews the existing literature on mood misattribution and equity pricing. Empirical

application on energy markets is displayed in Section 3.3, and Section 3.4 concludes

the article.

3.1 Mood ináuences on investor decision-making

under uncertainty

In the traditional portfolio choice theories, the process of investorsí decision is

assumed to be quantitatively characterized by the weight of costs and beneÖts of all
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possible outcomes. In this perspective, rational investors choose the outcome with the

best risk-beneÖt trade o§ (see Markowitz, 1952; Sharpe, 1964, among others). This

type of behavior is what Loewenstein et al. (2001) describe as a íconsequentialist

perspectiveí which does not account for the emotional impact on the decision-making

process. However, in practice these traditional approaches may be viewed as unreal-

istic since feelings play a crucial role in the perception of the environment, especially

under risky and uncertain context (see, Zajonc, 1980; Schwarz, 1990; Forgas, 1995;

Isen, 2000; Loewenstein et al., 2001, among others).

Behavioral Önance coupled with the reconsideration of the rational investor concept

bring to the light the recent interest in feelings impact on economic behavior leading

to the development of a new class of models. The latters introduce expected emotions

which are deÖned as emotions that are expected to be experienced by investors given

a certain outcome level. This concept has been developed through the Loomes and

Sugden (1982)ís regret model and applied in Önance in the myopic loss aversion theory

of Benartzi and Thaler (1995). Despite the fact that expected emotions constitute an

advance over the traditional consequentialism approach, this concept appears to be

relatively restrictive in the sense that it considers expected feelings rather than feelings

experienced at the time of decision-making. According to Schwarz (1990), it seems

coherent that people make di§erent investment decisions depending on their positive

and negative moods even if mood is unrelated to the decision context (Schwarz and

Clore, 1983).

To overcome this limit, Loewenstein et al. (2001) develop the risk-as-feelings model

which incorporates emotions ináuence at the time of making decision by allowing ex-

pected emotions, subjective probabilities and extra factors (i.e. mood, ...) that a§ect

decision-making.5 In their modeling framework, Loewenstein et al. (2001) suppose

5For more details, see the excellent survey of Dowling and Lucey (2005).
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that investorsí decisions under risky and uncertain environment are strongly a§ected

by feeling perception. The authors use the three following premises derived from psy-

chology : i) Cognitive evaluations include emotional reactions6, ii) Emotions inform

cognitive evaluations7, and iii) Feelings can a§ect behavior.8 According to Loewenstein

et al. (2001)ís risk-as-feeling model, decision-making is the consequence of the inter-

connected processes of cognition evaluation and emotions which in turn a§ect behavior.

In a complementary way of Loewenstein et al. (2001), Forgas (1995) develops an A§ect

Infusion Model (AIM) which covers the extent to which people rely to their respective

feelings. Forgas argues that emotions ináuence the decision process depending on the

risky and uncertain choice environment context. In this framework, he deÖnes two

kinds of strategies depending on the situation. The Örst one is the Low A§ect Infu-

sion Strategies (LAIS), used under familiar situations which involve less riskier and

low complexity circumstances. The second one is the High A§ect Infusion Strategies

(HAIS) which are employed for more complex decision processes, under highly risky

context. According to the AIM of Forgas (1995), feeling becomes predominant as risk

and uncertainty increase. For instance, under optimal porfolio choice, investor should

be characterized by HAIS framework where decision-making would be strongly depend-

ent to her mood states.

According to this literature, feelings appear to have an ináuence on economic and

Önancial behaviors. In a risky context, many factors can ináuence decision-making

even if they are not related to decision. Mood is therefore seen as information as well

as human misattribution emotions.

6According to Zajonc (1980), emotions are considered to be postcognitive.
7Researches in psychology show that optimistic and pessimistic behaviors tend to be linked to good

and negative moods (see, Isen et al., 1978; Bower, 1981; Johnson and Tversky, 1983; Bower, 1991,
among others).

8According to pioneer works of Damasio (1994), people with impaired ability to feeling emotions
tend to make suboptimal decisions under risky and uncertain environment.
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3.2 Mood-as-information and misattribution: liter-

ature review

In the literature, two types of feeling determinants are considered: the mood misat-

tribution and the a§ect heuristic. While the later argues that peopleís decision-making

is governed by images and associated feelings that are induced by decision process,

the former maintains that mood can be induced by the environmental context such

as weather, biorhythms and social events. These determinants leading to mood áuc-

tuations are likely to a§ect investorsí decision process and therefore Önancial stock

markets.

Recent researches on behavioral and emotional Önance mainly focus on mood misattri-

bution by studying empirical evidence of mood áuctuations on equity returns. These

factors ináuencing the positive and negative mood states are likely to modify the risk

assessments. Saunders (1993), focusing on weather-based ináuences9 on mood and be-

haviour, examines the potential impact of weather on both Dow Jones Industrial index

from 1927 to 1989 and NYSE/AMEX indices from 1962 to 1989. Under the hypothesis

that bad and good weathers lead to pessimistic and optimistic moods respectively and,

in turn, to lower and higher returns, Saunders investigates the relationship between

New York equity prices and the level of cloud cover in New York. He Önds a signiÖcant

relationship between both variables showing that mood misattribution e§ect can exist

and be exploited in portfolio consideration. Hirshleifer and Shumway (2003) extended

Saundersí analysis by considering the relationship between the de-seasonalized cloud

cover and daily equity returns in 26 international markets from 1982 to 1997. Their

results conÖrm a signiÖcant negative relationship between cloud cover and equity re-

9Psychological studies have seen that áuctuations of hours of sunshine can induce áuctuations in
mood (see, Persinger, 1975; Howarth and Ho§man, 1984; Eagles, 1994).
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turns and the fact that weather a§ects stock returns variabilities.10 Cao andWei (2002)

based on psychological evidences, Önd signiÖcant impact of temperature on equity re-

turns of eight Önancial markets from July 3, 1962 to July 3, 2001. Lower temperatures

lead to higher returns while higher temperatures lead either to higher or lower stocks.

In the mood misattribution research, other studies have extended reáexion to broader

proxies related to human biorhythms, and investigated misattribute impact of biolo-

gical cycles on equity returns. Kamstra et al. (2000), assuming that an interruption of

bodyís circadian cycle can cause anxiety and depression (Coren, 1996), investigate the

ináuence of interruptions to sleep patterns induced, twice a year, by Daylight Savings

Time Changes (DSTCs) on equity returns of US, Canadian, German and UK markets.

They Önd a signiÖcant negative relationship between returns and DSTCs reáecting a

negative impact of such biological e§ect. Kamstra et al. (2003) further investigate

the potential impact of biorhythms and emotions on investment decisions by consider-

ing a depressive phenomenon known as Seasonal A§ective Disorder (SAD) or íwinter

bluesí. This phenomenon is characterized by the fact that seasonal variation in hours

of sunlight in the day can lead to anxious states (Cohen et al., 1992; Rosenthal, 1998)

which in turn can a§ect risk apprehension. Due to di§erent SAD e§ects depending on

latitude locations, the authors investigate SAD/returns relationship including major

equity indexes in both Northern and Southern Hemisphere countries. They Önd a sig-

niÖcant SAD e§ect leading to seasonal pattern in returns. Then, due to SAD e§ect,

equity returns are predicted to be lower between Autumn Equinox and Winter Solstice.

Moreover, an asymmetric component appears between fall and winter. Investors are

considered to be risk averse and shun risky assets during fall while they seem to re-

sume their risky holding during winter. Recently, to check the robustess of global mood

ináuences, Dowling and Lucey (2005, 2008) investigate the impact of seven mood prox-

ies variables (i.e. weather data (precipitation, temperature, wind, geomagnetic storms)

10High and low cloud covers are associated to low and high stock returns respectively.
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and biorhythm data (SAD, DSTCs, lunar phases)) on returns and variance of 37 global

equity markets from 12th December 1994 to 10th November 2004 using various robust

econometric methods (GARCH speciÖcations). They Önd that SAD e§ect is the most

predominant one on equity pricing which means that winter blues is signiÖcant in both

returns and variance of stocks.

These studies put forward that mood misattribution e§ect exists and tends to ináuence

equity prices áuctuations. However, beyond this scope of research, it appears to be

primordial to assess feeling e§ects on a most widely class of assets. In this way, we

investigate the relationship between mood and energy market dynamics to see whether

recent price áuctuations can be attributed to emotional considerations. SpeciÖcally, we

distinguish between usual and extreme phases, and focus on the relation between mood

misattribution and market variations by considering SAD approach: mood is proxied

by SAD variable, while regular and extreme variations by both OLS and quantile

regressions.

3.3 Empirical investigation

3.3.1 Data and preliminary results

We consider daily data over the January 3, 2005 to December 31, 2010 period.11

We rely on European forward prices at 1 month of oil, gas, coal, and electricity. En-

ergy prices data are extracted from the Plattís Information Energy Agency. To control

for the economic and Önancial environment that may impact all energy price series

(such as increasing demand from Asian emerging countries or speculation), we rely on

a European equity futures price indexówhich has the advantage of being available at

11This period is particularly relevant since it accounts the recent Önancial perturbations where
energy prices appeared strongly volatile.
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a daily frequency. This variable also allows considering energy markets as Önancial

assets and controls for the recent Önancial turmoil. Our retained equity variable is

the Dow Jones Euro Stoxx 50, the European leading stock index for futures contracts,

extracted from Datastream. In order to account for the energy prices risk premium,

the euro/dollar US exchange rate is considered as a control variable. Basic statistical

characteristics are reported in Table 3.1. They reveal that all energy return series are

asymmetric (oil, gas and electricity returns are right skewed while coal returns are left

skewed) and leptokurtic, indicating fat tail distributions. Due to the speciÖc nature

of electricity market (i.e. non-storability, inelasticity of the supply,...), returns are fre-

quently a§ected by regime switching causing tails behavior higher than fossil energies

(1.7 and 25 for the skewness and kurtosis respectively).

The mood proxy data deÖned as SAD variable, is calculated following Kamstra et al.

(2003)ís formula. It gives an approximation of both the reduction of hours of daylight

from Autumn Equinox to Winter Solstice, and the lengthening of the day from Winter

Solstice to Spring Equinox.12

SAD variable is deÖned as follows:

SADt =

8
>>><

>>>:

Ht  12 for trading days in the fall and winter

0 otherwise

(3.1)

where Ht is the time from sunset to sunrise at a particular location. Value 12 de-

notes roughly average number of hours of night over the entire year at any location.

Therefore, SADt is constructed to reáect the relative length of night in fall and winter

compared to the mean annual length of 12 hours. According to psychological consid-

12In Northern Hemisphere countries, Autumn Equinox, Winter Solstice, and Spring Equinox start
respectively at September 21st, December 21st, and March 20th. In Southern Hemisphere countries
they begin at March 21st, June 21st, and September 20th. For more details, see Kamstra et al. (2003).
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erations, SAD is characterized as a binary variable which varies only over the fall and

winter.

Following Kamstra et al. (2003), Ht, the number of hours of night is di§erent depending

on the country location and can be calculated using standard approximation from

spherical trigonometry.

Ht =

8
>>><

>>>:

24 7:72 arccos

 tan


2
360


tan (t)


in the Northern Hemisphere

7:72 arccos

 tan


2
360


tan (t)


in the Southern Hemisphere

(3.2)

where "arccos" is the arc cosine,  the latitude which depends on countries location13,

and t the sunís declination angle deÖned as follows:

t = 0:4102 sin

2

365


(juliant  80:25)


(3.3)

where "juliant" sets for the number position of the day in the year numbered from 1

to 365.14

According to Kamstra et al. (2003), SAD variable is deÖned by (Ht  12) from Autumn

Equinox to Spring Equinox and 0 otherwise. In this framework, during SAD period,

investors are considered to be risk averse and to allocate their portfolios to safer assets

a§ecting negatively energy market dynamics. On the contrary, from Spring Equinox to

13Following Kamstra et al. (2003), we distinguished Northern Hemisphere and Southern Hemisphere
countries by averaging larger markets in North and South latitudes respectively (for more details, see
Appendix).
14 juliant is equal to 1 for January 1, 2 for January 2, and so on.
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Autumn one, no SAD e§ect exists. Beside, SAD phenomenon is deeply ináuenced by

geographical location. Therefore, we expect to have stronger impact in Northern Hemi-

sphere countries rather than Southern Hemisphere countries, the later being closest to

the equator where seasonal variations in daylight are small.

3.3.2 Results and analysis

In order to investigate mood-misattribution e§ect on energy markets during regular

and extreme price movements, we adopt the traditional OLS framework as well as the

quantile regression approach introduced by Koenker and Basset (1978).

Consider the following linear model:

Yt = X
0

t + t (4)

where Y and X are the endogeneous and exogeneous variables respectively,  being

the error term. In the traditional OLS framework, the dependent variable is supposed

to áuctuate randomly around the conditional mean of the conditional distribution of

Y (E [Y=X; ]), allowing to study the ináuence of exogeneous variables under regular

time perspective. On the contrary, quantile analysis allows to examine the manner

in which a set of explanatory variables can a§ect the conditional distribution of the

dependent variable. By this approach, we focus on extreme occurrences considering

di§erent quantiles of the conditional distribution. In order to account for both upward

and downward price movements, two quantiles are considered ( = 0:05 and 0:95).

The following regressions are estimated

r
(i)
t =  + SAD

(j)
t + Stoxxt + Ratet + "

(i)
t (5)
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where r(i)t is the returns series for energy i (oil, gas, coal and electricity respectively).

SAD
(j)
t is the emotional proxy variable at j hemisphere (Northern and Southern Hemi-

spheres respectively). Stoxxt and Ratet are the control variables for the economic and

Önancial environment.

Table 3.2 reports the results of the OLS estimation of Equation (5) considering SAD ef-

fect on forward energy markets at 1 month during normal times. Distinguishing North-

ern and Southern Hemisphere countries, estimations reveal that SAD component has no

any signiÖcant impact on energy market áuctuations in regular circumstances. More

precisely, emotions do not a§ect energy markets when price movements are "usual"

which corroborates the fact that during normal times, energy price dynamics are mainly

governed by fundamentals. Regarding to the extreme market perspectives, Table 3.3

reports SAD e§ect on energy returns using quantile regression approach. A geographic

di§erentiation is considered as well as downward and upward price movements. We

see that SAD has di§erent impacts depending on the hemisphere location. Consider-

ing Northern Hemisphere, results show that during periods of prices decrease, energy

markets are ináuenced by emotional e§ects. Indeed, regarding the left-tail behavior,

SAD variables are signiÖcant and have negative impact for each market. This phe-

nomenon reáects a mood-misattribution bias where environment leads to depressive

states which in turn a§ects risk perception of investors. Moods are unrelated to energy

portfolio choices, however investors are negatively a§ected by their emotions which

self-sustain risk aversion behavior. Under SAD framework, energy prices decreases

may be partly explained by emotional considerations which tend to a§ect investorsí

risk apprehension. Extreme movements are inherently associated with higher risk situ-

ation. From the upward point of view, SAD variable doesnít have any e§ect on energy

markets. Considering Southern Hemisphere, we observe the opposite phenomenon re-

garding SAD e§ect on energy markets. As before, SAD is signiÖcant for each market

during periods of price decrease, however, this impact appears to be positive on risk

perception. It is not surprising to Önd lack of negative seasonal patterns in Southern
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Hemisphere countries because they are located closest to the equator where seasonal

variations in daylight are quite small. Therefore, investors from Southern Hemisphere

countries are less ináuenced by SAD components.

Investors who su§er from SAD e§ect are supposed to be risk averse and shun risky assets

during fall and to resume their risky holding during winter. Therefore, SAD should have

negative impact during fall and positive e§ect during winter.15 To further investigate

the asymmetric seasonal phenomenon between fall and winter during extreme volatility

situations, we estimate the following quantile regression allowing both SAD fall and

winter variables:

r
(i)
t =  + 1SAD

fall(j)
t + 2SAD

win(j)
t + Stoxxt + Ratet + "

(i)
t (3.4)

where SADfall(j)
t is conducted from September 21 to December 20 for Northern Hemi-

sphere countries, and from March 21 to June 20 for Southern Hemisphere countries.

SAD
win(j)
t runs from December 21 to March 20 for North, and from June 21 to Septem-

ber 20 for South.

Table 3.4 reports the asymmetric e§ect of SAD variables on energy markets at 1 month

during extreme variations. Regarding Northern Hemisphere countries, SAD variable

during fall has the expected e§ect (signiÖcant and negative) in downside risk context

for each market. Investors are risk averse during fall and allocate their portfolios to

safest assets which tend to impact energy downside risk. From upside point of view,

SAD variable is signiÖcant and positive during winter for oil, gas and electricity markets

only. Regarding the asymmetric component, from Winter Solstice to Spring Equinox,

investorsí moods are heightened leading them to become more willing to resume the

15According to SAD principle, the predicted negative e§ect during fall is the result of decrease in
hours of sunlight. During winter, the predicted positive e§ect is due to an increase in hours of sunlight.
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risk of their respective investments. From Southern Hemisphere perspective, both SAD

fall and winter appear to have signiÖcant and positive e§ect in downside risk. Mood

and energy prices are positively related which indicate the relative lower impact of

emotion, in terms of seasonal variations, for countries closest to equator.

Our results are consistent with Forgas (1995)ís analysis which considers that agents are

more ináuenced by moods under extreme situations rather than during normal ones.

Extreme movements being inherently associated with high risk situation, recent energy

prices áuctuations may be due in part to a misattribute emotional phenomenon which

appears to be signiÖcant and negative during periods of price decrease only for Northern

Hemisphere countries. Surprisingly, this phenomenon is no longer valid during periods

of price increase reáecting that other factors should be considered.

3.3.3 Out-of-sample predictive ability of SAD approach

The previous section shows that SAD variable, as a proxy for emotion, impacts sig-

niÖcantly energy prices dynamics during extreme downward áuctuation periods. This

phenomenon appears to be preponderant in Northern Hemisphere countries which are

considered to be more ináuenced by variations in daylight hours. Considering that

forecasting is central to apprehend energy prices dynamics in economic and Önancial

decision-making for government institutions, regulatory authorities, and investors, we

investigate the out-of-sample properties of our SAD model against a pure macroeco-

nomic model in terms of predictive ability. The former is of the form of Equation

(5), while the latter removes the e§ect of the SAD variable. In this way, we use the

conditional Giacomini-White (2006)ís approach to evaluate the relative merit of the

two forecast alternatives. Giacomini and White (2006) propose a test of Conditional

Predictive Ability which allows to compare the forecasting properties of two models,
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given a general loss function.16 Their test allows to directly apprehend the e§ect of es-

timation uncertainty on relative forecasting performance. Moreover, it considers a less

restrictive framework than previous methodologies since it permits a uniÖed treatment

of nested and nonnested models and also can accommodate more general estimation

procedures in the derivation of the forecast.

Suppose one wants to compare the accuracy of the two competing forecasts for the

 -steps-ahead of the variable Yt+ , using a loss function Lt+ (:) and the information

set Ft. Giacomini and White (2006) propose to test the following null hypothesis:

H0 : E
h
Lt+ (Yt+ ; bft;mf

) Lt+ (Yt+ ; bgt;mg)jFt
i
= 0 (3.5)

 E [Lm;t+ jFt] = 0

where bft;mf
 f


Wt; :::;Wtmf+1;

bt;m

and bgt;mg  f


Wt; :::;Wtmg+1;

bt;m

are meas-

urable functions of a stochastic process W deÖned on a complete probability space

(;F ,P ). The expectations are conditional to the set of information Ft. The null

hypothesis states that one cannot predict which forecasting methods will be accurate

at the t +  target horizon. Following Giacomini and White (2006), the test statistic

is of the form:

T hm;n = n

 
n1

T1X

t=m

htLm;t+1

!0
b1n

 
n1

T1X

t=m

htLm;t+1

!
(3.6)

= nZ
0
m;n
b1n Zm;n  2q;1q

16This literature was initiated by Diebold and Mariano (1995), West (1996), McCracken (2000),
Clark and McCracken (2001), Corradi et al. (2001), and Chao et al. (2001), to name few.
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where Zm;n  n1
T1P
t=m

Zm;t+1, Zm;t+1  htLm;t+1, and bn  n1n1
T1P
t=m

Zm;t+1Z 0m;t+1
is a q q matrix that consistently estimates the variance of Zm;t+1. ht is the test func-

tion which can be chosen by researchers to include variables that are relevant to help

distinguish between the two models.17

As suggested by the authors, in order to compare the accuracy of the two com-

peting approaches (SAD model vs macroeconomic model) we consider rolling window

estimators.18 Due to the relevance of SAD e§ect, we focus on Northern Hemisphere

countries and downturn movements only. Our in-sample estimation goes from January

3, 2005 to February 7, 2009 and produces sequences of  -step-ahead forecasts for  = 1

using a rolling window estimation procedure with m = mf = mg = 1174+  . Then, in

order to choose the best forecasting model, we use the two-step decision rule procedure

proposed by Giacomini and White (2006):

1. Step 1: Regress Lm;t+1 = Lt+


Yt+ ; bft;mf


 Lt+ (Yt+ ; bgt;mg) on ht over the

out-of-sample period and let bn be the regression coe¢cient. Apply the test and,

in case of rejection of the null, proceed to step 2.

2. Step 2: b
0
nhT  E [Lm;t+1jFt] indicates the decision rule: if b

0
nhT > c, the

performance of g is better, whereas if b
0
nhT < c, f is the best choice (c = 0; is a

user-speciÖed threshold value). In our case, g and f respectively denote the SAD

model and the macroeconomic model.

Table 3.5 gathers results of the two-step test procedure for each energy market. The

Örst step indicates that for each energy price the null hypothesis is rejected. Therefore,

the two competing models (SAD model and macroeconomic model) are not equally

17We use the moving average of past loss di§erences.
18As clearly mentioned by the authors, this limited memory approach is privileged for two reasons:

(i) it imposes no restrictions on the estimators other than Önite memory, and (ii) the analysis required
is straightforward (see Giacomini and White, 2006).
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accurate on average. It means that whatever the forecast target date t+  , one model

outperforms the other one in terms of forecasting performance. The second step allows

to choose the suitable model strategy by indicating the proportion of time one model

outperforms the other. Results in Table 3.5 reveal that for each energy price series, the

SAD model outperforms themacroeconomic model in terms of forecasting performance.

Our SAD model is therefore more adequate to apprehend the energy prices dynamic

reinforcing our Önding in favor of the emotional component of the markets. This Önding

appears to be particulary relevant in the sense that it shows that extreme energy

prices áuctuations could be dictated by irrational movements without any economic

foundation. In this perspective, the SAD model could be useful for energy investors to

improve portfolio performance and manage risk exposure.

3.4 Conclusion

This chapter investigates the relationship between emotion and European forward

energy prices during normal times and periods of extreme price movements. Relying

on mood-misattribution hypothesis, we use Seasonal A§ective Disorder (SAD) variable

as a proxy to analyze the seasonal patterns e§ect on energy risk apprehension. Using

both OLS and quantile biorhytm approach, we show that SAD phenomenon appears

to be signiÖcant during extreme áuctuation periods only. More precisely, emotions

a§ect energy market dynamics during periods of price decrease. This phenomenon is

directly linked to the psychology of investors considered to be negatively ináuenced by

seasonal variations of daylight a§ecting their risk perception. This e§ect appears to be

di§erent depending on the geographical location. Indeed, while Northern Hemisphere

countries are primarily a§ected by negative seasonal relationships, SAD a§ects pos-

itively Southern Hemisphere countries which is consistent with the fact that seasonal

variations of daylight are smaller for this group. Paying a particular attention to the

asymmetric e§ect between fall and winter, we show a negative impact of SAD during
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fall and a positive one during winter for Northern countries, consistent with the sea-

sonal hypothesis. Our Öndings put foward the key role played by feelings in phase of

price falling. The signiÖcant role played by emotion in markets dynamic is conÖrmed

in terms of forecasting performance. The out-of-sample investigation comparing the

predictive ability of SAD model against pure macroeconomic model indicates that the

emotional model outperforms signiÖcantly the economic model. Therefore, feelings ap-

pear to be preponderant in explaining price dynamics and and could be relevant to

improve resource allocation and portfolio performance.
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A Latitude data description

To construct simplest latitude values, we select larger markets in North and South
Hemispheres respectively, then average each latitude in order to obtain two repres-
entatives values for North and South geographical locations. For North latitude, we
obtain 48.89 by selecting and averaging: Turkey (Ankara), US (Washington), Canada
(Ottawa), Italy (Roma), Switzerland (Bern), Austria (Vienna), France (Paris), Lux-
embourd, Belgium (Brussels), Germany (Berlin), UK (London), Netherlands (Amster-
dam), Ireland (Dublin), Denmark (Copenhagen), Norway (Olso), Sweden (Stockholm),
Finland (Helsinki), China (Beijing), and Japan (Tokyo). For South latitude, we obtain
30.33 by choosing: New-Zealand (Wellington), Indonesia (Jakarta), South Africa (Jo-
hannesburg), Chile (Santiago), Australia (Camberra), and Argentina (Buenos Aires).

Table 3.1: Summary statistics for the daily energy forward returns at 1 month

Brent Gas Coal Electricity
Mean 0:00053 0:00017 0:00038 0:00062
Variance 0:00053 0:00035 0:00033 0:00088
Skewness 0:13679 0:00327 0:57407 1:76840
Kurtosis 8:97939 6:47279 9:93896 25:31240

Jarque-Bera test 2333:29
(0:00)

785:431
(0:00)

3221:56
(0:00)

33236:7
(0:00)

Notes: p-values for corresponding null hypotheses are reported in parentheses.
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Table 3.2: SAD e§ect on energy forward markets under normal times

Northern Hemisphere
Oil Gas Coal Electricity

 0:0006
(0:89)

0:002
(1:38)

0:0003
(0:64)

0:0004
(0:45)

SADt 9:27E  05
(0:23)

0:001
(1:52)

9:72E  05
(0:33)

0:0001
(0:26)

Stoxxt 0:017
(0:43)

0:054
(0:64)

0:322
(10:69a)

0:018
(0:34)

Ratet 0:047
(0:51)

1:224
(6:36a)

0:518
(7:59a)

0:276
(2:32a)

Southern Hemisphere
 0:0005

(0:77)
0:001
(0:34)

0:0001
(0:01)

0:0008
(0:89)

SADt 1:57E  05
(0:02)

0:001
(1:07)

0:0006
(1:48)

0:0005
(0:55)

Stoxxt 0:007
(0:18)

0:062
(0:74)

0:324
(10:70a)

0:023
(0:44)

Ratet 0:021
(0:23)

1:178
(6:15a)

0:514
(7:50a)

0:285
(2:38a)

Notes: Between parentheses t-stats. a denotes rejection of the null hypothesis at 1%, 5%
or 10% signiÖcance level.
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Table 3.3: SAD e§ect on energy forward markets under extreme price movements

Northern Hemisphere
Oil Gas Coal Electricity

DR
(=0:05)

UR
(=0:95)

DR
(=0:05)

UR
(=0:95)

DR
(=0:05)

UR
(=0:95)

DR
(=0:05)

UR
(=0:95)

 0:033
(21:53a)

0:031
(22:24a)

0:050
(14:74a)

0:060
(9:55a)

0:024
(13:26a)

0:026
(13:82a)

0:033
(15:17a)

0:034
(11:84a)

SADt 0:001
(2:31a)

0:001
(1:45)

0:007
(3:65a)

0:001
(0:49)

0:002
(1:69a)

0:0003
(0:34)

0:003
(3:08a)

0:003
(1:14)

Stoxxt 0:159
(2:24a)

0:077
(2:30a)

0:082
(0:80)

0:076
(0:20)

0:410
(6:07a)

0:305
(3:34a)

0:176
(2:10a)

0:332
(0:48)

Ratet 0:195
(0:93)

0:088
(0:42)

1:371
(3:77a)

0:624
(0:61)

0:84
(4:82a)

0:459
(2:52a)

0:048
(0:120)

1:011
(1:76a)

Southern Hemisphere
 0:038

(16:50a)
0:035
(21:40a)

0:070
(13:84a)

0:064
(11:15a)

0:030
(13:49a)

0:025
(15:01a)

0:042
(17:09a)

0:037
(9:55a)

SADt 0:003
(2:26a)

0:002
(1:39)

0:013
(3:85a)

0:002
(0:45)

0:004
(2:54a)

0:002
(1:19)

0:005
(2:90a)

0:001
(0:79)

Stoxxt 0:216
(3:19a)

0:101
(2:26a)

0:146
(1:72a)

0:082
(0:18)

0:387
(12:00a)

0:282
(2:83a)

0:210
(3:07a)

0:160
(0:25)

Ratet 0:242
(1:18)

0:038
(0:259)

1:291
(3:25a)

0:572
(0:526)

0:86
(7:14a)

0:505
(2:92a)

0:121
(0:463)

0:89
(1:58)

Notes: Between parentheses t-stats. a denotes rejection of the null hypothesis at 1%, 5% or
10% signiÖcance level. UR and DR denote upward and downward price movements

respectively.
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Table 3.4: Asymmetric SAD e§ect on energy forward markets under extreme price
movements

Northern Hemisphere
Oil Gas Coal Electricity

DR
(=0:05)

UR
(=0:95)

DR
(=0:05)

UR
(=0:95)

DR
(=0:05)

UR
(=0:95)

DR
(=0:05)

UR
(=0:95)

 0:033
(20:86a)

0:031
(22:80a)

0:050
(14:68a)

0:059
(9:18a)

0:024
(13:75a)

0:027
(15:25a)

0:033
(14:61)

0:034
(12:99a)

1SAD
fall
t 0:003

(1:97a)
0:0002
(0:28)

0:007
(3:64a)

0:003
(0:68)

0:002
(2:85a)

0:009
(0:67)

0:003
(2:37a)

0:005
(1:59)

2SAD
win
t 0:001

(1:04)
0:002
(2:06a)

0:007
(0:23)

0:001
(1:70a)

0:001
(0:63)

0:003
(0:44)

0:005
(0:25)

0:001
(1:98a)

Stoxxt 0:159
(1:89a)

0:082
(1:87a)

0:082
(0:802a)

0:054
(0:118)

0:403
(7:61a)

0:278
(2:71a)

0:172
(2:37a)

0:117
(0:25)

Ratet 0:200
(0:89)

0:006
(0:046)

1:371
(3:75a)

0:661
(0:57)

0:774
(4:30a)

0:554
(5:02a)

0:043
(0:12)

0:960
(2:78a)

Southern Hemisphere
 0:038

(16:42a)
0:035
(21:54a)

0:070
(13:29a)

0:064
(11:10a)

0:029
(13:47a)

0:025
(15:00a)

0:042
(17:42a)

0:040
(9:40a)

1SAD
fall
t 0:004

(2:71a)
0:002
(1:26)

0:015
(3:98a)

0:002
(0:41)

0:004
(2:06a)

0:002
(1:17)

0:006
(2:59a)

0:007
(1:62)

2SAD
win
t 0:003

(1:65a)
0:003
(1:15)

0:012
(2:95a)

0:002
(0:37)

0:003
(2:44a)

0:002
(0:86)

0:007
(3:25a)

0:001
(0:41)

Stoxxt 0:219
(3:33a)

0:106
(2:37a)

0:117
(1:02)

0:081
(0:16)

0:392
(12:01a)

0:283
(2:69a)

0:221
(3:58a)

0:354
(3:46a)

Ratet 0:267
(1:30)

0:066
(0:50)

1:409
(3:62a)

0:582
(0:49)

0:865
(7:26a)

0:499
(2:71a)

0:149
(0:61)

0:651
(1:25)

Notes: Between parentheses t-stats. a denotes rejection of the null hypothesis at 1%, 5% or
10% signiÖcance level. UR and DR denote upward and downward price movements

respectively.
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Table 3.5: Conditional Predictive Ability Test

Model strategy macroeconomic model
Brent Gas Coal Electricity

SAD model 196:83 (0:00)
[0:98+]

262:36 (0:00)
[1:00+]

182:94 (0:00)
[1:00+]

165:65 (0:00)
[1:00+]

Notes: Between parentheses p-values. * denotes rejection of the null hypothesis at 1%
signiÖcance level. Between brackets the proportion of time the method in the column
outperforms the method in the row over the out-of-sample period, according to the
Giacomini and White (2006)ís decision rule. + indicates that the SAD model
outperforms the macroeconomic model more than 50% of the time.
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Introduction

The recent and unprecedented surge observed in energy prices, and especially in

crude oil price, from 2003 to 2008 has given rise to hot public and academic debates

about the true nature of these shocks. Due to the potential impact of these huge move-

ments on most economies (Sadorsky, 1999; Hamilton, 2003; Edelstein and Kilian, 2007;

Kilian, 2008, among others), the e§ectiveness of economic policies strongly depends

on the identiÖcation of the major causes of energy prices movements. Since Green-

span (2004)ís intervention about the existence of speculators in oil market, a popular

view about the origins of price surge is that these movements cannot be attributed to

economic fundamentals (such as changes in supply and demand conditions), but are

caused by the increasing Önancialization of commodities. This Önancialization should

in turn cause volatility clustering phenomena, extreme movements, higher comove-

ments between oil, Önancial assets, and commodity prices, as well as increased impact

of Önancial investors decisions (such as hedge funds, swap dealers, ...). The question of

the ináuence of Önancial investors on energy prices is of primary importance from both

economic and political points of view. Economically, the role of speculation in energy

markets raises the question of the trade-o§ between private and public interests, since

Önancialization is often deÖned as being beneÖcal from private perspective without any

beneÖcal considerations from a social plannerís point of view. Politically, the debate is

even more relevant since it brings credibility about regulation of commodity derivatives

markets in the same way that the G20 governments try to regulate Önancial markets

by limiting speculative behaviors.1

Therefore, there has been a renewal of interest in the academic literature for this

topic, even if no clear cut conclusion has emerged. Indeed, the question about the

1In 2010, the U.S government has initiated the Dodd-Frank Wall Street Reform and Consumer
Protection Act on commodity markets to limit speculative behaviors by mandatoring centralized
clearing of OTC standard contracts and automation of the Securities and Exchange Commission.
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role of speculation in commodity markets is not trivial; identifying and quantifying

this phenomenon being a di¢cult task because trader positions are relatively opaque.

As we will see in Section 4.1, some studies deÖne the phenomenon as the consequence

of increased comovements between markets, while some others consider markets as

composed by di§erent shocks which a§ect price dynamics. However, these approaches

mainly focus on the oil market without considering other energy prices, whereas the

same movements occur in these markets. More importantly, they assume that the

market is e¢cient in the sense that investors are rational and representative, and the

oil price fully reáects all the available information. Oil market e¢ciency was however

rejected by Gjÿlberg (1985), and Moosa and Al-Loughani (1994). Moreover, according

to Kirman (1992), aggregation arguments under rational behaviors are insu¢cient to

reduce markets to a single representative agent. Indeed, following Townsend (1983)

and Singleton (1987) it seems reasonable to consider heterogeneous expectations, and

it appears optimal for each agent to forecast the forecasts of others. Fundamentals

are important but a variety of di§erent models may be relevant to explain behaviors

in energy markets. The purpose of this chapter is precisely to bring new theoretical

elements to understand who and what drive the markets.

Another important limitation in the existing literature is that it has been based on an

analysis of risk as opposed to uncertainty.2 Therefore, previous studies suppose that

agents have no considerations about uncertainty on their models, their priors or the

future evolution of prices, although allowing uncertainty could be relevant to account

for some "anomalies" and stylised facts of markets.

Previous analyses thus evolve in a constrained world where agents are rational and

where uncertainty does not exist. To deal with these limits we propose a new theoretical

and empirical framework to investigate what drives energy price áuctuations. Our

theoretical model overcomes the restrictive assumption of rationality by considering

that heterogeneous expectations could be the cause of recent prices movements. We

2By risk we consider that agents know the probability distribution of a random variable, as opposed
to uncertainty when agents have no knowledge about it.
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propose to extend the traditional heterogeneous agent model (HAM) of Brock and

Hommes (1997, 1998) in the same way as Kozhan and Salmon (2009) to account for

uncertainty in the markets. We therefore assume that investors are faced with forming

energy price expectations and consider the worst outcome within the set of di§erent

models in some interval, where the size of interval is a subjective choice of agents

allowing to capture di§erent degrees of uncertainty aversion. In traditional HAM,

agents are supposed to switch between di§erent strategies characterizing heterogeneous

speciÖcations according to a cognitive learning process. We propose to extend this rule

to a more realistic one which accounts for both cognitive and emotional dimensions by

a regret criterion ‡ la Bell (1982) and Loomes and Sugden (1982).3

We also estimate our model empirically using nonlinear least squares (NLS) methods

to investigate whether heterogeneous expectations and uncertainty exist in the markets

and can lead to strong áuctuations of energy prices. Estimations are done during both

normal times and extreme movements periods4 in order to see if the behavior of prices

can be di§erent depending on the intensity of the markets.5 The theoretical model

is then compared to a random walk (RW) in terms of predictive ability. To our best

knowledge, investigating the relative impact of Önancialization on energy price áuctu-

ations through behavioral and emotional aspects under uncertainty during normal and

extreme situations has never been done before.

The chapter is organised as follows. The next section provides a literature review on the

role of speculation on energy markets. Section 4.2 describes our theoretical framework,

and Section 4.3 outlines speciÖcation and estimation procedure of the model. Section

4.4 contains in-sample and out-of-sample estimation results, and Section 4.5 concludes

the chapter.

3According to the seminal work of Damasio (1994), emotion can also a§ect behavior and play a
crucial role in the decision process, where lack of feelings leads to suboptimal choices.

4Normal times are approximated by price movements in the mean of the distribution, while extreme
áuctuations periods are in the quantiles.

5By intensity of the markets, we consider price movements during normal times and extreme pricesí
áuctuation periods.
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4.1 The role of speculation on energy markets: what

have we learned so far?

This section reviews the literature related to the impact of speculation on energy

markets, and more speciÖcally on oil future prices.6 We discuss the relative concep-

tualization of "commodity speculation" and how it can impact prices dynamics. We

identify four strands in this literature. One strand links the participation of Önancial

investors in oil markets to the evidence of increased comovements between oil, com-

modity, and stock prices. Another strand looks at the causal relationship between the

position taken by index fund managers and oil prices. The third approach considers

structural VAR models to investigate the impact of speculation. Finally, the fourth

approach assumes that the existence of heterogeneous traders in the markets, namely

fundamentalists and chartists, can impact prices áuctuations.7

In this hot debate about the Önancialization of oil market, and more generally of com-

modity markets, the key question is how to deÖning what we call "commodity specula-

tion". According to Kilian and Murphy (2013), a general deÖnition of speculation in oil

market refers to a situation where "anyone buying crude oil not for current consump-

tion, but for future use". Following this deÖnition, speculative investors can have two

options, buying physical oil now and store it to accumulate oil inventories, or buying

crude oil futures contracts. Therefore, according to Alquist and Kilian (2010)ís ana-

lysis, speculation in one of these markets will be necessarily reáected in speculation in

other market. In this sense, speculation would not be economically "irrational" because

it seems reasonable that oil producers, considered as physical traders, will stock up on

crude oil to smooth production of reÖned products. Speculation would be essential to

6This debate mainly focuses on the oil market due to its potential impact on the real economy
(see, Hooker, 1996; Rotember and Woodford, 1996; Hamilton, 2003, Sauter and Awerbuch; 2003,...).

7Unlike Fattouh et al. (2012), we do not talk about the relationship between oil future and spot
prices, as well as the role of time-varying risk premia in oil futures markets.
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oil market to function because it provides liquidity and assists price discovery process.

However, speculation in the public debate has a negative connotation because it is

often viewed as an excessive phenomenon. This excessive phenomenon would be the

consequence of private interests, increasing prices movements and a§ecting the social

welfare. Determining excessive speculative behaviors is a di¢cult task because they do

not necessary come from the position taken by the traders. Commercial traders gener-

ally act as hedgers to protect their physical interests, while noncommercials traders are

often considered as speculators. However, as documented by B¸y¸ksahin and Harris

(2011), we can have situations where commercial investors have speculative position

in the sense that they take a stance on the commodity price without hedging it in the

futures market.

4.1.1 Comovements between commodity and Önancial prices

Since 2003, without explicit mention to Önancialization, there is clear evidence of in-

creased proportion of Önancial investors in oil futures markets (see, Alquist and Kilian,

2010; B¸y¸ksahin et al., 2009; Tang and Xiong, 2011; Hamilton and Wu, 2011, Hache

and Lantz, 2013, among others). The Örst strand of literature on this topic focuses on

comovements between commodity prices, mainly oil prices, and stock markets, as well

as volatility spillover e§ects. Hammoudeh et al. (2004), using cointegration techniques

as well as ARCH-type speciÖcations among Öve daily S&P oil sector stock indices and

Öve daily oil prices for the US oil markets from July 1995 to October 2001 Önd volatility

spillover e§ects from the oil futures market to the stocks of some oil sectors. Chiou

and Lee (2009) focusing on the asymmetric e§ects of WTI daily oil prices on S&P 500

stock returns from January 1992 to November 2006, investigate the structure changes

in this dependency relationship. Using the Autoregressive Conditional Jump Intensity

model with expected, unexpected and negative unexpected oil price áuctuations, they

Önd that high áuctuations in oil prices have asymmetric unexpected e§ects on stock

returns. Filis et al. (2011) analyze time-varying correlations between oil prices and
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stock markets by di§erentiating oil-importing (USA, Germany, and the Netherlands)

and oil-exporting (Canada, Mexico, and Brazil) countries. They Önd that the condi-

tional variances of oil and stock prices do not di§er for each group. B¸y¸ksahin et al.

(2010), Silvennoinen and Thorp (2010), Choi and Hammoudeh (2010), and CretÏ et al.

(2013) show that conditional correlations between commodity returns and stock index

have increased recently, especially in periods of high volatility. B¸y¸ksahin and Robe

(2011) further document that the increase in prices comovements is related to the entry

of hedge funds in both markets. Di§erent general conclusions can emerge from these

studies. Indeed, some studies argue that increased comovements between markets lead

to decrease potential diversiÖcation (Silvennoinen and Thorp, 2010), while some oth-

ers suggest that these comovements between prices develop transmissions from a wide

range of commodity and Önancial markets (Tang and Xiong, 2011). However, this liter-

ature does not imply that recent surge in commodity prices was caused by "commodity

speculators". It could be due to many macroeconomic fundamental factors others than

Önancial speculation.

4.1.2 Index funds positions and commodity prices

Some other studies have focused on the question whether index funds positions

can create higher commodity returns. Master (2008, 2010), and Singleton (2012),

using highly aggregated Commodity Futures Trading Commission (CFTC) data on

positions of index funds concluded that Önancial investments a§ect crude oil returns.

However, B¸y¸ksahin et al. (2009, 2010a,b, 2011a,b) show that to study the impact of

speculation, heavily aggregated data are not suitable. B¸y¸ksahin and Harris (2011)

and Brunetti et al. (2011) by considering speciÖc categories of traders (such as hedge

funds and swap dealers) investigate the impact of positions in oil futures prices and

volatility. They Önd relevant causality from market conditions to speculators, as well

as the fact that speculators provide liquidity to the market.
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4.1.3 Structural models

A third strand of the literature is concerned with strucural economic models of

oil markets. Kilian and Murphy (2013) are among the Örst to quantify the e§ect of

speculative demand shocks on the real price of oil. In the same verge of Kilian (2009a,b),

Kilian and Murphy (2012), and Baumeister and Peersman (2012), they use structural

vector autoregressive (VAR) models to disentangle demand and supply shocks in oil

markets. They consider four strucural shocks: (i) an unanticipated disruption in the

áow of supply of oil, (ii) an unanticipated increase in the áow of the demand of oil

associated with an unexpected change in the business cycle, (iii) a positive speculative

demand shock, and (iv) residual oil demand shock.8 Using data back to 1973, the

model Önds no evidence for speculation causing the price surge, price changes being

caused by fundamental characteristics, such as supply and demand conditions. More

recently, Juvenal and Petrella (2011), and Lombardi and Van Robays (2011) propose

to extend Kilian and Murphyís model by introducting an additional shock (respectively

speculation by oil producers for the former, and ínonfundamentalí Önancial speculation

shock for the latter) and Önd evidence of Önancial speculation impact on oil markets.

4.1.4 Heterogeneous agents and price áuctuations

All previously mentioned studies are based on the representative agent paradigm

and assume intuitively that agents in commodity markets are fully rational. It appears

that results about the impact of speculation regarding the recent energy prices surge

are not so clear. Some of them attest the existence of "commodity speculation", while

some others reject this explanation. Since the work of Simon (1957), the representative

agent assumption seems to be too restrictive, in the sense that there is only one way

of behaving rationally while there is an inÖnite number of ways of behaving boundedly

8For more details see Kilian and Murphy (2012).
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rational. A possible cause of the large price volatility of commodity markets could be

therefore the existence of heterogeneous speculators in the markets. Originally focusing

on Önancial and exchange rate markets, this literature turned to commodity markets

to investigate potential anomalies in prices áuctuations. He and Westerho§ (2005),

Westerho§ and Reitz (2005), Reitz andWesterho§ (2007), and Reitz and Slopek (2009),

are among the Örst to introduce models with heterogeneous agents for commodity

markets and Önd signiÖcant evidence of trader heterogeneity and switching behavior in

prices áuctuations. More recently, Ellen and Zwinkels (2010) rely on the HAM of Brock

and Hommes (1997, 1998) to study the impact of heterogeneous traders in Brent and

WTI crude oil prices. They Önd that oil prices are mainly governed by fundamental

factors (such as political and economic issues, ....), but Önd also that speculators are

present in the markets and usually have destabilizing e§ects on the price of oil. These

studies are mainly concerned about spot prices where oil companies are pretty much the

same. More importantly, they cannot drive up the price without increasing inventories

(unless the elasticity of demand is literally zero).

4.1.5 Extending the previous literature

The literature explaining the potential reasons of the recent commodity prices surge

does not go in the same way so that we do not really understand what cause these

markets so volatile. It seems clear that the dynamics of commodities, and especially of

energy prices has increased signiÖcanlty since 2003, and it appears also relevant that

the properties of these prices tend to be close to those of traditional Önancial assets

(such as volatility clustering, autocorrelation, to name few (see JoÎts, 2012)). What

really cause these speciÖc behaviors?

Our chapter proposes to investigate these speciÖc characteristics by considering a less

restrictive approach than previous methodologies. Because quantifying the problem of

excessive speculation is not trivial, we do not really talk about speculative phenomenon
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in its economic sense but rather try to understand if "irrational" expectations9 can

cause abnomal áuctuations in the markets. More formally, we propose to relax the

rational agent paradigm by considering a model with heterogeneous beliefs (Brock

and Hommes, 1997 and 1998) where agents are allowed to switch between "rational

and irrational" behaviors according to an emotional regret process. Moreover, we

introduce a new circunstance where energy prices can experience strong áuctuations.

Indeed as suggested by Knight (1921) and Keynes (1921), the reason why the standard

approach, based on expected utility theory, fails to explain "abnomal" behaviors may

be because agents in the markets may face to uncertainty as opposed to risk.10 In our

context investors may simply face to uncertainty when they have no prior about their

future energy prices expectations. Uncertainty averse agents are therefore supposed to

interact with uncertainty neutral ones which can cause energy prices movements even

more important. The purpose of this chapter is therefore to investigate theoretically

and empirically the proportion of each trader in energy markets (oil, gas, coal and

electricity prices) during both normal times and extreme áuctuations periods to see

whether the weight of irrational agents can exceed that of rational ones and leads to

excessive energy prices movements (i.e. which do not reáect fundamentals of each

market).

4.2 Theoretical model

In this section, we develop a simple and stylized HAM that will be used to evaluate

the e§ect of heterogeneous speculators on energy prices. The model is based on the

model introduced by Brock and Hommes (1997, 1998) and extended by of Kozhan and

Salmon (2009). We propose a new speciÖcation of the HAM by integrating Bell (1982)

9By irrational we think about naÔve behaviors or noisy investors.
10According to Bewley (2002), the distinction between risk and uncertainty is deÖned by the fact

that a random variable is risky if its probability distribution is known, and uncertain if its distribution
is unknown.
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and Loomes and Sugden (1982)ís regret approaches where agents are allowed to switch

between each strategy through an emotional learning process. More formally, there are

di§erent types of agents in the market forming heterogeneous expectations in uncertain

universe which interact by a regret learning speciÖcation.

The dynamic of prices can be expressed as follows:

p
(i)
t =  + D

(i)
t + "t (4.1)

where p(i)t denotes the dynamic of prices between t and t1 of energy i, with i being

respectively oil, gas, coal or electricity prices. D(i)
t is the aggregate demand function at

time t for each i, and "t is an error term "t  (0;2"). The aggregate demand function

is the consequence of the disaggregate demands of each di§erent type of traders.

In our economy, we assume that each agent can invest in both risk-free and and risky

assets. An agent wealth at time t is determined by his trading activity and is equal

to11

Wt = (1 + rt1)Wt1 + (Pt + yt  (1 + rt1)Pt1)dt1 (4.2)

where Wt and Wt1 are the wealths of each agent at time t and t  1, Pt is the price

(ex-dividend) of the risky asset at time t, yt is the dividend of the risky asset, dt1 is

the demand for risky asset at t 1. rt is the risk-free rate.

As in the traditional Brock and Hommes (1997)ís model, there are two types of investors

which interact in the market, namely fundamentalists and chartists. The former group

believes that there exists an equilibrium price (the fundamental value) around which the

price will always áuctuate. Fundamentalistsí expectations of the energy price dynamics

11For simplicity, we do not further report the exponent i for each series.
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are therefore proportional to the observed di§erence between the fundamental value

and the price at t 1 according to the following equation

Et (Pt+1=F ) = Pt1 + 

P t  Pt1


(4.3)

with 0    1. P t is the fundamental price of the energy market considered. F

denotes fundamentalist behavior at time t. Et denotes the conditional expectation at

time t.

In parallel, we assume that to predict future price evolution, chartist investors use a

simple long-short moving average rule given by

Et (Pt+1=C) = Pt1 + 
0

0

@ 1

MAs

MAsX

j=1

Ptj 
1

MAl

MAlX

j=1

Ptj

1

A (4.4)

with 
0
> 0,MAs andMAl the respective lengths of the short and long moving average

windows. C denotes chartist behavior at time t. Et denotes the conditional expectation

at time t.

The fact that the market can be summarized by these two types of beliefs is well

established in the Önancial and exchange rate literatures (see, Taylor and Allen,1992;

Cheung et al., 2004; Broswijk et al., 2007; de Jong et al., 2010, to name few). Because

energy markets can, depending on the context, behave as traditional Önancial assets

(see, JoÎts, 2012), we assume that these two tradersí types may also be present in these

markets. Reitz and Slopek (2009), Ellen and Zwinkels (2010), and B¸y¸ksahin and

Harris (2011), among others, have shown that in oil market, participants act as "trend

followers", where retroactive e§ects ináuence the positions taken by stakeholders. In

our model, the information available to both types of traders at time t is the past level

of prices, and past and present values of fundamental variables. Following Brock and

Hommes (1998), Boswijk et al. (2007), and Kozhan and Salmon (2009), we assume
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for analytical tractability that investors have homogeneous expectations about the

conditional second moment of price movements.12

4.2.1 Demand functions

Following Kozhan and Salmon (2009), we have four distincts individual demand

functions depending on the strategy used and the uncertainty context (i.e. uncertainty

neutral/averse demand from fundamentalist/chartist traders). In the sequel, we denote

dut (B) and d
n
t (B) the individual demands from uncertainty averse and neutral traders,

with B = F;C.

4.2.1.1 Uncertainty neutral agents

In this case, we are in the situation where both fundamentalist and chartist investors

are considered to be neutral to uncertainty. In other words, they are indi§erent between

their ignorance about an uncertain prospect or a situation in which they have no prior

experience. Their risk preferences are characterized by a myopic mean-variance utility

function, and agents maximize their expected utility functions as follows

Et

U

W n
t+1


=B

= Et


W n
t+1=B





2
Vt

W n
t+1=B


!
dnt
max (4.5)

where U and V denote respectively utility and the conditional variance,  is the risk

aversion parameter assumed to be the same across individuals. The wealth of uncer-

tainty neutral agent at t+ 1 is given by

W n
t+1 = (1 + rt)W

n
t + (Pt+1 + yt+1  (1 + rt)Pt) dnt (4.6)

12Et

P 2t =B


= Et


P 2t

, where B = F;C.
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Maximizing the mean-variance expected utility with respect to dnt give us the following

expression13

dnt =
Et [(Pt+1 + yt+1  (1 + rt)Pt) =B]
Vt [(Pt+1 + yt+1  (1 + rt)Pt) =B]

(4.7)

Beliefs about future dividends are considered to be the same for all traders types and to

be equal to the true conditional expectation (Et (yt+1=B) = Et (yt+1)). We also assume

that in a special case, the dividend follows an i.i.d process, such as Et (yt+1) = y.14 For

analytical tractability, the conditional variance is assumed to be equal and constant

for all types of investors, so Vt = 2. The equation (3.5) can be simpliÖed as follows

dnt =
Et (Pt+1=B) + y  (1 + rt)Pt

2
(4.8)

4.2.1.2 Uncertainty averse agents

Because the assumption of neutral uncertainty appears to be too restrictive in our

case, we allow the existence of uncertainty averse agents on energy markets. Unlike

neutral category, uncertainty averse agents are attentive to the misreading and potential

unmeasurability of their models or associated probability distributions. They maximize

their maxmin myopic mean-variance utility function of future wealth.15 As in Kozhan

and Salmon (2009), the preferences of uncertainty averse fundamentals/chartists are

expressed by the set of possible expectations of future energy prices evolutions. In turn,

the set of di§erent possibilities is determined by a symmetric bandwidth # around the

base of uncertainty neutral expectations. Therefore, the future energy prices move-

ments expected by the uncertainty averse agents are assumed to áuctuate in the interval

 = [Et (Pt+1=B) #;Et (Pt+1=B) + #].

13See Kozhan and Salmon (2009) for proof.
14y being a constant term.
15For more details see Gilboa and Schmeidler (1989) and Garlappi et al. (2007).
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Et

U

W u
t+1


=B

= min

2
Et

W u
t+1()=B





2
Vt

W u
t+1 () =B


!
dut
max (4.9)

where  is the anticiped prices in the interval . The wealth of averse agents at t + 1

is given by

W u
t+1 () = (1 + rt)W

u
t () + (Pt+1 + yt+1  (1 + rt)Pt) dut (4.10)

When averse agents maximize their maxmin expected utilities with respect to dut , they

are able to determine three optimal demand functions according to the interval ,

namely S(B), Smax (B), and Smin (B)

S(B) = Et(Pt+1=B)+y(1+rt)Pt
2

Smax (B) =
(Et(Pt+1=B)+#)+y(1+rt)Pt

2

Smin (B) =
(Et(Pt+1=B)#)+y(1+rt)Pt

2

According to Kozhan and Salmon (2009), given the level of energy prices Pt, the

optimal strategy in  for uncertainty averse investors is to keep dut units of energy

according to the following rules16

dut =

8
>>>>><

>>>>>:

Smin (B) if Pt < Et (Pt+1=B) #

0 if Et (Pt+1=B) # < Pt < Et (Pt+1=B) + #

Smax (B) if Et (Pt+1=B) + # < Pt

(4.11)

16See Kozhan and Salmon (2009) for more details.
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4.2.2 Learning process through emotional regret interaction

In traditional HAMs, agents may change their strategies at every period of time

(they choose to become fundamentalists or chartists). The learning process is generally

similar to case-based reasoning scenario, where agents evaluate the market and choose

their investment strategies based on comparison of the cumulative past performances

of each forecasting rule (see Kirman, 1993; De Grauwe and Grimaldi, 2006; Kirman

et al., 2007; Boswijk et al., 2007; Kozhan and Salmon, 2009; Ellen and Zwinkels,

2010, among others). However, these learning processes are cognitively oriented while

psychologic studies have shown that investorsí decision processes are the conjunction of

both cognitive and emotional factors (see, Zajonc, 1980; Schwarz, 1990; Damasio, 1994;

Forgas, 1995; Isen, 2000; Loewenstein et al., 2001, among others).17 To account for the

potential impact of feelings in the behavior of agents, we propose to introduce a learning

emotional switching process based on anticipated emotions, deÖned as emotions that

are expected to be experienced by investors given a certain outcome level. Intuitively,

the switching mechanism is based on the regret theory of Loomes and Sugden (1982)

and Bell (1982). More formally, at the beginning of period t, agents anticipate the

regret they could experienced if they have chosen the fundamental strategy rather than

the other one. Agents are allowed to switch between di§erent strategies (fundamental

vs chartist), and also between their reaction to uncertainty in the market (averse vs

neutral) according to this regret criterion. Regret appears to be a cognitively-based

emotion of pain and anger when agents observe that they took a bad decision in the

past and could have taken one with better outcome. In our case, agents will experience

regret when their investment (based for example on fundamental strategy) yields, ex-

17The impact of feelings in decision process has been widely conÖrmed empirically in stock market
áuctuations (Saunders, 1993; Cao and Wei, 2002; Kamstra et al., 2000; Hirshleifer and Shumway,
2003; Kamstra et al., 2003; Dowling and Lucey, 2005 and 2008), and more recently in energy price
dynamics (JoÎts, 2012).
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post a lower performance than an obvious alternative strategy (chartist strategy) they

could haven chosen.18

Within this framework, suppose that t+1 (F;C) denotes the probability of a trader

to adopt fundamentalist behavior at time t + 1 by the following multinomial logistic

expression

t+1 (F;C) =
eH

n
t (F;C)

eH
n
t (F;C) + eH

n
t (C;F )

(4.12)

where t+1 (F;C) 2< 0; 1 > denotes the fraction of fundamentalists in the market

(i.e. the probability to become fundamentalist rather than chartist at t + 1), such as

t+1 (C;F ) = 1 t+1 (F;C), the fraction of chartists at time t+ 1. The parameter 

is the intensity of choice and represents the matter to which the regret/rejoice feelings

relative to a certain strategy at t determine whether it is adopted at t + 1. More

explicitly,  measures the extent to which investors hold their believe even though the

other option might be more attractive. Hn
t (F;C) and H

n
t (C;F ) are both based on the

following regret expression

Hn
t (F;C) = V n(F ) + f (V n(F ) E [V n(C)])

Hn
t (C;F ) = V n(C) + f (V n(C) E [V n(F )])

with f(:) the regret function. V n(F ) is the utility of being F and not C , and V n(C)

is the utility of being C and not F . Each utility is discounted sums of the one-period

utilities of the respective uncertainty neutral fundamentalist and chartist investors in

the following general form

18Contrary to disappointment, which is experienced when a negative outcome happens relative to
prior expectations, regret is strongly associated with a feeling of responsability for the choice that has
been made.
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V n(B) =

KX

k=1

!k1U

hntk+1 (B)


(4.13)

! being the discount factor, hnt (B) = (1+rt1)W
n
t1 (B)+(Pt + yt  (1 + rt1)Pt1)dnt1 (B).

Anticipation of V n(B), is expressed as E [V n(B)] = V n(B) + "t, with "t an error term

"t  (0;2").

Our regret function is given by the following rule:

 if V n(F ) > E [V n (C)] ) V n;F > 0, the group of fundamentalists feels rejoice

and the probability to become F at time t+1 increases (the same analysis holds

for chartist group);

 if V n(F ) < E [V n (C)] ) V n;F < 0, the group of fundamentalists feels regret

and the probability to become F at time t+1 decreases (the same analysis holds

for chartist group).

Simultaneously, with the fundamental/chartist switching mechanism an agent can

also change his reaction according to the level of uncertainty present in the market.

Agent can be neutral to uncertainty if he considers the information available in the

market as certain and has no doubt about his model or potential prior. He will be

more willing to choose the expected utility strategy. However, neutral agent is allowed

to switch to uncertainty averse behavior. As discussed by Kozhan and Salmon (2009),

under severe uncertainty about the condition and the future evolution of the market,

the agent will use maxmin strategy whereas under weak uncertainty he will earn some

positive utility and will be less sensitive to bad outcomes. In the same manner, the

probability to become uncertainty neutral is given by

t+1 (n;B) =
e

0Hn
t (B)

e
0Hn

t (B) + e
0Hu

t (B)
(4.14)
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Hu
t (B) is the regret expression of averse uncertainty agent with

Hu
t (F;C) = V u (C) + f (V u (F ) E [V u (C)])

Hu
t (C;F ) = V u (F ) + f (V u (C) E [V u (F )])

and

V u (B) =

KX

k=1

!k1U

hutk+1 (B)


(4.15)

where hut (B) = (1 + rt1)W
u
t1 (B) + (Pt + yt  (1 + rt1)Pt1)dut1 (B).

4.2.3 The aggregate demand function

The aggregate demand function is characterized by the four disaggregate demands

of each trader. zt denotes the proportion of fundamentalists in the market and (1 zt)

the proportion of chartists. Wt is the proportion of uncertainty neutral investors while

(1Wt) represents the proportion of uncertainty averse agents. Finally N is the total

of agents. The general form of the aggregate demand function is

Dt = N

2

664

ztW

F
t d

F;n
t + zt


1W F

t


dF;ut



| {z }
fundamentalist group

+

(1 zt)W

C
t d

C;n
t + (1 zt)W

C
t d

C;u
t



| {z }
chartist group

3

775

(4.16)

Equation (4.16) is then inserted in the relation (4.1) to investigate the impact of

each category of investors on the dynamic of energy prices.
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4.3 SpeciÖcation and estimation

Due to the complex nonlinear speciÖcation of the model, HAMs have not often

been estimated, but simulated. Boswijk et al. (2007), de Jong et al. (2009), Reitz and

Slopek (2009), and more recently Ellen and Zwinkels (2010) are among the Örst to es-

timate HAMs with switching mechanism on the S&P500, option market and oil market

respectively. In our empirical section, we consider daily data over the January 3, 2005

to December 31, 2010 period. The sample has the particularity to cover the strong

dynamics that we observed recently in energy market. In order to allow for both fun-

damental and speculative pressures, we rely on European forward prices at 1 month for

oil, gas, coal and electricity markets. Energy prices are quoted in US dollars per tonne

of oil equivalent ($/toe) and are extracted from the Plattís Information Energy Agency.

As mentioned in Section 4.2, our model is characterized by the interaction of funda-

mentalist and chartist agents. Therefore for the model to function, it is necessary to

set a stabilizing group against a destabilizing one. The fundamentalist group bases

expectations around the fundamental value P t. To compute the fundamental value of

each energy market, we use the moving average of each price over a period of 60 days.19

One might argue that the moving average rule cannot constitute a true theoretical fun-

damental value. For instance, Reitz and Slopek (2009) generate the fundamental value

of oil price based on Chinese oil imports. However, as discussed by Ellen and Zwinkels

(2010), this type of fundamental value causes an informational advantage making this

method inappropriate in practice. Moreover, our moving average rule allows us to con-

sider fundamentalists as somewhat more broadly. The chartist agents, for their part,

use a simple 1-50 moving average rule. Figure 4-6 in Appendix depicts the energy

prices and their respective fundamental values (in logarithm) and shows the relevance

19Results are robust to the choice of the window length. They are available upon request to the
author.
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of our fundamental prices.

Table 4.1 in Appendix reports descriptive statistics of energy price returns and mis-

alignment between prices and fundamentals. They reveal that kurtosis of each energy

return series is largely above three, which means that the distribution is peaked with

fat tails indicating strong uncertainty on the markets. The speciÖc properties of elec-

tricity market (i.e. non-storablility, inelasticity of the supply,...) cause thicker tails

than other series. Skewness shows that oil, gas, and electricity returns are generally

right skewed while coal returns are left skewed. These conÖrm our view of strong áuc-

tuation in energy prices. Regarding the misalignment between prices and fundamental

values, positive mean for oil and gas signiÖes that prices are generally overvalued, while

negative mean for coal and electricity suggests an undervaluation.

Our model, characterized by the general form of equation (4.1), is estimated using NLS.

As we mentioned, the proportion of each agent in the markets follows a multinomial

logistic rule. The optimal values for K in equations (4.13) and (4.15) are determined

by Akaike criterion.20

4.4 Empirical results

This section is devoted to test whether the di§erent types of traders we speciÖed are

active in energy markets, and to determine their relative weights in explaining price

áuctuations. We also propose an out-of-sample analysis to compare the predictive

ability of our theoretical model against a simple random walk.

20K = 6 for oil, K = 3 for gas, K = 3 for coal, and K = 2 for electricity.
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4.4.1 In-sample analysis

In order to investigate whether heterogeneous beliefs, and especially uncertainty can

dictate energy price dynamics, we propose to estimate di§erent speciÖcations of our

model (i.e. with and without ambiguity). Moreover, as documented by JoÎts (2012),

the dynamic of energy prices can be considerably di§erent depending on the intens-

ity of the market.21 Therefore, we also intend to estimate our model during extreme

áuctuations periods to investigate whether investorsí behaviors are more severe in this

circumstance.

Our model is estimated for each energy market. Tables 4.2, 4.3, 4.4, and 4.5 report

in-sample estimation results during normal times, respectively for oil, gas, coal, and

electricity markets. First regarding the neutral case (i.e without uncertainty), fun-

damental traders only impact energy markets. Indeed, although there is a signiÖcant

switching phenomenon22 between fundamental and chartist expectations, the role of

"trend followers" appears to be irrelevant. In neutral restrictive case scenario, fun-

damental considerations, such as changes in the supply and demand conditions (for

example OPEC decisions, reÖning capacity, humanitarian unrest, increasing energy

demand from Asian emerging countries,...), would drive future energy prices evolu-

tions.

Let us now turn to a less restrictive case by considering that uncertainty can exist in the

markets and can cause future price áuctuations even more ambiguous for participants.

In this context, the ináuence of uncertainty in decision-making process could create

large gaps between prices and fundamental values leading non-commercial investors

more motivated to enter into the market. As we can see, neutral and averse fundament-

alists coexist with averse chartists for almost all prices, whereas averse fundamentalists

21Using a new test of Granger causality in risk JoÎts (2012) Önds that interactions between energy
prices can be more intense during extreme periods.
22The intensity of choice  is positive and highly signiÖcant for each market.
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appear to be rationally bounded and more prone to switch toward chartist strategy.

The switching mechanisms between fundamental/chartist and between neutral/averse

are signiÖcant and positive indicating that a double change of attitude exists. Funda-

mentalist and chartist traders are not sure about their respective beliefs on the market

so they perpetually switch between strategies following "the way of largest number",

making price movements even more important, creating in turn more uncertainty. This

market phenomenology tends to favor "trend followers" against fundamental traders.

Figure 4-1 reports the trader weights in mean for each market with respect to their

signiÖcance impact. For each market, chartist agents seem to be dominant. While this

dominance is weak for the gas market, it is clearer for other series. Indeed, consider-

ing that oil market is mainly composed by fundamentalits and chartists neutral and

uncertain traders, the role of chartistsí behaviors is largely ascendant. Turning to the

coal market, this superiority is even more important, where fundamentalists uncertain

agents seem to prefer to switch to "trend followers" attitude than to keep the funda-

mental strategy. Regarding electricity prices, two types of traders are mainly present in

the market (i.e. fundamentalists and chartists uncertain). As for the gas market, the

preponderance of one group (chartists uncertain) against another (fundamentalists) is

not immoderate in this market. This similarity between gas and electricity prices can

be the consequence of existing input-output relations between both markets.23 The spe-

ciÖc nature of gas market compared to oil one can be attributed to the recent European

liberalization process making long-term gas contracts no longer indexed to oil market,

but to spot and futures prices.24 This fact leads gas prices submit to fundamental and

Önancial pressures in almost the same proportion. Moreover, unlike oil prices which

are internationally organized through liquid markets, gas prices are regionally managed

and less subjected to the international macroeconomic uncertainty.

23Usually, the natural gas is used as an input to the electricity production process.
24Unlike futures prices which are most prone to be ináuenced by Önancial investors, spot prices

usually reáect market fundamentals.
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Figure 4-1: Trader weights in energy markets during normal times
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As previously mentioned, the dynamic of prices can be considerably di§erent if we look

at extreme price movements. We propose to investigate the proportion of each traders

during extreme áuctuations periods by using quantile regression approach.25 This

method allows us to distinguish between extreme downward and upward movements.

As before, we propose restrictive and unrestrictive forms of our model (i.e. neutral and

uncertain speciÖcations). Tables 4.6, 4.7, 4.8, and 4.9 report the estimation results of

neutral HAM for oil, gas, coal, and electricity markets respectively at both downside

and upside circumstances. The proportion of each agent is not constant in the markets

depending on the side of the distribution. Indeed, for all series, fundamentalists and

chartists interact during downward extreme prices áuctuations, while during upward

movements only fundamentalist behaviors are determinant (except for oil where both

agents coexist). In other words, if we assume no uncertainty in the decision-making

process, fundamental considerations would be the main consequence of prices increase,

while both fundamental and speculative pressures would be that of prices decrease.

However, because no ambiguity is a restrictive assumption, we propose to extend our

analysis to the case of uncertainty to investigate whether averse behaviors are more

important during extreme movements rather than normal times.

Tables 4.10, 4.11, 4.12, and 4.13 show estimation results of uncertain HAM of oil,

gas, coal, and electricity prices respectively (downside and upside). We can see that

compared to normal times, the composition of each market has changed signiÖcantly.

Energy markets movements are characterized by the interaction of both neutral and

averse agents, however the weight of averse traders seems to be higher compared to

normal times. As before, the proportion of each trader in markets is di§erent depend-

ing on the side of the distribution. Regarding the downside context, uncertainty causes

chartists behaviors to be more present in the market making prices decrease extremely

rapid through self-fulÖlling prophecy. This phenomenon has been recently observed

empirically in energy markets. For instance, oil Brent price has increased sharply

25For simplicity we suppose that switching parameters are the same as those estimated during
normal times.
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between mid-2007 and mid-2008 to a level of almost $140 per barrel, and decreased to

less than $40 per barrel at the end of 2008. With less intensity, same movements have

been observed on gas, coal and electricity markets showing potential herd behaviors

in prices. Turning to the upside context, unlike during normal periods, extreme up-

ward movements are not only characterized by fundamental expectations, but also by

speculators probably not related to physical interests. Generally speaking, the funda-

mental nature of energy prices seems to fade in beneÖt to "irrational exuberance" as

the áuctuations become more intense.

Figures 4-2, 4-3, 4-4, and 4-5 show the traders weight in each market during extreme

downward and upward movements, and conÖrm this fact. Indeed, during extreme

prices decrease, energy markets are clearly dominated by chartists uncertain agents

supporting our intuition about the fact that uncertainty increases and in turn leads

to "cascading behaviors". During extreme prices increase, oil and electricity markets

are dominated by both fundamentalists and chartists uncertain in the same proportion,

whereas the latter is more important for coal market and less signiÖcant for gas market.

However, the di§erence between each market appears to be less pronounced than dur-

ing normal times.26 This phenomenon can be explained by existing interconnections

between energy prices which are exacerbated during extreme áuctuation periods by di-

versiÖed commodity index investors who have large diversiÖed multi-asset investment

strategies.

4.4.2 Out-of-sample diagnostic

In this section, we investigate the forecasting ability of our HAM regret model

against the RW model. Forecats are created using an expanding window of observa-

26This Önding goes in the same way of JoÎts (2012) about asymmetric behaviors of energy markets
during upside and downside movements.
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Figure 4-2: Trader weights in Oil market during extreme movements

tions. More precisely, both models are estimated from January 3, 2005 to December

31, 2007, then out-of-sample estimations are computed until December 31, 2010. The

relative performance of the two forecast alternatives is evaluated by using the condi-

tional Giacomini-White (2006)ís approach. Giacomini and White (2006) propose a test

of Conditional Predictive Ability which allows to compare the forecasting properties

of two models, given a general loss function.27 This test allows to directly apprehend

the e§ect of estimation uncertainty on relative forecasting performance. Moreover, it

considers a less restrictive framework than previous methodologies since it permits a

uniÖed treatment of nested and nonnested models and also can accommodate more

general estimation procedures in the derivation of the forecasts. As discussed by Gi-

acomini and White (2006) in order to choose the best forecasting model, we use a

two-step decision rule. The Örst one allows us to see whether there is a di§erent predi-

citive ability between the two competing models, then the second step procedure lets

27This literature was initiated by Diebold and Mariano (1995), West (1996), McCracken (2000),
Corradi et al. (2001), and Chao et al. (2001), to name few.
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Figure 4-3: Trader weights in Gas market during extreme movements

Figure 4-4: Trader weights in Coal market during extreme movements
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Figure 4-5: Trader weights in Electricity market during extreme movements

us to decide which model is the best.28 This methodology is applied to each energy

market to see whether HAM is the best model.

Table 4.14 reports results of the two-step test procedure for each energy market. The

Örst step is characterized by the rejection of the null hypothesis of equal performance

meaning that both HAM and RWmodels are not equally accurate on average. In other

words, it means that one model necessary outperforms the other one in terms of pre-

dictive ability. The second step of the Giacomini-White procedure reveals that for each

energy prices, the HAM outperforms the RW in terms of forecasting performance. Our

HAM is therefore more adequate to apprehend the energy prices dynamics, renforcing

the fact that heterogeneous beliefs, regret, and uncertainty could be the causes of high

volatility of energy prices.

28For more details see Giacomini and White (2006).
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4.5 Conclusion

In this chapter we provide an original behavioral and emotional analysis of the impact

of Önancialization on energy markets under uncertainty. For this purpose we suppose

that energy price áuctuations can be caused by heterogeneous expectations, as well as

uncertainty in decision-making process. Our stylized heterogeneous agent model allows

investors to switch between di§erent strategies according to market circumstances.

Turning to the empirical analysis of oil, gas, coal and electricity markets over the Janu-

ary 2005 to December 2010 period, our results indicate that the proportion of each

trader in the markets is di§erent depending on the degree of uncertainty considered, as

well as the intensity of áuctuations. Energy prices áuctuations are mainly governed by

fundamentalist expectations when agents in the markets evolve under certain context,

while both fundamental and speculative behaviors are the source of prices movements

under uncertain world. We have also shown that trader weights could be di§erent if we

look at extreme situations. The proportion of uncertainty averse agents increases dur-

ing extreme downward movements leading to situations where the fundamental nature

of the markets fades in beneÖt to irrational áuctuations as "cascading behaviors". The

conclusion is more parsimonious regarding extreme upward movements since price in-

creases are the consequence of both fundamental and chartist traders. All in all, our

chapter shows the limit of previous literature considering a too restrictive framework.

We see that if we extend the analytical framework, we could have better perception

and understanding of what drive energy markets.

Our model has obviously some limitations. Chartists have usually more complex be-

havior than a simple trend follower speciÖcation, and fundamentalist behavior could

be also more sophisticated to account for the speciÖc nature of each energy market.

Despite these limitations the model outperforms standard benchmarks, and provides a

Örst step toward the analysis of behavioral and emotional attitudes of energy investors



182
Chapter 4 : Heterogeneous beliefs, regret, and uncertainty: The role of speculation in

energy price dynamics

facing uncertainty. Further work should be done to give a concise deÖnition of what

we call excessive "commodity speculation", as well as to explore more precisely if it

can be costly in terms of social welfare.
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Figure 4-6: Energy prices and fundamental values at 1 month (in logarithm)
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Table 4.1: Descriptive statistics

Oil Gas Coal Electricity
p p p p p p p p p p p p

Mean 0:0004 0:003 0:0001 0:0001 0:0003 0:0002 0:0006 0:0002
Std. Dev 0:023 0:047 0:047 0:099 0:018 0:045 0:030 0:063
Skewness 0:144 0:455 2:029 0:127 0:573 0:099 1:81 0:419
Kurtosis 8:92 4:80 19:31 3:94 10:08 5:62 25:17 5:98

Notes: p denote price returns, and p p the price deviation from the fundamental
value of the energy considered.
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Table 4.2: In-sample estimation results for oil market during normal times

Oil

neutral uncertainty
 0:0007

(0:99)
0:0006
(0:85)

1 6:30E  06
(2:34)

5:42E  06
(2:27)

2 NA 9:49E  05
(1:76)

4 2:40E  05
(1:27)

2:90E  05
(1:01)

5 NA 8:07E  05
(2:80)

Switching
1 0:139

(6:89)
0:140
(12:32)

2 NA 0:043
(13:29)

Notes:  is for the constant term,  denotes respectively the demand from neutral
fundamentalists, averse fundamentalists, neutral chartists, and averse chartists,  is
the parameter for intenstity of choice. ,, denotes signiÖcance at 1, 5, and 10%

level respectively. Between parentheses t-stats.
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Table 4.3: In-sample estimation results for gas market during normal times

Gas

neutral uncertainty
 -0:0007

(0:58)
0:0003
(0:25)

1 0:0001
(2:07)

4:47E  05
(2:29)

2 NA 0:0004
(1:49)

4 2:85E  05
(0:26)

0:0001
(0:77)

5 NA 0:0003
(1:98)

Switching
1 0:150

(10:14)
0:076
(11:92)

2 NA 0:446
(12:14)

Notes:  is for the constant term,  denotes respectively the demand from neutral
fundamentalists, averse fundamentalists, neutral chartists, and averse chartists,  is
the parameter for intenstity of choice. ,, denotes signiÖcance at 1, 5, and 10%

level respectively. Between parentheses t-stats.
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Table 4.4: In-sample estimation results for coal market during normal times

Coal

neutral uncertainty
 0:0004

(0:73)
0:0003
(0:51)

1 1:68E  05
(2:55)

2:24E  05
(1:74)

2 NA 0:0003
(2:29)

4 6:68E  05
(1:13)

0:0002
(2:83)

5 NA 0:0001
(4:51)

Switching
1 0:472

(9:05)
1:06
(4:29)

2 NA 0:028
(12:13)

Notes:  is for the constant term,  denotes respectively the demand from neutral
fundamentalists, averse fundamentalists, neutral chartists, and averse chartists,  is
the parameter for intenstity of choice. ,, denotes signiÖcance at 1, 5, and 10%

level respectively. Between parentheses t-stats.
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Table 4.5: In-sample estimation results for electricity market during normal times

Electricity

neutral uncertainty
 0:0005

(0:58)
0:0003
(0:32)

1 0:0003
(2:00)

0:0002
(1:84)

2 NA NA
4 0:0004

(2:80)

 0:0001
(0:34)

5 NA 0:0006
(3:82)

Switching
1 2:702

(5:95)
2:13
(3:47)

2 NA 0:090
(11:95)

Notes:  is for the constant term,  denotes respectively the demand from neutral
fundamentalists, averse fundamentalists, neutral chartists, and averse chartists,  is
the parameter for intenstity of choice. ,, denotes signiÖcance at 1, 5, and 10%

level respectively. Between parentheses t-stats.
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Table 4.6: In-sample estimation results for oil market during extreme movements
(without uncertainty)

Oil
neutral

Downside Upside
 = 5%  = 95%

 0:036
(16:07)

0:033
(18:72)

1 3:40E  05
(1:71)

2:78E  05
(2:63)

2 NA NA
4 0:0002

(4:08)
9:77E  05

(1:77)

5 NA NA

Notes:  is for the constant term,  denotes respectively the demand from neutral
fundamentalists, averse fundamentalists, neutral chartists, and averse chartists. 
denotes quantile level, respectively 5% and 95% for downside and upside. ,,

denotes signiÖcance at 1, 5, and 10% level respectively. Between parentheses t-stats.
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Table 4.7: In-sample estimation results for gas market during extreme movements
(without uncertainty)

Gas
neutral

Downside Upside
 = 5%  = 95%

 0:059
(16:50)

0:063
(18:89)

1 0:0001
(2:27)

0:0001
(2:40)

2 NA NA
4 0:0005

(1:80)
2:70E  05

(0:70)

5 NA NA

Notes:  is for the constant term,  denotes respectively the demand from neutral
fundamentalists, averse fundamentalists, neutral chartists, and averse chartists. 
denotes quantile level, respectively 5% and 95% for downside and upside. ,,

denotes signiÖcance at 1, 5, and 10% level respectively. Between parentheses t-stats.
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Table 4.8: In-sample estimation results for coal market during extreme movements
(without uncertainty)

Coal
neutral

Downside Upside
 = 5%  = 95%

 0:030
(12:98)

0:027
(18:60)

1 0:0002
(2:51)

4:06
(2:47)

2 NA NA
4 0:0003

(5:52)
6:47E  05

(0:99)

5 NA NA

Notes:  is for the constant term,  denotes respectively the demand from neutral
fundamentalists, averse fundamentalists, neutral chartists, and averse chartists. 
denotes quantile level, respectively 5% and 95% for downside and upside. ,,

denotes signiÖcance at 1, 5, and 10% level respectively. Between parentheses t-stats.
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Table 4.9: In-sample estimation results for electricity market during extreme move-
ments (without uncertainty)

Electricity
neutral

Downside Upside
 = 5%  = 95%

 0:024
(20:22)

0:024
(16:20)

1 0:0018
(4:81)

0:0026
(8:52)

2 NA NA
4 0:0019

(11:32)
0:0012
(1:42)

5 NA NA

Notes:  is for the constant term,  denotes respectively the demand from neutral
fundamentalists, averse fundamentalists, neutral chartists, and averse chartists. 
denotes quantile level, respectively 5% and 95% for downside and upside. ,,

denotes signiÖcance at 1, 5, and 10% level respectively. Between parentheses t-stats.
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Table 4.10: In-sample estimation results for oil market during extreme movements
(with uncertainty)

Oil
uncertainty

Downside Upside
 = 5%  = 95%

 0:036
(21:80)

0:033
(21:40)

1 8:12E  05
(2:08)

2:68E  05
(2:55)

2 0:0002
(2:01)

2:03E  05
(0:14)

4 6:49E  06
(0:09)

8:98E  05
(1:13)

5 0:0003
(7:54)

 0:0001
(2:22)

Notes:  is for the constant term,  denotes respectively the demand from neutral
fundamentalists, averse fundamentalists, neutral chartists, and averse chartists. 
denotes quantile level, respectively 5% and 95% for downside and upside. ,,

denotes signiÖcance at 1, 5, and 10% level respectively. Between parentheses t-stats.
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Table 4.11: In-sample estimation results for gas market during extreme movements
(with uncertainty)

Gas
uncertainty

Downside Upside
 = 5%  = 95%

 0:061
(17:17)

0:063
(14:79)

1 0:0002
(0:66)

9:73E  05
(2:20)

2 0:001
(2:20)

0:0004
(2:30)

4 0:0005
(1:08)

0:0009
(0:77)

5 0:0007
(2:09)

 0:0002
(2:29)

Notes:  is for the constant term,  denotes respectively the demand from neutral
fundamentalists, averse fundamentalists, neutral chartists, and averse chartists. 
denotes quantile level, respectively 5% and 95% for downside and upside. ,,

denotes signiÖcance at 1, 5, and 10% level respectively. Between parentheses t-stats.
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Table 4.12: In-sample estimation results for coal market during extreme movements
(with uncertainty)

Coal
uncertainty

Downside Upside
 = 5%  = 95%

 0:033
(10:75)

0:027
(17:84)

1 0:0002
(2:72)

3:51E  05
(0:42)

2 0:001
(1:66)

0:0005
(8:81)

4 0:0006
(3:12)

0:0006
(0:40)

5 0:0006
(4:77)

 5:73E  05
(2:79)

Notes:  is for the constant term,  denotes respectively the demand from neutral
fundamentalists, averse fundamentalists, neutral chartists, and averse chartists. 
denotes quantile level, respectively 5% and 95% for downside and upside. ,,

denotes signiÖcance at 1, 5, and 10% level respectively. Between parentheses t-stats.
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Table 4.13: In-sample estimation results for electricity market during extreme move-
ments (with uncertainty)

Electricity
uncertainty

Downside Upside
 = 5%  = 95%

 0:023
(19:95)

0:025
(15:39)

1 0:0018
(5:35)

0:0026
(7:75)

2 NA NA
4 0:0013

(1:65)
0:0010
(1:20)

5 0:0021
(11:17)

 0:0011
(2:58)

Notes:  is for the constant term,  denotes respectively the demand from neutral
fundamentalists, averse fundamentalists, neutral chartists, and averse chartists. 
denotes quantile level, respectively 5% and 95% for downside and upside. ,,

denotes signiÖcance at 1, 5, and 10% level respectively. Between parentheses t-stats.
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Table 4.14: Conditional Predictive Ability Test

Model strategy RW
Oil Gas Coal Electricity

HAM model 200:83 (0:00)
[0:70+]

180:90 (0:00)
[0:85+]

270:92 (0:00)
[0:98+]

196:87 (0:00)
[0:60+]

Notes: Between parentheses p-values. * denotes rejection of the null hypothesis at 1%
signiÖcance level. Between brackets the proportion of time the method in the column
outperforms the method in the row over the out-of-sample period, according to the

Giacomini and White (2006)ís decision rule. + indicates that the HAM outperforms RW
model more than 50% of the time.
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Introduction 1

Throughout the last decade, commodity prices experienced an exceptional volatility,

with simultaneous and alternating phases of rising and falling trends. This evolution

can be compared to that of Önancial markets, as illustrated by Figures 5-1 and 5-2 rep-

resenting the Standard and Poorís 500 (S&P 500) and Commodity Research Bureau

(CRB) price returnsí volatility. As shown in Figure 5-3ówhich displays the dynam-

ics of the S&P 500 and CRB price indexesócommodity prices have experienced a

drop during the 2007-2008 Önancial crisis, and their link to stock prices seems to have

strengthened since that turmoil. At the same time, commodities increasingly become

part of portfolio allocation, together with stock classes.

Figure 5-1: S&P 500 stock returns volatility (01/03/2001 - 11/28/2011)

1A Örst version of this chapter has been published as Creti, A., JoÎts, M., and Mignon, V., 2013,
On the links between stock and commodity marketsí volatility, Energy Economics, 37, 16-28.
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Figure 5-2: Commodity price returns volatility (01/03/2001 - 11/28/2011

Figure 5-3: Evolution of S&P 500 and CRB indexes (01/03/2001 - 11/28/2011)
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At a macroeconomic level, policymakers pay a particular attention to commodity prices

and their volatility given their potential to feed ináation pressures. Volatility of com-

modity prices is thus a central issue for the world economy, as notably illustrated by

the G20 which addressed the question of excessive áuctuations and volatility of com-

modity prices in its September 2009 Pittsburgh summit. Moreover, analyzing the links

between commodity and stock markets is of particular interest for Önancial players as

raw materials enter many investment portfolios, together with stock classes (Silven-

noinen and Thorp, 2010; Dwyer et al., 2011; Vivian and Wohar, 2012). Furthermore,

as documented by Choi and Hammoudeh (2010), commodity traders concurrently look

at both stock and commodity markets áuctuations to infer the trend of each market.

Comparing the dynamic volatility of raw materials and equities prices provides use-

ful information about possible substitution strategies between commodity and stock

classes. In particular, volatility plays a key role regarding hedging possibilities, and

impacts asset allocation across raw materials and their risk-return trade-o§. Building

on the observed links between commodity and stock markets, a recent literature has

emerged regarding the impact of investorsí behavior in explaining the increase in both

level and volatility of commodity prices.2 However, as underlined by Vivian and Wohar

(2012), no clear-cut conclusion has been reached so far.

In this chapter, we contribute to the emerging empirical literature dealing with the

relationships between commodity and stock markets. More speciÖcally, we focus on

the dynamics of the correlations between both markets, and analyze whether those

correlations evolve according to the situationóbullish or bearishóin the stock market.

We pay a particular attention to the recent 2007-2008 Önancial crisis by investigat-

ing whether it has strengthened or disrupted the links between stock and commodity

markets. From a methodological viewpoint, we follow the dynamic conditional correl-

2Recent references include Eckaus (2008), Khan (2009), Masters and White (2009), Capelle-
Blancard and Coulibaly (2011), Du et al. (2011), Stout (2011), Valiante (2011), B¸y¸ksahin et
al. (2008, 2011), Irwin and Sanders (2012), Vivian and Wohar (2012), and Manera et al. (2012) for a
review.
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ation (DCC) GARCH approach introduced by Engle (2002) which allows to assess the

changes in correlations between commodity and stock returns over time. The DCC-

GARCH approach has been followed by Choi and Hammoudeh (2010) in a quite similar

context, but our study considerably extends the analysis.3 Our sample consists of 25

commodities covering various sectors over the period from January 3, 2001 to Novem-

ber 28, 2011. Relying on a large panel of raw materials (energy, metals, agricultural,

food, ...) allows us to study whether commodities constitute an homogenous asset class

with regard to their links with stock markets, and whether the crisis has engendered

a Önancialization of commodity markets.4 This kind of relationship has typically been

investigated in the case of oil (Doyle et al., 2007; Mouawad, 2009), though the cross-

e§ect on oil and stock market volatility remains globally unclear.

Our results show that correlations between commodity and stock markets are time-

varying and highly volatile. The impact of the 2007-2008 Önancial crisis is noticeable,

emphasizing the links between commodity and stock markets, and highlighting the Ön-

ancialization of commodity markets. We also show that, while sharing some common

features, commodities cannot be considered a homogeneous asset class: a speculation

phenomenon5 is for instance highlighted for oil, co§ee and cocoa, while the safe-haven

role of gold is evidenced.

The rest of the chapter is organized as follows. Section 5.1 brieáy reviews the literature

about the links between commodity and stock markets. Section 5.2 presents the data as

3Only Öve commodities were considered in Choi and Hammoudeh (2010), instead of 25 in our case.
4The Önancialization process refers to a situation in which the price of an individual commodity

is not only determined by its primary supply and demand, but also by several Önancial factors and
investorsí behavior in derivative markets.

5We use the term ìspeculationî for simplifying purposes to refer to a situation in which investors
(i) engage in transactions to proÖt from short-term áuctuations in the market value of the considered
asset or product, and (ii) focus only on price movements rather than on the fundamentals linked to
the considered asset or product. Empirically, speculation is assessed here through the dynamics of
correlations between oil and commodity markets: increasing correlations in times of rising oil prices,
and decreasingóand even negativeócorrelations during periods of declining stock prices.
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well as some stylized facts, and Section 5.3 deals with methodological aspects. Results

are displayed in Section 5.4, and Section 5.5 concludes the chapter.

5.1 Literature review

As documented in the introduction, commodity markets share several character-

istics with stock markets and Önancial assets. So far the literature has analyzed this

phenomenon mainly by focusing on oil, and looking at the comovements between stock

and oil markets. Most of this literature o§ers substantial evidence on the impact of

oil on stock prices, putting forward a negative relationship between oil price and stock

market returns.6 For instance, Jones and Kaul (1996), using a standard cash-áow di-

vidend valuation model, Önd a signiÖcant negative impact of oil price shocks on US

and Canadian quarterly stock prices in the postwar period. Several models, relying on

some variants of Vector Autoregressive analysis (VAR), highlight similar Öndings. Park

and Ratti (2008), performing a multivariate VAR analysis, Önd statistically signiÖcant

impact of oil prices shocks on real stock returns for US and 13 European countries

over the period from January 1986 to December 2005. Sadorsky (1999) investigates

relationships among monthly oil prices, S&P 500 stock returns, short-term interest

rate, and industrial production for the January 1947-April 1996 period by means of an

unrestricted VAR model. The author shows that oil prices and oil price volatility both

play important roles in a§ecting S&P 500 stock returns. Papapetrou (2001) estimates

a vector error-correction model on monthly data for Greece from January 1989 to June

1999, and concludes that oil prices drive stock price dynamics.

Shifting from the study of comovements to volatility analysis, the most recent literat-

ure focuses on volatility spillovers between oil/industrial commodity and stock markets.

6For an extensive review of the literature on this topic, see Filis et al. (2011).
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Hammoudeh et al. (2004) investigate the spillover e§ects, day e§ects, and dynamic re-

lationships among Öve daily S&P oil sector stock indices and Öve daily oil prices for the

US oil markets7 from July 17, 1995 to October 10, 2001 using cointegration techniques

as well as ARCH-type models. They evidence volatility spillovers from the oil futures

market on the stocks of some oil sectors. They also Önd an oil volatility transmission

day e§ect, Friday having a calming e§ect on the volatility of oil stocks. Chiou and

Lee (2009) examine the asymmetric e§ects of WTI daily oil prices on S&P 500 stock

returns from January 1, 1992 to November 7, 2006, by investigating structure changes

in this dependency relationship. Using the Autoregressive Conditional Jump Intens-

ity model with expected, unexpected and negative unexpected oil price áuctuations,

they Önd that high áuctuations in oil prices have asymmetric unexpected e§ects on

stock returns. Malik and Ewing (2009) rely on bivariate GARCH models to estimate

the volatility transmission between weekly WTI oil prices and equity sector returns8

from January 1, 1992 to April 30, 2008 and Önd evidence of spillover mechanisms.

Focusing on the Brent market, Filis et al. (2011) analyze time-varying correlations

between oil prices and stock markets by di§erentiating oil-importing (USA, Germany,

and the Netherlands) and oil-exporting (Canada, Mexico, and Brazil) countries. Us-

ing the multivariate DCC-GARCH approach from January 1988 to September 2009,

they Önd that the conditional variances of oil and stock prices do not di§er for oil-

importing and oil-exporting economies. However, time-varying correlations depend on

the origin of the oil shocks: the response from aggregate demand-side shocks is much

greater than supply-side shocks originated by OPECís production cuts. Finally, Choi

and Hammoudeh (2010) extend the time-varying correlations analysis by considering

commodity prices of Brent oil, WTI oil, copper, gold and silver, and the S&P 500 index

from January 2, 1990 to May 1, 2006. They show that commodity correlations have

7The US oil industry encompasses companies engaged in various phases of oil production and
processing. The US oil markets include the West Texas Intermediate (WTI), Cushing spot and the
New York Mercantile Exchange (NYMEX) for 1 to 4 month futures prices.

8The following sectors are considered: Önancials, industrials, consumer services, health care, and
technology.
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increased since 2003, limiting hedging substitutability in portfolios.

Our study extends the previous literature by considerably enlarging the sample of

commodities analyzed. We consider 25 di§erent strategic commodities, traded in the

US and covering various sectors: energy, precious metals, agricultural, non-ferrous

metals, food, oleaginous, exotic and livestock. In addition to the diversity of the sectors

covered, two main criteria have guided our choice of commodities: (i) data availability

over our whole considered period, and (ii) important trading activity, as apprehended

through the transactions volume and the number of large participants in the market

(see various reports by the Commodity Futures Trading Commission). The dataset

we have built allows us to compare the behavior of each commodity group regarding

stock market áuctuations, and to study whether correlations between commodities and

equities evolve over time and depend on the situationóbearish or bullishóon the stock

market.

5.2 Data and stylized facts

We consider daily spot price series for a large sample of commodities over the Janu-

ary 3, 2001 - November 28, 2011 period (source: Datastream, Thomson Financial).9

We investigate 25 di§erent commodities covering the following various sectors: en-

ergy,10 precious metals, agricultural, non-ferrous metals, food, oleaginous, exotic and

livestock. All price series are quoted in US dollars. We also consider an aggregate

9An alternative would have been to rely on futures prices. However, as highlighted by Vivian
and Wohar (2012), spot prices are the underlying asset upon which derivatives are based, a fact that
is important when analyzing volatility. In addition, relying on spot prices avoids issues related to
rollover of futures contracts.
10In the group of energy commodities, we have retained electricity rather than coalóalthough the

latter represents the most important input in electricity productionóbecause of the various interesting
key changes undergone by the electricity market. In particular, the liberalization of the electricity
market has led to the opening of this sector to competitionóan evolution which is interesting for our
purpose since it may promote the Önancialization of the electricity trading.
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commodity price index, the Commodity Research Bureau (CRB) index. Regarding the

equity market, we rely on one of the main US stock market index, namely the S&P

500 index.

Table 5.1 in Appendix provides some descriptive statistics regarding the returns series,

deÖned as rt = ln(Pt=Pt1); where Pt denotes the price index at time t. The group

of energy commodities seems to di§er from other groups in terms of volatility: the

variance of electricity, gas and to a lesser extent oil price returns is higher than that

obtained for the other commodities;11 being also higher than those of S&P 500 and

CRB returns. The electricity series is extremely volatile, as its high kurtosis value

shows. This is not surprising given that electricity is not storable and prices reáect

the real-time equilibrium between demand and supply, with contingencies that vary

greatly from one day to another.12 Together with high volatility, the group of energy

commodities exhibits low returns on average, leading to the lowest beneÖt-risk trade o§

compared to the S&P 500 and the CRB indexes, and the group of food and oleaginous

commodities which are more proÖtable on the return-risk basis. Statistics in Table 5.1

also show that all series are characterized by a time-varying volatility, an ARCH e§ect

being present for almost all returns series. Finally, returns tend to be autocorrelated,

especially for the energy and the precious metals groups, indicating some persistence

phenomenon.

11The increasing trend in volatility of oil and gas market prices in the USA has also been documented
by Pindyck (2004) among others.
12Though the Commodity Futures Trading Commission provides no data regarding the Önancializa-

tion of electricity (see Table 5.2 in Appendix), the latter can also be considered as a Önancial product.
An illustration is given by the Nordic Önancial electricity market, whose liquidity provided by a number
of speculators highlights that it is also important for Önancial trading purposes. More fundamentally,
with the creation of electricity spot marketsóincluding various standardized productsópure Önancial
trading has been progressively growing to the point that the Dodd-Frank Act provides that these
markets are monitored within the framework of Önancial stability measures.
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5.3 Methodology

To investigate the time evolution of correlations between the commodity and

stock markets, we rely on the dynamic conditional correlation (DCC) GARCH mod-

els introduced by Engle (2002). Let rt be the vector composed of two returns series,

rt = (r1t; r2t)
0. Denoting by A(L) the lag polynomial, we have:

A(L)rt = + et (5.1)

where et is the error-term vector.

The DCC model is based on the hypothesis that the conditional returns are normally

distributed with zero mean and conditional covariance matrix Ht = E

rtr

0

tjIt1

: The

covariance matrix is expressed as follows:

Ht = DtRtDt (5.2)

where Dt = diag
p
h1t;

p
h2t

is a diagonal matrix of time-varying standard deviations

issued from the estimation of univariate GARCH(1,1) processes:

ht = 0 + 1"
2
t1 + 1ht1 (5.3)

and Rt is the conditional correlation matrix of the standardized returns "t, with "t =

D1
t rt :
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Rt =

2

4 1 q12t

q21t 1

3

5 (5.4)

The matrix Rt is decomposed into:

Rt = Q1t QtQ
1
t (5.5)

whereQt is the positive deÖnite matrix containing the conditional variances-covariances

of "t, and Q1t is the inverted diagonal matrix with the square root of the diagonal

elements of Qt :

Q1t =

2

4 1=
p
q11t 0

0 1=
p
q22t

3

5 (5.6)

The DCC(1,1) model is then given by:

Qt = ! + "t1"
0

t1 + Qt1 (5.7)

where ! = (1  )Q. Following Engle (2002), Q is treated as the second moment

of "t, and is proxied by the sample moment of the estimated returns in large systems.

However, as noticed by Aielli (2011), the equality Q = E["t"
0

t] does not hold in the

general case, and the interpretation of Q as well as its estimation are not straightfor-

ward (see Aielli, 2011 for some examples).

The dynamic conditional correlations are Önally given by:



Chapter 5 : On the links between stock and commodity marketsí volatility 219

12t =
q12tp
q11tq22t

(5.8)

Note that, following Engle (2002), the estimation of this model is done using a two-step

maximum likelihood estimation method, the likelihood function being given by:13

L = 
1

2

TX

t=1


2 log (2) + 2 log jDtj+ log jRtj+ "

0

tR
1
t "t


(5.9)

5.4 Results

To assess the evolution of correlations between stock and commodity markets over

time, Figures 5-4, 5-5, and 5-7 in Appendix report the dynamic conditional correlations

between each commodity and the S&P 500 returns series. The links between markets

during periods of Önancial stress are clearly underlined,14 putting forward that invest-

ment in equities constitutes an alternative to commodities, providing a mechanism for

substitution between asset classes. Although there are some speciÖc features for each

type of commodity market (as we will explain in detail below), some common charac-

teristics emerge.

First, correlations are highly volatile throughout the period. This conÖrms the Önd-

ings of Choi and Hammoudeh (2010) showing the existence of high and low volatility

regimes for the correlations between oil, copper, gold and silver and the S&P 500 index

over the January 2, 1990 to May, 1, 2006 period. For many raw materials, we Önd

13See Engle (2002).
14The grey bands correspond to periods of bearish stock market, the white stripes corresponding

to periods of bullish stock market.
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that this volatility is particularly marked after the 2007-2008 Önancial crisis. In all

cases, there is an increase in volatility during and following the crisis. Second, in most

cases, the largest drop in the correlations appears at the time of the 2008 Önancial

crisis. The stock market collapse has loosened the conditional links between stock and

commodity price returns, but only in the very short run. This decrease in correlations

during times of high Önancial marketsí stress may be linked to a áight-to-quality phe-

nomenon. When risk market rises, the beneÖts of diversiÖcation are most appreciated

and investors tend to choose commodities as refuge instruments. This short-run char-

acteristic could thus explain the temporary disrupted link between both markets (see

Silvennoinen and Thorp, 2010; Chong and Mi§re, 2010). Third, for almost all of the

series, the highest correlations are observed after the crisis, at the end of the period

under study. Both markets move upward during episodes of growing world demand

for industrial commodities, giving an important role to commercial traders who use

commodity futures to hedge their business activities. On the whole, the 2007-2008

Önancial crisis has caused signiÖcant changes in the relationship between stock and

commodity markets, as well as increased correlation in the volatility. Regarding the

long-run trends, correlations are likely to be governed by industrialization and Önan-

cialization processes, as well as by commercial and non-commercial traders.

Let us now look more speciÖcally at the di§erent types of markets, starting by the

energy group. Oil is clearly the commodity the most related to the stock market,

conÖrming previous studies focusing on the oil market (Jones and Kaul, 1996; Ham-

moudeh et al., 2004; Filis et al., 2011; and references in Section 5.1). From a theoretical

viewpoint, the fundamental value of any asset is given by its expected discounted cash

áows. Consequently, an oil price increase will generate a rise in production costs, lead-

ing to restraining proÖts and, in turn, to a diminution in shareholdersí value. In times

of rising stock prices, the correlations between stock and oil markets increase. During

periods of declining stock prices, correlations tend to decrease and become negative

during the 2007-2008 crisis. This is also consistent with the well documented oil spec-
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ulation phenomenon, the increase in crude prices being accentuated in times of rising

stock market. From this perspective, oil cannot be seen as a means of portfolio di-

versiÖcation. Gas and electricity display a quite similar evolution in terms of dynamic

correlations. Correlations tend to increase at the beginning of the period under study

and then remain relatively stable, regardless of the situation on the stock market. Cor-

relations are often negative between stock and electricity markets, putting forward that

the behavior of the electricity market is mainly driven by its own market fundamentals

(i.e. non-storability, inelasticity of the supply,...).

Turning to the precious metals group, gold is di§erent from the other commodities. In-

deed, correlations are mostly negative and diminish in times of declining stock prices,

highlighting adverse evolution in the markets. This is consistent with a safe-haven

role of gold (see for instance Baur et al., 2010). For the other precious metals, the

dynamics are relatively close, with increased correlationsí volatility after the 2007-2008

crisis followed by a rise in correlations until mid-2010. Such close dynamics between

those precious metals are consistent with the increasing correlations obtained by Choi

and Hammoudeh (2010) after the 2003 Iraq war.

The group of exotic commodities also displays an interesting pattern. While the dy-

namics of correlations for sugar has no particular link with the US stock market trends,

co§ee and cocoa show a speciÖc proÖle. As for oil, the correlations tend to grow in

times of rising stock prices, and to diminish in periods of declining equity prices. This

is in line with a speculation phenomenon in these commodities (see also Gilbert and

Morgan, 2010).

Regarding the other groups, two main Öndings can be highlighted: (i) volatility evolves

over time, being quite stable before the 2007-2008 crisis and becoming relatively high

during the Önancial turmoil, and (ii) correlations tend to rise during the crisis, showing
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increased links between stock and commodity markets.

On the whole, our results show that the 2007-2008 crisis has played a key role in

the evolution of the links between stock and commodity markets. Indeed, higher cor-

relations between both markets are generally observed during the Önancial turmoil,

reáecting the phenomenon of Önancialization of commodity markets that starts to be

documented by the literature (see Tang and Xiong, 2010; Silvennoinen and Thorp,

2010). This growing Önancialization of commodities can be illustrated by the no-

tional values provided by the Commodity Futures Trading Commission (CFTC): as

shown in Table 5.2 in Appendix, these notional valuesóand especially short nominal

valuesóhave increased for all products between 2007 and 2011.15 This phenomenon is

particularly noticeable for oil, a result which is consistent with the fact that it is the

most Önanciarized commodity according to the CFTCóthe long and short notional

values being respectively estimated at $69.4bn and $26.7bn at the end of November

2011 (see Table 5.2 in Appendix). In addition, our Öndings show that raw materials

cannot be aggregated in an homogeneous asset class: they are certainly ináuenced by

common macroeconomic factors but also by their own market determinants.

To complement these Ögures, Tables 5.3 to 5.7 in Appendix report the estimation results

of DCC-GARCH(1,1) models for the whole period, as well as for four sub-periods: (i)

two bearish stock market sub-periods: January 3, 2001-March 11, 2003 and October

13, 2007-March 6, 2009, and (ii) two bullish stock market sub-periods: March 12,

2003-October 12, 2007 and March 7, 2009-November 28, 2011.16 Looking at the sum

of the coe¢cients +  (see Equation (5.7)), our results show that volatility is highly

15Note that whereas our sample contains 25 commodities, Table 5.2 reports values for only 15 of
themóCFTC providing no detailed data for the remaining 10 commodities of our panel.
16The models have been estimated using one lag in the lag polynomial A(L) in Equation (5.1). We

have applied various diagnostic tests, namely Ljung-Box test for the absence of residuals autocorrel-
ation, ARCH test for no remaining conditional heteroskedasticity, and Jarque-Bera normality test.
All the considered models have successfully passed the tests at the conventional signiÖcance levels (to
save space, due to the large number of estimated models, complete results are not reported but are
available upon request to the authors).
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persistent given that this sum is very close to 1 for the majority of commodity series.

Comparing the two bullish sub-periods, it is interesting to note that the important

change observed for oil concerning the sum of the coe¢cients + is also obtained for

corn. This Önding may be linked to the increasing bioethanol production from corn in

the United States. Indeed, this development would provide an alternative method for

producing fuel that may be used in case of rising oil prices or oil scarcity. Overall, while

being high for all considered periods, persistence tends to be higher during the second,

bullish stock market sub-period for 12 commodities, including all precious metals. This

result illustrates that the persistence of volatility goes along with the Önancialization

of commodities.

5.5 Conclusion

This chapter investigates the links between commodity and stock markets. To this

end, we rely on the dynamic conditional correlation (DCC) GARCH methodology to

establish whether the correlations between both markets evolve over time and depend

on the situationóbearish or bullishóon the stock market.

Our main Öndings can be summarized as follows. In our panel of 25 commodities over

the period from January 2001 to November 2011, Örst, the correlations between com-

modity and stock returns evolve through time, being highly volatile, particularly since

the 2007-2008 Önancial crisis. While the stock market collapse has loosened the links

between both markets on the very short run, the highest correlations are observed

during the Önancial turmoil, showing increased links between stock and commodity

markets. Second, some commodities are characterized by a speculation phenomenon,

especially oil, co§ee and cocoa: while their correlations with S&P 500 returns grow in

times of increasing stock prices, they diminish in times of bearish Önancial markets.

Third, the safe-haven role of gold is evidenced, as its correlations with stock returns are
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mostly negative and diminish in times of declining stock prices. Fourth, while sharing

some common features, commodities can not be considered as an homogeneous asset

class.

On the whole, our Öndings show that the 2007-2008 Önancial crisis has played a key

role, emphasizing the links between commodity and stock markets, and highlighting the

Önancialization of commodity markets. This evolution in commodity and stock correl-

ations reduces their potential substitutability in portfolios. At the idiosyncratic level,

the main exceptions are gold, co§ee and cocoa for which risk management strategies are

possible, with increased risk diversiÖcation allowed by their adverse evolution compared

to the stock market in times of declining equity prices.
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Table 5.1: Daily returns summary statistics (whole sample)

Mean S. dev. Var Kur. Skew. LB test ARCH test
Energy
Oil 0.0004 0.025 0.0006 8.29 0.01 56.77 (0.00) 299.7 (0.00)
Gas -0.0004 0.043 0.0019 9.62 0.34 155.0 (0.00) 325.1 (0.00)
Electricity -0.0002 0.112 0.0126 16.75 0.12 138.0 (0.00) 159.7 (0.00)

Precious Metals
Gold 0.0006 0.011 0.0001 7.10 -0.34 68.55 (0.00) 122.7 (0.00)
Silver 0.0006 0.022 0.0005 12.27 -0.57 30.23 (0.40) 241.2 (0.00)
Platinium 0.0002 0.015 0.0002 16.61 -0.48 58.76 (0.00) 137.4 (0.00)
Palladium -0.0001 0.023 0.0005 7.91 -0.36 53.96 (0.00) 79.26 (0.00)

Agricultural
Cotton 0.0001 0.021 0.0004 15.74 -0.58 35.33 (0.23) 0.48 (0.48)
Lumber 4.66E-05 0.021 0.0004 5.95 0.75 33.99 (0.28) 8.96 (0.00)

Non-ferrous Metals
Aluminium 8.74E-05 0.014 0.0002 5:34 0:33 26.28 (0.61) 98.85 (0.00)
Copper 0.0005 0.019 0.0003 6.66 -0.15 44.43 (0.03) 408.9 (0.00)
Zinc 0.0002 0.021 0.0004 5.24 -0.23 32.71 (0.33) 220.6 (0.00)
Tin 0.0004 0.019 0.0003 8.65 -0.24 32.22 (0.35) 156.64 (0.00)
Lead 0.0005 0.023 0.0005 5.68 -0.22 30.14 (0.45) 100.4 (0.00)
Nickel 0.0003 0.026 0.0006 6.08 -0.11 25.69 (0.69) 193.2 (0.00)

Food
Corn 0.0003 0.019 0.0003 5.39 0.17 61.33 (0.00) 59.09 (0.00)
Wheat 0.0003 0.021 0.0004 5.20 0.17 44.59 (0.04) 64.03 (0.00)

Oleaginous group
Palm oil 0.0004 0.020 0.0004 9.94 0.44 69.22 (0.00) 39.99 (0.00)
Soybean oil 0.0004 0.016 0.0002 5.14 0.13 28.41 (0.54) 108.4 (0.00)

Exotic group
Cocoa 0.0003 0.020 0.0004 5.83 -0.30 43.89 (0.04) 2.14 (0.14)
Co§ee 0.0004 0.020 0.0004 5.76 -0.23 47.33 (0.02) 31.38 (0.00)
Sugar 6.34E-06 0.023 0.0005 7.55 -0.63 30.97 (0.41) 88.63 (0.00)

Livestock
Lean hogs 0.0001 0.020 0.0004 25.68 0.43 11.98 (0.99) 0.14 (0.70)
Feeder cattle 0.0001 0.009 8.64E-05 6.54 -0.35 54.60 (0.00) 72.59 (0.00)
Live cattle 0.0001 0.010 0.0001 8.81 0.12 52.02 (0.00) 20.83 (0.00)

Standard & Poorís -7.05E-06 0.013 0.0001 10.98 -0.16 59.56 (0.00) 786.8 (0.00)
CRB index 0.0002 0.004 2.50E-05 8.05 -0.60 125.1 (0.00) 239.8 (0.00)

Notes: Between parentheses: p-values. The number of observations is 2844 for each series.
Ljung-Box statistics correspond to a test of the null of no autocorrelation with h = 30.
ARCH Lagrange multiplier statistics correspond to a test of the null of no ARCH e§ect.



Table 5.2: Index investment data: notional values (in Billions U.S. dollars)

December 31, 2007 November 30, 2011
Long Short Long Short

Oil (WTI) 46.7 7.0 69.4 26.7
Gas 13.2 1.8 16.2 4.1
Gold 8.4 1.1 30.0 9.5
Silver 2.4 0.3 6.9 1.6
Cotton 3.2 0.6 4.3 1.5
Copper 3.1 0.3 7.9 2.2
Corn 9.5 1.9 19.2 7.2
Wheat 10.2 2.1 10.7 4.8
Soybean oil 2.5 0.3 4.0 1.3
Cocoa 0.5 0.1 1.1 0.4
Co§ee 2.8 0.6 5.3 2.0
Sugar 3.9 0.7 8.4 2.4
Lean hogs 3.0 0.9 5.2 1.7
Feeder cattle 0.6 0.1 0.8 0.2
Live cattle 5.9 1.3 9.1 2.9

Notes: Source: CFTC,
http://www.cftc.gov/MarketReports/IndexInvestmentData/index.htm. Short (resp. long):
denotes the gross short (resp. long) notional value and refers to the case where investors are

short (resp. long) a commodity index.



Table 5.3: Estimation results of DCC-GARCH(1,1) models (whole sample)

Oil Gas Elec Gold Silver
 8.2e-04 (3.6e-04)

 -7.2e-04 (5.5e-04) 2.7e-03 (1.2e-03)
 5.3e-04 (1.5e-04)

 3.8e-04 (2.3e-04)

! 1.2e-05 (6.9e-07)
 3.1e-05 (2.5e-06)

 1.0e-03 (2.2e-05)
 1.8e-06 (7.8e-08)

 5.1e-06 (4.3e-07)


 0.061 (1.6e-03)
 0.111 (2.4e-03)

 0.230 (4.7e-03)
 0.042 (9.9e-04)

 0.088 (1.4e-03)


 0.917 (1.5e-03)
 0.876 (1.9e-03)

 0.683 (3.2e-03)
 0.943 (7.8e-04)

 0.906 (1.2e-03)


+  0.978 0.987 0.913 0.985 0.994

Platinum Palladium Cotton Lumber Aluminium
 -3.6e-04 (1.6e-04)

 7.2e-05 (2.4e-04) 3.0e-04 (3.0e-04) 1.8e-04 (3.5e-04) 4.5e-05 (2.0e-05)


! 4.1e-06 (2.3e-07)
 1.7e-05 (3.1e-07)

 8.0e-06 (3.5e-07)
 1.1e-06 (1.0e-07)

 1.3e-06 (1.0e-07)


 0.107 (1.7e-03)
 0.079 (1.4e-03)

 0.054 (7.8e-04)
 0.010 (2.2e-04)

 0.033 (5.7e-04)


 0.879 (1.4e-03)
 0.889 (9.4e-04)

 0.931 (6.4e-04)
 0.987 (2.0e-04)

 0.960 (4.9e-04)


+  0.986 0.968 0.985 0.997 0.993

Copper Zinc Tin Lead Nickel
 4.7e-04 (1.5e-04)

 1.5e-04 (1.8e-04) 5.3e-04 (2.3e-04)
 3.9e-04 (2.5e-04) 4.5e-04 (3.0e-04)

! 3.5e-06 (2.2e-07)
 2.5e-06 (1.9e-07)

 1.4e-05 (4.0e-07)
 5.1e-06 (2.6e-07)

 1.0e-05 (5.7e-07)


 0.047 (8.8e-04)
 0.037 (6.8e-04)

 0.109 (0.002)
 0.038 (7.8e-04)

 0.046 (0.001)


 0.941 (8.1e-04)
 0.956 (5.9e-04)

 0.856 (0.001)
 0.951 (6.5e-04)

 0.936 (9.7e-04)


+  0.988 0.993 0.965 0.989 0.982

Corn Wheat Palm oil Soybean oil Cocoa
 6.3e-04 (1.4e-04)

 4.5e-04 (2.8e-04) 7.2e-04 (2.9e-04)
 7.1e-04 (2.5e-04) 2.9e-04 (3.3e-04)

! 5.1e-06 (2.3e-07)
 5.0e-06 (3.8e-07)

 5.9e-06 (2.1e-07)
 3.8e-06 (2.1e-07)

 3.4e-06 (1.6e-07)


 0.038 (8.9e-04)
 0.039 (9.5e-04)

 0.063 (1.1e-03)
 0.035 (1.0e-03)

 0.017 (4.4e-04)


 0.947 (7.0e-04)
 0.949 (8.8e-04)

 0.923 (8.0e-04)
 0.948 (9.1e-04)

 0.974 (4.0e-04)


+  0.985 0.985 0.986 0.983 0.991

Co§ee Sugar Lean Feeder Live
 5.0e-04 (3.4e-04) 2.1e-04 (3.7e-04) 1.6e-04 (3.7e-04) 1.5e-04 (1.2e-04) 2.0e-04 (2.0e-04)

! 2.1e-06 (1.4e-07)
 1.0e-05 (6.2e-07)

 8.6e-05 (6.5e-07)
 1.0e-06 (3.5e-08)

 1.2e-06 (1.7e-06)


 0.013 (3.2e-04)
 0.059 (0.001)

 -4.0e-03 (1.4e-03)
 0.012 (3.3e-04)

 0.062 (8.6e-03)


 0.981 (3.1e-03)
 0.923 (0.001)

 0.804 (1.4e-03)
 0.975 (2.8e-04)

 0.164 (0.015)


+  0.994 0.982 0.808 0.987 0.226

Note : Standard errors are in parentheses.* denotes rejection of the null hypothesis at 1%, 5%

or 10% signiÖcance level.



Table 5.4: Estimation results of DCC-GARCH(1,1) models (sample period:
2001/01/03-2003/03/11)

Oil Gas Elec Gold Silver
 9.5e-04 (9.5e-04) 1.8e-04 (1.4e-04) 7.8e-04 (3.1e-03) 6.2e-04 (2.4e-04)

 1.1e-04 (3.7e-04)

! 5.7e-05 (4.2e-06)
 2.5e-04 (2.1e-05)

 6.3e-04 (3.3e-05)
 2.4e-05 (8.9e-07)

 3.4e-05 (1.9e-06)


 0.095 (6.4e-03)
 0.214 (0.014)

 0.250 (0.011)
 0.221 (0.017)

 0.133 (0.019)


 0.816 (6.9e-03)
 0.689 (0.011)

 0.740 (4.6e-03)
 0.442 (0.018)

 0.583 (0.018)


+  0.911 0.903 0.990 0.663 0.716

Platinum Palladium Cotton Lumber Aluminium
 6.4e-04 (4.1e-04)

 -2.0e-03 (6.9e-04)
 4.0e-05 (2.2e-05)

 1.2e-04 (0.0007) -3.8e-04 (2.0e-04)

! 1.4e-05 (7.5e-07)
 1.5e-04 (3.7e-06)

 -2.0 (1.0e-06)
 4.5e-04 (1.2e-05)

 2.1e-04 (1.0e-06)


 0.118 (7.5e-03)
 0.160 (0.019)

 -9.1e-03 (1.0e-06)
 0.116 (0.053)

 0.037 (0.002)


 0.805 (6.7e-03)
 0.508 (0.010)

 0.900 (1.0e-04)
 0.080 (0.066) 0.942 (0.002)



+  0.923 0.668 0.909 0.196 0.979

Copper Zinc Tin Lead Nickel
 -1.1e-04 (2.2e-04) -4.5e-04 (3.7e-04) -7.6e-05 (4.4e-04) -1.5e-04 (4.4e-04) -1.1e-04 (7.4e-04)

! 2.8e-05 (1.0e-06)
 9.5e-05 (4.4e-04)

 1.2e-05 (1.4e-04)
 3.6e-06 (1.0e-06)

 8.8e-06 (5.5e-07)


 0.004 (8.0e-04)
 0.183 (0.045)

 0.105 (0.008)
 0.022 (0.001)

 0.011 (8.1e-04)


 0.976 (8.0e-04)
 0.081 (0.033)

 0.779 (0.006)
 0.957 (0.001)

 0.963 (1.3e-03)


+  0.980 0.264 0.884 0.979 0.974

Corn Wheat Palm oil Soybean oil Cocoa
 2.4e-04 (5.6e-04) 8.0e-05 (4.9e-04) 3.5e-04 (6.4e-04) 5.0e-04 (4.9e-04) 2.0e-03 (9.0e-04)

! 6.1e-06 (4.4e-07)
 2.3e-06 (2.3e-07)

 1.3e-07 (2.5e-07) 1.3e-05 (8.8e-07)
 4.7e-05 (3.2e-06)



 0.026 (2.4e-03)
 6.8e-03 (6.6e-04)

 0.010 (4.1e-04)
 0.024 (4.6e-03)

 0.063 (6.9e-03)


 0.941 (2.2e-03)
 0.983 (7.8e-04)

 0.983 (5.6e-04)
 0.905 (4.5e-03)

 0.844 (6.8e-03)


+  0.967 0.989 0.993 0.929 0.907

Co§ee Sugar Lean Feeder Live
 3.3e-04 (1.0e-03) -4.6e-04 (8.1e-04) -3.7e-04 (0.001) -4.0e-04 (2.1e-04) 6.7e-05 (1.2e-04)

! 9.6e-05 (4.6e-06)
 3.9e-04 (2.0e-05)

 9.6e-05 (1.5e-06)
 4.4e-06 (3.3e-08)

 4.4e-07 (3.3e-09)


 0.033 (7.5e-03)
 0.226 (0.032)

 0.006 (0.002)
 0.067 (0.006)

 0.011 (1.4e-05)


 0.817 (7.4e-03)
 0.014 (0.035) 0.864 (0.002)

 0.854 (0.005)
 1.006 (1.0e-05)



+  0.850 0.240 0.858 0.921 1.017

Note : Standard errors are in parentheses.* denotes rejection of the null hypothesis at 1%, 5%

or 10% signiÖcance level.



Table 5.5: Estimation results of DCC-GARCH(1,1) models (sample period:
2003/03/12-2007/10/12)

Oil Gas Elec Gold Silver
 8.1e-04 (5.5e-04) 8.9e-04 (1.4e-03) 1.7e-03 (2.3e-03) 5.7e-04 (2.3e-04)

 7.9e-04 (4.5e-04)


! 1.1e-05 (3.5e-07)
 1.3e-04 (6.7e-07)

 7.1e-04 (8.9e-05)
 7.5e-07 (7.7e-08)

 7.8e-06 (7.3e-07)


 0.029 (5.2e-03)
 0.038 (3.1e-03)

 0.313 (0.009)
 0.024 (9.7e-04)

 0.077 (0.002)


 0.943 (5.5e-03)
 0.898 (0.003)

 0.637 (0.003)
 0.968 (8.7e-04)

 0.908 (0.002)


+  0.972 0.936 0.950 0.992 0.985

Platinum Palladium Cotton Lumber Aluminium
 7.9e-04 (1.2e-04)

 1.4e-04 (6.2e-04) 1.9e-04 (4.9e-04) -1.3e-04 (4.9e-04) 2.7e-04 (3.0e-04)

! 6.8e-06 (5.3e-07)
 1.3e-05 (4.5e-08)

 2.3e-06 (2.2e-07)
 5.3e-06 (3.8e-07)

 3.4e-06 (2.5e-07)


 0.149 (0.005)
 0.108 (2.4e-04)

 0.018 (7.2e-04)
 0.014 (1.2e-03)

 0.045 (0.001)


 0.812 (0.004)
 0.858 (0.003)

 0.974 (6.6e-04)
 0.968 (1.1e-03) 0.937 (0.001)



+  0.961 0.966 0.992 0.982 0.982

Copper Zinc Tin Lead Nickel
 0.001 (4.1e-04)

 0.001 (4.6e-04)
 7.8e-04 (5.7e-04) 0.002 (7.5e-05)

 9.4e-04 (5.9e-04)

! 3.7e-06 (3.7e-07)
 6.7e-06 (6.5e-07)

 6.1e-05 (2.5e-06)
 5.7e-05 (2.4e-06)

 9.2e-06 (9.6e-07)


 0.051 (0.001)
 0.066 (0.002)

 0.086 (0.007)
 0.109 (0.008)

 0.048 (0.001)


 0.936 (0.001)
 0.917 (0.002)

 0.752 (0.007)
 0.763 (0.006)

 0.938 (0.001)


+  0.987 0.983 0.838 0.872 0.986

Corn Wheat Palm oil Soybean oil Cocoa
 4.8e-04 (4.9e-04) 0.001 (5.7e-04)

 5.1e-04 (6.5e-04) 8.5e-04 (4.0e-04)
 -1.7e-04 (8.4e-04)

! 3.5e-06 (2.8e-07)
 4.9e-06 (2.8e-07)

 4.9e-05 (1.8e-06)
 5.1e-07 (2.8e-08)

 1.2e-04 (5.1e-06)


 0.019 (5.1e-04) 0.005 (7.4e-04)
 0.051 (0.005)

 0.014 (5.0e-04)
 0.015 (9.8e-03)

 0.969 (8.9e-04)
 0.982 (6.6e-04)

 0.837 (0.005)
 0.983 (4.3e-04)

 0.776 (8.8e-03)


+  0.988 0.987 0.888 0.997 0.791

Co§ee Sugar Lean Feeder Live
 6.5e-04 (5.5e-04) 1.2e-04 (6.2e-04) 2.5e-04 (9.3e-04) 2.9e-04 (4.8e-04) 2.2e-04 (4.4e-04)

! 1.4e-06 (5.8e-06) 6.3e-05 (2.7e-06)
 9.2e-04 (2.1e-05)

 4.5e-05 (2.0e-06)
 4.8e-05 (1.9e-06)



 0.012 (4.3e-04)
 0.040 (0.004)

 0.013 (0.023) 0.050 (0.009)
 0.044 (0.008)



 0.984 (4.1e-04)
 0.811 (0.006)

 0.545 (0.035)
 0.699 (0.011)

 0.682 (0.011)


+  0.993 0.851 0.658 0.749 0.726

Note : Standard errors are in parentheses.* denotes rejection of the null hypothesis at 1%, 5%

or 10% signiÖcance level.



Table 5.6: Estimation results of DCC-GARCH(1,1) models (sample period:
2007/10/13-2009/03/06)

Oil Gas Elec Gold Silver
 9.6e-04 (1.3e-03) -1.1e-03 (1.7e-03) 3.7e-04 (3.8e-03) 7.2e-04 (8.6e-04) 1.5e-03 (1.2e-03)

! 1.6e-05 (5.3e-06)
 2.1e-03 (1.2e-04)

 5.0e-04 (1.1e-04)
 7.1e-06 (8.9e-07)

 3.8e-05 (4.2e-06)


 0.120 (9.3e-03)
 0.021 (0.014)

 0.240 (0.018)
 0.030 (3.1e-03)

 0.074 (4.8e-03)


 0.878 (8.3e-03)
 0.902 (0.063)

 0.713 (0.010)
 0.948 (2.9e-03)

 0.888 (4.3e-03)


+  0.998 0.923 0.953 0.978 0.962

Platinum Palladium Cotton Lumber Aluminium
 -5.7e-04 (8.0e-04) -2.2e-03 (1.9e-03) 5.5e-04 (1.1e-03) 2.2e-03 (1.7e-03) -1.0e-03 (1.3e-03)

! 5.2e-04 (4.4e-05)
 1.0e-03 (6.3e-08)

 9.1e-05 (8.7e-06)
 5.1e-04 (2.7e-05)

 8.7e-06 (6.9e-08)


 0.168 (0.099)
 0.013 (0.029) 0.142 (0.023)

 0.011 (0.030) 0.076 (0.023)


 0.115 (0.096) 0.300 (0.041)
 0.713 (0.017)

 0.375 (0.033)
 0.902 (0.015)



+  0.283 0.336 0.855 0.386 0.978

Copper Zinc Tin Lead Nickel
 -6.3 (8.9e-04) -1.8e-03 (1.2e-03) 7.6e-04 (1.1e-03) -2.6e-03 (7.1e-03) -2.8e-03 (1.5e-03)



! 9.0e-06 (5.0e-09)
 5.8e-05 (5.1e-06)

 2.0e-05 (2.1e-06)
 1.6e-05 (1.0e-06)

 7.2e-05 (4.9e-08)


 0.110 (0.010)
 0.045 (6.0e-03)

 0.089 (5.1e-03)
 0.036 (8.7e-03)

 0.130 (0.013)


 0.883 (8.4e-03)
 0.893 (5.6e-03)

 0.885 (4.3e-03)
 0.951 (3.4e-03)

 0.810 (9.8e-03)


+  0.993 0.938 0.974 0.987 0.940

Corn Wheat Palm oil Soybean oil Cocoa
 2.1e-03 (1.7e-03)

 -1.1 (1.3e-03) 1.2e-03 (1.2e-03) 1.7e-03 (9.9e-04) 1.8e-03 (1.0e-03)


! 1.0e-05 (2.1e-06)
 1.0e-04 (1.3e-05)

 3.0e-05 (1.9e-06)
 9.5e-06 (1.9e-06)

 5.0e-06 (1.1e-06)


 0.069 (6.4e-03)
 0.137 (0.019)

 0.069 (4.4e-03)
 0.093 (8.1e-03)

 0.061 (3.4e-03)


 0.915 (5.3e-03)
 0.741 (0.017)

 0.898 (6.4e-03)
 0.894 (6.4e-03)

 0.938 (2.6e-03)


+  0.984 0.878 0.967 0.987 0.999

Co§ee Sugar Lean Feeder Live
 2.9e-04 (8.5e-04) 1.4e-03 (1.1e-03) 1.7e-03 (1.4e-03) -4.2e-04 (3.4e-04) -1.2e-04 (5.2e-04)

! 2.2e-04 (1.4e-05)
 1.1e-05 (3.0e-06)

 3.6e-04 (7.0e-05)
 1.5e-05 (7.1e-07)

 5.9e-06 (1.6e-07)


 0.161 (0.027)
 0.119 (9.8e-03)

 0.029 (6.8e-04)
 -7.4e-03 (3.6e-03)

 0.015 (8.8e-04)


 0.268 (0.013)
 0.880 (5.6e-03)

 0.383 (0.011)
 0.855 (6.4e-03)

 0.980 (6.5e-04)


+  0.429 0.999 0.412 0.892 0.995

Note : Standard errors are in parentheses.* denotes rejection of the null hypothesis at 1%, 5%

or 10% signiÖcance level.



Table 5.7: Estimation results of DCC-GARCH(1,1) models (sample period:
2009/03/07-2011/11/28)

Oil Gas Elec Gold Silver
 1.2e-03 (7.3e-04) -1.5e-03 (1.1e-03) 1.3e-03 (3.6e-03) 9.0e-04 (3.1e-04) 0.001 (8.4e-04)



! 2.1e-04 (1.0e-05)
 1.6e-05 (1.1e-05) 1.0e-03 (2.9e-04)

 3.5e-06 (1.2e-09)
 1.0e-04 (7.8e-06)



 0.071 (0.015)
 0.101 (0.030)

 0.427 (0.127)
 0.065 (0.003)

 0.162 (0.012)


 0.575 (0.017)
 0.891 (0.023)

 0.518 (0.065)
 0.907 (0.003)

 0.690 (0.012)


+  0.646 0.992 0.945 0.972 0.852

Platinum Palladium Cotton Lumber Aluminium
 1.0e-04 (8.0e-04) 6.3e-04 (1.1e-04) 1.7e-04 (7.5e-04)

 3.6e-04 (8.8e-04) 6.8e-04 (5.5e-04)

! 2.0e-04 (1.2e-05)
 4.5e-04 (2.8e-06)

 1.5e-06 (3.4e-06)
 5.0e-04 (1.6e-05)

 6.1e-06 (8.5e-07)


 0.074 (0.039)
 0.119 (0.035)

 0.048 (0.007)
 0.067 (0.028)

 0.024 (0.001)


 0.315 (0.039)
 0.264 (0.036)

 0.951 (0.008)
 0.192 (0.010)

 0.951 (0.001)


+  0.389 0.383 0.999 0.259 0.975

Copper Zinc Tin Lead Nickel
 0.001 (5.9e-04)

 1.1e-03 (7.7e-04) 1.1e-03 (6.7e-04)
 0.001 (8.4e-04) 1.0e-03 (6.1e-04)



! 1.2e-06 (1.3e-06)
 1.9e-05 (1.5e-06)

 9.1e-05 (1.0e-04)
 2.0e-05 (1.9e-06)

 8.9e-06 (5.8e-07)


 0.078 (0.004)
 0.046 (0.022)

 0.114 (0.080)
 0.044 (0.003)

 0.126 (0.015)


 0.887 (0.004)
 0.917 (0.044)

 0.666 (0.306)
 0.922 (0.003)

 0.428 (0.022)


+  0.965 0.963 0.780 0.966 0.554

Corn Wheat Palm oil Soybean oil Cocoa
 9.0e-04 (7.4e-04) 2.5e-04 (1.1e-03) 6.8e-04 (6.1e-04) 9.4e-04 (4.2e-04)

 9.4e-05 (6.5e-04)

! 3.2e-04 (1.3e-04)
 9.8e-05 (2.3e-06)

 2.6e-06 (1.9e-07)
 8.4e-06 (6.6e-07)

 1.0e-04 (5.0e-06)


 0.097 (0.028)
 0.013 (0.007)

 0.020 (7.7e-04)
 0.043 (0.003)

 0.070 (0.012)


 0.183 (0.029)
 0.857 (0.006)

 0.969 (6.5e-04)
 0.908 (0.003)

 0.630 (0.014)


+  0.280 0.870 0.989 0.951 0.700

Co§ee Sugar Lean Feeder Live
 9.3e-04 (5.6e-04) 0.001 (9.5e-04) 7.2e-04 (6.9e-04) 8.2e-04 (2.9e-04)

 7.8e-04 (4.2e-04)


! 8.7e-06 (5.5e-07)
 1.5e-04 (8.5e-06)

 2.4e-04 (4.4e-06)
 6.6e-05 (2.4e-06)

 1.1e-05 (3.7e-07)


 0.016 (0.001)
 0.085 (0.012)

 0.044 (0.011)
 0.068 (0.027)

 0.026 (1.9e-03)


 0.952 (0.001)
 0.705 (0.011)

 0.334 (0.010)
 0.027 (0.035)

 0.920 (2.7e-03)


+  0.968 0.790 0.378 0.095 0.920

Note : Standard errors are in parentheses.* denotes rejection of the null hypothesis at 1%, 5%

or 10% signiÖcance level.



Figure 5-4: Dynamic conditional correlations



Figure 5-5: Dynamic conditional correlations (2)



Figure 5-6: Dynamic conditional correlations (3)



Figure 5-7: Dynamic conditional correlations (4)



Conclusion gÈnÈrale

Le processus de dÈrÈgulation des marchÈs pose les questions de líexistence díun

monopole et de líattribution díun prix plus "juste" pour le consommateur. Il pose

aussi les bases díune modiÖcation profonde de la structure des marchÈs et du pro-

cessus de formation des prix dans lequel cette dÈrÈgulation síinscrit. Ainsi que nous

líavons vu au cours de cette thËse, cette Èvolution organisationnelle a donnÈ lieu ‡ la

creation de nouveaux moyens díÈchanges et ‡ la multiplication du nombre de parti-

cipants aux horizons divers, rendant la dynamique intrinsËque des prix plus incertaine

et sa comprÈhension plus complexe. Dans un contexte Èconomique en crise et avec

une contrainte environnementale grandissante, líimportance des áuctuations des prix

des Ènergies et les causes profondes qui líaccompagnent sont primordiales tant les con-

sÈquences peuvent Ítre dommageables pour nombre díÈconomies.

Cette thËse analyse le rÙle de la Önance dans la formation des prix des Ènergies et de

matiËres premiËres. Plus formellement, elle tente de mettre en lumiËre les propriÈtÈs

ÖnanciËres des marchÈs des commoditÈs qui constituent, pour de nombreux investis-

seurs institutionnels, un moyen de diversiÖcation des risques internationaux face aux

áuctuations Èconomiques. Face ‡ líampleur de ce phÈnomËne, la question ici abordÈe

vise donc ‡ comprendre ce lien existant entre Önance et commoditÈs, et principalement

les raisons profondes qui expliquent le comportement des prix. Cette thËse analyse les

mouvements des prix en cherchant ‡ comprendre si cette nature "ÈxhubÈrante" est le

rÈsultat díune modiÖcation des conditions physiques propres ‡ chacun des marchÈs ou

bien la consÈquence de comportements purement spÈculatifs. Cette question du lien
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entre Ènergie et Önance est abordÈe sous trois angles: díune part la relation entre les

prix des di§Èrentes Ènergies et leurs propriÈtÈs ÖnanciËres est analysÈe, díautre part

les aspects Èmotionnels et comportementaux des marchÈs sont ÈtudiÈs, enÖn les liens

directs entre marchÈs boursiers et marchÈs des commoditÈs sont abordÈs. Notre thËse

síarticule autour de cinq chapitres, chacun des chapitres síinscrivant dans une rÈáexion

progressive.

Peu díÈtudes ont jusquíalors analysÈ en profondeur les relations entre les prix des

di§Èrentes Ènergies, malgrÈ le caractËre essentiel que cette rÈáexion confËre ‡ la com-

prÈhension du phÈnomËne de Önanciarisation des marchÈs. Pour combler cette insu¢s-

ance, le chapitre 1 Ètudie les relations de long terme entre les prix forward du pÈtrole,

du gaz, du charbon et de líÈlectricitÈ en Europe pour 35 maturitÈs sur la pÈriode

2005-2010, pÈriode caractÈrisÈe par de fortes turbulences Èconomiques. Outre le fait

de síintÈresser aux relations de long terme entre les prix ‡ travers une approche en

ÈconomÈtrie des donnÈes de panel, ce chapitre met en lumiËre líajustement non linÈaire

et asymÈtrique des marchÈs pouvant rÈsulter díanticipations auto-rÈalisatrices et de

comportements spÈculatifs. Il constitue par consÈquent la structure de base de notre

rÈáexion, le point díancrage vers lequel notre analyse des relations entre Önance et

Ènergie síarticule.

Le chapitre 2 síinscrit dans le prolongement de cette analyse puisquíil vise ‡ compren-

dre la nature sous-jacente des interactions entre les prix et cherche ‡ dÈterminer si ces

comportements peuvent Ítre di§Èrents selon líorientation des áuctuations, líintensitÈ

des marchÈs, et la maturitÈ envisagÈe. La motivation principale est de faire ressortir

les propriÈtÈs ÖnanciËres des marchÈs, ‡ savoir des comportements díinteraction po-

tentiellement plus importants durant les phases díintenses áuctuations des prix. De

nouvelles mÈthodologies ÈconomÈtriques ont ÈtÈ introduites dans ce chapitre, notam-

ment le dÈveloppement díun test statistique permettant díapprÈhender la causalitÈ au

sens de Granger dans les queues de distribution, se focalisant alors sur les mouvements

díextrÍme amplitude. Deux principaux rÈsultats Èmergent de ce chapitre. Dans un

premier temps, il apparaÓt que la dynamique des prix est di§Èrente selon líintensitÈ
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des áuctuations. En e§et, nous observons que la causalitÈ entre les prix des Èner-

gies est plus forte durant les mouvements díextrÍme ampleur ‡ la baisse que lors des

pÈriodes de faible intensitÈ des prix. Ce phÈnomËne est caractÈristique des sÈries Ön-

anciËres traditionnelles, ce qui laisse ‡ penser que les prix des Ènergies possËdent des

propriÈtÈs ÖnanciËres dont líorigine pourrait Ítre díordre spÈculatif. Dans un second

temps, ce comportement semble se rÈsorber ‡ mesure que líon considËre des maturitÈs

plus ÈloignÈes, si bien que líon observe ce que nous qualiÖons de "Samuelson Causality

E§ect" rendant les stratÈgies de diversiÖcation entre les actifs ÈnergÈtiques plus e¢-

cientes ‡ long terme, laissant envisager que des facteurs fondamentaux sont davantages

la cause de ces changements.

Les conclusions du chapitre 2 insistent sur le caractËre Önancier trËs particulier des

prix forward des Ènergies ‡ 1 mois. Le second thËme de notre thËse síintÈresse alors

tout particuliËrement ‡ ces prix et aux caractËres comportemental et Èmotionnel des

marchÈs. Il se scinde en deux chapitres. Tout díabord, le chapitre 3 cherche ‡ mettre

en relief líináuence des Èmotions sur la dynamique des prix des Ènergies. Alors que cer-

taines analyses ont mis en lumiËre une relation signiÖcative entre Èmotion et prix dans

le domaine de la Önance17, rien nía encore ÈtÈ e§ectuÈ en Èconomie de líÈnergie alors

quí‡ maints Ègards les prix des Ènergies peuvent se comporter comme des actifs Önan-

ciers traditionnels. A travers la crÈation díune variable proxy de líÈmotion SAD (Sea-

sonal A§ective Disorder), nous montrons que la dynamique des prix des Ènergies est

fortement impactÈe par les Èmotions, principalement durant les mouvements díextrÍme

baisse des prix. Les sentiments auraient alors une ináuence sur le comportement des

marchÈs. Dans des situations risquÈes et incertaines, de nombreux facteurs peuvent in-

áuencer le processus de dÈcision des agents Èconomiques, mÍme si ces derniers ne sont

pas directement reliÈs ‡ la dÈcision elle-mÍme. Dans notre rÈáexion mÈta-Èconomique

des phÈnomËnes, les Èmotions seraient alors mÈsattribuÈes et conduiraient les agents ‡

17Voir Saunders (1993), Cao et Wei (2002), Kamstra et al. (2000), Hirshleifer et Shumway (2003),
Kamstra et al. (2003), Dowling et Lucey (2005 et 2008).
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se comporter di§Èremment selon líintensitÈ des áuctuations de prix.

Le chapitre 4 fournit un cadre thÈorique ‡ cette approche mÈta-Èconomique des áuc-

tuations puisquíil construit un modËle comportemental et Èmotionnel, o˘ di§Èrentes

catÈgories díagents (i.e. fondamentalistes et chartistes) co-existent sur les marchÈs et

sont soumis au regret et ‡ líincertitude. Ce chapitre síinscrit dans le prolongement

du prÈcÈdent puisque, partant du constat empirique de mÈsattribution des Èmotions,

nous construisons un cadre díanalyse dans lequel les participants sont en interaction,

font face ‡ des mouvements díincertitudes extrÍmes et prennent leurs dÈcisions ‡ tra-

vers une perception cognitive et Èmotionnelle de la rÈalitÈ Èconomique. Nos rÈsulats

mettent en Èvidence que les marchÈs des Ènergies sont composÈs díagents hÈtÈrogËnes

qui se comportent di§Èremment selon líintensitÈ des áuctuations et líincertitude des

mouvements. En particulier, les prix des Ènergies semblent principalement gouvernÈs

par des agents neutres ‡ líincertitude (fondamentalistes et chartistes) durant les phases

de faible intensitÈ des áuctuations de prix, alors quíils sont ináuencÈs par des com-

portements spÈculatifs irrationnels durant les phases de fortes áuctuations. Dans cette

derniËre situation, notre Ètude met en lumiËre líexhubÈrance irrationnelle ambiante des

áuctuations.

Le chapitre 5 revient vers une conception plus traditionnelle de líÈconomie et propose

une analyse Öne des relations existantes entre marchÈs boursiers et prix des matiËres

premiËres. Ici il níest plus question díadopter une analyse mÈta-Èconomique de la Ön-

anciarisation des marchÈs, mais plutÙt de considÈrer une gamme plus large de marchÈs

des commoditÈs aÖn díen comprendre les interactions avec les marchÈs boursiers, mais

aussi et surtout de mettre en Èvidence une potentielle hÈtÈrogÈnÈitÈ entre les matiËres

premiËres. Nous considÈrons alors les matiËres premiËres suivantes sur la pÈriode 2001-

2011 aux Etats-Unis: Ènergie, mÈtaux prÈcieux, agro-industriel, mÈtaux non ferreux,

alimentaire, olÈagineux, exotique, et bÈtail. Par une approche multivariÈe de type

DCC-GARCH, nous montrons que les corrÈlations dynamiques entre les marchÈs des
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commoditÈs et líindice Standard & Poorís sont extrÍmement volatiles, particuliËrement

durant la pÈriode 2007-2008 de crise ÖnanciËre. Plus prÈcisemment, ce phÈnomËne

semble Ítre de plus ou moins grande ampleur selon les phases de hausse ou de baisse

des marchÈs Önanciers, particuliËrement pour les sÈries des prix du pÈtrole, du cafÈ et

du cacao. Par ailleurs, le marchÈ de líor conserve son rÙle de valeur refuge puisque ses

corrÈlations avec le marchÈ des actions se traduisent par une relation nÈgative diminu-

ant durant les pÈriodes de baisse de líindice. Díun point de vue plus global, certaines

commoditÈs semblent Ítre caractÈrisÈes par un phÈnomËne de spÈculation justiÖant le

caractËre hÈtÈrogËne des marchÈs.

Bien entendu cette thËse ne prÈtend pas rÈpondre ‡ toutes les questions qui se posent

concernant la Önanciarisation des marchÈs de commoditÈs et les impacts potentiels que

ce phÈnomËne implique. Elle síinscrit dans le courant scientiÖque actuel qui cherche ‡

comprendre plus en dÈtails le fonctionnement des marchÈs de commoditÈs en combinant

les champs de la macroÈconomie, de la Önance, de líÈnergie et de líÈconomÈtrie. Par

consÈquent, nombreuses sont les extensions pouvant Ítre envisagÈes. Ainsi, au del‡ des

extensions qui peuvent Ítre apportÈes par líapplication des nouvelles mÈthodologies en

ÈconomÈtrie des donnÈes de panel et des sÈries temporelles, nous pensons que, díun

point de vue Èconomique, deux questions principales se posent pour les prochaines

annÈes. En premier lieu, que qualiÖons-nous de spÈculation ou díexcessive spÈculation?

En deuxiËme lieu, est-elle domageable en termes de bien Ítre collectif? Ces questions

fondamentales nous conduiront ainsi ‡ poursuivre nos travaux sur la Önanciarisation

des marchÈs des matiËres premiËres.


