Thèse de doctorat en Chimie Physique et Chimie Analytique
Sous la direction de Yong Chen.
Soutenue en 2013
à Paris 6 .
Gel-embossage et électrofilature de biopolymères pour la culture cellulaire et des études d'ingénierie tissulaire
Ce travail de thèse vise à explorer des techniques de nanofabrication pour produire des substrats de culture et des matrices de génie tissulaire, basant sur une nouvelle approche biomimétique. Nous avons d’abord développé une nouvelle technique de moulage pour répliquer des nanostructures dans une couche de gélatine. Les motifs micrométriques peuvent être plus facilement obtenus par moulage assisté par aspiration. A plus large échelle, des matrices de trous à travers peuvent être percés dans une couche mince de gélatine en utilisant une machine-outil à commande numérique par ordinateur le tout étant biocompatible pour les études de culture cellulaire. Par la suite, nous avons appliqué une technique électrofilature pour produire des substrats de nanofibres de gélatine pour l'expansion à long terme de cellules souches pluripotentes humaines induites (hiPSCs). Pour montrer l'importance de la morphologie quasi tridimensionnelle des substrats de fibres, les empreintes de fibres en positive et négative ont été obtenus, montrant une corrélation évidente entre la qualité des hiPSCs après l'expansion à long terme et la morphologie de la surface du substrat. Enfin, nous avons fabriqué des nanofibres alignés en PLGA et montré leur supériorité pour la formation de feuille cellulaire en utilisant des cellules cardiaques dérivées d’hiPSCs
This thesis work aimed at exploring nanofabrication techniques to manufacture new types of cell culture substrates and scaffolds for tissue engineering based on a biomimetic approach. Firstly, we demonstrated a gel-embossing technique to replicate nanoscale patterns into gelatin layers. For microscale patterns, aspirationassisted gel-molding could be applied. For patterns of larger feature sizes, through-hole arrays could be punched in thin gelatin layers using a computer-aided mechanical machine, all being biocompatible for cell culture studies. Afterward, we applied an electrospinning technique to produce gelatin nanofibre substrates for long term expansion of human induced pluripotent stem cells (hiPSCs). To show the importance of quasi-three dimensional morphology of the fiber substrates, both positive and negative nanofibres imprints were produced, showing a clear correlation between the quality of the hiPSCs after long-term expansion and the surface morphology of the substrate. Finally, we fabricated PLGA aligned nanofibres and showed their superiority for cell sheet formation using hiPSCs cardiac cells