Thèse soutenue

Diminution de la satiété dans l'obésité : le rôle des nutriments, des signaux intestinaux, et des microbiote intestinal

FR  |  
EN
Auteur / Autrice : Frank Duca
Direction : Mihai Covasa
Type : Thèse de doctorat
Discipline(s) : Physiologie et Pathophysiologie
Date : Soutenance en 2013
Etablissement(s) : Paris 6

Mots clés

FR

Mots clés contrôlés

Résumé

FR  |  
EN

Food intake is controlled by a highly complex and distributed neural system integrating many sensory inputs, most notably those arising from the gastrointestinal tract in response to a meal. Reduced sensitivity to intestinal nutrients has been proposed to be partly responsible for increased energy intake and weight gain in both animals and humans during HF feeding. However, the mechanism by which a HF diet impinges on post-ingestive intestinal feedback to promote overconsumption is unclear, as is the role of diminished satiation signaling in the development of obesity. Therefore, the work of this thesis attempts to discern the role of HF feeding in nutrient-induced satiation, by addressing the impact of GI peptides and the gut microbiota in diet-induced obesity in animals prone or resistant to obesity. In the first set of experiments, we found that diet-induced obese rats exhibited a reduced responsiveness to the suppressive effects of intragastric lipid loads, compared to diet-resistant rats. This was associated with altered intestinal gut peptides and GPRs, plausibly contributing to reduced lipid-induced satiation. In the next set of experiments, we showed that OP rats develop impaired GLP-1 signaling during maintenance on a HF diet. During chow feeding, OP and OR rats had similar sensitivity to the anorectic effects of GLP-1R agonism; however, HF feeding abolished the suppressive response to exendin-4 in OP rats. This was associated with downregulation of GLP-1R in the nodose ganglia, in addition to decreased circulating GLP-1 and L-cell counts. The last set of experiments demonstrates the influence of the gut microbiota in regulating intestinal chemosensory machinery and potentially promoting adiposity in OP rats. First, GF mice exhibited increased consumption for lipid solutions with associative decreases in intestinal satiation signals and fatty acid receptors, indicating that lack of microbiota reduces post-ingestive signaling to promote overeating. Next, we found that OP rats harbor a distinct microbiota profile compared to OR rats during HF feeding. By conventionalizing GF mice with OP microbiota, we replicated the obese phenotype, and associated reductions in peripheral and central appetite-related pathways. In summary, this thesis provides evidence that the interaction of a polygenetic susceptibility to obesity coupled with HF feeding reduces sensitivity to intestinal nutrients, by altering secretion and sensitivity to satiation signals that ultimately contributing to weight gain and adiposity. Additionally, further elucidation on the ability of an aberrant gut microbiota to influence regulatory systems involved in energy regulation could provide useful information for the development of therapeutic treatments for obesity.