Thèse soutenue

Études RMN et IRM en champ proche : développements et applications

FR  |  
EN
Auteur / Autrice : El Mohamed Halidi
Direction : Christophe Goze-BacEric Laurent Nativel
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 13/12/2013
Etablissement(s) : Montpellier 2
Ecole(s) doctorale(s) : Information, Structures, Systèmes (Montpellier ; École Doctorale ; 2009-2014)
Partenaire(s) de recherche : Laboratoire : Laboratoire Charles Coulomb (Montpellier)
Jury : Examinateurs / Examinatrices : Christophe Goze-Bac, Eric Laurent Nativel, Dominique Petit, Pascal Vairac, Rémy Schimpf, Michel Zanca, Laurent Mahieu-Williame
Rapporteurs / Rapporteuses : Dominique Petit, Pascal Vairac

Résumé

FR  |  
EN

Le principe de la RMN repose sur la détection de l'aimantation provenant de spin des noyaux atomiques tels que 13C, 31P et 1H. L'échantillon est placé dans un champ magnétique statique, qui polarise l'ensemble des spins. Ces derniers sont ensuite excités par les impulsions radiofréquences (environ un mètre de longueur d'onde), qui font basculer l'aimantation de ces spins dans le plan transversal. Lorsque l'aimantation retourne à sa position d'équilibre, il génère un champ électromagnétique qui est classiquement détecté par une antenne réceptrice (bobine avec un circuit d'accord/d'adaptation) à couplage inductif. Dans ce travail, nous proposons l'utilisation d'une sonde de taille micrométrique placée au voisinage de l'objet d'intérêt, à une distance bien plus courte que la longueur d'onde du signal de RMN rayonné. Notre microsonde présente des caractéristiques innovantes (i) un couplage capacitif (composante du champ électrique), (ii) une dimension réduite pour un positionnement précis, qui assure la détection du signal de RMN de l'échantillon et (iii) une détection à large bande, ce qui permet de l'utiliser pour détecter différents noyaux sans être accordée à la fréquence de Larmor. Pour vous présenter cette nouvelle alternative, les outils nécessaires à la compréhension de ce travail, en l'occurrence le principe de la RMN et de l'IRM et une introduction de la théorie du champ proche électrique sont donnés. Nous avons fait aussi un état de l'art des méthodes et techniques existant pour mesurer le signal RMN afin de recenser les avantages qu'un tel système (méthode : couplage capacitif et dispositif : microsonde de champ proche) peut apporter à la technique RMN. Ensuite, nous avons caractérisé notre microsonde pour améliorer sa détection hyper localisée, nous avons démontré que le signal RMN récupéré par notre antenne peut être décrit par l'expression du champ proche électrique :E(x, z) = A(Kz ) exp(i(z/L)) exp(−x/L) + Terme Propagatif. Enfin, nous avons appliqué notre système à des études RMN comme la spectroscopie, la relaxométrie ou encore de l'imagerie RMN. Nous avons aussi énoncé certains projets potentiels à la continuité de ce travail.