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Introduction générale 

 

 

La thapsigargine (Tg) est un produit naturel qui inhibe sélectivement, à l’échelle 

subnanomolaire, les pompes SERCA, des calcium-ATPases du reticulum 

sarco/endoplasmique, induisant ainsi une cascade moléculaire résultant en l’apoptose 

cellulaire.  

Le mécanisme d’action de la Tg n’est pas dépendant du cycle cellulaire, d’où une action sur 

des cellules cancéreuses à multiplication lente. 

Le cancer de la prostate constitue un problème important de santé publique. Cette maladie 

devient actuellement le cancer non cutané le plus répandu chez l’homme. Les tumeurs de la 

prostate sont androgéno-dépendantes au début de leur évolution et sont donc sensibles à 

l’hormonothérapie. Cependant, la plupart des cancers de la prostate progressent pour devenir 

des maladies androgéno-indépendantes, pour lesquelles aucun traitement efficace n’existe 

actuellement. La prolifération lente des cellules androgéno-indépendantes tumorales pourrait 

expliquer le fait qu’elles soient relativement peu sensibles aux chimiothérapies standard 

basées sur l’utilisation d’antimitotiques. 

Il a été montré récemment que la croissance de cellules cancéreuses de prostate inoculées à 

des souris était stoppée après administration de dérivés de la Tg par voie intra-veineuse. 

Cependant, étant donné le caractère ubiquitaire de la SERCA, l’absorption systémique de Tg 

résulterait en des effets indésirables sévères. Très récemment, un ciblage sélectif de la prostate 

a été réalisé par une prodrogue de la Tg (G202) ; ce composé, consistant en un peptide 

spécifique de la PSMA (« prostate-specific membrane antigen ») couplé à la Tg est 

actuellement en essais cliniques phase I. 

 

Sur le plan structural, la Tg est un sesquiterpène hautement oxygéné appartenant à la famille 

des 6,12-guaianolides, isolé d’une plante méditerranéenne Thapsia garganica. La structure 

chimique de ce produit naturel est particulièrement complexe car composée d’un squelette 

tricyclique polyoxygéné fonctionnalisé par cinq fonctions esters différentes et huit centres 

asymétriques (Figure 1). 
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Cependant, l’utilisation de la Tg est limitée à la fois par sa dépendance en produits naturels et 

par le manque de diversité structurale des analogues préparés par hémisynthèse à partir du 

produit naturel lui-même. 

Disposer d’analogues de la Tg issus de la synthèse totale serait donc bienvenu. 

 

En novembre 2010, il a été initié un programme de recherche multidisciplinaire ayant pour 

objectif un accès original et efficace à des nouveaux analogues actifs de Tg par synthèse totale 

ou partielle (hémisynthèse) (ANR blanche “Thaser” 2010).  

Ce projet est composé de trois parties en étroite relation : 

1/ la synthèse totale de ce sesquiterpène lactonique,  

2/ l’élaboration d’analogues par le biais de deux voies complémentaires, synthèse totale et 

hémisynthèse,  

et enfin, dans un volet plus avancé du projet,  

3/ une étude des interactions molécules synthétisées / SERCA par des expériences de mesures 

de l’inhibition et de co-cristallisation.  

La cytotoxicité des analogues synthétisés sera évaluée par les laboratoires Pierre Fabre. 

Cinq groupes de recherche, de compétence complémentaire, travaillent sur ce projet. 

 Les groupes 1 (Pr Janick Ardisson, UMR 8638, Université Paris Descartes) et 2 (DR 

Jean-Pierre Férézou, UMR 8182, Université Pari-Sud) sont en charge de la synthèse totale de 

la Tg elle-même ainsi que de celle d’analogues. 

 Le groupe 3 (Pr Brigitte Deguin, UMR 8638, Université Paris Descartes) assure 

l’étude de l’accès à des analogues de la Tg par hémisynthèse. 
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 Le groupe 4 (Dr Martin Picard, UMR 8015, Université Paris Descartes) réalisera les 

expériences de co-cristallisation des molécules synthétisées et de la SERCA en vue d’une 

étude de relations structure-activité. 

 

 

Dans le cadre de cette ANR, l’objectif premier des groupes 1 et 2 repose sur la synthèse totale 

multi-étapes de la Tg, selon une stratégie modulable susceptible d’être appliquée ensuite à la 

synthèse d’analogues. 

Chaque partenaire a étudié une approche différente pour accéder respectivement à deux 

intermédiaires de synthèse bicycliques [A-B] fonctionnalisés. L’étape-clé pour le groupe 1 a 

consisté en une réaction intramoléculaire de Pauson-Khand allène-yne et pour le groupe 2, en 

une fermeture de cycle par métathèse ène-yne (Schéma 1).  
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Schéma 1 

 

Ce manuscrit présente notre contribution à la mise au point d’une approche de synthèse de la 

thapsigargine 1 par réaction de cyclisation de Pauson-Khand allène-yne. 

Le plan adopté pour ce manuscrit est le suivant : 

Après une présentation de la Tg sur le plan structural et biologique (Chapitre I), seront 

exposées la synthèse totale et les approches synthétiques décrites dans la littérature (Chapitre 

II). 

La stratégie de synthèse étudiée au cours de cette thèse et les méthodologies associées feront 

l’objet du chapitre III. 

Les chapitres suivants (chapitres IV à VI) seront consacrés à la présentation des deux 

approches développées. 

Enfin, une étude méthodologique concernant la réaction de Pauson-Khand allénol-yne 

clôturera ce travail de thèse (chapitre VII).  
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Chapitre I : La thapsigargine 

 

Ce premier chapitre sera consacré à une présentation de la thapsigargine aussi bien sur le plan 

structural que biologique. 

I La famille des thapsigargines  

La thapsigargine (Tg) fait partie d’une famille du même nom comprenant au moins dix-sept 

composés ayant une structure tricyclique 5-7-5. Ces sesquiterpènes lactoniques ne diffèrent 

que par la nature des esters en position 2 et 8, à l’exception du trilobolide, du nortrilobolide et 

de la thapsivillosine F qui ne comportent pas de fonction oxygénée en C2 (Figure 2). 

 

R
1
 R

2
 

thapsigargine (Tg) O-Oct But 

trilobolide H (S)-2-MeBut 

nortrilobolide H But 

thapsivillosine F H Sen 

thapsivillosine C O-Oct 2-MeBut 

thapsigargicine O-Hex But 

thapsitranstagine O-i-Val 2-MeBut 

thapsivillosine A O-Ang Sen 

thapsivillosine B  O-Ang 2-MeBut 

thapsivillosine D O-6-MeOct Sen 

thapsivillosine E O-6-MeOct 2-MeBut 

thapsivillosine G O-6-MeHep 2-MeBut 

thapsivillosine H O-Ang ou -Sen Ang ou Sen 

thapsivillosine I O-Ang But 

thapsivillosine J O-i-Val But 

thapsivillosine L O-But But 

thapsivillosine K O-Sen 2-MeBut 

But = butanoyl, Sen = sénécioyl, Ang = angéloyl, Hex = hexanoyl, Hep = heptanoyl, Oct 
= octanoyl, i-Val = isovaléroyl 

 

Figure 2 
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Les terpénoïdes peuvent être divisés en plusieurs familles basées sur le nombre d’unités 

isoprénoïdes qui les compose. Les sesquiterpènes ou sesquiterpénoïdes sont l’une de ces 

familles. Ils possèdent quinze carbones résultant de l’assemblage de trois unités isoprénoïdes. 

 

Cette famille présente notamment des composés ayant un motif de type bicyclo[5.3.0]décane. 

Les sesquiterpènes lactoniques qui possèdent ce squelette peuvent être divisés en deux 

catégories : les guaianolides et les pseudo-guaianolides, comportant une structure similaire, à 

savoir, un bicycle 5-7 fusionné à un motif γ-lactonique. La différence ne provient que de la 

position du groupement méthyle, en C4 pour les guaianolides, en C5 pour les isomères 

pseudo-guaianolides.  

Par ailleurs, il est à noter qu’au sein de chacune de ces catégories, il existe deux types de 

molécules selon la position du motif γ-lactonique, en 6, 12 ou en 8,12 (Figure 3).  

Par définition, la thapsigargine fait donc partie des guaian-6,12-olides. 

 

 
Figure 3 

 

Les guaianolides sont l’une des familles les plus abondantes parmi les sesquiterpènes 

lactoniques. De nombreuses synthèses totales de ces composés biologiquement actifs ont 

d’ailleurs été décrites, notamment celles du compressanolide,1 de la (-)-estafiatine2 et de la 

déhydrocostus-lactone (Figure 4).3 

 

                                                 
1 a) Devreese, A. A.; Declercq, P. J.; Vandewalle, M. Tetrahedron Lett. 1980, 21, 4767–4770; b) Devreese, A. 
A.; Demuynck, M.; Declercq, P. J.; Vandewalle, M. Tetrahedron 1983, 39, 3049–3054; c) Devreese, A. A.; 
Demuynck, M.; De Clercq, P. J.; Vandewalle, M. Tetrahedron 1983, 39, 3039–3048. 
2 Edgar, M. T.; Greene, A. E.; Crabbe, P. J. Org. Chem. 1979, 44, 159–160. 
3 Rigby, J. H.; Wilson, J. Z. J. Am. Chem. Soc. 1984, 106, 8217–8224. 
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Figure 4 

II Découverte de la thapsigargine 

Le trilobolide a été le premier composé de la famille des thapsigargines à avoir été isolé, de 

Laser trilobum, en 1968. La dégradation de ce produit naturel et l’identification de sa chaîne 

latérale de type (S)-2-méthylbutanoyle, a permis la détermination complète de sa structure par 

cristallographie.4  

Hormis le trilobolide, les autres molécules de la famille ont été isolées de plantes du genre 

Thapsia appartenant à la famille des Apiaceae. Ainsi, en 1978, la thapsigargine a été extraite 

et isolée de Thapsia garganica, une ombellifère poussant communément dans le bassin 

méditerranéen (Figure 5).5  

 

 
Figure 5 

L’équipe de Christensen en 1985 est ensuite parvenue à effectuer la première attribution de la 

configuration de l’ensemble des centres asymétriques du produit naturel.6 

                                                 
4 Kutshabsky, I.; Reck, G.; Pfeiffer, D.; Ripperger, H. Z. Chem. 1984, 24, 24. 
5 a) Christensen, S. B.; Rasmussen, U.; Sandberg, F. Acta Pharm. Suec. 1978, 15, 133-136; b) Christensen, S. 
B.; Larsen, I. K.; Rasmussen, U.; Christophersen, C. J. Org. Chem. 1982, 47, 649-652. 
6 a) Christensen, S. B.; Norup, E. Tetrahedron Lett. 1985, 26, 107, b) Christensen, S. B. Acta Chem. Scand. Ser. 
B 1988, 42, 623; c) Andersen, A.; Cornett, C.; Lauridsen, A.; Olsen, C. E.; Christensen, S. B. Acta Chem. Scand. 

1994, 48, 340-346; d) Christensen, S. B.; Andersen, A.; Smitt, U. W. Prog. Chem. Nat. Prod. 1997, 71, 129-127; 
e) Liu, H.; Jensen, K. G.; Tran, L. M.; Chen, M.; Zhai, L.; Olsen, C. E., Sohoel, H.; Denmeade, S. R. Isaaacs, J. 
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Actuellement, il est possible d’obtenir le produit naturel selon deux procédés : 

- par extraction de sources végétales,  

- ou par voie chimique (une seule synthèse totale a été effectuée par l’équipe de Ley en 2007)7 

 

En 2007, l’équipe d’Appendino a mis au point la première méthode d’isolement de la Tg à 

grande échelle (multi-grammes), à partir des fruits de Thapsia garganica. Un rendement de 

0.32% a été obtenu après extraction par l’acétone et purification par chromatographie sur gel 

de silice, augmentant ainsi les rendements initiaux obtenus par Christensen.8 

 

Très récemment, dans la cadre de la collaboration ANR Thaser (équipe 3), la mise en œuvre 

d’une nouvelle méthode d’extraction et de purification a permis d’optimiser considérablement 

le processus d’isolement de la Tg à grande échelle.  

L’utilisation d’un appareil d’extraction sous pression s’est révélée parfaitement adaptée à 

l’extraction sécurisée de plusieurs kilogrammes de racines cryobroyées, en minimisant les 

quantités de solvant, et réduisant considérablement les temps d’extraction. De plus le procédé 

de purification a également été totalement revu puisqu’une purification sans silice de la Tg à 

partir de l’extrait acétonique a pu être mise au point en un « run » par CPC (chromatographie 

de partage centrifuge.9 

III Biosynthèse de la Tg 

A ce jour, aucune étude n’a permis de prouver le mécanisme exact de la biosynthèse des 

guaianolides. Cependant, à partir du mécanisme général décrit pour les terpénoïdes, il a été 

possible de proposer une séquence pour la biosynthèse de la Tg.10  

 

Le squelette de base des terpènes résulte de l’assemblage tête-queue de deux isomères 

biochimiquement actif de l’isoprène, l’isopentényle pyrophosphate (IPP) et le γ,γ-
                                                                                                                                                         

T.; Christensen, S. B. Phytochem. 2006, 67, 2651- 2658; f) Lambert, M.; Wolfender, J. L.; Staeck, D.; 
Christensen, S. B.; Hostetettmann, K.; Jaoszewski, J. W. Anal. Chem. 2007, 79, 727-735. 
7 a) Ley, S. V.; Antonello, A.; Balskus, E. P.; Booth, D. T.; Christensen, S. B.; Cleator, E.; Gold, H.; Högenauer, 
K.; Hü nger, U.; Myers, R. M.; Oliver, S. F.; Simic, O.; Smith, M. D.; Søhoel, H.; Woolford, A. J. A. Proc. Nat. 

Acad. Sci. 2004, 101, 12073-12078; b) Oliver, S. F.; Högenauer, K.; Simic, O.; Antonello, A.; Smith, M. D.; 
Ley, S. V. Angew. Chem. Int. Ed. 2003, 42, 5996-6000. 
8 a) Appendino, G.; Prosperini, S.; Valdivia C.; Ballero, M.; Colombano, G.; Billington, R. A.; Genazzani, A. A.; 
Sterner, O. J. Nat. Prod. 2005, 68, 1213-1217; b) Pagani, A.; Pollastro, F.; Spera, S.; Ballero, M.; Sterner, O.; 
Appendino, G. Nat. Prod. Com. 2007, 2, 637-642. 
9 Ollivier, A.; Grougnet, R.; Cachet, X.; Meriane, D.; Ardisson, J.; Boutefnouchet, S.; Deguin, B. J. Chromatogr. 

B 2013, 926, 16-20. 
10 a) Drew, D. P.; Krichau, N.; Reichwald, K.; Simonsen, H. T. Phytochem. Rev. 2009, 8, 581-599; b) Schall, 
A.; Reiser, O. Eur. J. Org. Chem. 2008, 2353-2364. 
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diméthylallyle pyrophosphate (DMAPP). Après deux séquences successives, ionisation du 

DMAPP puis addition électrophile régiosélective de l’IPP, le farnésyl-pyrophosphate (FPP) 

est généré. Ce composé est le précurseur de tous les sesquiterpènes linéaires ou cycliques 

ainsi que de tous les sesquiterpènes lactoniques (Schéma 3). 

 
Schéma 2 

Les étapes suivantes consistent en la fermeture du cycle à dix chaînons par une suite de 

réactions, ionisation puis addition électrophile intramoléculaire, avec formation du 

germacrène B, composé couramment identifié dans la famille des Apiaceae dont fait partie 

l’espèce Thapsia garganica (Schéma 3, étape A).  

Le carbone C8 est ensuite aisément activé pour permettre une oxydation allylique (Schéma 3, 

étape B). Il est d’ailleurs intéressant de noter que seule la conformation α est observée au 

niveau de ce centre.  

La γ-butyrolactone est ensuite synthétisée par action d’une enzyme similaire à celles de type 

P450 (Schéma 3, étape C). Du fait de la présence du groupement butyloxy en C8, le motif 

lactonique sera formé exclusivement en 6,12.  
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Schéma 3 

 

L’époxydation de la double liaison trisubstituée en C10-C1 (Schéma 3, étape D) initie la 

dernière étape d’élaboration du squelette guaianolide (Schéma 3, étape E) par fermeture du 

bicycle 5-7, par le biais d’enzymes de type P450. Cette cascade réactionnelle permet 

l’installation stéréosélective des centres 1βH, 10αCH3 et 11βCH3, communs à la plupart des 

guaianolides provenant des Apiaceae. L’hydroxylation du carbone C7 est rarement observé, la 

configuration 7β-OH est même unique à la famille des thapsigargines. Une plausible 

explication à ce phénomène serait la formation d’un époxyde en position C7-C11, conduisant 

au diol C7-C11 trans.11  

 

IV Potentialité thérapeutique de la thapsigargine 

Les sequiterpènes lactoniques sont de façon globale des candidats particulièrement 

prometteurs dans le domaine du traitement du cancer. Un programme de recherche a 

d’ailleurs été initié il y a quelques années, par le NCI, débouchant sur de nombreux résultats. 

Ces sequiterpènes agissent selon différents mécanismes selon leur structure. A titre 

d’exemple, la présence d’une double liaison exocyclique conjuguée au carbonyle de la lactone 

confère au parthénolide des propriétés inhibitrices de l’angiogenèse et antimétastatiques. Le 

                                                 
11 Christensen, S. B.; Andersen, A.; Smitt, U. W. Fortschr. Chem. Org. Naturst 1997, 71, 129-167. 
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pont endoperoxyde de l’artémisinine apporte à cette molécule, la possibilité de générer des 

radicaux libres selon un mécanisme fer-dépendant, d’où des propriétés antipaludiques mais 

aussi antitumorales. Enfin la Tg, grâce à une lipophilie élevée générée par les chaînes 

latérales, peut diffuser facilement à travers les membranes cellulaires et venir inhiber un 

transporteur du calcium (la SERCA) par le biais d’interactions lipophiles. Ces trois molécules 

(ou leurs dérivés) sont actuellement en essais cliniques pour le traitement du cancer (Figures 6 

et 7).12 

 
Figure 6 

 
Figure 7: Mécanisme d’action du parthénolide, de l’artémisinine et de la Tg au niveau des cellules cancéreuses 

 

                                                 
12 Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; , Saliba, N. A.; Darwiche, N. Drug Discovery Today 2010, 15, 
668-678. 
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La Tg, en inhibant sélectivement les pompes SERCA à l’échelle subnanomolaire, induit une 

cascade moléculaire résultant en l’apoptose cellulaire. Ces propriétés peuvent être mises à 

profit dans le traitement du cancer de la prostate non hormono-dépendant. Il a également été 

montré que la Tg possédait une activité antimalarique par inhibition de la PfATP6, un 

transporteur de Ca2+ spécifique du Plasmodium falciparum. 

Une présentation des relations structure-activité, bien qu’encore succinctes, clôturera le 

chapitre. 

 

IV.1.1 L’inhibition de la SERCA par la Tg 

La modulation de l’homéostasie du calcium est essentielle pour une grande variété de 

phénomènes cellulaires.13 Plus spécifiquement, la maintenance du taux de calcium dans le 

lumen du reticulum endoplasmique (RE) est un facteur critique pour la croissance cellulaire. 

Il a été montré qu’une altération de la concentration en calcium dans le RE peut entraîner une 

inhibition de cette croissance.  

De nombreux mécanismes permettent la régulation et la maintenance du taux de calcium dans 

le RE. Notamment, l’accumulation de Ca2+ est sous la dépendance d’enzymes ATPases de 

type P, les SERCAs (Ca2+ adénosine triphosphatases du réticulum 

sarcoplasmique/endoplasmique). Dans les cellules, ces enzymes assurent le transport (le 

pompage) des ions Ca2+ contre un gradient de concentration, du cytoplasme vers le reticulum 

endoplasmique.  

La famille des SERCAs inclut le produit de trois gènes, nommés SERCA1 (ATP2A1), 

SERCA2 (ATP2A2), et SERCA3 (ATP2A3). Actuellement, 14 isoformes sont connus pour 

exister dans les cellules humaines, deux SERCA1 (1a et 1b), trois SERCA2 (2a–2c), et six 

SERCA3 (3a–3f).  

Tous les sous-types de SERCA sont inhibés par la Tg, mais avec des constantes d’inhibition 

(Ki) différentes, variant de 0.2 à 12 nM. 

La SERCA1a, inhibée par la Tg avec une constante Ki de 0.2 nM, a été plus particulièrement 

étudiée. Cette enzyme transmembranaire transporte activement le Ca2+ par un mécanisme 

faisant intervenir un intermédiaire de haute énergie formé par autophosphorylation d’une 

chaîne acide aspartique. Le cycle catalytique de cette enzyme est classiquement décrit selon 

                                                 
13 a) Wootton, L. L.; Michelangeli, F. J. Biol. Chem. 2006, 281, 6970-6976; b) Legrand, G.; Humez, S.; 
Slomianny, C.; Dewailly, E.; Vanden Abeele, F.; Mariot, P.; Wuytack, F.; Prevarskaya, N. J. Biol. Chem. 2004, 
276, 47608-47614. 
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un modèle E1-E2, dans lequel l’ATPase adopte deux conformations différentes, E1 et E2, 

respectivement de haute et basse affinité pour le calcium.14 

 

L’accès à la structure cristalline de la SERCA1a, représentant les deux états intermédiaires E1 

et E2 adoptés par la protéine pendant le transport du calcium, a permis de connaitre 

précisément le mécanisme du transport.  

La SERCA1a est constituée dans son ensemble de trois domaines cytoplasmiques et de dix 

hélices transmembranaires. L’état E1 lie deux ions Ca2+  et le complexe Mg2+/ATP, provenant 

du côté cytosol de la membrane, d’où phosphorylation de l’enzyme. Cet état E1 phosphorylé 

change alors de conformation, pour conduire à l’état E2 avec libération des deux ions Ca2+  

dans le lumen du RE. La déphosphorylation et le passage de E2 à E1 permettent la continuité 

du cycle catalytique. 

La Tg inhibe la pompe SERCA à l’échelle subnM (avec une constante de dissociation de 2.2 

pM), en verrouillant l’enzyme dans l’état E2, selon une stœchiométrie 1:1, pour former un 

complexe stable enzyme-E2/Tg, bloquant le cycle catalytique. Cette molécule se lie au milieu 

de la région transmembranaire, dans un endroit proche de celui de liaison du Ca2+.  

L’effet de la liaison de la Tg sur l’activité de la pompe a été largement étudié in vitro, in vivo 

et dans les structures cristallines citées ci-dessus, avec observation des conformations E2 en 

absence de Ca2+ mais en présence de Tg (Figure 8).  

 

 

                                                 
14 a) Toyoshima, C.; Nomura, H. Nature 2002, 418, 605-611; b) Toyoshima, C.; Nakasako, M.; Nomura, H.; 
Ogawa, H. Nature 2000, 405, 647-655; c) Toyoshima, C.; Nomura, H.; Sugita, Y. Ann. N.Y. Acad. Sci. 2003, 
986, 1–8; d) Olesen, C.; Picard, M.; Winther, A.M.; Gyrup, C.; Morth, J. P.; Oxvig, C.; Møller, J. V.; Nissen P. 
Nature 2007, 450, 1036-1042; e) Montigny C., Picard, M., Lenoir, G.; Gauron, C.; Toyoshima, C.; Champeil, P. 
Biochemistry 2007, 46, 15162-15174. 
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E1 Ca2+ (2.6 Å)          E2 Tg (3.1 Å) 

 

Figure 8 : Représentation de la structure cristalline de la SERCA1a de muscle de lapin en conformation E1 

Ca
2+

 (liée à 2 Ca
2+

, à gauche) et en conformation E2 Tg (en absence des 2 Ca
2+ 

mais en présence de Tg, à 

droite). Domaines cytoplasmiques: domaine A (Ancrage), domaine N (Nucléotide, site de liaison de l’adénosine 

de l’ATP avec Phe487) et domaine P (site de Phosphorylation avec l’Asp 351). 

 

 

La Tg se lie à la SERCA1a dans sa conformation E2, dans une poche hydrophobe formée par 

les hélices transmembranaires M3, M5 et M7, avec la partie lactonique plus polaire située 

près de l’interface membranaire entre les résidus Phe256 et Ile829.13a,15 Le caractère lipophile 

du site est engendré par de nombreux résidus hydrophobes. La liaison de la Tg à la SERCA 

est principalement assurée par des interactions hydrophobes (Figures 9, 10, 11 et 12).16 

                                                 
15 a) Paula, S.; Ball, W. J. Proteins 2004, 56, 595-606; b) Singh, P.; Mhaka, A. M.; Christensen, S. B.; Gray, J. 
J.; Denmeade, S. R.; Isaacs, J. T. J. Med. Chem. 2005, 48, 3005-3014. 
16 Winther, M.; Liu, H.; Sonntag, Y.; Olesen, C.; Le Maire, M.; Soehoel, H.; Olsen, C. E.; Christensen, S. B.; 
Nissen, P.; Møller, J. V. J. Biol. Chem. 2010, 285, 28883–28892. 
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Figure 9 : Site de liaison de la Tg (en bleu et 

jaune) de la SERCA en conformation E2-Tg. 

 

 
 

 

Figure 10 : Site de liaison de la Tg (en vert et rouge) de la 

SERCA en conformation E2-Tg. En brun, résidus 

hydrophobes et en bleu, résidus hydrophiles 

  

 

 
Figure 11 : Site de liaison de la Tg (en vert) de la SERCA en 

conformation E2-Tg 

 

 

 
Figure 12 : Localisation des principaux 

résidus acides amines (en jaune) dans le site 

de liaison de la Tg (en vert) de la SERCA en 

conformation E2-Tg 

 

Un premier pharmacophore a été décrit, suggérant des interactions lipophiles importantes 

entre la SERCA et le groupe acétyle en 10, le groupe angéloyle en 3 et le groupe butanoyle en 



 34 

8 de la Tg. Deux interactions mineures entre cette pompe et le méthyle 15 et l’octanoyle en 2 

ont également été proposées.17 

Le système tricyclique de la Tg pourrait servir uniquement de support pour un bon 

positionnement des cinq parties lipophiles de la molécule afin d’optimiser leur interaction 

avec les résidus hydrophobes du site de liaison.18 

La Tg comporte de nombreux atomes d’oxygène d’où la possibilité de liaisons hydrogènes. 

Cependant, il a été montré qu’il n’y avait qu’une seule liaison hydrogène, d’importance faible, 

entre l’oxygène du groupe carbonyle de l’ester en C8 et la fonction amide de l’Ile829. 

 
Il est intéressant de remarquer que le site potentiel de liaison de la Tg dans l’état E1 est 

nettement plus étroit que celui correspondant à l’état E2. De plus, il exposerait les atomes 

d’oxygène de la Tg à un environnement lipophile non favorable. En comparaison, 

l’interaction E2/Tg est nettement plus importante, d’où la formation d’un complexe plus 

stable. D’un point de vue énergétique, la Tg reste liée à la conformation E2 de la SERCA et 

bloque ainsi toute activité catalytique de l’enzyme. 

 

IV.1.2 Le cancer de la prostate et la Tg 

Avec plus de 71 500 nouveaux cas estimés en France en 2010, le cancer de la prostate est le 

cancer le plus fréquent. Rare avant 50 ans, l’âge moyen au moment du diagnostic est de 70 

ans.  

Les principales modalités de prise en charge du cancer de la prostate sont la chirurgie, la 

radiothérapie et l’hormonothérapie. La chimiothérapie peut également être utilisée, en 

fonction de l’étendue du cancer au moment du diagnostic. 

 
Dans la majorité des cas, les récepteurs aux androgènes (AR) constituent le fondement et le 

moteur de la maladie. Ce cancer débute sous une forme androgéno-dépendante qui pourra être 

traitée par hormonothérapie. Ainsi, le blocage des centres de signalisation des AR, par 

administration d’analogues ou d’antagonistes de la LH-RH (Luteinizing Hormone/Releasing 

Hormone) et/ou d’anti-androgènes, confère un réel bénéfice thérapeutique. Cependant, la 

régression de la croissance de la tumeur n’est le plus souvent que temporaire, et après une 

                                                 
17 Skytte, D. M.; Møller, J. V.; Liu, H.; Nielsen, H. Ø.; Svenningsen, L. E.; Jensen, C. M.; Olsen, C. E.; 
Christensen, S. B. Bioorg. Med. Chem. 2010, 18, 5634–5646. 
18 Søhoel, H., Liljefors, T.; Ley, S. V.; Oliver, S. F.; Antonello, A.; Smith, M. D; Olsen, C. E.; Isaacs, J. T.; 
Christensen, S. B. J. Med. Chem. 2005, 48, 7005-7011. 
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courte rémission, la tumeur prostatique se développe à nouveau et devient résistante à ce type 

de thérapie. A ce stade, les tumeurs sont décrites comme androgéno-indépendantes ou 

hormono-réfractaires, avec un pronostic défavorable. Ce phénomène n’est pas encore bien 

expliqué mais semble lié à une augmentation de l’expression des AR avec une restauration de 

la signalisation de ces récepteurs. Il a également été décrit la formation d’AR anormaux.19 

 

Pour traiter le cancer de la prostate non hormono-dépendant, souvent métastatiques, les 

molécules les plus fréquemment employées sont le docétaxel, antimitotique stabilisant du 

fuseau, ou encore (en deuxième intention) le mitoxantrone, agissant au niveau de l’ADN 

comme inhibiteur de la topoisomérase II (Figure 13).  
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Cependant, actuellement, aucun traitement ne permet de prolonger significativement la vie 

des hommes atteints de ce type de cancer de la prostate. La prolifération lente des cellules 

androgéno-indépendantes tumorales pourrait expliquer le fait qu’elles soient relativement peu 

sensibles aux chimiothérapies standard interférant avec le cycle cellulaire durant la phase de 

mitose.   

Il a été montré que la croissance de cellules cancéreuses de prostate inoculées à des souris 

était stoppée après administration de dérivés de la Tg par voie intra-veineuse.  

La Tg, en inhibant les pompes SERCA sélectivement et à l’échelle subnanomolaire, induit 

une cascade moléculaire résultant en l’apoptose cellulaire et en une déplétion en récepteurs 

androgéniques.20 

 

                                                 
19 Parray, A.; Siddique, H. R.; Nanda, S.; Konety, B. R.; Saleem, M. Biologics: Targets and Therapy 2012, 6, 
267–276. 
20 Denmeade, S. R.; Mhaka, A. M.; Rosen, D. M.; Brennen, W. N.; Dalrymple, S.; Dach, I.; Olesen, C.; Gurel, 
B.; DeMarzo, A. M.; Wilding, G.; Carducci, M. A.; Dionne, C. A.; Moller, J. V.; Nissen, P.; Christensen, S. B.; 
Isaacs, J. T. Sci. Transl. Med. 2012, 4, 140ra86. 
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Plus précisément, la liaison de la Tg à la SERCA entraîne une diminution du taux de calcium 

dans le reticulum endoplasmique et une augmentation du calcium cytoplasmique, d’où 

initiation d’un stress du RE. L’apoptose cellulaire qui en résulte est due à une cascade 

d’évènements qui est maintenant connue, avec accumulation de protéines « mal repliées » 

(UPR, unfolded protein response), activation de caspases, libération de facteurs apoptotiques 

de la mitochondrie et activation directe d’endonucléases calcium-dépendantes qui clivent 

l’ADN cellulaire (Figure 14). 

Le mécanisme d’action de la Tg n’est pas dépendant du cycle cellulaire, d’où une action sur 

des cellules cancéreuses à multiplication lente. 

 

 
Figure 14 : Cascade apoptotique en réponse au stress du RE, avec initialement, élévation du taux de GRP78 

(78-kD glucose-regulated protein), libération et transformation de l’ATF (activating transcription factor) et 

production d’ATF4 et de XBP-1 (X-box binding protein) conduisant à l’expression des gènes UPR (unfolded 

protein response). Les facteurs apoptotiques Cyt c (cytochrome c) et AIF (apoptosis inducing factor) sont libérés 

de la mitochondrie, activant les caspases et l’apoptose. 
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Cependant, étant donné le caractère ubiquitaire de la SERCA, et la capacité de la Tg à tuer 

tous les types de cellule, normaux ou malins, cette molécule est très toxique in vivo et son 

absorption systémique résulterait en des effets indésirables sévères.21 

Le ciblage de la prostate par la Tg a été, dans un premier temps, étudié en mettant à profit la 

capacité des cellules cancéreuses de prostate de secréter des enzymes protéolytiques, 

surexprimées en cas de cancer de la prostate. Ces enzymes, la PSA (prostate specific antigen) 

et la hK2 (human glandular kallikrein 2), sont caractéristiques et particulièrement substrat-

spécifiques. Une première génération de prodrogues a été élaborée en couplant des dérivés de 

la Tg avec des peptides qui sont des substrats sélectifs de la PSA ou de la hK2, d’où libération 

de la molécule active à proximité immédiate des cellules cancéreuses de prostate. Différents 

conjugués Tg/peptides de ce type sont actuellement en essais cliniques pour le traitement du 

cancer de la prostate (Figure 15).22 

 
Figure 15 : Prodrogue de première génération  

Très récemment, un niveau de ciblage de la prostate particulièrement élevé a été atteint par 

utilisation de la prodrogue G202. Ce composé consiste en un couplage en C8, comme 

précédemment, entre un dérivé actif de la Tg, le 12ADTβAsp [12ADT : 8-O-(12-

aminododécanoyl)-8-O-debutanoyl)] et un peptide spécifique de la PSMA (prostate-specific 

membrane antigen). La PSMA est surexprimée dans de nombreux cancers de la prostate (y 

compris les métastatiques), mais aussi par des cellules endothéliales tumorales.  

Une régression tumorale importante a été mesurée in vivo pour un panel de cellules 

cancéreuses humaines de prostate et d’autres types de cancer, à des doses non toxiques pour 

l’hôte. Des essais cliniques phase I ont été entrepris visant les patients avec des cancers 

avancés (Figure 16).20 

 

                                                 
21 Christensen, S. B.; Skytte, D. M.; Denmeade, S. R.; Dionne, C.; Møller, J. V.; Nissen, P.; Isaacs, J. T. Anti-

Cancer Agents in Medicinal Chemistry, 2009, 9, 276-294. 
22 Denmeade, S. R.; Jakobsen, C. M.; Janssen, S.; Khan, S. R.; Garrett, E. S.; Lilja, H.; Christensen, S. B.; Isaacs, 
J. T. J. Natl. Cancer Inst. 2003, 95, 990–1000. 
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Figure 16 : Prodrogue G202 

 

 

 
Figure 17 : Analyse structurale de la liaison du composé 12ADTβAsp (en jaune, rouge et bleu) à la pompe 

SERCA 

 

 

IV.1.3 Le paludisme et la Tg 

Le paludisme est une maladie parasitaire (un million de morts par an) causée par un 

protozoaire parasite du genre Plasmodium, transmis par un vecteur insecte du genre 

Anopheles. La mise en évidence en 2009 de parasites devenus tolérants aux plus récents 

antipaludiques employés (l’artémisinine et ses dérivés) est particulièrement alarmante.23  

                                                 
23 Arnou, B.; Montigny, C; Morth, J. P.; Nissen, P.; Jaxel, C.; Møller, J. V.; le Maire, M. Biochem. Soc. Trans. 
2011, 39, 823–831.  
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Figure 18 

Il a été montré récemment que la Tg possédait également une activité antimalarique par 

inhibition de la PfATP6, un transporteur de Ca2+ spécifique du Plasmodium falciparum, 

homologue de la SERCA humaine (la PfATP6 comporte une séquence à 39% identique avec 

la SERCA humaine). En 2011, une forme stable de cette enzyme a été isolée, ce qui a permis 

de connaitre le site de liaison de la Tg et de constituer un outil pour les études de relation 

structure –activité (Figures 19 et 20). 

 
Figure 19 : Comparaison de la structure de la 

SERCA1a et de la PfATP6 
 

 
Figure 20 : Site de liaison de la Tg à la PfATP6. 

Résidus impliqués dans la liaison de la Tg à la 

SERCA1a et conservés dans la liaison à la PfATP6 

(en vert) et les nouvelles interactions (en rouge). La 

Tg est en blanc. 

 

 

La Tg est liée à la PfATP6 dans une région avec des différences substantielles par rapport à la 

SERCA. Il sera donc certainement possible d’exploiter ces différences avec comme objectif, 

l’élaboration d’analogues de la Tg inhibant la PfATP6, mais sans activité sur la SERCA 

humaine.24 

 
                                                 
24 L’artémisinine possèderait également des propriétés inhibitrices de cette enzyme. Ces propriétés sont 
dernièrement contreversées : Arnou, B.; Montigny, C; Morth, J. P.; Nissen, P.; Jaxel, C.; Møller, J. V.; le Maire, 
M. Biochem. Soc. Trans. 2011, 39, 823–831. 
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IV.1.4 Tg : études de relation structure/activité (SAR) 

Les transformations chimiques réalisées par hémisynthèse de la Tg naturelle ont donné accès 

à des analogues avec principalement des modifications des fonctions à la périphérie du motif 

tricyclique. Ces analogues ont conduit à des SAR (par mesure de l’activité inhibitrice de la 

SERCA et de la cytotoxicité) qui supportent et complètent les études issues de l’analyse des 

RX.16,18,25  

Certains groupements portés par la Tg n’ont qu’un effet marginal sur l’activité (en vert), 

d’autres sont primordiaux (en rouge), et enfin d’autres pourront être engagés dans des 

prodrogues (Figure 21). 

 

Figure 21 : Synopsis des SAR de la Tg 

 

Cependant, il n’y a que très peu d’exemples d’analogues dans la littérature, avec des 

modifications significatives du squelette.  

Plus précisément, il apparait que les centres en C3 et C8 sont essentiels pour le 

maintien de l’activité de la Tg, (Tableau 1, entrées 2 et 3). De plus, un composé déoxygéné en 

C2, sans double liaison en C4-C5 et dont l’OH en 10 est substitué par un groupe acétate ou 

éthyle, est dix fois plus actifs que la Tg (Tableau 1, entrées 5 et 6). En contraste, des 

modifications au niveau de la lactone n’ont qu’un effet marginal (Tableau 1, entrée 7). 

                                                 
25 a) Christensen, S. B., Andersen, A.; Kromann, H.; Treiman, M.; Tombal, B.; Denmeade, S. R.; Isaacs, J. T. 
Bioorg. Med. Chem. 1999, 7, 1273-1280; b) Søhoel, H., Liljefors, T.; Ley, S. V.; Oliver, S. F.; Antonello, A.; 
Smith, M. D; Olsen, C. E.; Isaacs, J. T.; Christensen, S. B. J. Med. Chem. 2005, 48, 7005-7011; c) Andrews, S. 
P.; Tait, M. M.; Ball, M.; Ley, S. V. Org. Biomol. Chem., 2007, 5, 1427–1436; d) Jakobsen, C. M.; Denmeade, 
S. R.; Isaacs, J. T.; Gady, A.; Olsen, C. E.; Christensen, S. B. J. Med. Chem. 2001, 44, 4696-4703; e) Oliver, S. 
F.; Hogenauer, K.; Simic; O.; Antonello, A.; Smith, M. D.; Ley, S. V. Angew. Chem. Int. Ed. 2003, 42, 5996-
6000; f) Andrews, M. P.; Ball, M.; Wierschem, F.; Cleator, E.; Oliver, S.; Hogenauer, K.; Simic, O.; Antonello, 
A.; Hunger, U.; Smith, M. D.; Ley, S. V. Chem. Eur. J. 2007, 13, 5688-5712; g) Schall, A.; Reiser, O. Eur. J. 

Org. Chem. 2008, 2353–2364. 
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Tableau 1 : Activités biologiques relatives de la Tg et d’analogues 

La construction de nouveaux analogues devra s’appuyer sur ces premières données. 
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SYNTHESE ET APPROCHES DE LA 

THAPSIGARGINE 
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Chapitre II : Synthèse et approches de la Thapsigargine 

 

De par sa structure complexe, la synthèse de la Tg représente un véritable défi pour le 

chimiste de synthèse (Schéma 4). En 2007, le groupe de Ley est parvenu à l’élaboration du 

produit naturel et de plusieurs analogues.25f,26 Même si le nombre d’étapes reste important, 

c’est à ce jour la seule synthèse totale décrite. Depuis, de nombreux groupes s’intéressent à 

développer de nouvelles stratégies originales afin d’avoir accès au produit naturel ou à des 

structures analogues de manière plus efficace et plus rapide. Ainsi, les groupes de Massanet27, 

de Kaliappan 28 et très récemment celui de Deprés29 ont élaboré d’autres approches 

synthétiques visant à l’installation des points clés de la molécule.  
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La Tg est un sesquiterpène tricyclique composé d’un motif bicyclique 5-7 et d’une lactone. La 

formation de ce motif de type hydroazulène est l’un des principaux enjeux de la synthèse du 

produit naturel. Par ailleurs, cette molécule possède huit centres stéréogènes selon deux 

enchaînements de quatre centres contigus. L’autre défi synthétique consiste donc en 

l’installation de ces centres asymétriques, notamment ceux en C6, C7, C8 et C11 situés sur la 

partie Sud de la molécule et ceux en C10, C1, C2 et C3 sur la partie Nord. 

                                                 
26 Ball, M.; Andrews, S. P.; Wierschem, F.; Cleator, E.; Smith, M. D.; Ley, S. V. Org. Lett. 2007, 9, 663-666. 
27 Manzano, F. L.; Guerra, F. M.; Morano-Dorado, F. J.; Jorge, Z. D.; Massanet, G. M. Org. Lett. 2006, 8, 2879-
2882. 
28 Kaliappan, K. P.; Nandurdikar, R. S. Org. Biomol. Chem. 2005, 3, 3613-3614. 
29 Thèse de F. Macé, Université de Grenoble, 2012. 
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Dans un premier temps, la stratégie globale de l’équipe de Ley sera brièvement présentée puis 

nous nous intéresserons plus précisément à l’installation des fonctionnalités importantes du 

produit naturel en comparant les approches de Ley et des autres groupes.  

I Synthèse de Ley 

En 2007, l’équipe de S. Ley a synthétisé la Tg en quarante-deux étapes avec un rendement 

global de 0.6%.25f, 26 

 

 
Schéma 5 

 

La stratégie repose sur trois étapes clés : la réaction de contraction de cycle de Favorskii 

conduisant à la formation du cyclopentane hautement fonctionnalisé II, la formation du motif 

bicyclique 5-7 IV par une réaction de métathèse cyclisante et une étape de lactonisation à 

partir du tétraol V générant l’intermédiaire tricyclique très avancé VI. Le produit naturel a 
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finalement été isolé en quinze étapes, à partir de VI, correspondant notamment aux 

estérifications des hydroxyles en position 10, 2, 3 et 8. 

Même si le rendement global de cette synthèse est bon, le nombre d’étapes reste très 

important. En effet, la Tg étant hautement fonctionnalisée et notamment polyhydroxylée, des 

étapes de protections et déprotections ont été indispensables pour assurer la sélectivité de 

chaque réaction. 

Par l’intermédiaire de cette stratégie, différentes structures analogues ont également été 

synthétisées donnant accès à d’autres analogues naturels tels les thapsivillosines C et F, le 

trilobolide ainsi que le nortrilobolide (Schéma 6).7  
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Schéma 6 

II Installation des points clés de la synthèse 

II.1.1 Construction du motif bicyclique 5-7 

Le motif bicyclique [5.3.0] est caractéristique des guaianolides (Schéma 7). Sa formation 

constitue à l’évidence une étape importante de la synthèse du produit naturel.  

 
Schéma 7 
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II.1.1.1 Stratégie de Ley 

La stratégie de S. Ley pour parvenir à la formation de ce motif central de la Tg consiste en la 

construction en premier lieu du cyclopentane. A partir du cyclohexane chloré I, préparé à 

partir de la (S)-carvone, une réaction de contraction de cycle selon Favorskii a permis de 

construire de manière efficace le cycle à 5 I déjà hautement fonctionnalisé avec un excellent 

rendement (Schéma 8).  

 

 
Schéma 8 

La seconde étape clé de cette synthèse est basée sur la fermeture du cycle à 7 par métathèse 

cyclisante conduisant au composé bicyclique II. Un excellent rendement est obtenu par 

utilisation du catalyseur de Grubbs de deuxième génération (Schéma 9). 

 
Schéma 9 

II.1.1.2 Stratégie de Kaliappan 

La stratégie développée par Kaliappan28 en 2005 repose également sur une étape clé de 

métathèse cyclisante. A la différence de Ley, cette réaction est réalisée à partir d’un 

précurseur I comportant deux fonctions alcènes et une fonction alcyne. L’originalité de cette 

voie consiste en une réaction domino conduisant à la formation du motif bicyclique II 

(Schéma 10).  
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Schéma 10 

La différenciation des deux doubles liaisons a permis l’obtention du produit majoritaire. Cette 

méthode reste néanmoins limitée par l’installation de peu de centres. 

II.1.1.3 Stratégie de Massanet 

Les travaux de Massanet en 2006 ont permis de conduire à la formation du motif bicyclique II 

par transposition photochimique selon Barton à partir d’une alcènone bicyclique conjuguée 

I.27 Cette étape clé a été effectuée dans l’acide acétique sous lampe de mercure avec un 

excellent rendement (Schéma 11).  

 
Schéma 11 

Cette méthode rapide et efficace conduit à un produit assez bien fonctionnalisé, les centres 

C10 et C11 étant déjà dans la bonne configuration. 

II.1.1.4 Stratégie de Deprés 

Plus récemment, les travaux de Deprés ont permis d’effectuer la synthèse du composé 

bicyclique attendu V par expansion de cycle de la cétone bicyclique α-gem-dichlorée IV, en 

présence de diazométhane et de pyridine.29,30 Cette dernière a été préparée par cycloaddition 

[2+2] sélective mettant en jeu le dichlorocétène III formé in situ et le méthylcycloheptatriène 

II. La chlorotriénone V a été synthétisée avec un bon rendement pour 3 étapes à partir de l’ion 

tropylium I.  

 

                                                 
30 Coquerel, Y. ; Greene, A. E. ; Deprés, J. P. Org. Lett. 2003, 5, 4453-4455; b) Carret, S.; Deprés, J. P. Angew. 

Chem. Int. Ed. 2007, 46, 6870-6873. 
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Cette méthode, rapide et efficace, a cependant été effectuée à ce jour uniquement en série 

racémique. 

II.1.2 Mise en place des centres C6, C7, C8 et C11 

La Tg est un composé polyoxygéné qui possède notamment 4 centres stéréogènes contigus 

dans sa partie Sud au niveau des alcools secondaires C6 et C8 et tertiaires C7 et C11 

(Schéma 12).  

 
Schéma 12 

A ce jour, seule l’équipe de Ley est parvenue à la construction stéréocontrôlée de ces quatre 

centres.  

II.1.2.1 Stratégie de Ley 

L’alcool secondaire en C6 II a été obtenu après addition de l’aldéhyde I sur l’anion lithié de 

l’éthyl vinyl éther à basse température (Schéma 13). Notons que le ratio diastéréoisomérique 

est excellent, conforme à un contrôle de type Felkin-Anh.  

 

 
Schéma 13 
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Une dihydroxylation asymétrique dans les conditions de Sharpless a ensuite été effectuée à 

partir de l’alcène trisubstitué III pour conduire à la formation stéréocontrôlée de l’alcool 

secondaire en C8 IV avec un excellent rendement (Schéma 14). 

 
Schéma 14 

 

Enfin, les centres stéréogènes en position 7 et 11 ont été installés après dihydroxylation 

diastéréocontrôlée de la double liaison tétrasubstituée V pour conduire après régénération des 

alcools en C6 et C12 à l’obtention du tétraol VI avec un excellent rendement pour deux étapes 

(Schéma 15).  

 

 
Schéma 15 

Il faut noter que la réaction est particulièrement lente à température ambiante, probablement 

dû au fort encombrement stérique généré par le groupement TES. Une excellente sélectivité 

faciale a toutefois été obtenue dans ces conditions. 

II.1.2.2 Stratégie de Massanet 

L’équipe de Massanet s’est également appuyé sur des réactions de dihydroxylation pour 

l’installation des centres C6, C7 et C11, le centre C8 n’ayant pas été mis en place. 

Contrairement à Ley, le centre quaternaire en C11 II a, dans un premier temps, été construit 

dans les conditions de Sharpless avec un bon rendement de 76% à partir de l’alcène 

disubstitué I. Après transposition photochimique, l’action de tétroxyde d’osmium et de NMO 

sur la double liaison trisubstituée en position C6-C7 du composé III a conduit à la formation 

du tétraol IV avec un rendement de 61% et une sélectivité faciale totale (Schéma 16). 
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Schéma 16 

II.1.2.3 Stratégie de Deprés 

La stratégie de Deprés pour la construction des centres C6, C7 et C11 est relativement 

semblable à celle de Massanet. En effet, des réactions de dihydroxylation en simple induction 

à partir de la chlorotriénone I ont été effectuées successivement sur les composés II et IV 

comportant respectivement une double liaison en C11-C12 et en C6-C7 pour conduire à la 

genèse du tétraol V avec des bons rendements et diastéréosélectivités. Cette stratégie se 

démarque par l’installation diastéréosélective de l’ester en position 8. En effet, une réaction 

d’iodo-estérification a été effectuée à partir de la triénone III. Dans ces conditions, seule la 

double liaison disubstituée en position C8-C9 réagit avec le NIS pour conduire 

intermédiairement à la formation d’un pont iodonium. Après ouverture sur la face la moins 

encombrée, en présence d’acide propanoïque, l’espèce iodo ester trans IV a été obtenue avec 

un excellent rendement (Schéma 17). 
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II.1.2.4 Stratégie de Kaliappan 

A partir d’un composé commercial I au sein duquel le centre en C6 est déjà installé dans la 

bonne configuration, l’addition d’un Grignard d’allényle à basse température sur la cétone en 

C7 conduit à la formation diastéréosélective de l’alcool tertiaire II avec un rendement de 70% 

(Schéma 18). 

 
Schéma 18 

La stratégie de Kaliappan ne permet pas d’installer les centres en C8 et C11. 

II.1.3 Installation des centres C10, C1, C2 et C3 

La partie Nord de la Tg comporte quatre centres chiraux contigus en C10, C1, C2 et C3 avec 

un alcool tertiaire en C10 et deux alcools secondaires en C2 et C3 (Schéma 19). 
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Schéma 19 

II.1.3.1 Stratégie de Ley 

Dans la synthèse élaborée par l’équipe de Ley, le centre en C1 provient de la (S)-carvone. 

L’installation de l’alcool tertiaire en C10 a été effectuée après addition d’un allyl magnésien 

sur la cétone I. A basse température, les meilleurs résultats ont été obtenus en pré-mixant 

MgBr2
.Et2O avec la cétone pour conduire à la formation majoritaire du diastéréoisomère issu 

d’un contrôle de type Felkin-Anh II (Schéma 20). 

 

 
Schéma 20 

 

Après élaboration de l’éther d’énol silylé IV à partir de la cétone III, l’oxydation en présence 

de diméthyldioxirane a permis d’installer l’hydroxyle en C2 du composé IV avec une 

sélectivité totale sur la face exo. Le mécanisme proposé consiste en la formation de l’époxyde 

V puis régénération de la cétone en C3 (Schéma 21). 
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Enfin, l’installation du centre C3 (formation du composé VIII) a été effectuée après réduction 

de la cétone VII. Afin d’obtenir sélectivement le diastéréoisomère souhaité, une étude 

méthodologique a été conduite par utilisation de différents réducteurs. L’utilisation d’un 

réducteur non chélatant tel NaBH4 a conduit à la formation du diastéréoisomère non souhaité 

par transfert d’un hydrure sur la face endo, le groupement SEM encombrant la face exo. Le 

meilleur résultat a été obtenu en présence du réducteur chélatant Zn(BH4)2 (Schéma 22).  

 
Schéma 22 

Le zinc se complexerait à l’oxygène riche en électrons du groupement SEM et permettrait 

ainsi le transfert d’hydrure sur la face exo.  

II.1.3.2 Stratégie de Massanet 

L’approche de Massanet permet l’installation des centres en C10 et C1 en un seul pot. En 

effet, lors de la transposition photochimique selon Barton, le mécanisme postulé est l’attaque 

diastéréosélective en milieu acide de l’acide acétique sur la position 10 I. Cela engendre une 

transposition et conduit à la formation du motif bicyclique 5-7 II de sorte que l’hydrogène en 

C1 et l’acétate en C10 du composé III soient cis l’un par rapport à l’autre (Schéma 23). 
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Schéma 23 

 

 

 

 

Pour conclure, une seule synthèse totale du produit naturel et trois approches plus ou moins 

élaborées ont été effectuées.  

En ce qui concerne la construction du motif bicyclique 5-7, chaque voie est originale utilisant 

des modes de construction différents. Si l’équipe de Ley a tout d’abord construit le cycle à 5 

chaînons puis le cycle à 7, les équipes de Massanet et Deprés ont travaillé par transposition 

sur des composés bicycliques pré-existants. L’équipe de Kaliappan s’est, elle, intéressée à la 

construction en un seul pot de l’hydroazulène par réaction domino. 

Il est intéressant de constater que la majeure partie des stratégies a consisté en la mise en 

place, dans un premier temps, des centres asymétriques de la partie Nord puis de la partie 

Sud.  

Par ailleurs, nous pouvons noter que dans les stratégies de Ley, Massanet et Deprés, les 

centres stéréogènes en C6, C7 et C11 ont été installés par dihydroxylation. 
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Chapitre III : Stratégie de synthèse et méthodologies 

associées 

I. Stratégie de synthèse 

 

Le produit naturel sesquiterpénique Tg comporte un système bicyclique 5-7 ainsi qu’une γ-

lactone. Dans le cadre de cette thèse, la stratégie envisagée repose sur la construction du motif 

hydroazulène B par une réaction de cyclocarbonylation de Pauson-Khand à partir d’un 

précurseur allène-yne A (Schéma 24).  

 

 
Schéma 24 

 

Cette voie se démarque parfaitement de la synthèse ainsi que des approches précédemment 

décrites dans la littérature puisqu’elle permet la formation, en une seule étape, du cycle à cinq 

chaînons fusionné au cycle à sept chaînons. De plus, en vue de la synthèse du produit naturel, 

cette méthode présente l’avantage de pouvoir accéder à un motif diénone rendant possible 

l’installation directe des centres C1, C3 et C10. 

 

Deux grandes zones ont été définies au niveau de la molécule, une partie Sud, comportant les 

centres asymétriques C6, C7, C8 et C11 contigus ainsi que le motif γ-lactonique, en bleu et 

une partie Nord, comprenant les centres stéréogènes C10, C1, C2 et C3, en rouge (Figure 

22). 
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Figure 22 

 

Afin d’élaborer le précurseur allène-yne de la réaction de Pauson-Khand, deux stratégies ont 

été envisagées. 

 

La première approche repose sur la fonctionnalisation autour du centre C7, installé 

précocement, par l’intermédiaire de l’époxyde chiral C (Schéma 25). Ce substrat de départ est 

intéressant car il peut être préparé aisément selon une méthode d’époxydation de Sharpless 

efficace et robuste à grande échelle. De plus, cet époxyde offre une grande liberté dans la 

construction des différents bras autour de ce carbone. 

Nous avons, dans un premier temps, proposé la voie suivante : l’ouverture de l’époxyde C par 

un groupement vinyle permettra d’installer les carbones C6 et C12 de la γ-lactone. Cette 

réaction sera suivie d’une réaction d’alcynylation pour mettre en place le bras C6-C4 et 

conduire à l’alcool propargylique D constituant la partie Sud de la molécule.  

La partie Nord sera ensuite construite par réaction de propargylation pour installer le centre 

stéréogène C8, ce qui permettra d’accéder à l’allène-yne A1, précurseur de la réaction de 

Pauson-Khand (Schéma 25). 
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Schéma 25 

Dans le cadre de cette approche, il nous a paru important de valider ce type de stratégie par la 

synthèse d’un modèle de structure simplifiée. 

 

 

En parallèle de cette approche, dite de première génération, nous avons voulu expérimenter 

une voie consistant à mettre en place dès le début de la synthèse les centres asymétriques 

contigus en C6, C7, C8 et C11 de la Tg 1 avec construction du motif γ-lactonique afin 

d’établir la partie Sud.  

La stratégie envisagée repose sur la fonctionnalisation de l’énynol E. Ce produit de départ est 

particulièrement adapté car il comporte déjà la triple liaison C4-C5, nécessaire pour la 

réaction de Pauson-Khand, une double liaison C6-C7 dans la bonne configuration pour 

l’aménagement des deux hydroxyles cis, une fonction bromure vinylique à partir duquel il 

sera possible d’installer les carbones C11 et C12 et donc le motif lactonique, et enfin une 

fonction hydroxyle primaire en C8, support de la mise en place de la partie Nord par réaction 

de propargylation. L’ordre de ces différentes étapes est parfaitement modulable (Schéma 26). 

 

La stratégie envisagée dans un premier temps, consistera à réaliser une réaction de 

propargylation énantiosélective à partir de cet énynol E pour conduire au diyne F. Puis la 

lactone G 8-12 sera construite avec mise en place de l’alcool tertiaire en C11. Après réaction 
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de dihydroxylation (formation du triol H), translactonisation et formation de l’allène, l’allène-

yne A2, précurseur de la réaction de Pauson-Khand pourra être élaboré (Schéma 26). 

 

 
Schéma 26 

 

Avant l’exposé des travaux personnels, seront présentées, dans ce chapitre, les méthodologies 

de synthèse associées aux étapes clés de ces stratégies, notamment les réactions :  

- de cyclocarbonylation de Pauson-Khand ène-yne et allène-yne,  

- de propargylation asymétrique pour la synthèse d’alcools homopropargyliques, 

- et d’alcynylation asymétrique donnant accès à des alcools secondaires propargyliques. 

 

Dans, un premier temps, un rappel bibliographique sur la construction des systèmes 

sesquiterpéniques bicyclo[5.3.0]décanes sera développé. 
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II Méthodologies associées 

II.1.1 Synthèses des sesquiterpènes bicyclo[5.3.0]décane 

Les terpénoïdes peuvent être divisés en plusieurs familles basées sur le nombre d’unités 

isoprénoïdes qui les compose. Les sesquiterpènes ou sesquiterpénoïdes sont l’une de ces 

familles. Ils possèdent quinze carbones résultant de l’assemblage de trois unités isoprénoïdes. 

Ces molécules sont très présentes dans la nature avec une grande diversité de structure (plus 

de 200 squelettes répertoriés, qu’ils soient acycliques, monocycliques, bicycliques, 

tricycliques ou tétracycliques) (Figure 23).31  

 
Figure 23 

Dans la famille des sesquiterpènes, il est possible de distinguer les sesquiterpènes proprement 

dits qui sont des molécules d’origine naturelle caractérisées par un motif hydroazulène 

correspondant à un cycle à cinq chaînons fusionné à un cycle à sept chaînons (Figure 24). 

 
Figure 24 

Ces vingt dernières années, de nombreuses études ont été menées quant à leur élaboration.32 Il 

est possible de classer les méthodologies utilisées pour leur synthèse selon leur mode de 

construction :  

- soit par formation séquentielle des deux cycles à cinq et à sept chaînons,  

- soit par transposition de cycle(s), 

- soit encore par formation simultanée du système bicyclique hydroazulène. 

 

Nous présenterons ici quelques exemples de synthèse de sesquiterpènes selon ces différents 

critères.  

                                                 
31 Mann, J.; Davidson, R. S.; Hobbs, J. B.; Banthorpe, D. V.; Harborne, J.B. Natural Products; Their Chemistry 

and Biological Signifiance, 1ère ed., Longman: 1994. 
32 Foley, D. A.; Maguire, A. R. Tetrahedron 2010, 66, 1131-1175. 
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II.1.1.1 Installation préliminaire du cycle à cinq chaînons  

Le groupe de Mehta en 2002 a mis au point l’élaboration d’un intermédiaire bicyclique V 

hautement fonctionnalisé en vue de la synthèse totale du diterpène tricyclique guanacastépène 

A à activité antibiotique.33 La construction du cycle à 5 chaînons II est réalisée à partir du 

composé I, par réaction de rétro Diels-Alder, en début de synthèse. La seconde étape clé 

réside en la formation du cycle à sept chaînons par une réaction de métathèse cyclisante à 

partir du diène III. Ainsi, le composé bicyclique IV a été obtenu en présence du catalyseur de 

Grubbs I avec un excellent rendement de 95% (Schéma 27).  

 
Schéma 27 

La métathèse cyclisante est une méthode de choix pour la synthèse de ces systèmes 

bicycliques et plus généralement pour la synthèse de grands et moyens cycles. Cette réaction, 

particulièrement chimiosélective, a d’ailleurs été utilisé par l’équipe de Ley dans la synthèse 

totale de la Tg.25f, 26 

 

Il nous a paru également intéressant de citer les travaux de Liu pour la synthèse du système 

bicyclique de diverses lactones sesquiterpéniques de type VI. Une réaction d’allylation 

intramoléculaire impliquant un complexe de tungstène a été mise en jeu pour la construction 

du cycle à sept sommets. La séquence est la suivante : le complexe π-allyltungstène III est 

isolé après métallation du chlorure de propargyle I puis alcoxycarbonylation du tungstène 

propargylique II ainsi obtenu, en présence d’acide triflique dans l’éthanol, avec un rendement 

global de 44% pour trois étapes.34 Puis, le complexe π-allyl tungstène IV, généré par 

traitement de l’intermédiaire III par le tétrafluoroborate de nitrosyle et le chlorure de lithium, 

                                                 
33 Mehta, G.; Umarye, J. D. Org. Lett. 2002, 4, 1063-1066. 
34 Narkunan, K.; Shiu, L. -H.; Liu, R. -S. Synlett 2000, 9, 1300-1302. 
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réagit de façon intramoléculaire avec la fonction aldéhyde pour conduire à l’alcool 

homoallylique V sous la forme d’un bicycle 5-7. La lactone sesquiterpénique VI attendue est 

finalement isolée avec un rendement de 47% (Schéma 28). La cyclopentanone I est élaborée 

en cinq étapes avec un rendement global de 55% par alkylation diastéréosélective de la 2-

méthylcyclopenténone commercial. 
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Schéma 28 

L’équipe de Snapper a développé une nouvelle méthode de synthèse de ces squelettes 

bicycliques par fragmentation, en conditions thermiques ou en présence d’un acide de Lewis, 

d’adduits cyclopropanes particulièrement contraints, pour l’élaboration du cycle à sept 

chaînons.35,36 Ainsi, à partir de précurseurs tétracycliques II, l’utilisation de BF3
.Et2O après 

oxydation de l’alcool secondaire par le PCC, conduit à la formation de structures 

bicyclo[5.3.0]décanone III avec de bons rendements (Schéma 29). Le cyclopentanol de départ 

II a été préparé, à partir du complexe fer-cyclobutadiène I, en 2 étapes par cycloaddition et 

cyclopropanation. 

 

                                                 
35 Deak, H. L.; Stockes, S. S.; Snapper, M. L. J. Am. Chem. Soc. 2001, 123, 5152-5153. 
36 Deak, H. L.; Williams, M. J.; Snapper, M. L. Org. Lett. 2005, 7, 5785-5788. 
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Schéma 29 

Le mécanisme proposé par les auteurs consisterait en une activation de la cétone A par l’acide 

de Lewis (AL). La formation de l’énol engendrerait la fragmentation de la liaison C3-C7 

(formation du cation C). Celui-ci subirait alors une relaxation conformationnelle pour générer 

l’intermédiaire « chaise » D. La liaison C6-C4 se fragmenterait ensuite pour former un cation 

cycloheptényle E. Enfin, après tautomérisation de l’énol et dissociation de l’acide de Lewis, 

le composé bicyclique [5.3.0] II serait obtenu avec rétention de configuration (Schéma 30). Il 

est à noter que la réaction fonctionne également sans acide de Lewis mais les rendements sont 

moins bons. 

 

 
Schéma 30 

Cette méthode a également permis la synthèse de structures bicycliques 5-6. Néanmoins, elle 

reste limitée à des composés comportant une fonction cétone sur le cycle à 5, indispensable 

pour initier la transposition.  

II.1.1.2 Installation préliminaire du cycle à sept chaînons  

Un autre mode de synthèse des composés bicycliques 5-7 consiste en la construction 

préliminaire du cycle à sept chaînons avant celui à cinq chaînons.  

Récemment, le groupe de Yeh a décrit la synthèse d’azulénols en construisant tout d’abord le 

cycle à sept chaînons II par double alkylation d’un malonate par un complexe cationique 
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cyclohexadiénique de fer I puis par le bromure de propargyle après décomplexation par le 

nitrate de cérium et d’ammonium.37 Le cycle à cinq chaînons est ensuite élaboré par réaction 

d’alcoxycyclisation intramoléculaire de la diényne cyclique II précédemment obtenue par 

catalyse par le dichlorure de platine (PtCl2) avec des rendements allant de 55 à 65%. Le 

mécanisme envisagé consiste, après activation de la triple liaison par le platine, en une 

cyclisation 5-exo-dig conduisant à l’intermédiaire bicyclique IV de jonction de cycle cis. Une 

transposition permet alors l’obtention de l’intermédiaire platinacarbène cyclopropyle V qui 

subit l’attaque, en position allylique, de l’alcool ROH présent dans le milieu. L’espèce VI 

générée, correspond à une attaque de l’alcool sur la face convexe du bicycle. Après 

élimination réductrice du platine, le composé bicyclique III comportant un alcool secondaire 

de stéréochimie contrôlée et une double liaison exo, est formé (Schéma 31). 

 
Schéma 31 

 

                                                 
37. Yeh, M. -C. P.; Tsao, W. -C.; Cheng, S. -T. J. Org. Chem. 2008, 73, 2902-2904. 
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II.1.1.3 Transpositions de cycle 

Une alternative à la formation de ces motifs bicyclo[5.3.0]décane est la transposition de 

systèmes cycliques pré-existants. L’utilisation de la chimie radicalaire a par exemple donné de 

très bons résultats dans ce domaine. 

 

La chimie radicalaire est une méthode largement répandue pour la création de liaisons 

carbone-carbone. Le groupe de Booker-Milburn a ainsi établi une nouvelle approche pour 

accéder aux structures bicycliques 5-7.38 L’utilisation de deux équivalents de trichlorure de fer 

(FeCl3) anhydre permet l’expansion cyclique du motif I comportant un cyclopropane substitué 

par un éther de triméthylsilyle pour conduire de façon stéréocontrôlée à la cétone bicyclique 

II. Le premier équivalent de FeCl3 permettrait la formation d’un alcoxy radical III. Le cycle à 

sept chaînons IV serait ensuite construit après régénération de la cétone et fragmentation de la 

liaison commune au cyclopropane et cyclohexane. Enfin, une cyclisation 5-exo-trig suivie du 

piégeage du radical primaire ainsi engendré par le deuxième équivalent de FeCl3 conduirait au 

au bicycle II avec un rendement de 64% (Schéma 32). 

 

 
Schéma 32 

Pour expliquer la sélectivité observée, les auteurs ont envisagé un état de transition au sein 

duquel le conformère le plus stable correspondrait à une position équatoriale du substituant 

butényle (IVb par rapport à IVa) (Schéma 33). De ce fait, le cycle à cinq chaînons est formé 

avec une jonction de cycle trans (V).  

                                                 
38 Booker-Milburn, K. I.; Thompson, D. F. J. Chem. Soc. Perkin Trans. 1 1995, 2315-2321. 
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Cette méthode a également permis de construire des systèmes bicycliques 5-6 et 5-8. Par 

contre, l’utilisation de la chimie radicalaire ainsi que la présence de FeCl3 qui est un puissant 

acide de Lewis, peut engendrer des problèmes de chimiosélectivité sur des substrats plus 

complexes. 

 

II.1.1.4 Synthèse du motif hydroazulène en une étape 

Les réactions de cycloaddition représentent une méthode efficace pour accéder à une grande 

variété de taille de cycles. Les réactions de cycloaddition [5+2] en mode intramoléculaire de 

vinylcyclopropanes et d’alcynes catalysées par le ruthénium ont été initiées par Wender.39 

Trost a repris ces résultats avec un complexe de rhodium cationique pour la synthèse de divers 

composés bicycliques.40 Ainsi, plusieurs structures bicycliques [5.3.0] ont pu être synthétisées 

avec d’excellents rendements en utilisant le catalyseur cationique [CpRu(MeCN)3PF6] 

(Schéma 34). 

 

 
Schéma 34 

D’un point de vue mécanistique, il est suggéré que le complexe cationique de ruthénium III 

se coordine à la fois à l’alcyne et à l’alcène (formation du complexe IV). L’addition oxydante 

du métal conduit à la formation du ruthénacycle V puis le cycle à 7 II est obtenu après 

transposition (VI) et élimination réductrice du complexe métallique (Schéma 35). 

                                                 
39 Wender, P. A.; Takahashi, H.; Witulski, B. J. Am. Chem. Soc. 1995, 117, 4720-4721. 
40 Trost, B. M.; Toste, F. D.; Shen, H. J. Am. Chem. Soc. 2000, 122, 2379-2380. 
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Schéma 35 

 

En conclusion les composés bicycliques 5-7 sont préparés, dans la littérature, par le biais de 

trois procédés principaux.  

Le mode séquentiel a pour avantage la possibilité de former des systèmes bicycliques 5-7 

hautement fonctionnalisés.  

Les transpositions de cycle, bien que particulièrement élégantes, sont trop souvent limitées à 

des substrats peu diversifiés.  

Enfin, l’élaboration de bicycles 5-7 en une seule étape par catalyse organométallique constitue 

sans aucun doute la méthode la plus efficace même à partir de substrats particulièrement 

fonctionnalisés.  

La réaction de cycloaddition [2+2+1] de Pauson-Khand appartient à cette dernière catégorie. 

Cette méthode, choisie pour l’élaboration du motif hydroazulène de la Tg, fera l’objet d’un 

rappel bibliographique spécifique. 
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II.1.2 La réaction de Pauson-Khand 

 

La réaction de Pauson-Khand consiste en une cycloaddition [2+2+1] à trois composants 

impliquant une fonction alcyne, du monoxyde de carbone (CO) et un troisième partenaire. La 

réaction peut être déclinée en deux modes principaux selon la nature du dernier partenaire. 

Lorsque celui-ci est un alcène, il s’agira d’une réaction de type Pauson-Khand ène-yne. En 

présence d’un allène, ce sera une réaction de type Pauson-Khand allène-yne. Ces 

cyclocarbonylations sont devenues, depuis plusieurs années, la méthode de choix pour former 

des cyclopenténones fonctionnalisées.41  

Dans ce chapitre, nous présenterons les principes et avancées majeures des réactions de 

Pauson-Khand ène-yne et allène-yne ainsi que leur application en synthèse de produits 

naturels, notamment en version intramoléculaire avec l’objectif d’élaborer des systèmes 

bicycliques.42 

II.1.2.1 Réaction de Pauson-Khand ène-yne 

II.1.2.1.1 Introduction 

II.1.2.1.1.1 Découverte et principe 

Pauson et Khand ont décrit en 1973 la synthèse de cyclopenténones sous la forme de quatre 

régioisomères par chauffage d’un mélange constitué du complexe dicobalt octacarbonyle 

[Co2(CO)8], d’un alcène et d’un alcyne, en quantités stœchiométriques et sous pression de 

monoxyde de carbone (Schéma 36).43 

 

 
Schéma 36 

                                                 
41a) Lee, H. W.; Kwong, F. Y. Eur. J. Org. Chem. 2010, 789-811; b) Inagaki, F.; Kitagaki, S.; Mukai, C. Synlett 
2011, 5, 594-614; c) Alcaide, B.; Almendros, P. Eur. J. Org. Chem. 2004, 3377-3383. 
42 Ne seront pas développées dans ce chapitre les réactions hétéro-Pauson-Khand. Pour quelques exemples, se 
référer à: a) Bates, R.; Dridhar, S. J. Org. Chem. 2008, 73, 8104-8105; b) Adrio, J.; Carretero, J. C. J. Am. Chem. 

Soc. 2007, 129, 778-779; c) Gao, P.; Xu, P.-F.; Zhai, H. J. Org. Chem. 2009, 74, 2592-2593. 
43 a) Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E. J. Chem. Soc. D: Chem. Comm. 1971, 36; b) Khand, 
I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E.; Foreman, M. I. J. Chem. Soc. Perkin Trans. 1 1973, 977-979; c). 
Pauson, P. L.; Khand, I. U. Ann. N. Y. Acad. Sci. 1977, 295, 2-14. 
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En 1985, l’équipe de Magnus a proposé un mécanisme réactionnel en se basant sur des 

observations régio- et stéréochimiques, en conditions intramoléculaires.44 En mettant en 

réaction l’ène-yne 2 en présence du complexe de cobalt dans l’heptane saturé en CO, la 

cyclopenténone bicyclique 3 a été synthétisée avec un bon rendement et une excellente 

diastéréosélectivité (Schéma 37).  

 
Schéma 37 

Pour expliquer cette stéréosélectivité, les auteurs suggèrent, dans un premier temps, une 

coordination du métal à la fonction alcyne d’où la formation d’un complexe stable et isolable 

alcyne-[Co2(CO)6] I. Par chauffage, deux intermédiaires cobaltacycles II et III seraient 

générés après insertion de l’oléfine dans la liaison cobalt-carbone. Le contrôle 

diastéréosélectif proviendrait de la forte interaction 1,3-pseudo-diaxiale entre les deux 

substituants R1 et R2 au sein du composé III en défaveur de sa formation. A l’inverse, 

l’intermédiaire bicyclique II serait majoritaire, les interactions stériques étant minimisées. Par 

conséquent, la sélectivité de la réaction serait donc directement fonction de la taille du 

groupement R1. Le métallacycle II subirait ensuite une insertion de CO pour former le 

complexe acyl-Co IV, d’où la migration sur le carbonyle électrophile adjacent permettant 

ainsi l’obtention du composé V. Finalement, la cyclopenténone 3 majoritaire serait générée 

après élimination réductrice du métal (Schéma 38). 

                                                 
44a) Exon, C.; Magnus, P. J. Am. Chem. Soc. 1983, 105, 2477-2478; b) Magnus, P.; Principe, L. M. Tetrahedron 

Lett. 1985, 26, 4851-4854. 
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Schéma 38 

La réaction de Pauson-Khand a provoqué dès sa découverte un fort intérêt dans la 

communauté scientifique puisqu’elle conduit avec une grande chimiosélectivité à une large 

gamme de cyclopenténones diversement substituées. 

Cependant, la méthode originale présente plusieurs inconvénients. Tout d’abord, le catalyseur 

de cobalt, utilisé en quantité stœchiométrique est toxique. En outre, les conditions 

réactionnelles relativement drastiques (haute température, temps de réaction prolongé) font 

également partie des paramètres limitant de la réaction. Ainsi, depuis les années 80, de 

nombreuses améliorations ont été apportées. 

Nous présenterons une partie de ces avancées dans les paragraphes suivants. 

II.1.2.1.1.2 Optimisation de la méthode 

Conscients du fort potentiel de cette réaction, des études ont été conduites afin d’améliorer les 

conditions réactionnelles. Nous traiterons ci-après de la réaction de Pauson-Khand en 

présence d’additifs ainsi que de l’abaissement du taux catalytique. 

II.1.2.1.1.2.1 - utilisation d’additifs 

L’utilisation de différents types d’additifs dans le système tels des dérivés de type N-oxydes, 

S-oxydes, sulfates, phosphines et phosphites a été testée. En 1990, le groupe de Schreiber a 

été l’un des premiers à initier le mouvement en ajoutant un oxydant, le N-oxyde de N-
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méthylmorpholine (NMO), en fort excès, pour la formation de la cyclopenténone 5 avec un 

très bon rendement à partir de l’ényne 4 à température ambiante sans ajout de CO (Schéma 

39).45 La stéréosélectivité 5:1 obtenue proviendrait de l’approche du complexe métallique à 

l’opposé du groupement TBS.  

 
Schéma 39 

Il a été montré que les additifs tels les N-oxydes permettent l’oxydation d’un des ligands CO 

du cobalt I pour former du CO2 (Schéma 40). Cela libère un espace vacant dans la sphère de 

coordination du métal, ce qui permet la complexation de l’oléfine II et l’abaissement de la 

température de la réaction.  

 
Schéma 40 

 

II.1.2.1.1.2.2 - abaissement de taux catalytique 

La première avancée significative a certainement été réalisée par le groupe de Jeong en 1994 

qui a effectué la synthèse de différentes cyclopenténones bicycliques en réduisant 

considérablement la quantité de complexe de cobalt utilisée (3 mol%).46 La clé de leur succès 

a été l’introduction du triphénylphosphite comme co-ligand (Schéma 41). De plus, dans ces 

conditions, il est possible de noter qu’une pression de CO relativement faible est suffisante 

pour le bon déroulement de la réaction. 

                                                 
45 Shambayati, S.; Crewel, W. E.; Schreiber, S. L. Tetrahedron Lett. 1990, 31, 5289-5292. 
46 Jeong, N.; Hwang, S. H.; Lee, Y.; Chung, Y. K. J. Am. Chem. Soc. 1994, 116, 3159-3160. 
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Co2(CO)8 (3 mol %)

(PhO)3P (9 mol %)
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R = alkyl, aryl
Z = C(CO2Et)2, CMe2, O, NTs

Z

R

51-94%

 
Schéma 41 

Dans cette optique, le groupe de Perez-Castells a proposé une méthode intéressante consistant 

à mettre en jeu comme source de CO, du tamis moléculaire 4Å préalablement traité par du 

CO.47 Ainsi, par réaction avec une quantité catalytique de [Co2(CO)8] sous atmosphère 

d’azote, différentes enynes ont conduit à la formation de cyclopenténones bicycliques avec de 

bons rendements (Schéma 42).  

 
Schéma 42 

Par ailleurs, il est intéressant de noter qu’en absence de tamis moléculaire et sous une 

atmosphère de CO, les rendements sont sensiblement inférieurs. 

 

Le groupe de Leitner en 2007 a montré que le cobalt de Raney commercial pouvait être utilisé 

comme catalyseur recyclable dans les réactions de cyclocarbonylation intra- et 

intermoléculaires (Schéma 43).48 

 

 
Schéma 43 

Les rendements sont excellents. Néanmoins, les conditions drastiques de la réaction 

constituent l’inconvénient majeur de cette méthode. 

II.1.2.1.1.3 Contrôle de la chiralité 

                                                 
47 a) Blanco-Urgoiti, J.; Casarrubios, L.; Dominguez, G.; Pérez-Castells, J. Tetrahedron Lett. 2002, 43, 5763-
5765; b) Blanco-Urgoiti, J.; Abdi, D.; Domínguez, G.; Pérez-Castells, J. Tetrahedron 2008, 64, 67-74. 
48 Muller, J.-L.; Ricker, A.; Leitner, W. Adv. Synth. Catal. 2007, 349, 287-291. 
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La réaction de Pauson-Khand intramoléculaire conduit à la formation de composés 

bicycliques et donc à la création d’un voire deux centres stéréogènes. La possibilité de 

contrôler la configuration de ces centres a retenu l’attention de nombreux chercheurs depuis 

plusieurs années. Deux possibilités sont offertes : 

- soit la chiralité est présente sur le substrat de départ (R*) favorisant la formation d’un 

isomère majoritaire (contrôle par le substrat) (Schéma 44, voie A), 

- soit le contrôle est géré par utilisation de ligands chiraux L* (contrôle par le réactif) 

(Schéma 44, voie B). 

 
Schéma 44 

II.1.2.1.1.3.1 - contrôle par le substrat 

Très récemment, le groupe de Martin-Castro a décrit une réaction de Pauson-Khand 

stéréocontrôlée par le substrat de départ. A partir de l’arylsulfone optiquement active 6 et par 

mise en jeu d’une quantité stœchiométrique de Co2(CO)8 et d’un excès de NMO, la 

cyclopenténone bicyclique 7 a pu être synthétisée avec un bon rendement et une excellente 

diastéréosélectivité (Schéma 45).49 

 
Schéma 45 

Lors de la réaction, le complexe cobalt-alcyne peut adopter deux types de conformation 

différente. L’état de transition T1 exo suggère que le groupement arylsulfone occupe une 

position pseudo-axiale, interagissant fortement avec le groupement phényle de l’oléfine. Par 

contre, dans l’état de transition T2 endo, ces interactions sont minimisées ; c’est donc cet état 

de transition T2 qui rend compte de la diastéréosélectivité de la réaction (Schéma 46). 
                                                 
49 Garcia Ruano, J. L.; Torrente, E.; Parra, A.; Aleman, J.; Martin-Castro, A. M. J. Org. Chem. 2012, 77, 6583-
6599. 
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Schéma 46 

II.1.2.1.1.3.2 - contrôle par le réactif 

Le groupe de Hiroi en 2000 a été le précurseur dans la réalisation de la réaction 

énantiosélective de Pauson-Khand catalysée par un complexe de cobalt.50 Par criblage d’un 

panel de ligands chiraux avec une quantité catalytique de [Co2(CO)8], c’est le ligand (S)-

BINAP qui a permis les meilleurs résultats pour la synthèse de tétrahydropentalénones 

énantioenrichies. Les rendements sont plutôt modestes et les excès énantiomériques moyens à 

bons selon le substrat (Schéma 47).  

 
Schéma 47 

Il est à noter que lorsque l’alcène est substitué, les rendements et excès chutent fortement. 

Plus récemment, le groupe de Verdaguer a effectué une réaction de Pauson-Khand 

intermoléculaire conduisant à la cyclopenténone tricyclique 9 énantioenrichie à partir de 

TMS-acétylène et de norbornène par utilisation du ligand chiral sulfinylméthyle phosphine 8 

avec d’excellents rendement et excès énantiomérique (Schéma 48).51 

 

                                                 
50 a) Hiroi, K.; Watanabe, T.; Kawagishi, R.; Abe, I. Tetrahedron: Asymmetry 2000, 11, 797-808; b) Hiroi, K.; T. 
Watanabe, Kawagishi, R.; Abe, I. Tetrahedron Lett. 2000, 41, 891-895. 
51 Ferrer, C.; Riera, A.; Verdaguer, X. Organometallics 2009, 28, 4571-4576. 
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Schéma 48 

Si cette réaction est effectuée avec une grande régiosélectivité, l’inconvénient notable reste 

cependant l’utilisation du ligand chiral 8 en quantité stœchiométrique. Celui-ci est synthétisé 

en 3 étapes avec des rendements modestes à partir du (1R,2S,5R)-(-)-menthyl (S)-p-

toluènesulfinate commercial.51,52
 

II.1.2.1.2 Réaction de Pauson-Khand catalysée par d’autres sources métalliques 

La réaction de Pauson-Khand catalysée par un complexe de cobalt a été largement utilisée 

depuis sa découverte. Cependant, d’autres sources métalliques se sont également révélées très 

efficaces.  

Sera présentée ci-après une liste non exhaustive des différents métaux utilisés dans cette 

réaction de cyclocarbonylation. 

II.1.2.1.2.1 Complexe de zirconium 

Depuis sa découverte, la réaction de Pauson-Khand s’est diversifiée avec l’utilisation de 

différents métaux de transition. Le groupe de Negishi en 1985 a effectué une réaction de 

cyclocarbonylation à partir du zirconacycle 11 sous atmosphère de CO à 0°C pour conduire à 

la formation de la cyclopenténone bicyclique 12 avec des rendements moyens.53 Le 

métallacycle 11 a été préalablement isolé avec un excellent rendement en faisant réagir 

l’ényne 10 en présence d’une quantité stœchiométrique du complexe de zirconium Cl2ZrCp2 

(Schéma 49). 

                                                 
52 Pour la préparation du ligand 5, se référer à : Maitro, G.; Vogel, S.; Sadaoui, M.; Prestat, G.; Madec, D.; Poli, 
G. Org. Lett. 2007, 9, 5493-5496. 
53 Negishi, E-I.; Holmes, S. J.; Tour, J. M.; Miller, J. A. J. Am. Chem. Soc. 1985, 107, 2568-2569. 
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Schéma 49 

Ce résultat est intéressant puisque la réaction de Pauson-Khand est rapide et réalisée à basse 

température. Cependant, l’utilisation de sels de mercure en quantité stœchiométrique est 

évidemment le facteur limitant de cette méthode.  

II.1.2.1.2.2 Complexe de titane 

Le groupe de Buchwald en 1996 s’est quant à lui intéressé à l’utilisation de quantités 

catalytiques du complexe de titane Cp2Ti(CO)2 pour effectuer des réactions de Pauson-Khand 

à partir d’une variété d’énynes sous une atmosphère de monoxyde de carbone afin de générer 

des cyclopenténones bicycliques avec d’excellents rendements (Schéma 50).54 

 

 
Schéma 50 

 

La même année, l’introduction en quantité catalytique d’un complexe de titane chiral 

(S,S)(ebthi)Ti(CO)2 a permis la réalisation de la première réaction de Pauson-Khand 

asymétrique.55 De très bons excès énantiomériques ont été mesurés sous une atmosphère de 

CO (Schéma 51).  

 
Schéma 51 

                                                 
54 Hicks, F. A.; Berk, S. C.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 9450-9451. 
55 Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 11688-11689. 
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Le catalyseur (S,S)(ebthi)Ti(CO)2 est préparé in situ à partir du complexe (S,S)(ebthi)TiMe2 et 

se trouve être particulièrement instable à l’air et à l’humidité.56 

II.1.2.1.2.3 Complexe d’iridium 

La première réaction asymétrique utilisant un catalyseur à base d’iridium a été réalisée en 

2000 par l’équipe de Shibata avec le complexe [Ir(COD)Cl]2 et le ligand chiral (S)-tol-BINAP 

(Schéma 52).57  

 
Schéma 52 

De cette façon, la cyclopenténone bicyclique 13 a été isolée avec d’excellents excès 

énantiomériques.  

II.1.2.1.2.4 Complexe de rhodium 

En 1998, l’équipe de Jeong a montré que la réaction de Pauson-Khand en présence d’une 

quantité catalytique de complexe de rhodium portant un ligand phosphine bidentate, le trans-

[RhCl(CO)(dppp)]2 était possible.58 Ainsi, la synthèse d’une tétrahydropentalénone a pu être 

réalisée avec un excellent rendement sous une atmosphère de CO à haute température 

(Schéma 53). 

 
Schéma 53 

En 2000, une version asymétrique a été mise au point par addition de la phosphine bidentate 

chirale (S)-BINAP au complexe [RhCl(CO)2]2.
59 Dans ces conditions, des composés 

bicycliques ont été élaborés avec de bons à excellents rendements et excès énantiomériques à 

partir d’une variété de 1,6-énynes carbonés, oxygénés ou azotés (Schéma 54). L’ajout d’un sel 

                                                 
56 Pour la préparation du catalyseur (S,S)(ebthi)Ti(CO)2, se référer à: Smith, J. A.; Brintzinger, H. H. J. 

Organomet. Chem. 1981, 218, 159-167. 
57 Shibata, T.; Takagi, K. J. Am. Chem. Soc. 2000, 122, 9852-9853. 
58 Jeong, N.; Lee, S.; Sung, B. K. Organometallics 1998, 7333, 3642–3644. 
59 Jeong, N.; Sung, B. K.; Choi, Y. K. J. Am. Chem. Soc. 2000, 122, 6771-6772. 
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d’argent permet d’exacerber la réactivité du catalyseur en le rendant cationique. Ce 

phénomène augmente donc le caractère π-acide du métal facilitant sa complexation avec 

l’ényne. 

 
Schéma 54 

Le choix du solvant est important quant à l’efficacité de la réaction. Même si dans le toluène 

les réactions sont plus rapides, l’utilisation d’un solvant coordinant tel que le THF augmente 

l’énantiosélectivité. Les auteurs ont proposé un mécanisme au cours duquel le complexe 

cationique [Rh(CO)(S)-BINAP]+ I, généré in situ après réaction avec le sel d’argent, se 

coordinerait à l’ényne conduisant par addition oxydante, à la formation de l’intermédiaire 

Rh(III)-métallacyclopenténone octaédrique II complexé au THF. Enfin, l’insertion migratoire 

de monoxyde de carbone III et l’étape finale d’élimination réductrice permettrait alors 

l’obtention du cyclo-adduit de carbonylation (Schéma 55). 

 
Schéma 55 

L’origine de l’énantiosélectivité a été expliquée par l’examen des deux métallacycles IIa et 

IIb intermédiaires. Il est remarqué une forte interaction stérique au niveau du métallacycle 
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IIb entre le groupement R en position apicale de l’alcyne initial et l’un des groupements 

aromatiques du BINAP. Le métallacycle IIa ne comportant aucune interaction défavorable 

serait donc largement favorisé (Schéma 56). 

 
Schéma 56: Intermédiaires II possibles 

Plus récemment, en 2008, les équipes de Jeong, Genêt et Ratovelomanana-Vidal ont utilisé 

d’autres ligands dérivés du BINAP pour conduire à la formation de cyclopenténones 

bicycliques avec d’excellents rendements et énantiosélectivités sous une pression sub-

atmosphérique de CO (0.1 atm), à température ambiante (Schéma 57).60 

 

 
Schéma 57 

II.1.2.1.3 Application de la réaction de Pauson-Khand ène-yne à la synthèse de produit 

naturel 

Le motif cyclopenténone est fréquemment répandu dans la structure des produits naturels. De 

ce fait, depuis de nombreuses années, la réaction de Pauson-Khand a été largement mise en 

œuvre dans leur synthèse totale. Cette cyclocarbonylation a été, par exemple, l’une des étapes 

clés dans la synthèse de dérivés de prostaglandines (par exemple, le phytoprostane PPB1 type 

I)61 ou de différents systèmes polycycliques imbriqués tels les triquinanes (par exemple, le 

presilphiperfolanol)62 et polyquinanes (Figure 25).  

                                                 
60 Kim, D. E.; Kim, I. S.; Ratovelomanana-Vidal, V.; Genêt, J.-P.; Jeong, N. J. Org. Chem. 2008, 73, 7985-7889. 
61 Vazquez-Romero, A.; Cardenas, L.; Blasi, E.; Verdaguer, X.; Riera, A. Org. Lett. 2009, 11, 3104-3107. 
62 Krafft, M. E.; Kyne, G. M.; Hirosawa, C.; Schmidt, P.; Abboud, K. A.; L’Helias, N. Tetrahedron, 2006, 62, 
11782-11792. 
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Figure 25 

L’équipe de Mukai en 2002 a effectué la synthèse totale de la 8α-hydroxystreptazolone, un 

antifongique et antibiotique.63 La réaction de Pauson-Khand intramoléculaire a été effectuée à 

partir de l’ényne 14. Celui-ci comporte un motif énamine constituant le partenaire oléfine de 

la réaction. Les conditions utilisées, établies par Pérez-Castells47, en présence de Co2(CO)8, de 

N-oxyde de triméthylamine et de tamis moléculaire 4Å « prétraité » par le CO, ont conduit à 

la formation diastéréosélective de la cyclopenténone tricyclique 15 avec un bon rendement. 

(Schéma 58).  

 

 
Schéma 58 

La diastéréosélectivité observée serait dirigée par le groupement TBDPS. En effet, afin de 

minimiser les interactions stériques, le cobalt se complexerait sur l’alcyne à l’opposé de 

l’éther silylé. 

 

Plus récemment, l’équipe de Shishido a effectué la synthèse de la pénostatine B, un puissant 

cytotoxique des cellules P388.64 Ce dérivé de polycétide a été obtenu en utilisant une réaction 

de Pauson-Khand intramoléculaire hautement diastéréosélective suivie d’une réaction de 

métathèse cyclisante (Schéma 59). Le motif tétrahydroindénone intermédiaire 17 a été 

synthétisé après traitement de la diène-yne 16 avec le catalyseur Co2(CO)8 et la N-oxyde de la 

N-méthylmorpholine avec d’excellents rendement (97%) et diastéréosélectivité (>20:1). 

                                                 
63 Nomura, I.; Mukai, C. Org. Lett. 2002, 4, 10-13. 
64 Fujioka, K.; Yokoe, H.; Yoshida, M.; Shishido, K. Org. Lett. 2012, 14, 244-247. 
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Schéma 59 

La bonne diastéréosélectivité observée provient de la formation d’un état de transition 

majoritaire T1 dans lequel le groupement allyle est en position équatoriale. Lorsque ce 

groupement est orienté en position axiale (état de transition T2), il génère une forte interaction 

stérique avec le groupement TMS porté par le complexe de cobalt (Figure 26). 

 
Figure 26 

L’équipe de Winkler en 2005 a effectué une approche de la synthèse de l’ingénol, composé 

tétracyclique polyhydroxylé.65 L’étape clé est une cyclocarbonylation intramoléculaire de 

l’ényne polycyclique 18 (Schéma 60). Dans la littérature, peu de cas sont répertoriés relatifs 

aux réactions de Pauson-Khand ène-yne mettant en réaction une oléfine positionnée en α d’un 

centre néopentylique.66 Les conditions réactionnelles, comme dans l’exemple précédent 

(tamis moléculaire 4Å préalablement traité par le monoxyde de carbone), ont permis la 

formation du composé pentacyclique 19 avec un bons rendement et une sélectivité totale.47 

 
Schéma 60 

 

                                                 
65 Winkler, J. D.; Lee, E. C. Y.; Nevels, L. I. Org. Lett. 2005, 7, 1489-1491. 
66 Pour quelques exemples, se référer à : a) Smit, W. A.; Tumanov, V. V.; Zatonsky G. V. Russ. Chem. Bull., Int. 

Ed. 2003, 52, 2461-2466; b) Tumanov, V. V.; Smit, W. A. Phosphorus, Sulfur and Silicon 2005, 180, 1279-
1283. 
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Ainsi, depuis sa découverte la réaction de Pauson-Khand ène-yne a largement été déclinée et 

optimisée. De nos jours, cette cyclocarbonylation reste une méthode de choix pour la synthèse 

de cyclopenténones bicycliques dans la synthèse de produits naturels.  
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II.1.2.2 Réaction de Pauson-Khand allène-yne 

II.1.2.2.1 Principe 

Face au potentiel que représentait cette réaction de Pauson-Khand ène-yne intramoléculaire 

pour l’obtention des cyclopenténones bicycliques en un seul pot, la méthodologie a été 

étendue à des précurseurs de type allène-yne. L’étude de la fonction allène est intéressante car 

c’est une espèce hautement réactive.41b,41c De plus, cette fonction possédant deux liaisons π, il 

sera possible de former deux types de régioisomères I et II à partir de ce type de précurseur 

(Schéma 61). En référence au mécanisme général de la réaction, le métal peut se complexer, 

soit à la liaison π interne (proximale), conduisant à la synthèse de la cyclopenténone I 

possédant une double liaison exocyclique en α (voie A), soit à la liaison π externe (distale), 

permettant l’obtention du motif diénone endocyclique II (voie B). 

 

 
Schéma 61 

 

La réaction de Pauson-Khand allène-yne a été décrite pour la première fois en 1994 par le 

groupe de Nasaraka67 et peu de temps après par le groupe de Brummond en 1995.68 

Nasaraka a travaillé avec une variété de composés allène-yne soufrés parmi lesquels le 

composé 20, qui, mis en présence d’un complexe de fer [Fe(CO)4(NMe3)] sous photo-

irradiation a conduit à la formation de la diénone bicyclique 21 avec un rendement de 45% 

(Schéma 62). Dans ces conditions, seule la liaison distale réagit. 

 

                                                 
67 Nasaraka, K.; Shibata, T. Chem. Lett. 1994, 315-318. 
68 Kent, J. L.; Wan, H.; Brummond, K. M. Tetrahedron Lett. 1995, 36, 2407-2410. 
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Schéma 62 

Il est intéressant de constater que cette réaction de cyclocarbonylation est possible à partir 

d’un substrat possédant un alcool primaire libre.  

 

L’équipe de Brummond est parvenue à la synthèse de la cyclopenténone α-méthylène 22 en 

utilisant des quantités stœchiométriques de complexe de molybdène [Mo(CO)6] et du DMSO 

dans le toluène à 100°C (Schéma 63). Dans ces conditions, seule la liaison proximale réagit. 

 

 
Schéma 63 

Ces premiers résultats ont prouvé que la réaction de Pauson-Khand allène-yne peut donner 

accès à deux types de régioisomères. Cependant, nous pouvons noter que cette sélectivité est 

dépendante de plusieurs paramètres (nature du métal et du substrat).  

II.1.2.2.2 π interne vs. π externe 

C’est pourquoi, de nombreuses études ont été réalisées afin d’expliquer ces différences de 

régiosélectivité. Nous présenterons dans cette partie, quelques exemples pertinents et 

représentatifs de la problématique. 

II.1.2.2.2.1 Molybdène et rhodium 

L’équipe de Brummond s’est particulièrement intéressée à ces différences de régiosélectivité. 

Une étude a été conduite en présence du complexe de molybdène Mo(CO)6 en faisant varier la 

substitution sur l’allène de départ (Schéma 64). Il a été démontré qu’en mettant en réaction 

des allènes de type 1,3-disubstitués, le métal se complexait exclusivement avec la liaison π 

interne pour conduire à la formation de bicyclo[3.3.0]octane avec de bons rendements.69 

 

                                                 
69 Wan, H.; Brummond, K. M. Tetrahedron Lett. 1998, 39, 931-934. 
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Schéma 64 

Les allènes 3,3-disubstitués ont ensuite été étudiés: lorsque la liaison π interne est encombrée 

stériquement, le métal vient se complexer à la liaison externe pour conduire exclusivement à 

la formation d’une diénone bicyclique avec un bon rendement (Schéma 65).69  

 
Schéma 65 

Ces dernières conditions ont été appliquées au composé 23 hautement fonctionnalisé 

possédant une fonction allène substituée en 3 par un groupement méthyle. Là également, seule 

la diénone tricyclique 24 a été obtenue bien que le rendement reste moyen (Schéma 66).69 

 
Schéma 66 

 

Pour cette étude, il a été montré que lorsque la réaction est catalysée par un complexe du 

molybdène, l’environnement de l’allène avait un rôle prépondérant dans la régiosélectivité.  

 

D’autres métaux ont par la suite été étudiés. En 2002, un complexe de rhodium [Rh(CO)2Cl]2 

a été utilisé en quantité catalytique.70 Contrairement aux essais avec le complexe de 

molybdène, l’environnement de l’allène n’influe pas sur la régiosélectivité. En effet, la 

réaction conduit exclusivement à la formation de la diénone 25, résultant de la complexation 

du métal avec la liaison π externe, avec des rendements moyens à bons (Schéma 67).  

                                                 
70 Brummond, K. M.; Chen, H.; Fisher, K. D.; Kerekes, A. D.; Rickards, B.; Still, P. C.; Geib, S. J. Org. Lett. 

2002, 4, 1931-1934. 
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Schéma 67 

Le mécanisme général postulé consiste en une addition oxydante du rhodium (I) sur la double 

liaison distale de l’ényne 26 conduisant au rhodacycle I. L’intermédiaire II est généré après 

insertion du CO dans la liaison carbone-rhodium. Finalement, la cyclopenténone bicyclique 

27 est obtenue après élimination réductrice du métal (Schéma 68).71 

 
Schéma 68 

                                                 
71 Grillet, F.; Brummond, K. M. J. Org. Chem. 2013, 78, 3737-3754. 
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Pour tenter de comprendre ces différences de sélectivité selon que la catalyse soit effectuée 

par un dérivé de molybdène ou de rhodium, des calculs DFT ont été réalisés en 2006 par les 

équipes de Brummond et Jordan.72 Cette étude a eu pour objectif de déterminer les 

conformations théoriques que peuvent adopter les deux métaux lors de leur complexation 

avec l’allène-yne et surtout la ou les étapes limitantes du cycle catalytique.  

Le profil énergétique des différents intermédiaires formés lors de la réaction catalysée par le 

complexe de rhodium montre que la première étape d’addition oxydante du métal est l’étape 

cinétiquement limitante (16.8 kcal/mol) (Figure 27).  

 
Figure 27 

La coordination du métal avec la liaison distale de l’allène résulte d’un état de transition de 

géométrie plan carré déformé (Figure 28). 

 

 

Figure 28 

 

 

 

                                                 
72 Bayden, A.S.; Brummond, K. M.; Jordan, K. D. Organomettalics 2006, 25, 5204-5206. 

Figure 29 
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Le profil énergétique des différents intermédiaires formés lors de la réaction catalysée par le 

molybdène a permis de montrer que, contrairement à la catalyse par le rhodium, l’addition 

d’un ligand supplémentaire de CO sur le métal est maintenant l’étape cinétiquement limitante 

(11.5 kcal/mol) si l’on considère la complexation du métal avec la double liaison proximale 

(Figure 29). A l’inverse, il est intéressant de noter qu’en simulant une complexation sur la 

double liaison distale, l’étape cinétiquement limitante serait l’addition oxydante (14.0 

kcal/mol). 

 
Figure 29 

 

Dans le cas du molybdène, la formation du composé bicyclique résultant d’une complexation 

du métal sur la double liaison proximale serait favorisée par la géométrie bipyramide trigonale 

déformée qu’adopterait l’intermédiaire lors de l’addition oxydante (Figure 30).  

 
 

Figure 30 
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II.1.2.2.2.2 Cobalt 

Cazes s’est pour sa part intéressé à la réalisation de réactions de Pauson-Khand allène-yne en 

utilisant le dicobalt octacarbonyle.73 Il a démontré qu’en présence de quantités 

stœchiométriques de ce complexe en présence de NMO, des composés α,ω-allènynes xx 

pouvaient conduire à la formation d’un mélange de diénone bicyclique 28 et de 

cyclopenténone α-méthylène bicyclique 29 selon le mode de substitution sur l’allène de départ 

(Schéma 69). Les rendements restent modestes. 

 
Schéma 69 

Il paraît cependant difficile de rationnaliser ces résultats en termes de mode de substitution de 

l’allène. 

II.1.2.2.3 Synthèse de composés comportant un système bicyclique 5-7 ou 5-8 

Malgré les grandes avancées réalisées depuis sa découverte, la réaction de Pauson-Khand ène-

yne se trouve être grandement restreinte à la formation des bicyclo[3.3.0]octénones 

(composés bicycliques 5-5) et bicyclo[4.3.0]nonénones (composés bicycliques 5-6). Etant 

donné le grand nombre de produits naturels biologiquement actifs possédant un cycle à 7 

chaînons ou plus, fusionnés à un motif cyclopentyle (comme les guaianolides par exemple), 

l’extension de la réaction de Pauson-Khand allène-yne intramoléculaire à cette problématique, 

a fait l’objet de travaux récents. 

II.1.2.2.3.1 Construction de composés bicycliques 5-7 

Les premiers essais de synthèse de bicyclo[5.3.0]decadiénones (composés bicycliques 5-7) 

par utilisation de complexes de fer et de cobalt se sont avérés peu probants. Le groupe de 

                                                 
73 Ahmar, M.; Locatelli, C.; Colombier, D.; Cazes, B. Tetrahedron Lett. 1997, 38, 5281-5284. 
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Nasaraka en 1994 a obtenu un faible rendement (15%) lors d’essais de cyclocarbonylation 

sous irradiation catalysées par le Fe(CO)4NMe3.
74  

Le complexe Co2(CO)8 a été utilisé par Cazes en 1997 mais les rendements n’ont pas dépassé 

10% (Schéma 70).75 
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Schéma 70 

 

Le groupe de Mukai en 2002 a testé deux complexes de rhodium I, [RhCl(CO)2]2 et 

[RhCl(CO)dppp]2.
76 A partir d’une série de composés allène-yne 30 substitués par une 

sulfone, différentes cyclopenténones bicycliques 5-7 31 ont été synthétisées avec des 

rendements allant de bons à excellents (Schéma 71). Par ailleurs, il est intéressant de noter 

que ces réactions sont complètement régiosélectives puisqu’aucun produit secondaire issu de 

la complexation avec la double liaison proximale n’a été observé. 

 

                                                 
74 Nasaraka, K.; Shibata., T. Chem. Lett. 1994, 315-318. 
75 Ahmar, M.; Locatelli, C.; Colombier, D.; Cazes, B. Tetrahedron Lett. 1997, 38, 5281-5284. 
76 Mukai, C.; Nomura, I.; Yamanishi, K.; Hanaoka, M. Org. Lett. 2002, 4, 1755-1758. 
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Schéma 71 

Peu de temps après, les résultats de Brummond ont abondé dans ce sens, la synthèse de 

cyclopenténones bicycliques [5.3.0] ayant été effectuée à partir de composés allène-yne plus 

ou moins substitués (Schéma 72).70 

 

•

O

60-77%

EtO2C

EtO2C EtO2C

EtO2C

[RhCl(CO)2]2
(5 mol%)

CO (1 atm)

toluène, 90°C
3 h

R1

R2

R2

R1

R1 = Me, i-Pr, Ph
R2 = H, C6H13  

Schéma 72 

Par l’intermédiaire de cette étude, nous pouvons confirmer que la substitution de l’allène 

n’influe pas sur la sélectivité de la réaction impliquant un catalyseur à base de rhodium. En 

effet, même lorsque la double liaison distale est encombrée, la cyclocarbonylation conduit 

exclusivement à des motifs bicycliques 5-7. 

II.1.2.2.3.2 Construction de composés bicycliques 5-8 

L’étude méthodologique a ensuite été étendue à la construction de composés bicycliques plus 

grands. Le groupe de Mukai en 2005 a ainsi repris les mêmes conditions que précédemment, 

en utilisant le rhodium, pour conduire à la formation de cyclopenténones bicycliques [6.3.0] 

avec des rendements satisfaisants (Schéma 73 et Schéma 74).77 

                                                 
77 Mukai, C.; Hirose, T.; Teramoto, S.; Kitagaki, S. Tetrahedron 2005, 61, 10983-10994. 
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Schéma 73 

 
Schéma 74 

Notons que les rendements sont beaucoup plus élevés dans le cas de substrats 1,2 disubstitués 

comportant un allène et un alcyne. L’effet Thorpe-Ingold important favoriserait d’autant plus 

la cyclisation. 

II.1.2.2.4 Réaction de Pauson-Khand allène-yne en version asymétrique 

La fonction allène présente une autre caractéristique intéressante : lorsqu’elle est 1-3 di- ou 

tri-substituée, elle peut devenir source de chiralité. Des études ont été effectuées pour savoir si 

un transfert de chiralité était possible lors de ces réactions de Pauson-Khand pour conduire à 

l’élaboration de cyclopenténones bicycliques fonctionnalisées énantio-enrichies.  

Depuis plusieurs années, l’équipe de Brummond s’intéresse de près à cette question. En 2002, 

suite aux travaux de cyclocarbonylation catalysée par le molybdène pour la formation 

sélective d’une variété de cyclopenténones α-méthylène, des allènes 1-3 di-substitués chiraux 

ont été préparés. La stéréosélectivité résultante peut être expliquée par l’existence d’une 

conformation privilégiée lors de l’état de transition.78 Cette conformation est caractérisée par 

la minimisation des interactions entre le groupement R et le métal (Schéma 75). 

                                                 
78 Brummond, K. M.; Kerekes, A. D.; Wan, H. J. Org. Chem. 2002, 67, 5156-5163. 



 96 

1 H

R
MLx

H

O

R
H

H

1 H

R

H O

H
H

R

Favorisé

Non favorisé

MLx
alcène (E)

alcène (Z)

 
Schéma 75 

Ainsi, des allènes chiraux portant un groupement tert-butyldiphénylsilyle (TBDPS) en 

position 1 conduisent à un mélange d’oléfines (E) et (Z), avec une nette préférence pour le 

stéréoisomère (E). L’origine de cette diastéréodifférenciation provient sans aucun doute du 

groupement TBDPS (Schéma 76).  

 

 
Schéma 76 

De plus, il faut noter une importante baisse de l’excès énantiomérique du diastéréoisomère 

minoritaire formé, résultant d’une partielle isomérisation de la double liaison exocyclique lors 

de l’étape de purification sur silice. 

Très récemment, une étude méthodologique, utilisant cette fois-ci des catalyseurs à base de 

rhodium I, a été réalisée.71 Ainsi, la cyclopenténone bicyclique 33 a pu être synthétisée à 

partir de l’allène chiral 1,3,3’ trisubstitué 32 avec un excès énantiomérique de 78% (Schéma 

77). 
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Néanmoins, il faut noter que les résultats sont beaucoup moins bons à partir d’allènes chiraux 

1,3 di-substitués (Schéma 78). En effet, les baisses importantes d’excès énantiomériques 

observées pourraient être dues à une partielle racémisation de l’allène de départ lors de sa 

complexation avec le métal. 

 
Schéma 78 

II.1.2.2.5 Application de réaction de Pauson-Khand allène-yne à la synthèse de produits 

naturels  

Au même titre que la réaction de Pauson-Khand ène-yne, la réaction allène-yne est devenue 

une méthode de choix pour former des motifs cyclopenténone bicycliques dans la synthèse de 

produits naturels.  

Ainsi, Mukai en 2008 a effectué la première synthèse totale de la (+)-achalensolide, un 

guaianolide connu pour être un puissant inhibiteur de l’activité enzymatique aromatase dans 

les cellules placentaires humaines.79 L’étape clé de réaction de Pauson-Khand a été effectuée 

à partir d’un précurseur allène-yne 34 dérivé de l’acide D-(-)-isoascorbique. Le composé 

bicyclique 35 a été obtenu en présence du catalyseur de rhodium I [RhCl(CO)dppp]2 sous 

atmosphère de CO, dans le toluène à reflux avec un excellent rendement de 96%. Le produit 

naturel a ensuite été synthétisé avec succès en 10 étapes (Schéma 79). 

                                                 
79 Hirose, T.; Miyakoshi, N.; Mukai, C. J. Org. Chem. 2008, 73, 1061-1066. 
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Schéma 79 

En 1999, l’hydroxyméthylacylfulvène (HMAF), un puissant antitumoral a été synthétisé. 

L’étape clé a consisté en une réaction de cyclocarbonylation catalysée par le molybdène 

hexacarbonyle en présence de DMSO dans le toluène. Après 10 minutes de réaction, le 

composé 36 a été synthétisé avec un bon rendement de 69% (Schéma 80).80  

 
Schéma 80 

Plus récemment en 2011, la synthèse de plusieurs composés tricycliques 39 dont la structure 

se rapproche de nombreux guaianolides naturels tels que l’artéminolide, l’hélénaline, ou 

l’arglabine a été réalisée. La réaction de cyclocarbonylation a été effectuée en présence du 

catalyseur de rhodium I [Rh(CO)2Cl]2 sous atmosphère de CO dans le toluène à 90°C avec de 

très bons rendements à partir de composés α-méthylène butyrolactone allène-ynes 38.81 Celui-

ci a été synthétisé en 5 étapes à partir du propiolate de méthyle 37 (Schéma 81). 

                                                 
80 a) Brummond, K. M.; Lu, J. J. Am. Chem. Soc. 1999, 121, 5087-5088; b) Brummond, K. M.; Lu, J.; Petersen, 
J. L. J. Am. Chem. Soc. 2000, 122, 4915-4920. 
81 Grillet, F.; Huang, C.; Brummond, K. M. Org. Lett. 2011, 13, 6304-6307. 
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Schéma 81 

Dans ces cas, il a été mis en évidence l’importance de l’effet Thorpe-Ingold généré par la 

lactone. 

 

 

En conclusion, la réaction de Pauson-Khand conduit en une étape, à l’élaboration de 

cyclopenténones hautement fonctionnalisées. En version intramoléculaire, des systèmes 

bicycliques de type 5-5, 5-6, 5-7 et 5-8 peuvent être notamment générés. 

Depuis sa découverte, de très nombreuses améliorations ont été apportées permettant 

d’effectuer la cyclocarbonylation dans des conditions douces (bateau catalytique, basse 

température, temps de réaction court). Cette réaction s’est également développée en version 

asymétrique, permettant le contrôle de la chiralité des centres nouvellement formés. La 

plupart de ces avancées ont été fréquemment réutilisées, notamment dans la synthèse de 

produits naturels. Il faut toutefois préciser que la réaction de Pauson-Khand ène-yne présente 

quelques limites. En effet, la cyclocarbonylation n’est pas adaptée aux substrats possédant un 

encombrement trop important autour des deux insaturations réactives, et plus particulièrement 

autour de la partie oléfinique. 

 

La réaction de Pauson-Khand allène-yne est plus récente. Après des essais préliminaires peu 

probants, c’est surtout la version intramoléculaire qui a généré de nombreuses optimisations 

en méthodologie ainsi que des applications en synthèse. Dans ce domaine, il a par ailleurs été 

démontré que l’utilisation d’allènes chiraux peut se révéler particulièrement intéressante pour 

la mise en place de centres stéréogènes. 

En outre, même si la réactivité des doubles liaisons proximale et distale est mieux 

appréhendée aujourd’hui, il reste de nombreux points à éclaircir quant à la régiosélectivité de 

cette cyclocarbonylation. 
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II.1.3 Propargylation asymétrique des aldéhydes 

II.1.3.1 Introduction 

La réaction de propargylation asymétrique est un outil précieux car elle permet la formation 

d’alcools homopropargyliques chiraux, motifs largement répandus en tant que précurseurs 

dans la synthèse de nombreux produits naturels. Elle consiste en l’attaque d’espèces 

organométalliques tels des propargyl- ou allénylmétaux sur une fonction carbonyle. Dans les 

exemples ci-dessous, nous nous intéresserons aux réactions de propargylation asymétrique 

d’aldéhyde. 

Du fait de la possible transposition des espèces propargyliques organométalliques en 

allénylmétaux correspondants, un mélange de carbinols β-acétyléniques A et α-alléniques B 

peut être obtenu par des mécanismes de type SE2 ou SE2’ (Schéma 82). 

L’environnement de l’espèce organométallique (nature du métal, encombrement stérique, 

présence de ligand) ainsi que la réactivité de l’électrophile ont une influence certaine sur cette 

sélectivité. 

 
Schéma 82 

Depuis plusieurs décennies, de nombreux métaux et sources chirales ont été utilisés dans ces 

réactions de propargylation afin de conduire à la formation régio- et stéréosélective d’alcools 

homopropargyliques.82 

Dans ce chapitre sera réalisée une présentation non exhaustive de cette réaction de 

propargylation en fonction du mode, stœchiométrique ou catalytique, d’emploi du ligand et 

des différentes sources métalliques utilisées. 

II.1.3.2 Réaction de propargylation asymétrique en version stœchiométrique 

II.1.3.2.1 Réaction de propargylation asymétrique avec un organoborane 

A notre connaissance, la première réaction de propargylation asymétrique a été effectuée par 

l’équipe de Yamamoto en 1982.83 En 1986, un criblage de la réactivité de différents esters 
                                                 
82 Ding, C.-H.; Hou, X.-L. Chem. Rev. 2011, 111, 1914-1937. 
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allénylboroniques énantiopurs 41 dérivés d’acides tartriques sur des aldéhydes possédant des 

groupements alkyles, a permis d’améliorer la sélectivité et le rendement. Ces réactions ont 

conduit exclusivement à la formation d’alcools homopropargyliques avec de très bons 

rendements et d’excellentes énantiosélectivités. En terme d’énantiosélectivité, notons que les 

meilleurs résultats ont été observés avec des esters allénylboroniques portant des groupements 

R’ très encombrants de type 2,4-diméthyl-3-pentyle.84 L’état de transition supposé par les 

auteurs est un intermédiaire cyclique à 6 chaînons dans lequel l’approche du substrat est 

dirigée par les esters présents sur l’allénylborane (Schéma 83). 

 

 
Schéma 83 

Le groupe de Soderquist en 2005 s’est intéressé à la synthèse de l’allénylborane bicyclique 

chiral 41R et à son utilisation en quantité stœchiométrique. Par action sur différents aldéhydes 

achiraux, les alcools propargyliques correspondants ont été élaborés avec de bons rendements 

et de très bonnes énantiosélectivités.85 Par ailleurs, il est intéressant de constater que même à 

partir d’aldéhydes possédant un centre néopentylique en α, les résultats restent très 

satisfaisants (Schéma 84). 

 

 
Schéma 84 

                                                                                                                                                         
83 Haruta, R.; Ishiguro, M.; Ikeda, N.; Yamamoto, H. J. Am.Chem. Soc. 1982, 104, 7667-7670. 
84 Ikeda, N.; Arai, I.; Yamamoto, H. J. Am.Chem. Soc. 1986, 108, 483-486. 
85 Lai, C.; Soderquist, J. A. Org. Lett. 2005, 7, 799-802. 
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La sélectivité peut être expliquée par l’état de transition indiqué ci-dessous correspondant à 

une attaque sur la face re de l’aldéhyde (Figure 31). 

 
Figure 31 

Cette méthode a été plusieurs fois mise en œuvre avec succès en synthèse totale notamment 

par l’équipe de Fürstner dans la synthèse du cruentarène A. L’alcool propargylique 43 a été 

préparé avec un bon rendement et une excellente diastéréosélectivité par réaction entre 

l’aldéhyde chiral 42 et le réactif de Soderquist 41S en double diastéréodifférenciation 

(Schéma 85).86 

 

 
Schéma 85 

II.1.3.2.2 Réaction de propargylation asymétrique avec un organo-alane  

                                                 
86 Fürstner, A.; Bindl, M.; Jean, L. Angew. Chem. Int. Ed. 2007, 46, 9272-9278. 
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En 1987, Mukaiyama a réalisé l’une des premières réactions de propargylation asymétrique en 

utilisant un organo-aluminium.87 A partir du benzaldéhyde, l’ajout d’une quantité 

stœchiométrique de triflate d’étain en présence de la diamine chirale 45 et de 

l’allénylaluminium 44 permet l’accès à l’alcool homopropargylique 46 avec des 

énantiosélectivité et rendement modestes.  

 
Schéma 86 

II.1.3.2.3 Réaction de propargylation asymétrique avec un organo-indium 

En 2003, l’équipe de Loh a mis en réaction un organo-indium avec des aldéhydes aromatiques 

et aliphatiques pour aboutir à des alcools propargyliques avec des énantiosélectivités 

moyennes à bonnes, dans les conditions de Barbier et en utilisant la (-)-cinchonidine 47 

comme source chirale (Schéma 87).88 

 
Schéma 87 

De manière analogue mais par mise en jeu d’une autre copule chirale, le (1S, 2R)-(+)-2-

amino-1,2-diphénylétanol 48 commercial, le groupe de Singaram a pu améliorer 

significativement les énantiosélectivités (Schéma 88).89 

                                                 
87 Minowa, N.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1987, 60, 3697-3704. 
88 Loh, T.-P.; Lin, M.-J.; Tan, K.-L. Tetrahedron Lett., 2003, 44, 507-509. 
89 a) Hirayama, L. C.; Dunham, K. K.; Singaram, B. Tetrahedron Lett. 2006, 47, 5173-5176; b) Haddad, T. D.; 
Hirayama, L. C.; Buckley, J. J.; Singaram, B. J. Org. Chem., 2012, 77, 889-898. 
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Schéma 88 

Ces conditions réactionnelles sont hautement chimio et régiosélectives (aucune formation de 

carbinol α-allénique n’a été observée). De plus, les deux énantiomères de cette copule chirale 

étant tout à fait abordables, cette méthode est applicable à grande échelle. La synthèse totale 

du cruentarène A par le groupe de Barrett en 2012, illustre bien les potentialités de cette 

approche. Par réaction entre l’aldéhyde chiral 49, le bromure propargylique et la copule 

chirale 48, l’alcool homopropargylique 50 est obtenu en double diastéréodifférenciation avec 

un bon rendement de 80% et une excellente diastéréosélectivité. (Schéma 89).90 

 

 
Schéma 89 

II.1.3.2.4 Réaction de propargylation asymétrique par transposition 

Il est intéressant de noter la synthèse d’alcools homopropargyliques par transfert de motif 

propargyle sur un aldéhyde, réalisée en 2004 par l’équipe de Loh. Ainsi, par action d’un excès 

de l’alcool allénique 51 optiquement pur, en présence de triflate d’indium en quantité 

catalytique comme acide de Lewis, des alcools propargyliques de type 52 ont pu être générés 

avec des rendements et sélectivités élevés (Schéma 90).91  

L’allène 51 est préparé en deux étapes à partir du cyclohexylcarbaldéhyde par utilisation du 

(+)-B-Méthoxydiisopinocamphéylborane.92 

                                                 
90 Fouché, M.; Rooney, L.; Barrett, A. G. M. J. Org. Chem. 2012, 77, 3060-3070. 
91 Lee, K.-C.; Lin, M.-J.; Loh, T.-P. Chem. Commun. 2004, 2456-2457. 
92 Brown, H. C.; Khire, U. R.; Narla, G. J. Org. Chem. 1995, 60, 8130-8131. 
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Schéma 90 

Le mécanisme supposé est la formation de l’ion oxonium 53 après activation de l’aldéhyde 

par le sel d’indium. Puis, une transposition de l’alcool allénique suivie d’une hydrolyse 

conduisent à la formation du produit attendu 52 avec de très bons rendements et bons excès 

énantiomériques. 

 

Ces conditions ont été utilisées dans la synthèse du (+)-néopeltolide afin de préparer l’alcool 

homopropargylique 54 optiquement pur avec un bon rendement (Schéma 91).93 

 

 
Schéma 91 

                                                 
93 Guinchard, X.; Roulland, E. Org. Lett. 2009, 11, 4700-4703. 
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Cette méthode semble intéressante car elle permet d’accéder de façon originale à des alcools 

propargyliques avec de très bonnes sélectivités. Cependant, il est nécessaire de préparer le 

réactif 51 utilisé en excès. 

II.1.3.3 Réaction de propargylation asymétrique en version catalytique  

Les premières réactions de propargylation asymétrique catalytiques sont apparues dans les 

années 90. Keck en 1994 a été le premier à établir un système métallo-catalysé en utilisant le 

tétraisopropylate de titane et le (R)-BINOL comme ligand.94 A partir de l’allénylstannane 55, 

des alcools homopropargyliques avec de très bons excès énantiomériques ont pu être isolés, 

en abaissant le taux de complexe de titane et de (R)-BINOL jusqu’à 50 mol% (Schéma 92).  

 
Schéma 92 

Cependant, les limites de cette méthode restent la forte charge en catalyseur (50 mol% à 

parfois 100 mol%) et le temps de réaction (72-100 h). Par ailleurs, il faut noter que la 

chimiosélectivité observée entre les carbinols β-acétylénique et α-allénique est parfois 

modeste. 

II.1.3.3.1  Réaction de propargylation asymétrique avec un organobore 

Les travaux de Yu ont contribué à l’évolution de cette réaction de propargylation 

métallocatalysée.95 En effet, en mettant en réaction l’allénylstanane 55 avec des complexes 

(S)-BINOL-Ti (10 mol%), des alcools homopropargyliques ont été obtenus à partir de 

différents aldéhydes aromatiques ou aliphatiques avec de bons rendements et d’excellentes 

régio- et énantiosélectivités.  

Une amélioration notable en termes de cinétique et d’énantiosélectivité a consisté en l’ajout 

de l’alkylthioborane 56.96 L’état de transition envisagé réside dans la formation d’un cycle à 6 

chaînons comprenant l’aldéhyde activé par l’acide de Lewis chiral et l’allénylborane obtenu 

après transmétallation de 55 (Schéma 93). 

                                                 
94 Keck, G. E.; Krishnamurthy, D.; Chen, X. Tetrahedron Lett. 1994, 35, 8323-8324. 
95 a) Yu, C.-M.; Choi, H.-S.; Jung, W.-H.; Lee, S.-S. Tetrahedron Lett. 1996, 37, 7095-7098; b) Yu, C.-M.; 
Yoon, S.-K.; Choi, H.-S.; Baek, K. Chem. Commun. 1997, 763-764; c) Yu, C.-M.; Choi, H.-S.; Yoon, S.-K.; 
Jung, W.-H. Synlett 1997, 889-890. 
96 Yu, C. -M.; Kim, J. -M.; Shin, M. -S.; Cho, D. Tetrahedron Lett. 2003, 44, 5487-5490. 
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Schéma 93 

On peut souligner également que la réaction est hautement chimiosélective en faveur de 

l’alcool propargylique (ratio > 98:2). 

 

Très récemment, le groupe d’Antilla a décrit le premier système de propargylation 

asymétrique utilisant un acide de Brønsted chiral.97 En mettant en réaction l’allénylboronate 

57 avec une quantité catalytique de l’acide phosphonique 58 dérivé du BINOL (20 mol %), 

les alcools homopropargyliques résultants sont obtenus avec d’excellents rendements et 

énantiosélectivités (Schéma 94).  

 
Schéma 94 

Cette méthode représente une réelle avancée dans la propargylation énantiosélective 

catalytique car aucune espèce toxique n’est engagée, de plus, l’allénylboranoate 57 utilisé est 

commercial et relativement stable. Toutefois, cette méthode a été peu exemplifiée sur les 

aldéhydes aliphatiques. 

 

                                                 
97 Jain, P.; Wang, H.; Hook, K. N.; Antilla, J. C. Angew. Chem. Int. Ed. 2012, 51, 1391-1394. 
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II.1.3.3.2 Réaction de propargylation asymétrique avec un organosilane 

Hashimoto en 2002 a utilisé un mélange d’allényl- et de propargylsilanes en présence de la 

base de Lewis chirale 59 en quantité catalytique pour conduire à la formation exclusive 

d’alcools homopropargyliques avec des énantiosélectivités et rendements modestes à partir 

d’aldéhydes aromatiques (Schéma 95).98 Par ailleurs, il s’avère que la nature du métal utilisé 

lors de l’étape de silylation des chlorures de propargyle de départ est primordiale pour la 

régiosélectivité de la réaction de propargylation. En effet, lorsque le nickel 

bis(acétylacétonate) [Ni(acac)2] est utilisé, la réaction conduit très majoritairement à l’alcool 

propargylique attendu ; par contre, par mise en œuvre de CuCl, c’est le carbinol α-allénique 

qui est majoritairement formé.99 

 
Schéma 95 

L’addition d’allénylsilanes linéaires ou branchés sur des glyoxylates a été étudiée par le 

groupe d’Evans pour conduire à des alcools secondaires avec d’excellents rendements et 

énantiosélectivités en présence de 10 mol% d’un sel de triflate de scandium chiral 60 (Schéma 

96).100  

                                                 
98 Nakajima, M.; Saito, M.; Hashimoto, S. Tetrahedron: Asymmetry 2002, 13, 2449-2452. 
99 Kobayashi, S.; Nishio, K. J. Am. Chem. Soc. 1995, 117, 6392-6393. 
100 Evans, D. A.; Sweeney, Z. K.; Rovis, T.; Tedrow, J. S. J. Am. Chem. Soc. 2001, 123, 12095-12096. 
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Schéma 96 

L’utilisation d’hexafluoro-2-propanol (HFIP) permet une augmentation des rendements en 

empêchant la formation d’oligomères, produits secondaires de la réaction. 

II.1.3.3.3 Réaction de propargylation asymétrique avec un organozinc 

Les premiers résultats significatifs de propargylation asymétrique d’aldéhydes utilisant un 

allénylzinc ont été rapportés par l’équipe de Trost. L’espèce organométallique est générée in 

situ par échange iode-zinc à partir d’un mélange d’iodure propargylique et d’allényliode. 

L’énantiosélectivité est contrôlée par addition d’une quantité catalytique d’un ligand 

aminoalcool chiral 61 facilement préparé à partir de la (S)-proline (Schéma 97).101 

  
Schéma 97 

De très bons rendements et énantiosélectivités ont été observés à partir d’aldéhydes 

aromatiques. En revanche, il faut noter que les excès diminuent fortement dès lors que des 

aldéhydes aliphatiques sont utilisés. Lors de cette étude, il a aussi été montré que les ligands 

accéléraient la réaction. 

                                                 
101 Trost, B. M.; Ngai, M.-Y.; Dong, G. Org. Lett. 2011, 13, 1900-1903. 
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La première étape du mécanisme proposé consiste en la déprotonation du ligand par le 

diéthylzinc pour générer l’espèce catalytique I. La coordination de l’allénylzinc au catalyseur 

I conduit au complexe dinucléaire de zinc II qui se lie ensuite à l’aldéhyde pour donner 

l’intermédiaire III dans lequel une interaction stérique entre l’aldéhyde et le groupement 

benzyle est minimisée (IIIa vs. IIIb). Puis, la propargylation de l’aldéhyde par un état de 

transition à six sommets permet de synthétiser l’alcoxyde propargylique IV dans la 

configuration indiquée. Finalement, l’alcoxyde de zinc V est régénéré (Figure 32). 

 
Figure 32 

II.1.3.3.4 Réaction de propargylation asymétrique avec un organocuivre 

Fandrick, en 2010, a rapporté des propargylations asymétriques par addition d’espèces 

allénylcuivres, générées par transmétallation bore-cuivre à partir du propargylborolane 62, sur 

différents aldéhydes aromatiques et aliphatiques (Schéma 98). L’utilisation d’une quantité 

catalytique de la diphosphine chirale 63 a permis d’accéder à des alcools homopropargyliques 

avec de très bons excès énantiomériques. 
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Schéma 98 

L’inconvénient majeur de cette méthode reste la synthèse du ligand, laquelle nécessite neuf 

étapes.102 

Le cycle catalytique proposé est basé sur un échange bore-cuivre régit par l’alcoxyde de 

cuivre chiral à partir du borolane propargylique pour former l’allénylcuivre intermédiaire 3. 

Après réaction de propargylation d’aldéhyde, l’espèce cuivre-alcoxyde régénérée est 

réengagée dans le cycle catalytique (Figure 33). 

 
Figure 33 

II.1.3.3.5 Réaction de propargylation asymétrique avec un organochrome 

En 2009, l’équipe de Kishi a décrit une réaction de propargylation énantiosélective catalytique 

utilisant le chrome comme source métallique.103 Le catalyseur est préparé à partir de CrBr3 et 

du ligand sulfonamide chiral 64, lui-même synthétisé en quatre étapes (Schéma 99).104 Il est 

intéressant de constater que les meilleurs énantiosélectivités sont obtenus avec des aldéhydes 

aliphatiques. 

                                                 
102 Fandrick, D. R.; Fandrick, K. R.; Reeves, J. T.; Tan, Z.; Tang, W.; Gapacci, A. G.; Rodriguez, S.; Song, J. J.; 
Lee, H.; Yee, N. K.; Senanayake, C. H. J. Am. Chem. Soc. 2010, 132, 7600-7601. 
103 S. Liu, J. T. Kim, C.-G. Dong, Y. Kishi, Org. Lett., 2009, 11, 4520-4523 
104 Pour la synthèse de 26, se référer à: Namba, K.; Cui, S.; Wang, J.; Kishi, Y.; Org. Lett. 2005, 7, 5417-5418. 
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Schéma 99 

Ces conditions ont été appliquées à grande échelle dans la synthèse du fragment C14-C19 de 

l’halichondrine B pour élaborer l’alcool homopropargylique énantio-enrichi 65 (ee = 87%) 

avec un bon rendement (Schéma 100).  

 
Schéma 100 

Cette méthode requiert toutefois l’utilisation d’une boîte à gants. 

 

En conclusion, la synthèse d’alcools homopropargyliques secondaires par réaction de 

propargylation d’aldéhyde a été largement décrite dans la littérature. Même si le ligand chiral 

est souvent non commercial et donc préparé en plusieurs étapes, les rendements et sélectivités 
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de ces réactions de propargylation sont très bons. Il est intéressant de remarquer que la mise 

en œuvre de ces réactions ne nécessite généralement pas l’utilisation de conditions 

particulières de manipulation (boîte à gants).  

Ce type de réaction sera étudié pour la mise en place de l’alcool secondaire en C8 de la Tg 

(Schéma 101). 
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II.1.4 Synthèse stéréosélective d’alcools propargyliques secondaires 

II.1.4.1 Introduction 

Les alcools propargyliques trouvent une large application dans la synthèse de molécules 

d’intérêt biologique en tant que précurseur d’intermédiaires synthétiques (Schéma 102).105 

 
Schéma 102 

Dans ce chapitre, en vue de la synthèse d’alcools propargyliques secondaires optiquement 

actifs, seront notamment présentées des réactions de réduction et d’addition nucléophile 

énantiosélectives, mettant en jeu des ynones achirales. 

II.1.4.2 Réduction énantiosélective d’ynones achirales 

Dans ce cadre, il est possible de distinguer trois grands types de méthode : la réduction par 

transfert d’hydrure, l’hydrogénation et la transformation enzymatique. 

II.1.4.2.1 Réduction asymétrique par transfert d’hydrure 

Les différentes méthodes décrites ci-dessous présentent toutes l’avantage de pouvoir réduire 

les ynones sélectivement sur l’une des deux faces, en fonction du réactif choisi. 

 

                                                 
105 Weiss, A. H. Dinuclear Zinc-Catalyzed Asymmetric Alkynylation: Development and Application to the 
Synthesis of Natural Products, 2008, Stanford University. 
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En 1984, Noyori a montré que l’utilisation d’hydrures d’aluminium chiraux de type BINAL-

H, dérivés du BINOL, permettait d’obtenir des alcools propargyliques secondaires comme par 

exemple le composé 66, avec de bons excès énantiomériques (Schéma 103).106  

 
Schéma 103 

Ce type de réduction asymétrique est efficace, facile à mettre en œuvre et peu onéreux. Bien 

que l’hydrure soit employé en excès; cette méthode reste couramment utilisée en synthèse 

totale.107 Ainsi, pour la synthèse de l’acide (+)-α-kaïnique, acide aminé neuroexcitateur, Trost 

a utilisé ces conditions pour mettre en place le centre en α de l’azote (Schéma 104). 

 
Schéma 104 

Les hydrures de bore chiraux ont également montré leur efficacité.108 Il est possible de citer à 

titre d’exemple, les travaux de Brown mettant en œuvre le B-(iso-2-éthylapopinocamphéyl)-9-

borabicyclo[3.3.1]nonane 67 en quantité stœchiométrique, pour conduire à des alcools 

propargyliques de type 68, avec des excès énantiomériques élevés (Schéma 105).109 

                                                 
106 Noyori, R., Tomino, I., Yamada, M., Nishizawa, M.; J. Am. Chem. Soc., 1984, 106, 6717-6725. 
107 Trost, B. M.; Rudd, T. Org. Lett. 2003, 5, 1467-1470. 
108 Midland, M. M.; McDowell, D. C.; Hatch, R. L.; Tramontano, A. J. Am. Chem. Soc. 1980, 102, 867-868. 
109 a) Brown, H. C.; Chandrasekharan, J.; Ramachandran, P. V. J. Am. Chem. Soc. 1988, 110, 1539-1546; b) 
Brown, H. C.; Ramachandran, P. V.; Weissman, S. A.; Swaminathan, S. J. Org. Chem. 1990, 55, 6928-6333. 
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Schéma 105 

D’autre part, Corey, Bakshi et Shibata ont montré que les oxazaborolidines de type 69 

pouvaient être utilisée en présence d’un hydrure de bore (catécholborane, BH3
.Me2S,…) pour 

réduire sélectivement des fonctions ynones.110,111 Le réactif correspondant est communément 

appelé réactif CBS (Schéma 106). 

 
Schéma 106 

L’utilisation de ces oxazaborolidines chirales reste à ce jour une méthode privilégiée dans la 

réduction d’ynones car la réaction est hautement chimio- et stéréosélective. Cette méthode est 

largement utilisée en synthèse totale aussi bien en mode stœchiométrique que catalytique. 

 

Panek a ainsi montré qu’il était possible d’obtenir l’alcool propargylique 70 avec un excellent 

excès énantiomérique de 93% en employant le réactif (S)-CBS en excès. Cet enchaînement 

préfigurera l’alcool secondaire allylique en C11 de la (-)-virginiamycine M2 (Schéma 107).112  

                                                 
110 a) Corey, E. J.; Shibata, S.; Bakshi, R. K.; Chen, C.-P.; Singh, V. K. J. Am. Chem. Soc. 1987, 109, 7925-
7926; b) Corey, E. J.; Shibata, S.; Bakshi, R. K. J. Org. Chem. 1988, 53, 2861-2863. 
111 a) Parker, K. A.; Ledeboer, M. W. J. Org. Chem. 1996, 61, 3214-3217; b) Helal, C. J.; Magriotis, P. A.; 
Corey, E. J. J. Am. Chem. Soc. 1996, 118, 10938-10939. 
112 Wu, J.; Panek, J. S. J. Org. Chem. 2011, 76, 9900-9918. 
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Schéma 107 

En mode catalytique et en vue de l’élaboration d’un fragment de la leupyrrine A1, Menche a 

synthétisé l’alcool propargylique 72 à partir de l’ynone chirale 71, en mettant en œuvre 20 

mol% du réactif (R)-CBS en présence de catécholborane (Schéma 108).113 Il est important de 

signaler que sous ces conditions, à partir de cette ynone, l’excès diastéréoisomérique n’est que 

de 72%. 

 
Schéma 108 

                                                 
113 Debnar, T.; Wang, T.; Menche, D. Org. Lett. 2013, 15, 2774-2777. 
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II.1.4.2.2 Réduction par hydrogénation asymétrique 

L’hydrogénation asymétrique d’ynones de type 73, catalysée par un complexe de ruthénium 

est également une méthode de choix pour la synthèse d’alcools propargyliques. Dans ce 

domaine, les travaux de Noyori en 1997 ont permis d’obtenir d’excellents rendements et 

énantiosélectivités par catalyse par le complexe 74 (Schéma 109).114 

 
Schéma 109 

Cette méthode est particulièrement intéressante puisque le complexe est généralement utilisé à 

un taux catalytique de 0.5 mol%. De plus, la mise en œuvre est aisée puisque l’hydrogène 

nécessaire à cette réaction est généré in situ à partir d’isopropanol.  

La face d’attaque du carbonyle et, par conséquent, la stéréochimie de l’alcool obtenu 

dépendent du choix de la diamine chirale, qui sert de ligand au ruthénium. Le transfert 

d’hydrogène s’effectuerait par catalyse bifonctionnelle métal-ligand (Schéma 110). 

 
Schéma 110 

Ainsi, Jacobsen a appliqué ces conditions pour accéder à l’alcool propargylique 76 à partir de 

l’ynone 75, avec d’excellents rendement et excès énantiomérique en employant une quantité 

catalytique du complexe de ruthénium ent-74. Cet enchaînement préfigurera l’alcool 

secondaire allylique en C11 de la fostriécine (CI-920) (Schéma 111).115
 

                                                 
114 Matsumura, K., Hashiguchi, S., Ikariya, T.,Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738-8739. 
115 Chavez, D. E.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2001, 40, 3667-3670. 
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Schéma 111 

II.1.4.2.3 Réduction énantiosélective par voie enzymatique 

La réduction énantiosélective d’ynones peut également être réalisée par voie enzymatique.116 

Plus particulièrement, de bons résultats ont été obtenus par Hiyama en utilisant la levure de 

boulanger pour réduire des motifs 3-oxo-4-pentynoates de type 77.116b Cette méthode permet 

d’accéder aux alcools correspondants avec de bons excès énantiomériques mais des 

rendements modestes n’excédant pas 48% (Schéma 112).  

 

 
Schéma 112 

Cette méthode peu onéreuse et fortement chimiosélective reste néanmoins non généralisable 

car très substrat-dépendante.  

II.1.4.3 Addition nucléophile d’acétylures métalliques 

Si une grande majorité des réactions d’alcynylation asymétrique est conduite à partir 

d’organozinciques, d’autres espèces organométalliques ont également été étudiées pour 

                                                 
116 a) Bradshaw, C. W.; Hummel, W.; Wong, C.-H. J. Org. Chem. 1992, 57, 1532-1535; b) Ansari, M. H.; 
Kusumoto, T.; Hiyama, T. Tetrahedron Lett. 1993, 34, 8271-8274. 
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effectuer ces réactions. Ces différentes méthodes seront brièvement présentées dans ce 

chapitre. 

II.1.4.3.1 Complexes de zinc 

A ce jour, les acétylures de zinc sont les organométalliques les plus usités et ayant montré les 

meilleures aptitudes pour l’alcynylation asymétrique d’aldéhydes. De nombreuses études ont 

conduit à des synthèses très efficaces d’alcools propargyliques avec d’excellents rendements 

et excès énantiomériques.117 

A ce titre, les travaux de Carreira en 1999 ont constitué une avancée majeure car ils ont abouti 

à la mise au point d’un système catalytique permettant la synthèse énantiosélective d’alcools 

propargyliques facile à mettre en œuvre et ne nécessitant ni conditions anhydres ni absence 

d’oxygène.118 L’utilisation de triflate de zinc combiné à une amine tertiaire permet la 

formation de l’acétylure de zinc in situ qui, en présence de (+)-N-méthyléphédrine ((+)-

NME), réagit sur différents aldéhydes aromatiques et aliphatiques (Schéma 113). 

 
Schéma 113 

Le mécanisme a été postulé à partir du modèle de Noyori relatif à l’addition de différentes 

espèces alkyl-zinc sur des aldéhydes catalysée par la N-méthyléphédrine.119 Dans un premier 

temps, la complexation de l’acétylure de zinc avec la (+)-N-méthyléphédrine et la 

triéthylamine conduit au complexe I. L’intermédiaire II est ensuite généré par complexation 

avec l’aldéhyde. L’acétylure de zinc en léger excès dans le milieu se complexe sur l’aldéhyde 

et l’oxygène de l’amino alcool pour former l’intermédiaire III, qui après transposition conduit 

à la synthèse énantiosélective de l’éther de zinc propargylique IV (Schéma 114). 

                                                 
117 Voir par exemple: a) Cozzi, P. G.; Rudolph, J.; Bolm, C.; Norrby, P. -O.; Tomasini, C. J. Org. Chem. 2005, 
70, 5733-5736; b) Emmerson, D. P. G.; Hems, W. P.; Davis, B. G. Org. Lett. 2006, 8, 207-210; c) Wolf, C.; Liu, 
S. J. Am. Chem. Soc. 2006, 128, 10996-10997; d) Shen, C.; Chen, L.; Tang, J.; Xu, M. Chin. J. Chem. 2009, 27, 
413-418. e) Tan, L.; Chen, C.-yi; Tillyer, R. D.; Grabowski, E. J. J.; Reider, P. J. Angew. Chem. Int. Ed. 1999, 
38, 711-713. 
118 a) Annand, N. K.; Carreira E. M. J. Am. Chem. Soc. 2001, 123, 9687-9688. b) Boyall, D.; Frantz, D. E.; 
Carreira, E. M.; Org. Lett. 2002, 4, 2605-2606.  
119 Noyori, R.; Kitamura, M. Angew. Chem. Int. Ed. Engl. 1991, 30, 49-69. 
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Schéma 114 

La principale limitation de cette réaction est une érosion notable du rendement en présence 

d’aldéhydes aromatiques ou non branchés. Toutefois, cette réaction conduite avec une 

quantité stœchiométrique de N-méthyléphédrine et réalisée à température ambiante, permet 

d’accéder aux alcools attendus avec de bons rendements.118b 

Cette méthode facile à mettre en œuvre a été utilisée à plusieurs reprises dans la synthèse 

totale de produits naturels.120 Amos Smith III a ainsi appliqué ces conditions en vue de 

l’élaboration du (+)-18-epi-latrunculol A.121 L’alcool propargylique 80 a été généré avec 

d’excellents rendements et énantiosélectivités à partir de l’aldéhyde 79 et de l’alcyne 78 

(Schéma 115). 

 
Schéma 115 

II.1.4.3.2 Complexes de bore 

Corey en 1994 a mis au point un agent d’alcynylation sous forme d’acétylure boré 81, généré 

in situ à partir de bromodiméthylborane et de l’organoétain 82.122 En présence d’une quantité 

                                                 
120 a) Fettes, A.; Carreira, E. M. J. Org. Chem. 2003, 68, 9274-9283; b) Saito, T.; Fuwa, H.; Sasaki, M. Org. Lett. 
2009, 11, 5274-5277. 
121 Williams, B. D.; Smith III, A. B. Org. Lett. 2013, 15, 4584-4587. 
122 Corey, E. J.; Cimprich, K. A. J. Am. Chem. Soc. 1994, 116, 3151-3154. 
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stœchiométrique de l’oxazaborolidine chirale 83, différents alcools propargyliques ont été 

obtenus avec de très bons excès énantiomériques et d’excellents rendements (Schéma 116). 
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Schéma 116 

II.1.4.3.3 Complexes d’indium 

Shibasaki en 2005, a décrit un système catalytique pour la synthèse d’alcools propargyliques 

énantioenrichis, reposant sur un complexe In(III)/BINOL. Cette approche est particulièrement 

élégante puisqu’une double activation est réalisée au niveau du carbonyle mais également au 

niveau de la triple liaison par l’In(III). Ainsi, l’alcynylation d’aldéhydes aromatiques et 

aliphatiques est réalisée dans des conditions douces avec de bons rendements.123 Enfin, notons 

que le métal est utilisé en quantité catalytique. 

 
Schéma 117 

Toutefois, cette réaction souffre d’un temps de réaction particulièrement long (de 9h à 48h). 

Ainsi, l’utilisation d’organoindium pour la synthèse asymétrique d’alcool propargylique reste 

à ce jour encore relativement confidentielle. 

II.1.4.3.4 Complexes de titane 

Un système catalytique à base de titane avec des complexes chiraux de type 84 a été mis en 

place par l’équipe de Gou en 2010 (Schéma 118).124  

                                                 
123 Takita, R.; Yakura, K.; Ohshima, T.; Shibazaki, M. J. Am. Chem. Soc. 2005, 127, 13760-13761. 
124 Gou, S.; Ye, Z.; Huang, Z.; Ma, X. Appl. Organometal. Chem. 2010, 24, 374-379. 
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Les rendements obtenus sont relativement bons mais les excès énantiomériques restent 

modestes. 

II.1.4.3.5 Complexes de chrome 

Récemment, Yamamoto a décrit la première réaction d’alcynylation asymétrique catalysée par 

le chrome.125 L’utilisation en quantités catalytiques du complexe de chrome 85 (TBOxCrCl) 

en présence d’un excès de manganèse (qui permet la réduction du chrome III en chrome II), 

de N-méthylimidazole et de TESCl, conduit à la formation d’alcools propargyliques avec de 

bons rendements et énantiosélectivités. L’utilisation de TESCl permet de piéger l’alcool 

propargylique formé à l’issue de la réaction mais aussi d’augmenter l’excès énantiomérique 

par activation du substrat en tant qu’acide de Lewis. L’addition de TBAF permet finalement 

la libération de l’alcool secondaire (Schéma 119). 

 
Schéma 119 

 

                                                 
125 Usanov, D. L.; Yamamoto, H. J. Am. Chem. Soc. 2011, 133, 1286-1289. 



 124 

A notre connaissance, aucune réaction d’alcynylation n’a été réalisée sur des aldéhydes 

aliphatiques. Par ailleurs, il faut noter que le catalyseur TBOxCrCl nécessite cinq étapes de 

synthèse dont certaines requièrent l’utilisation d’une boîte à gant.125 

 

En conclusion, de nombreuses voies ont été décrites pour la formation asymétrique des 

alcools propargyliques secondaires, soit par réduction d’ynone soit par addition nucléophile. 

La méthode retenue pour l’installation du centre asymétrique en C6 de la thapsigargine est 

celle reportée par Corey, Bakshi et Shibata mettant en jeu le réactif CBS sur l’ynone chirale 

86 afin de synthétiser l’alcool 87 (Schéma 120). 
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Chapitre IV : Synthèse de première génération - 

élaboration d’un modèle 

 

I Stratégie générale de synthèse 

La Tg est un composé possédant un motif bicyclique fusionné 5-7 ainsi qu’une γ-lactone. La 

stratégie de synthèse de première génération de cette molécule consiste en la formation de 

l’intermédiaire bicyclique avancé 90, par une réaction de Pauson-Khand à partir du précurseur 

allène-yne 89. La séquence envisagée consiste à installer en début de synthèse le centre 

asymétrique C7 par réaction d’époxydation asymétrique de Sharpless puis à fonctionnaliser 

autour de ce centre. En effet, après ouverture de l’époxyde chiral (S)-88, des réactions 

d’alcynylation et de propargylation, notamment, permettraient d’installer les deux centres 

asymétriques C6 et C8 respectivement. Le motif γ-lactonique pourra être construit avant ou 

après la réaction de Pauson-Khand (Schéma 121).  

 
Schéma 121 

Afin de valider cette étape clé de Pauson-Khand allène-yne ainsi que la stratégie globale 

adoptée, nous avons choisi de synthétiser un modèle 92 de structure simplifiée mais proche de 

l’intermédiaire tricyclique 90. Ce modèle ne comportera pas la fonction alcool secondaire en 

position 8. Ainsi, l’époxyde chiral (S)-88 centré sur C7, pourra être homologué en allène-yne 

91 après construction des deux bras C6-C4 et C8-C2. Cette séquence fera notamment 
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intervenir une réaction d’alcynylation pour la mise en place du centre C6. Des essais de 

réaction de Pauson-Khand pourront alors être effectués (Schéma 122). 

 
Schéma 122 

II Synthèse du modèle 92 

Le modèle 92 comporte un système bicyclique 5-7 avec deux centres stéréogènes.  

 
Figure 34 

Dans un premier temps, le centre chiral C7 a été installé, puis le choix de l’ordre de 

construction de la partie Nord (chaîne C8-C2) et de la partie Sud (chaîne C6-C4) a retenu 

toute notre attention (Figure 34).  

II.1.1 Mise en place du centre chiral C7 

La première étape clé de la synthèse du modèle a consisté en la formation de l’époxyde (S)-

88. Cet époxyde a déjà été décrit dans la littérature:126 Il a été obtenu au moyen d’une réaction 

d’époxydation énantiosélective selon Sharpless à partir du diol allylique monoprotégé 95. En 

présence d’une quantité catalytique de D-(-)- tartrate de diéthyle, l’époxyde (S)-88 a été 

obtenu avec un rendement de 75% pour une pureté optique de 90%. L’alcène 95 a été 

synthétisé en trois étapes à partir du phosphonoacétate commercial. Une réaction d’Horner-

Wadsworth-Emmons127 entre le phosphonoacétate, après déprotonation par le carbonate de 

potassium, et le formaldéhyde a conduit à l’alcool allylique attendu 93 qui est immédiatement 

                                                 
126 a) Kang, J.-H.; Siddiqui, M. A.; Sigano, D. M.; Krajewski, K.; Lewin, N. E.; Pu, Y.; Blumber, P. M.; Lee, J.; 
Marquez, V. E. Org. Lett. 2004, 6, 2413-2416; b) Takao, K.-i.; Kojima, Y.; Miyashita, T.; Kentaro, Y.; Yamada, 
T.; Tadano, K.-i. Heterocycles 2009, 77, 167-172. 
127 Villieras, J.; Rambaud, M. Synthesis 1982, 924-925. 
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protégé sous forme d’éther de trityle 94 avec un rendement global de 74% pour deux étapes. 

La réduction de la fonction ester du composé 94 par le DIBAL-H128 a permis l’obtention du 

diol monoprotégé 95 avec un rendement de 85% (Schéma 123).  

 
Schéma 123 

L’époxyde (S)-88 a été synthétisé en quatre étapes avec un rendement global de 47%. 

L’avantage de cette séquence réactionnelle réside dans sa robustesse à grande échelle (ca. 500 

mmol). 

Pour les besoins de la synthèse, il a également été préparé dans les mêmes conditions, mais en 

présence de L-(+)-tartrate de diéthyle, l’époxyde (R)-88. 

 

Détermination structurale de l’époxyde (R)-88 : 

La pureté optique de l’époxyde (R)-88 a été déterminée selon deux méthodes : 

- par comparaison des [α]D avec la littérature : [α] 22
D  -20.0 vs. -19.5 (c 1.5, CHCl3)  

- par formation d’esters de Mosher avec les acides (R)-(+)- et (S)-(-)-α-méthoxy-α-

(trifluorométhyl)phénylacétiques, [(+)-MTPA] et [(-)-MTPA] puis analyse RMN1H.126a La 

mesure du rapport des intégrations correspondant au doublet du CH2 en position 11 de chacun 

des deux diastéréoisomères indique un excès énantiomérique de 90% (Schéma 124). 

                                                 
128 Honma, M.; Sawada, T.; Fujisawa, Y.; Utsugi, M.; Watanabe, H.; Umino, A.; Matsumura, T.; Hagihara, T.; 
Takno, M.; Nakada, M. J. Am. Chem. Soc. 2003, 125, 2860-2861. 
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Schéma 124 

Le choix du trityle comme groupement protecteur n’a pas été réalisé en première intention. En 

effet, l’une des problématiques dans cette stratégie consiste à gérer au mieux l’orthogonalité 

des différents groupements protecteurs portés par les hydroxyles, au fur et à mesure de 

l’avancement de la synthèse. Il est connu que le clivage d’un éther de trityle, normalement 

réalisé en milieu acide (ou éventuellement réducteur), n’est pas toujours chimiosélectif. C’est 

pourquoi, d’autres éthers correspondant à 95 ont été préparés. Cependant, les éthers de PMB 

(p-méthoxybenzyle) et TBS (tert-butyldiméthylsilyle) ont montré une grande instabilité lors 

de leur purification sur colonne de silice. D’autre part, l’éther de TBDPS a, quant à lui, 

conduit à un rendement et un excès énantiomérique significativement plus faible que l’éther 

de trityle lorsqu’il est engagé dans la réaction d’époxydation de Sharpless (Rendement : 45% 

vs. 75% ; ee : 75% vs. 90%).  

Nous avons donc décidé de poursuivre la synthèse avec l’éther de trityle. 

II.1.2 Formation du précurseur allène-yne : voies A et B 

Le centre asymétrique C7 étant installé, il était alors nécessaire de mettre en place les deux 

bras C6-C4 et C8-C2, pour parvenir à l’allène-yne de type 96, précurseur de la réaction de 

Pauson-Khand. Le choix de l’ordre de construction de ces deux chaînes s’est révélé important 

(Schéma 125).  

 
Schéma 125 
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Le premier grand type de stratégie envisagé consistait à construire la partie Nord en deux 

étapes principales : ouverture de l’époxyde en position 8 par un vinylmétal (apport du carbone 

C9) puis homologation par un alcool propargylique protégé (apport des carbones 10, 1, 2). La 

partie Sud, quant à elle, pouvait être élaboré par réaction d’alcynylation avec un propyne 

métallé (apport des carbones 5, 4, 15) à partir des époxydes (R)-88 ou (S)-88. 

Deux voies s’offraient alors à nous : la voie A consistant en la construction de la partie Nord 

avant celle de la partie Sud à partir de l’époxyde (S)-88 et la voie B de séquence inversée à 

partir de l’époxyde (R)-88. 

II.1.2.1 Voie A : construction initiale de la partie Nord (chaîne C8-C2)  

a. Stratégie  

A partir de l’époxyde chiral (S)-88, la stratégie de cette première voie est basée sur 

l’élaboration du bras C8-C2 pour parvenir à l’alcool primaire propargylique protégé 97. Le 

bras C6-C4 sera ensuite mis en place pour conduire à l’alcool secondaire propargylique 98. 

Enfin après formation de l’allène 99, la réaction de Pauson-Khand permettra l’obtention du 

composé bicyclique 100 (Schéma 126). 

 
Schéma 126 

Le choix des différents groupements protecteurs sur ce type de molécules polyhydroxylées et 

hautement fonctionnalisées s’avère particulièrement important. Face à l’encombrement 

stérique généré par le groupement trityle en C6 (indispensable pour la synthèse de l’époxyde 

88 dans de bonnes conditions) ainsi que par le centre quaternaire C7, il a alors été décidé de 

protéger les deux hydroxyles en C7 et C11 sous forme d’acétonide (97).  

b. Synthèse 

La première étape a consisté en l’ouverture de l’époxyde chiral (S)-88 par un cuprate de 

vinyle généré in situ à partir du magnésien vinylique et de CuBr.Me2S pour conduire au diol 
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101 avec un rendement de 77%.129,130,131 Celui-ci a été ensuite protégé quantitativement sous 

forme d’acétonide 102 en présence du 2-méthoxypropène (Schéma 127). 

 

 
Schéma 127 

Une ozonolyse dans des conditions réductrices a ensuite été effectuée pour aboutir à l’alcool 

primaire 103 avec un excellent rendement de 96%. L’iodure d’alkyle 104 a été généré 

facilement par iodation de l’alcool primaire avec un rendement de 95% (Schéma 128).  

 
Schéma 128 

L’installation du motif alcool propargylique par alkylation en C9 de l’iodure 104 s’est révélée 

délicate. Un protocole opératoire très précis a dû être mis en place: un excès de n-Buli, à  

-78°C  dans le THF est tout d’abord ajouté à l’alcool propargylique protégé par un 

groupement TBDPS 105. Puis, l’iodure 104 en solution dans le HMPA est additionné à cette 

même température à la solution d’acétylure formé in situ. Après 3h à 0°C, le propargyle 97 est 

obtenu avec un rendement de 53% (Schéma 129).  

 
Schéma 129 

                                                 
129 Joyasawal, S.; Lotesta, S. D.; Akhmedov, N. G.; Williams, L. J. Org. Lett. 2010, 12, 988-991. 
130 Il est à noter qu’avec certains lots de CuBr.Me2S, l’ouverture de l’époxyde conduisait non pas à l’alcène 
attendu 101 mais au bromure correspondant en C8. Se référer à : Alexakis, A.; Jachiet, D.; Normant, J.F. 
Tetrahedron 1986, 42, 5607-5619. 
131 L’excès énantiomérique du composé (S)-101 a été déterminé par formation des esters de Mosher. Cet excès 
(90%) étant le même que celui de l’époxyde de départ, montre qu’il n’y a pas eu de transpositions de Payne. 
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L’ordre d’addition des différents réactifs lors de cette réaction s’est avéré déterminant. En 

effet, lorsque l’acétylure est formé directement en présence de n-BuLi et d’HMPA puis 

additionné sur le composé iodé, seul le produit de départ est récupéré.132 De même, si la 

réaction est réalisée sans HMPA, aucune réaction n’a lieu. Pour obtenir le produit 97, il 

semble donc nécessaire de mélanger au préalable l’iodure d’alkyle et l’HMPA.  

Dans notre cas, la réaction ne fonctionne que lorsque l’HMPA est utilisé comme co-solvant 

du composé iodé. A notre connaissance, seule l’équipe de Nicolaou a décrit ces conditions 

réactionnelles, toutefois, il n’a pas été donné d’explication à propos de ce protocole. 133  

 

Le bras C8-C2 étant mis en place, nous nous sommes ensuite intéressés à la construction de la 

chaîne C6-C4.  

Il était donc nécessaire de cliver sélectivement l’éther de trityle afin de régénérer l’alcool 

primaire en C6 (106). De façon générale, un groupement trityle est clivé en milieu acide de 

Brønsted ou de Lewis.134 Dans notre cas, la présence de la fonction acétonide rendait cette 

réaction particulièrement délicate, avec formation possible du triol achiral 107 (Schéma 130).  
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Schéma 130 

Cependant, il a été décrit dans la littérature plusieurs exemples de déprotections 

chimiosélectives.135,136 Nous avons donc testé ces conditions. Les résultats des différents 

essais sont réunis dans le Tableau 2.  

L’utilisation d’acide formique à 99% dans l’éther diéthylique (en proportion 1:1)135 a conduit 

à un mélange du composé 106 attendu (27%) et du triol 107 (environ 70%) (Tableau 2, entrée 

1). Il faut noter que la réaction ne fonctionne pas lorsque l’acide formique est utilisé dilué en 

solution 0.5 M dans l’éther (Tableau 2, entrée 2). L’utilisation d’autres acides comme HCl 0.5 

                                                 
132 Par exemple: a) Nagano, H.; Tada, A.; Isobe, Y.; Yajima, T. Synlett 2000, 8, 1193-1195; b) Yoshida, T.; 
Murai, M.; Abe, M.; Ichimaru, N.; Harada, T.; Nishioka, T.; Miyoshi, H. Biochemistry 2007, 46, 10365-10372; 
c) Abad, J. L.; Fabrias, G.; Camps, F. Lipids 2004, 39, 397-401. 
133 Nicolaou, K. C.; Namoto, K.; Ritzén, A.; Ulven, T.; Shoji, M.; Li, J.; D'Amico, G.; Liotta, D.; French, C. T.; 
Wartmann, M.; Altmann, K.- H.; Giannakakou, P. J. Am. Chem. Soc. 2001, 123, 9313-9323. 
134 Des conditions réductrices fortes (Li/NH3) ont également été rapportées mais sont ici inadéquates étant donné 
la présence de la fonction alcyne. Wuts, P. G. M.; Greene, T.W. Greene’s protective groups in organic synthesis 
4

th
 ed, 2006, Wiley Interscience. 

135 Bessodes, M.; Komiotis, D.; Antonakis, K. Tetrahedron Lett. 1986, 27, 579-580. 
136 Satish, M. K.; Ravindranathan, K. P. Synlett 2009, 11, 1809-1811. 
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M (Tableau 2, entrée 3) ou la résine sulfonique Amberlyst 15 (Tableau 2, entrée 4) a conduit 

exclusivement au triol 107. Enfin, une dégradation importante du produit de départ est 

observée par utilisation de bromure d’iode dans un mélange MeOH/CH2Cl2
136 (Tableau 2, 

entrée 5). 

Entrée Réactif Solvants Produits 

1 HCOOH (99%) Et2O 106 (27%) + 107 

2 HCOOH (0.5 M) Et2O Pas de réaction 

3 HCl (0.5 M) THF 107 (quantitatif) 

4 Amberlyst 15 MeOH 107 (quantitatif) 

5 IBr MeOH/CH2Cl2 Dégradation 

Tableau 2 

Face à ce manque de sélectivité de la réaction de clivage de l’éther de trityle en C6, il a été 

décidé d’explorer la séquence inverse (Voie B). 

II.1.2.2 Voie B : construction initiale de la partie Sud (chaîne C6-C4) 

c. Stratégie  

A partir de l’époxyde (R)-88, l’idée envisagée consistait à installer dans un premier temps la 

chaîne C6-C4 afin de synthétiser l’alcyne 108. La mise en place de la chaîne C8-C2 

conduirait ensuite à l’alcool primaire 109 puis, après formation de l’allène 110, le composé 

bicyclique 111 serait obtenu par réaction de Pauson-Khand (Schéma 131). 
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Dans le cadre de ce modèle, nous avons opté pour une protection de l’alcool primaire en 

position 11 par un groupement trityle, de l’alcool secondaire en C6 par un groupement 

méthoxyméthyle (MOM) et enfin de l’alcool tertiaire en C7 sous forme d’éther de p-

méthoxybenzyle (PMB). 

 

d. Synthèse 

A partir du diol (R)-101, énantiomère du diol (S)-101 préalablement préparé, il a été envisagé 

de protéger sélectivement l’alcool tertiaire avec un groupe PMB. Pour cela, l’alcool primaire 

et l’alcool tertiaire ont tout d’abord été protégés en milieu acide sous forme d’acétal de p-

méthoxybenzylidène (acétal de PMB) 112 avec un rendement de 87%. Une réduction par le 

DIBAL-H devait ensuite, par attaque de l’hydrure du côté le plus dégagé, conduire 

sélectivement à l’alcool tertiaire OPMB 113.137  

Dans notre cas, un premier essai a été réalisé conformément à la littérature,137 avec comme 

solvant le dichlorométhane et une à concentration de 67 mmol.L-1. En additionnant le DIBAL-

H en solution 1.1M dans le cyclohexane à -78°C, il a été obtenu un mélange des deux 

régioisomères 113 et 114, séparables par chromatographie, en proportion 75:25 en faveur du 

composé 113 attendu avec un rendement de 53% pour un taux de conversion de 66% (Schéma 

132, Tableau 2, entrée 1). 

 
Schéma 132 

Une courte étude méthodologique a été effectuée dans le but d’enrichir la proportion de 

l’alcool primaire voulu 113. Ainsi, la nature du solvant de réaction et la concentration du 

réactif de départ dans le milieu ont été étudiées. Enfin, nous avons regardé l’influence du 

solvant dans lequel était mis en solution le DIBAL-H. 

Afin d’augmenter le taux de conversion, le milieu a été fortement concentré (333 mmol.L-1). 

Dans ces conditions, nous avons obtenu un mélange équimolaire des deux isomères (Tableau 

2, entrée 2). Un nouvel essai a donc été effectué à une concentration intermédiaire (133 

                                                 
137 O’Connor, P. D.; Knight, C. K.; Friedrich, D.; Peng, X.; Paquette, L. A. J. Org. Chem. 2007, 72, 1747-1754. 
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mmol.L-1). Dans ce cas, la conversion est quasi-totale et le ratio sensiblement le même qu’à 

plus forte dilution. Le rendement obtenu est de 63% (Tableau 2, entrée 3). Il est intéressant de 

constater qu’à cette même concentration, lorsque le DIBAL-H est en solution 1M dans le 

dichlorométhane, les deux produits sont obtenus dans les mêmes proportions (Tableau 2, 

entrée 4). Il en est de même lorsque l’on fait varier le solvant de réaction en utilisant le 

toluène (Tableau 2, entrée 5). 

 

Entrée Solvant 
Concentration 

(mol.L-1) 

Solvant du 

DIBAL-H 

Conversion 

(%) 

Ratio 

113:114 

Composé 25 

(%) 

1 CH2Cl2 0.067 Cyclohexane 66 75:25 53 

2 CH2Cl2 0.333 Cyclohexane 100 50:50 Non isolé 

3 CH2Cl2 0.133 Cyclohexane 95 77:23 63 

4 CH2Cl2 0.133 CH2Cl2 100 50:50 Non isolé 

5 Toluène 0.067 Cyclohexane 100 50:50 Non isolé 

Tableau 3 

C’est donc la réaction conduite à 0.133 mol.L-1 dans le dichlorométhane, en utilisant le 

DIBAL-H en solution dans le cyclohexane qui sera retenue pour cette voie de synthèse. 

Ces résultats sont surprenants, mais des problèmes de régiosélectivité similaires voire encore 

plus importantes ont déjà été rapportés dans la littérature sur des systèmes proches.138  

Ici, le problème de sélectivité pourrait être imputé au groupement trityle. En effet, ce 

groupement protecteur étant très volumineux, il est plausible d’envisager qu’il rende difficile 

l’accès de l’hydrure du côté de l’hydroxyle primaire ce qui favoriserait la formation du 

composé 114 (Figure 35). Un phénomène de décompression stérique en faveur du produit 114 

pourrait également expliquer ce manque de sélectivité. A fortiori, plus le milieu est dilué, plus 

la formation du produit 113 serait favorisée. 

 
Figure 35 

                                                 
138 Hale, K. J.; Cai, J. Tetrahedron Lett. 1996, 37, 4233-4236. 
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Le prochain enjeu de cette synthèse sera l’installation de la chaîne C6-C4 et de l’alcool 

secondaire en C6 de façon stéréocontrôlée.  

Plusieurs méthodes permettent de synthétiser des alcools propargyliques de manière 

asymétrique (voir chapitre III, paragraphe 4, synthèse stéréosélective d’alcools propargyliques 

secondaires). Nous avons opté pour la méthode décrite par Corey-Bakshi-Shibata consistant 

en la réduction asymétrique d’une ynone par le réactif CBS.110b 

Ainsi, l’alcool primaire 113 a été oxydé en utilisant le réactif de Dess-Martin.139 L’aldéhyde 

115 résultant a ensuite été engagé sans purification dans la réaction avec le magnésien 

propynylique. Un mélange équimolaire des deux diastéréoisomères (6S)-116 et (6R)-116, non 

séparables par chromatographie, a été obtenu avec un rendement de 68% pour deux étapes 

(Schéma 133). 

 
Schéma 133 

  

Une séquence, oxydation des alcools propargyliques 116 par le réactif de Dess-Martin pour 

conduire à l’ynone 117 puis réduction par le réactif (R)-CBS en présence de BH3
.Me2S, a 

permis d’isoler l’alcool propargylique (6S)-116 avec rendement de 76% pour deux étapes et 

un excès diastéréoisomérique de 90% (Schéma 134). 

 
Schéma 134 

Après protection de cet alcool par un groupement MOM (108) avec un rendement de 82%, 

nous nous sommes intéressés à la construction de la partie Nord de la molécule. L’ozonolyse 

de la double liaison terminale dans des conditions réductrices a permis de conduire à la 

formation de l’alcool primaire 118 avec un rendement de 81% (Schéma 135).  

                                                 
139 Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4159. 
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L’étape suivante consistait à transformer l’alcool primaire en C9 en groupement partant pour 

pouvoir introduire l’acétylure propargylique (120) et finaliser ainsi l’installation de la chaîne 

C8-C2 (Schéma 136).  

Néanmoins, le composé iodé 119 attendu n’a pas pu être isolé. Que ce soit dans les conditions 

A (I2, PPh3, imidazole) ou B (réaction de Finkelstein : MsCl, NEt3 puis NaI),140 c’est toujours 

le tétrahydrofurane 121 qui est généré. 

 
Schéma 136 

Nous avons supposé que l’iodure d’alkyle 119 a bien été formé ; cependant, en cours de 

réaction, l’oxygène en C6 viendrait substituer l’iode pour donner l’oxonium 122. Celui-ci 

serait alors transformé en tétrahydrofurane 121 avec libération d’iodo(méthoxy)méthane. Le 

composé 123 n’a cependant pas pu être retrouvé car certainement volatil et instable (Schéma 

137). 

                                                 
140 Finkelstein, H. Ber. Dtsch. Chem. Ges. 1910, 43, 1528. 
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Schéma 137 

L’iodure d’alkyle 119 n’ayant pu être isolé à ce stade, nous avons envisagé de construire la 

chaîne C8-C2 différemment. 

II.1.3 Formation du précurseur allène-yne : voie C 

a. Stratégie  

Cette nouvelle voie consisterait à ouvrir directement l’époxyde (R)-88 par un magnésien 

propargylique, d’où la formation de l’alcyne 124 à un stade précoce de la synthèse. Une 

homologation permettrait de finaliser la construction de la chaîne C8-C2 avec formation de 

l’alcool propargylique protégé 125. La partie Sud serait ensuite fonctionnalisée comme 

précédemment par réaction d’alcynylation pour obtenir le diyne 126. Enfin, le composé 

bicyclique 128 serait obtenu par réaction de Pauson-Khand à partir de l’allène 127 et (Schéma 

138). 
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b. Synthèse 

L’ouverture de l’époxyde chiral (R)-88 par le magnésien propargylique 129 a conduit à la 

formation quasi-quantitative du diol 124.141 Ce dernier a ensuite été protégé sous forme de p-

méthoxybenzylidène en milieu acide pour obtenir l’alcyne 130 avec un rendement de 75% 

(Schéma 139). 

 
Schéma 139 

L’homologation de cet alcyne a été effectuée par formylation. En présence de n-BuLi, 

l’acétylure formé réagit sur le p-formaldéhyde dépolymérisé pour conduire à l’alcool 

propargylique 131 avec un rendement de 42%. Celui-ci est ensuite protégé sous forme d’éther 

de TBS (125) avec un rendement de 88% (Schéma 140). 
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Schéma 140 

La libération de l’alcool primaire en position 6 (132) a été effectuée par réduction de l’acétal 

125 en présence de DIBAL-H dans les conditions précédemment optimisées (voir Schéma 

132 et Tableau 3), avec un rendement de 61%. Le régioisomère 133 a, quant à lui, été isolé 

avec un rendement de 12%. La chaîne C6-C4 a été installée en appliquant la même séquence 

que précédemment (voir Schémas Schéma 133 et Schéma 134). Ainsi, après oxydation de 

l’alcool primaire 132 par le réactif de Dess-Martin, l’aldéhyde formé réagit avec le magnésien 

propynylique avec formation d’un mélange équimolaire des deux diastéréoisomères (R)-134 

et (S)-134 avec un rendement de 72% pour deux étapes (Schéma 141). 

                                                 
141 Ramharter, J.; Mulzer, J. Org. Lett. 2009, 11, 1151-1153. 
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Schéma 141 

L’ynone 135 a ensuite été générée par oxydation des alcools (R)-134 et (S)-134 par le 

périodinane de Dess-Martin. Une réduction stéréocontrôlée par le réactif (R)-CBS a permis de 

former l’alcool propargylique (S)-134 avec un excès diastéréomérique de 90% et un 

rendement de 70% pour 2 étapes (Schéma 142).  

 
Schéma 142 

Détermination structurale de l’alcool propargylique (S)-134 : 

La détermination de la configuration du centre C6 a été prouvée par l’étude des profils RMN 
1H des esters dérivés des acides mandéliques (R) et (S)-MPA, en fonction du modèle établi 

par Trost (Schéma 143).142 

                                                 
142 a) Trost, B. M.; O’Krongly D. O.; Belletire, J. L. J. Am. Chem. Soc. 1980, 102, 7595-7596; b) Trost B. M.; 
Curran, D. P. Tetrahedron Lett. 1981, 22, 4929-4932; c) Trost, B. M.; Belletire, J. L.; Goldleski, P. G.; 
McDougal, P. G.; Balkovec, J. M.; Baldwin, J. J.; Christy, M.; Ponticello, G. S.; Varga, S. L.; Springer, J. P. J. 

Org. Chem. 1986, 51, 2370-2374. 
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Schéma 143 

Dans le cas du composé (S)-134, il est ainsi attendu un blindage de la chaîne C6-C4 pour le 

dérivé (S)-MPA 136, et de la chaîne C8-C2 pour le dérivé (R)-MPA 137. Si l’alcool en C6 

possède la configuration absolue opposée, c’est l’inverse qui sera observé. 

 

Les effets de blindage les plus significatifs sont visibles au niveau des déplacements 

chimiques des protons H15, H11 et de l’un des protons benzyliques du groupe PMB (Tableau 

4). 
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CH(a): 3.30 (H(PMB)) 

CH2: 4.21 (H11) 

CH3: 1.78 

 

CH(a): 3.20 

CH2: 4.09 

- 0.08 

 

+ 0.10 

+ 0.12 

Tableau 4 

 

A partir de l’époxyde (R)-88, cette voie C, consistant en une ouverture directe de l’époxyde 

par le magnésien propargylique, a permis d’élaborer le diyne (S)-134 avec un rendement 

global de 14% en huit étapes. 

 

Afin de préparer le précurseur de la réaction de Pauson-Khand, nous nous sommes intéressés 

à la formation de l’allène 127.  

L’alcool propargylique intermédiaire 126 a été élaboré en deux étapes après protection de 

l’alcool secondaire en C6 par un groupement MOM (formation de 138) et déprotection de 

l’alcool propargylique en C2 par les ions fluorures, avec un rendement global de 78% pour 
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deux étapes. Il faut noter qu’après purification sur silice, l’éther de MOM 138 a pu être isolé 

sous la forme du seul diastéréoisomère (S)-138 (Schéma 144). 

 
Schéma 144 

Deux types d’allènes ont ensuite été synthétisés à partir de l’alcool propargylique 126 

(Schéma 145).  

L’allène 139 substitué en position 10 par un méthyle a été obtenu en 2 étapes avec un 

rendement global de 78%, par traitement avec le chlorure de mésyle puis par réaction de type 

SN2’ avec un méthylcyanocuprate formé in situ.79  

L’allène monosubstitué 140 a été élaboré dans les conditions de Mitsunobu en présence du 

réactif iso-propylidène d’o-nitrobenzènesulfonylhydrazide 141, préparé en deux étapes à 

partir du chlorure de 2-nitrobenzènesulfonyle.143,144 Notons que le faible rendement observé 

(33%) est sans aucun doute dû à la très faible quantité d’alcool propargylique 126 engagée (40 

µmol).  

                                                 
143 Synthèse de 49 : a) Myers, A. G.; Zheng, B.; Movassaghi, M. J. Org. Chem. 1997, 62, 7507-7507; b) 
Movassaghi, M.; Ahmad, O. K. J. Org. Chem. 2007, 72, 1838-1841. 
144 Pour la synthèse d’allène par réaction de Mitsunobu avec 49, se référer à : a) Tenaglia, A.; Le Jeune, K.; 
Giordano, L.; Buon, G. Org. Lett. 2011, 13, 636-639; b) Myers, A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 
4492-4493. 
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Schéma 145 

II.1.4 Réaction de Pauson-Khand 

La réaction de cyclocarbonylation de Pauson-Khand allène-yne, dernière étape de cette 

synthèse, a été réalisée dans différentes conditions.  

Au cours d’un premier essai, l’allène 139 a été mis en réaction avec le catalyseur 

[Rh(CO)(dppp)2Cl] formé in situ à partir de 10 mol% de [Rh(Cl)(cod)2]2 et 50 mol% de 1,3-

bis(diphenylphosphino)propane (dppp) (Schéma 146, conditions A), sous une atmosphère de 

monoxyde de carbone, au reflux du toluène pendant 5h. La bicyclo[5.3.0]décadiénone 142 

attendue a été isolée avec un bon rendement de 76%.  

Un second essai a été effectué en utilisant 10 mol% de [Rh(CO)2Cl]2 (Schéma 146, conditions 

B). Après 5h à 90°C, le composé bicyclique 142 a été obtenu avec un rendement similaire de 

80%. 
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Schéma 146 



 145 

Les conditions B ont été appliquées à l’allène monosubstitué 140 pour permettre l’élaboration 

du composé bicyclique 143 avec un faible rendement de 37% (Schéma 147). Comme dans le 

cas de la synthèse de son précurseur 140, ce résultat n’est sans doute pas vraiment 

représentatif de l’efficacité de la réaction étant donné l’échelle à laquelle elle a été réalisée (10 

µmol). 

 
Schéma 147 

III Conclusion 

En conclusion, la synthèse du modèle 92 ne comportant pas de fonction alcool secondaire en 

position 8, a été explorée selon trois voies à partir des époxydes (S) et (R)-88 centrés sur le 

centre asymétrique C7 (Figure 36). 
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Figure 36 

Les voies A et B consistaient à ouvrir ces époxydes par un vinylmétal (formation des diols 

(S)-101 et (R)-101) puis à construire les deux bras Nord (chaîne C8-C2) et Sud (chaîne C6-

C4) selon une séquence inverse.  

Si la voie A a bien permis de mettre en place le bras Nord, un problème de sélectivité au 

niveau des groupements protecteurs des fonctions alcools (passage du composé 97 à 106) a 

empêché d’aboutir à l’allène-yne précurseur (Schéma 148). 
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Schéma 148 

La voie B a, quant à elle, permis l’accès à un intermédiaire comportant le bras Sud (118) 

mais, ici encore, un problème de réactivité inattendu de groupement protecteur (OMOM en 

C6) n’a pas rendu possible la construction du bras Nord (Schéma 148). 

 
Schéma 149 

Les allène-ynes 139 et 140 ont finalement pu être élaborés par le biais de la voie C, en treize 

et douze étapes respectivement à partir de l’époxyde (R)-88 avec un rendement global de 

8.5% pour R = Me et 3.5% pour R = H. Cette approche reposait sur l’ouverture de l’époxyde 

(R)-88 par un métal propargylique puis construction du bras Nord par homologation et enfin 

du bras Sud par réaction d’alcynylation.  

Au final, ces deux allène-ynes 139 et 140 ont été engagés dans des réactions de Pauson-

Khand (PKR). Les deux composés bicycliques 5-7 attendus 142 et 143 ont pu être formés 

avec des rendements respectifs de 80% et 37%. 
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La synthèse du bicycle 142 a fait l’objet d’une publication. 145 

C’est la stratégie développée pour l’obtention de ce bicycle qui sera appliquée à la synthèse 

du produit naturel. 

                                                 
145 Tap, A.; Jouanneau, M.; Galvani, G.; Sorin, G.; Lannou, M.- I.; Férézou, J.- P.; Ardisson, J. Org. Biomol. 

Chem. 2012, 10, 8140-8146. 
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CHAPITRE V : 

 

VERS LA SYNTHESE DU PRODUIT NATUREL : 

PREMIERE APPROCHE 
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Chapitre V : Vers la synthèse du produit naturel : 

première approche 

 

 

Pour la synthèse totale de la Tg 1, comme précédemment, deux grandes zones ont été définies 

avec une partie Sud en bleu et une partie Nord en rouge (Figure 37). 

 
Figure 37 

La stratégie envisagée pour la synthèse du produit naturel est proche de celle établie pour la 

synthèse du modèle. En effet, elle repose sur la fonctionnalisation autour du centre C7, 

installé précocement, par l’intermédiaire de l’époxyde chiral (S)-88.  

L’ouverture de cet époxyde par un métal vinylique permettra d’installer les carbones C6 et 

C12 de la γ-lactone. Cette réaction sera suivie d’une réaction d’alcynylation pour mettre en 

place le bras C6-C4 et conduire à l’alcool propargylique A. La formation de l’aldéhyde-

lactone B finalisera la fonctionnalisation de la partie Sud de la molécule.  

La partie Nord sera ensuite construite par réaction de propargylation pour installer le centre 

stéréogène C8.  

Après élaboration de l’allène-yne C, une réaction de Pauson-Khand conduira à la formation 

du composé tricyclique D.  

Le produit naturel Tg 1 sera alors obtenu après fonctionnalisation du motif diénone avec 

notamment l’installation des centres quaternaires C10 et C11 (Schéma 150). 
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Schéma 150 

Dès les premières étapes, plusieurs fonctions alcools doivent être mises en place, nécessitant 

un mode de protection spécifique. Le choix d’installer la lactone de manière relativement 

précoce éviterait l’utilisation de groupements protecteurs pour les hydroxyles en C6 et C12. 

De plus, cette fonction pourrait favoriser la réaction de cyclocarbonylation par effet Thorpe-

Ingold.146 

I Mise en place de la partie Sud 

Deux voies ont été étudiées selon que le clivage de l’éther de trityle (OTr) en C8 sera effectué 

en fin de séquence ou au contraire de façon précoce. 

I.1.1 Clivage de l’éther de trityle en fin de séquence 

Nous disposions, au moment de la mise en œuvre de cette voie, d’une quantité importante 

d’époxyde chiral (R)-88 provenant de la synthèse du modèle 92.147 Nous avons décidé 

d’utiliser cet époxyde (R)-88 comme réactif de départ en vue de la synthèse de l’énantiomère 

de la Tg 1. 

 

L’ouverture de cet époxyde par un magnésien vinylique en présence de CuI, a permis 

d’accéder au diol (R)-101 avec un rendement de 82%.148 L’aldéhyde ent-144 a été obtenu 

                                                 
146 Grillet, F.; Huang, C.; Brummond, K. M. Org. Lett. 2011, 13, 6304-6307. 
147 Nous avions à notre disposition ~10g d’époxyde chiral (R)-88. 
148 Mizutani, H.; Watanabe, M.; Honda, T. Tetrahedron 2002, 58, 8929-8936. 



 153 

après oxydation de l’alcool primaire dans les conditions de Parikh-Doering149 avec un 

rendement de 81% (Schéma 151). 

 
Schéma 151 

Pour l’installation de la chaîne C6-C4, l’alcool tertiaire ent-144 a été préalablement protégé 

sous forme d’éther de MOM (ent-145) avec un rendement de 63%. L’utilisation d’un MOM 

comme groupement protecteur nous permettait de masquer l’alcool en générant un minimum 

d’encombrement stérique. L’ynone ent-146 a ensuite été préparée comme précédemment, par 

une séquence alcynylation, avec formation intermédiaire d’un mélange équimolaire des deux 

alcools propargyliques diastéréomères correspondants, puis oxydation par le réactif de Dess-

Martin. L’ynone ent-146 a ainsi été obtenue avec un rendement de 81% pour deux étapes 

(Schéma 152). 

 
Schéma 152 

Les étapes suivantes ont consisté en l’installation du centre stéréogène C6 puis en la 

construction de la γ-lactone. A ce stade, l’alcynylation asymétrique étant difficile à mettre en 

œuvre,150 nous avons opté pour une réduction de l’ynone ent-146 en utilisant les conditions de 

Corey en présence de l’oxazaborolidine chirale (S)-CBS et de BH3
.Me2S. Nous avons ainsi 

obtenu l’alcool propargylique ent-147 avec un rendement de 85% et une diastéréosélectivité 

excellente (ed > 95%). L’ozonolyse de la double liaison terminale suivie de l’oxydation du 

lactol intermédiaire, dans les conditions de Ley [tétrapropylammonium perruthénate (TPAP) 

et N-méthylmorpholine N-oxyde (NMO)],151 a permis d’accéder à la lactone ent-148 avec un 

rendement de 80% pour deux étapes (Schéma 153). 

                                                 
149 Parikh, J. R.; Doering, W. V. E. J. Am. Chem. Soc. 1967, 89, 5505-5507. 
150 La mise en œuvre de la réaction aurait été difficile car elle impliquait l’emploi du propyne. 
151 Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J. Chem. Soc., Chem. Commun. 1987, 1625-1627. 
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Schéma 153 

A ce stade, pour la construction de la partie Nord, il était nécessaire de régénérer l’alcool 

primaire en C8 par clivage du groupe trityle. 

Afin d’éviter des problèmes de chimiosélectivité, le clivage du groupe trityle en milieu 

réducteur a été d’emblée proscrit. Plusieurs conditions acides ont par contre été criblées. 

Cependant, des difficultés ont été rencontrées dues à la formation, en mélange non séparable 

par chromatographie, de la lactone ent-149 attendue et de la lactone régioisomère ent-150, 

issue d’une réaction de translactonisation (Schéma 154). Les résultats des différents essais 

réalisés sont regroupés dans le Tableau 5. 

 
Schéma 154 

Entrée Conditions 
Ratio  

ent-(148/149/150) 

1 
Yb(OTf)3 (15 mol%) 

H2O, t.a., 48 h 
10 : 0 : 0 

2 
APTS (10 mol%) 

MeOH, t.a., 1 h 
0 : 4 : 6 

3 
HCOOH/Et2O (1:1) 

t.a., 2 h 
0 : 5 : 5 

4 
TMSOTf (1 mol%), Et3SiH (1.2 éq.) 

CH2Cl2, -50°C, 15 min 
Dégradation 

5 
TFA (4 éq.), Et3SiH (4 éq.) 

CH2Cl2, 0°C, 15 min 
0 : 5 : 5 

Tableau 5 
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Les premiers essais ont consisté à mettre en œuvre des acides de Lewis ou de Brønsted. 

L’utilisation de triflate d’ytterbium Yb(OTf)3
152, couramment utilisé dans la chimie des 

sucres, s’est révélée infructueuse avec récupération totale du produit de départ (Tableau 5, 

entrée 1). En présence d’APTS dans le méthanol153 (Tableau 5, entrée 2) ou d’acide formique 

dans l’éther154 (entrée 3), un mélange sensiblement équimolaire des deux lactones ent-149 et 

ent-150 est obtenu.  

Il a été envisagé qu’en milieu acide, il y aurait tout d’abord déprotection de l’alcool primaire 

puis activation de la fonction lactone avec translactonisation éventuelle en lactone ent-150. 

Dans un deuxième temps, nous avons testé des conditions relativement originales, à savoir 

l’utilisation de triflate de triméthylsilyle (TMSOTf) en quantité catalytique et de triéthylsilane 

en quantité stœchiométrique. L’intérêt de cette méthode réside dans ses conditions douces 

ainsi que dans sa chimiosélectivité. Dans la littérature, le mécanisme postulé consiste en 

l’activation de l’éther par le TMSOTf pour conduire à l’éther silylé correspondant et au 

triflate de trityle. Ce dernier est ensuite réduit par le triéthylsilane.155 Cependant, à partir du 

substrat ent-148, seule de la dégradation a été observée (Tableau 5, entrée 4). Il faut 

néanmoins relativiser ce résultat car la réaction n’a été effectuée qu’une seule fois et sur très 

petite échelle (0.107 mmol de ent-148 correspondant à 2 µL de TMSOTf). 

Un nouvel essai a été réalisé en présence d’un excès d’acide trifluoroacétique (TFA) et de 

triéthylsilane.156 A 0°C, la réaction est achevée en 15 min pour conduire à un mélange 

équimolaire des deux lactones (Tableau 5, entrée 5). 

Nous avons cherché à optimiser cette réaction en opérant à plus basse température. 

La proportion de chacune des lactones 149 et 150 a été évaluée par analyse des spectres RMN 
1H des bruts réactionnels au niveau du proton en position 6 (Schéma 155, Figure 37). 

 
Schéma 155 

 

                                                 
152 Lu, R. J.; Liu, D.; Giese, R. W. Tetrahedron Lett. 2000, 41, 2817-2819. 
153 Druais, V.; Hall, M. J.; Corsi, C.; Wendeborn, S. V.; Meyer, C.; Cossy, J. Org. Lett. 2009, 11, 935-938. 
154 Smith, III A. B.; Freeze, B. S.; Xian, M.; Hirose, T. Org. Lett. 2005, 7, 1825-1827. 
155 Imagawa, H.; Tsuchihashi, T.; Singh, R. K.; Yamamoto, H.; Sugihara, T.; Nishizawa, M. Org. Lett. 2003, 5, 
152-153. 
156 Rozners, E.; Xu, Q. Org. Lett. 2003, 5, 3999-4001. 
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Figure 1 

A 0°C, en 15 min, le spectre du brut réactionnel confirme que les deux lactones sont en 

proportions équivalentes. A -80°C et après 1h de réaction, la réaction n’est pas achevée mais 

il est intéressant de constater qu’il y a un excès de la lactone attendue ent-149 par rapport à la 

lactone ent-150. Enfin, un dernier essai à -45°C a montré qu’après 15 min de réaction, la 

conversion était totale et que la lactone ent-149 était en large excès (ent-149/ ent-150 8.5:1.5). 

Cette courte étude méthodologique démontre qu’en jouant sur la température, il est possible 

d’accéder quasi sélectivement à la lactone attendue ent-149, avec une faible équilibration en 

lactone ent-150 par translactonisation. 

D’autre part, un mélange équimolaire des deux lactones a été placé en présence d’une quantité 

catalytique d’APTS dans le dichlorométhane. Après 3h de réaction à température ambiante, la 

proportion des deux lactones n’a pas évolué (Schéma 156). Ces deux lactones seraient donc 

de même stabilité. 

 

 
Schéma 156 

Sur le plan de la synthèse, afin d’optimiser les rendements, il aurait été intéressant de tenter de 

rééquilibrer la lactone ent-150 pure en lactone ent-149. A la vue des résultats précédents, un 

rapport 1:1 entre ces deux lactones pourrait éventuellement être obtenu. 

 

Conditions ent-(148/149/150) 

0°C, 15 min 0:5:5 

-80°C, 1h 8:1.5:0.5 

-45°C, 15 min 0:8.5:1.5 
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Malgré ces résultats encourageants, l’étape de clivage sélectif de l’éther de trityle reste 

délicate à ce stade de la synthèse. Nous avons donc préféré opté pour une déprotection plus 

précoce de la fonction alcool primaire en C8.157 

 

I.1.2 Clivage précoce de l’éther de trityle  

Il a alors été décidé de changer de groupement protecteur en C8 dès le début de la synthèse 

avant de construire la partie Sud de la molécule. 

A partir de l’époxyde (S)-88, l’aldéhyde 144 a été préparé comme précédemment en deux 

étapes avec un rendement global de 66% (voir Schéma 151). L’ynone 151 a ensuite été 

élaborée par une séquence alcynylation puis oxydation dans les conditions de Parikh-Doering. 

Le diol 152 a enfin été isolé après clivage du groupe trityle en milieu acide acétique aqueux 

(4:1) avec un rendement de 81% (Schéma 157). 
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Schéma 157 

Après protection de l’alcool en position 8, précédemment régénéré, sous forme d’éther de 

triéthylsilyle (TES) avec un rendement de 88%, la réduction asymétrique de l’ynone 153 a été 

entreprise. Par réaction avec le réactif (R)-CBS, un mélange de trois produits, non séparables 

par chromatographie, a été observé en RMN 1H du brut de réaction. Ce mélange résulte de la 

migration du groupement TES sur les hydroxyles en position 6 ou 7. 

 

A ce stade, il nous a paru intéressant de réaliser la même réaction mais en présence de (S)-

CBS. Le résultat de cet essai est assez inattendu. Dans ce cas, l’alcool propargylique attendu 

(6R)-154 est synthétisé avec un bon rendement de 75% et un excès diastéréomérique 

supérieur à 95% (Schéma 158).  

                                                 
157 A grande échelle, cette étape de déprotection nous semblait risquée. 
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Schéma 158 

Il est intéressant de noter qu’à partir de ce diastéréoisomère 154, il a été possible de construire 

la lactone 155, épimère en C6 par rapport à la lactone B, par ozonolyse de la double liaison 

terminale puis oxydation par le mélange TPAP/NMO du lactol intermédiaire avec un 

rendement global de 64% (Schéma 159). 

 
Schéma 159 

 

En revenant à l’objectif premier de synthétiser la lactone (6S)-B, il a été décidé de modifier la 

nature des groupements protecteurs du diol 152. Le choix de ces groupements a été réalisé en 

fonction de leur mode de clivage, qui devait se faire autrement qu’en milieu acide afin 

d’éviter tout problème de translactonisation observé précédemment (Schéma 154, Tableau 5). 

Ainsi, le diol 152 a été protégé soit avec :  

- deux groupements TES en C7 et C8 pour donner l’éther 156 avec un rendement de 98% 

- un groupement PMB ou TBS en C8 pour former respectivement les éthers 157 et 158 avec 

un rendement de 78% et 86% (Schéma 11). 
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Schéma 160 

Il a été étudié, à partir de ces trois ynones, les étapes de réduction asymétrique (Schéma 161, 

étape A) puis de formation du motif lactonique (Schéma 161, étape B) en opérant dans les 

mêmes conditions que précédemment. 

 
Schéma 161 

Les résultats sont présentés dans le tableau ci-dessous (Tableau 6). 
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Produits 
Entrée Précurseur 

  

  

1 156 

159, 80% 160, quant. 

2 157 Mélange complexe _ 

6

OH

8

OH

TBSO

 
 

3 158 

161, 80% 162, 76% 

Tableau 6 

L’alcool propargylique 159 a été isolé après réduction de l’ynone 156 par le réactif (R)-CBS 

avec un rendement de 80%. L’étape suivante d’ozonolyse a conduit à l’aldéhyde-alcool 160 

de façon quantitative (Tableau 6, entrée 1) ; il est à signaler qu’aucune trace de lactol n’a été 

détectée en RMN. L’oxydation de celui-ci dans les conditions de Ley n’a pas permis la 

formation de la lactone correspondante, seuls des produits de dégradation ont été observés. Il 

a été supposé que le fort encombrement stérique des deux éthers de TES contigus pouvait 

empêcher la formation du cycle lactonique.  

Les mêmes conditions réductrices ont été appliquées au substrat monoprotégé OPMB 157, 

mais dans ce cas, un mélange complexe de produits non isolés a été obtenu (Tableau 6, entrée 

2). De façon relativement surprenante, il semblerait que des produits résultant de 

l’hydroboration de la double liaison aient pu être formés.158  

Finalement, à partir de l’éther de TBS 158, la réduction asymétrique a conduit à l’alcool 

propargylique 161 souhaité avec un rendement de 80%. Puis, la lactone 162 a été isolée avec 

un rendement de 76% (Tableau 6, entrée 3). 

Après cristallisation dans le méthanol, la structure globale de la lactone 162 a pu être prouvée 

par diffraction par les rayons X (Figure 38). 

                                                 
158 En RMN, il a été noté la disparition des protons éthyléniques de la double liaison terminale. 

A B
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Figure 38 : Clichés RX de la lactone 162 

 

La lactone 70 présentant la configuration souhaitée ayant pu être finalement élaborée, la suite 

de la synthèse consistait en la formation d’un aldéhyde en position 8, nécessaire pour la 

fonctionnalisation de la partie Nord de la molécule.  

Le clivage de l’éther de TBS du composé 162 en présence du réactif d’Olah (HF.Pyr.) à 0°C a 

été réalisé avec un rendement de 87% en diol 163 ; aucune réaction de translactonisation n’a 

été détectée. Puis, l’oxydation de l’alcool primaire en C8 en aldéhyde 164 a été entreprise. 

Néanmoins, quelles que soient les conditions mises en œuvre (conditions de Swern, de 

Parikh-Doering, de Margarita159 ou de Dess-Martin, en milieu tamponné ou non), seuls des 

produits de dégradation ont été observés (Schéma 162), bien que des exemples similaires 

probants aient décrits dans la littérature. 160  

 
Schéma 162 

L’alcool tertiaire libre pouvant être la source du problème, nous avons choisi de le protéger 

sous la forme d’un éther de MOM. Cet éther 165 a été synthétisé à partir de l’alcool tertiaire 

162 avec un rendement de 85%. L’alcool primaire a ensuite été libéré grâce au réactif d’Olah 

                                                 
159 De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. J.Org.Chem. 1997, 62, 6974-6979. 
160 Pour quelques exemples d’oxydation d’alcools primaires β-hydroxylés: a) Ghosh, A. K.; Yuan, H. Org. Lett. 

2010, 12, 3120-3123 ; b) Leduc, A. B.; Kerr. M. A. Angew. Chem. Int. Ed. 2008, 47, 7945-7948; c) Clark, D. A.; 
De Riccardis, F.; Nicolaou, K. C. Tetrahedron 1994, 50, 11391-11426.  
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avec un excellent rendement de 91% (toujours sans translactonisation) puis l’alcool résultant 

166 a été oxydé par le réactif de Dess-Martin pour conduire à l’aldéhyde 167 avec une 

conversion totale (Schéma 163). 
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Schéma 163 

La désorption de la silice de l’aldéhyde 167 étant difficile, les rendements après purification 

sont très faibles (~25%). De plus, cette chromatographie ne permet pas de séparer l’aldéhyde 

des résidus issus de la réaction de Dess-Martin.161 C’est pourquoi, nous avons utilisé le brut 

réactionnel pour la suite de la synthèse. 

Ainsi, nous avons pu mettre en place la partie Sud de la molécule présentant la lactone et les 

centres stéréogènes C6 et C7. La suite réactionnelle ayant permis d’aboutir est présentée dans 

le schéma ci-dessous (Schéma 164). 

                                                 
161 Les différents traitements aqueux ont été inefficaces quant à la suppression de ces résidus. 
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Schéma 164 

A partir de l’époxyde (S)-88, il a été possible d’accéder au diol 152 après réaction 

d’alcynylation et clivage de l’éther de trityle. Une séquence, réduction asymétrique de l’ynone 

158 monoprotégée en C8 par un groupe TBS, puis ozonolyse et oxydation, a permis de former 

la lactone 162, dont la structure a été prouvée par diffraction par les rayons X. Finalement, 

l’aldéhyde 167 a pu être préparé après protection de l’alcool tertiaire par un groupe MOM et 

oxydation de l’alcool primaire en C8. 

 

A partir de la fonction aldéhyde en C8 de 167, nous avons pu entreprendre la construction de 

la partie Nord. 

II Mise en place de la partie Nord 

L’objectif était désormais d’installer la partie Nord de la molécule avec notamment le centre 

stéréogène en position 8. La stratégie envisagée consistait à former l’intermédiaire diynique 

avancé A à partir de l’aldéhyde 167, précédemment élaboré, par propargylation asymétrique. 

Celui-ci serait ensuite transformé en allène-yne B, précurseur de la réaction de Pauson-Khand 

(Schéma 165). 
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Schéma 165 

II.1.1 Réaction de propargylation 

II.1.1.1 Contrôle par le substrat 

Une réaction de propargylation en version non asymétrique a été étudiée dans un premier 

temps afin de, non seulement, de vérifier la faisabilité de la réaction mais aussi de rendre 

compte d’un éventuel contrôle par le substrat au niveau du centre C8 nouvellement formé. 

- Rappel bibliographique 

En 2010, Fandrick a mis au point une méthode de propargylation catalysée par le zinc.162 

Différents alcools propargyliques ont été synthétisés par réaction catalysée par le diéthylzinc 

(Et2Zn) entre le propargylborolane 168 et des aldéhydes aromatiques et aliphatiques, avec 

d’excellents rendements (Schéma 166). 

 
Schéma 166 

Il est intéressant de noter qu’une excellente régiosélectivité est observée dans ces conditions 

puisqu’aucune espèce carbinol α-allénique n’a été observée.  

Le mécanisme proposé repose sur une première étape consistant en un échange bore-zinc pour 

conduire à deux formes en équilibre (A) correspondant au propargylzinc et à l’allénylzinc. 

Ces deux espèces, mises en réaction avec l’aldéhyde, permettent alors l’obtention d’un éther 

de zinc propargylique B. Un échange final zinc-bore conduit à l’éther de bore propargylique 

C, précurseur de l’alcool propargylique attendu (Schéma 167). 

                                                 
162 Fandrick, D. R.; Fandrick, K. R.; Reeves, J. T.; Tan, Z.; Johnson, C. S.; Lee, H.; Song, J. J.; Yee, N. K.; 
Senanayake, C. H. Org. lett. 2010, 12, 88-91. 
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Schéma 167 

Synthèse 

Le propargylborolane 168 est préalablement synthétisé en une étape avec un rendement de 

82% par réaction entre le borate d’iso-propoxypinacol et le triméthylsilylpropyne (Schéma 

168).163 

 

 
Schéma 168 

Les conditions de propargylation de Fandrick ont été appliquées à l’aldéhyde 167 brut en 

solution dans le THF à température ambiante. Après 15 min de réaction, l’alcool 

propargylique attendu 169 est obtenu sous la forme d’un mélange de deux diastéréoisomères 

en proportion 6:4 avec un rendement de 80% pour deux étapes à partir de l’alcool primaire 

166. D’après Fandrick, l’étape finale de décomplexation  à partir de l’éther de bore 

propargylique C (voir Schéma 167) devait être réalisée en milieu HCl 3M. Dans notre cas, 

                                                 
163 Fandrick, D. R.; Reeves, J. T.; Song, J. PCT Int. Appl. 2010141328, 2010. 
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étant donné la présence du motif lactonique, nous avons préféré utilisé le méthanol (Schéma 

169). 

 
Schéma 169 

Ces deux diastéréoisomères ayant pu être isolés avec des rendements respectifs de 48% et 

32%, il a été tenté de déterminer la configuration absolue du centre stéréogène C8 pour 

chacun d’entre eux.  

Cependant, lors de la construction des mandélates correspondants, seuls des produits résultant 

d’une réaction de translactonisation ont été formés de façon quantitative. (Schéma 170).  
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Schéma 170 

Cette réaction a mis une nouvelle fois en évidence l’interconversion facile du motif lactonique 

entre les hydroxyles en position 6 et 8.  

Les deux diastéréoisomères issus de la réaction de propargylation de Fandrick seront donc 

nommés 169a pour l’isomère majoritaire et 169b pour le minoritaire. 

II.1.1.2 Version asymétrique 

Afin d’installer le centre C8 de façon asymétrique, différentes méthodes de propargylation 

asymétrique ont été appliquées à l’aldéhyde 167.  

Cependant, seuls des produits de dégradation ont été observés à l’issue des réactions de Loh,91 

mettant en jeu un allène chiral 51 et une quantité catalytique de sel d’indium III, et de 
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Trost,101 catalysée par le diéthylzinc, en présence d’un mélange d’iodure de propargyle et 

allényle 168 et du ligand aminoalcool 61 (Schéma 171). 
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Schéma 171 

Les conditions de Singaram89 utilisant de l’indium et le ligand aminoalcool 48 n’ont pas 

conduit à l’alcool homopropargylique attendu, mais à un mélange Z/E équimolaire d’imines 

173 résultant de la condensation du ligand avec l’aldehyde (Schéma 172). 

 
Schéma 172 

La méthode de Soderquist, par réaction entre un aldéhyde et le borabicyclo[3.3.2]decane 41S 

a également été étudiée (Schéma 173). L’allène boré 41S doit initialement être préparé en 

trois étapes à partir de la (1R,2R)-pseudoéphédrine. Cependant, entre nos mains, les premiers 

essais de préparation de ce réactif 41S ne se sont pas révélés concluants. 
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Schéma 173 

Etant donné les résultats décevants en mode asymétrique, il a été décidé d’étudier la suite de 

la synthèse à partir des deux diastéréoisomères 169a et 169b issus de la réaction de 

propargylation de Fandrick. 

II.1.2 Vers la synthèse de l’allène-yne, précurseur de PKR 

La protection de l’alcool propargylique 169a, dans des conditions classiques, en présence de 

TBSOTf et de 2,6-lutidine à 0°C, a conduit à un mélange équimolaire de produits de 

translactonisation, l’un correspondant à l’alcool protégé en C6 174 et l’autre à l’alcool libre 

175 avec un rendement de 41% pour chacun des deux produits (Schéma 174). Il est à signaler 

que l’alcool 175, remis en réaction avec du TBSOTf et de la 2,6-lutidine à température 

ambiante n’a pas conduit à l’éther 174. 
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Schéma 174 

Il a été supposé que la réaction de translactonisation était favorisée par l’activation du 

carbonyle de la lactone par le TBSOTf. Cette réaction de protection par un groupe TBS a 

également été tentée en présence de TBSCl et d’imidazole. Dans ces conditions, le produit de 

départ est entièrement récupéré. 

Par ailleurs, un essai de protection de 169a sous forme d’éther de benzyle, par réaction avec le 

trichloroacétimidate de benzyle en présence d’APTS, s’est également révélé infructueux 

(seuls des produits de dégradation ont été observés).  

A ce stade, il a été décidé de continuer  l’installation de la partie Nord à partir des produits 

de lactonisation 174 et 175 afin de valider les étapes suivantes. 
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Afin d’homologuer en C10 la fonction alcyne, il était nécessaire de cliver au préalable le 

groupe TMS. Cependant, la mise en œuvre de K2CO3 dans le MeOH164 ou de nitrate d’argent 

en présence de 2,6-lutidine165 n’a conduit qu’à des produits de dégradation (Schéma 175). 

 
Schéma 175 

Cette déprotection a également été tenté avec différentes sources d’ions fluorures à partir de 

l’alcool propargylique 175. Mais là encore, seuls des produits de dégradation ont été observés 

par traitement de 175 par le TBAF ou de KF (Schéma 176). 

 

 
Schéma 176 

III Conclusion 

La synthèse du produit naturel a été étudiée selon une stratégie proche de celle établie pour la 

synthèse du modèle avec construction initiale de la partie Sud comprenant la lactone et les 

centres stéréogènes C6 et C7 puis mise en place de la partie Nord comportant un 

enchaînement allénique terminal et le centre stéréogène en C8.  

Après optimisation, la partie Sud, sous la forme de l’aldéhyde 167, a été installée en douze 

étapes avec un rendement global de 17% à partir de l’époxyde (S)-88. La synthèse a été 

réalisée selon trois étapes clés. La première étape a consisté en l’ouverture de l’époxyde par 

un vinylmétal pour donner le diol (S)-101. Puis, une séquence alcynylation et réduction 

asymétrique a permis d’accéder à l’alcool propargylique 161. Enfin, l’aldéhyde 167 a été 

élaboré après formation du motif lactonique et oxydation (Schéma 177). 
                                                 
164 Goto, R.; Okura, K.; Sakazaki, H.; Sugawara, T.; Matsuoka, S.; Inoue, M. Tetrahedron 2011, 67, 6659-6672. 
165 Yang, P.-Y.; Liu, K.; Ngai, M. H.; Lear, M. J.; Wenk, M. R.; Yao, S. Q. J. Am. Chem. Soc. 2010, 132, 656-
666. 
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Schéma 177 

La construction de la partie Nord s’est montrée particulièrement problématique. Les 

réactions de propargylation asymétriques s’étant révélées décevantes, c’est la méthode en 

version non asymétrique de Fandrick qui a été retenu pour la suite de la synthèse avec 

formation d’un mélange de diastéréoisomères 169a et 169b avec des rendements respectifs de 

48% et 32%. Cependant, à ce stade, en vue de la formation de l’allène-yne de type C, la 

protection de l’alcool propargylique en C8 ainsi que le clivage du groupe TMS en C10 a été 

difficile voire impossible (Schéma 178). 

 
Schéma 178 

Pour tenter de solutionner les difficultés relatives à la construction de la partie Nord, il nous 

paraît indispensable de réétudier la réaction de propargylation asymétrique de Soderquist. En 

effet, celle-ci a déjà été mise en œuvre avec succès à partir d’aldéhydes possédant un centre 

néopentylique en α. En outre, elle permettrait d’accéder directement à l’alcool 

homopropargylique 172 avec un alcyne terminal et non pas triméthylsilylé comme dans le cas 

de la réaction de Fandrick (Schéma 179). 

 
Schéma 179 
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L’installation précoce de la lactone a, certes, évité de protéger les fonctions hydroxyles en C6 

et éventuellement en C12 mais des réactions de translactonisation impliquant les fonctions 

alcools en C6 et C8 ont engendré de nombreux problèmes au cours de la synthèse.  

Pour les résoudre, une voie alternative consisterait à construire le motif lactonique en fin de 

synthèse (Schéma 180).  
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CHAPITRE VI : 

 

VERS LA SYNTHESE DU PRODUIT NATUREL : 

DEUXIEME APPROCHE 
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Chapitre VI : Vers la synthèse du produit naturel : 

deuxième approche 

 

I Stratégie 

 

La stratégie de première génération étudiée précédemment consistait à introduire de façon 

précoce le centre asymétrique en C7 puis à construire deux bras par homologation à partir de 

ce centre. 

En parallèle de cette approche, nous avons voulu expérimenter une voie consistant à mettre en 

place dès le début de la synthèse les centres asymétriques contigus en C6, C7, C8 et C11 de la 

Tg 1 avec construction du motif γ-lactonique afin d’établir la partie Sud.  

La mise en place de l’ensemble de ces centres constitue sans aucun doute l’un des enjeux 

majeurs de la synthèse de la Tg (Figure 39). A ce propos, il est intéressant de constater que 

l’installation de ces centres a nécessité de nombreuses étapes dans la synthèse totale de la Tg 

par le groupe Ley. 

 
Figure 39 

Les deux hydroxyles en C6 et C7 sont cis entre eux mais trans par rapport aux hydroxyles en 

C8 et C11. Ces deux centres en C6 et C7 pourraient donc être installés simultanément.  

La stratégie envisagée repose sur la fonctionnalisation de l’énynol 176. Ce produit de départ 

nous a paru particulièrement adapté car il comporte déjà la triple liaison C4-C5, nécessaire 

pour la réaction de Pauson-Khand, une double liaison C6-C7 dans la bonne configuration 

pour l’aménagement des deux hydroxyles cis à cet endroit, une fonction bromure vinylique à 

partir duquel il sera possible d’installer les carbones C11 et C12 et donc le motif lactonique, et 

enfin une fonction hydroxyle primaire en C8, support de la mise en place de la partie Nord 



 176 

par réaction de propargylation (Figure 40). L’ordre de ces différentes étapes est parfaitement 

modulable. 

 
Figure 40 

La séquence réactionnelle étudiée dans un premier temps, consistera à réaliser une réaction de 

propargylation énantiosélective à partir de l’énynol 176 pour conduire au diyne A. Puis la 

lactone B 8-12 sera construite avec mise en place de l’alcool tertiaire en C11. Après réaction 

de dihydroxylation (formation du triol C), translactonisation et formation de l’allène, l’allène-

yne D, précurseur de la réaction de Pauson-Khand pourra être élaboré (Schéma 181).  
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Schéma 181 

 

Le composé tricyclique attendu E devrait ainsi être obtenu en utilisant moins de groupements 

protecteurs mais surtout avec sensiblement moins d’étapes que dans la stratégie de première 

génération développée précédemment. 
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Le défi sera, par contre, de contrôler d’emblée l’ensemble des quatre centres stéréogènes 

contigus (C6, C7, C8 et C11).  

A l’instar de la synthèse de première génération, cette nouvelle stratégie se démarquera 

complètement des synthèses et approches synthétiques de la Tg décrites dans la littérature. 

 

II Synthèse  

II.1.1 Synthèse de l’énynol 176 

L’énynol 176 a été préparé à grande échelle (10 g) par adaptation des méthodes décrites par 

Pillis166 puis Fürstner.167  

La première étape consiste en une dibromation trans de l’alcool propargylique par le 

perbromure de pyridinium (HBr3.pyridine) pour former l’oléfine dibromé (E) 177 avec un 

rendement de 78%. Il est indispensable de réaliser cette réaction à l’abri de la lumière, afin 

d’éviter toute isomérisation en dibromure (Z) thermodynamiquement plus stable. La fonction 

alcool primaire a ensuite été protégée sous forme d’éther de p-méthoxybenzyle (OPMB) par 

réaction avec le trichloroacétimidate de p-méthoxybenzyle (PMB-TCAI), en milieu acide, 

pour conduire au composé 178 avec un rendement de 90% (Schéma 182).  

 
Schéma 182 

L’ényne 179 a été synthétisé par couplage sélectif de Negishi entre le dibromure 178 et le 

bromure de propynylmagnésium, en présence de palladium tétrakis triphénylphosphine 

Pd(PPh3)4 (5 mol%). Dans ces conditions, le couplage est parfaitement régiosélectif, avec 

                                                 
166 Pilli, R. A.; Robello, L. G. J. Braz. Chem. Soc. 2004, 15, 938-944. 
167 Fürstner, A.; Bonnekessel, M.; Blank, J. T.; Radkowski, K.; Seidel, G.; Lacombe, F.; Gabor, B.; Mynott, R. 
Chem. Eur. J. 2007, 13, 8762-8783. 
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réaction sur le site le plus dégagé, pour conduire à l’ényne 179 bromé en C7, avec un 

rendement de 60%. Finalement, l’alcool 176 a été isolé après clivage de l’éther de PMB par 

action de la dichlorodicyanoquinone (DDQ) avec un rendement de 74%. 

Des essais de couplage de Negishi ont été tentés à partir de l’alcool primaire 177 afin 

d’obtenir directement le composé 176. Malgré plusieurs essais relatifs au nombre 

d’équivalents de zincique, seul le produit de départ a été récupéré.  

Ainsi, l’énynol 176 a pu être élaboré facilement à grande échelle, en quatre étapes avec un 

rendement global de 31%. 

II.1.2 Mise en place du centre C8 : réaction de propargylation 

L’étape suivante consistait à installer la chaîne C8-C1 avec contrôle de l’alcool secondaire en 

C8.  

L’oxydation de l’alcool primaire 176 en présence du réactif de Dess-Martin a permis 

d’obtenir l’aldéhyde 180 avec un rendement de 88%. Différentes conditions de propargylation 

ont ensuite été testées (Schéma 183, Tableau 7).  

 
Schéma 183 

Entrée Conditions R Rdt r.e. 

1 
51 (3 éq.), In(OTf)3 (10 mol%) 

CH2Cl2, t.a.,  
TMS - - 

2 
171 (2.2 éq.), 61 (10 mol%), Et2Zn (10 mol%) 

THF, -78°C à t.a. 
H 

79%,  

(+/-) 181 
1:1 

3 

48 (2 éq.), Bromure de propargyle (2 éq.),  

In (2 éq), Pyr. (2 éq) 

THF, -78°C à t.a., 3h. 

H 
75%,  

181 
3:1 

4 
168 (3 éq.), Et2Zn (5 mol%) 

THF, t.a., 30 min 
TMS 

88%,  

(+/-) 182 
1:1 

Tableau 7 
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Figure 41 

Afin d’accéder à un alcool propargylique énantio-enrichi, nous avons opté pour une réaction 

de propargylation asymétrique à partir de l’aldéhyde 180.  

La méthode de Loh91 mettant en réaction l’allène chiral 51 et le triflate d’indium avec 

l’aldéhyde 180 n’a conduit qu’à des produits de dégradation (Tableau 7, entrée 1, Figure 41).  

Les conditions de Trost utilisant le mélange iodure de propargyle/allényle iodé 171 associé au 

ligand chiral 61
101 ont certes conduit au produit attendu (+/-)-181 avec un rendement de 79% 

mais sans le moindre contrôle du centre asymétrique en C8 (Tableau 7, entrée 2, Figure 41).  

Le troisième essai, réalisé selon la méthode décrite par Singaram,89 avec mise en jeu du 

bromure de propargyle, en présence d’indium (0), de pyridine et du ligand chiral 48 a permis 

d’isoler l’alcool homopropargylique 181 avec un rendement de 75% et un rapport 

énantiomérique de 3:1 (Tableau 7, entrée 3, Figure 41).168 En fonction des sélectivités décrites 

par Singaram, c’est l’énantiomère (8S) attendu qui serait majoritaire.  

En parallèle, il a également été mis en œuvre la réaction de propargylation non 

énantiosélective de Fandrick par utilisation du borolane 168 et de diéthylzinc. Dans ces 

conditions, il a été obtenu l’alcool homopropargylique racémique (+/-)-182 avec un bon 

rendement de 88% (Tableau 7, entrée 4, Figure 41).162 

 

Face à l’ensemble de ces résultats en version énantiosélective ou non, il a été envisagé 

d’accéder à l’alcool homopropargylique (R)-182 en deux étapes par une séquence oxydation 

de (+/-)-182 puis réduction énantiosélective de la cétone formée 183 (Schéma 184).  

 

                                                 
168 Ce rapport a été déterminé par formation des esters de Mosher après examen des déplacements chimiques des 
protons H15 de chacun des diastéréoisomères nouvellement formés. 
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Schéma 184 

Cependant, l’obtention de cétones homopropargyliques par oxydation de l’alcool 

correspondant est particulièrement délicate avec formation éventuelle de plusieurs produits.169 

L’oxydation de l’alcool homopropargylique A peut effectivement conduire à la cétone B 

voulue, néanmoins, il est également possible de former l’énynol C par équilibration céto-

énolique ainsi que l’allényl cétone D par transposition, bien que celle-ci n’ait jamais été 

décrite dans la littérature (Schéma 185).  

 
Schéma 185 

Toutefois, plusieurs exemples d’oxydation permettant l’obtention exclusive de la cétone 

propargylique ont été rapportés, en utilisant soit le réactif de Dess-Martin en milieu 

tamponné170 soit le réactif de Jones.171 Ces conditions ont été testées sur le substrat (+/-)-182 

mais sans succès car seul un mélange de produits de dégradation a été observé. L’utilisation 

de MnO2 n’a pas non plus été effective (seul le produit de départ a été récupéré).  

 

A ce stade, nous avons donc décidé de poursuivre la synthèse avec l’alcool secondaire 

racémique (+/-)-182. 

II.1.3 Mise en place des centres C6, C7, C11 et du motif lactonique 

Après avoir construit l’enchaînement C8-C1, les deux étapes suivantes consistaient en la mise 

en place des trois centres en position 6, 7 et 11 ainsi qu’en la formation du cycle lactonique. 

                                                 
169 a) Lehrich, F.; Hopf, H.; Grunenberg, J. Eur. J. Org. Chem. 2011, 14, 2705-2718; b) Dudnik, A. S.; Sromek, 
A. W.; Rubina, M.; Kim, J. T.; Kelin, A. V.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 1440-1452; c) 
Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10500-10501. 
170 a) Kerr, D. J.; Flynn, B. L. Org. Lett. 2012, 14, 1740-1743; b) Trost, B. M.; Yang, H.; Dong, G. Chem. Eur. J. 
2011, 17, 9789-9805. 
171 Sniady, A.; Morreale, M. S.; Dembinski, R. Org. Synth. 2007, 84, 199-208. 
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Ainsi, à partir du bromure vinylique (+/-)-182, une réaction d’addition nucléophile sur le 

pyruvate de méthyle conduirait à la lactone (+/-)-184. Puis, une réaction de dihydroxylation 

permettrait la formation de l’intermédiaire hautement fonctionnalisé (+/-)-185 (Schéma 186). 
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Schéma 186 

II.1.3.1 Mise en place du centre C11 et de la lactone 

Le couplage du bromure vinylique (+/-)-182 avec le pyruvate de méthyle a été réalisé en 

effectuant après déprotonation de l’alcool par le n-BuLi, puis échange brome/lithium par le t-

BuLi, dans le THF à -90°C puis à -78°C (Schéma 187).172  

 
Schéma 187 

Le lithien formé réagit très rapidement (30 min) à -78°C avec le pyruvate de méthyle pour 

conduire à un mélange équimolaire de deux γ-lactones 8-12 diastéréoisomères (+/-)-184 avec 

un rendement de 78%. Il faut savoir que ces deux diastéréoisomères sont isolables par 

chromatographie sur gel de silice mais il n’a pas été possible de déterminer la configuration 

relative des deux centres chiraux.173 

La lactone la moins polaire (éluée en premier par chromatographie sur silice avec un système 

de solvant cyclohexane/acétate d’éthyle) sera nommée (+/-)-184a et la plus polaire (+/-)-

184b.  

                                                 
172 Couladouros, E. A.; Dakanali, M.; Demadis, K. D.; Vidali, V. P. Org. Lett. 2009, 11, 4430-4433. 
173 L’examen en RMN 1H de ces deux lactones (NOESY), n’a pas été concluant. Ces produits n’ont, par ailleurs, 
pu être cristallisés. Ces deux options de détermination structurale sont en cours d’optimisation. 
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II.1.3.2 Mise en place des centres C6 et C7 

L’installation des deux fonctions hydroxyles cis l’une par rapport à l’autre, en C6 et C7 a été 

étudiée par réaction de dihydroxylation.  

- Rappel bibliographique 

La réaction de dihydroxylation selon Sharpless a été envisagée en première intention.174 Dans 

la littérature, plusieurs exemples ont été décrits à partir de substrats ayant une structure proche 

de l’ényne (+/-)-184. 

A titre d’exemple, lors de la synthèse de l’hydroxyméthylacylfulvène, l’ényne encombrée I a 

pu conduire aux deux diols II et III, différents par la protection ou non de la fonction alcyne, 

avec un bon rendement global de 60% (Schéma 188).80b Les meilleurs excès énantiomériques 

ont été obtenus à température ambiante en présence de 20 mol% du ligand (DHQD)2PYR et 

de 10 mol% d’osmate de potassium [K2OsO2(OH)4].  

CH3

TMS

H3C

O

H3C

O CH3HO

OH

H3C

O CH3HO

OH

TMS
K2OsO2(OH)4, (10 mol%)

(DHQD)2PYR (20 mol%)

K3Fe(CN)6 (3 éq.)

K2CO3 (3 éq.)

CH3SO2NH2 (1.1 éq.)

t-BuOH/H2O, t.a., 24h

II, 49%, ee > 95%

III, 11%, ee > 95%

I

 
Schéma 188 

Cet exemple est particulièrement intéressant puisque la structure de l’ényne I est relativement 

proche de celle du substrat (+/-)-184, avec une double liaison (E) trisubstituée, conjuguée à 

une fonction alcyne, en α d’un centre néopentylique.  

Cependant, dans notre cas, le fait que la double liaison devant réagir soit directement 

rattachée à un motif γ-lactonique, représente un réel défi, en raison de la contrainte stérique 

ainsi générée.175 

- Synthèse 

                                                 
174 a) Kolb, H. C.; VanNieuwenhze, M.S; Sharpless, K. B. Chem. Rev. 1994, 94, 2483-2547; b) Kolb, H. C.; 
Sharpless, K. B. In Transition Metals for Organic Synthesis; Vol. 2; Beller, M.; Bolm, C., Eds; Wiley-VCH: 
Weinheim, 2004.  
175 Pour des exemples de dihydroxylation selon Sharpless sur des olefines de structures complexes, voir: a) 
Wender, P. A.; Schrier, A. J. J. Am. Chem. Soc. 2011, 133, 9228-9231; b) Toschi, G.; Baird, M. S. Tetrahedron 
2006, 62, 3221-3227; c) Carreira, E. M.; Du Bois, J. J. Am. Chem. Soc. 1994, 116, 18825-10826. 
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Afin d’installer sélectivement les hydroxyles en position 6 et 7, nous avons appliqué ces 

conditions sur le diastéréoisomère (+/-)-184b (Schéma 189, Tableau 8).  

 
Schéma 189 

Entrée Condition Rdt r.d. 

1 A Pas de réaction176
 - 

2 A + NaHCO3 Pas de réaction - 

3 B 60%, (+/-)-185 > 95:5 

Condition A: K2OsO2(OH)4 (10 mol%), (DHQ)2PYR (20 mol%), K3Fe(CN)6 (3 éq.), CH3SO2NH2 (1.1 éq.), 

K2CO3 (3 éq.), t-BuOH/H2O, t.a., 48 h, Condition B: K2OsO2(OH)4 (5 mol%), NMO (4 éq.), Acétone/H2O, t.a., 

8 h  

Tableau 8 

Par mise en œuvre de 10 mol% de complexe d’osmate et de 20 mol% du ligand (DHQ)2PYR 

à température ambiante et après 48 h d’agitation, seul le produit de départ est récupéré après 

neutralisation de la phase aqueuse (Tableau 8, entrée 1).  

Le milieu réactionnel a alors été tamponné par ajout d’un excès d’hydrogénocarbonate de 

sodium (NaHCO3). Un résultat similaire est observé, avec récupération du produit de départ 

(Tableau 8, entrée 2).  

Un dernier essai a été effectué sans ligand chiral, en présence d’osmate de potassium (5 

mol%) et d’un excès de NMO (4 éq.). Après 8 h d’agitation à température ambiante, le 

produit de dihydroxylation (+/-)-185 a été isolé avec un rendement de 60% (Tableau 8, entrée 

3). Il faut remarquer que dans ces conditions, à partir de la lactone (+/-)-184b, un seul 

diastéréoisomère est formé.  

Ces résultats ont montré que la double liaison est particulièrement difficile d’accès. La γ-

lactone, fonctionnalisée par un centre quaternaire en C11, bloquerait le système sur le plan 

conformationnel, rendant difficile l’approche du complexe ligand-osmate, en version 

asymétrique. 

                                                 
176 Le produit de départ 184 a été récupéré après neutralisation de la phase aqueuse. 
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Un produit de dihydroxylation en C6-C7 (+/-)-185 a cependant pu être obtenu en l’absence de 

ligand chiral. Cependant, les configurations relatives de ces centres n’ont pu être déterminées 

par examen, en RMN, des expériences NOESY.177  

A l’issue d’une séquence propargylation, addition nucléophile et dihydroxylation, la lactone 

(+/-)-185, comprenant les centres stéréogènes en C6, C7, C8 et C11 a été formée en huit 

étapes avec un rendement global de 11%. 

Cette stratégie est donc particulièrement efficace au niveau du nombre d’étapes et du 

rendement. Néanmoins, pour des raisons diverses, le contrôle des centres asymétriques aussi 

bien sur le plan relatif qu’absolu n’est pas satisfaisant. Des études complémentaires sont en 

cours pour tenter de l’améliorer, mais aussi pour le déterminer de façon certaine. 

La suite de la séquence jusqu’à la formation du précurseur allène-yne de la réaction de 

Pauson-Khand, a cependant été testée à partir de cette lactone (+/-) 185, afin de valider les 

étapes.   

II.1.4 Vers la synthèse du précurseur de PKR 

Pour former l’allène-yne B, il était nécessaire d’homologuer au préalable la lactone (+/-)-185, 

en alcool primaire A, par formylation de la fonction alcyne (Schéma 190). 

 
Schéma 190 

La fonction alcyne du composé (+/-)-185 a été déprotégée par action du TBAF, avec un 

rendement quantitatif en alcyne terminal (+/-)-186 (Schéma 191).  

Avant la réaction d’homologation, l’alcool secondaire en C6 a été protégé sous forme d’éther 

de TBS. Un mélange difficilement séparable des lactones 8-12 (+/-)-187 et 6-12 (+/-)-188, en 

proportion 1:2, a été formé en présence de TBSOTf et de 2,6-lutidine dans le THF à 0°C, avec 

un rendement quantitatif.  

                                                 
177 L’examen en RMN 1H du triol (+/-)-185 (NOESY), n’a pas été concluant. Ces produits n’ont, par ailleurs, pu 
être cristallisés. Ces deux options de détermination structurale sont en cours d’optimisation. 
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Schéma 191 

Ce résultat est intéressant puisque sur ce type de lactone, il a été possible d’équilibrer la 

lactone 8-12 en lactone 6-12 correspondant au produit naturel.  

 

A ce stade de la synthèse, par manque de matière première, cette réaction d’équilibration n’a 

pu être étudiée et la faisabilité des étapes d’homologation et de formation de l’allène n’ont pu 

être réalisées. 

 

III Conclusion 

En parallèle de la première approche de synthèse, une deuxième voie a été initiée. Elle visait à 

établir dès les premières étapes les centres asymétriques contigus en C6, C7, C8 et C11 avec 

formation du cycle lactonique.  

Il a été élaboré dans un premier temps l’énynol bromé 176 en quatre étapes à grande échelle et 

avec un rendement global de 31%, à partir de l’alcool propargylique. Ce synthon comportait 

tous les éléments nécessaires pour la mise en place de façon modulable de l’ensemble des 

centres asymétriques de la partie Sud.  

Dans cette stratégie également, l’étape de propargylation n’a pu être réalisée en version 

asymétrique. La suite de la synthèse a donc été réalisée en série racémique à partir de l’alcool 

homopropargylique (+/-)-182. L’addition du lithien vinylique correspondant sur le piruvate de 

méthyle a conduit à la formation de deux γ-lactones diastéréoisomériques (+/-)-184a et (+/-)-

184b en mélange équimolaire avec un rendement de 39% pour chacune d’entre elle.  

La réaction de dihydroxylation de la double liaison en C6-C7 de la lactone (+/-)-184b a été 

effectuée en simple induction pour donner accès au seul diastéréoisomère (+/-)-185. Les 

configurations relatives de ces différentes lactones n’ont cependant pas pu être déterminées 

pour l’instant. 
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Après une étape de déprotection en C1 et de protection en C6, ce sont deux lactones 

régioisomères (+/-)-187 et (+/-)-188 qui ont été isolées de façon quantitative en proportion 

1:2.  

Au final ces deux lactones ont été obtenues, à partir de l’alcool propargylique, en dix étapes 

avec un rendement global de 11%, sans réelle optimisation (Schéma 192).  

 
Schéma 192 

La construction de l’allène-yne B possédant quatre centres asymétriques contigus, dont deux 

alcools tertiaires, représentait un véritable défi synthétique. Cette densité de carbones 

asymétriques imposait de contrôler un maximum de centres afin d’éviter la formation de 

mélanges complexes. Au regard de notre stratégie, il était pratiquement évident qu’il n’y 

aurait probablement pas de contrôle du centre en C11 lors de l’étape d’addition nucléophile 

pour la formation de la lactone. Par contre, l’étape de propargylation asymétrique devait 

permettre de ne former qu’un seul énantiomère.  

 

Cette synthèse de deuxième génération dont la faisabilité a été étudiée dans ce chapitre, est 

particulièrement intéressante quant au nombre d’étapes et au rendement et ne deviendra 

effective que lorsque le problème de contrôle des différents centres asymétriques sera résolu. 

Dans cette optique, l’étape de propargylation en version asymétrique se doit d’être réétudiée 

notamment dans les conditions de Soderquist. Il sera également important de pouvoir 

déterminer au fur et à mesure de l’avancement de la synthèse, la configuration des centres 

nouvellement créés. 
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CHAPITRE VII : 

 

ETUDE DE LA REACTION DE PAUSON-KHAND 

ALLENOL-YNE INTRAMOLECULAIRE 
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Chapitre VII : Etude de la réaction de Pauson-Khand 

allénol-yne intramoléculaire 

 

 

La mise en place de l’alcool tertiaire en C10 de la Tg constitue un des points importants de la 

synthèse de ce produit naturel.  

Dans les approches précédentes, à l’issue de la réaction de Pauson-Khand allène-yne à partir 

de A, l’installation du centre en C10 était envisagée sur la diénone B, par réaction 

d’hydroboration/oxydation ou encore par oxydation selon le procédé Wacker,178 notamment 

lorsque R est un hydrogène. 

Une autre stratégie, totalement inédite, a été envisagée. Elle consiste à réaliser une réaction de 

Pauson-Khand allénol-yne à partir de C permettant d’aboutir directement à l’éther d’énol D. 

Cet éther d’énol sera ensuite converti en cétone aisément transformable en alcool tertiaire par 

méthylation (Schéma 193). 
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178 a) Morandi, B.; Wickens, Z. K.; Grubbs, R. H. Angew. Chem. Int. Ed. 2013, 52, 2944-2948; b) Bigi, M. A.; 
White, M. C. J. Am. Chem. Soc. 2013, 135, 7831-7834. 
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Ce type de réaction pourrait être appliqué par la suite à l’élaboration d’autres produits naturels 

terpéniques comportant une fonction oxygénée, voire azotée, en cette même position, avec par 

exemple, le chinensiolide B, l’arglabine et le guanacastépène D (Figure 42). 

 
Figure 42 

I Rappel bibliographique 

Les réactions de Pauson-Khand à partir d’allènes comportant une fonction oxygénée en 

interne, donc en position gem par rapport à la chaîne principale (Schéma 194) n’ont été que 

rarement décrites.  

Cazes a reporté en 1997 une version intermoléculaire en présence de Co(CO)8 et de NMO, 

mais le rendement reste faible (30%).179  

Plus récemment, Pérez-Castells a étudié une version intramoléculaire de cette réaction à partir 

d’un allénol aromatique, pour former, par catalyse avec Mo(CO)6, un mélange de produits 

résultant d’une réaction de la double liaison externe ou interne de l’allène.180  

 
Schéma 194 

                                                 
179 Ahmar, M.; Chabanis, O.; Cauthier, J.; Cazes, B. Tetrahedron Lett. 1997, 38, 5277-5280. 
180 González-Gómez, Á.; Añorbe, L.; Poblador, A.; Domínguez, G.; Pérez-Castells, J. Eur. J.Org. Chem. 2008, 
1, 1370-1377. 



 191 

II Présentation de l’étude – stratégie 

Dans un premier temps, nous avons cherché à valider cette réaction de Pauson-Khand allénol-

yne sur des modèles simplifiés en regard de la Tg 1, afin d’obtenir des systèmes de type 

bicyclo[5.3.0]décanone.  

 

L’étude a plus particulièrement porté sur des substrats carbonés ou azotés. Dans ce chapitre 

sera présentée la stratégie mise en place. 

II.1.1 Substrats carbonés 

La stratégie envisagée consiste en la synthèse du bicycle 5-7 191 par réaction de Pauson-

Khand intramoléculaire allénol-yne à partir de l’allénol 190. Ce composé 190 sera issu de 

l’ényne 189, formé lui-même, par substitution nucléophile puis réduction de l’allylmalonate 

d’éthyle commercial (Schéma 195).  

 

 
Schéma 195 

Le groupement R1 sur l’oxygène de l’allène devra non seulement permettre la réaction de 

Pauson-Khand mais aussi être clivable pour pouvoir régénérer la fonction cétone. Trois 

groupements ont été choisis : un carbamate, un benzyle et un p-méthoxybenzyle. 

II.1.2 Substrats azotés 

Dans un deuxième temps, nous avons cherché à exemplifier cette réaction de Pauson Khand 

allènol-yne en étudiant des modèles comprenant un azote (Schéma 196).  
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Schéma 196 

L’obtention du composé bicyclique 194 repose sur la même stratégie que précédemment, à 

partir de l’allénol 193, lui-même issu de l’amine 192. Cette dernière sera formée à partir de 

substrats commerciaux. 

III Synthèse 

III.1.1 Synthèse des différents allènes 

Les allènes 196a-c, portant respectivement une fonction carbamate, benzyle et PMB sont 

formés à partir des alcools propargyliques protégés correspondants 195a-c par transposition 

alcyne/allène catalysée par 0,3 équivalent de tert-butylate de potassium à température 

ambiante (Schéma 197). Lors de ces réactions, il n’a jamais été possible d’aboutir à une 

conversion totale, malgré un chauffage à 60°C ou la mise en œuvre d’un équivalent de base. 

Les rendements en allènes 196a-c sont, après purification, respectivement de 56%, 70% et 

78%. 

 

 
Schéma 197 

Les alcynes 195a-c ont été préparés par protection de l’alcool propargylique : 
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- par le chlorure de diisopropylcarbamoyle en présence de pyridine, pour le composé 

195a, avec un rendement de 93%,  

- par le bromure de benzyle en présence de NaOH, pour le composé 195b, avec un 

rendement quantitatif, 

- par le PMB-TCAI en présence de PPTS, pour le composé 195c, avec un rendement 

quantitatif. 

III.1.2 Synthèse des précurseurs allénol-ynes 

III.1.2.1 Substrats carbonés 

Pour des raisons de coût de matière première principalement, mais aussi dans un souci 

d’exemplification, la synthèse des précurseurs de la réaction de Pauson-Khand allénol-yne a 

été menée sur des substrats comportant au niveau du reste R : un groupe méthyle [série (Me)] 

ou éthyle [série (Et)].  

 

La première étape consiste en la propargylation du 2-allylmalonate de diéthyle pour former 

les malonates 197(Me) et 197(Et) après déprotonation par NaH et réaction avec les bromures 

de propargyle de la série (Me) ou (Et). Ces malonates sont engagés bruts dans l’étape 

suivante. Les fonctions esters des malonates sont ensuite réduites par LiAlH4 pour donner les 

diols 198(Me) et 198(Et) (Schéma 198).  

 

 
Schéma 198 

La protection de ces diols sous forme d’acétonides est réalisée en utilisant le 2,2-

diméthoxypropane en milieu acide. Les alcènes 199(Me) et 199(Et) sont ainsi obtenus avec 

des rendements respectifs de 78% et 58% pour 3 étapes (Schéma 199).  

La formation des aldéhydes 200(Me) et 200(Et) a été envisagée selon deux méthodes : 

ozonolyse ou coupure oxydante. L’ozonolyse a permis d’obtenir le composé 200(Me) avec un 

rendement de 55%, et la coupure oxydante par action d’osmium en quantité catalytique et de 

NaIO4 a conduit à un meilleur rendement de 69%. Cette deuxième méthode a donc été 

conservée pour la formation du composé 200(Et) (rendement : 62%).  
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Schéma 199 

L’addition des allènes 196a-c sur les aldéhydes 200(Me) et 200(Et) est alors réalisée. La 

déprotonation, effectuée à -78°C par le t-BuLi pour l’allène carbamate 196a et par le n-BuLi 

pour les allènes benzyle 196b et PMB 196c, permet la déprotonation en gem du groupement 

OR1. Après addition des aldéhydes 200, les allénols attendus 190 sont formés avec des 

rendements moyens à bons (de 58% à 78%), après purification sur gel de silice préalablement 

neutralisée à l’aide de triéthylamine (Schéma 200).  

 

 
Schéma 200 

La dernière étape consiste en la protection de la fonction alcool secondaire sous forme d’éther 

silylé OTBS par le TBSOTf en présence de 2,6-lutidine. Les allènol-ynes 201 précurseurs de 

la réaction de Pauson-Khand sont ainsi élaborés avec de bons rendements (de 54% à 99%), 

après purification sur gel de silice neutralisée, pour ces composés également, avec de la 

triéthylamine. 

III.1.2.2 Substrats azotés 

La synthèse des allénols 193a-b (R1 = carbamate, benzyle) est réalisée à partir de l’allylamine 

commerciale, qui est d’abord protégée par un groupe tosyle, puis propargylée pour former 192 

avec un rendement quantitatif pour les deux étapes. Une ozonolyse de la double liaison 

conduit à l’aldéhyde 202 avec un rendement de 96% (Schéma 201). 
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Schéma 201 

Les étapes de réaction des allénols 196a-b avec l’aldéhyde 202 (H) pour conduire aux adduits 

193a-b puis de protection par un groupe TBS pour accéder aux précurseurs de la réaction de 

Pauson-Khand 202a-b, sont identiques à celles réalisées ci-dessus pour la synthèse du premier 

modèle. Les rendements en composés 193a-b sont de, respectivement, 40% et 28%, et ceux 

en composés silylés 203a-b sont de 67% et 65% (Schéma 202). 

 

 
Schéma 202 

III.1.3 Réaction de Pauson-Khand allénol-yne 

III.1.3.1 Substrats carbonés 

D’après la littérature, le rhodium(I), par rapport aux autres catalyseurs métalliques utilisés, 

semble être le meilleur candidat dans les réactions de Pauson-Khand de type allène-yne (voir 

chapitre III, paragraphe 2 : Pauson-Khand allène-yne et chapitre IV, paragraphe 2 : Synthèse 

du modèle).  

C’est pourquoi, pour les réactions de Pauson-Khand de type allénol-yne que nous avons 

étudiées, ce sont les catalyseurs [Rh(Cl)(CO)2]2 et [Rh(cod)Cl]2 qui ont été retenus (Schéma 

203). 
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Schéma 203 

 

Les premiers essais ont été réalisés en présence de 10 mol% de [Rh(Cl)(CO)2]2 dans le 

toluène à 90°C à partir des composés 201a(Me) (série carbamate) et 201(b)Me (série 

benzyle) (Tableau 9 et Tableau 10, entrée 1).  

Dans les deux cas, la conversion est totale et la réaction rapide ; le rendement en 191a(Me) 

est bon (70%) mais reste médiocre pour 191b(Me) (38%). Il est à observer que des produits 

de dégradation se forment au cours de la réaction181.  

Ces mêmes essais ont été conduits à température ambiante. En série carbamate, le temps de 

réaction est allongé, mais le rendement reste identique. Par contre, en série benzyle, après 

20h, le taux de conversion est inférieur à 10% (Tableau 9, entrée 2 et Tableau 10, entrée 2). 

                                                 
181 Les produits de dégradation sont principalement observés dans la série benzyle et n’ont pu être clairement 
identifiés à ce jour. 
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- série carbamate 

Entrée R Catalyseur Solvant Ligand T°C Temps 
Conversion 

(%) 

Rdt 

(%) 

1 Me [RhCl(CO)2]2 toluène - 90 1h30 100 70 

2 Me [RhCl(CO)2]2 toluène - t.a. 8 h 100 70 

3 Me [RhCl(CO)2]2 THF - reflux 2 h 100 70 

4 Me [RhCl(CO)2]2 toluène dppp reflux 3 h 100 88 

5 Me [RhCl(CO)2]2 acétonitrile dppp reflux 20 h - 
Produit 
Départ 

6 Me [RhCl(CO)2]2 THF dppp reflux 20 h - 
Produit 
Départ 

7 Me [RhCl(cod)]2 toluène dppp reflux 20 h 100 Quant. 

8
*
 Et [RhCl(CO)2]2 toluène dppp reflux 20 h 100 78 

*[C] = 0,03 M 

Tableau 9: Réaction de Pauson-Khand allénol-yne à partir de 201a (série carbamate) 

 

Si l’on modifie la nature du solvant (THF au lieu du toluène), des résultats similaires sont 

obtenus en série carbamate. Par contre, un rendement plus faible est observé en série benzyle 

(20%) (Tableau 9, entrée 6 et Tableau 10, entrée 3).  
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- série benzyle 

Entrée R Catalyseur Solvant Ligand T°C Temps 
Conversion 

(%) 

Rdt 

(%) 

1 Me [RhCl(CO)2]2 toluène - 90 1h30 100 38 

2 Me [RhCl(CO)2]2 toluène - t.a. 20 h 10 - 

3 Me [RhCl(CO)2]2 THF - reflux 2 h 100 20 

4 Me [RhCl(CO)2]2 toluène dppp reflux 6 h 100 60 

6 Me [RhCl(CO)2]2 toluène P(OEt)3 reflux 4 h 100 24 

7 Me [RhCl(CO)2]2 toluène PO reflux 4 h 100 52 

8 Me [RhCl(CO)2]2 toluène 
dppp, 

AgOTf 
reflux 1h30 20 - 

9 Me [RhCl(cod)]2 toluène dppp reflux 28 h 100 90 

10 Me [RhCl(cod)]2 toluène 
dppp, 

AgOTf 
reflux 20 h 0 - 

11 Me [RhCl(cod)]2 toluène Xantphos reflux 20 h 0 - 

Tableau 10: Réaction de Pauson-Khand allénol-yne à partir de 34b (série benzyle) 

 

En présence d’un ligand de type diphosphine, le 1,3-bis(diphenylphosphino)propane (dppp) 

(50 mol%), les rendements sont fortement augmentés : 88% en série carbamate et 60% en 

série benzyle (Tableau 9, entrée 7 et Tableau 10, entrée 4).  

Toujours en présence de dppp, avec comme catalyseur, le [Rh(cod)Cl]2, les rendements sont 

encore meilleurs : quantitatif en série carbamate et 90% en série benzyle (Tableau 9, entrée 7, 

et Tableau 10, entrée 9). Il est intéressant de remarquer qu’à l’ajout du complexe de rhodium 

(I), un dégagement de CO est observé, suivi d’une précipitation due à la formation du 

catalyseur.182 La réaction ne semble démarrer qu’après solubilisation du milieu. La nature des 

différentes espèces catalytiques jouerait donc un rôle important dans le déroulement de la 

réaction.  

Soulignons également que l’ajout de dppp inhibe la formation de produits de dégradation. 

Afin d’optimiser les conditions réactionnelles, une étude a alors été entreprise en faisant 

varier différents paramètres (la nature du solvant, les additifs). Au final, le toluène semble être 

                                                 
182 Sanger, A. R. J. Chem. Soc., Dalton Trans. 1977, 120-129. 
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un meilleur solvant que le THF ou l’acétonitrile (Tableau 9, entrées 5 et 6) car ceux-ci ne 

permettent pas la solubilisation du milieu et seul le produit de départ est récupéré. 

La présence de triflate d’argent AgOTf (20 mol%), en vue de former un catalyseur 

cationique59 n’a pas permis d’améliorer la réaction (Tableau 10, entrées 8 et 10). Ces essais 

seront toutefois à reprendre. 

D’autres dérivés phosphorés de type phosphine et phosphite ont été testés (P(OEt)3, PO, 

Xantphos) en série benzyle, mais sans résultats concluants (Tableau 10, entrées 6, 7 et 11). 

 
Figure 43 

Lorsque R est un groupe éthyle, des premiers essais ont été réalisés à partir des allénols 

201a(Et) en série carbamate et 201c(Et) en série PMB, en présence de [RhCl(CO)2]2 et de 

dppp dans le toluène à reflux.  

En série carbamate, dans des conditions plus diluées que précédemment, le rendement en 

191a(Et) reste bon (78%) (Tableau 9, entrée 8). Par contre, en séries benzyle et PMB, des 

problèmes de reproductibilité ont été observés pour atteindre au mieux un rendement de 59% 

(Tableau 11, entrée 2). 

 

- série paraméthoxybenzyle 

Entrée R Catalyseur Solvant Ligand T°C Temps 
Conversion 

(%) 

Rdt 

(%) 

1 Et [RhCl(CO)2]2 toluène dppp reflux 20 h 100 - 

2
*
 Et [RhCl(CO)2]2 toluène dppp reflux 20 h 100 59 

*[C]=0,05 M 
Tableau 11: Réaction de Pauson-Khand allénol-yne à partir de 34b (série paraméthoxybenzyle) 

 

A l’issue de ces résultats, il semblerait important de réaliser d’autres essais en modifiant la 

pression de CO dans le milieu. Ce paramètre pourrait avoir une influence sur la composition 

des espèces catalytiques et donc sur le déroulement de la réaction.183 

 

                                                 
183 a) Kobayashi, T.; Koga, Y.; Narasaka, K. J. Organo. Chem. 2001, 624, 73-87 ; b) Wang, H.; Sawyer, J.R.; 
Evans, P. A, Baik, M-H. Angew. Chem. Int. Ed. 2008, 47, 342-345. 
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III.1.3.2 Substrats azotés 

Les conditions optimales de l’étude précédente en série carbonée, 10 mol% de [Rh(cod)Cl]2 et 

50 mol% de dppp sous une atmosphère de CO, dans le toluène à 110°C, avec une 

concentration en substrat de 0.1 M, ont été appliquées aux substrats azotés 203a et 203b 

(Schéma 204).  

En série carbamate, le bicycle 194a a été isolé avec un très bon rendement de 70% (Tableau 

12, entrée 1). Par contre en série benzyle, le rendement en produit attendu 194b n’est que de 

43% (Tableau 12, entrée 2). 

 
Schéma 204 

Entrée R R
1
 Temps 

Rdt 

(%) 

1 H Cb 17 h 194a, 42 

2 H Bn 20 h 194b, 43 

Tableau 12: Réaction de Pauson-Khand allénol-yne à partir de 203  

 

IV Conclusion 

Une étude méthodologique a été initiée à partir de différents modèles pour étudier la réaction 

de Pauson-Khand allénol-yne.  

Deux séries ont été étudiées dans ce travail préliminaire : l’une, en série carbonée et l’autre, 

en série azotée. 

D’autre part, trois groupements ont été examinés pour protéger l’éther d’énol obtenu : un 

carbamate, un benzyle et un PMB. 
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Les allénols précurseurs 201 et 203 ont été synthétisés par réaction entre les aldéhydes 200 et 

202, et les allénols 196 déprotonés en position gem de l’oxygène (Schéma 205). 

 
Schéma 205 

 

Ces différents allénols ont été engagés dans des réactions de Pauson-Khand. Deux sources de 

rhodium I ont été étudiés, [Rh(Cl)(CO)2]2 et [Rh(cod)Cl]2.  

 

En série carbonée, lorsque R est un groupe méthyle, les meilleurs rendements, en série 

carbamate et benzyle, ont été obtenus en présence de 10 mol% de  [Rh(cod)Cl]2 et 50 mol% 

de dppp dans le toluène à reflux sous une atmosphère de CO. Dans ces conditions, les 

bicycles 191a(Me) et 191b(Me) ont été formés respectivement de façon quantitative et avec 

un rendement de 90%.  

Quand R est un groupe éthyle, des premiers essais ont permis l’élaboration des produits 

191a(Et) et 191c(Et) avec des rendements respectifs de 78% et 59%. Le système mis en jeu 

comprend 10 mol% de [Rh(Cl)(CO)2]2 et 50 mol% de dppp, dans le toluène à reflux, toujours 

sous une atmosphère de CO (Figure 44). 



 202 

 
Figure 44 

En série azotée, c’est le système catalytique composé de 10 mol% de [Rh(cod)Cl]2 et 50 

mol% de dppp dans le toluène à reflux sous une atmosphère de CO qui a été mis en œuvre. De 

cette façon, les bicycles 194a et 194b ont été construits avec des rendements respectifs de 

42% et 43% (Figure 45). 

 
Figure 45 

Cette étude méthodologique, totalement inédite, a permis l’élaboration de produits de Pauson-

Khand comportant une fonction éther d’énol avec de très bons rendements aussi bien en série 

carbonée qu’azotée. Ce travail est actuellement étendu à des substrats oxygénés (Schéma 

206).  

 
Schéma 206 

Les fonctions éther d’énol de ces produits devront être converties en cétones pour être ensuite 

transformées en alcool tertiaire par méthylation (Schéma 207).  
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Schéma 207 

Une application à la synthèse de la Tg 1 sera ensuite réalisée (Schéma 208). 
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Schéma 208 

 

Au cours de cette étude méthodologique, certaines observations expérimentales ont été 

relevées, importantes pour le déroulement de la réaction (dégagement de CO, précipitation 

suivie de solubilisation du milieu réactionnel).  

L’étude du mécanisme intrinsèque de cette réaction de Pauson-Khand allénol-yne semble 

donc primordiale pour une bonne connaissance des différentes espèces catalytiques formées. 
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CONCLUSION GENERALE 
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Conclusion générale 

 

Le cancer de la prostate est celui le plus fréquemment diagnostiqué chez l’homme, après le 

cancer de la peau. Le blocage des centres de signalisation des récepteurs aux androgènes 

confèrent un réel bénéfice thérapeutique. Cependant, ce traitement standard n’empêche pas 

une rechute du cancer de la prostate sous une forme hormono-réfractaire avec un pronostic 

défavorable. Néanmoins, une stratégie pharmacologique pour traiter ce type de cancer reste à 

établir. 

La thapsigargine (Tg), particulièrement lipophile, pénètre facilement dans la cellule pour 

inhiber les pompes calcium de type SERCA dans le reticulum endoplasmique, à l’échelle sub-

nM. Ce composé initie ainsi une cascade moléculaire résultant en une déplétion en récepteurs 

androgéniques avec un stress du reticulum endoplasmique. 

La Tg est un sesquiterpène lactonique de la famille 6-12 guaianolides, isolé de Thapsia 

garganica, une ombellifère poussant communément dans le bassin méditerranéen. Elle est 

composée d’un squelette bicyclique 5-7 et d’une γ- lactone. Huit centres stéréogènes, avec 

notamment trois alcools tertiaires structurent cette molécule. 

 

La thapsigargine peut être considérée comme un bon chef de file, toutefois son 

approvisionnement dépend de sources naturelles. De plus, les premières relations structure-

activité ont été réalisées principalement sur des analogues issus de l’hémisynthèse, donc avec 

une diversité structurale relativement limitée. 

Un accès à des analogues issus de la synthèse totale serait donc intéressant. 

Dans le cadre de l’ANR blanche 2010 Thaser, l’objectif de ce travail de thèse a consisté en la 

mise au point d’une stratégie de synthèse totale de la thapsigargine, suffisamment modulable, 

pour être ensuite appliquée à la synthèse d’analogues. 

L’étape clé de la synthèse, permettant la construction du système bicyclique 5-7 B, consiste 

en une réaction intramoléculaire de cyclocarbonylation de Pauson-Khand allène-yne à partir 

d’un motif allène-yne hautement fonctionnalisé A. Le motif diénone B ainsi obtenu permettra, 
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dans un deuxième temps, la mise en place des centres asymétriques en C1, C2, C3 et C10 

(Schéma 209). 

 
Schéma 209 

Deux régions ont été définies au niveau de la molécule, la partie Sud, comportant les centres 

asymétriques C6, C7, C8 et C11 contigus ainsi que le motif γ-lactonique, en bleu et la partie 

Nord, comprenant les centres stéréogènes C10, C1, C2 et C3, en rouge (Figure 46) 
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Figure 46 

La synthèse de la thapsigargine selon cette stratégie a été étudiée selon deux approches. 

 

La première approche repose sur la mise en place de façon précoce du centre C7 sous la 

forme d’un époxyde C obtenu par réaction d’époxydation de Sharpless. Cet époxyde offre une 

grande liberté dans la construction des trois bras carbonés autour de ce carbone (Figure 47). 

 
Figure 47 
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Pour valider cette stratégie, le modèle 92 comportant le squelette sesquiterpénique [5.3.0] 

ainsi que les centres stéréogènes en position 6 et 7 a été synthétisé dans un premier temps 

(Figure 48). 
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Figure 48 

Après optimisation de la séquence réactionnelle, les allène-ynes précurseurs de la réaction de 

Pauson-Khand, 139 et 140, ont finalement pu être élaborés en treize et douze étapes 

respectivement à partir de l’époxyde (R)-88 avec un rendement global de 8.5% pour R = Me 

et 3.5% pour R = H (Schéma 210).  

 
Schéma 210 

 

Cette approche repose sur l’ouverture de l’époxyde (R)-88 par un groupe propargylique pour 

conduire au diol 124 puis sur la construction du bras Nord par homologation (formation de 

125) et enfin du bras Sud par une séquence alcynylation et réduction asymétrique pour 

aboutir à l’alcool propargylique (S)-134. Une dernière étape de formation d’allènes a permis 

l’élaboration des composés 139 et 140 avec R = Me ou R =H respectivement. 

Au final, ces deux allène-ynes 139 et 140 ont été engagés dans des réactions de Pauson-

Khand (PKR). Les deux systèmes bicycliques 5-7 attendus 142 et 143 ont pu être formés avec 

des rendements respectifs de 80% et 37%. 
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La synthèse du bicycle 142 a fait l’objet d’une publication.145 

 

La synthèse du produit naturel a été étudiée selon une stratégie proche de celle établie pour la 

synthèse du modèle.  

Après optimisation, la partie Sud, sous la forme de l’aldéhyde 167, a été installée en douze 

étapes avec un rendement global de 17% à partir de l’époxyde (S)-88. La première étape clé 

de la synthèse a consisté en l’ouverture de l’époxyde par un groupe vinyle pour donner le diol 

(S)-101. Puis, une séquence alcynylation et réduction asymétrique a permis d’accéder à 

l’alcool propargylique 161. Enfin, l’aldéhyde 167 a été élaboré après formation du motif 

lactonique et oxydation (Schéma 177). 

 
Schéma 211 

La première étape pour la construction de la partie Nord a été réalisée par réaction de 

propargylation en version non asymétrique de Fandrick avec formation d’un mélange de 

diastéréoisomères 169a et 169b avec des rendements respectifs de 48% et 32%. Cependant, à 

ce stade, en vue de la formation de l’allène-yne de type A1, la protection de l’alcool 

propargylique en C8 ainsi que le clivage du groupe TMS en C10 a été difficile voire 

impossible. 

 

En parallèle de la première approche de synthèse, une deuxième voie a été initiée. Elle visait 

à établir dès les premières étapes, les centres asymétriques contigus en C6, C7, C8 et C11 

avec formation du cycle lactonique afin d’établir la partie Sud.  

La stratégie envisagée repose sur la fonctionnalisation de l’énynol 176. Ce produit de départ 

est particulièrement adapté car il comporte déjà les différentes fonctions nécessaires pour 
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l’élaboration du produit final. L’ordre des différentes étapes de synthèse est parfaitement 

modulable (Figure 49). 

 
Figure 49 

Il a été élaboré dans un premier temps l’énynol bromé 176 en quatre étapes à grande échelle et 

avec un rendement global de 31%, à partir de l’alcool propargylique.  

Dans cette stratégie également, l’étape de propargylation n’a pu être réalisée en version 

asymétrique. La suite de la synthèse a donc été réalisée en série racémique à partir de l’alcool 

homopropargylique (+/-)-182. L’addition du lithien vinylique correspondant sur le pyruvate 

de méthyle a conduit à la formation de deux γ-lactones diastéréoisomériques (+/-)-184a et (+/-

)-184b en mélange équimolaire avec un rendement de 39% pour chacune d’entre elles.  

La réaction de dihydroxylation de la double liaison en C6-C7 de la lactone (+/-)-184b a été 

effectuée en simple induction pour donner accès au seul diastéréoisomère (+/-)-185. Les 

configurations relatives de ces différentes lactones n’ont pour l’instant pas pu être 

déterminées. 

Après une étape de déprotection en C1 et de protection en C6, ce sont deux lactones 

régioisomères (+/-)-187 et (+/-)-188 qui ont été isolées de façon quantitative en proportion 

1:2.  

Au final ces deux lactones ont été obtenues, à partir de l’alcool propargylique, en dix étapes 

avec un rendement global de 11%, sans réelle optimisation (Schéma 212).  
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Schéma 212 

 

Un premier travail d’optimisation de ces deux approches consisterait, tout d’abord, à valider 

la réaction de propargylation asymétrique permettant de contrôler le centre C8. 

D’autre part, il serait également intéressant de gérer au mieux les problèmes de 

translactonisation qui rendent l’avancement de la synthèse particulièrement difficile. 

Enfin, et plus spécialement dans le cadre de la deuxième approche, il est impératif de 

déterminer la configuration des centres asymétriques des différents intermédiaires par des 

expériences RMN ou par cristallisation. 

 

La mise en place de l’alcool tertiaire en C10 de la Tg constitue un des points importants de la 

synthèse de ce produit naturel.  

Dans les approches précédentes, à l’issue de la réaction de Pauson-Khand allène-yne à partir 

de A, l’installation du centre en C10 était envisagée à partir de la diénone B. 

Une autre voie, totalement inédite, a été étudiée. Elle consiste à réaliser une réaction de 

Pauson-Khand allénol-yne à partir de C permettant d’aboutir directement à l’éther d’énol D. 

Cet éther d’énol sera ensuite converti en cétone, aisément transformable en alcool tertiaire par 

méthylation (Schéma 213). 
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Schéma 213 

Une étude méthodologique a été initiée à partir de différents modèles pour étudier la réaction 

de Pauson-Khand allénol-yne.  

Deux séries ont été étudiées dans ce travail préliminaire : une, en série carbonée et une autre, 

en série azotée. D’autre part, trois groupements ont été examinés pour protéger l’éther d’énol 

obtenu : un carbamate, un benzyle et un PMB. 

Les allénols 201 et 203 ont été engagés dans des réactions de Pauson-Khand avec étude de 

deux systèmes catalytiques, [Rh(Cl)(CO)2]2 et [Rh(cod)Cl]2.  

En série carbonée, quand R est un groupe méthyle, les meilleurs rendements, en série 

carbamate et benzyle, ont été obtenus en présence de 10 mol% de [Rh(cod)Cl]2 et 50 mol% de 

dppp dans le toluène à reflux sous une atmosphère de CO. Dans ces conditions, les bicycles 

191a(Me) et 191b(Me) ont été formés respectivement de façon quantitative et avec un 

rendement de 90%.  

Quand R est un groupe éthyle, des premiers essais ont permis l’élaboration des produits 

191a(Et) et 191c(Et) avec des rendements respectifs de 78% et 59%. Le système mis en jeu 

comprend 10 mol% de [Rh(Cl)(CO)2]2 et 50 mol% de dppp, dans le toluène à reflux, toujours 

sous une atmosphère de CO (Figure 50). 

 
Figure 50 
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En série azotée, c’est le système catalytique composé de 10 mol% de  [Rh(cod)Cl]2 et 50 

mol% de dppp dans le toluène à reflux sous une atmosphère de CO qui a été mis en œuvre. De 

cette façon, les bicycles 194a et 194b ont été construits avec des rendements respectifs de 

42% et 43% (Figure 51). 

 
Figure 51 

Cette étude méthodologique, totalement inédite, a permis l’élaboration de produits de Pauson-

Khand comportant une fonction éther d’énol avec de très bons rendements aussi bien en série 

carbonée qu’azotée. Ce travail est actuellement étendu à des substrats oxygénés.  

Les fonctions éther d’énol de ces produits devront être converties en cétones pour être ensuite 

transformées en alcools tertiaires par méthylation. Une application à la synthèse de la Tg 1 

sera ensuite réalisée. 

Il sera important de connaître le mécanisme intrinsèque de cette réaction de Pauson-Khand 

allénol-yne. 

 

En perspective, et pour répondre aux différents problèmes rencontrés au cours des deux 

premières approches de synthèse, une stratégie de troisième génération pourrait être 

envisagée en reprenant, en partie, les points forts de chacune des deux voies initiales. En effet, 

à partir de l’alcool primaire A, correspondant au squelette C8-C2, des réactions d’alcynylation 

puis réduction asymétrique conduirait à l’alcool propargylique B comportant une fonction 

iodure de vinyle. Après formation de la lactone 6,12 par réaction avec le pyruvate de méthyle 

(synthèse de C), la lactone D, possédant les quatre centres stéréogènes contigus de la partie 

Sud, serait isolée par réaction de dihydroxylation de la double liaison trisubstituée en C7-C8 

(Schéma 214). 
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Schéma 214 

Cet intermédiaire hautement fonctionnalisé D pourrait être généré en huit étapes à partir du 

butyne-1,4-diol commercial. 
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Partie expérimentale : Synthèse de première génération - 

élaboration d’un modèle 

 

 

ethyl 2-(hydroxymethyl)acrylate 93 

 

8

7

11

6

O

OH

O

C6H10O3
130,14 g/mol  

 

To a mixture of triehylphosphonoacetate (112.1 g, 500 mmol, 1 eq), a 30% aqueous solution 

(200 mL) of formaldehyde (75 g, 2.5 mol, 4 eq) and 10 mL of a solution 1M of H3PO4 at 

room temperature was added slowly (over 45 min) a saturated solution of potassium carbonate 

(121 g, 875 mmol, 1.75 eq) in water (100 mL). At the end of the addition, the mixture was 

warmed to 90°C and stirred for 1.5 h. Then, saturated ammonium chloride solution (200 mL) 

was added and the mixture was extracted with Et2O (3x). The combined organic layers was 

MgSO4 and the solvent removed under reduced pressure. 

The crude residue was purified by flash chromatography on silica gel (pentane/ Et2O 8:2 to 

6:4) to afford the required ethyl 2-(hydroxymethyl)acrylate 93, (52 g, 80%) as colourless oil. 

 

RN: 10029-04-6 

 
1
H-NMR (400MHz, CDCl3, ppm): 6.25 (br s, 1H, H11a), 5.83 (br s, 1H, H11b), 4.33 (d, J = 5.7 

Hz, 2H, H8), 4.28 (q, J = 6.8 Hz, 2H, HCH2(ester)), 1.34 (t, J = 6.8 Hz, 3H, HCH3(ester)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 168.2 (Cq, C6), 139.6 (Cq, C7), 122.0 (CH2, C11), 66.2 

(CH2, C8). 

 

MS (ESI, m/z): 153 [MNa]+ 
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Rf (pentane/ Et2O 5:5) = 0.30 

 

Spectroscopic data were consistent with those reported in the literature. 

 

ethyl 2-((trityloxy)methyl)acrylate 94 

 

8

7

11

6

O

OTr

O

C25H24O3
372,46 g/mol  

 

To a solution of ethyl 2-(hydroxymethyl)acrylate (65 g, 500 mmol, 1 eq) in CH2Cl2 (650 ml) 

was added pyridine (50.5 ml, 620 mmol, 1.24 eq), and after 5 mn was added triphenylmethyl 

chloride (153 g, 550 mmol, 1.1 eq) at 0 oC. The reaction mixture was stirred at room 

temperature for 15h, quenched with saturated aqueous NH4Cl solution at 0 oC, extracted with 

CH2Cl2 (3x). The combined organic layer was washed with brine, dried over MgSO4, and 

evaporated. The residue was purified by flash chromatography (cyclohexane/ethyl acetate, 

95:5) to afford ethyl 2-(triphenylmethoxymethyl)propenoate (171 g, 92%) as a white solid. 

 

RN: 131706-44-0 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.35-7.12 (m, 15H, HAr), 5.24 (d, J = 1.8 Hz, 1H, H11a), 

5.09 (d, J = 1.8 Hz, 1H, H11b), 4.06 (q, J = 7.1 Hz, 2H, HCH2(ester)), 3.76 (s, 2H, H8), 1.12 (t, J = 

7.1 Hz, 3H, HCH3(ester)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 165.5 (Cq, C6), 143.7 (Cq, CAr), 137.8 (Cq, C7), 128.4 

(CH, CAr), 127.7 (CH, CAr), 126.9 (CH, CAr), 124.2 (CH2, C11), 86.9 (Cq, CTr), 62.2 (CH2, C8), 

60.4 (CH2, Cester), 14.1 (CH3, Cester). 

 

MS (ESI, m/z): 395 [MNa]+ 

 

Rf (cyclohexane/ ethyl acetate 95:5) = 0.37  
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Spectroscopic data were consistent with those reported in the literature. 

 

2-((trityloxy)methyl)prop-2-en-1-ol 95 

 

8

7

11
6

OH

OTr

C23H22O2
330,42 g/mol  

 

To a solution of ethyl 2-((trityloxy)methyl)acrylate (60.4 g, 162.3 mmol, 1 eq) in CH2Cl2 (600 

ml) was added diisobutylaluminum hydride (1.1M in cyclohexane, 443 ml, 486.9 mmol, 3 eq) 

at –78 oC, and the reaction mixture was stirred at –78 oC for 1h. The reaction mixture was 

quenched with an aqueous solution of NaOH 4N (2 L) at –78 oC and the mixture was warmed 

to room temperature. The reaction mixture was extracted with CH2Cl2 (3x). The combined 

organic layer was washed with brine, dried over MgSO4, and evaporated.  

The residue was purified by flash chromatography (pentane/ethyl acetate 1/0 to 95:5) to afford 

2-((trityloxy)methyl)prop-2-en-1-ol (45.6 g, 85%) as a white solid. 

 

RN: 510730-17-3 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.47-7.24 (m, 15H, HAr), 5.26 (d, J = 1.2 Hz, 1H, H11a), 

5.18 (d, J = 1.2 Hz, 1H, H11b), 4.14 (s, 2H, H6), 3.70 (s, 2H, H8). 

 
13

C-NMR (100MHz, CDCl3, ppm): 145.4 (Cq, C7), 143.8 (Cq, CAr), 128.5 (CH, CAr), 127.8 

(CH, CAr), 127.0 (CH, CAr), 111.7 (CH2, C11), 87.0 (Cq, CTr), 65.3 (CH2, C8), 64.5 (CH2, C6). 

 

MS (ESI, m/z): 353 [MNa]+ 

 

Rf (cyclohexane/ ethyl acetate 8:2) = 0.24 
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(S)-(2-((trityloxy)methyl)oxiran-2-yl)methanol 88 

 

8

7

11

6

OH

OTr

O

C23H22O3
346,42 g/mol  

 

(-)-Diethyl tartrate (2.19 g, 10.61 mmol, 0.1 eq) was dissolved in anhydrous dichloromethane 

(120 mL) with 4Ǻ MS (50 g). At -20°C, was added freshly distilled Ti(O-iPr)4 (3.14 mL, 

10.61 mmol, 0.1 eq). The mixture was stirred at -20°C for 50 min and tert-butyl 

hydroperoxyde (5.5 M in decane, 58 mL, 318.20 mmol, 3 eq) was added. The solution was 

stirred at -20°C for an additional 50 min and 2-((trityloxy)methyl)prop-2-en-1-ol (34.5 g, 

104.5 mmol, 1 eq) dissolved in anhydrous dichloromethane (120 mL) was added dropwise. 

The mixture was stirred at -20°C overnight before being quenched with water (ca. 50 mL) and 

warmed at room temperature. A solution of NaOH 30% saturated NaCl (ca. 50 mL) was 

added and the mixture was vigorously stirred for 1.5h before being diluted with water and 

then filtered through a pad of Celite. The aqueous layer was extracted with CH2Cl2 (3x), the 

organic layers were combined, washed with brine, dried over MgSO4 and the solvent removed 

under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (CH2Cl2/ethyl acetate 

98:2 to 95:5) to afford the required (S)-(2-((trityloxy)methyl)oxiran-2-yl)methanol, (28.2 g, 

78%) as a white powder. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.46-7.24 (m, 15H, HAr), 3.96-3.92 (dd, 1H, J = 12.3, 4.8 

Hz, H6a), 3.79-3.74 (dd, 1H, J = 12.3, 8.4 Hz, H6b), 3.34-3.31 (d, 1H, J = 10.4 Hz, H8a), 3.30-

3.27 (d, 1H, J = 10.4 Hz, H8b), 2.90 (d, 1H, J = 5.0 Hz, H11a), 2.74 (d, 1H, J = 5.0 Hz, H11b), 

1.86-1.83 (dd, 1H, J = 8.4, 4.8 Hz, HOH). 

 
13

C-NMR (100MHz, CDCl3, ppm): 143.5 (Cq, CAr), 128.6 (CH, CAr), 127.9 (CH, CAr), 127.2 

(CH, CAr), 87.0 (Cq, CTr), 64.6 (CH2, C8), 62.1 (CH2, C6), 49.0 (CH2, C11). 

 

MS (ESI, m/z): 369 [MNa]+ 
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[α]D
20 = -20.0 (c 1.5, CHCl3). 

[α]D
20 = +19.6 (c 1.5, CHCl3) for its enantiomer. 

 

Rf (CH2Cl2/ ethyl acetate 95:5) = 0.38 

 

Spectroscopic data were consistent with those reported in the literature. 

 

(R)-2-((trityloxy)methyl)pent-4-ene-1,2-diol 101 

 

8

7
6

11OH
OH

12

16

TrO

C25H26O3
374,47 g/mol  

 

To a suspension of CuI (10.32 g, 54.19 mmol, 0.75 eq) in anhydrous THF (685 mL) was 

added dropwise at -20°C vinylmagnesium bromide (1 M in THF, 361 mL, 361.3 mmol, 5 eq). 

The green dark solution was stirred at -20°C for 30 min and then (S)-(2-

((trityloxy)methyl)oxiran-2-yl)methanol (25 g, 72.2 mmol, 1 eq) dissolved in anhydrous THF 

(90 mL) was added. The solution was stirred overnight at -20°C before being quenched with 

an aqueous saturated solution of NH4Cl and extracted with CH2Cl2 (3x), the organic layers 

were combined, washed with brine, dried over MgSO4 and the solvent removed under reduced 

pressure.  

The crude residue was purified by flash chromatography on silica gel (dichloromethane/ethyl 

acetate 98:2 to 95:5) to afford the required (R)-2-((trityloxy)methyl)pent-4-ene-1,2-diol, (22.2 

g, 82%) as a colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.45-7.25 (m, 15H, HAr), 5.76-5.63 (dddd, 1H, J = 15.9, 

11.4, 7.8, 7.5 Hz, H12), 5.08 (dd, 1H, Jtrans = 15.9 Hz, H16a), 5.03 (dd, 1H, Jcis = 11.9 Hz, H16b), 

3.62 (dd, 1H, J = 11.4, 4.2 Hz, H6a), 3.53 (dd, 1H, J = 11.4, 6.0 Hz, H6b), 3.21 (d, 1H, J = 9.2 

Hz, H8a), 3.10 (d, 1H, J = 9.2 Hz, H8b), 2.55 (s, 1H, HOH-C7), 2.37 (dd, 1H, J = 14.1, 7.5 Hz, 

H11a), 2.30 (dd, 1H, J = 14.1, 7.8 Hz, H11b), 1.94 (dd, 1H, J = 6.0, 4.2 Hz, HOH-C6). 
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13
C-NMR (100MHz, CDCl3, ppm): 143.5 (Cq, CAr), 132.7 (CH, C12), 128.6 (Cq, CAr), 127.9 

(Cq, CAr), 127.2 (C, CAr), 118.8 (CH2, C16), 86.9 (Cq, CTr), 73.7 (C, C7), 66.8 (CH2, C8), 66.4 

(CH2, C6), 39.4 (CH2, C11). 

 

MS (ESI, m/z): 397 [MNa]+ 

 

[α]D
20 = -8.5 (c 1.5, CHCl3). 

[α]D
20= +8.6 (c 1.5, CHCl3) for its enantiomer. 

 

Rf (CH2Cl2/ ethyl acetate 95:5) = 0.26 

 

(R)-4-allyl-2,2-dimethyl-4-((trityloxy)methyl)-1,3-dioxolane 102 

 

6
7

8

TrO 11

O

O

9

10

C28H30O3
414.54 g/mol  

 

A solution of (S)-2-((trityloxy)methyl)pent-4-ene-1,2-diol (1.97 g, 5.27 mmol, 1 eq) was 

dissolved in dry CH2Cl2 (44 mL) at room temperature before addition of 2-methoxypropen 

(1.31 mL, 13.7 mmol, 2.6 eq) and PPTS (53.0 mg, 0.21 mmol, 0.4 eq). The mixture was 

stirred at room temperature for 45 min before being quenched by addition of saturated 

aqueous NaHCO3. The mixture was extracted with CH2Cl2 (3x), the organic layers were 

combined, washed with brine, dried over MgSO4 and the solvent removed under reduced 

pressure. The crude residue was purified by flash chromatography on silica gel (pentane/ethyl 

acetate 95:5) to give 2.18 g (100%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.47-7.21 (m, 15H, HAr), 5.67 (dddd, J = 17.3, 10.2, 7.3, 

7.2 Hz, 1H, H9),. 5.03 (d, Jtrans= 17.3 Hz, 1H, H10a), 5.00 (d, Jcis = 10.2 Hz, 1H, H10b), 3.81 (s, 

2H, H11), 3.20 (d, J =9.0 Hz, 1H, H6a), 3.02 (d, J =9.0 Hz, 1H, H6b), 2.61 (dd, J = 13.6, 7.2 

Hz, 2H, H8a), 2.52 (dd, J = 13.6, 7.3 Hz, 1H, H8b), 1.41 (s, 3H, CH3(acét)), 1.31 (s, 3H, 

CH3(acét)). 
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13

C-NMR (100MHz, CDCl3, ppm): 143.5- 127.1 (CAr), 132.7 (CH, C9), 118.8 (CH2, C10), 

86.9 (Cq, CTr), 82.6 (Cq, C7), 70.6 (CH2, C6), 66.5 (CH2, C11), 40.5 (CH2, C8), 27.0 (CH3, 

CH3(acét)). 

 

MS (ESI, m/z): 437 [MNa]+ 

 

Rf (pentane/ ethyl acetate 95:5) = 0.62 

 

(R)-2-(2,2-dimethyl-4-((trityloxy)methyl)-1,3-dioxolan-4-yl)ethanol 103 

 

6
7

8

TrO 11

O

O

9

OH

C27H30O4
418,52 g/mol  

 

A solution of (R)-4-allyl-2,2-dimethyl-4-((trityloxy)methyl)-1,3-dioxolane (327 mg, 0.79 

mmol, 1 eq) in a dry mixture of CH2Cl2/MeOH (5 mL/ 10 mL) with Sudan III as indicator 

was ozonized at -78°C until the color changed from light red to transparent. The reaction 

mixture was purged with argon and NaBH4 (302 mg, 7.90 mmol, 10 eq) was added in one 

portion. The reaction was warmed to room temperature and stirred for additional 1h10. The 

reaction was quenched with a saturated aqueous NH4Cl (5 mL), extracted with CH2Cl2 (3x), 

dried and concentrated. The crude residue was purified by flash chromatography on silica gel 

(CH2Cl2/ethyl acetate 95:5 to 8:2) to give 315 mg (96%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.44-7.23 (m, 15H, HAr), 3.97 (d, J = 8.9 Hz, 1H, H11a), 

3.85 (d, J = 8.9 Hz, 1H, H11b), 3.66 (m, 1H, H9a), 3.63 (m, 1H, H9b), 3.21 (d, J =8.6 Hz, 1H, 

H6a), 3.11 (d, J = 8.6 Hz, 1H, H6b), 2.55-2.53 (dd, J = 5.8, 5.1 Hz, 1H, HOH), 2.07 (m, 1H, 

H8a), 1.98 (m, 1H, H8b), 1.41 (s, 3H, CH3(acét)), 1.29 (s, 3H, CH3(acét)). 
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13
C-NMR (100MHz, CDCl3, ppm): 143.6 (Cq, CAr), 128.7 (CH, CAr), 127.9 (CH, CAr), 127.1 

(CH, CAr), 109.9 (Cq, C(acét)), 86.8 (Cq, CTr), 82.9 (Cq, C7), 72.0 (CH2, C6), 65.8 (CH2, C11), 

59.1 (CH2, C9), 37.5 (CH2, C8), 26.9 (CH3, CH3(acét)), 26.7 (CH3, CH3(acét)). 

 

IR (film, cm-1): 3433, 2930, 908, 732. 

 

MS (ESI, m/z): 441 [MNa]+ 

 

Rf (CH2Cl2/ ethyl acetate 95:5) = 0.20 

 

(R)-4-(2-iodoethyl)-2,2-dimethyl-4-((trityloxy)methyl)-1,3-dioxolane 104 

 

6
7

8

TrO 11

O

O

9

I

C27H29IO3
528,42 g/mol  

 

A solution of (R)-2-(2,2-dimethyl-4-((trityloxy)methyl)-1,3-dioxolan-4-yl)ethanol (300 mg, 

0.72 mmol, 1 eq) was dissolved in dry CH2Cl2 (15 mL) at room temperature before addition 

of PPh3 (395 mg, 1.51 mmol, 2.1 eq) and imidazole (102 mg, 1.51 mmol, 2.1 éq). After 

complete dissolution, a solution of I2 (273 mg, 1.08 mmol, 1.5 eq) in CH2Cl2 (6 mL) was 

added dropwise at 0°C. The reaction mixture was warmed to room temperature and stirred for 

additional 2h. The reaction was quenched with a saturated aqueous Na2S2O3 (10 mL), 

extracted with CH2Cl2 (3x). The organic layers were combined, washed with brine, dried over 

MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (pentane/Et2O 98:2) to 

give 360 mg (95%) of a white gum. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.44-7.25 (m, 15H, HAr), 3.94 (d, J = 9.0 Hz, 1H, H11a), 

3.82 (d, J = 9.0 Hz, 1H, H11b), 3.13 (d, J = 9.1 Hz, 1H, H6a), 3.06 (ddd, J = 12.5, 9.8, 4.9 Hz, 

1H, H9a), 3.04 (d, J = 9.1 Hz, 1H, H6b), 2.79 (ddd, J = 12.5, 10.2, 5.1 Hz, 1H, H9b), 2.47-2.36 
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(ddd, J = 12.8, 9.8, 5.1 Hz, 1H, H8a), 2.35-2.24 (ddd, J = 12.8, 10.2, 4.9 Hz, 1H, H8b,), 1.38 (s, 

3H, CH3(acét)), 1.27 (s, 3H, CH3(acét)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 143.4 (Cq, CAr), 128.6 (CH, CAr), 127.9 (CH, CAr), 127.2 

(CH, CAr), 71.4 (CH2, C6), 65.2 (CH2, C11), 41.4 (CH2, C8), 26.7 (CH3, CH3(acét)), 26.9 (CH3, 

CH3(acét)), -1.59 (CH2, C9). 

 

MS (ESI, m/z): 551 [MNa]+ 

 

Rf (pentane/ ethyl acetate 95:5) = 0.36 

 

tert-butyldiphenyl(prop-2-yn-1-yloxy)silane 105 

 

 

 

Propargyl alcohol (1.0 g, 17.84 mmol, 1 eq), TBDPSCl (5.39 g, 19.62 mmol, 1.1 eq) and 

imidazole (1.33 g, 19.62 mmol, 1.1 eq) in dry CH2Cl2 (10 mL) were stirred at room 

temperature 14 h. After this time, the reaction mixture was diluted with Et2O (100 mL) and 

washed with brine. The organic layer was dried over MgSO4, filtered and rotary evaporated.  

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

98:2) to give 5.14 g (5.14 g, 98%) as a colourless oil. 

 

RN: 88159-06-2 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.81 – 7.78 (m, 4H, HAr), 7.53 – 7.44 (m, 6H, HAr), 4.42 

(s, 2H, H2), 2.40 (s, 1H, H10), 1.11 (s, 9H, CH3(DPS). 

 

Rf (pentane/ ethyl acetate 95:5) = 0.63 
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(R)-tert-butyl((5-(2,2-dimethyl-4-((trityloxy)methyl)-1,3-dioxolan-4-yl)pent-2-yn-1-

yl)oxy)diphenylsilane 97 
 

 

 

A solution of tert-butyldiphenyl(prop-2-yn-1-yloxy)silane 105 (130 mg, 0.44 mmol, 4.5 eq) 

was dissolved in dry THF (0.6 mL). At -78°C, n-BuLi (1.6 M in hexane, 0.35 mL, 0.39 mmol, 

4 eq) was added dropwise. The reaction mixture stirred at -78°C for 30 min. A solution of (S)-

4-(2-iodoethyl)-2,2-dimethyl-4-((trityloxy)methyl)-1,3-dioxolane (52 mg, 0.098 mmol, 1 eq) 

dissolved in a dry mixture of THF/HMPA (0.6 mL/0.2 mL) was added slowly. The reaction 

mixture was warmed to 0°C and stirred for 3h. The reaction was quenched with water (3 mL), 

extracted with Et2O (3x). The organic layers were combined, washed with brine, dried over 

MgSO4 and the solvent removed under reduced pressure. The crude residue was purified by 

flash chromatography on silica gel (pentane/Et2O 95:5) to give 36 mg (53%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.73-7.24 (m, 25H, HAr), 4.29 (s, 2H, H2), 3.89 (d, J = 8.8 

Hz, 1H, H11a), 3.84 (d, J = 8.8 Hz, 1H, H11b), 3.12 (d, J = 9.2 Hz, 1H, H6a), 3.02 (d, J = 9.2 

Hz, 1H, H6b), 2.18 (m, 1H, H9a), 1.97 (m, 1H, H9b), 1.95 (m, 2H, H8), 1.39 (s, 3H, CH3(acét)), 

1.30 (s, 3H, CH3(acét)), 1.07 (s, 9H, CH3(DPS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 146.8 (Cq, CAr), 143.7 (Cq, CAr), 135.6 (Cq, C(DPS)), 

129.7 (CH, CAr), 128.7 (CH, CAr), 127.9 (CH, CAr), 127.8 (CH, CAr), 127.7 (CH, CAr), 127.6 

(CH, CAr), 127.7 (CH, CAr), 127.1 (CH, CAr), 109.5 (Cq, C(acét)), 85.5 (Cq, CAr), 85.2 (Cq, C1), 

82.2 (Cq, C7), 78.4 (Cq, C10), 71.2 (CH2, CH2(acét)), 65.9 (CH2, C6), 53.0 (CH2, C2), 34.9 (CH2, 

C8), 26.9 (CH3, CH3(acét)), 26.8 (CH3, CH3(acét)), 26.7 (CH3, CH3(DPS)), 19.1 (Cq, C(DPS)), 13.4 

(CH2, C9). 

 

IR (film, cm-1): 2930, 2858, 1449, 1371, 1111, 1071. 

 

MS (ESI, m/z): 718 [MNa]+ 
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Rf (pentane/ Et2O 95:5) = 0.21 

 

(R)-(4-(5-((tert-butyldiphenylsilyl)oxy)pent-3-yn-1-yl)-2,2-dimethyl-1,3-dioxolan-4-

yl)methanol 106 
 

 

 

(R)-tert-butyl((5-(2,2-dimethyl-4-((trityloxy)methyl)-1,3-dioxolan-4-yl)pent-2-yn-1-

yl)oxy)diphenylsilane (50 mg, 0.07 mmol, 1 eq.) was dissolved in Et2O (0.5 mL). At room 

temperature was added HCOOH. The yellow solution was stirred for 10 min then neutralized 

with a saturated aqueous solution of NaHCO3. The organic layers were washed with brine, 

dried over MgSO4 and the solvent removed under reduced pressure. The crude residue was 

purified by flash chromatography on silica gel (pentane/Et2O 95:5 to 5:5) to give 9 mg (27%) 

of yellow oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.71-7.36 (m, 10H, HAr), 4.29 (t, J = 2.1 Hz, 2H, H2), 3.92 

(d, J = 8.8 Hz, 1H, H11a), 3.82 (d, J = 8.8 Hz, 1H, H11b), 3.57 (d, J = 12.7 Hz, 1H, H6a), 3.54 

(d, J = 12.7 Hz, 1H, H6b), 2.28-2.24 (tt, J = 7.5, 2.1 Hz, 2H, H9), 1.83 (t, J = 7.5 Hz, 2H, H8), 

1.41 (s, 3H, CH3(acét)), 1.40 (s, 3H, CH3(acét)), 1.05 (s, 9H, CH3(DPS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 135.6 (CH, CAr), 133.3 (Cq, C(DPS)), 129.7 (CH, CAr), 

127.9 (CH, CAr), 127.6 (CH, CAr), 109.6 (Cq, C(acét)), 85.2 (Cq, C1), 82.9 (Cq, C7), 78.8 (Cq, 

C10), 70.2 (CH2, CH2(acét)), 64.9 (CH2, C6), 52.3 (CH2, C2), 33.9 (CH2, C8), 27.2 (CH3, 

CH3(acét)), 26.9 (CH3, CH3(acét)), 26.7 (CH3, CH3(DPS)), 19.1 (Cq, C(DPS)), 13.7 (CH2, C9). 

 

IR (film, cm-1): 3470, 2926, 2853, 1428, 1371, 1212, 1112, 1059. 

 

MS (ESI, m/z): 475 [MNa]+ 
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Rf (pentane/ ethyl acetate 8:2) = 0.25 

 

(4S)-4-allyl-2-(4-methoxyphenyl)-4-((trityloxy)methyl)-1,3-dioxolane 112 

 

11

7

8

TrO 6

O

O

9

10

PMP

C33H32O4
492,60 g/mol  

A solution of (R)-2-((trityloxy)methyl)pent-4-ene-1,2-diol (1.22 g, 3.26 mmol, 1 eq) was 

dissolved in dry CH2Cl2 (17 mL) at room temperature before addition of p-anisaldehyde 

dimethoxy acetal (0.83 mL, 4.89 mmol, 1.5 eq) and PPTS (82.0 mg, 0.33 mmol, 0.1 eq). The 

mixture stirred at room temperature overnight before being quenched by addition of saturated 

aqueous NaHCO3 (10 mL). The mixture was extracted with CH2Cl2 (3x), the organic layers 

were combined, washed with brine, dried over MgSO4 and the solvent removed under reduced 

pressure. The crude residue was purified by bulb to bulb distillation (110°C, 0.1 mbar) to 

afford 1.4 g (87%) of colourless oil.  

 

Diastereoisomer 1: 

 

1
H-NMR (400MHz, CDCl3, ppm): 7.51-7.28 (m, 17H, HAr), 6.93 (d, J = 8.8 Hz, 2H, HPMB), 

5.84 (s, 1H, Hbenz), 5.80-5.68 (m, 1H, H9), 5.15-5.04 (m, 1H, H10), 4.01-3.95 (m, 2H, H6), 3.82 

(s, 3H, CH3(PMB)), 3.28 (m, 2H, H11), 2.58 (m, 2H, H8). 

 

Diastereoisomer 2: 

 

1
H-NMR (400MHz, CDCl3, ppm): 7.51-7.28 (m, 17H, HAr), 6.86 (d, J = 8.8 Hz, 2H, HPMB), 

5.84 (s, 1H, Hbenz), 5.80-5.68 (m, 1H, H9), 5.15-5.04 (m, 1H, H10), 3.90 (m, 2H, H6), 3.82 (s, 

3H, CH3(PMB)), 3.15 (m, 2H, H11), 2.68 (m, 2H, H8). 

 

MS (ESI, m/z): 515 [MNa]+ 

 

Rf (pentane/ethyl acetate 95:5) = 0.27 
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(R)-2-((4-methoxybenzyl)oxy)-2-((trityloxy)methyl)pent-4-en-1-ol 113 

 

11
7

8

TrO 6

OPMB

OH

9

10

C33H34O4
494,62 g/mol  

 

A solution of (4S)-4-allyl-2-(4-methoxyphenyl)-4-((trityloxy)methyl)-1,3-dioxolane (66 mg, 

0.134 mmol, 1 eq) was dissolved in dry CH2Cl2 (1.0 mL). At -78°C, DIBAL-H (1.1 M in 

cyclohexane, 0.6 mL, 1.67 mmol, 5 eq) was added dropwise. The mixture stirred at -78°C for 

45 min then hydrolysed by slow addition of an aqueous solution of NaOH 4N. The mixture 

was extracted with CH2Cl2 (3x), the organic layers were combined, washed with brine, dried 

over MgSO4 and the solvent removed under reduced pressure. The crude residue was purified 

by flash chromatography on silica gel (pentane/ethyl acetate 9:1) to get 42 mg (63%) of 

colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.49-7.22 (m, 17H, HAr(Tr)+ HAr(PMB)), 6.87 (d, J = 8.6 Hz, 

2H, HAr(PMB)), 5.80-5.66 (ddt, J = 17.2, 10.4, 7.2 Hz, 1H, H9), 5.12-5.06 (dd, J = 17.2, 1.8 Hz, 

1H, H10a), 5.05-5.02 (dd, J = 10.4, 1.8 Hz, 1H, H10b), 4.46 (d, J = 10.5 Hz, 1H, CH2(PMB)), 4.42 

(d, J = 10.5 Hz, 1H, CH2(PMB)), 3.80 (s, 3H, CH3(PMB)), 3.73 (s, 2H, H6), 3.35 (d, J = 9.6 Hz, 

1H, H11a), 3.23 (d, J = 9.6 Hz, 1H, H11b), 2.50 (d, J = 7.2 Hz, 2H, H8). 

 
13

C-NMR (100MHz, CDCl3, ppm): 159.0 (Cq- CAr(PMB)), 143.5 (Cq, CAr(Tr)), 132.8 (CH, C9), 

130.8 (CH, CAr), 129.0 (CH, CAr), 128.7 (CH, CAr), 127.8 (CH, CAr), 127.1 (CH, CAr), 118.2 

(CH2, C10), 113.7 (Cq, CAr(PMB)), 86.8 (Cq, CTr), 78.9 (Cq, C7), 65.3 (CH2, CH2(PMB)), 64.1 

(CH, C6), 63.8 (CH2, C11), 55.2 (CH3, CH3(PMB)), 35.7 (CH2, C8). 

 

MS (ESI, m/z): 517 [MNa]+ 

 

Rf (pentane/ethyl acetate 9:1) = 0.41 
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(R)-1-((4-methoxybenzyl)oxy)-2-((trityloxy)methyl)pent-4-en-2-ol 114 

 

11

8

TrO 6

OH

OPMB

9

10

C33H34O4
494,62  

1
H-NMR (400MHz, CDCl3, ppm): 7.43-7.23 (m, 15H, HAr(Tr)), 7.22 (d, J = 8.6 Hz, 2H, 

HAr(PMB)), 6.88 (d, J = 8.6 Hz, 2H, HAr(PMB)), 5.76-5.62 (ddt, J = 17.3, 10.0, 7.3 Hz, 1H, H9), 

5.04-5.00 (dd, J = 17.3, 1.8 Hz, 1H, H10a), 5.00-4.97 (dd, J = 10.0, 1.8 Hz, 1H, H10b), 4.47 (s, 

2H, CH2(PMB)), 3.81 (s, 3H, CH3(PMB)), 3.58 (d, J = 9.0 Hz, 1H, H6a), 3.47 (d, J = 9.0 Hz, 1H, 

H6b), 3.14 (d, J = 9.8 Hz, 1H, H11a), 3.10 (d, J = 9.8 Hz, 1H, H11b), 2.50 (d, J = 7.3 Hz, 2H, 

H8). 

 
13

C-NMR (100MHz, CDCl3, ppm): 159.1 (Cq- CAr(PMB)), 143.8 (Cq, CAr(Tr)), 133.0 (CH, C9), 

130.2 (CH, CAr), 129.2 (CH, CAr), 128.7 (CH, CAr), 127.7 (CH, CAr), 127.0 (CH, CAr), 118.2 

(CH2, C10), 113.7 (Cq, CAr(PMB)), 73.5 (Cq, C7), 73.1 (CH, C6), 72,9 (CH2, C11), 65.5 (CH2, 

CH2(PMB)), 55.3 (CH3, CH3(PMB)), 39.4 (CH2, C8). 

 

MS (ESI, m/z): 517 [MNa]+ 

 

Rf (pentane/ethyl acetate 9:1) = 0.51 

 

(S)-2-((4-methoxybenzyl)oxy)-2-((trityloxy)methyl)pent-4-enal 115 

 

6

8

O
OPMB

11

9

OTr

10

H

C33H32O4
492,60 g/mol  
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A solution of (R)-2-((4-methoxybenzyl)oxy)-2-((trityloxy)methyl)pent-4-en-1-ol (175 mg, 

0.354 mmol, 1 eq) was dissolved in dry CH2Cl2 (5.0 mL) at room temperature before addition 

of Dess-Martin Periodinane (225 mg, 0.531 mmol, 1.5 eq). The mixture stirred at room 

temperature for 30 min before being quenched by saturated aqueous solution of NaHCO3 and 

Na2S2O3. The mixture was extracted with CH2Cl2 (3x), the organic layers were combined, 

washed with brine, dried over MgSO4 and the solvent removed under reduced pressure. The 

crude residue was directly used without purification to the next step. 

 

Rf (pentane/ethyl acetate 8:2) = 0.63 

 

(5S)-5-((4-methoxybenzyl)oxy)-5-((trityloxy)methyl)oct-7-en-2-yn-4-ol 116 

 

6
7

8

OH
OPMB
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5

4

15
9

OTr

10

C36H36O4
532,67 g/mol  

 

A solution of propynylmagesium bromide (0.5 M in THF, 7.1 mL, 3.58 mmol, 10 eq) was 

added at -78°C to (S)-2-((4-methoxybenzyl)oxy)-2-((trityloxy)methyl)pent-4-enal (176 mg, 

0.36 mmol, 1 eq). The mixture stirred was warmed at room temperature and stirred for 1.5 h 

before being quenched by saturated aqueous solution of NH4Cl. The mixture was extracted 

with Et2O (3x), the organic layers were combined, washed with brine, dried over MgSO4 and 

the solvent removed under reduced pressure. The crude residue was purified by flash 

chromatography on silica gel (pentane/ethyl acetate 85:15) to get 130 mg (68%) of colourless 

oil. 

 

Rf (pentane/ethyl acetate 85:15) = 0.32 

 

(S)-5-((4-methoxybenzyl)oxy)-5-((trityloxy)methyl)oct-7-en-2-yn-4-one 117 
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C36H34O4
530,65 g/mol  

 

A solution of (5S)-5-((4-methoxybenzyl)oxy)-5-((trityloxy)methyl)oct-7-en-2-yn-4-ol 

 (122 mg, 0.23 mmol, 1 eq) was dissolved in dry CH2Cl2 (3.0 mL) at room temperature before 

addition of Dess-Martin Periodinane (194 mg, 0.48 mmol, 2 eq). The mixture stirred at room 

temperature for 1h before being quenched by saturated aqueous solution of NaHCO3 and 

Na2S2O3. The mixture was extracted with CH2Cl2 (3x), the organic layers were combined, 

washed with brine, dried over MgSO4 and the solvent removed under reduced pressure. The 

crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 95: 5) 

to get 110 mg (90%) of yellow oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.44-7.23 (m, 17H, HAr(Tr) and HAr(PMB)), 6.86 (d, J = 8.7 

Hz, 2H, HAr(PMB)), 5.63-5.50 (ddt, J = 17.1, 10.2, 6.8 Hz, 1H, H9), 5.11-5.05 (dd, J = 17.1, 1.7 

Hz, 1H, H10a), 5.03-4.99 (dd, J = 10.2, 1.7 Hz, 1H, H10b), 4.42 (d, J = 10.1 Hz, 1H, CH2(PMB)), 

4.26 (d, J = 10.1 Hz, 1H, CH2(PMB)), 3.79 (s, 3H, CH3(PMB)), 3.56 (d, J = 9.2 Hz, 1H, H11a), 

3.39 (d, J = 9.2 Hz, 1H, H11b), 2.83 (d, J = 6.8 Hz, 2H, H8), 1.86 (d, J = 2.2 Hz, 3H, H15). 

 
13

C-NMR (100MHz, CDCl3, ppm): 189.2 (Cq, C6), 159.1 (Cq, CAr(PMB)), 143.2 (Cq, CAr(Tr)), 

131.4 (CH, C9), 130.0 (CH, CAr), 129.3 (CH, CAr), 128.8 (CH, CAr), 127.7 (CH, CAr), 127.0 

(CH, CAr), 118.9 (CH2, C10), 113.6 (Cq, CAr(PMB)), 92.5 (Cq, C7), 85.3 (Cq, CTr), 65.9 (CH2, 

CH2(PMB)), 63.4 (CH2, C11), 55.2 (CH3, CH3(PMB)), 34.3 (CH2, C8), 4.37 (CH3, C15). 

 

MS (ESI, m/z): 554 [MNa]+ 

 

Rf (pentane/ethyl acetate 85:15) = 0.37 
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(4S,5S)-5-((4-methoxybenzyl)oxy)-5-((trityloxy)methyl)oct-7-en-2-yn-4-ol (6S)-116 

 

6
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OTr
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C36H36O4
532,67 g/mol  

 

(S)-5-((4-methoxybenzyl)oxy)-5-((trityloxy)methyl)oct-7-en-2-yn-4-one (110 mg, 0.21 mmol, 

1 eq) was dissolved in anhydrous THF (1.1 mL). At -30°C, BH3
.Me2S (98 µL, 1.03 mmol, 5 

eq) and (R)-CBS (1M in toluene, 0.42 mL, 0.42 mmol, 2 eq) were added. The mixture was 

stirred at -30°C for 3h before being quenched slowly with EtOH and water. The aqueous 

layers were extracted with Et2O (3x). The organic layers were combined, washed with brine, 

dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

9:1) to give 94 mg (85%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.48-7.25 (m, 15H, HAr(Tr)), 7.20 (d, J = 8.6 Hz, 2H, 

HAr(PMB)), 6.84 (d, J = 8.6 Hz, 2H, HAr(PMB)), 5.86-5.75 (dddd, J = 17.1, 10.2, 7.5, 6.7 Hz, 1H, 

H9), 5.13-5.09 (dd, J = 17.1, 1.7 Hz, 1H, H10a), 5.00-4.97 (dd, J = 10.1, 1.7 Hz, 1H, H10b), 

4.78 (dq, J = 6.5, 2.2 Hz, 1H, H6), 4.53 (d, J = 10.3 Hz, 1H, CH2(PMB)), 4.42 (d, J = 10.3 Hz, 

1H, CH2(PMB)), 3.79 (s, 3H, CH3(PMB)), 3.41 (d, J = 9.7 Hz, 1H, H11a), 3.37 (d, J = 9.7 Hz, 1H, 

H11b), 2.96 (d, J = 6.5 Hz, 1H, HOH), 2.82-2.77 (dd, J = 14.7, 6.7 Hz, 1H, H8a), 2.67-2.62 (dd , 

J = 14.7, 7.5 Hz, 1H, H8b), 1.86 (d, J = 2.2 Hz, 3H, H15). 

 
13

C-NMR (100MHz, CDCl3, ppm): 160.0 (Cq, CAr(PMB)), 143.3 (Cq, CAr(Tr)), 133.2 (CH, C9), 

130.8 (CH, CAr), 129.1 (CH, CAr), 128.8 (CH, CAr), 127.7 (CH, CAr), 127.1 (CH, CAr), 118.0 

(CH2, C10), 113.7 (Cq, CAr(PMB)), 87.1(Cq, CTr), 82.9 (Cq, C7), 79.9 (Cq, C5), 77.5(Cq, C4), 

66.2 (CH, C6), 64.7 (CH2, CH2(PMB)), 64.2 (CH2, C11), 55.2 (CH3, CH3(PMB)), 35.5 (CH2, C8), 

3.79 (CH3, C15). 

 

MS (ESI, m/z): 556 [MNa]+ 
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Rf (pentane/ethyl acetate 85:15) = 0.32 

 

((((2S,3S)-2-allyl-2-((4-methoxybenzyl)oxy)-3-(methoxymethoxy)hex-4-yn-1-

yl)oxy)methanetriyl)tribenzene 108 
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C38H40O5
576,72 g/mol  

 

The secondary alcohol (119 mg, 0.22 mmol, 1 eq) was dissolved in anhydrous CH2Cl2 (1.1 

Ml). DIPEA (0.1 mL, 0.56 mmol, 2.5 eq) and MOMCl (40 mL, 0.49 mmol, 2.2 eq) were 

successively added at 0°C. The mixture was stirred at room temperature for 4 hours before 

being quenched with water. The aqueous layers were extracted with CH2Cl2 (3x). The organic 

layers were combined, washed with brine, dried over MgSO4 and the solvent removed under 

reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

9:1) to give 106 mg (82%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.51-7.21 (m, 15H, HAr(Tr)), 7.24 (d, J = 8.6 Hz, 2H, 

HAr(PMB)), 6.86 (d, J = 8.6 Hz, 2H, HAr(PMB)), 5.83-5.72 (dddd, J = 17.1, 10.1, 7.9, 6.5 Hz, 1H, 

H9), 5.10-5.06 (dd, J = 17.1, 1.7 Hz, 1H, H10a), 5.00-4.97 (dd, J = 10.1, 1.7 Hz, 1H, H10b), 

4.93 (d, J = 6.6 Hz, 1H, CH2(MOM)), 4.65 (q, J = 2.1 Hz, 1H, H6), 4.61 (s, 2H, CH2(PMB)), 4.57 

(d, J = 6.6 Hz, 1H, CH2(MOM)), 3.80 (s, 3H, CH3(PMB)), 3.54 (d, J = 10.0 Hz, 1H, H11a), 3.28 (s, 

3H, CH3(MOM)), 3.26 (d, J = 10.0 Hz, 1H, H11b), 2.88-2.82 (dd, J = 14.5, 6.5 Hz, 1H, H8a), 

2.66-2.60 (dd, J = 14.5, 7.9 Hz, 1H, H8b), 1.84 (d, J = 2.1 Hz, 3H, H15). 

 
13

C-NMR (100MHz, CDCl3, ppm): 158.6 (Cq, CAr(PMB)), 143.8 (Cq, CAr(Tr)), 133.6 (CH, C9), 

131.8 (CH, CAr), 128.9 (CH, CAr), 128.6 (CH, CAr), 127.6 (CH, CAr), 126.9 (CH, CAr), 117.7 

(CH2, C10), 113.4 (Cq, CAr(PMB)), 94.4 (CH2, CH2(MOM)), 86.6 (Cq, CTr), 83.6 (Cq, C7), 80.5 

(Cq, C5), 75.3 (Cq, C4), 69.6 (CH, C6), 65.2 (CH2, CH2(PMB)), 64.0 (CH2, C11), 56.0 (CH3, 

CH3(PMB)), 55.2 (CH3, CH3(MOM)), 36.6 (CH2, C8), 3.73 (CH3, C15). 
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MS (ESI, m/z): 600 [MNa]+ 

 

Rf (pentane/ethyl acetate 85:15) = 0.37 

 

(3S,4S)-3-((4-methoxybenzyl)oxy)-4-(methoxymethoxy)-3-((trityloxy)methyl)hept-5-yn-1-ol 

118 
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C37H40O6
580,71 g/mol  

 

A solution of ((((2S,3S)-2-allyl-2-((4-methoxybenzyl)oxy)-3-(methoxymethoxy)hex-4-yn-1-

yl)oxy)methanetriyl)tribenzene (53 mg, 0.092 mmol, 1 eq) in a dry mixture of CH2Cl2/MeOH 

(1:10 mL) with Sudan III as indicator was ozonized at -78°C until the colour changed from 

light red to transparent. The reaction mixture was purged with argon and NaBH4 (35 mg, 0.92 

mmol, 10 eq.) was added in one portion. The reaction was warmed to room temperature and 

stirred for additional 1h. The reaction was quenched with a saturated aqueous NH4Cl (5 mL), 

extracted with CH2Cl2 (3x), dried and concentrated. The crude residue was purified by flash 

chromatography on silica gel (pentane/ethyl acetate 7:3) to give 41 mg (81%) of colourless 

oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.51-7.18 (m, 15H, HAr(Tr)), 7.20 (d, J = 8.7 Hz, 2H, 

HAr(PMB)), 6.85 (d, J = 8.7 Hz, 2H, HAr(PMB)), 4.99 (d, J = 6.7 Hz, 1H, CH2a(MOM)), 4.93 (q, J = 

2.1 Hz, 1H, H6), 4.69 (d, J = 6.7 Hz, 1H, CH2b(MOM)), 4.46 (d, J = 10.3 Hz, 1H, CH2a(PMB)), 

4.40 (d, J = 10.3 Hz, 1H, CH2b(PMB)), 3.80 (s, 3H, CH3(PMB)), 3.75 (dd, J = 5.8, 5.0 Hz, 1H, 

HOH), 3.52 (d, J = 10.3 Hz, 1H, H11a), 3.45 (d, J = 10.3 Hz, 1H, H11b), 3.38 (s, 3H, CH3(MOM)), 

2.18-2.11 (m, 1H, H8a), 2.02-1.95 (m, 1H, H8b), 1.85 (d, J = 2.1 Hz, 3H, H15). 

 

MS (ESI, m/z): 593 [MNa]+ 
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(2R,3S)-3-((4-methoxybenzyl)oxy)-2-(prop-1-yn-1-yl)-3-((trityloxy)methyl)tetrahydrofuran 

121 
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C35H34O4
518,64 g/mol  

A solution of (3S,4S)-3-((4-methoxybenzyl)oxy)-4-(methoxymethoxy)-3-

((trityloxy)methyl)hept-5-yn-1-ol (50 mg, 0.087 mmol, 1 eq) was dissolved in dry CH2Cl2 

(2.0 mL) at room temperature before addition of PPh3 (48 mg, 0.18 mmol, 2.1 eq) and 

imidazole (19 mg, 0.18 mmol, 2.1 eq). After complete dissolution, a solution of I2 (33 mg, 

0.13 mmol, 1.5 eq) in CH2Cl2 (1.0 mL) was added dropwise at 0°C. The reaction mixture was 

warmed to room temperature and stirred overnight. The reaction was quenched with a 

saturated aqueous Na2S2O3 (10 mL), extracted with CH2Cl2 (3x). The organic layers were 

combined, washed with brine, dried over MgSO4 and the solvent removed under reduced 

pressure. The crude residue was purified by flash chromatography on silica gel (pentane/ethyl 

acetate 9:1) to give 27 mg (74%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.52-7.24 (m, 15H, HAr(Tr)), 7.22 (d, J = 8.6 Hz, 2H, 

HAr(PMB)), 6.85 (d, J = 8.6 Hz, 2H, HAr(PMB)), 4.67 (q, J = 2.1 Hz, 1H, H6), 4.36 (d, J = 10.8 

Hz, 1H, CH2(PMB)), 4.31 (d, J = 10.8 Hz, 1H, CH2(PMB)), 3.98 (ddd, , J = 8.2, 4.7 Hz, 1H, H9a), 

3.95 (ddd, J = 8.2, 3.2 Hz, 1H, H9b), 3.79 (s, 3H, CH3(PMB)), 3.62 (d, J = 10.4 Hz, 1H, H11a), 

3.48 (d, J = 10.4 Hz, 1H, H11b), 2.27-2.19 (m, 1H, H8a), 2.17-2.12 (m, 1H, H8b), 1.72 (d, J = 

2.1 Hz, 3H, H15). 

 
13

C-NMR (100MHz, CDCl3, ppm): 158.6 (Cq, CAr(PMB)), 143.8 (Cq, CAr(Tr)), 128.9 (CH, CAr), 

128.8 (CH, CAr), 127.7 (CH, CAr), 127.0 (CH, CAr), 113.7 (Cq, CAr(PMB)), 87.4 (Cq, CTr), 86.6 

(Cq, C7), 83.9 (Cq, C5), 75.1 (Cq, C4), 66.6 (CH, C6), 65.5 (CH2, CH2(PMB)), 64.2 (CH2, C11), 

55.3 (CH3, CH3(PMB)), 34.0 (CH2, C8), 3.73 (CH3, C15). 

 

IR (film, cm-1): 3054, 2924, 1514, 1265, 736, 704. 
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MS (ESI, m/z): 541 [MNa]+ 

 

(R)-2-(trityloxymethyl)hex-5-yne-1,2-diol 124 
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C26H26O3
386,48 g/mol  

Preparation of propargylmagnesium bromide 129 

A mixture of magnesium turnings (4.745 g, 195.2 mmol, 2 eq), mercury-(II)-chloride (269 

mg, 0.991 mmol, 10 mol%) and a single crystal of iodide in freshly distilled diethyl ether (100 

mL) was carefully treated with propargyl bromide (80% in toluene, 10.5 mL, 11.6 mg, 97.4 

mmol, 1 eq) dissolved in freshly distilled diethyl ether (40 mL). After the reaction had started 

the mixture was cooled to 0 °C and the rest of the propargyl bromide solution was added 

within 1 hour. After being cooled to 0 °C for an additional hour the reaction mixture was 

warmed to room temperature and stirred for another hour. 

 

The epoxyde (3.75 g, 10.84 mmol, 1 eq) was dissolved in anhydrous THF and cooled to -78 

°C. Under vigourous stirring this solution was treated with freshly prepared 

propargylmagnesium bromide 129 (84 mL, 10.84 mmol, 5 eq) very slowly within 1 hour and 

the mixture was slowly warmed to room temperature. After 3 hours the reaction was 

quenched with saturated aqueous NH4Cl. The solution was extracted with diethyl ether (3x). 

The combined extracts were dried (MgSO4) and concentrated in vacuo. The crude residue was 

purified by flash chromatography on silica gel (pentane/ethyl acetate 8:2 to 75:25) to give 

3.97 g (95%) of colourless oil. 

 
1
H-NMR (400 MHz, CDCl3, ppm): 7.28-7.44 (m, 15H, HAr), 3.61 (d, 1H, J = 11.5 Hz, H6a), 

3.50 (d, 1H, J = 11.5 Hz, H6b), 3.20 (d, 1H, J = 9.3 Hz, H11a), 3.12 (d, 1H, J = 9.3 Hz, H11b), 

2.66 (s, 1H, HOH), 2.19 (m, 2H, H9), 1.92 (t, 1H, J = 2.6 Hz, H1), 1.79 (m, 2H, H8), 1.56 (s, 

1H, HOH). 
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13
C-NMR (100 MHz, CDCl3, ppm): 143.4 (Cq, CAr), 128.6 (CH, CAr), 128.0 (CH, CAr), 127.3 

(CH, CAr), 87.0 (Cq, CTr), 84.6 (Cq, C10), 73.6 (Cq, C7), 68.5 (CH, C1), 66.5 (CH2, C6), 66.2 

(CH2, C11), 33.3 (CH2, C8), 12.4 (CH2, C9). 

 

IR (film, cm-1): 3418, 3296, 3061, 2929, 1491, 1449, 1224, 1074. 

 

HRMS (ESI, m/z): [M]+ calc.: 409.1770 (MNa+, C26H26NaO3 requires 409.1779) 

 

[α]D
20

 = -9.6 (c 1.5, CHCl3). 

 

Rf (CH2Cl2/ethyl acetate 95:5) = 0.28  

 

(S)-((S)-2-hydroxy-2-(trityloxymethyl)hex-5-ynyl) 2-methoxy-2-phenylacetate  

 

 

(R)-2-(trityloxymethyl)hex-5-yne-1,2-diol (57 mg, 0.148 mmol, 1 eq) was dissolved in 

anhydrous CH2Cl2 (1.5 mL). At room temperature, was added (+)-α-methoxyphenylacetic 

acid (29 mg, 0.178 mmol, 1.2 eq), DMAP (5.0 mg, 0.044 mmol, 0.3 eq) and DCC (37 mg, 

0.178 mmol, 1.2 eq). The mixture was stirred for 20 min and was filtered over a pad of celite. 

The solvent was removed under reduced pressure. 

 

(R)-((S)-2-hydroxy-2-(trityloxymethyl)hex-5-ynyl) 2-methoxy-2-phenylacetate  

 

(R)-2-(trityloxymethyl)hex-5-yne-1,2-diol (45 mg, 0.116 mmol, 1 eq) was dissolved in 

anhydrous CH2Cl2 (1.5 mL). At room temperature, was added (-)-α-methoxyphenylacetic acid 

(23 mg, 0.140 mmol, 1.2 eq), DMAP (4.0 mg, 0.035 mmol, 0.3 eq) and DCC (29 mg, 0.140 
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mmol, 1.2 eq). The mixture was stirred for 20 min and was filtered over a pad of celite. The 

solvent was removed under reduced pressure. 

 

(4S)-4-(but-3-ynyl)-2-(4-methoxyphenyl)-4-(trityloxymethyl)-1,3-dioxolane 130 
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C34H32O4
504,62 g/mol

PMP

 

 

(R)-2-(trityloxymethyl)hex-5-yne-1,2-diol (4.31 g, 11.2 mmol, 1 éq) was dissolved in dry 

CH2Cl2 (8 mL) at room temperature before addition of p-anisaldéhyde diméthylacetal (3.8 

mL, 22.3 mmol, 2 eq.) and PPTS (280 mg, 1.12 mmol, 0.1 eq.). The mixture stirred at room 

temperature for 2 h and the solvent removed under reduced pressure. The crude product was 

dissolved in CH2Cl2 before addition of a small quantity of PPTS and a drop of water. The 

mixture was stirred for 30 min then quenched with an aqueous saturated solution of NaHCO3 

and extracted with CH2Cl2 (3x), the organic layers were combined, washed with brine, dried 

over MgSO4 and the solvent removed under reduced pressure. The crude residue was 

dissolved in anhydrous mixture of THF/MeOH (50/2.5 mL). Sodium borohydrure (633 mg, 

16.7 mmol, 1.5 eq.) was added at 0°C. The mixture was stirred 30 min at 0°C and was 

quenched with an aqueous saturated solution of NH4Cl and extracted with CH2Cl2 (3x), the 

organic layers were combined, washed with brine, dried over MgSO4 and the solvent removed 

under reduced pressure. 

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

9:1) to give 4.2 g (75 %) of colourless oil. 

 

- major diastereoisomer: 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.55-7.28 (m, 17H, HAr), 6.96 (d, J = 8.6 Hz, 2H, 

HAr(PMB)), 5.88 (s, 1H, Hbenz), 4.07 (d, J = 8.5 Hz, 1H, H6a), 3.98 (d, J = 8.5 Hz, 1H, H6b), 3.84 
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(s, 3H, HOMe(PMB)), 3.32 (d, J = 9.6 Hz, 1H, H11a), 3.26 (d, J = 9.6 Hz, 1H, H11b), 2.31-2.27 (m, 

1H, H9a), 2.19-2.06 (m, 3H, H9b and H 8), 1.95 (t, J = 2.7 Hz, 2H, H1). 

 
13

C-NMR (100MHz, CDCl3, ppm): 160.5 (Cq, CPMB), 143.6 (Cq, CTr), 128.7 (CH, CAr), 128.1 

(CH, CAr), 128.0 (CH, CAr), 127.8 (CH, CAr), 127.1 (CH, CAr), 113.8 (CH, CAr), 103.9 (CH, 

CHbenz), 86.8 (Cq, CTr), 84.2 (Cq, C7), 81.9 (Cq, C10), 72.0 (CH2, C6), 68.3 (CH, C1), 65.7 

(CH2, C11), 55.2 (CH3, COMe(PMB)), 34.9 (CH2, C8), 13.0 (CH2, C9). 

 

- minor diastereoisomer: 

 
1
H-NMR (400 MHz, CDCl3, ppm): 7.55-7.28 (m, 17H, HAr), 6.99 (d, J = 8.6 Hz, 2H, 

HAr(PMB)), 5.86 (s, 1H, Hbenz), 4.20 (d, J = 8.6 Hz, 1H, H6a), 3.88 (d, J = 8.6 Hz, 1H, H6b), 3.82 

(s, 3H, HOMe(PMB)), 3.23 (s, 2H, H11), 2.31-2.27 (m, 1H, H9a), 2.19-2.06 (m, 3H, H9b and H8), 

1.98 (t, J = 2.7 Hz, 2H, H1). 

 

13
C-NMR (100 MHz, CDCl3, ppm): 160.4 (Cq, CPMB), 143.5 (Cq, CTr), 128.7 (CH, CAr), 

128.1 (CH, CAr), 128.0 (CH, CAr), 127.8 (CH, CAr), 127.1 (CH, CAr), 113.6 (CH, CAr), 103.8 

(CH, CHbenz), 86.6 (Cq, CTr), 84.2 (Cq, C7), 81.9 (Cq, C10), 72.8 (CH2, C6), 68.4 (CH, C1), 

65.5 (CH2, C11), 55.2 (CH3, COMe(PMB)), 33.9 (CH2, C8), 13.0 (CH2, C9). 

 

IR (film, cm-1): 3292, 2934, 2293, 1615, 1517, 1448, 1375, 1250, 1072, 1033. 

 

HRMS (ESI, m/z): [MNa]+ calc.: 527.2205 (MNa+, C34H32NaO4 requires 527.2198) 

 

Rf (pentane/ethyl acetate 9:1) = 0.31  

 

5-((4S)-2-(4-methoxyphenyl)-4-(trityloxymethyl)-1,3-dioxolan-4-yl)pent-2-yn-1-ol 131 
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534,64 g/mol

2

OH

 



 249 

A solution of n-BuLi (1.6 M in hexane, 1.1 mL, 1.75 mmol, 1.3 eq) was added slowly to a 

stirred solution of the precedent 1.3 : 1 mixture of (4S)-4-(but-3-ynyl)-2-(4-methoxyphenyl)-

4- (trityloxymethyl)-1,3-dioxolanes (680 mg, 1.35 mmol, 1 eq) in anhydrous THF (3 mL), at 

−78 °C. The reaction mixture was stirred for 1 hour at -78 °C before addition of 

depolymerised paraformaldehyde (obtained by heating the polymer) (400 mg, 13.5 mmol, 10 

eq). The reaction mixture was stirred for 10 min at -78 °C and then 30 min at room 

temperature. The mixture was quenched with an aqueous saturated solution of NH4Cl and 

extracted with Et2O (3x). The organic layers were combined, washed with brine, dried over 

MgSO4 then the solvent was removed under reduced pressure. The crude oil was purified by 

flash chromatography on silica gel (pentane/ethyl acetate 8:2 to 7:3) to afford the expected 

primary alcohol, (4S)-5-[2-(4-methoxyphenyl)-4-(trityloxymethyl)-1,3-dioxolan-4-yl]pent-2-

yn-1-ol, (513 mg, 71%, 1.3 : 1 mixture of diastereomers), as a colorless oil. 

 

- major diastereoisomer: 

 

1
H-NMR (400 MHz, CDCl3, ppm): 7.50-7.23 (m, 17H, HAr), 6.93 (d, J = 8.7 Hz, 2H, 

HAr(PMB)), 5.83 (s, 1H, Hbenz), 4.20 (s, 2H, H2), 4.03 (d, J = 8.5 Hz, 1H, H6a), 3.93 (d, J = 8.5 

Hz, 1H, H6b), 3.82 (s, 3H, HOMe(PMB)), 3.24 (d, J = 9.6 Hz, 1H, H11a), 3.20 (d, J = 9.6 Hz, 1H, 

H11b), 2.32-2.19 (m, 2H, H9), 2.12-1.93 (m, 2H, H8). 

 
13

C-NMR (100 MHz, CDCl3, ppm): 160.5 (Cq, CPMB), 143.6 (Cq, CAr), 128.7 (CH, CAr), 

128.2 (CH, CAr), 128.1 (CH, CAr), 127.9 (CH, CAr), 127.1 (CH, CAr), 113.8 (CH, CAr), 103.9 

(CH, CHbenz), 86.8 (Cq, CTr), 86.1 (Cq, C7), 82.0 (Cq, C10), 78.4 (Cq, C1), 72.1 (CH2, C6), 

65.7 (CH2, C11), 55.3 (CH3, COMe(PMB)), 51.4 (CH2, C2), 35.0 (CH2, C8), 13.3 (CH2, C9). 

 

- minor diastereoisomer: 

 

1
H-NMR (400MHz, CDCl3, ppm): 7.50-7.23 (m, 17H, HAr), 6.85 (d, J = 8.7 Hz, 2H, 

HAr(PMB)), 5.80 (s, 1H, Hbenz), 4.22 (s, 2H, H2), 4.16 (d, J = 8.6 Hz, 1H, H6a), 3.82 (d, J = 8.6 

Hz, 1H, H6b), 3.80 (s, 3H, HOMe(PMB)), 3.16 (s, 2H, H11), 2.32-2.19 (m, 2H, H9), 2.12-1.93 (m, 

2H, H8). 

 
13

C-NMR (100MHz, CDCl3, ppm): 160.5 (Cq, CPMB), 143.6 (Cq, CAr), 128.7 (CH, CAr), 

128.2 (CH, CAr), 128.1 (CH, CAr), 127.9 (CH, CAr), 127.1 (CH, CAr), 113.7 (CH, CAr), 103.8 
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(CH, CHbenz), 86.8 (Cq, CTr), 86.1 (Cq, C7), 82.0 (Cq, C10), 78.4 (Cq, C1), 72.9 (CH2, C6), 

65.5 (CH2, C11), 55.3 (CH3, COMe(PMB)), 51.4 (CH2, C2), 34.0 (CH2, C8), 13.3 (CH2, C9). 

 

IR (film, cm-1): 3519, 2943, 2253, 1615, 1518, 1448, 1375, 1250, 1072, 1034. 

 

HRMS (ESI, m/z): [MNa]+ calc.: 557.2310 (MNa+, C35H34NaO5 requires 557.2304) 

 

Rf (pentane/ethyl acetate 75:25) = 0.14 

 

tert-butyl(5-((4S)-2-(4-methoxyphenyl)-4-(trityloxymethyl)-1,3-dioxolan-4-yl)pent-2-

ynyloxy)dimethylsilane 125 
 

6

7
11

8 OTr

9

10
1

O

O
PMP

2

OTBS

C41H48O5Si

648,90 g/mol  

 

TBDMSCl (558 mg, 3.71 mmol, 1.2 eq) and imidazole (526 mg, 7.73 mmol, 2.5 eq) were 

successively added to a stirred solution of the precedent mixture of alcohols (1.65 g, 3.09 

mmol, 1 eq) in anhydrous CH2Cl2 (20 mL), at room temperature. The mixture was stirred for 

1 hour at room temperature, quenched with an aqueous saturated solution of NH4Cl and 

extracted with CH2Cl2 (3x). The organic layers were combined, washed with brine, dried over 

MgSO4 and the solvent removed under reduced pressure. The crude residue was purified by 

flash chromatography on silica gel (pentane/ethyl acetate 98:2 to 95:5) to yield the expected 

ether 125 (1.9 g, 95%, 1.3 : 1 mixture of diastereomers), as a colorless oil. 

 

- major diastereoisomer: 

 

1
H-NMR (400MHz, CDCl3, ppm): 7.49-7.25 (m, 17H, HAr), 6.91 (d, J = 8.7 Hz, 2H,HAr(PMB)), 

5.81 (s, 1H, Hbenz), 4.27 (s, 2H, H2), 4.01 (d, J = 8.5 Hz, 1H, H6a), 3.90 (d, J = 8.5 Hz, 1H, 
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H6b), 3.82 (s, 3H, HOMe(PMB)), 3.22 (d, J = 9.6 Hz, 1H, H11a), 3.15 (d, J = 9.6 Hz, 1H, H11b), 

2.30-2.20 (m, 2H, H9), 2.09-2.00 (m, 2H, H8), 0.91 (s, 9H, HMe(TBS)), 0.11 (s, 6H, HMe(TBS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 160.5 (Cq, CPMB), 143.6 (Cq, CAr), 128.7 (CH, CAr), 

128.2 (CH, CAr), 128.1 (CH, CAr), 127.9 (CH, CAr), 127.1 (CH, CAr), 113.8 (CH, CAr), 103.9 

(CH, CHbenz), 86.8 (Cq, CTr), 84.9 (Cq, C10), 82.0 (Cq, C7), 78.8 (Cq, C1), 72.1 (CH2, C6), 

65.7 (CH2, C11), 55.3 (CH3, COMe(PMB)), 51.9 (CH2, C2), 35.1 (CH2, C8), 25.9 (CH3, CMe(TBS)), 

13.4 (CH2, C9), -5.1 (CH3, CMe(TBS)). 

 

- minor diastereoisomer: 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.49-7.25 (m, 17H, HAr), 6.85 (d, J = 8.6 Hz, 2H, 

HAr(PMB)), 5.80 (s, 1H, Hbenz), 4.29 (s, 2H, H2), 4.13 (d, J = 8.6 Hz, 1H, H6a), 3.83 (d, J = 8.6 

Hz, 1H, H6b), 3.80 (s, 3H, HOMe(PMB)), 3.16 (s, 2H, H11), 2.30-2.20 (m, 2H, H9), 2.09-2.00 (m, 

2H, H8), 0.92 (s, 9H, HMe(TBS)), 0.12 (s, 6H, HMe(TBS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 160.5 (Cq, CPMB), 143.6 (Cq, CAr), 128.7 (CH, CAr), 

128.2 (CH, CAr), 128.1 (CH, CAr), 127.9 (CH, CAr), 127.1 (CH, CAr), 113.7 (CH, CAr), 103.9 

(CH, CHbenz), 86.8 (Cq, CTr), 84.9 (Cq, C10), 82.0 (Cq, C7), 78.8 (Cq, C1), 72.8 (CH2, C6), 

65.6 (CH2, C11), 55.3 (CH3, COMe(PMB)), 51.9 (CH2, C2), 34.0 (CH2, C8), 25.9 (CH3, CMe(TBS)), 

13.4 (CH2, C9), -5.1 (CH3, CMe(TBS)). 

 

IR (film, cm-1): 3058, 2928, 1615, 1517, 1392, 1303, 1249, 1170, 1071, 1034. 

 

HRMS (ESI, m/z): [MNa]+ calc.: 671.3188 (MNa+, C41H48NaO5Si requires 671.3169) 

 

Rf (pentane/ ethyl acetate 95:5) = 0.33 
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(R)-7-(tert-butyldimethylsilyloxy)-2-(4-methoxybenzyloxy)-2-(trityloxymethyl)hept-5-

yn-1-ol 132 
 

6

7
11

8 OTr

9

10
1

HO

PMBO

2

OTBS

C41H50O5Si

650,92 g/mol  

 

tert-butyl(5-((4S)-2-(4-methoxyphenyl)-4-(trityloxymethyl)-1,3-dioxolan-4-yl)pent-2-

ynyloxy) dimethylsilane (605 mg, 0.934 mmol, 1 eq) was dissolved in anhydrous CH2Cl2 (10 

Ml). At -78°C, was added DIBAL-H (1.1 M in cyclohexane, 4.67 mmol, 4.2 Ml, 5 eq) over 

3.5 h. The mixture was stirred for 1 hour at -78°C then quenched with an aqueous solution of 

NaOH 4M and extracted with CH2Cl2 (3x), the organic layers were combined, washed with 

brine, dried over MgSO4 and the solvent removed under reduced pressure. 

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

98:2 to 95:5) to give 370 mg (61%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.46-7.17 (m, 17H, HAr), 6.82 (d, J = 8.7 Hz, 2H, 

HAr(PMB)), 4.36 (d, J = 10.5 Hz, 1H, Ha(benz)), 4.32 (d, J = 10.5 Hz, 1H, Hb(benz)), 4.27 (s, 2H, 

H2), 3.79 (s, 3H, HOme(PMB)), 3.75 (d, J = 6.9Hz, 1H, H6a), 3.74 (d, J = 6.9Hz, 1H, H6b), 3.31 

(d, J = 9.6 Hz, 1H, H11a), 3.07 (d, J = 9.6 Hz, 1H, H11b), 2.21 -2.18 (m, 1H, H9a), 2.09-1.92 

(m, 3H, H9b + 8), 1.87 (dd, J = 6.6, 6.4 Hz, 1H, HOH), 0.91 (s, 9H, HMe(TBS)), 0.11 (s, 6H, 

HMe(TBS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 159.1 (Cq, CPMB), 143.5 (Cq, CAr(Tr)), 130.6 (CH, CAr), 

129.1 (CH, CAr), 128.7 (CH, CAr), 127.9 (CH, CAr), 127.1 (CH, CAr), 113.8 (CH, CAr), 86.8 

(Cq, CTr), 85.2 (Cq, C10), 78.7 (Cq, C1), 78.6 (Cq, C7), 63.9 (CH2, C11), 63.7 (CH2, C6), 63.6 

(CH2, CH2(benz)), 55.3 (CH3, COme(PMB)), 51.9 (CH2, C2), 29.9 (CH2, C8), 25.9 (CH3, CMe(TBS)), 

12.4 (CH2, C9), -5.1 (CH3, CMe(TBS)). 

 

IR (film, cm-1): 3476, 2929, 2954, 1613, 1514, 1249, 1076, 836, 777, 707. 
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HRMS (ESI, m/z): [MNa]+ calc.: 527.2205 (MNa+, C34H32NaO4 requires 527.2198) 

 

[α]D
20

 = -5.9 (c 1.02, CHCl3). 

 

Rf (pentane/ethyl acetate 95:5) = 0.20 

 

(S)-7-((tert-butyldimethylsilyl)oxy)-2-((4-methoxybenzyl)oxy)-2-((trityloxy)methyl)hept-

5-ynal  
 

6

7
11

8 OTr

9

10
1

PMBO

2

OTBS

OH

C41H48O5Si

648,90 g/mol  

The primary alcohol (520 mg, 0.8 mmol, 1 eq) was dissolved in anhydrous CH2Cl2 (13 mL) 

before addition of Dess Martin’s reagent (509 mg, 1.2 mmol, 1.5 eq). The mixture was stirred 

for 45 min at room temperature then quenched with an aqueous solution of Na2S2O3 and 

extracted with CH2Cl2 (3x), the organic layers were combined, washed with brine, dried over 

MgSO4 and the solvent removed under reduced pressure.  

 

Rf (pentane/ethyl acetate 9:1) = 0.46 
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(5S)-10-((tert-butyldimethylsilyl)oxy)-5-((4-methoxybenzyl)oxy)-5-

((trityloxy)methyl)deca-2,8-diyn-4-ol 134 
 

6

7
11

8 OTr

9

10
1

5

PMBO

2

OTBS

OH
4

15

C44H52O5Si

688,97 g/mol  

The crude residue was dissolved in anhydrous THF (1 mL). At -78°C, a solution of propynyl 

magnesium bromide (0.5M in THF, 8.0 mmol, 16 mL, 10 eq) was added. The mixture 

warmed at room temperature and stirred for 2 h then quenched with an aqueous solution of 

NH4Cl and extracted with Et2O (3x), the organic layers were combined, washed with brine, 

dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

9:1) to give 396 mg (72% over 2 steps) of yellow oil.  

 

Rf (pentane/ethyl acetate 9:1) = 0.27 

 

(S)-10-(tert-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-5-(trityloxymethyl)deca-2,8-

diyn-4-one 135 
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C44H50O5Si

686,95 g/mol  

The propargyl alcohol (396 mg, 0.58 mmol, 1 eq) was dissolved in anhydrous CH2Cl2 (10 

mL) before addition of Dess Martin’s reagent (492 mg, 1.16 mmol, 2 eq). The mixture was 

stirred for 1 h at room temperature then quenched with an aqueous solution of Na2S2O3 and 
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extracted with CH2Cl2 (3x), the organic layers were combined, washed with brine, dried over 

MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

98:2 to 95:5) to give 360 mg (90%) of yellow oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.44-7.22 (m, 17H, HAr), 6.83 (d, J = 8.7 Hz, 2H, 

HAr(PMB)), 4.34 (d, J = 10.2 Hz, 1H, Ha(benz)), 4.27 (s, 2H, H2), 4.20 (d, J = 10.2 Hz, 1H, 

Hb(benz)), 3.79 (s, 3H, HOMe(PMB)), 3.52 (d, J = 9.5 Hz, 1H, H11a), 3.25 (d, J = 9.5 Hz, 1H, H11b), 

2.13 (m, 2H, H9), 2.01 (s, 3H, H15), 1.86 (m, 2H, H8), 0.91 (s, 9H, HMe(TBS)), 0.11 (s, 6H, 

HMe(TBS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 189.5 (Cq, C6), 159.1 (Cq, CPMB), 143.1 (Cq, CAr(Tr)), 

130.0 (CH, CAr), 129.1 (CH, CAr), 128.8 (CH, CAr), 127.8 (CH, CAr), 127.1 (CH, CAr), 113.7 

(CH, CAr), 92.8 (Cq, C5), 86.7 (Cq, CTr), 85.0 (Cq, C7), 84.5 (Cq, C10), 79.0 (Cq, C4), 78.9 

(Cq, C1), 66.0 (CH2, CH2(benz)), 63.2 (CH2, C11), 55.3 (CH3, COMe(PMB)), 51.9 (CH2, C2), 29.5 

(CH2, C8), 25.9 (CH3, CMe(TBS)), 12.3 (CH2, C9), 4.38 (CH3, C15), -5.09 (CH3, CMe(TBS)). 

 

 IR (film, cm-1): 2929, 2857, 2218, 1675, 1515, 1250, 1079. 

 

HRMS (ESI, m/z): [MNa]+ calc.: 709.3333 (MNa+, C44H50NaO5Si requires 709.3325) 

 

[α]D
20

 = -8.7 (c 1.0, CHCl3). 

 

Rf (pentane/ethyl acetate 95:5) = 0.24 

 

(4S,5S)-10-(tert-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-5-

(trityloxymethyl)deca-2,8-diyn-4-ol (S)-134 
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688,97 g/mol  
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(S)-10-(tert-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-5-(trityloxymethyl)deca-2,8-

diyn-4-one (320 mg, 0.466 mmol, 1 eq) was dissolved in anhydrous THF (4 mL). At -30°C, 

BH3-Me2S (221 µL, 2.33 mmol, 5 eq) and (R)-CBS (1M in toluene, 0.93 mL, 0.93 mmol, 2 

eq) were added. The mixture was stirred at -30°C for 1 h then quenched slowly with EtOH 

and water. The aqueous layers were extracted with Et2O (3x). The organic layers were 

combined, washed with brine, dried over MgSO4 and the solvent removed under reduced 

pressure.  

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

9:1) to give 250 mg (78%) of colourless oil. 

 
1
H-NMR (400 MHz, CDCl3, ppm): 7.48-7.16 (m, 17H, HAr), 6.83 (d, J = 8.6 Hz, 2H, 

HAr(PMB)), 4.81 (dq, J = 5.8, 2.0 Hz, 1H, H6), 4.41 (d, J = 10.5 Hz, 1H, Ha(benz)), 4.30 (d, J = 

10.5 Hz, 1H, Hb(benz)), 4.29 (s, 2H, H2), 3.79 (s, 3H, HOMe(PMB)), 3.41 (d, J = 9.8 Hz, 1H, H11a), 

3.22 (d, J = 9.8 Hz, 1H, H11b), 2.90 (d, J = 5.8 Hz; 1H, HOH), 2.35-2.06 (m, 4H, H8+9), 1.86 (d, 

3H, J = 2.0 Hz, H15), 0.93 (s, 9H, HMe(TBS)), 0.13 (s, 6H, HMe(TBS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 159.1 (Cq, CPMB), 143.2 (Cq, CAr(Tr)), 130.5 (CH, CAr), 

129.2 (CH, CAr), 128.8 (CH, CAr), 127.9 (CH, CAr), 127.2 (CH, CAr), 113.7 (CH, CAr), 87.2 

(Cq, CTr), 85.4 (Cq, C10), 83.2 (Cq, C4), 79.5 (Cq, C7), 78.6 (Cq, C1), 77.2 (Cq, C5), 65.9 (CH, 

C6), 64.6 (CH2, CH2(benz)), 63.7 (CH2, C11), 55.3 (CH3, COMe(PMB)), 52.0 (CH2, C2), 30.0 (CH2, 

C8), 25.9 (CH3, CMe(TBS)), 12.9 (CH2, C9), 3.8 (CH3, C15), -5.1 (CH3, CMe(TBS)). 

 

IR (film, cm-1): 3529, 2928, 1613,  1514,  1449, 1249,1075. 

 

HRMS (ESI, m/z): [MNa]+ calc.: 711.3490 (MNa+, C44H52NaO5Si requires 711.3482) 

 

Rf (pentane/ethyl acetate 9:1) = 0.28 
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(S)-((4S,5S)-10-(tert-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-5-

(trityloxymethyl)deca-2,8-diyn-4-yl) 2-methoxy-2-phenylacetate 136 
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O
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O

C53H60O7Si

837,12 g/mol  

 

(4S,5S)-10-(tert-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-5-(trityloxymethyl)deca-

2,8-diyn-4-ol (20 mg, 0.029 mmol, 1 eq) was dissolved in anhydrous CH2Cl2 (1 mL). At room 

temperature, was added (+)-α-methoxyphenylacetic acid (5.7 mg, 0.035 mmol, 1.2 eq), 

DMAP (1.0 mg, 0.0087 mmol, 0.3 eq) and DCC (7 mg, 0.035 mmol, 1.2 eq). The mixture 

was stirred for 20 min and was filtered over a pad of Celite. The solvent was removed under 

reduced pressure. 

 

(R)-((4S,5S)-10-(tert-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-5-

(trityloxymethyl)deca-2,8-diyn-4-yl) 2-methoxy-2-phenylacetate 137 
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C53H60O7Si

837,12 g/mol  

 

(4S,5S)-10-(tert-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-5-(trityloxymethyl)deca-

2,8-diyn-4-ol (19 mg, 0.028 mmol, 1 eq) was dissolved in anhydrous CH2Cl2 (1 mL). At room 

temperature, was added (-)-α-methoxyphenylacetic acid (5.6 mg, 0.034 mmol, 1.2 eq), DMAP 
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(1.0 mg, 0.0083 mmol, 0.3 eq) and DCC (7 mg, 0.034 mmol, 1.2 eq). The mixture was stirred 

for 20 min and was filtered over a pad of Celite. The solvent was removed under reduced 

pressure. 

 

(5S,6S)-6-(4-methoxybenzyloxy)-13,13,14,14-tetramethyl-5-(prop-1-ynyl)-6-

(trityloxymethyl)-2,4,12-trioxa-13-silapentadec-9-yne 138 
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C46H56O6Si

733,02 g/mol  

(4S,5S)-10-(tert-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-5-(trityloxymethyl)deca-

2,8-diyn-4-ol (200 mg, 0.291 mmol, 1 eq) was dissolved in anhydrous CH2Cl2 (2 mL). 

DIPEA (50 µL, 0.64 mmol, 2.5 eq) and MOMCl (130 µL, 0.728 mmol, 2.2 eq) were 

successively added at 0°C. The mixture was stirred at room temperature for 4 hours before 

being quenched with water. The aqueous layers were extracted with CH2Cl2 (3x). The organic 

layers were combined, washed with brine, dried over MgSO4 and the solvent removed under 

reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (pentane / ethyl acetate 

9:1) to give 170 mg (80%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.48-7.18 (m, 17H, HAr), 6.82 (d, J = 8.6 Hz, 2H, 

HAr(PMB)), 4.93 (d, J = 6.6 Hz, 1H, Ha(CH2(MOM))), 4.73 (q, J = 2.0 Hz, 1H, H6), 4.59 (d, J = 6.6 

Hz, 1H, Hb(CH2(MOM))), 4.48 (s, 2H, Hbenz), 4.28 (s, 2H, H2), 3.79 (s, 3H, HOMe(PMB)), 3.41 (d, J 

= 9.9 Hz, 1H, H11a), 3.35 (s, 3H, HCH3(MOM)), 3.33 (d, J = 9.9 Hz, 1H, H11b), 2.31-2.06 (m, 4H, 

H8+9), 1.82 (d, J = 2 Hz, 3H, H15), 0.91 (s, 9H, HMe(TBS)), 0.12 (s, 6H, HMe(TBS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 158.7 (Cq, CPMB), 143.6 (Cq, CAr(Tr)), 131.6 (CH, CAr), 

128.9 (CH, CAr), 128.6 (CH, CAr), 127.7 (CH, CAr), 127.0 (CH, CAr), 113.5 (CH, CAr), 94.6 

(CH2, CH2(MOM)), 88.0 (Cq, CTr), 85.7 (Cq, C10), 83.9 (Cq, C4), 79.8 (Cq, C7), 78.3 (Cq, C1), 

75.3 (Cq, C5), 69.2 (CH, C6), 65.0 (CH2, CH2(benz)), 63.9 (CH2, C11), 56.1 (CH3, COMe(MOM)), 
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55.3 (CH3, COMe(PMB)), 52.0 (CH2, C2), 31.0 (CH2, C8), 25.9 (CH3, CMe(TBS)), 12.9 (CH2, C9), 

3.7 (CH3, C15), -5.1 (CH3, CMe(TBS)). 

 

IR (film, cm-1): 2931, 1810, 1071. 

 

HRMS (ESI, m/z): [MNa]+ calc.: 755.3753 (MNa+, C46H56NaO6Si requires 755.3744) 

 

[α]D
20

 = +33.4 (c 1.0, CHCl3). 

 

Rf (pentane/ethyl acetate 9:1) = 0.48 

 

(6S,7S)-6-(4-methoxybenzyloxy)-7-(methoxymethoxy)-6-(trityloxymethyl)deca-2,8-diyn-

1-ol 126 
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C40H42O6
618,76 g/mol  

The TBS alcohol (60 mg, 0.082 mmol, 1 eq) was dissolved in anhydrous THF (0.6 mL). At 

0°C, was added a solution of HF.Py (1.65 mL, ~20 eq). The mixture was stirred at 0°C for 10 

min, was warmed at room temperature and stirred for 1 h then quenched with an aqueous 

solution of NaHCO3 and extracted with Et2O (3x). The organic layers were combined, washed 

with brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

9:1) to give 47 mg (93%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.49-7.18 (m, 17H, HAr), 6.81 (d, J = 8.6 Hz, 2H, 

HAr(PMB)), 4.93 (d, J = 6.6 Hz, 1H, Ha(CH2(MOM))), 4.79 (q, J = 2.1 Hz, 1H, H6), 4.58 (d, J = 6.6 

Hz, 1H, Hb(CH2(MOM))), 4.49 (s, 2H, Hbenz), 4.19 (s, 2H, H2), 3.79 (s, 3H, HOMe(PMB)), 3.38 (d, J 

= 8.8 Hz, 1H, H11a), 3.33 (s, 3H, HCH3(MOM)), 3.33 (d, J = 8.8 Hz, 1H, H11b), 2.33-2.02 (m, 5H, 

H8+9+OH), 1.82 (d, J = 2.1 Hz, 3H, H15). 
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13

C-NMR (100MHz, CDCl3, ppm): 158.7 (Cq, CPMB), 143.6 (Cq, CAr(Tr)), 131.5 (CH, CAr), 

128.9 (CH, CAr), 128.5 (CH, CAr), 127.7 (CH, CAr), 127.0 (CH, CAr), 113.5 (CH, CAr), 94.5 

(CH2, CH2(MOM)), 86.7 (Cq, C10), 83.9 (Cq, C4), 79.8 (Cq, C7), 78.3 (Cq, C1), 75.3 (Cq, C5), 

69.2 (CH, C6), 65.0 (CH2, CH2(benz)), 63.8 (CH2, C11), 56.1 (CH3, COMe(MOM)), 55.2 (CH3, 

COMe(PMB)), 51.3 (CH2, C2), 31.0 (CH2, C8), 12.9 (CH2, C9), 3.8 (CH3, C15). 

 

IR (film, cm-1): 2931, 1810, 1071. 

 

HRMS (ESI, m/z): [MNa]+ calc.: 641.2868 (MNa+, C40H42NaO6 requires 641.2879) 

 

[α]D
20

 = +34.9 (c 1.0, CHCl3). 

 

Rf (pentane/ethyl acetate 8:2) = 0.16 

 

(6S,7S)-6-((4-methoxybenzyl)oxy)-7-(methoxymethoxy)-6-((trityloxy)methyl)deca-2,8-

diyn-1-yl methanesulfonate  
 

11

7

8

6
PMBO

9

10

1

2MsO

OMOM5
4

15

OTr

C41H44O8S

696,85 g/mol  

The primary alcohol (47 mg, 0.076 mmol, 1 eq) was dissolved in anhydrous CH2Cl2 (0.5 mL). 

At 0°C, NEt3 (11.6 µL, 0.084 mmol, 1.1 eq) and MsCl (6.5 µL, 0.084 mmol, 1.1 eq) was 

added. The mixture was stirred for 1 h at room temperature then quenched with an aqueous 

solution of NH4Cl and extracted with CH2Cl2 (3x). The organic layers were combined, 

washed with brine, dried over MgSO4 and the solvent removed under reduced pressure. The 

residue was passed through a short pad of silica gel to afford crude mesylate. 

 

Rf (pentane/ethyl acetate 75:25) = 0.39 
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((((S)-2-((4-methoxybenzyl)oxy)-2-((S)-1-(methoxymethoxy)but-2-yn-1-yl)-5-

methylhepta-5,6-dien-1-yl)oxy)methanetriyl)tribenzene 139 
 

6

7 11

8 OTr

9

10

5

PMBO

OMOM
4

15

1

2

14

C41H44O5
616,79 g/mol  

To a solution of CuCN (27 mg, 0.304 mmol, 4 eq) and anhydrous LiCl (26 mg, 0.608 mmol, 8 

eq) in THF (0.3 mL) was gradually added MeLi (1.6 M in Et2O, 0.2 mL, 0.304 mmol, 4 eq) at 

-78 °C. Then the reaction mixture was warmed to -20°C, and the solids were dissolved at this 

temperature. The reaction mixture was cooled to -78°C again, and the crude mesylate was 

added to the reaction mixture, which was stirred for 1.5 h. The reaction mixture was quenched 

by addition of saturated aqueous NH4Cl and extracted with Et2O (5x). The organic layers 

were combined, washed with brine, dried over MgSO4 and the solvent removed under reduced 

pressure. 

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

98:2) to give 35 mg (75% over 2 steps) of colourless oil.  

 
1
H-NMR (400MHz, CDCl3, ppm): 7.49-7.21 (m, 17H, HAr), 6.81 (d, J = 8.6 Hz, 2H, 

HAr(PMB)), 4.93 (d, J = 6.6 Hz, 1H, Ha(CH2(MOM))), 4.71 (q, J = 2.1 Hz, 1H, H6), 4.60 (m, 2H, 

H2), 4.58 (d, J = 6.6 Hz, 1H, Hb(CH2(MOM))), 4.51 (s, 2H, Hbenz), 3.79 (s, 3H, HOMe(PMB)), 3.36 

(d, J = 9.9 Hz, 1H, H11a), 3.34 (d, J = 9.9 Hz, 1H, H11b), 3.32 (s, 3H, HCH3(MOM)), 2.09 (m, 1H, 

H8a), 1.94 (m, 2H, H9a+8b), 1.82 (d, J = 2.1 Hz, 2H, H15),1.77 (m, 1H, H9b), 1.64 (t, J = 3.0 Hz, 

3H, H14). 

 
13

C-NMR (100MHz, CDCl3, ppm): 205.8 (Cq, C1), 158.7 (Cq, CPMB), 143.9 (Cq, CAr(Tr)), 

131.9 (Cq, CAr), 129.2 (CH, CAr), 129.0 (CH, CAr), 128.8 (CH, CAr), 127.7 (CH, CAr), 127.0 

(CH, CAr), 113.6 (CH, CAr), 99.0 (Cq, C10), 94.6 (CH2, CH2(MOM)), 86.7 (Cq, C10), 83.7 (Cq, 

C4), 80.5 (Cq, C7), 75.6 (Cq, C5), 74.7 (CH2, C2), 69.7 (CH, C6), 65.1 (CH2, CH2(benz)), 64.0 

(CH2, C11), 56.2 (CH3, COMe(MOM)), 55.3 (CH3, COMe(PMB)), 29.5 (CH2, C8), 26.6 (CH2, C9), 

19.2 (CH3, C14), 3.9 (CH3, C15). 
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IR (film, cm-1): 2931, 1514, 1248, 1096, 1033, 704. 

 

HRMS (ESI, m/z): [MNa]+ calc.: 639.3110 (MNa+, C41H44NaO5 requires 639.3086) 

 

[α]D
20

 = + 50.9 (c 1.0, CHCl3). 

 

Rf (pentane/ethyl acetate 95:5) = 0.40 

 

(((S)-2-(4-methoxybenzyloxy)-2-((S)-1-(methoxymethoxy)but-2-ynyl)hepta-5,6-

dienyloxy)methanetriyl)tribenzene 140 
 

6

7 11

8 OTr

9

10

5

PMBO

OMOM
4

15

1

2

H

C40H42O5
602,76 g/mol  

PPh3 (13 mg, 0.049 mmol, 1.2 eq) and N-isopropylidene-N'-2-nitrobenzenesulfonyl hydrazine 

141 (13 mg, 0.049 mmol) were added to a solution of the propargyl alcohol (25 mg, 0.04 

mmol, 1 eq) in anhydrous THF (0.2 mL). The resulting solution was cooled to 0°C and DIAD 

(9.6 µL, 0.049 mmol, 1.2 eq) was added dropwise. After 5 min, the reaction mixture was 

warmed to room temperature and was stirred for 16h. Then, a mixture of trifluoroethanol/H2O 

(1:1, 0.2 mL) was added. The mixture was stirred for 5h and extracted with Et2O (3x). The 

organic layers were combined, washed with brine, dried over MgSO4 and the solvent removed 

under reduced pressure. The crude residue was purified by flash chromatography on silica gel 

(pentane/ethyl acetate 98:2) to afford the required allene (8 mg, 33%) as a colorless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.49-7.21 (m, 17H, HAr), 6.81 (d, J = 8.6 Hz, 2H, 

HAr(PMB)), 5.09 (d, J = 6.6 Hz, 1H, H10), 4.93 (d, J = 6.6 Hz, 1H, Ha(CH2(MOM))), 4.74 (q, J = 2.1 

Hz, 1H, H6), 4.63 (m, 2H, H2), 4.58 (d, J = 6.6 Hz, 1H, Hb(CH2(MOM))), 4.50 (s, 2H, Hbenz), 3.79 

(s, 3H, HOMe(PMB)), 3.38 (d, J = 9.9 Hz, 1H, H11a), 3.35 (d, J = 9.9 Hz, 1H, H11b), 3.32 (s, 3H, 

HCH3(MOM)), 2.02-2.06 (m, 2H, H8), 1.92-1.86 (m, 2H, H9), 1.82 (d, J = 2.1 Hz, 2H, H15). 
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13
C-NMR (100MHz, CDCl3, ppm): 208.3 (Cq, C1), 158.7 (Cq, CPMB), 143.8 (Cq, CAr(Tr)), 

131.8 (Cq, CAr), 129.1 (CH, CAr), 129.0 (CH, CAr), 127.8 (CH, CAr), 127.0 (CH, CAr), 113.5 

(CH, CAr), 94.6 (CH2, CH2(MOM)), 90.4 (CH, C10), 86.7 (Cq, CTr), 83.7 (Cq, C4), 80.4 (Cq, C7), 

75.6 (Cq, C5), 75.3 (CH2, C2), 69.5 (CH, C6), 65.1 (CH2, CH2(benz)), 64.1 (CH2, C11), 56.2 

(CH3, COMe(MOM)), 55.3 (CH3, COMe(PMB)), 29.8 (CH2, C8), 21.8 (CH2, C9), 3.89 (CH3, C15). 

 

IR (film, cm-1): 2919, 1672, 1513, 1448, 1249, 1104, 1033. 

 

MS (ESI, m/z): 625 [MNa]+
 

 

[α]D
20

 =+20.8 (c 0.8, CHCl3) 

 

(4S,5S)-5-(4-methoxybenzyloxy)-4-(methoxymethoxy)-3,8-dimethyl-5-(trityloxymethyl)-

4,5,6,7-tetrahydroazulen-2(1H)-one 142 
 

1

54

3

2 10 9

8
7

6

O

MOMO
OPMB

OTr

C42H44O6
644,80 g/mol  

Protocol 1: Allene (17 mg, 0.028 mmol, 1 eq) was dissolved in anhydrous toluene (0.3 mL) 

and the solution was evacuated and charged with Ar three times and with CO three times; 

then [RhCl(cod)]2 (1.4 mg, 0.0028 mmol, 10 mol%) and 1,3-bis(diphenylphosphino)propane 

(5.8 mg, 0.014 mmol, 50 mol%) were added. The mixture was refluxed under CO balloon (1 

atm) for 5 h. Most of the solvent was evaporated in vacuo and the resulting concentrated 

mixture was filtered through a pad of celite (washings with ether). The combined filtrates 

were evaporated in vacuo. The crude residue was purified by flash chromatography on silica 

gel (pentane/ethyl acetate 8:2) to yield the title ketone (13.7 mg, 76%) as a colourless oil.  

 

Protocol 2: Allene (13 mg, 0.021 mmol, 1 eq) was dissolved in anhydrous toluene (0.3 mL) 

and the solution was evacuated and charged with argon three times, then with CO three times 

before addition of [Rh(CO)2Cl]2 (0.8 mg, 0.002 mmol, 10 mol%). The mixture was heated at 

90 °C under CO balloon (1 atm) for 5 h. Most of the solvent was evaporated in vacuo and the 

concentrated mixture filtered through a pad of celite (washings with ether). The combined 
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filtrates were evaporated in vacuo and the crude residue purified by flash chromatography on 

silica gel (pentane/ethyl acetate 8:2) to yield the ketone (10.3 mg, 80%) as a colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.48-7.20 (m, 17H, HAr), 6.87 (d, J = 8.7 Hz, 2H, 

HAr(PMB)), 5.18 (s, 1H, H6), 4.79 (d, J = 6.7 Hz, 1H, Ha(CH2(MOM))), 4.60 (d, J = 11.2 Hz, 1H, 

Ha(benz)), 4.58 (d, J = 11.2 Hz, 1H, Hb(benz)), 4.55 (d, J = 6.7 Hz, 1H, Hb(CH2(MOM))), 3.81 (s, 3H, 

HOMe(PMB)), 3.30 (d, J = 10.3 Hz, 1H, H11a), 3.26 (s, 3H, HCH3(MOM)), 3.06 (d, J = 10.3 Hz, 1H, 

H11b), 2.86-2.79 (d, J = 20.8 Hz, 1H, H2a), 2.63-2.56 (d, J = 20.8 Hz, 1H, H2b), 2.38-2.29 (m, 

1H, H8a), 2.05-1.93 (m, 1H, H9a), 1.88-1.78 (m, 2H, H8b and H9b), 1.78 (s, 3H, H15), 1.67 (s, 3H, 

H14). 

 
13

C-NMR (100MHz, CDCl3, ppm): 205.4 (Cq, C3), 160.4 (Cq, C5), 158.7 (Cq, CPMB), 143.2 

(Cq, CAr(Tr)), 141.7 (Cq, C4), 135.1 (Cq, C10), 131.7 (Cq, CAr), 129.1 (Cq, C1), 128.7 (CH, 

CAr), 128.2 (CH, CAr), 127.7 (CH, CAr), 127.0 (CH, CAr), 113.6 (CH, CAr), 95.9 (CH2, 

CH2(MOM)), 86.7 (Cq, CTr), 80.4 (Cq, C7), 75.6 (CH, C6), 64.9 (CH3, COMe(MOM)), 55.3 (CH3, 

COMe(PMB)), 40.3 (CH2, C2), 31.2 (CH2, C9), 30.3 (CH2, C8), 23.9 (CH3, C14), 8.71 (CH3, C15). 

 

IR (film, cm-1): 2924, 2852, 1694, 1611, 1513, 1449, 1247, 1149, 1097, 1033. 

 

HRMS (ESI, m/z): [MNa]+ calc.: 667.3030 (MNa+, C42H44O6Na requires 667.3036) 

 

[α]D
20

 = +36.8 (c 1.0, CHCl3) 

 

(4S,5S)-5-(4-methoxybenzyloxy)-4-(methoxymethoxy)-3-methyl-5-(trityloxymethyl)-

4,5,6,7-tetrahydroazulen-2(1H)-one 143 

1
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OTr

C41H42O6
630,77 g/mol  

Precedent allene, (((S)-2-(4-methoxybenzyloxy)-2-((S)-1-(methoxymethoxy)but-2-ynyl)hepta-

5,6-dienyloxy)methanetriyl)tribenzene, (8 mg, 0.013 mmol, 1 eq) was dissolved in anhydrous 

toluene (0.2 mL) and the solution was evacuated and charged with Ar three times and with 
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CO three times; then [Rh(CO)2Cl]2 (0.5 mg, 0.0013 mmol, 10 mol%) was added. The mixture 

was heated at 90 °C under CO balloon (1 atm) for 5 h. Most of the solvent was evaporated in 

vacuo and the residue was filtered through a pad of celite and the pad was washed with ether. 

The ether was removed in vacuo. The crude residue was purified by flash chromatography on 

silica gel (pentane/ethyl acetate 8:2) to afford the required bicyclic ketone (3 mg, 36%) as 

colorless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.48-7.20 (m, 17H, HAr), 6.88 (d, J = 8.7 Hz, 2H, 

HAr(PMB)), 5.45-5.48 (m, 1 H, H10), 5.28 (s, 1H, H6), 4.86 (d, J = 6.8 Hz, 1H, Ha(CH2(MOM))), 

4.63 (d, J = 8.9 Hz, 1H, Ha(benz)), 4.58 (d, J = 6.8 Hz, 1H, Hb(benz)), 4.57 (d, J = 6.8 Hz, 1H, 

Hb(CH2(MOM))), 3.82 (s, 3H, HOMe(PMB)), 3.41 (d, J = 10.5 Hz, 1H, H11a), 3.27 (s, 3H, HCH3(MOM)), 

3.04 (d, J = 10.5 Hz, 1H, H11b), 2.93 (d, J = 20.8 Hz, 1H, H2a), 2.61 (d, J = 20.8 Hz, 1H, H2b), 

2.53-2.46 (m, 2H, H8), 2.34-2.29 (m, 1H, H9), 1.81 (s, 3H, H15). 

 

MS (ESI, m/z): 625 [MNa]+ 
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Partie expérimentale : Vers la synthèse du produit naturel 

- première approche 

 

 

(S)-2-hydroxy-2-((trityloxy)methyl)pent-4-enal ent-144 
 

8

7
6

11OH
O

H
12

16

TrO

C25H24O3
372,46 g/mol  

(R)-2-((trityloxy)methyl)pent-4-ene-1,2-diol (470 mg, 1.257 mmol, 1 eq) was dissolved in 

anhydrous CH2Cl2 (5.0 mL) before addition of freshly distilled DMSO (0.45 mL, 6.285 

mmol, 5 eq) and NEt3 (0.88 mL, 6.285 mmol, 5 eq). At 0°C, was added SO3.pyr (800 mg, 

5.028 mmol, 4 eq) by little portions. The mixture was stirred at 0°C for 4h. The mixture was 

diluted in Et2O. The organic layer was separated and washed with water (2x) and brine, dried 

over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

95:5) to give 377 mg (81%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 9.56 (s, 1H, H6), 7.40-7.24 (m, 15H, Har), 5.71-5.58 (dddd, 

J = 15.9, 11.7, 7.8, 7.2 Hz, 1H, H12), 5.08 (dd, Jtrans = 15.9 Hz, 1H, H16a), 5.03 (dd, 1H, Jcis = 

11.7 Hz, H16b), 3.53 (s, 1H, HOH), 3.35 (d, J = 9.7 Hz, 1H, H8a), 3.28 (d, J = 9.7 Hz, 1H, H8b), 

2.42 (dd, J = 14.4, 7.8 Hz, 1H, H11a), 2.31 (dd, J = 14.4, 7.2 Hz, 1H, H11b). 

 
13

C-NMR (100MHz, CDCl3, ppm): 203.0 (CH, C6), 143.2 (Cq, CAr), 130.6 (CH, C12), 128.5 

(CH, CAr), 127.9 (CH, CAr), 127.2 (CH, CAr), 119.5 (CH2, C16), 80.0 (Cq, CTr), 66.5 (CH2, C8), 

37.5 (CH2, C11). 

 

IR (film, cm-1): 3439, 1490, 1447, 1079, 1001. 

 

MS (ESI, m/z): 395 [MNa]+ 
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[α]D
20 = - 10.1 (c 1.3, CHCl3). 

[α]D
20 = + 9.5 (c 1.1, CHCl3) for its enantiomer. 

 

Rf (cyclohexane/ethyl acetate 85:15) = 0.57 

 

(S)-2-(methoxymethoxy)-2-((trityloxy)methyl)pent-4-enal ent-145 

 

8

76 11

OMOM
O

H
12

16

TrO

C27H28O4
416,51 g/mol  

(S)-2-hydroxy-2-((trityloxy)methyl)pent-4-enal (2.9 g, 7.796 mmol, 1 eq) was dissolved in 

anhydrous toluene (20.0 mL) before addition of distilled DIPEA (4.1 mL, 23.71 mmol, 3 eq) 

then MOMCl (1.8 mL, 23.71 mmol, 3 eq) at room temperature. The mixture was stirred at 

80°C for 5h and at room temperature overnight before being quenched with an aqueous 

saturated solution of NH4Cl. The organic layer was separated and washed with water and 

brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

95:5) to give 2.04 g (63%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 9.58 (s, 1H, H6), 7.42-7.24 (m, 15H, HAr), 5.65-5.52 

(dddd, J = 17.1, 14.4, 10.2, 7.2 Hz, 1H, H12), 5.09 (dd, Jtrans = 17.1 Hz, 1H, H16a), 5.01 (dd, Jcis 

= 14.4 Hz, 1H, H16b), 4.72 (d, J = 7.2 Hz, 1H, CH2a(MOM)), 4.59 (d, J = 7.2 Hz, 1H, 

CH2b(MOM)), 3.40 (d, J = 9.6 Hz, 1H, H8a), 3.34 (s, 3H, CH3(MOM)), 3.30 (d, J = 9.6 Hz, 1H, 

H8b), 2.69 (dd, J = 15.0, 7.2 Hz, 1H, H11a), 2.62 (dd, J = 15.0, 10.2 Hz, 1H, H11b). 
 

13
C-NMR (100MHz, CDCl3, ppm): 202.2 (CH, C6), 143.1 (Cq, CAr), 131.0 (CH, C12), 128.7 

(CH, CAr), 127.8 (CH, CAr), 127.2 (CH, CAr), 119.2 (CH2, C16), 92.2 (CH2, CH2(MOM)), 83.5 

(C, CTr), 62.8 (CH2, C8), 56.0 (CH3, CH3(MOM)), 34.4 (CH2, C11). 

 

IR (film, cm-1): 1735, 1490, 1447, 1031, 918. 
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MS (ESI, m/z): 439 [MNa]+ 

 

[α]D
20 = -6.1 (c 0.95, CHCl3). 

 

Rf (cyclohexane/ethyl acetate 95:5) = 0.33 

 

(5S)-5-(methoxymethoxy)-5-((trityloxy)methyl)oct-7-en-2-yn-4-ol  

 

 

 

A solution of propynyl magnesium bromide (0.5 M in THF, 41.3 mL, 20.67 mmol, 5 eq) was 

added to a stirred solution of (S)-2-(methoxymethoxy)-2-((trityloxy)methyl)pent-4-enal (1.72 

g, 4.13 mmol, 1 eq) in anhydrous THF (5 mL) at -78°C. The mixture was warmed to room 

temperature and stirred for 2 hours. The reaction was quenched with an aqueous solution of 

NH4Cl and extracted with Et2O (3x); the organic layers were combined, washed with brine, 

dried over MgSO4 and the solvent removed under reduced pressure.  

 

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

95:5) to afford the required propargylic alcohol (1.67 g, 89%) as colourless oil. 

 

(S)-5-(methoxymethoxy)-5-((trityloxy)methyl)oct-7-en-2-yn-4-one ent-146 

 

 

 

Dess Martin reagent (3.05 g, 7.19 mmol, 2 eq) was added to a stirred solution of the 

propargylic alcohol (1.64 g, 3.60 mmol, 1 eq) in anhydrous CH2Cl2 (45 mL) at room 
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temperature. The mixture was stirred for 1 hour at room temperature and quenched with an 

aqueous solution of Na2S2O3 and extracted with CH2Cl2 (3x), the organic layers were 

combined, washed with brine, dried over MgSO4 and the solvent removed under reduced 

pressure.  

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

95:5 to 9:1) to afford the required ynone, (S)-5-(methoxymethoxy)-5-((trityloxy)methyl)oct-7-

en-2-yn-4-one, (1.48 g, 91%) as a white gum. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.43-7.23 (m, 15H, HAr), 5.58-5.45 (ddt, J = 17.2, 14.1, 

6.9 Hz, 1H, H12), 5.08 (dd, Jtrans = 17.2 Hz, Jgem = 1.8 Hz, 1H, H16a), 5.01 (dd, Jcis = 14.1 Hz, 

Jgem = 1.8 Hz, 1H, H16b), 4.74 (d, J = 6.9 Hz, 1H, CH2a(MOM)), 4.61 (d, J = 6.9 Hz, 1H, 

CH2b(MOM)), 3.50 (d, J = 9.3 Hz, 1H, H8a), 3.38 (d, J = 9.3 Hz, 1H, H8b), 3.35 (s, 3H, 

CH3(MOM)), 2.74 (d, J = 6.9 Hz, 2H, H11), 1.98 (s, 3H, H15). 
 

13
C-NMR (100MHz, CDCl3, ppm): 188.3 (Cq, C6), 143.2 (Cq, CAr), 131.3 (CH, C12), 128.9 

(CH, CAr), 127.7 (CH, CAr), 127.0 (CH, CAr), 119.0 (CH2, C16), 92.5 (CH2, CH2(MOM)), 92.4 

(Cq, C5), 86.8 (Cq, CTr), 84.8 (Cq, C7), 78.8 (Cq, C4), 63.9 (CH2, C8), 56.5 (CH3, CH3(MOM)), 

35.2 (CH2, C11), 4.36 (CH3, C15). 

 

IR (film, cm-1): 2219, 1676, 1449, 1092, 1032, 907. 

 

MS (ESI, m/z): 477 [MNa]+ 

 

[α]D
20

 = -12.0 (c 1.1, CHCl3) 

 

Rf (pentane/ethyl acetate 9:1) = 0.33 
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(4R,5S)-5-(methoxymethoxy)-5-((trityloxy)methyl)oct-7-en-2-yn-4-ol ent-147 

 

 

The ketone (1.04 g, 2.30 mmol, 1 eq) was dissolved in anhydrous THF (18 mL). At -30°C, 

BH3-Me2S (1.09 mL, 11.49 mmol, 5 eq) and (S)-CBS (1M in toluene, 4.6 mL, 4.60 mmol, 2 

eq) were added. The mixture was stirred at -30°C for 1 hour before being quenched slowly 

with MeOH. The mixture was stirred 1h and the solvent was removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 95:5) to give 892 mg (85%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.47-7.24 (m, 15H, HAr), 5.66-5.52 (dddd, J = 17.1, 10.2, 

7.8, 6.6 Hz, 1H, H12), 5.09 (dd, Jtrans = 17.1, Jgem = 1.8 Hz, 1H, H16a), 5.03 (dd, Jcis = 10.2, Jgem 

= 1.8 Hz, 1H, H16b), 4.71 (s, 2H, CH2(MOM)), 4.54 (dq, J = 8.9, 2.2 Hz, 1H, H6), 3.83 (d, J = 

8.9 Hz, 1H, HOH-C6), 3.41 (s, 3H, CH3(MOM)), 3.36 (d, J = 9.7 Hz, 1H, H8a), 3.30 (d, J = 9.7 Hz, 

1H, H8b), 2.85 (dd, J = 14.4, 6.6 Hz, 1H, H11a), 2.56 (dd, J = 14.4, 7.8 Hz, 1H, H11b), 1.82 (d, J 

= 2.2 Hz, 3H, H15). 
 

13
C-NMR (100MHz, CDCl3, ppm): 143.4 (Cq, CAr), 132.7 (CH, C12), 128.8 (CH, CAr), 127.7 

(CH, CAr), 127.1 (CH, CAr), 118.4 (CH2, C16), 91.4 (CH2, CH2(MOM)), 86.9 (Cq, C-Tr), 82.2 

(Cq, C5), 82.0 (Cq, C7), 77.2 (Cq, C4), 65.9 (CH, C6), 63.2 (CH2, C8), 55.7 (CH3, CH3(MOM)), 

36.7 (CH2, C11), 3.71 (CH3, C15). 

 

IR (film, cm-1): 3419, 1490, 1448, 1028. 

 

MS (ESI, m/z): 479 [MNa]+ 

 

[α]D20 = - 9.1 (c 0.7, CHCl3) 

 

Rf (pentane/ethyl acetate 9:1) = 0.28 
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(4R,5S)-4-(methoxymethoxy)-5-(prop-1-yn-1-yl)-4-((trityloxy)methyl)tetrahydrofuran-

2-ol ent-148 
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OH

C29H30O5
458,55 g/mol  

To a cooled (-78°C) solution of (4R,5S)-5-(methoxymethoxy)-5-((trityloxy)methyl)oct-7-en-

2-yn-4-ol (800 mg, 1.75 mmol, 1 eq) and Sudan III (small amount) in CH2Cl2 (35 mL) was 

bubbled a stream of ozone until the pink solution became colourless (ca. 1 min). Oxygen then 

argon were bubbled into the solution (ca. 2*5 mn). Triphenylphosphine (920 mg, 3.50 mmol, 

2 eq) was then cautiously added, the cold bath was removed and the mixture was stirred at 

room temperature for 2h.  

The solvent was removed under reduced pressure and the crude mixture was purified by flash 

chromatography on silica gel (cyclohexane/ ethyl acetate 7:3) to afford lactol, (4R,5S)-4-

(methoxymethoxy)-5-(prop-1-yn-1-yl)-4-((trityloxy)methyl)tetrahydrofuran-2-ol as a 

colourless oil (641 mg, 80 %). 

 

(4R,5S)-4-(methoxymethoxy)-5-(prop-1-yn-1-yl)-4-((trityloxy)methyl)dihydrofuran-

2(3H)-one ent-148 
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456,53 g/mol  

(4R,5S)-4-(methoxymethoxy)-5-(prop-1-yn-1-yl)-4-((trityloxy)methyl)tetrahydrofuran-2-ol 

(520 mg, 1.13 mmol, 1 eq) was dissolved in CH2Cl2 (40 mL). 4Ǻ MS (590 mg), NMO (266 

mg, 2.27 mmol, 2 eq) and TPAP (32 mg, 0.09 mmol, 0.08 eq) were added. The mixture was 

stirred at room temperature for 2h then filtered through a pad of Celite and the solvent was 

removed under reduced pressure. The crude mixture was purified by flash chromatography on 
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silica gel (pentane/ ethyl acetate 9:1) to afford lactone (4R,5S)-4-(methoxymethoxy)-5-(prop-

1-yn-1-yl)-4-((trityloxy)methyl)dihydrofuran-2(3H)-one as a colourless oil (460 mg, 89 %). 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.47-7.23 (m, 15H, HAr), 5.22 (q, J = 2.1 Hz, 1H, H6), 

4.69 (s, 2H, CH2(MOM)), 3.57 (d, J = 10.3 Hz, 1H, H8a), 3.49 (d, J = 10.3 Hz, 1H, H8b), 3.33 (s, 

3H, CH3(MOM)), 2.84 (d, J = 17.1 Hz, 1H, H11a), 2.54 (d, J = 17.1 Hz, 1H, H11b), 1.74 (d, J = 

2.1 Hz, 3H, H15). 
 

13
C-NMR (400MHz, CDCl3, ppm): 173.7 (Cq, C12), 143.2 (Cq, CAr), 128.7 (CH, CAr), 127.8 

(CH, CAr), 127.2 (CH, CAr), 92.5 (CH2, CH2(MOM)), 87.1 (Cq, C-Tr), 86.8 (Cq, C4), 84.2 (Cq, 

C7), 76.4 (CH, C6), 72.2 (Cq, C5), 63.7 (CH2, C8), 55.7 (CH3, CH3(MOM)), 37.2 (CH2, C11), 3.7 

(CH3, C15). 

 

IR (film, cm-1): 2929, 1791, 1449, 1152, 1024. 

 

MS (ESI, m/z): 479 [MNa]+ 

 

[α]D
20

 = - 8.4 (c 1.0, CHCl3) 

 

Rf (pentane/ethyl acetate 8:2) = 0.39 

 

(R)-5-hydroxy-5-((trityloxy)methyl)oct-7-en-2-yn-4-one 151 

 

 

(4R)-4-((trityloxy)methyl)oct-1-en-6-yne-4,5-diol (5.5 g, 12.86 mmol, 1 eq) was dissolved in 

anhydrous CH2Cl2 (54 mL). At 0°C, were added DMSO (4.6 mL, 64.30 mmol, 5 eq), NEt3 

(8.9 mL, 64.30 mmol, 5 eq), and SO3
.Pyr (8.19 g, 51.46 mmol, 4 eq) in small portions. The 

mixture was stirred for 5 hours at room temperature and quenched with an aqueous solution of 

NH4Cl and extracted with CH2Cl2 (3x), the organic layers were combined, washed with brine, 

dried over MgSO4 and the solvent removed under reduced pressure.  
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The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 9:1) to afford the required ynone, (R)-5-hydroxy-5-((trityloxy)methyl)oct-7-en-2-yn-4-

one as a white gum (4.16 g, 78%). 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.45-7.21 (m, 15H, HAr), 5.75-5.62 (dddd, J = 15.6, 11.7, 

7.5, 7.2 Hz, 1H, H12), 5.09 (dd, Jtrans = 15.6 Hz, 1H, H16a), 5.04 (dd, Jcis = 11.7 Hz, 1H, H16b), 

3.96 (s, 1H, HOH), 3.42 (d, J = 9.1 Hz, 1H, H8a), 3.36 (d, J = 9.1 Hz, 1H, H8b), 2.50 (dd, J = 

14.1, 7.5 Hz, 1H, H11a), 2.40 (dd, J = 14.1, 7.2 Hz, 1H, H11b), 1.92 (s, 3H, H15). 
 

13
C-NMR (100MHz, CDCl3, ppm): 189.8 (Cq, C6), 143.3 (Cq, CAr), 130.9 (CH, C12), 128.6 

(CH, CAr), 127.7 (CH, CAr), 126.9 (CH, CAr), 119.1 (CH2, C16), 95.4 (Cq, C5), 86.3 (Cq, CTr), 

82.5 (Cq, C7), 76.9 (Cq, C4), 67.9 (CH2, C8), 39.0 (CH2, C11), 4.29 (CH3, C15). 

 

IR (film, cm-1): 3496, 3022, 2221, 1672, 1491, 1216, 1157, 1091. 

 

MS (ESI, m/z): 433 [MNa]+ 

 

[α]D
20 = +11.6 (c 0.7, CHCl3) 

 

Rf (cyclohexane/ethyl acetate 9:1) = 0.34 

 

(R)-5-hydroxy-5-(hydroxymethyl) oct-7-en-2-yn-4-one 152 
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168,19 g/mol  

(R)-5-hydroxy-5-((trityloxy)methyl)oct-7-en-2-yn-4-one (7.1 g, 17.32 mmol, 1 eq) was 

dissolved in a mixture of acetic acid (74 mL) and water (18 mL). The mixture was stirred at 

40°C for 4h then filtered through a pad of Celite and the solvent was removed under reduced 

pressure.  
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The crude product was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 65:45) to afford the required diol, (R)-5-hydroxy-5-(hydroxymethyl) oct-7-en-2-yn-4-

one, (2.37 g, 81%) as a yellow oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.73-5.60 (dddd, J = 17.4, 9.0, 7.2, 7.1 Hz, 1H, H12), 5.15 

(dd, Jtrans = 17.4, Jgem = 2.0 Hz, 1H, H16a), 5.09 (dd, Jcis = 9.0, Jgem = 2.0 Hz, 1H, H16b), 3.98 (d, 

J = 11.7 Hz, 1H, H8a), 3.66 (d, J = 11.7 Hz, 1H, H8b),  2.56 (dd, J = 14.1, 7.2 Hz, 1H, H11a), 

2.45 (dd, J = 14.1, 7.1 Hz, 1H, H11b), 2.10 (s, 3H, H15). 
 

13
C-NMR (100MHz, CDCl3, ppm): 189.6 (Cq, C6), 130.5 (CH, C12), 119.6 (CH2, C16), 96.9 

(Cq, C5), 83.2 (Cq, C7), 76.7 (Cq, C4), 66.8 (CH2, C8), 38.9 (CH2, C11), 4.48 (CH3, C15). 

 

IR (film, cm-1):3445, 2922, 2217, 1670, 1208, 1153, 925. 

 

MS (ESI, m/z): 191 [MNa]+ 

 

[α]D
20 = +0.7 (c 1.04, CHCl3). 

 

Rf (cyclohexane/ethyl acetate 6:4) = 0.12 

 

(R)-5-Hydroxy-5-((triethylsilanyloxy)methyl)-oct-7-en-2-yn-4-one 153 

 

 

(R)-5-hydroxy-5-(hydroxymethyl) oct-7-en-2-yn-4-one (569 mg, 5.17 mmol, 1 eq) was 

dissolved in anhydrous DMF (48 mL) before addition of imidazole (493 mg, 7.24 mmol, 1.4 

eq) then TESCl (1.05 mL, 6.21 mmol, 1.2 eq) at 0°C. The mixture was stirred at room 

temperature for 45 mn then quenched with an aqueous saturated solution of NH4Cl and 

extracted with CH2Cl2 (3x). The organic layers were combined, washed with brine, dried over 

MgSO4 and the solvent removed under reduced pressure.  
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The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 95:5) to afford the required TES alcohol, (R)-5-Hydroxy-5-

((triethylsilanyloxy)methyl)-oct-7-en-2-yn-4-one , (1.29 g, 88 %) as a colorless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.80-5.70 (dddd, J = 17.2, 10.0, 7.2, 7.1 Hz, 1H, H12), 

5.15 (dd, Jtrans = 17.2 Hz, 1H, H16a), 5.09 (dd, Jcis = 10.0 Hz, 1H, H16b), 4.03-4.00 (d, J = 10.1 

Hz, 1H, H8a), 3.67 (s, 1H, HOH), 3.62-3.59 (d, J = 10.1 Hz, 1H, H8b),  2.58-2.51 (dd, J = 14.0; 

7.1 Hz, 1H, H11a), 2.43-2.38 (dd, J = 14.0; 7.2 Hz, 1H, H11b), 2.08 (s, 3H, H15), 0.95-0.91 (t, J 

= 8.0 Hz, 9H, CH3(TES)), 0.61-0.55 (q, J = 7.9 Hz, 6H, CH2(TES)). 
 

13
C-NMR (100MHz, CDCl3, ppm): 190.3 (Cq, C6), 131.2 (CH, C12), 119.0 (CH2, C16), 95.1 

(Cq, C5), 52.7 (Cq, C7), 77.8 (Cq, C4), 67.6 (CH2, C8), 38.6 (CH2, C11), 6.61 (CH3, CH3(TES)), 

4.41 (CH3, C3), 4.23 (CH2, CH2(TES)). 

 

IR (film, cm-1): 3514, 2957, 2221, 1673, 1215. 

 

MS (ESI, m/z): 305 [MNa]+ 

 

[α]D
20 = + 12.6 (c 1.0, CHCl3). 

 

Rf (cyclohexane/ethyl acetate 8:2) = 0.45 

 

(4R,5R)-4-((Triethylsilanyloxy)methyl)-oct-1-en-6-yne-4,5-diol 154 

 

 

(R)-5-Hydroxy-5-((triethylsilanyloxy)methyl)-oct-7-en-2-yn-4-one (130 mg, 0.461 mmol, 1 

eq) was dissolved in anhydrous THF (3.5 mL). At -30°C, BH3
.Me2S (220 µL, 2.31 mmol, 5 

eq) and (S)-CBS (1M in toluene, 0.92 mL, 0.92 mmol, 2 eq) were added. The mixture was 

stirred at -30°C for 1 h then quenched slowly with MeOH. The mixture was stirred 1h and the 

solvent was removed under reduced pressure.  
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The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 8:2) to give 98 mg (75%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.94-5.84 (dddd, J = 16.8, 10.4, 8.0, 6.8 Hz, 1H, H12), 

5.15 (dd, Jtrans = 16.8 Hz, 1H, H16a), 5.11 (dd, Jcis = 10.8 Hz, 1H, H16b), 4.38-4.36 (dq, J = 5.7, 

2.0 Hz, 1H, H6), 3.70 (d, J = 9.8 Hz, 2H, H8a), 3.62 (d, J = 9.8 Hz, 2H, H8b), 3.07-3.05 (d, J = 

5.7 Hz, 1H, HOH-C6), 2.56 (s, 1H, HOH-C7), 2.58-2.53 (dd, J = 14.4; 6.8 Hz, 1H, H11a), 2.38-

2.33 (dd, J = 14.4; 8.0 Hz, 1H, H11b), 1.86 (d, J = 2.0 Hz, 3H, H3), 0.97-0.93 (t, J = 8.0 Hz, 

9H, CH3(TES)), 0.64-0.58 (q, J = 7.7 Hz, 6H, CH2(TES)). 
 

13
C-NMR (100MHz, CDCl3, ppm): 133.1 (CH, C12), 118.6 (CH2, C16), 83.0 (Cq, C4), 76.8 

(Cq, C5), 74.8 (Cq, C7), 67.3 (CH, C6), 65.5 (CH2, C8), 37.5 (CH2, C11), 6.6 (CH3, CH3(TES)), 

4.12 (CH3, C3), 3.66 (CH2, CH2(TES)). 

 

IR (film, cm-1): 3442, 2955, 2916, 2877, 1414, 1239, 1094, 1005. 

 

MS (ESI, m/z): 305 [MNa]+ 

 

[α]D
20 = + 5.6 (c 1.0, CHCl3) 

 

Rf (cyclohexane/ethyl acetate 8:2) = 0.24. 

 

(4R,5R)-5-Prop-1-ynyl-4-((triethylsilanyloxy)methyl)-tetrahydro-furan-2,4-diol  

 

O

HO

OH

OTES

C14H26O4Si

286,44 g/mol  

To a cooled (-78°C) solution of alkene (79 mg, 0.28 mmol, 1 eq) and Sudan III (small 

amount) in CH2Cl2 (6.0 mL) was bubbled a stream of ozone until the pink solution became 

colourless (ca 30s). Oxygen then argon were bubbled into the solution (ca 2 x 5 mn). 

Triphenylphosphine (146 mg, 0.56 mmol, 2 eq) ws then cautiously added, the cold bath was 
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removed and the mixture was stirred at room temperature for 2h. The solvent was removed 

under reduced pressure and the crude mixture was purified by flash chromatography on silica 

gel (cyclohexane/ ethyl acetate 7:3) to afford lactol, (4R,5R)-5-Prop-1-ynyl-4-

((triethylsilanyloxy)methyl)-tetrahydro-furan-2,4-diol as a colourless oil (70 mg, 88 %). 

 

(4R,5R)-4-Hydroxy-5-(prop-1-ynyl)-4-((triethylsilanyloxy)methyl)-dihydro-furan-

2(3H)-one 155 
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C14H24O4Si

284,42 g/mol  

To a solution of lactol (69 mg, 0.241 mmol, 1 eq) (6.0 mL) in CH2Cl2 (9.0 mL) were added 

4Ǻ MS (120 mg), NMO (56 mg, 0.482 mmol, 2 eq) and TPAP (7 mg, 0.019 mmol, 0.08 eq). 

The mixture was stirrer at room temperature for 4h then filtered through a pad of Celite and 

the solvent was removed under reduced pressure.  

 

The crude mixture was purified by flash chromatography on silica gel (cyclohexane/ ethyl 

acetate 8:2) to afford lactone (4R,5R)-4-Hydroxy-5-(prop-1-ynyl)-4-

((triethylsilanyloxy)methyl)-dihydro-furan-2(3H)-one as a colourless oil (40 mg, 58 %). 

 
1
H-NMR (400MHz, CDCl3, ppm): 4.96 (q, J = 2.1 Hz, 1H, H6), 4.03-4.00 (d, J = 9.8 Hz, 1H, 

H8a), 3.72-3.69 (d, J = 9.8 Hz, 1H, H8b), 3.27 (s, 1H, HOH-C7), 2.65-2.59 (d, J = 17.2 Hz, 1H, 

H11a), 2.49-2.44 (d, J = 17.2 Hz, 1H, H11b), 1.87 (d, J = 2.1 Hz, 3H, H15), 1.00-0.95 (t, J = 8.0 

Hz, 9H, CH3(TES)), 0.68-0.60 (q, J = 8.0 Hz, 6H, CH2(TES)). 
 

13
C-NMR (100MHz, CDCl3, ppm): 174.0 (Cq, C12), 87.0 (Cq, C4), 79.1 (Cq, C7), 78.2 (CH, 

C6), 72.5 (Cq, C5), 65.0 (CH2, C8), 38.0 (CH2, C11), 6.58 (CH3, CH3(TES)), 4.14 (CH2, 

CH2(TES)), 3.69 (CH3, C15). 

 

MS (ESI, m/z): 305 [MNa]+ 

 



 278 

[α]D
20 = + 86.2 (c 1.0, CHCl3) 

 

Rf (cyclohexane/ethyl acetate 8:2) = 0.40 

 

(R)-5-(Triethylsilanyloxy)-5-((triethylsilanyloxy)methyl)oct-7-en-2-yn-4-one 156 
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396,71 g/mol  

(R)-5-Hydroxy-5-((triethylsilanyloxy)methyl)-oct-7-en-2-yn-4-one (300 mg, 1.064 mmol, 1 

eq.) was dissolved in CH2Cl2 (30 mL). At 0°C, were added successively 2,6-lutidine (0.74 

mL, 6.38 mmol, 6 eq) and TESOTf (0.73 mL, 3.191 mmol, 3 eq). The mixture was stirred at 

0°C for 10 mn and was warmed to room temperature.  

The mixture was stirred for 1h at room temperature and quenched with an aqueous solution of 

NH4Cl and extracted with CH2Cl2 (3x). The organic layers were combined, washed with 

brine, dried over MgSO4 and the solvent removed under reduced pressure.  

 

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 95:5) to afford the required di-TES alcohols, (R)-5-(Triethylsilanyloxy)-5-

((triethylsilanyloxy)methyl)oct-7-en-2-yn-4-one , (411 mg, 98 %) as a colorless oil. 
1
H-NMR (400MHz, CDCl3, ppm): 5.83-5.69 (dddd, 1H, J = 16.2, 10.8, 7.5, 7.2 Hz, H12), 

5.09 (dd, 1H, Jtrans = 16.2 Hz, H16a), 5.04 (dd, 1H, Jcis = 10.8 Hz, H16b), 3.85-3.81 (d, 1H, J = 

10.1 Hz, H8a), 3.67-3.64 (d, 1H, J = 10.1 Hz, H8b), 2.52 (dd, 1H, J = 14.7; 7.5 Hz, H11a), 2.45 

(dd, 1H, J = 14.7; 7.2 Hz, H11b), 2.02 (s, 3H, H3), 0.98-0.91 (m, 18H, CH3(TES)), 0.69-0.54 (m, 

12H, CH2(TES)). 
 

13
C-NMR (100MHz, CDCl3, ppm): 190.4 (Cq, C6), 132.5 (CH, C12), 118.3 (CH2, C16), 92.8 

(Cq, C5), 84.9 (Cq, C4), 79.2 (Cq, C7), 67.1 (CH2, C8), 40.3 (CH2, C11), 7.19 (CH3, CH3(TES)), 

6.70 (CH3, CH3(TES)), 4.67 (CH2, CH2(TES)), 4.30 (CH3, C3), 4.19 (CH2, CH2(TES)). 

 

IR (film, cm-1): 2956, 2877, 2220, 1673, 1458, 1216, 1006. 
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MS (ESI, m/z): 419 [MNa]+ 

 

[α]D
20

 = + 2.1 (c 1.0, CHCl3). 

 

Rf (cyclohexane/ethyl acetate 95:5) = 0.62 

 

(4S,5R)-5-(Triethylsilyloxy)-5-((triethylsilyloxy)methyl)-oct-7-en-2-yn-4-ol 159 
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398,73 g/mol  

(R)-5-(Triethylsilanyloxy)-5-((triethylsilanyloxy)methyl)oct-7-en-2-yn-4-one (395 mg, 0.998 

mmol, 1 eq) was dissolved in anhydrous THF (8 mL). At -30°C, BH3
.Me2S (470 µL, 4.99 

mmol, 5 eq) and (R)-CBS (1M in toluene, 2 mL, 1.99 mmol, 2 eq) were added. The mixture 

was stirred at -30°C for 1.5h before being quenched slowly with MeOH. The mixture was 

stirred overnight and the solvent was removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 95:5) to give 318 mg (80 %) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.99-5.89 (dddd, J = 16.0, 11.2, 8.4, 6.4 Hz, 1H, H12), 

5.09 (dd, Jtrans = 16.0 Hz, 1H, H16a), 5.05 (dd, Jcis = 11.2 Hz, 1H, H16b), 4.41 (q, J = 2.1 Hz, 

1H, H6), 3.68-3.65 (d, J = 9.8 Hz, 1H, H8a), 3.56-3.53 (d, J = 9.8 Hz, 1H, H8b), 2.55 (s, 1H, 

HOH-C6), 2.53-2.47 (dd, J = 14.4; 6.4 Hz, 1H, H11a),  2.38-2.33 (dd, J = 14.4; 8.4 Hz, 1H, H11b), 

1.84 (d, J = 2.1 Hz, 3H, H15), 0.99-0.93 (m, 18H, CH3(TES)), 0.69-0.56 (m, 12H, CH2(TES)). 
 

13
C-NMR (100MHz, CDCl3, ppm): 134.2 (CH, C12), 117.4 (CH2, C16), 82.1 (Cq, C5), 78.0 

(Cq, C7), 75.5 (Cq, C4), 66.5 (CH, C6), 64.1 (CH2, C8), 37.0 (CH2, C11), 3.64 (CH3, C15). 

 

IR (film, cm-1): 3563, 2955, 2877, 1459, 1239, 1075, 1005. 
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MS (ESI, m/z): 421 [MNa]+ 

 

[α]D
20

 = + 1.2 (c 1.0, CHCl3). 

 

Rf (cyclohexane/ethyl acetate 95:5) = 0.31 

 

(R)-5-hydroxy-5-(((4-methoxybenzyl)oxy)methyl)oct-7-en-2-yn-4-one 157 
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288,34 g/mol  

PMB-TCAI (589 mg, 2.09 mmol, 1.2 eq) was dissolved in a mixture of anhydrous 

dichloromethane/cyclohexane (3.3/6.5 mL). At room temperature were added (R)-5-hydroxy-

5-(hydroxymethyl) oct-7-en-2-yn-4-one (292 mg, 1.74 mmol, 1 eq) and PPTS (44 mg, 0.17 

mmol, 10 mol%). The mixture was stirred at room temperature for 36h then filtered through a 

pad of Celite. The solvent was removed under reduced pressure. 

 

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 9:1) to afford the required (R)-5-hydroxy-5-(((4-methoxybenzyl)oxy)methyl)oct-7-en-

2-yn-4-one, (390 mg, 78%) as a light yellow oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.75-5.69 (dddd, J = 17.4, 10.4, 7.4, 7.1 Hz, 1H, H12), 

5.14 (dd, Jtrans = 17.4, Jgem = 1.6 Hz, 1H, H16a), 5.09 (dd, Jcis = 10.4, Jgem = 1.6 Hz, 1H, H16b), 

4.58 (d, J = 12.0 Hz, 1H, Ha(benz)), 4.46 (s, 1H, HOH-C7), 4.42 (d, J = 12.0 Hz, 1H, Hb(benz)), 

3.83 (d, J = 9.7 Hz, 1H, H8a), 3.80 (s, 3H, HOMe(PMB)), 3.51 (d, J = 9.7 Hz, 1H, H8b), 2.53-2.48 

(dd, J = 14.2; 7.1 Hz, 1H, H11a), 2.50-2.40 (dd, J = 14.2; 7.4 Hz, 1H, H11b), 2.03 (s, 3H, H15).  

 

MS (ESI, m/z): 301 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 5:5) = 0.47 
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(R)-5-((tert-Butyldimethylsilyloxy)methyl)-5-hydroxy-oct-7-en-2-yn-4-one 158  
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282,45 g/mol  

To a solution of (R)-5-hydroxy-5-(hydroxymethyl) oct-7-en-2-yn-4-one (2.35 g, 13.99 mmol, 

1 eq) in CH2Cl2 (100 mL) were added successively imidazole (2.38 g, 34.97 mmol, 2.5 eq) 

and TBSCl (2.5 g, 16.79 mmol, 1.2 eq). The mixture was stirred at room temperature for 1 

hour and quenched with an aqueous solution of NH4Cl and extracted with CH2Cl2 (3x). The 

organic layers were combined, washed with brine, dried over MgSO4 and the solvent removed 

under reduced pressure.  

 

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 95:5) to afford the required TBS alcohol, (R)-5-((tert-Butyldimethylsilyloxy)methyl)-

5-hydroxy-oct-7-en-2-yn-4-one , (3.38 g, 86 %) as a colorless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.80-5.70 (dddd, J = 14.8, 10.0, 7.2, 6.8 Hz, 1H, H12), 

5.15 (dd, Jtrans = 14.8, Jgem = 1.2 Hz, 1H, H16a), 5.09 (dd, Jcis = 10.0, Jgem = 1.2 Hz, 1H, H16b), 

3.98 (d, J = 10.1 Hz, 1H, H8a), 3.64 (s, 1H, HOH-C7), 3.58 (d, J = 10.1 Hz, 1H, H8b), 2.57-2.51 

(dd, J = 14.4; 7.2 Hz, 1H, H11a), 2.44-2.38 (dd, J = 14.4; 6.8 Hz, 1H, H11b), 2.08 (s, 3H, H15), 

0.86 (s, 9H, CH3(TBS)), 0.04 (s, 6H, CH2(TBS)). 
 

13
C-NMR (100MHz, CDCl3, ppm): 190.3 (Cq, C6), 131.3 (CH, C12), 119.0 (CH2, C16), 95.2 

(Cq, C5), 82.8 (Cq, C7), 77.8 (Cq, C4), 67.9 (CH2, C8), 38.5 (CH2, C11), 25.7 (CH3, CH3(TBS)), 

18.2 (CH3, CH3(TBS)), 4.41 (CH3, C15), -5.46 (CH3, CH3(TBS)), -5.66 (CH3, CH3(TBS)). 

 

IR (film, cm-1): 3514, 2930, 2221, 1675, 1216. 

 

MS (ESI, m/z): 305 [MNa]+ 

 

[α]D
20 = + 9.4 (c 1.75, CHCl3). 
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Rf (cyclohexane/ethyl acetate 9:1) = 0.19 

 

(4R,5S)-4-(((tert-butyldimethylsilyl)oxy)methyl)oct-1-en-6-yne-4,5-diol 161 
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C15H28O3Si

284,47 g/mol  

(R)-5-((tert-Butyldimethylsilyloxy)methyl)-5-hydroxy-oct-7-en-2-yn-4-one (1.05 g, 3.72 

mmol, 1 eq) was dissolved in anhydrous THF (8 mL). At -30°C, BH3
.Me2S (1.76 mL, 18.58 

mmol, 5 eq) and (R)-CBS (1M in toluene, 7.4 mL, 7.4 mmol, 2 eq) were added. The mixture 

was stirred at -30°C for 1h30 before being quenched slowly with MeOH. The mixture was 

stirred overnight and the solvent was removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 9:1) and then HPLC (heptane/ethyl acetate 85:15) to give 845 mg (80 %) of colourless 

oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.96-5.85 (dddd, J = 15.2, 12.4, 7.6, 7.2 Hz, 1H, H12), 

5.14 (dd, Jtrans = 14.8 Hz, 1H, H16a), 5.10 (dd, Jcis = 12.4 Hz, 1H, H16b), 4.24 (dq, J = 8.4; 2.2 

Hz, 1H, H6), 3.98 (d, J = 9.9 Hz, 1H, H8a), 3.56 (d, J = 9.9 Hz, 1H, H8b), 3.34 (d, J = 8.4 Hz, 

1H, HOH-C6), 3.06 (s, 1H, HOH-C7), 2.34 (dd, J = 14.4, 7.6 Hz, 1H, H11a), 2.29 (dd, J = 14.4, 7.2 

Hz, 1H, H11b), 1.87 (d, J = 2.2 Hz, 3H, H3), 0.91 (s, 9H, CH3(TBS)), 0.10 (s, 6H, CH3(TBS)). 
 

13
C-NMR (100MHz, CDCl3, ppm): 132.7 (CH, C12), 118.5 (CH2, C16), 83.0 (Cq, C6 or C4), 

77.2 (Cq, C7), 74.4 (C, C6 or C4), 68.4 (CH, C6), 67.9 (CH2, C8), 38.3 (CH2, C11), 25.8 (CH3, 

CH3(TBS)), 18.2 (CH3, CH3(TBS)), 3.69 (CH3, C3), -5.55 (CH3, CH3(TBS)), -5.68 (CH3, CH3(TBS)). 

 

IR (film, cm-1): 3433, 2927, 2856, 1464, 1256, 1090. 

 

MS (ESI, m/z): 307 [MNa]+ 
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[α]D
20 = -7.1 (c 1.0, CHCl3). 

 

Rf (cyclohexane/ethyl acetate 65:45) = 0.40 

 

(S)-(4S,5R)-5-(((tert-butyldimethylsilyl)oxy)methyl)-5-hydroxyoct-7-en-2-yn-4-yl 2-

methoxy-2-phenylacetate 
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C24H36O5Si

432,63 g/mol  

(4R,5S)-4-(((tert-butyldimethylsilyl)oxy)methyl)oct-1-en-6-yne-4,5-diol (25 mg, 0.088 mmol) 

was dissolved in anhydrous CH2Cl2 (1.0 mL). At room temperature, was added (+)α-

methoxyphenylacetic acid (17.6 mg, 0.106 mmol, 1.2 eq), DMAP (3.0 mg, 0.026 mmol, 0.3 

eq) and DCC (22 mg, 0.106 mmol, 1.2 eq). The mixture was stirred for 1h and was filtered 

over a pad of celite. The solvent was removed under reduced pressure. 

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 8:2) and to give 38 mg (100 %) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.45-7.34 (m, 5H, HAr), 5.79-5.65 (dddd, J = 17.4, 9.9, 

7.8, 6.6 Hz, 1H, H12), 5.44 (q, J = 1.8 Hz, 1H, H6), 5.02 (dd, Jtrans = 17.4 Hz, 1H, H16a), 4.84 

(dd, Jcis = 9.9 Hz, 1H, H16b), 4.80 (s, 1H, H20), 3.33-3.30 (d, J = 10.2 Hz, 1H, H8a), 3.10-3.06 

(d, J = 10.2 Hz, 1H, H8b), 2.40 (s, 1H, HOH-C7), 2.30 (dd, J = 14.1, 6.6 Hz, 1H, H11a), 2.13 (dd, 

J = 14.1, 7.8 Hz, 1H, H11b), 1.86 (d, J = 1.8 Hz, 3H, H15), 0.83 (s, 9H, CH3(TBS)), -0.06 (s, 3H, 

CH3(TBS)), -0.10 (s, 3H, CH3(TBS)). 
 

13
C-NMR (100MHz, CDCl3, ppm): 168.9 (Cq, C19), 136.9 (Cq, CAr), 132.7 (CH, C12), 128.9 

(CH, CAr), 128.6 (CH, CAr), 127.3 (CH, CAr), 118.3 (CH2, C16), 83.7 (Cq, C4), 82.2 (CH, C20), 

74.6 (Cq, C7), 73.7 (Cq, C5), 67.3 (CH, C6), 64.0 (CH2, C8), 57.4 (CH3, C21), 37.1 (CH2, C11), 

25.7 (CH3, CH3(TBS)), 18.1 (CH3, CH3(TBS)), 3.80 (CH3, C15), -5.73 (CH3, CH3(TBS)). 

 

IR (film, cm-1): 3512, 2929, 2221, 1792, 1242, 1080. 
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MS (ESI, m/z): 455 [MNa]+ 

 

[α]D
20 = -9.4 (c 1.0, CHCl3). 

 

Rf (cyclohexane/ethyl acetate 8:2) = 0.30 

 

(R)-(4S, 5R)-5-(((tert-butyldimethylsilyl)oxy)methyl)-5-hydroxyoct-7-en-2-yn-4-yl 2-

methoxy-2-phenylacetate 
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C24H36O5Si

432,63 g/mol  

(4R,5S)-4-(((tert-butyldimethylsilyl)oxy)methyl)oct-1-en-6-yne-4,5-diol (25 mg, 0.088 mmol, 

1 eq) was dissolved in anhydrous CH2Cl2 (1 mL). At room temperature, was added (-)-α-

methoxyphenylacetic acid (17.6 mg, 0.106 mmol, 1.2 eq), DMAP (3.0 mg, 0.026 mmol, 0.3 

eq) and DCC (22 mg, 0.106 mmol, 1.2 eq). The mixture was stirred.0 for 1h and was filtered 

over a pad of celite. The solvent was removed under reduced pressure. 

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 9:1) and to give 38 mg (100 %) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.45-7.34 (m, 5H, HAr), 5.92-5.78 (dddd, J = 17.1, 9.9, 

7.8, 6.9 Hz, 1H, H12), 5.45 (q, J = 1.8 Hz, 1H, H6), 5.10 (dd, Jtrans = 17.1 Hz, 1H, H16a), 5.02 

(dd, Jcis = 9.9 Hz, 1H, H16b), 4.80 (s, 1H, H20), 3.51 (d, J = 9.9 Hz, 1H, H8a), 3.47 (d, J = 9.9 

Hz, 1H, H8b), 2.55 (s, 1H, HOH-C7), 2.48 (dd, J = 14.4, 6.9 Hz, 1H, H11a), 2.35 (dd, J = 14.4, 

7.8 Hz, 1H, H11b), 1.76 (d, J = 1.8 Hz, 3H, H15), 0.86 (s, 9H, CH3(TBS)), 0.00 (s, 3H, CH3(TBS)), 

-0.04 (s, 3H, CH3(TBS)). 
 

13
C-NMR (100MHz, CDCl3, ppm): 169.3 (Cq, C19), 135.7 (Cq, CAr), 132.8 (CH, C12), 128.7 

(CH, CAr), 128.5 (CH, CAr), 127.1 (CH, CAr), 118.4 (CH2, C16), 83.8 (Cq, C4), 82.7 (CH, C20), 

74.6 (Cq, C7), 73.2 (Cq, C5), 67.7 (Cq, C5), 64.4 (CH2, C8), 57.5 (CH3, C21), 37.6 (CH2, C11), 

25.7 (CH3, CH3(TBS)), 18.1 (CH3, CH3(TBS)), 3.65 (CH3, C15), -5.68 (CH3, CH3(TBS)). 
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IR (film, cm-1): 3516, 2936, 2220, 1789, 1246, 1069. 

 

MS (ESI, m/z): 455 [MNa]+ 

 

[α]D
20 = -5.2 (c 1.0, CHCl3). 

 

Rf (cyclohexane/ethyl acetate 8:2) = 0.38 

 

(4R,5S)-4-(((tert-butyldimethylsilyl)oxy)methyl)-5-(prop-1-yn-1-yl)tetrahydrofuran-2,4-

diol 
 

O

OH

OH
OTBS

C14H26O4Si

286,44 g/mol  

To a cooled (-78°C) solution of alkene (1.093 g, 3.85 mmol, 1 eq) and Sudan III (small 

amount) in CH2Cl2 (79 mL) was bubbled a stream of ozone until the pink solution became 

colourless (ca. 30s). Oxygen then Argon were bubbled into the solution (ca. 2x5 mn). 

Triphenylphosphine (2.02 g, 7.70 mmol, 2 eq) was then cautiously added, the cold bath was 

removed and the mixture was stirred at room temperature for 2h. The solvent was removed 

under reduced pressure and the crude mixture was purified by flash chromatography on silica 

gel (cyclohexane/ ethyl acetate 7:3) to afford lactol, (4R,5S)-4-(((tert-

butyldimethylsilyl)oxy)methyl)-5-(prop-1-yn-1-yl)tetrahydrofuran-2,4-diol as a colourless oil 

(1.078 g, 98 %). 

 

Rf (cyclohexane/ethyl acetate 6:4) = 0.29 
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(4R,5S)-4-(((tert-butyldimethylsilyl)oxy)methyl)-4-hydroxy-5-(prop-1-yn-1-

yl)dihydrofuran-2(3H)-one 162 
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284,42 g/mol  

(4R,5S)-4-(((tert-butyldimethylsilyl)oxy)methyl)-5-(prop-1-yn-1-yl)tetrahydrofuran-2,4-diol 

(966 mg, 3.38 mmol, 1 eq) was dissolved in CH2Cl2 (63 mL) and were added 4Ǻ MS (4 g), 

NMO (989 mg, 8.44 mmol, 2.5 eq) and TPAP (119 mg, 0.34 mmol, 0.1 eq). The mixture was 

stirred at room temperature for 2h then filtered through a pad of Celite and the solvent was 

removed under reduced pressure. The crude mixture was purified by flash chromatography on 

silica gel (cyclohexane/ ethyl acetate 8:2) to afford lactone (4R,5S)-4-(((tert-

butyldimethylsilyl)oxy)methyl)-4-hydroxy-5-(prop-1-yn-1-yl)dihydrofuran-2(3H)-one as a 

colourless oil (767 mg, 80 %). 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.09 (q, J = 2.1 Hz, 1H, H6), 3.62-3.58 (d, J = 10.3 Hz, 

1H, H8a), 3.57-3.53 (d, J = 10.3 Hz, 1H, H8b), 2.77 (s, 1H, HOH-C7), 2.77-2.72 (d, J = 17.5 Hz, 

1H, H11a), 2.57-2.51 (d, J = 17.5 Hz, 1H, H11b), 1.94 (d, J = 2.1 Hz, 3H, H3), 0.89 (s, 9H, 

CH3(TBS)), 0.07 (s, 6H, CH3(TBS)). 
 

13
C-NMR (100MHz, CDCl3, ppm): 173.7 (Cq, C12), 88.6 (Cq, C4 or C5), 77.6 (Cq, C7), 75.5 

(CH, C6), 70.4 (Cq, C4 or C5), 64.3 (CH2, C8), 37.4 (CH2, C11), 25.7 (CH3, CH3(TBS)), 18.1 (Cq, 

C(TBS)), 3.81 (CH3, C15), -5.58 (CH3, CH3(TBS)), 5.63 (CH3, CH3(TBS)). 

 

IR (film, cm-1): 3469, 2928, 1788, 1086, 1000, 840. 

 

MS (ESI, m/z): 307 [MNa]+ 

 

[α]D
20 = - 104.2 (c 0.88, CHCl3). 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.40 
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(4R,5S)-4-hydroxy-4-(hydroxymethyl)-5-(prop-1-yn-1-yl)dihydrofuran-2(3H)-one 163 
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170,16 g/mol  

(4R,5S)-4-(((tert-butyldimethylsilyl)oxy)methyl)-4-hydroxy-5-(prop-1-yn-1-yl)dihydrofuran-

2(3H)-one (117 mg, 0.41 mmol, 1 eq) was dissolved in anhydrous THF (3.0 mL). At 0°C, was 

added a solution of HF.Pyr (8 mL, ~20 eq). The mixture was stirred at 0°C for 10 min, was 

warmed at room temperature and stirred for 5h before being quenched with an aqueous 

solution of NaHCO3 and extracted with ethyl acetate (3x). The organic layers were combined, 

washed with brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 4:6) to give 61 mg (87%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.14 (q, J = 2.1 Hz, 1H, H6), 3.70 (d, J = 11.3 Hz, 1H, 

H8a), 3.66 (d, J = 11.3 Hz, 1H, H8b), 2.77 (d, J = 17.6 Hz, 1H, H11a), 2.66 (d, J = 17.6 Hz, 1H, 

H11b), 1.97 (d, J = 2.1 Hz, 3H, H15). 
 

13
C-NMR (100MHz, CDCl3, ppm): 174.1 (Cq, C12), 88.4 (Cq, C4 or C5), 77.5 (Cq, C7), 76.7 

(CH, C6), 69.8 (Cq, C4 or C5), 66.8 (CH2, C8), 36.9 (CH2, C11), 4.17 (CH3, C15). 

 

IR (film, cm-1): 3433, 2922, 1773, 1174, 991. 

 

MS (ESI, m/z): 193 [MNa]+ 

 

[α]D
20 = - 56.3 (c 1.0, CHCl3). 

 

Rf (cyclohexane/ethyl acetate 1:9) = 0.32 
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(4R,5S)-4-(((tert-butyldimethylsilyl)oxy)methyl)-4-(methoxymethoxy)-5-(prop-1-yn-1-

yl)dihydrofuran-2(3H)-one 165 
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328,48 g/mol  

(4R,5S)-4-(((tert-butyldimethylsilyl)oxy)methyl)-4-hydroxy-5-(prop-1-yn-1-yl)dihydrofuran-

2(3H)-one (605 mg, 2.13 mmol, 1 eq) was dissolved in anhydrous toluene (5.6 mL) before 

addition of distilled DIPEA (1.5 mL, 8.52 mmol, 4 eq) then MOMCl (0.32 mL, 4.26 mmol, 2 

eq) at room temperature. The mixture was stirred at 80°C in sealed tube for 20h before being 

quenched with an aqueous saturated solution of NH4Cl. The organic layer was separated and 

washed with water and brine, dried over MgSO4 and the solvent removed under reduced 

pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 85:15) to give 685 mg (98%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.11 (q, J = 2.2 Hz, 1H, H6), 4.84 (s, 2H, CH2(MOM)), 3.71 

(d, J = 10.7 Hz, 1H, H8a), 3.63 (d, J = 10.7 Hz, 2H, H8b), 3.40 (s, 3H, CH3(MOM)), 2.89 (d, J = 

17.6 Hz, 1H, H11a), 2.76 (d, J = 17.6 Hz, 1H, H11b), 1.92 (d, J = 2.2 Hz, 3H, H15), 0.88 (s, 9H, 

CH3(TBS)), 0.07 (s, 6H, CH3(TBS)). 
 

13
C-NMR (100MHz, CDCl3, ppm): 173.6 (Cq, C12), 92.7 (CH2, CH2(MOM)), 87.2 (Cq, C5), 

83.4 (Cq, C7), 74.4 (CH, C6), 70.9 (Cq, C5), 62.3 (CH2, C8), 55.7 (CH3, CH3(MOM)), 35.3 (CH2, 

C11), 25.7 (CH3, CH3(TBS)), 18.1 (Cq, CTBS), 3.91 (CH3, C15), -5.59 (CH3, CH3(TBS)), -5.64 

(CH3, CH3(TBS)). 

 

IR (film, cm-1): 2931, 1788, 1216, 1100, 996. 

 

MS (ESI, m/z): 351 [MNa]+ 

 

[α]D
20 = -49.0 (c 1.0, CHCl3) 
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Rf (cyclohexane/ethyl acetate 8:2) = 0.30 

 

(4R,5S)-4-(hydroxymethyl)-4-(methoxymethoxy)-5-(prop-1-yn-1-yl)dihydrofuran-

2(3H)-one 166 
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214,22 g/mol  

The TBS alcohol (497 mg, 1.51 mmol, 1 eq) was dissolved in anhydrous THF (2.0 mL). At 

0°C, was added a solution of HF.Py (30 mL, ~20 eq). The mixture was stirred at 0°C for 10 

min, was warmed at room temperature and stirred overnight before being quenched with an 

aqueous solution of NaHCO3 and extracted with Et2O (3x). The organic layers were 

combined, washed with brine, dried over MgSO4 and the solvent removed under reduced 

pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 6/4) to give 317 mg (98%) of colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.08 (q, J = 2.1 Hz, 1H, H6), 4.92 (d, J = 7.9 Hz, 1H, 

CH2a(MOM)), 4.77 (d, J = 7.9 Hz, 1H, CH2b(MOM)), 3.76 (dd, J = 12.6, 5.7 Hz, 1H, H8a), 3.65 

(dd, J = 12.6, 6.3 Hz, 1H, H8b), 3.48 (s, 3H, CH3(MOM)), 3.21 (dd, J = 6.3, 5.7 Hz, 1H, HOH-C8), 

2.88 (d, J = 17.5 Hz, 1H, H11a), 2.71 (d, J = 17.5 Hz, 1H, H11b), 1.91 (d, J = 2.1 Hz, 3H, H15). 
 

13
C-NMR (100MHz, CDCl3, ppm): 172.9 (Cq, C12), 92.7 (CH2, CH2(MOM)), 87.5 (Cq, C5), 

83.3 (Cq, C7), 73.9 (CH, C6), 71.3 (Cq, C4), 64.0 (CH2, C8), 56.1 (CH3, CH3(MOM)), 36.5 (CH2, 

C11), 3.87 (CH3, C15). 

 

IR (film, cm-1): 3463, 3019, 1783, 1216, 1042. 

 

MS (ESI, m/z): 237 [MNa]+ 
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[α]D
20 = - 45.1 (c 1.0, CHCl3). 

 

Rf (cyclohexane/ethyl acetate 4:6) = 0.20 

 

(2S,3S)-3-(methoxymethoxy)-5-oxo-2-(prop-1-yn-1-yl)tetrahydrofuran-3-carbaldehyde 

167 
 

 

To a mixture of the primary alcohol (54 mg, 0.25 mmol, 1 eq.) in anhydrous dichloromethane 

(2.7 mL) at 0°C was added Dess-Martin reagent (160 mg, 0.38 mmol, 1.5 eq.). The mixture 

was stirred for 1h before being quenched at 0°C with an aqueous solution of Na2S2O3 and 

extracted with dichloromethane (3x). The organic layers were combined, washed with brine, 

dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was used without further purification to the next step. 

 

(4R,5S)-4-(1-hydroxy-4-(trimethylsilyl)but-3-yn-1-yl)-4-(methoxymethoxy)-5-(prop-1-

yn-1-yl)dihydrofuran-2(3H)-one 169 
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324,44 g/mol  

Crude (2S,3S)-3-(methoxymethoxy)-5-oxo-2-(prop-1-yn-1-yl)tetrahydrofuran-3-carbaldehyde 

(53 mg, 0.25 mmol, 1 eq.) was dissolved in anhydrous THF ( 0.3 mL). At room temperature 

were added Et2Zn (1.5 M in toluene, 3.3 µL, 5.0 µmol, 2 mol%) and trimethyl(3-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-yn-1-yl)silane (90 mg, 0.38 mmol, 1.5 eq.) 

diluted in anhydrous THF (0.4 mL). The mixture was stirred for 10 min and the solvent was 



 291 

removed under reduced pressure. Then, the residue was diluted in MeOH and stirred at room 

temperature overnight and the solvent was removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 9/1) to give 65 mg (80%) of a mixture of 2 diastereoisomers (6:4) as colourless oil. 

 

Major diastereoisomer: 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.32 (q, J = 2.4 Hz, 1H, H6), 5.01 (d, J = 7.6 Hz, 1H, 

CH2a(MOM)), 4.81 (d, J = 7.6 Hz, 1H, CH2b(MOM)), 3.82 (ddd, J = 8.8, 4.0, 3.6 Hz, 1H, H8), 3.40 

(s, 3H, CH3(MOM)), 2.97 (d, J = 18.0 Hz, 1H, H11a), 2.86 (d, J = 18.0 Hz, 1H, H11b), 2.81 (dd, J 

= 17.0, 3.6 Hz, 1H, H9a), 2.65 (d, J = 4.0 Hz, 1H, HOH-C8), 2.45 (dd, J = 17.0, 8.8 Hz, 1H, 

H9b), 1.92 (d, J = 2.4 Hz, 3H, H15), 0.16 (s, 9H, CH3(TMS)). 
 

13
C-NMR (100MHz, CDCl3, ppm): 173.2 (Cq, C12), 101.9 (Cq, C10), 93.2 (CH2, CH2(MOM)), 

89.1 (Cq, C1), 88.0 (Cq, C4), 85.0 (Cq, C7), 74.8 (CH, C6), 70.5 (Cq, C5), 69.4 (CH, C8), 55.9 

(CH3, CH3(MOM)), 33.7 (CH2, C11), 24.2 (CH2, C9), 3.90 (CH3, C15), -0.08 (CH3, CH3(TMS)). 

 

IR (film, cm-1): 3463, 3019, 1783, 1216, 1042. 

 

MS (ESI, m/z): 347 [MNa]+ 

 

[α]D
20 = - 16.2 (c 1.0, CHCl3). 

 

Rf (cyclohexane/ethyl acetate 8:2) = 0.32 

 

Minor diastereoisomer: 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.28 (q, J = 2.4 Hz, 1H, H6), 4.95 (d, J = 8.0 Hz, 1H, 

CH2a(MOM)), 4.82 (d, J = 8.0 Hz, 1H, CH2b(MOM)), 3.90 (ddd, J = 8.8, 4.1, 4.0 Hz, 1H, H8), 3.42 

(s, 3H, CH3(MOM)), 3.06 (d, J = 18.4 Hz, 1H, H11a), 2.97 (d, J = 18.4 Hz, 1H, H11b), 2.78 (dd, J 

= 17.2, 4.0 Hz, 1H, H9a), 2.74 (d, J = 4.1 Hz, 1H, HOH-C8), 2.61 (dd, J = 17.2, 8.8 Hz, 1H, 

H9b), 1.91 (d, J = 2.4 Hz, 3H, H15), 0.16 (s, 9H, CH3(TMS)). 
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13
C-NMR (100MHz, CDCl3, ppm): 173.1 (Cq, C12), 102.4 (Cq, C10), 92.9 (CH2, CH2(MOM)), 

88.7 (Cq, C1), 87.7 (Cq, C4), 84.3 (Cq, C7), 73.5 (CH, C6), 71.6 (Cq, C5), 71.1 (CH, C8), 55.9 

(CH3, CH3(MOM)), 36.0 (CH2, C11), 23.9 (CH2, C9), 3.91 (CH3, C15), -0.07 (CH3, CH3(TMS)). 

 

IR (film, cm-1): 3463, 3019, 1783, 1216, 1042. 

 

MS (ESI, m/z): 347 [MNa]+ 

 

[α]D
20 = - 43.2 (c 1.0, CHCl3). 

 

Rf (cyclohexane/ethyl acetate 8:2) = 0.24 

 

(2R)-(1S)-1-((3R)-3-(methoxymethoxy)-5-oxo-2-(3-(trimethylsilyl)prop-2-yn-1-

yl)tetrahydrofuran-3-yl)but-2-yn-1-yl 2-methoxy-2-phenylacetate 170 
 

O8

10

O

OMOM6

O

4

TMS

O

PhMeO

C25H32O7Si

472,60 g/mol  

(4R,5S)-4-(1-hydroxy-4-(trimethylsilyl)but-3-yn-1-yl)-4-(methoxymethoxy)-5-(prop-1-yn-1-

yl)dihydrofuran-2(3H)-one (12 mg, 0.037 mmol, 1 eq) was dissolved in anhydrous CH2Cl2 

(0.5 mL). At room temperature, was added (-)-α-methoxyphenylacetic acid (7.4 mg, 0.044 

mmol, 1.2 eq), DMAP (1.4 mg, 0.011 mmol, 0.3 eq) and DCC (7.4 mg, 0.011 mmol, 1.2 eq). 

The mixture was stirred for 1h and was filtered over a pad of celite. The solvent was removed 

under reduced pressure. 

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 8:2) and to give 17.5 mg (100 %) of colourless oil. 
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Trimethyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-yn-1-yl)silane 168 

 

B

9

10 1

TMS

O
O

C12H23BO2Si

238,21 g/mol  

To a mixture of trimethyl(prop-1-yn-1-yl)silane (5.08 g, 45.24 mmol, 1.07 eq) in anhydrous 

THF (30 mL) was added dropwise n-BuLi (2.5 M in hexane, 4.04 mL, 10.09 mmol, 1.03 eq) 

at -25°C. The solution was stirred at -25°C for 1h and then added to a mixture of 2-

isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (7.87 g, 42.28 mmol, 1 eq) and HgCl2 

(4.02 g, 42.28 mmol, 1 eq.) in anhydrous THF (13 mL) at -25°C. The mixture was stirred at -

25°C for 2h before addition of acetyl chloride (3.4 mL, 47.35 mmol, 1.12 eq.). The solution 

was warmed at room temperature and stirred for 1h and then solvents were removed under 

reduced pressure to the third from starting volume. The solution was diluted with Et2O (80 

mL) then heptane (80 mL) and solvents were removed under reduced pressure. Then, the 

solution was diluted with heptane (30 mL) and filtered through a pad of Celite and the solvent 

was removed under reduced pressure. The crude mixture was purified by distillation (80°C 

under 2 mbar) to afford trimethyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-yn-

1-yl)silane as a colourless oil (7.5 g, 75 %). 

 

RN: 129217-85-2 

 
1
H-NMR (400MHz, CDCl3, ppm): 1.86 (s, 2H, H9), 1.26 (s, 12H, CH3(boronate)), 0.12 (s, 9H, 

CH3(TMS)). 
 

13
C-NMR (100MHz, CDCl3, ppm): 103.1 (Cq, C1), 84.0 (Cq, C(boronate)), 83.1 (Cq, C10), 24.6 

(CH3, CH3(boronate)), 24.5 (CH2, C9), 0.19 (CH3, CH3(TMS)). 

 

Spectroscopic data were consistent with those reported in the literature. 
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 (S)-1-cyclohexyl-2-(trimethylsilyl)buta-2,3-dien-1-ol 51 

 

OH

•

TMS

C13H24OSi

224,41 g/mol  

To a solution of 1-trimethylsilylpropyne (9.724 mmol, 1.09 g, 1.05 eq) in THF (13 mL) at 0 

°C was added dropwise a solution of t-BuLi (1.6 N in pentane, 10.21 mmol, 6.38 mL, 1.05 

eq), and the mixture was stirred for 1 h. Then, (+)-B-methoxy-diisopinocampheylborane 

(9.724 mmol, 3.08 g, 1 eq) in Et2O (11 mL) was added and the reaction mixture was stirred 

for 10 min before adding BF3.OEt2 (26.78 mmol, 4.087 g, 1.05 eq). The resulting reaction 

mixture was cooled to -100 °C and a solution of cyclohexanecarboxaldehyde (9.724 mmol, 

1.09 g, 1 eq) in Et2O (30 mL) was added dropwise over 90 min. The mixture was stirred for 

further 3 h and then slowly allowed to warm to room temperature (over 1 h). The reaction was 

quenched by an addition of NaOH (3 N / H2O, 7.4 mL, 22.2 mmol) and H2O2 (30% / H2O, 5.0 

mL, 43 mmol), the mixture was refluxed for 1 h and was then cooled to room temperature. 

After extraction, the organic phase was washed by H2O, brine, dried over anhydrous MgSO4, 

filtered and concentrated under vacuum.  

The resulting crude was purified by MPLC (heptane/ethyl acetate 1:15) affording allene 51 as 

a colorless oil (1.22 g, 56%) which spectroscopical data are identical to those reported in the 

literature. 

 

RN: 1191301-29-7 

 

Spectroscopic data were consistent with those reported in the literature. 

 

Propargyl iodide/allenyl iodide 171 

 

 



 295 

To a suspension of sodium iodide (83.85 mmol, 12.58 g, 1.5 eq) in dried acetone (7 mL) was 

added propargyl bromide (55.9 mmol, 6.65 g, 80 wt% in toluene, 1.5 eq) under nitrogen. The 

resulting mixture was reflux at 65 oC for 3 hours in dark and then cooled to room temperature. 

Distilled water (20 mL) was added. The organic layer was washed with water (3 x 20 mL), 

dried with MgSO4, and filtered to give crude product, which was purified by distillation under 

vacuum to afford the desired product as a mixture of 1:1 allenyl/propargyl iodide (4.36 g, 48 

mmol, 47% yield, 78 wt% in toluene).  

 

RN (allenyl iodide): 2936-44-9 

RN (propargyl iodide): 659-86-9 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.71 (t, J=6.4 Hz, 1H), 4.63 (d, J = 6.4 Hz, 2H), 3.65 (d, J 

= 2.8 Hz, 2H), 2.43 (t, J = 2.8 Hz, 1H). 

 

(S)-(1-benzylpyrrolidin-2-yl)di(naphthalen-1-yl)methanol 61 

 

N
BnHO

C32H29NO

443,58 g/mol  

To a solution of (S)-benzyl 1-benzylpyrrolidine-2-carboxylate (492 mg, 2.11 mmol, 1 eq) in 

THF (6.3 mL) at -78 oC was added a solution of organolithium reagent in THF (5.27 mmol, 

2.5 eq, 1.0 M in THF, prepared by reacting n-BuLi with 1-bromonaphthalene in THF at −78 
oC). After stirred at −78 oC for 2 hours, it was allowed to warm up to room temp. The course 

of reaction was monitored by TLC. After all the starting material was consumed, the reaction 

was quenched with a mixture of 2:1 of NH4Cl (sat. aq.)/NH4OH(28%) (3 mL). The organic 

layer was separated and the aqueous layer was extracted with diethyl ether (3 x 30 mL). The 

combined organic layers was dried over MgSO4, filtered and concentrated under vacuum to 

give the crude product, which was then purified by flash column chromatography and 

crystallized from diethyl ether/hexane to afford the title product as a white cubic crystal (646 

mg, 69% yield).  
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RN: 944810-50-8 

 
1
H-NMR (400MHz, CDCl3, ppm): 8.67 (br, 2H, HAr), 8.43 (br, 1H, HAr), 8.04 (br, 1H, HAr), 

7.75-7.54 (m, 6H, HAr), 7.25 (m, 7H, HAr), 6.93 (br, 2H, HAr), 5.00 (br, s, 1H), 4.41 (br, 2H, 

Hbenz), 2.93-2.91 (m, 1H), 2.65-2.30 (br, m, 5H), 1.73 (br, s, 2H). 

 

MS (ESI, m/z): 466 [MNa]+ 

 

Rf : 0.25 (petroleum ether / ethyl acetate 9:1). 

 

Spectroscopic data were consistent with those reported in the literature. 

 

(4R,5S)-4-((((S)-2-hydroxy-1,2-diphenylethyl)imino)methyl)-4-(methoxymethoxy)-5-

(prop-1-yn-1-yl)dihydrofuran-2(3H)-one 173a 

 

and 

 

(4S,5S)-4-((2R,4R,5S)-4,5-diphenyloxazolidin-2-yl)-4-(methoxymethoxy)-5-(prop-1-

ynyl)dihydrofuran-2(3H)-one173b 

 

 

An oven-dried 10 mL round bottom flask with egg shaped stirbar was cooled under argon and 

charged with (1S,2R)-(+)-2-amino-1,2-diphenylethanol (108 mg, 0.504 mmol, 4 eq), indium 

powder (58 mg, 0.504 mmol, 4 eq) and anhydrous  THF (1.3 mL). The flask was vacuum 

purged with argon (5x), at which time anhydrous pyridine (0.04 mL, 0.504 mmol, 4 eq) and 

propargyl bromide (80 wt% in toluene, 0.05 mL, 0.504 mmol, 4 eq) were added and the 

mixture was stirred vigorously at 25 ˚C. After 25 minutes at room temperature, the solution 

was cooled to –78 ˚C (dry ice/acetone bath), and (4R,5S)-4-(1-hydroxy-4-(trimethylsilyl)but-
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3-yn-1-yl)-4-(methoxymethoxy)-5-(prop-1-yn-1-yl)dihydrofuran-2(3H)-one (27 mg, 0.126 

mmol, 1 eq) added dropwise. After 16 h the reaction was quenched with 1M HCl (1 mL), the 

layers separated and the aqueous layer extracted with diethyl ether/cyclohexanes 1:1 (2 x 2 

mL). The combined organic layers were washed with 1M HCl (2 mL), H2O (2 mL) and brine 

(2 mL), dried with anhydrous MgSO4, filtered through a silica plug and evaporated to give a 

mixture 1:1 of 173a and 173b (51 mg, quant.). 

 
1
H-NMR (400MHz, CDCl3, ppm): 8.06 (dd, J = 7.9, 0.8 Hz, 0.5H), 7.99 (dd, J = 7.9, 1.6 Hz, 

0.5H), 7.45 (td, J = 7.5, 0.8 Hz, 0.5H), 7.21 (td, J = 7.5, 1.6 Hz, 0.5H), 7.10-7.06 (m, 6H, 

HAr), 6.99 (m, 2H, HAr), 6.84 (m, 2H, HAr), 6.07 (s, 1H), 5.79 (d, J = 7.1 Hz, 1H), 5.55 (d, J = 

7.1 Hz, 1H), 4.99 (d, J = 7.6 Hz, 1H), 4.93 (d, J = 7.6 Hz, 1H), 4.83 (q, 1H, J = 2.2 Hz), 3.54 

(s, 3H), 3.14 (d, 1H, J = 17.0 Hz), 2.96 (d, 1H, J = 17.0 Hz), 1.94 (d, 3H, J = 2.2 Hz). 

 
13

C-NMR (100MHz, CDCl3, ppm): 173.7, 169.2, 141.8, 136.2, 135.5, 133.2, 131.8, 127.9, 

127.8, 127.7, 127.3, 127.2, 126.9 , 99.8, 93.4, 85.2, 85.1, 84.0, 65.2, 61.4, 56.4, 41.8, 3.78. 

 

MS (ESI, m/z): 430 [MNa]+ 

 

(4R)-4-((S)-1-((tert-butyldimethylsilyl)oxy)but-2-yn-1-yl)-4-(methoxymethoxy)-5-(3-

(trimethylsilyl)prop-2-yn-1-yl)dihydrofuran-2(3H)-one 174 

  

O
8

10

O

OMOM6

OTBS

4

TMS

C22H38O5Si2
438,71 g/mol  

 

(4R,5S)-4-(1-hydroxy-4-(trimethylsilyl)but-3-yn-1-yl)-4-(methoxymethoxy)-5-(prop-1-yn-1-

yl)dihydrofuran-2(3H)-one (21 mg, 0.065 mmol, 1 eq) was dissolved in CH2Cl2 (0.7 mL). At 

0°C were added successively 2,6-lutidine (0.023 mL, 0.195 mmol, 3 eq) and TBSOTf (0.03 

mL, 0.130 mmol, 2 eq). The mixture was stirred at room temperature for 30 mn before being 

quenched with an aqueous solution of NH4Cl and extracted with CH2Cl2 (3x). The organic 
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layer was separated and washed with brine, dried over MgSO4 and the solvent removed under 

reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 95:5 to 8:2) to afford the desired product, (10 mg, 41%) as colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.09 (d, J = 7.4 Hz, 1H, CH2a(MOM)), 4.71 (dd, 1H, J = 6.5, 

5.4 Hz, H8), 4.68 (d, 1H, J = 7.4 Hz, CH2b(MOM)), 4.51 (q, 1H, J = 2.1 Hz, H6), 3.40 (s, 3H, 

CH3(MOM)), 3.12 (d, 1H, J = 18.0 Hz, H11a), 2.95 (d, 1H, J = 18.0 Hz, H11b), 2.53 (dd, 1H, J = 

17.4, 5.4 Hz, H9a), 2.41 (dd, 1H, J = 17.4, 6.4 Hz, H9b), 1.51 (d, 3H, J = 2.1 Hz, H15), 0.56 (s, 

9H, CH3(TBS)), -0.17 (s, 3H, CH3(TBS)), -0.19 (s, 9H, CH3(TMS)), -0.20 (s, 3H, CH3(TBS)). 
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Partie expérimentale : Vers la synthèse du produit naturel 

- deuxième approche 

 

 

(E)-2,3-dibromoprop-2-en-1-ol 177 

 

6

7

Br
Br

8 OH

C3H4Br2O

215.87 g/mol  

Pyridinium tribromide (50 g, 156 mmol, 2.1 eq) was dissolved in anhydrous dichloromethane 

(160 mL) protected from light. At room temperature was added dropwise propargylic alcohol 

(4.2 g, 75 mmol, 1 eq). The mixture was stirred overnight at room temperature before being 

diluted with Et2O (ca. 60 mL) and then filtered through a pad of Celite. The solvent was 

removed under reduced pressure. 

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 85:15) to afford the required (E)-2,3-dibromoprop-2-en-1-ol, (18.75 g, 78%) as a 

colourless oil. 

 

RN: 69298-56-2 

 
1
H-NMR (400 MHz, CDCl3, ppm): 6.57 (s, 1H, H6), 4.46 (s, 2H, H8), 2.22 (s, 1H, HOH) 

 
13

C-NMR (100 MHz, CDCl3, ppm): 125.4 (Cq, C7), 104.3 (Cq, C6), 64.0 (CH2, C8) 

 

MS (ESI, m/z): 238 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.40 
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(E)-1-(((2,3-dibromoallyl)oxy)methyl)-4-methoxybenzene 178 

 

6

7

Br
Br

8 OPMB

C11H12Br2O2
336.02 g/mol  

 

PMB-TCAI (8,60 g, 34,2 mmol, 1.2 eq) was dissolved in a mixture of anhydrous 

dichloromethane/cyclohexane (12/24 mL). At room temperature were added (E)-2,3-

dibromoprop-2-en-1-ol (6,15 g, 28,5 mmol, 1 eq) and PPTS (358 mg, 1,4 mmol, 5 mol%). 

The mixture was stirred at room temperature for 36h then filtered through a pad of Celite. The 

solvent was removed under reduced pressure. 

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 9:1) to afford the required (E)-1-(((2,3-dibromoallyl)oxy)methyl)-4-methoxybenzene, 

(8.60 g, 90%) as a light yellow oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.32 (d, 2H, J = 8.1 Hz, HAr), 6.89 (d, 2H, J = 8.1 Hz, 

HAr), 6.69 (s, 1H, H6), 4.46 (s, 2H, H8), 4.37 (s, 2H, CH2(PMB)), 3.81 (s, 3H, CH3(PMB)). 

 

13
C-NMR (100 MHz, CDCl3, ppm): 159.4 (Cq, CAr(PMB)), 129.6 (CH, CAr(PMB)), 129.3 (CH, 

CAr(PMB)), 123.2 (Cq, C7), 113.8 (CH, CAr(PMB)), 105.9 (CH, C6), 71.5 (CH2, C8), 69.6 (CH2, 

CH2(PMB)), 55.2 (CH3, COMe(PMB)). 

 

IR (cm-1) = 3079, 2835, 1611, 1511, 1246, 1086, 819. 

 

MS (ESI, m/z): 359 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.60 

 

(E)-1-(((2-bromohex-2-en-4-yn-1-yl)oxy)methyl)-4-methoxybenzene 179 
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To a cooled (0°C) solution of ZnCl2 (1,0 M dans Et2O, 7.70 mL, 7.70 mmol, 1.3 eq) was 

added a solution of propynyl magnesium bromide (0.5 M in Et2O, 15.5 mL, 7.70 mmol, 1.3 

eq). The mixture was vigorously stirred for 45 min. Then, were respectively added Pd(PPh3)4 

(400 mg, 0.29 mmol, 5 mol%) and (E)-1-(((2,3-dibromoallyl)oxy)methyl)-4-methoxybenzene 

(2.00 g, 5.90 mL, 1 eq) dissolved in anhydrous Et2O (2 mL). The mixture was vigorously 

stirred overnight at 0°C before being diluted in Et2O (20 mL) then filtered through a pad of 

Celite. The organic layer was separated and washed with an aqueous saturated solution of 

NH4Cl and brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

24:1) to give 1.04 g (60%) of colourless oil. 

 
1
H-NMR (400 MHz, CDCl3, ppm): 7.30 (d, J = 8.4 Hz, 2H, HAr), 6.87 (d, J = 8.4 Hz, 2H, 

HAr), 5.86 (s, 1H, H6), 4.47 (s, 2H, CH2(PMB)), 4.20 (s, 2H, H8), 3.79 (s, 3H, CH3(PMB)), 2.00 (s, 

3H, H15). 

 
13

C-NMR (100 MHz, CDCl3, ppm): 159.3 (Cq, CAr(PMB)), 134.8 (Cq, C7), 129.8 (CH, 

CAr(PMB)), 116.7 (CH, C6), 113.6 (CH, CAr(PMB)), 92.8 (Cq, C4), 75.2 (Cq, C5), 71.0 (CH2, C8), 

69.9 (CH2, CH2(PMB)), 55.3 (CH3, COMe(PMB)), 4.5 (CH3, C15). 

 

IR (film, cm-1): 2913, 2836, 2221, 1612, 1512, 1247, 1088, 1034, 819. 

 

MS (ESI, m/z): 317 [MNa]+ 

 

Rf (pentane/Et2O 8:2) = 0.60 
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(E)-2-bromohex-2-en-4-yn-1-ol 176 

 

6

7

Br5

8 OH
4

15

C6H7BrO

175,02 g/mol  

(E)-1-(((2-bromohex-2-en-4-yn-1-yl)oxy)methyl)-4-methoxybenzene (2.68 g, 9.12 mmol, 1 

eq) was dissolved in a mixture of dichloromethane/water (88 mL/10 mL) and DDQ (2.48 g, 

10.94 mmol, 1.2 eq) was added at room temperature. The mixture was stirred at room 

temperature for 2h before being quenched with an aqueous solution of NaHCO3 and extracted 

with dichloromethane (3x), the organic layers were combined, washed with an aqueous 

solution of NaCl and dried over MgSO4 and the solvent removed under reduced pressure.  

The crude product was dissolved in a mixture of THF/MeOH (40:2 mL) and the solution was 

cooled at 0°C. NaBH4 (689 mg, 18,23 mmol, 2 eq.) was added and the solution was stirred for 

30 min at 0°C before being quenched with an aqueous solution oh NH4Cl and extracted with 

dichloromethane (3x), the organic layers were combined, washed with an aqueous solution of 

NaCl and dried over MgSO4 and the solvent removed under reduced pressure. 

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 9:1) to give 1.16 g (74%) of colourless oil. 

 
1
H-NMR (400 MHz, CDCl3, ppm): 6.00 (q, J = 2.5 Hz, 1H, H6), 4.50 (s, 2H, H8), 2.12 (s, 1H, 

HOH), 1.95 (d, J = 2.5 Hz, 3H, H15). 

 
13

C-NMR (100 MHz, CDCl3, ppm):, 137.0 (Cq, C7), 114.7 (CH, C6), 93.0 (Cq, C4), 74.8 (Cq, 

C5), 64.5 (CH, C8), 4.51 (CH3, C15). 

 

IR (film, cm-1): 3407, 2921, 2852, 1713, 1457, 1119. 

 

MS (ESI, m/z): 197 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 8:2) = 0.23 
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(E)-2-bromohex-2-en-4-ynal 180 

 

6

7

Br5

8

O
4

15

H

C6H5BrO

173,01 g/mol  

To a mixture of (E)-2-bromohex-2-en-4-yn-1-ol (664 mg, 3.80 mmol, 1 eq) in anhydrous 

dichloromethane (39 mL) was added Dess Martin reagent (2.43 g, 5.75 mmol, 1.5 eq). The 

mixture was stirred a room temperature for 1.5h before being quenched with an aqueous 

solution of Na2S2O3 and aqueous solution of NaHCO3 and extracted with CH2Cl2 (3x), the 

organic layers were combined, washed with brine, dried over MgSO4 and the solvent removed 

under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 9:1) to afford the required (E)-2-bromohex-2-en-4-ynal, (572 mg, 88%) as a colourless 

oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 9.87 (s, 1H, H8), 7.13 (s, 1H, H6), 2.07 (s, 3H, H15). 

 
13

C-NMR (100 MHz, CDCl3, ppm): 183.6 (CH, C8), 134.2 (Cq, C7), 131.1 (CH, C6), 100.9 

(Cq, C4), 74.9 (Cq, C5), 5.01 (CH3, C15). 

 

IR (film, cm-1): 2921, 2852, 1723, 1456, 1134. 

 

MS (ESI, m/z): 195 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 8:2) = 0.50 
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(E)-5-bromo-1-(trimethylsilyl)nona-5-en-1,7-diyn-4-ol 182 

 

6

7

Br

5

8 OH
415

9

10

1

TMS

C12H17BrOSi

285,25 g/mol  

To a mixture of (E)-2-bromohex-2-en-4-ynal (572 mg, 3.32 mmol, 1 eq.) in anhydrous THF 

(10 mL) were added Et2Zn (1.5 M in toluene, 44.0 µL, 0.066 mmol, 2% mol) and trimethyl(3-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-yn-1-yl)silane (1.19 g, 4.98 mmol, 1.5 

eq.) diluted in anhydrous THF (5 mL). The mixture was stirred for 30 min and the solvent was 

removed under reduced pressure. Then, the residue was diluted in MeOH and stirred at room 

temperature overnight and the solvent was removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 9:1) to give 832 mg (88%) as colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 6.05 (q, J = 1.8 Hz, 1H, H6), 4.94 (dd, J = 5.1, 4.8 Hz, 1H, 

H8), 2.69 (dd, J = 12.6, 5.1 Hz, 1H, H9a), 2.57 (dd, J = 12.6, 4.8 Hz, 1H, H9b), 1.96 (d, J = 1.8 

Hz, 3H, H15), 0.16 (s, 9H, CH3(TMS)). 

 
13

C-NMR (100 MHz, CDCl3, ppm): 139.4 (Cq, C7), 115.1 (CH, C6), 101.2 (Cq, C1), 93.5 (Cq, 

C10), 88.2 (Cq, C4), 75.0 (Cq, C5), 69.9 (CH, C8), 27.6 (CH2, C9), 4.61 (CH3, C15), -0.06 (CH3, 

CH3(TMS)). 

 

IR (film, cm-1): 3367, 2959, 2918, 2180, 1247, 1029. 

 

MS (ESI, m/z): 307, 309 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 8:2) = 0.42 
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(E)-5-bromonona-5-en-1,7-diyn-4-ol 181 

 

6

7

5

8

OH
415 9

10

1

Br

C9H9BrO

213,07 g/mol  

To a mixture of In (187 mg, 1.628 mmol, 2 eq) and (1S,2R)-2-amino-1,2-diphenylethanol 

(349 mg, 1.628 mmol, 2 eq) in anhydrous and degassed THF (10 mL) was added propargyl 

bromide (0.17 mL, 1.628 mmol, 2 eq) and pyridine (0.13 mL, 1.628 mmol, 2 eq). The mixture 

was vigorously stirred for 30 min (green solution) and then cooled to -78°C. Then, (E)-2-

bromohex-2-en-4-ynal in anhydrous and degassed THF (1 mL) was added. The green solution 

was stirred and slowly warmed to room temperature overnight before being quenched with 

HCl 1 M. and extracted with ethyl acetate (3x). The organic layers were combined, dried over 

MgSO4 and the solvent removed under reduced pressure. 

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 9:1) to give 130 mg of desire homopropargylic alcohol (75%) as colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 6.06 (q, J = 2.4 Hz, 1H, H6), 4.99 (ddd, J = 7.6, 6.1, 6.0 

Hz, 1H, H8), 2.67-2.60 (ddd, J = 16.8, 7.6, 2.7 Hz, 1H, H9a), 2.55-2.48 (ddd, J = 16.8, 6.1, 2.7 

Hz, 1H, H9b), 2.25 (d, J = 6.0 Hz, 1H, HOH), 2.08 (t, J = 2.7 Hz, 1H, H1), 1.97 (d, J = 2.4 Hz, 

3H, H15). 

 
13

C-NMR (100 MHz, CDCl3, ppm): 139.2 (Cq, C7), 115.3 (CH, C6), 93.8 (Cq, C4), 79.2 (Cq, 

C5), 74.8 (Cq, C10), 71.0 (Cq, C1), 69.9 (CH, C8), 26.2 (CH2, C9), 4.59 (CH3, C15). 

 

IR (film, cm-1): 3498, 2958, 2979, 1211, 999. 

 

MS (ESI, m/z): 235, 237 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 9:1) = 0.19 
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(E)-4-(but-2-yn-1-ylidene)-3-hydroxy-3-methyl-5-(3-(trimethylsilyl)prop-2-yn-1-

yl)dihydrofuran-2(3H)-one 184 

 

6
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C15H20O3Si

276,40 g/mol  

To a mixture of (E)-5-bromo-1-(trimethylsilyl)nona-5-en-1,7-diyn-4-ol (497 mg, 1.75 mmol, 

1 eq) in anhydrous THF (9.3 mL) at -78°C was added n-BuLi (1.612 M in hexane, 1.19 mL, 

1.92 mmol, 1.1 eq). The yellow solution was stirred for 15 mn at -78°C before addition of t-

BuLi (1.656 M in heptane, 2.1 mL, 3.5 mmol, 2.0 eq). The dark yellow solution was stirred 

for 20 min at -78°C before addition of methyl pyruvate (1.58 mL, 17.5 mmol, 10 eq). Then, 

the mixture was stirred for 45 min at -78°C before being quenched with an aqueous saturated 

solution of NH4Cl and extracted with Et2O (3x), the organic layers were combined, washed 

with brine, dried over MgSO4 and the solvent removed under reduced pressure. 

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 85:15) and then purified by HPLC (heptane/ethyl acetate 85:15) to give 189 mg of 

each diastereoisomer (78%) as white solids. 

 

Diastereoisomer 1: 

 

1
H-NMR (400MHz, CDCl3, ppm): 5.95 (q, J = 1.8 Hz, 1H, H6), 5.29 (dd, J = 2.7, 2.4 Hz, 1H, 

H8), 3.38 (s, 1H, HOH), 3.14 (dd, J = 12.9, 2.7 Hz, 1H, H9a), 3.04 (dd, J = 12.9, 2.4 Hz, 1H, 

H9b), 2.03 (d, J =1.8 Hz, 3H, H15), 1.53 (s, 3H, H13), 0.15 (s, 9H, CH3(TMS)). 

 
13

C-NMR (100 MHz, CDCl3, ppm): 177.9 (Cq, C12), 149.0 (Cq, C7), 108.5 (CH, C6), 99.9 

(Cq, C1), 97.4 (Cq, C11), 88.7 (Cq, C10), 78.1 (Cq, C4 ou 5), 74.6 (Cq, C4 ou 5), 72.0 (CH, C8), 

26.1 (CH3, C13), 25.0 (CH2, C9), 4.65 (CH3, C15), -0.22 (CH3, CH3(TMS)). 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.38 
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Diastereoisomer 2: 

 

1
H-NMR (400 MHz, CDCl3, ppm): 5.91 (q, J = 1.8 Hz, 1H, H6), 5.30 (dd, J = 1.7, 1.5 Hz, 

1H, H8), 3.07 (dd, J = 14.7, 1.7 Hz, 2H, H9a), 3.02 (dd, J = 14.7, 1.5 Hz, 2H, H9b), 2.48 (s, 1H, 

HOH), 2.03 (d, J = 1.8 Hz, 3H, H15), 1.67 (s, 3H, H13), 0.13 (s, 9H, CH3(TMS)). 

 
13

C-NMR (100 MHz, CDCl3, ppm): 177.3 (Cq, C12), 149.1 (Cq, C7), 108.7 (CH, C6), 100.5 

(Cq, C1), 97.4 (Cq, C11), 88.7 (Cq, C10), 78.2 (Cq, C4 ou 5), 74.3 (Cq, C4 ou 5), 72.0 (CH, C8), 

26.2 (CH3, C13), 24.8 (CH2, C9), 4.66 (CH3, C15), -0.21 (CH3, CH3(TMS)). 

 

IR (film, cm-1): 3471, 2960, 2901, 2177, 1786, 1250, 1167, 1116, 1023. 

 

MS (ESI, m/z): 299 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.28 

 

3,4-dihydroxy-4-(1-hydroxybut-2-yn-1-yl)-3-methyl-5-(3-(trimethylsilyl)prop-2-yn-1-

yl)dihydrofuran-2(3H)-one 185 
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310,42 g/mol  

To a mixture of (E)-4-(but-2-yn-1-ylidene)-3-hydroxy-3-methyl-5-(3-(trimethylsilyl)prop-2-

yn-1-yl)dihydrofuran-2(3H)-one (122 mg, 0.441 mmol, 1 eq) in a mixture (1:1) of 

acetone/water (3.2 mL) were added at room temperature K2OsO2(OH)4 (8.1 mg, 0.022 mmol, 

5 mol%) and NMO (238 mg, 1.764 mmol, 4 eq). The mixture was stirred at room temperature 

for 5h before being quenched with an aqueous saturated solution of NaCl and extracted with 

ethyl acetate (3x), the organic layers were combined, dried over MgSO4 and the solvent 

removed under reduced pressure. 
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The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 5:5) to give 82 mg of desire product (60%) as colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 4.84 (dd, J = 7.5, 6.3 Hz, 1H, H8), 4.43 (q, J = 2.4 Hz, 1H, 

H6), 4.00 (s, 1H, HOH), 2.94 (dd, J = 17.4, 7.5 Hz, 1H, H9a), 2.84 (dd, J = 17.4, 6.3 Hz, 1H, 

H9b), 1.90 (d, J = 2.4 Hz, 2H, H15), 1.53 (s, 3H, H13), 0.19 (s, 9H, CH3(TMS)). 

 
13

C-NMR (100 MHz, CDCl3, ppm): 176.1 (Cq, C12), 102.3 (Cq, C1), 88.7 (Cq, C7), 86.6 (Cq, 

C10), 79.2 (Cq, C11), 78.8 (CH, C8), 75.7 (Cq, C4 ou 5), 75.6 (Cq, C4 ou 5), 61.8 (CH, C6), 20.2 

(CH2, C9), 19.9 (CH3, C13), 3.66 (CH3, C15), -0.22 (CH3, CH3(TMS)). 

 

IR (film, cm-1): 3518, 2962, 2848, 1777, 1097. 

 

MS (ESI, m/z): 323 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 4:6) = 0.18 

 

3,4-dihydroxy-4-(1-hydroxybut-2-yn-1-yl)-3-methyl-5-(prop-2-yn-1-yl)dihydrofuran-

2(3H)-one 186 
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238.24 g/mol  

To a mixture of 3,4-dihydroxy-4-(1-hydroxybut-2-yn-1-yl)-3-methyl-5-(3-

(trimethylsilyl)prop-2-yn-1-yl)dihydrofuran-2(3H)-one (20 mg, 0.064 mmol, 1 eq) in 

anhydrous THF (0.5 mL) at 0°C was added TBAF (1 M in THF, 0.13 mL, 0.13 mmol, 2 eq). 

The solution was stirred for 10 min at 0°C and then warmed at room temperature and was 

stirred for an additional 30 min before being quenched with an aqueous saturated solution of 

NH4Cl and extracted with Et2O (3x), the organic layers were combined, washed with brine, 

dried over MgSO4 and the solvent removed under reduced pressure. 
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1
H-NMR (400MHz, CDCl3, ppm): 4.75-4.71 (dd, J = 7.5, 6.3 Hz, 1H, H8), 4.55 (q, J = 2.1 

Hz, 1H, H6), 4.05 (s, 1H, HOH), 3.00-2.92 (ddd, J = 17.4, 4.5, 2.6 Hz, 1H, H9a), 2.80-2.71 

(ddd, J = 17.4, 8.3, 2.6 Hz, 1H, H9b), 2.12 (t, J = 2.6 Hz, 1H, H1), 1.90 (d, J = 2.1 Hz, 2H, 

H15), 1.58 (s, 3H, H13). 

 
13

C-NMR (100 MHz, CDCl3, ppm): 175.9 (Cq, C12), 86.3 (Cq, C7), 79.9 (Cq, C10), 79.1 (Cq, 

C11), 76.1 (Cq, C4 ou 5), 75.4 (Cq, C4 ou 5), 71.0 (CH, C1), 63.0 (CH, C6), 20.3 (CH2, C9), 19.2 

(CH3, C13), 3.64 (CH3, C15). 

 

IR (film, cm-1): 3428, 2921, 2338, 1783, 1118, 847. 

 

MS (ESI, m/z): 261 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 2:8) = 0.30 

 

4-(1-((tert-butyldimethylsilyl)oxy)but-3-yn-1-yl)-3,4-dihydroxy-3-methyl-5-(prop-1-yn-

1-yl)dihydrofuran-2(3H)-one 188 
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352,50 g/mol  

 

3,4-dihydroxy-4-(1-hydroxybut-2-yn-1-yl)-3-methyl-5-(prop-2-yn-1-yl)dihydrofuran-2(3H)-

one (15.2 mg, 0.064 mmol, 1 eq) was dissolved in CH2Cl2 (0.4 mL). At 0°C were added 

successively 2,6-lutidine (0.022 mL, 0.192 mmol, 3 eq) and TBSOTf (0.03 mL, 0.128 mmol, 

2 eq). The mixture was stirred at room temperature for 30 mn before being quenched with an 

aqueous solution of NH4Cl and extracted with CH2Cl2 (3x). The organic layer was separated 

and washed with brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 5:5) to afford the desired product, (22.6 mg, quant.) as colorless oil. 
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1
H-NMR (400MHz, CDCl3, ppm): 5.36 (q, J = 2.1 Hz, 1H, H6), 4.06 (dd, J = 5.5, 4.9 Hz, 1H, 

H8), 3.61 (s, 1H, HOH), 2.96-2.90 (ddd, J =17.4, 4.9, 2.6 Hz, 1H, H9a), 2.55-2.49 (ddd, J = 

17.4, 5.6, 2.6 Hz, 1H, H9b), 2.08 (t, J = 2.6 Hz, 1H, H1), 1.94 (d, J = 2.1 Hz, 2H, H15), 1.22 (s, 

3H, H13), 0.89 (s, 9H, CH3(TMS)), 0.21 (s, 3H, CH3(TMS)), 0.16 (s, 3H, CH3(TMS)). 
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Partie expérimentale : Etude sur la réaction de Pauson-

Khand allénol-yne intramoléculaire 

 

 

Diethyl 2-allyl-2-(but-2-ynyl)malonate 197(Me) 

 

 

To a suspension of NaH (60% wt in oil, 750 mg, 18.8 mmol) in anhydrous THF (33 mL) was 

added dropwise diethyl allylmalonate (3.1 g, 15.6 mmol) at 5°C. The reaction was stirred for 

1h at room temperature and cooled to 5°C. Then, 1-bromobut-2-yne (1.64 mL, 18.8 mmol) 

was added dropwise. The solution was stirred for 1h at room temperature then quenched with 

an aqueous saturated solution of NH4Cl at 0°C and extracted with Et2O (3x). The organic 

layer was separated and washed with water and brine, dried over MgSO4 and the solvent 

removed under reduced pressure.  

The crude residue (4.07 g, quantitative) was used without further purification to the next step. 

 

RN: 1195548-53-7 

 

1
H-NMR (400MHz, CDCl3, ppm): 5.63 (tdd, J = 7.5, 10.2, 18.3 Hz, 1H, H2), 5,15 (d, Jtrans = 

18.3 Hz, 1H, H1a), 5.10 (d, Jcis = 10.2 Hz, 1H, H1b), 4.19 (q, J = 6.9 Hz, 4H, CH2(Et)), 2.77 (d, 

J = 7.5 Hz, 2H, H5), 2.72 (q, J = 2.4 Hz, 2H, H3), 1.75 (t, J = 2.4 Hz, 3H, H8), 1.24 (t, J = 6.9 

Hz, 6H, CH3(Et)). 

 

MS (ESI, m/z): 275 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.25 

 

Spectroscopic data were consistent with those reported in the literature. 



 312 

Diethyl 2-allyl-2-(pent-2-ynyl)malonate 197(Et) 

 

 

To a suspension of NaH (60% wt in oil, 1.36 g, 34.0 mmol) in anhydrous THF (66 mL) was 

added dropwise diethyl allylmalonate (5.67 g, 28.3 mmol) at 5°C. The reaction was stirred for 

1h at room temperature and cooled to 5°C. Then, 1-bromopent-2-yne (3.5 mL, 34.0 mmol) 

was added dropwise. The solution was stirred for 1h at room temperature before being 

quenched with an aqueous saturated solution of NH4Cl at 0°C and extracted with Et2O (3x). 

The organic layer was separated and washed with water and brine, dried over MgSO4 and the 

solvent removed under reduced pressure.  

The crude residue (7.60 g, quantitative) was used without further purification to the next step. 

 

RN: 101101-24-0 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.62 (m, 1H, H2), 5.15 (d, Jtrans = 16.8 Hz, 1H, H1a) 5.09 

(d, Jcis = 10.0 Hz, 1H, H1b), 4.18 (q, J = 7.2 Hz, 4H, CH2(Et)), 2.77 (d, J = 7.6 Hz, 2H, H8), 

2.73 (s, 2H, H5), 2.11 (m, 2H, H3), 1.23 (t, J = 7.2 Hz, 6H, CH3(Et)), 1.07 (t, J = 7.6 Hz, 3H, 

H9).  

 

Rf (cyclohexane/ethyl acetate: 8:2) = 0.25 

 

Spectroscopic data were consistent with those reported in the literature  
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2-allyl-2-(but-2-ynyl)propane-1,3-diol 198(Me) 

 

 

To a suspension of LiAlH4 (1.17 g, 30.92 mmol) in dry THF (50 mL) was added a solution of 

crude 197(Me) (3.90 g, 15.42 mmol) in anhydrous THF (20 mL) at 0°C. The mixture was 

stirred for 30 min at 0°C then 1h at room temperature. The reaction cooled at 0°C was 

quenched with water (4.0 mL) then treated successively with an aqueous solution of NaOH 

15% (4.0 mL) and water (12.0 mL). The solution was stirred for 10 min then filtered through 

a pad of Celite. The organic layer was washed with water and brine, dried over MgSO4 and 

the solvent was removed under reduced pressure.  

The crude residue (2.55 g, quantitative) was used without further purification to the next step. 

 

RN: 499128-85-7 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.81 (tdd, J = 7.5, 10.0, 17.1 Hz, 1H, H2), 5.10 (m, 1H, 

H1), 4.81 (brs, 2H, OH), 3.66 (dd, J = 5.8, 11.0, 4H, H10 and H9), 3.60 (dd, J = 5.8, 11.0, 4H, 

H10 and H9), 2.17 (q, J = 2.4 Hz, 2H, H5), 2.13 (d, J = 7.5 Hz, 2H, H3), 1.73 (t, J = 2.4 Hz, 3H, 

H8). 

 
13

C-NMR (100MHz, CDCl3, ppm): 133.6, 118.4, 78.4, 75.4, 67.8, 42.4, 36.6, 22.1, 3.7. 

 

IR (film, cm-1) = 3345, 2919, 1438, 1026. 

 

MS (ESI, m/z): 169 [MH]+ 

 

Rf (cyclohexane/ethyl acetate 5:5) = 0.25 

 

Spectroscopic data were consistent with those reported in the literature. 
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3,3-bis(hydroxymethyl)oct-5-ynal 198(Et) 

 

 

To a suspension of LiAlH4 (1.42 g, 37.6 mmol) in anhydrous THF (60 mL) was added a 

solution of 197(Me) (5.0 g, 18.8 mmol) in anhydrous THF (25 mL) at 0°C. The mixture was 

stirred for 30 min at 0°C then 1h at room temperature. The reaction cooled at 0°C was 

quenched with water (4.0 mL) then treated successively with an aqueous solution of NaOH 

15% (4.0 mL) and water (12.0 mL). The solution was stirred for 10 min then filtered through 

a pad of Celite. The organic layer was washed with water and brine, dried over MgSO4 and 

concentrated under reduced pressure.  

The crude residue (3.54 g, quantitative) was used without further purification to the next step. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.82 (m, 1H, H2), 5.11 (m, 1H, H1), 3.63 (d, J = 11.0 Hz, 

2H, H10 and H11), 3.61 (d, J = 11.0 Hz, 2H, H10 and H11), 2.17 (m, 6H, H3 and H5 and H8), 1.90 

(brs, 2H, OH), 1.73 (t, J = 7.2 Hz, 2H, H9). 

 

IR (film, cm-1) = 3348, 2920, 1639, 1438, 1027. 

 

MS (ESI, m/z): 183 [MH]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.25 

 

5-allyl-5-(but-2-yn-1-yl)-2,2-dimethyl-1,3-dioxane 199(Me) 
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To a solution of diol 198(Me) (2.55 g, 15.15 mmol) in anhydrous CH2Cl2 (78 mL) at room 

temperature were successively added 2,2-dimethoxypropane (9.42 mL, 75.8 mmol) and PPTS 

(392 mg, 1,56 mmol). The mixture was stirred at room temperature overnight then quenched 

with an aqueous solution of NaHCO3 and extracted with CH2Cl2 (x3). The organic layer was 

separated, washed with brine, dried over MgSO4 and removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 95:5) to afford the desired product, (2.54 g, 78%) as colourless oil. 

 

RN: 499128-89-1 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.76 (m, 1H, H2), 5.13 (m, 2H, H1), 3.65 (s, 4H, H9 and 

H10), 2.31 (q, J = 2.6 Hz, 2H, H5), 2.15 (d, J = 7.6 Hz, 2H, H3), 1.79 (t, J = 2.6 Hz, 3H, H8), 

1.41 (s, 3H, H12), 1.40 (s, 3H,H13). 

 
13

C-NMR (100MHz, CDCl3, ppm): 132.4 (CH, C2), 118.4 (CH2, C1), 97.7 (Cq, C11), 77.9 

(Cq, C6 or C7), 74.8 (Cq, C6 or C7), 66.5 (CH2, C9 and C10), 36.7 (Cq, C11), 35.2 (CH2, C3), 25.4 

(CH3, C12 or C13), 22.4 (CH3, C12 or C13), 21.6 (CH2, C5), 3.3 (CH3, C8). 

 

IR (film, cm-1) = 2992, 2920, 2860, 1639, 1439, 1370, 1198. 
 

MS (ESI, m/z): 209 [MH]+ 

 

Rf (cyclohexane/ethyl acetate 8:2) = 0.50 

 

2-(2,2-dimethyl-5-(pent-2-ynyl)-1,3-dioxan-5-yl)acetaldehyde 199(Et) 

 

 

To a solution of diol 198(Et) (3.54 g, 19.40 mmol) in anhydrous CH2Cl2 (100 mL) at room 

temperature were successively added 2,2-dimethoxypropane (11.9 mL, 97.1 mmol) and PPTS 
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(487 mg, 1,94 mmol). The mixture was stirred at room temperature overnight then quenched 

with an aqueous solution of NaHCO3 and extracted with CH2Cl2 (x3). The organic layer was 

separated, washed with brine, dried over MgSO4 and removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 95:5) to afford the desired product, (2.45 g, 58% over 3 steps) as colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.75 (m, 1H, H2), 5.10 (m, 2H, H1), 3.66 (d, J = 11.4 Hz, 

2H, H10 and H11), 3.62 (d, J = 11.4 Hz, 2H, H10 and H11), 2.29 (d, J = 2.3 Hz, 2H, H3), 2.16 (m, 

4H, H5 and H8), 1.40 (s, 3H, H13), 1.39 (s, 3H, H12), 1.11 (t, J = 6.8 Hz, 3H, H9). 

 
13

C-NMR (100MHz, CDCl3, ppm): 132.6 (CH, C2), 118.6 (CH2, C1), 97.9 (Cq, C14), 84.3 

(Cq, C6 or C7), 75.2 (Cq, C6 or C7), 67.7 (CH2, C10 or C11), 66.7 (CH2, C10 or C11), 36.9 (Cq, 

C4), 35.4 (CH2, C3), 25.4 (CH3, C12 or C13), 22.6 (CH3, C12 or C13), 21.9 (CH2, C5), 14.3 (CH3, 

C9), 12.4 (CH2, C8). 

 

IR (film, cm-1) = 3347, 2918, 1639, 1437, 1023. 

 

MS (ESI, m/z): 223 [MH]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.65 

 

2-(5-(but-2-ynyl)-2,2-dimethyl-1,3-dioxan-5-yl)acetaldehyde 200(Me) 
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210,27 g/mol  

To a solution of alkene 199(Me) (1.0 g, 4.0 mmol) in a mixture of 1,4-dioxane/H2O (35:11 

mL), were succesively added 2,6-lutidine (1.28 g, 9.6 mmol), K2OsO4 (35.2 mg, 0.096 mmol) 

and NaIO4 (4.1 g, 19.2 mmol) at room temperature. The reaction was stirred overnight. The 

organic layer was separated and the aqueous layer was extracted with ethyl acetate (x3). The 
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organic layer was washed with HCl 1M and brine, dried over MgSO4 and removed under 

reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 8:2) to afford the desired product, (702 mg, 69%) as colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 9.89 (t, J = 2.0 Hz, 1H, H1), 3.71 (s, 4H, H8 and H9), 2.60 

(d, J = 2.0 Hz, 2H, H4), 2.39 (q, J = 2.9 Hz, 2H, H2), 1.78 (t, J = 2.9 Hz, 3H, H7), 1.41 (s, 6H, 

H11 and H12). 

 

IR (film, cm-1) = 2991, 1714, 1373, 1197, 1069. 

 

MS (ESI, m/z): 233 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.40 

 

2-(2,2-dimethyl-5-(pent-2-ynyl)-1,3-dioxan-5-yl)acetaldehyde 200(Et) 

 

To a solution of alkene 199(Et) (2.45 g, 11.0 mmol) in a mixture of 1,4-dioxane/H2O (80:25 

mL), were succesively added at room temperature 2,6-lutidine (2.60 mL, 9.6 mmol), K2OsO4 

(81 mg, 0.20 mmol) and NaIO4 (9.4 g, 44.0 mmol). The reaction was stirred overnight. The 

organic layer was separated and the aqueous layer was extracted with ethyl acetate(x3). The 

organic layer was washed with HCl 1M and brine, dried over MgSO4 and removed under 

reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl 

acetate 8:2) to afford the desired product, (1.52 g, 62%) as colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 9.90 (t, J = 1.6 Hz, 1H, H1), 3.77 (s, 4H, H9 and H10), 2.62 

(d, J = 1.6 Hz, 2H, H2), 2.39 (t, J = 1.6 Hz, 2H, H4), 2.15 (tq, J = 7.6, 1.6 Hz, 2H, H7), 1.41 (s, 

6H, H12 and H13), 1.11 (t, J = 7.6 Hz, 3H, H8). 
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13

C-NMR (100MHz, CDCl3, ppm): 201.1 (CH, C1), 98.3 (Cq, C11), 85.4 (Cq, C5 or C6), 74.3 

(Cq, C5 or C6), 66.7 (CH2, C9 and C10), 46.9 (CH2, C2), 35.9 (Cq, C3), 24.4 (CH3, C12 or C13), 

23.4 (CH3, C12 or C13), 22.8 (CH2, C4), 14.1 (CH3, C8), 12.3 (CH2, C7). 

 

IR (film, cm-1) = 3441, 2974, 2876, 1774, 1720, 1373, 1028. 

 

MS (ESI, m/z): 247 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.40 

 

Prop-2-yn-1-yl diisopropylcarbamate 195a 

 

1
2

3CbO

C10H17NO2
183,25 g/mol  

Pyridine (3.60 g, 45.7 mmol), diisopropylcarbamoyl chloride (5.00 g, 30.5 mmol) and 

propargylic alcohol (1.80 g, 32.0 mmol) were succesively added. The mixture was warmed at 

95°C and stirred overnight. After cooling, the solution was slowly pourred into a mixture of 

ice, HCl 12M (4 mL) and Et2O (10 mL) and extracted with Et2O (x3). The organic layer was 

separated and washed with an aqueous solution of NaHCO3 and brine, dried over MgSO4 and 

the solvent removed under reduced pressure.  

The crude residue (5.2 g, 93%) was used without further purification to the next step. 

 

RN: 113279-50-8 

 
1
H-NMR (400MHz, CDCl3, ppm): 4.70 (d, J = 2.4 Hz, 2H, H1), 4.03 (s, 1H, CHi-Pr), 3.80 (s, 

1H, CHi-Pr), 2.43 (t, J = 2.4 Hz, 1H, H3), 1.23 (s, 6H, CH3(i-Pr)), 1.20 (s, 6H, CH3(i-Pr)). 

 

MS (ESI, m/z): 206 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.44 
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Spectroscopic data were consistent with those reported in the literature. 

 

Propa-1,2-dien-1-yl diisopropylcarbamate 196a 

 

 

Compound 195a (11.20 g, 61.1 mmol) was dissolved in anhydrous THF (10 mL) and t-BuOK 

(2.00 g, 18.3 mmol) was added at room temperature. The reaction was stirred for 1h before 

being quenched with water (20 mL) and extracted with Et2O. The organic layer was separated 

and washed with brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

95:5) to afford the desired product, (6.31 g, 56%) as colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.48 (t, J = 6.0 Hz, 1H, H3), 5.42 (d, J = 6.0 Hz, 2H, H2), 

3.99 (s, 1H, CHi-Pr), 3.89 (s, 1H, CHi-Pr), 1.24 (s, 6H, CH3(i-Pr)), 1.23 (s, 6H, CH3(i-Pr)). 

 

IR (film, cm-1) = 2071, 1707, 1430, 1296, 1282, 1148, 1047. 

 

MS (ESI, m/z): 206 [MNa]+ 

 

Rf (pentane/Et2O 8:2) = 0.75 

 

((Prop-2-ynyloxy)methyl)benzene 195b 

 

 

Propargylic alcohol (5.8 mL, 100 mmol) was dissolved in DMSO (100 mL). At 0°C, were 

successively added an aqueous solution of NaOH 3M (50 mL). Then, benzyl bromide (17.9 

mL, 150 mmol) was added dropwise. The reaction was stirred for 48h at room temperature. 
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The aqueous layer was extracted with Et2O. The organic layer was separated and washed with 

brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (pentane/ethyl acetate 

95:5) to afford the desired product, (14.6 g, quantitative) as colourless oil. 

 

RN: 4039-82-1 

 

1
H-NMR (400MHz, CDCl3, ppm): 7.35 (m, 5H, HAr), 4.60 (s, 2H, Hbenz), 4.18 (d, J = 2.7 Hz, 

2H, H3), 2.45 (t, J = 2.7 Hz, 1H, H1). 

 

MS (ESI, m/z): 169 [MNa]+ 

 

Rf (pentane/Et2O 8:2) = 0.60 

 

Spectroscopic data were consistent with those reported in the literature. 

 

Propa-1,2-dienyloxymethyl-benzene 196b 

 

 

Compound 195b (17.0 g, 116.3 mmol) was dissolved in anhydrous THF (20 mL) and t-BuOK 

(3.9 g, 34.9 mmol) was added at room temperature. The reaction was stirred for 1h before 

being quenched with water (20 mL) and extracted with Et2O (x3). The organic layer was 

separated and washed with brine, dried over MgSO4 and the solvent removed under reduced 

pressure.  

The crude residue was purified by flash chromatography silica gel previously neutralized with 

NEt3 (pentane/ Et2O 99:1) to afford the desired product, (12.3 g, 70%) as colourless oil. 

 

RN: 67515-49-5 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.33 (m, 5H, HAr), 6.84 (t, J = 6.0 Hz, 1H, H1), 5.48 (d, J 

= 6.0 Hz, 2H, H3), 4,61 (s, 2H, Hbenz). 
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13

C-NMR (100MHz, CDCl3, ppm): 201.1 (Cq, C2), 137.2 (CH, C3), 128.3 (Cq, CAr), 127.8 

(CH, CAr), 127.7 (CH, CAr), 121.5 (CH, CAr), 91.1 (CH2, C1), 70.6 (CH2, Cbenz).  

 

MS (ESI, m/z): 169 [MNa]+ 

 

Rf (pentane/Et2O 8:2) = 0.75 

 

Spectroscopic data were consistent with those reported in the literature. 

 

1-Methoxy-4-((prop-2-ynyloxy)methyl)benzene 195c 

 

 

PMBTCAI (20.0 g, 79.0 mmol) was dissolved in a mixture of CH2Cl2/cyclohexane (60:120 

mL). At room temperature were added propargylic alcohol (2.9 mL, 49.5 mmol) and PPTS 

(664 mg, 2.5 mmol). The mixture was stirred at room temperature for 36h, filtered through a 

pad of Celite and the solvent was removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel (cyclohexane/ ethyl 

acetate 9:1) to afford the desired product, (9.0 g, quantitative) as a yellow oil. 

 

RN: 4039-83-2 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.29 (d, J = 8.4 Hz, 2H, HAr), 6.89 (d, J = 8.4 Hz, 2H, 

HAr), 4.54 (s, 2H, Hbenz), 4.14 (s, 2H, H3), 3.81 (s, 3H, HMe(PMB)), 2.47 (s, 1H, H1). 

 

IR (film, cm-1) = 3039, 2959, 2837, 1614, 1464, 1174. 

 

Rf (cyclohexane/ethyl acetate 9:1) = 0.36 

 

Spectroscopic data were consistent with those reported in the literature. 
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1-methoxy-4-((propa-1,2-dienyloxy)methyl)benzene 196c 

 

 

Compound 195c (9.0 g, 51.0 mmol) was dissolved in anhydrous THF (8 mL) and t-BuOK 

(1.7 g, 15.3 mmol) was added at room temperature. The reaction was stirred for 3h, filtered 

through a pad of Celite and the solvent was removed under reduced pressure.  

The crude residue was purified by flash chromatography silica gel previously neutralized with 

NEt3 (pentane/Et2O 99:1) to afford the desired product, (7.0 g, 78%) as colourless oil. 

 

RN: 847550-35-0 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.27 (d, J = 8.6 Hz, 2H, HAr), 6.88 (d, J = 8.6 Hz, 2H, 

HAr), 6.80 (t, J = 6.3 Hz, 1H, H1), 5.46 (d, J = 6.3 Hz, 1H, H3), 4.53 (s, 2H, Hbenz), 3.79 (s, 3H, 

HMe(PMB)). 

 

IR (film, cm-1) = 3039, 2959, 2837, 1614, 1464, 1174. 

 

MS (ESI, m/z): 199 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 95/5) = 0.51 

 

Spectroscopic data were consistent with those reported in the literature. 

 

5-(5-(but-2-yn-1-yl)-2,2-dimethyl-1,3-dioxan-5-yl)-4-hydroxypenta-1,2-dien-3-yl 

diisopropylcarbamate 190a(Me) 
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Allene 196a (266 mg, 1.45 mmol) was dissolved in anhydrous THF (3 mL). At -78°C was 

added dropwise n-BuLi (1.6M in hexane, 0.92 mL, 1, 45 mmol). The mixture was stirred for 

30 min at -78°C before slow addition of a solution of compound 200(Me) (200 mg, 0. 97 

mmol) in anhydrous THF (2.0 mL). The mixture was stirred for 45 min at -78°C before being 

quenched with water (2.0 mL) and extracted with Et2O (3x). The organic layer was separated 

and washed with brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel previously neutralized 

with NEt3 (cyclohexane/ethyl acetate 9:1 to 8:2) to afford the desired product, (300 mg, 70%) 

as colourless oil. 

 
1
H-NMR (300MHz, CDCl3, ppm): 5.41 (s, 2H, H10), 4.49 (m, 1H, H1), 4.07 (brs, 1H, CHi-Pr), 

3.85 (d, J = 4.0 Hz, 1H, OH), 3.81 (brs, 1H, CHi-Pr), 3.79 (s, 2H, H12 and H11), 3.72 (s, 2H, H12  

and H11), 2.57 (dq, J = 16.8, 2.7 Hz, 1H, H4a), 2.38 (dq, J = 16.8, 2.7 Hz, 1H, H4b), 1.76 (t, J = 

2.7 Hz, 3H, H7), 1.69 (dd, J = 14.6, 3.6 Hz, 1H, H2a), 1.56 (dd, J = 14.6, 9.5 Hz, 1H, H2b), 

1.41 (s, 3H, H14), 1.39 (s, 3H, H15), 1.24 (s, 6H, CH3(i-Pr)), 1.22 (s, 6H, CH3(i-Pr)). 

 

IR (film, cm-1) = 3427, 2971, 1689, 1434, 1370, 1299, 1136. 
 

MS (ESI, m/z): 416 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.25 

 

3-(benzyloxy)-1-(5-(but-2-yn-1-yl)-2,2-dimethyl-1,3-dioxan-5-yl)penta-3,4-dien-2-ol 

190b(Me) 
 

 

Allene 196b (1.09 g, 7.44 mmol) was dissolved in anhydrous THF (10 mL). At -78°C was 

added dropwise n-BuLi (1.6M in hexane, 4.7 mL, 7.44 mmol). The mixture was stirred for 30 

min at -78°C before slow addition of a solution of compound 200(Me) (1.04 g, 4.96 mmol) in 
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anhydrous THF (2.0 mL). The mixture was stirred for 45 min at -78°C then quenched with 

water (30 mL) and extracted with Et2O (3x). The organic layer was separated and washed 

with brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel previously neutralized 

with NEt3 (cyclohexane/ethyl acetate 8:2) to afford the desired product, (1.24 g, 70%) as 

colourless oil. 

 
1
H-NMR (300MHz, CDCl3, ppm): 7.34 (m, 5H, HAr), 5.57 (s, 2H, H10), 4.63 (s, 2H, Hbenz), 

4.53 (m, 1H, H1), 3.80 (d, J = 18.5, 12.3 Hz, 2H, H11), 3.73 (d, J = 18.5, 12.3 Hz, 2H, H12), 

2.65 (d, J = 6.2 Hz, 1H, OH), 2.53 (d, J = 18.5 Hz, 1H, H4a), 2.34 (d, J = 18.5 Hz, 1H, H4b), 

1.81 (m, 1H, H2a), 1.75 (s, 3H, H7), 1.63 (m, 1H, H2b), 1.41 (s, 6H, H14 H15).  

 
13

C-NMR (100MHz, CDCl3, ppm): 196.8 (Cq, C9), 137.3 (Cq, CAr), 135.3 (Cq, C8), 130.9 

(CH, CAr), 128.6 (CH, CAr), 127.9 (CH, CAr), 98.0 (Cq, C13), 92.7 (CH2, C10), 78.5 (Cq, C6 or 

C5), 75.2 (Cq, C6 or C5), 70.8 (CH2, Cbenz), 67.8 (CH2, C11), 67.7 (CH2, C12), 66.9 (CH, C1), 

38.9 (CH2, C2), 34.9 (Cq, C3), 25.5 (CH3, C14), 23.6 (CH2, C4), 22.1 (CH3, C15), 3.6 (CH3, C7). 

 

IR (film, cm-1) = 3456, 2991, 2919, 1698, 1453, 1372, 1197, 1068. 

 

MS (ESI, m/z): 379 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.55 

 

5-(2,2-dimethyl-5-(pent-2-yn-1-yl)-1,3-dioxan-5-yl)-4-hydroxypenta-1,2-dien-3-yl 

diisopropylcarbamate 190a(Et) 
 

 

Allene 196a (368 mg, 2.01 mmol) was dissolved in anhydrous THF (3 mL). At -78°C was 

added dropwise n-BuLi (1.6M in hexane, 1.3 mL, 2.01 mmol). The mixture was stirred for 30 
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min at -78°C before slow addition of a solution of compound 200(Et) (300 mg, 1.34 mmol) in 

anhydrous THF (2.0 mL). The mixture was stirred for 45 min at -78°C then quenched with 

water (15 mL) and extracted with Et2O (3x). The organic layer was separated and washed 

with brine, dried over MgSO4 and the solvent was removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel previously neutralized 

with NEt3 (cyclohexane/ethyl acetate 8:2) to afford the desired product, (330 mg, 58%) as 

colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.41 (s, 2H, H11), 4.50 (m, 1H, H1), 4.08 (m, 1H, CHi-Pr), 

3.82 (s, 2H, H12 or H13), 3.80 (s, 1H, CHi-Pr), 3.73 (s, 2H, H12 or H13), 2.60 (d, J = 15.0 Hz, 1H, 

H4a), 2.39 (d, J = 15.0 Hz, 1H, H4b), 2.15 (m, 2H, H7), 1.68 (m, 2H, H2), 1.77 (q, J = 7.8 Hz, 

3H, H8), 1.41 (s, 6H, H16 and H15), 1.77 (t, J = 7.8 Hz, 3H, H7), 1.25 (m, 12H, CH3(i-Pr)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 201.3 (Cq, C10), 154.6 (Cq, CC=O(Cb)), 126.8 (Cq, C9), 

97.8 (Cq, C14), 87.5 (CH2, C11), 84.3 (Cq, C5 or C6), 75.5 (Cq, C5 or C6), 67.9 (CH, C1), 67.7 

(CH2, C12 or C13), 66.7 (CH2, C12 or C13), 47.1 (CH, CH(i-Pr)), 46.0 (CH, CH(i-Pr)), 38.1 (CH2, 

C2), 34.9 (Cq, C3), 25.8 (CH2, C4), 23.2 (CH3, C15 or C16), 21.6 (CH3, C15 or C16), 20.4 (CH3, 

CH3(i-Pr)), 20.3 (CH3, CH3(i-Pr)), 14.3 (CH3, C8), 12.4 (CH2, C7). 

 

MS (ESI, m/z): 445 [MNa]+ 

 

3-(benzyloxy)-1-(2,2-dimethyl-5-(pent-2-yn-1-yl)-1,3-dioxan-5-yl)penta-3,4-dien-2-ol 

190b(Et) 
 

 

Allene 196b (294 mg, 2.01 mmol) was dissolved in anhydrous THF (3 mL). At -78°C was 

added dropwise n-BuLi (1.6M in hexane, 1.3 mL, 2.01 mmol). The mixture was stirred for 30 

min at -78°C before slow addition of a solution of compound 200(Et) (300 mg, 1.34 mmol) in 

anhydrous THF (2.0 mL). The mixture was stirred for 45 min at -78°C then quenched with 



 326 

water (15 mL) and extracted with Et2O (3x). The organic layer was separated, washed with 

brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel previously neutralized 

with NEt3 (cyclohexane/ethyl acetate 8:2) to afford the desired product, (332 mg, 68%) as 

colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.34 (m, 5H, HAr), 5.56 (s, 2H, H11), 4.63 (s, 2H, Hbenz), 

4.55 (m, 1H, H1), 3.77 (m, 4H, H12 H13), 2.73 (d, J = 4.6 Hz, 1H, OH), 2.55 (dt, J = 16.8, 2.3 

Hz, 1H, H4a), 2.15 (dt, J = 16.8, 2.3 Hz, 1H, H4b), 2.13 (qt, J = 7.6, 2.3 Hz, 2H, H7), 1.83 (dd, 

J = 14.6, 3.0 Hz, 2H, H2a), 1.63 (dd, J = 9.8, 3.0 Hz, 2H, H2b), 1.41 (s, 6H, H14 H15), 1.07 (t, 

3H, H8).  

 
13

C-NMR (100MHz, CDCl3, ppm): 196.7 (Cq, C10), 137.1 (Cq, CAr), 135.3 (Cq, C9), 128.3 

(CH, CAr), 127.6 (CH, CAr), 126.7 (CH, CAr), 97.8 (Cq, C13), 92.4 (CH2, C11), 84.4 (Cq, C6 or 

C5), 75.3 (Cq, C6 or C5), 70.7 (CH, C1), 67.6 (CH2, C11), 66.6 (CH2, C12), 38.5 (CH2, C2), 34.7 

(Cq, C3), 25.4 (CH3, C14), 23.2 (CH3, C15 or C16), 21.8 (CH3, C15 or C16), 14.1 (CH3, C8), 12.3 

(CH2, C7). 

 

IR (film, cm-1) = 3433, 2974, 2937, 1956, 1454, 1371, 1197, 1071. 

 

MS (ESI, m/z): 393 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3): 0.41 

 

1-(2,2-dimethyl-5-(pent-2-yn-1-yl)-1,3-dioxan-5-yl)-3-((4-methoxybenzyl)oxy)penta-3,4-

dien-2-ol 190c(Et) 
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Allene 196c (354 mg, 2.01 mmol) was dissolved in anhydrous THF (3 mL). At -78°C was 

added dropwise n-BuLi (1.6M in hexane, 1.3 mL, 2.01 mmol). The mixture was stirred for 30 

min at -78°C before slow addition of a solution of compound 200(Et) (300 mg, 1.34 mmol) in 

anhydrous THF (3.0 mL). The mixture was stirred for 45 min at -78°C then quenched with 

water (15 mL) and extracted with Et2O (3x). The organic layer was separated, washed with 

brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel previously neutralized 

with NEt3 (cyclohexane/ethyl acetate 8:2) to afford the desired product, (342 mg, 63%) as 

colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.28 (d, J = 8.4 Hz, 2H, HAr), 6.88 (d, J = 8.4 Hz, 2H, 

HAr), 5.56 (d, J = 1.6 Hz, 2H, H11), 4.55 (s, 2H, Hbenz), 4.51 (m, 1H, H1), 3.80 (s, 3H, 

HMe(PMB)), 3.75 (m, 4H, H12 H13), 2.68 (d, J = 4.8 Hz, 1H, OH), 2.54 (dt, J = 16.9, 2.4 Hz, 1H, 

H4a), 2.35 (dt, J = 16.9, 2.4 Hz, 1H, H4b), 2.12 (qt, J = 7.2, 2.4 Hz, 2H, H7), 1.78 (dd, J = 14.8, 

2.8 Hz, 2H, H2a), 1.61 (dd, J = 14.8, 10.0 Hz, 2H, H2b), 1.41 (s, 6H, H14 and H15), 1.07 (t, J = 

7.2 Hz, 3H, H8). 

 

IR (film, cm-1) = 3441, 2937, 1956, 1613, 1515, 1454, 1250, 1171, 1033. 

 

MS (ESI, m/z): 423 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.32 

 

5-(5-(but-2-yn-1-yl)-2,2-dimethyl-1,3-dioxan-5-yl)-4-((tert-butyldimethylsilyl)oxy)penta-

1,2-dien-3-yl diisopropylcarbamate 201a(Me) 
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Compound 190a(Me) (235 mg, 0.60 mmol) was dissolved in CH2Cl2 (6.0 mL). At 0°C were 

successively added 2,6-lutidine (0.30 mL, 2.40 mmol) and  TBSOTf (0.42 mL, 1.80 mmol). 

The mixture was stirred at room temperature for 3h then quenched with an aqueous solution 

of NH4Cl and extracted with CH2Cl2 (3x). The organic layer was separated, washed with 

brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel previously neutralized 

with NEt3 (cyclohexane/ethyl acetate 9:1) to afford the desired product, (254 mg, 83%) as 

colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.30 (d, J = 6.6 Hz, 2H, H10), 4.42 (t, J = 6.7 Hz, 1H, H1), 

4.09 (s, 1H, CHi-Pr), 3.80 (s, 1H, CHi-Pr), 3.70 (s, 2H, H12), 3.69 (s, 2H, H11), 2.51 (m, 2H, H4), 

1.75 (s, 3H, H7), 1.72 (m, 2H, H2), 1,42 (s, 6H, H14 and H15), 1.25 (s, 12H, HMe(i-Pr)), 0,87 (s, 

9H, Ht-Bu(TBS)), 0,10 (s, 6H, HMe(TBS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 201.3 (Cq, C9), 152.6 (Cq, CC=O(Cb)), 123.9 (Cq, C8), 97.8 

(Cq, C13), 85.7 (CH2, C10), 77.9 (Cq, C6 or C5), 75.4 (Cq, C6 or C5), 70.3 (CH, C1), 67.6 (CH2, 

C11 or C12), 66.9 (CH2, C11 or C12), 46.9 (CH, CH(i-Pr)), 45.7 (CH, CH(i-Pr)), 38.2 (CH2, C2), 34.9 

(Cq, C3), 27.1 (CH2, C4), 26.8 (CH3, CH3(TBS)), 25.6 (CH3, CH3(TBS)), 22.3 (CH3, C14 or C15), 

21.5 (CH3, C14 or C15), 17.9 (CH3, CH3(i-Pr)), 3.5 (CH3, C7), -2.9 (Cq, CTBS), -4.3 (CH3, 

CH3(TBS)), -5.1 (CH3, CH3(TBS)). 

 

IR (film, cm-1) = 2930, 2857, 1713, 1434, 1369, 1251, 1074.  

 

MS (ESI, m/z): 530 [MNa]+ 

Rf (cyclohexane/ethyl acetate 7:3) = 0.25 
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((3-(benzyloxy)-1-(5-(but-2-yn-1-yl)-2,2-dimethyl-1,3-dioxan-5-yl)penta-3,4-dien-2-

yl)oxy)(tert-butyl)dimethylsilane 201b(Me) 
 

 

Compound 190b(Me) (230 mg, 0.64 mmol) was dissolved in CH2Cl2 (6.0 mL). At 0°C were 

added successively 2,6-lutidine (0.30 mL, 2.56 mmol) and  TBSOTf (0.45 mL, 1.92 mmol). 

The mixture was stirred at room temperature for 3h then quenched with an aqueous solution 

of NH4Cl and extracted with CH2Cl2 (3x). The organic layer was separated and washed with 

brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel previously neutralized 

with NEt3 (cyclohexane/ethyl acetate 9:1) to afford the desired product, (254 mg, 76%) as 

colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.35 (m, 5H, HAr), 5.43 (d, J = 8.0 Hz, 1H, H10a), 5.39 (d, 

J = 8.0 Hz, 1H, H10b), 4.58 (s, 2H, Hbenz), 4.44 (t, J = 6.8 Hz, 1H, H1), 3.70 (s, 2H, H11), 3.65 

(dd, J = 10.7 Hz, 1H, H12), 3.62 (dd, J = 10.7 Hz, 1H, H12), 2.54 (m, J = 16.8, 2.8 Hz, 2H, H4), 

1.75 (dd, J = 14.4, 6.8 Hz, 1H, H2a), 1.73 (t, J = 2.8 Hz, 3H, H7), 1.68 (dd, J = 14.4, 6.8 Hz, 

1H, H2b), 1.40 (s, 3H, H14), 1.38 (s, 3H, H15), 0.89 (s, 9H, Ht-Bu(TBS)), 0.08 (s, 3H, HMe(TBS)), 

0.04 (s, 3H, HMe(TBS)). 

 
13

C-RMN (100MHz, CDCl3, ppm): 198.3 (Cq, C9), 137.3 (Cq, CAr), 134.4 (Cq, C8), 128.2 

(CH, CAr), 127.7 (CH, CAr), 127.6 (CH, CAr), 97.7 (Cq, C13), 90.4 (CH2, C10), 77.9 (Cq, C6 or 

C5), 75.5 (Cq, C6 or C5), 70.4 (CH2, Cbenz), 70.1 (CH, C1), 67.4 (CH2, C11), 67.0 (CH2, C12), 

38.2 (CH2, C2), 35.0 (Cq, C3), 28.1 (CH3, C14), 26.0 (CH3, CH3(TBS)), 25.6 (CH3, CH3(TBS)), 

21.9 (CH2, C4), 19.4 (CH3, C15), 3.54 (CH3, C7), -2.9 (Cq, C(TBS)), -4.5 (CH3, CH3(TBS)), -4.9 

(CH3, CH3(TBS)). 

 

IR (film, cm-1) = 2929, 2837, 1955, 1454, 1255, 1198, 1075. 
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MS (ESI, m/z): 493 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.62 

 

4-((tert-butyldimethylsilyl)oxy)-5-(2,2-dimethyl-5-(pent-2-yn-1-yl)-1,3-dioxan-5-

yl)penta-1,2-dien-3-yl diisopropylcarbamate 201a(Et) 

 

 

Compound 190a(Et) (230 mg, 0.54 mmol) was dissolved in CH2Cl2 (6.0 mL). At 0°C were 

added successively 2,6-lutidine (0.25 mL, 2.16 mmol) and TBSOTf (0.40 mL, 1.63 mmol). 

The mixture was stirred at room temperature for 3h then quenched with an aqueous solution 

of NH4Cl and extracted with CH2Cl2 (3x). The organic layer was separated and washed with 

brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel previously neutralized 

with NEt3 (cyclohexane/ethyl acetate 9:1) to afford the desired product, (152 mg, 54%) as 

colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 5.45 (d, J = 10.0 Hz, 2H, H11a), 5.26 (d, J = 10.0 Hz, 2H, 

H11b), 4.49 (t, J = 6.6 Hz, 1H, H1), 4.08 (s, 1H, CHi-Pr), 3.83 (s, 1H, CHi-Pr), 3.78 (s, 2H, H12 or 

H13), 3.76 (s, 2H, H12 or H13), 2.58 (dt, J = 16.4, 2.4 Hz, 1H, H4), 2.52 (dt, J = 16.4, 2.4 Hz, 

1H, H4), 2.14 (qt, J = 7.6, 2.4 Hz, 2H, H7), 1.74 (d, J = 6.6 Hz, 2H, H2), 1,41 (s, 3H, H15), 1,39 

(s, 3H, H14), 1.27 (m, 12H, HMe(i-Pr)), 1.15 (t, J = 7.6 Hz, 3H, H8), 0.88 (s, 9H, Ht-Bu(TBS)), 0.11 

(s, 3H, HMe(TBS)), 0.10 (s, 3H, HMe(TBS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 201.2 (Cq, C10), 152.5 (Cq, CC=O(Cb)), 123.8 (Cq, C9), 

97.7 (Cq, C14), 85.6 (CH2, C11), 84.2 (Cq, C5 or C6), 75.6 (Cq, C5 or C6), 70.4 (CH, C1), 67.7 

(CH2, C12 or 13), 66.8 (CH2, C12 or 13), 46.9 (CH, CH(iPr)), 45.8 (CH, CH(iPr)), 38.2 (CH2, C2), 

34.9 (Cq, C3), 26.8 (CH2, C4), 25.8 (CH3, CH3(TBS)), 22.4 (CH3, CH3(TBS)), 21.5 (CH3, C15 or 
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C16), 20.7 (CH3, C15 or C16), 14.2 (CH3, C8), 12.4 (CH2, C7), -4.4 (CH3, CH3(TBS)), -5.1 (CH3, 

CH3(TBS)).  

 

IR (film, cm-1) = 2936, 2249, 1712, 1435, 1370, 1136, 1073. 

 

MS (ESI, m/z): 544 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.55 

 

((3-(benzyloxy)-1-(2,2-dimethyl-5-(pent-2-yn-1-yl)-1,3-dioxan-5-yl)penta-3,4-dien-2-

yl)oxy)(tert-butyl)dimethylsilane 201b(Et) 

 

O

O

OBn

OTBS

1
2

3

4

5

6
7

8

9

10

11

12

13

14

15

C29H44O4Si

484.74 g/mol

16

 

Compound 190b(Et) (165 mg, 0.44 mmol) was dissolved in CH2Cl2 (6.0 mL). At 0°C were 

added successively 2,6-lutidine (0.20 mL, 1.76 mmol) and TBSOTf (0.30 mL, 1.34 mmol). 

The mixture was stirred at room temperature for 3h then quenched with an aqueous solution 

of NH4Cl and extracted with CH2Cl2 (3x). The organic layer was separated and washed with 

brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel previously neutralized 

with NEt3 (cyclohexane/ethyl acetate 9:1) to afford the desired product, (173 mg, 81%) as 

colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.35 (m, 5H, HAr), 5.45 (d, J = 8.0 Hz, 2H, H11a), 5.40 (d, 

J = 8.0 Hz, 2H, H11b), 4.58 (s, 2H, Hbenz), 4.44 (t, J = 7.2 Hz, 1H, H1), 3.71 (s, 2H, H13), 3.69 

(d, J = 12.0 Hz, 2H, H12a), 3.65 (d, J = 12.0 Hz, 2H, H12b), 2.55 (s, 2H, H4), 2.12 (qt, J = 7.6, 

2.0 Hz, 2H, H7), 1.74 (dd, J = 14.4, 6.0 Hz, 1H, H2a), 1.69 (dd, J = 14.4, 6.0 Hz, 1H, H2b), 

1.40 (s, 3H, H16), 1.38 (s, 3H, H15), 1.08 (t, J = 7.6 Hz, 3H, H8), 0.88 (s, 9H, Ht-Bu(TBS)), 0.08 

(s, 3H, HMe(TBS)), 0.04 (s, 3H, HMe(TBS)). 



 332 

 

IR (film, cm-1) = 2936, 2250, 1744, 1455, 1257, 908. 

 

MS (ESI, m/z): 507 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.75 

 

Tert-butyl((1-(2,2-dimethyl-5-(pent-2-yn-1-yl)-1,3-dioxan-5-yl)-3-((4-

methoxybenzyl)oxy)penta-3,4-dien-2-yl)oxy)dimethylsilane 201c(Et) 

 

 

Compound 190c(Et) (170 mg, 0.42 mmol) was dissolved in CH2Cl2 (6.0 mL). At 0°C were 

added successively 2,6-lutidine (0.20 mL, 1.68 mmol) and  TBSOTf (0.30 mL, 1.27 mmol). 

The mixture was stirred at room temperature for 3h then quenched with an aqueous solution 

of NH4Cl and extracted with CH2Cl2 (3x). The organic layer was separated and washed with 

brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel previously neutralized 

with NEt3 (cyclohexane/ethyl acetate 9:1) to afford the desired product, (215 mg, 99%) as 

colourless oil. 
1
H-NMR (400MHz, CDCl3, ppm): 7.28 (d, J = 8.6 Hz, 2H, HAr), 6.87 (d, J = 8.6 Hz, 2H, 

HAr), 5.44 (d, J = 8.0 Hz, 1H, H11a), 5.39 (d, J = 8.0 Hz, 1H, H11b), 4.49 (s, 2H, Hbenz), 4.41 (t, 

J = 6.8 Hz, 1H, H1), 3.80 (s, 3H, HMe(PMB)), 3.70 (s, 2H, H12), 3.66 (s, 2H, H11), 2.54 (t, J = 2.3 

Hz, 2H, H4), 2.12 (qt, J = 7.6, 2.3 Hz, 2H, H7), 1.71 (dd, J = 14.4, 6.8 Hz, 2H, H2a), 1.66 (dd, 

J = 14.4, 6.8 Hz, 2H, H2b), 1.40 (s, 3H, H16), 1.38 (s, 3H, H15), 1.07 (t, J = 7.6 Hz, 3H, H8), 

0.88 (s, 9H, Ht-Bu(TBS)), 0.07 (s, 3H, HMe(TBS)), 0.04 (s, 3H, HMe(TBS)). 

 

MS (ESI, m/z): 537 [MNa]+ 
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Rf (cyclohexane/ethyl acetate 7:3) = 0.60 

 

- General procedure for the [Rh(CO)2Cl]2/dppe catalysed cyclocarbonylation reaction 

A microwave vial equipped with a Teflon-coated stir bar and a septa cap was charged with 

allene-yne and freshly distilled toluene (0.1 M). The solution was degassed by bubbling with 

argon for 5 min then CO atmosphere was installed. Dppe (0.20 eq) and [Rh(CO)2Cl]2 (0.10 

eq) (or [Rh(cod)Cl]2) were successively added in one portion and the mixture was submitted 

to bubbling CO for 2 min. The reaction was placed in the preheated 110°C oil bath and stirred 

under CO. After the reaction was complete by TLC, the mixture was cooled to rt and 

concentrated under reduced pressure. The resulting residue was purified by flash 

chromatography on silica gel. 

 

7-((tert-butyldimethylsilyl)oxy)-2',2',3-trimethyl-2-oxo-2,4,6,7-tetrahydro-1H-

spiro[azulene-5,5'-[1,3]dioxan]-8-yl diisopropylcarbamate 191a(Me) 
 

 

Obtained from general procedure, pale yellow oil m = 52 mg, quant. 
1
H-NMR (400MHz, CDCl3, ppm): 4.54 (dd, J = 5.8, 3.4 Hz, 1H, H1), 4.10 (m, 1H, CHi-Pr), 

3.83 (d, J = 11.6 Hz, 2H, H12a), 3.76 (d, J = 11.6 Hz, 2H, H12b), 3.75 (s, 1H, CHi-Pr), 3.52 (d, J 

= 11.6 Hz, 1H, H13a), 3.41 (d, J = 14.4 Hz, 1H, H4a), 3.34 (d, J = 11.6 Hz, 1H, H13b), 3.10 (d, J 

= 14.4 Hz, 1H, H4b), 2.95 (d, J = 20.4 Hz, 1H, H10a), 2.80 (d, J = 20.4 Hz, 1H, H10b), 1.87 (s, 

3H, H7), 1.73 (m, 2H, H2), 1.44 (s, 3H, H14), 1.42 (s, 3H, H15), 1.24 (m, 12H, HMe(i-Pr)), 0.88 

(s, 9H, Ht-Bu(TBS)), 0.08 (s, 3H, HMe(TBS)), 0.06 (s, 3H, HMe(TBS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 203.8 (Cq, C11), 162.1 (Cq, C5), 152.7 (Cq, CC=O(Cb)), 

147.2 (Cq, C8), 141.7 (Cq, C9), 129.2 (Cq, C6), 98.1 (Cq, C16), 71.6 (CH2, C12), 71.0 (CH, C1), 

67.3 (CH2, C13), 47.3 (CH, CH(iPr)), 46.3 (CH, CH(iPr)), 39.4 (CH2, C2), 37.9 (CH2, C10), 34.9 

(Cq, C3), 31.2 (CH2, C4), 25.8 (CH3, CH3(TBS)), 21.2 (CH3, CH3(iPr)), 20.8 (CH3, CH3(iPr)), 20.6 

(CH3, C14 or C15), 19.8 (CH3, C14 or C15), 8.5 (CH3, C7), -4.61 (CH3, CH3(TBS)). 
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IR (film, cm-1) = 2928, 2856, 1691, 1454, 1383, 1251, 1072. 
 

MS (ESI, m/z): 558 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.35 

 

7-((tert-butyldimethylsilyl)oxy)-3-ethyl-2',2'-dimethyl-2-oxo-2,4,6,7-tetrahydro-1H-

spiro[azulene-5,5'-[1,3]dioxan]-8-yl diisopropylcarbamate 191a(Et) 
 

 

 

Obtained from general procedure, yellow oil m = 30 mg, 78%. 

 

1
H-NMR (400MHz, CDCl3, ppm): 4.52 (dd, 1H, J = 6.0, 2.3 Hz, H1), 4.10 (s, 1H, CHi-Pr), 

3.82 (d, 1H, J = 11.5 Hz, H14a), 3.74 (d, 1H, J = 11.5 Hz, H14a), 3.72 (m, 1H, CHi-Pr), 3.52 (d, J 

= 11.6 Hz, 1H, H13a), 3.39 (d, J = 11.6 Hz, 1H, H13b), 3.35 (d, J = 13.6 Hz, 1H, H4a), 3.10 (d, J 

= 13.6 Hz, 1H, H4b), 2.95 (d, J = 20.8 Hz, 1H, H11a), 2.80 (d, J = 20.8 Hz, 1H, H11b), 2.34 (m, 

2H, H7), 1.73 (m, 2H, H2), 1.42 (s, 3H, H16,15), 1.23 (m, 12H, HMe(i-Pr)), 1.03 (s, 3H, H8),0.88 

(s, 9H, Ht-Bu(TBS)), 0.08 (s, 3H, HMe(TBS)), 0.06 (s, 3H, HMe(TBS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 203.3 (Cq, C12), 161.2 (Cq, C5), 152.5 (Cq, CC=O(Cb)), 

148.7 (Cq, C9), 147.3 (Cq, C10), 129.1 (Cq, C6), 97.9 (Cq, C17), 71.4 (CH2, C14), 71.1 (CH, 

C1), 67.1, 66.5 (CH2, C13), 47.3 (CH, CH(i-Pr)), 46.1 (CH, CH(i-Pr)), 39.4 (CH2, C2), 37.8 (CH2, 

C11), 34.6 (Cq, C3), 30.9 (CH2, C4), 26.0 (CH3, CH3(TBS)), 21.3 (CH3, CH(i-Pr)), 21.0 (CH3, 

CH3(i-Pr)), 20.5 (CH3, C15 or C16), 19.7 (CH3, C15 or C16), 16.6 (CH2, C7), 13.0 (CH3, C8), -4.8 

(CH3, CH3(TBS)). 

 



 335 

IR (film, cm-1) = 2932, 1700, 1431, 1370, 1315, 1253, 1141, 1041. 

 

MS (ESI, m/z): 572 [MNa]+ 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.60 

 

8-(benzyloxy)-7-(tert-butyldimethylsilyloxy)-2',2',3-trimethyl-6,7-dihydro-1H-

spiro[azulene-5,5'-[1,3]dioxan]-2(4H)-one 191b(Me) 
 

 

 

Obtained from general procedure, yellow oil m = 48 mg, 90%. 

 

1
H-NMR (400MHz, CDCl3, ppm): 7.31 (m, 5H, HAr), 4.98 (d, J = 11.6 Hz, 1H, Hbenz), 4.77 

(d, J = 11.6 Hz, 1H, Hbenz), 4.62 (m, 1H, H1), 3.78 (d, J = 11.2 Hz, 2H, H13a), 3.74 (d, J = 11.2 

Hz, 2H, H13b), 3.43 (d, J = 11.6 Hz, 1H, H12a), 3.27(d, J = 11.6 Hs, 1H, H12b), 3.26 (d, J = 12.0 

Hz, 2H, H4a), 3.11 (d, J = 12.0 Hz, 1H, H4b), 3.07 (d, J = 20.4 Hz, 1H, H10a), 2.92 (d, J = 20.4 

Hz, 1H, H10b), 1.84 (s, 3H, H7), 1.80 (m, 2H, H2), 1.44 (s, 3H, H14), 1.43 (s, 3H, H15), 0.88 (s, 

9H, Ht-Bu(TBS)), 0.09 (s, 3H, HMe(TBS)), 0.04 (s, 3H, HMe(TBS)). 
13

C-NMR (100MHz, CDCl3, ppm): 204.5 (Cq, C11), 163.5 (Cq, C5), 154.2 (Cq, CC=O(Cb)), 

139.3 (Cq, C8), 136.9 (Cq, C9), 128.6 (CH, CAr), 128.3 (CH, CAr), 127.8 (CH, CAr), 123.5 (Cq, 

C6), 98.1 (Cq, C16), 73.0 (CH2, CH2(benz)), 71.5 (CH2, C12), 70.0 (CH, C1), 67.6 (CH2, C13), 

39.9 (CH2, C2), 38.7 (CH2, C10), 34.6 (Cq, C3), 31.1 (CH2, C4), 27.1, 25.8, 20.6 (CH3, C14 or 

C15), 18.2 (CH3, C14 or C15), 8.4 (CH3, C7), -4.7 (CH3, CH3(TBS)), -4.8 (CH3, CH3(TBS)). 

 

IR (film, cm-1) = 2928, 2856, 1691, 1454, 1383, 1251, 1072. 

 

MS (ESI, m/z): 521 [MNa]+ 
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Rf (cyclohexane/ethyl acetate 7:3) = 0.40 

 

7-((tert-butyldimethylsilyl)oxy)-3-ethyl-8-((4-methoxybenzyl)oxy)-2',2'-dimethyl-6,7-

dihydro-1H-spiro[azulene-5,5'-[1,3]dioxan]-2(4H)-one 191c(Et) 
 

 

 

Obtained from general procedure, yellow oil m = 30 mg, 59%. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.23 (d, J = 8.4 Hz, 2H, HAr), 6.87 (d, J = 8.4 Hz, 2H, 

HAr), 4.88 (d, J = 11.1 Hz, 1H, Hbenz), 4.69 (d, J = 11.1 Hz, 1H, Hbenz), 4.60 (m, 1H, H1), 3.80 

(s, 3H, HMe(PMB)), 3.72 (m, 2H, H14), 3.42 (d, J = 11.1 Hz, 1H, H13a), 3.29 (d, J = 11.1 Hz, 1H, 

H13b), 3.25 (d, J = 14.4 Hz, 1H, H4a), 3.10 (d, J = 14.4 Hz, 1H, H4b), 3.04 (d, J = 20.7 Hz, 1H, 

H11a), 2.85 (d, J = 20.7 Hz, 1H, H11b), 2.31 (q, J = 7.8 Hz, 2H, H7), 1.75 (dd, J = 15.1, 6.4 Hz, 

1H, H2a), 1.46 (dd, 1H, J = 15.1, 6.7 Hz, H2b), 1.43 (s, 6H, H15 and H16), 1.03 (t, J = 7.8 Hz, 3H, 

H8), 0.86 (s, 9H, Ht-Bu(TBS)), 0.09 (s, 3H, HMe(TBS)), 0.04 (s, 3H, HMe(TBS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 203 (Cq, C12); 162.5 (Cq, C5); 159.5 (Cq), 154.0 (Cq), 

144.9 (Cq), 131.6 (Cq), 129.6 (CH, CH(PMB)), 123.6 (Cq), 114.1 (CH, CH(PMB)), 113.8 (Cq), 

97.9 (Cq, C17), 79.3 (Cq), 72.6 (CH2, CH2(benz)), 71.2 (CH2, C14), 69.8 (CH, C1), 67.5 (CH2, 

C13), 55.3 (CH3, CH3(PMB)), 39.8 (CH2, C2), 38.6 (CH2, C11), 33.8 (Cq, C3), 30.7 (CH2, C4), 

27.0 (CH3, CH3(TBS)), 26.6 (CH3, CH3(TBS)), 20.6 (CH3, C15 ou C16), 16.5 (CH2, C7), 15.3 (CH3, 

C8), -4.6 (CH3, CH3(TBS)). 

 

IR (film, cm-1) = 2930, 2857, 1691, 1514, 1463, 1371, 1251, 1167, 1036. 

 

MS (ESI, m/z): 565 [MNa]+ 
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Rf (cyclohexane/ethyl acetate 7:3) = 0.35 

 

N-allyl-4-methylbenzenesulfonamide 

 

 

To a solution of allylamine (7.9 mL, 105 mmol, 3.5 eq) in CH2Cl2 (180 mL) at rt, was slowly 

added a solution of p-TsCl (5.7 g, 30 mmol, 1 eq) in CH2Cl2 (20 mL). The reaction was 

stirred overnight. Then the crude reaction was added to a saturated aqueous solution of 

NaHCO3 (150 mL). The product was extracted with DCM (x3), washed with brine, dried over 

MgSO4 and the solvent removed under reduced pressure.  

The crude residue (6.3 g, quantitative) was used without further purification to the next step. 

 

RN: 50487-71-3 

 

Spectroscopic data were consistent with those reported in the literature. 

 

N-allyl-4-methyl-N-(prop-2-ynyl)benzenesulfonamide 192(H) 

 

 

To a suspension of NaH (60% wt in oil, 520 mg, 13 mmol) in anhydrous DMF (15 mL) at rt 

under Ar was slowly added a solution of N-allyl-4-methylbenzenesulfonamide (2.1 g, 10 

mmol) in DMF (3 mL). The miwture was stirred for 30 min then 3-bromoprop-1-yne (1.9 mL, 

17 mmol) was added. The reaction was stirred for 1h30 at room temperature then quenched 

with an aqueous saturated solution of NH4Cl at 0°C and extracted with Et2O (3x). The organic 

layer was separated and washed with water and brine, dried over MgSO4 and the solvent 

removed under reduced pressure.  

The crude residue (2.5 g, quantitative) was used without further purification to the next step. 
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RN: 133886-40-5 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.73 (d, J = 8.4 Hz, 2H, HAr), 7.29 (d, J = 8.4 Hz, 2H, 

HAr), 5.72 (m, J = 12.0, 6.0, 3.0 Hz, 1H, H2), 5.29 (d, Jtrans = 12.0 Hz, 1H, H1), 5.23 (d, Jcis = 

6.0 Hz, 1H, H1), 4.09 (s, 1H, H4), 3.82 (t, J = 3.0 Hz, 2H, H3), 2.42 (s, 3H, HMe(Ts)), 2.00 (s, 

1H, H6). 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.44 

 

Spectroscopic data were consistent with those reported in the literature. 

 

4-Methyl-N-(2-oxoethyl)-N-(prop-2-ynyl)benzenesulfonamide 202(H) 

 

O

Ts

N
1

2 3
4

5

C12H13NO3S

251,30 g/mol  

 

A solution of 192(H) (2.5 g, 10.0 mmol, 1 eq) in a dry mixture of CH2Cl2 (25 mL) with Sudan 

III as indicator was ozonized at -78°C until the color changed from light red to transparent. 

The reaction mixture was purged with argon and PPh3 (3.9 g, 15.0 mmol, 1.5 eq) was added 

in one portion. The reaction was warmed to room temperature and stirred for additional 4h. 

The reaction was concentrated under reduced pressure then the crude residue was purified by 

flash chromatography on silica gel (CH2Cl2/ethyl acetate 95:5 to 80:20) to give 1.5 g (60% 

over two steps) of colourless oil. 

 

RN: 317842-50-5 

 

1
H-NMR (400MHz, CDCl3, ppm): 9.66 (s, 1H, H1), 7.69 (d, J = 8.4 Hz, 2H, HAr), 7.32 (d, J = 

8.4 Hz, 2H, HAr), 4.16 (s, 1H, H2), 3.94 (s, 2H, H3), 2.43 (s, 3H, HMe(Ts)), 2.15 (s, 1H, H5). 

 

Rf (cyclohexane/ethyl acetate 7:3) = 0.20 
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Spectroscopic data were consistent with those reported in the literature. 

 

1-hydroxy-1-(4-methyl-N-(prop-2-yn-1-yl)phenylsulfonamido)buta-2,3-dien-2-yl 

diisopropylcarbamate 193a 
 

 

Allene 196a (354 mg, 4.8 mmol, 1.5 eq) was dissolved in anhydrous THF (8 mL). At -78°C 

was added dropwise n-BuLi (1.6M in hexane, 3.0 mL, 4.8 mmol). The mixture was stirred for 

30 min at -78°C before slow addition of a solution of compound 202(H) (800 mg, 3.2 mmol) 

in anhydrous THF (6 mL). The mixture was stirred for 45 min at -78°C then quenched with 

water (15 mL) and extracted with Et2O (3x). The organic layer was separated and washed 

with brine, dried over MgSO4 and the solvent was removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel previously neutralized 

with NEt3 (cyclohexane/ethyl acetate 8:2) to afford the desired product, (520 mg, 40%) as 

colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.74 (d, J = 8.4 Hz, 2H, HAr), 7.28 (d, J = 8.4 Hz, 2H, 

HAr), 5.44 (s, 2H, H8), 5.43 (d, J = 6.1 Hz, 1H, HOH), 4.49 (ddd, J = 7.4, 6.1, 5.1 Hz, 1H, H1), 

4.34 (dd, J = 18.5, 2.3 Hz, 1H, H3a), 4.28 (dd, J = 18.5, 2.8 Hz, 1H, H3b), 3.98 (m, 1H, CHi-Pr), 

3.87 (m, 1H, CHi-Pr), 3.45 (dd, J = 14.4, 5.1 Hz, 1H, H2a), 3.30 (dd, J = 14.4, 7.4 Hz, 1H, H2b), 

2.41 (s, 3H, CH3(Ts)), 2.17 (dd, J = 2.8, 2.3 Hz, 1H, H5), 1.24 (m, 12H, CH3(i-Pr)). 

 

MS (ESI, m/z): 431 [MNa]+ 
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1-((tert-butyldimethylsilyl)oxy)-1-(4-methyl-N-(prop-2-yn-1-yl)phenylsulfonamido)buta-

2,3-dien-2-yl diisopropylcarbamate 203a 
 

 

Compound 193a (235 mg, 0.54 mmol, 1 eq) was dissolved in CH2Cl2 (4.0 mL). At 0°C were 

successively added 2,6-lutidine (0.25 mL, 2.16 mmol, 4 eq) and TBSOTf (0.43 mL, 1.62 

mmol, 3 eq). The mixture was stirred at room temperature for 3h then quenched with an 

aqueous solution of NH4Cl and extracted with CH2Cl2 (3x). The organic layer was separated, 

washed with brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel previously neutralized 

with NEt3 (cyclohexane/ethyl acetate 9:1) to afford the desired product, (200 mg, 67%) as 

colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.75 (d, J = 8.4 Hz, 2H, HAr), 7.26 (d, J = 8.4 Hz, 2H, 

HAr), 5.51 (d, J = 10.6 Hz, 1H, H8a), 5.38 (d, J = 10.6 Hz, 1H, H8b), 4.50 (dd, J = 7.7, 5.2 Hz, 

1H, H1), 4.32 (dd, J = 18.4, 2.1 Hz, 1H, H3a), 4.23 (d, J = 18.4, 2.4 Hz, 1H, H3b), 4.02 (m, 1H, 

CHi-Pr), 3.83 (m, 1H, CHi-Pr), 3.40 (dd, J = 14.6, 5.2 Hz, 1H, H2a), 3.25 (dd, J = 14.6, 7.7 Hz, 

1H, H2b), 2.41 (s, 3H, CH3(Ts)), 1.94 (dd, J = 2.4, 2.1, 1H, H5), 1.20 (m, 12H, CH3(i-Pr)), 0.90 

(s, 9H, Ht-Bu(TBS)), 0.13 (s, 3H, HMe(TBS)), 0.11 (s, 3H, HMe(TBS)). 

 

MS (ESI, m/z): 545 [MNa]+ 

 

IR (film, cm-1) = 2930, 1711, 1433, 1350, 1160, 1094. 
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N-(2-(benzyloxy)-1-hydroxybuta-2,3-dien-1-yl)-4-methyl-N-(prop-2-yn-1-

yl)benzenesulfonamide 193b 
 

2

TsN
3

1HO

6
BnO

7

C22H23NO4S

397,49 g/mol

4

5

8

 

 

Allene 196b (702 mg, 4.8 mmol, 1.5 eq) was dissolved in anhydrous THF (8 mL). At -78°C 

was added dropwise n-BuLi (1.6M in hexane, 3.0 mL, 4.8 mmol, 1.5 eq). The mixture was 

stirred for 30 min at -78°C before slow addition of a solution of compound 202(H) (800 mg, 

3.2 mmol, 1 eq) in anhydrous THF (6 mL). The mixture was stirred for 45 min at -78°C then 

quenched with water (15 mL) and extracted with Et2O (3x). The organic layer was separated 

and washed with brine, dried over MgSO4 and the solvent was removed under reduced 

pressure.  

The crude residue was purified by flash chromatography on silica gel previously neutralized 

with NEt3 (cyclohexane/ethyl acetate 8:2) to afford the desired product, (360 mg, 28%) as 

colourless oil. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.74 (d, J = 8.4 Hz, 2H, HAr), 7.34 (m, 7H, HAr), 5.60 (s, 

1H, H8a), 5,59 (s, 1H, H8b), 4.63 (s, 2H, Hbenz), 4.46 (ddd, J = 7.9, 5.6, 4.4 Hz, 1H, H1), 4.28 

(dd, J = 18.3, 1.8 Hz, 1H, H3a), 4.23 (dd, J = 18.3, 2.7 Hz, 1H, H3b), 3.47 (dd, J = 15.0, 4.4 

Hz, 1H, H2a), 3.41 (dd, J = 15.0, 7.9 Hz, 1H, H2b), 2.78 (d, J = 5.6 Hz, 1H, HOH), 2.41 (s, 3H, 

CH3(Ts)), 2.03 (dd, J = 2.7, 1.8 Hz, 1H, H5). 

 
13

C-NMR (400MHz, CDCl3, ppm): 197.0 (Cq, C7), 143.6 (Cq, CAr), 136.9 (Cq, C6), 135.7 

(CH, CAr), 132.2 (CH, CAr), 129.4 (CH, CAr(Ts)), 128.4 (CH, CAr(Ts)), 127.8 (CH, CAr), 126.8 

(CH, CAr), 93.1 (CH2, C8), 73.8 (CH, C5), 70.6 (CH2, CH2(benz)), 69.7 (CH, C1), 65.1 (Cq, C4), 

49.8 (CH2, C2), 38.2 (CH2, C3), 21.4 (CH3, CH3(Ts)). 

 

MS (ESI, m/z): 406 [MNa]+ 

 

IR (film, cm-1) = 3507, 3289, 2924, 1959, 1346, 1158, 1020. 
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N-(2-(benzyloxy)-1-((tert-butyldimethylsilyl)oxy)buta-2,3-dien-1-yl)-4-methyl-N-(prop-

2-yn-1-yl)benzenesulfonamide 203b 
 

2

TsN
3

1TBSO

6
BnO

7

C28H37NO4SSi

511,75 g/mol

4
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8

 

Compound 193b (180 mg, 0.45 mmol, 1 eq) was dissolved in CH2Cl2 (3.0 mL). At 0°C were 

successively added 2,6-lutidine (0.21 mL, 1.80 mmol, 4 eq) and TBSOTf (0.31 mL, 1.36 

mmol, 3 eq). The mixture was stirred at room temperature for 3h then quenched with an 

aqueous solution of NH4Cl and extracted with CH2Cl2 (3x). The organic layer was separated, 

washed with brine, dried over MgSO4 and the solvent removed under reduced pressure.  

The crude residue was purified by flash chromatography on silica gel previously neutralized 

with NEt3 (cyclohexane/ethyl acetate 9:1) to afford the desired product, (230 mg, 65%) as 

colourless oil. 

 

RMN 
1
H (CDCl3, 300 MHz): 7.73 (d, J = 8.4 Hz, 2H, HAr), 7.34 (m, 7H, HAr), 5.51 (d, J = 

8.5 Hz, 1H, H8a), 5.49 (s, J = 8.5 Hz, 1H, H8b), 4.60 (s, 2H, Hbenz), 4.48 (dd, J = 7.0, 4.9 Hz, 

1H, H1), 4.30 (dd, J = 18.3, 2.2 Hz, 1H, H3a), 4.21 (dd, J = 18.3, 2.4 Hz, 1H, H3a), 3.46 (dd, J 

= 14.6, 4.9 Hz, 1H, H2a), 3.31 (dd, J = 14.6, 7.0 Hz, 2H, H2b), 2.41 (s, 3H, CH3(Ts)), 1.96 (s, 

1H, H4), 0.88 (s, 9H, HtBu(TBS)), 0.09 (s, 3H, HMe(TBS)), 0.05 (s, 3H, HMe(TBS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 198.6 (Cq, C7), 143.2 (Cq, CAr), 137.3 (Cq, C6), 136.1 

(CH, CAr), 132.6 (CH, CAr), 129.3 (CH, CAr(Ts)), 128.9 (Cq, CAr), 128.2 (CH, CAr(Ts)), 127.7 

(Cq, CAr), 127.6 (CH, CAr), 91.7 (CH2, C8), 73.4 (CH, C5), 72.5 (CH2, CH2(benz)), 70.5 (CH, 

C1), 50.1 (CH2, C2), 38.7 (CH2, C3), 25.9 , 21.5 (CH3, CH3(Ts)), 18.1 , -4.8 (CH3, CH3(TBS)), -

5.1 (CH3, CH3(TBS)). 

 

IR (film, cm-1) = 3291, 2929, 1454, 1350, 1161, 1092. 

 

MS (ESI, m/z): 522 [MNa]+ 
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4-((tert-butyldimethylsilyl)oxy)-7-oxo-2-tosyl-1,2,3,4,6,7-hexahydrocyclopenta[c]azepin-

5-yl diisopropylcarbamate 194a 

 

 

 

Obtained from general procedure, yellow oil m = 21 mg, 42%. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.70 (d, J = 7.7 Hz, 2H, HAr), 7.23 (d, 2H, J = 7.7 Hz, 

HAr), 5.98 (s, 1H, H5), 4.72 (d, 1H, J = 16.9 Hz, H3a), 4.67 (dd, 1H, J = 5.2, 4.1 Hz, H1), 4.50 

(d, 1H, J = 16.9 Hz, H3b), 4.10 (hept., 1H, J = 4.7 Hz, CHi-Pr), 4.09 (dd, 1H, J = 13.6, 4.1 Hz, 

H2a), 3.72 (hept., 1H, J = 5.8 Hz, CHi-Pr), 3.47 (dd, 1H, J = 13.6, 5.2 Hz, H2a), 2.91 (d, 1H, J = 

21.0 Hz, H8a), 2.63 (d, 1H, J = 21.0 Hz, H8b), 2.38 (s, 3H, CH3(Ts)), 1.31 (d, 6H, J = 4.7 Hz, 

CH3a(i-Pr)), 1.22 (d, 6H, J = 5.8 Hz, CH3b(i-Pr)), 0.86 (s, 9H, Ht-Bu(TBS)), 0.12 (s, 3H, HMe(TBS)), 

0.05 (s, 3H, HMe(TBS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 202.2 (Cq, C9), 165.7 (Cq, C4), 151.4 (Cq, C(C=O)Cb), 

147.1 (Cq, C6), 143.6 (Cq, CAr), 136.1 (Cq, CAr), 132.0 (CH, C5), 129.5 (CH, CAr), 127.6 (CH, 

CAr), 126.7 (Cq, C7), 70.9 (CH, C1), 53.0 (CH2, C2), 47.7 (CH2, C3), 47.3 (CH, CHi-Pr), 46.2 

(CH, CHiPr), 38.7 (CH2, C8), 25.6 (CH3, CH3t-Bu(TBS)), 21.5 (CH3, CH3(Ts)), 21.3 (CH3, CH3(i-

Pr)), 21.0 (CH3, CH3(i-Pr)), -4.91 (CH3, CH3(TBS)), -4.99 (CH3, CH3(TBS)). 

 

MS (ESI, m/z): 599 [MNa]+ 

 

Rf (heptane/ethyl acetate 7:3) = 0.21 
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5-(benzyloxy)-4-((tert-butyldimethylsilyl)oxy)-2-tosyl-1,2,3,4-

tetrahydrocyclopenta[c]azepin-7(6H)-one 194b 
 

 

 

Obtained from general procedure, yellow oil m = 23 mg, 43%. 

 
1
H-NMR (400MHz, CDCl3, ppm): 7.61 (d, J = 8.0 Hz, 2H, HAr(Ts)), 7.39-7.23 (m, 7H, HAr(Ts) 

+ HAr(Bn)), 5.97 (s, 1H, H5), 4.85 (d, J = 17.0 Hz, 1H, H3a), 4.77 (d, J = 11.4 Hz, 1H, Hbenz), 

4.70 (d, J = 11.4 Hz, 1H, Hbenz), 4.60 (dd, J = 4.7, 3.8 Hz, 1H, H1), 4.52 (d, J = 17.0 Hz, 1H, 

H3b), 3.84 (dd, J = 14.0, 3.8 Hz, 1H, H2a), 3.41 (dd, J = 14.0, 4.7 Hz, 1H, H2a), 2.99 (d, J = 

21.2 Hz, 1H, H8a), 2.83 (d, J = 21.0 Hz, 1H, H8b), 2.38 (s, 3H, CH3(Ts)), 0.83 (s, 9H, Ht-Bu(TBS)), 

0.09 (s, 3H, HMe(TBS)), 0.02 (s, 3H, HMe(TBS)). 

 
13

C-NMR (100MHz, CDCl3, ppm): 202.9 (Cq, C9), 168.0 (Cq, C4), 154.1 (Cq, C6), 143.7 

(Cq, CAr), 136.3 (Cq, CAr), 129.6 (CH, CAr), 128.7 (CH, C5), 128.4 (CH, CAr), 127.3 (CH, 

CAr), 127.1 (CH, CAr), 120.1 (Cq, C7), 72.8 (CH2, Cbenz), 70.6 (CH, C1), 52.7 (CH2, C2), 47.3 

(CH2, C3), 39.6 (CH2, C8), 25.6 (CH3, CH3t-Bu(TBS)), 21.4 (CH3, CH3(Ts)), -4.80 (CH3, 

CH3(TBS)), -4.97 (CH3, CH3(TBS)). 


