Thèse soutenue

Étude et modélisation d'un réacteur de coprécipitation innovant pour le traitement d'effluents liquides radioactifs
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Julie Flouret
Direction : Hervé Muhr
Type : Thèse de doctorat
Discipline(s) : Génie des procédés et des produits
Date : Soutenance le 26/09/2013
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : RP2E - Ecole Doctorale Sciences et Ingénierie des Ressources, Procédés, Produits, Environnement
Partenaire(s) de recherche : Laboratoire : Centre d'études nucléaires de la Vallée du Rhône
Jury : Président / Présidente : Edouard Plasari
Examinateurs / Examinatrices : Yves Barre, Bruno Fournel
Rapporteurs / Rapporteuses : Christine Frances, Denis Mangin

Résumé

FR  |  
EN

Afin de traiter les effluents liquides radioactifs de faible et moyenne activités, le procédé utilisé à l'échelle industrielle est la coprécipitation. L'enjeu de cette thèse est d'optimiser le procédé continu de coprécipitation. Pour cela, un réacteur innovant est conçu et modélisé : le réacteur/décanteur continu. Deux systèmes modèles sont étudiés : la coprécipitation du strontium par le sulfate de baryum et la sorption du césium par le PPFeNi. Le milieu étudié est une solution contenant du nitrate de sodium afin de prendre en compte la force ionique élevée des effluents. Chaque système modèle est d'abord étudié de manière séparée, puis de manière simultanée. Les lois cinétiques de nucléation et de croissance cristalline du sulfate de baryum sont déterminées, puis intégrées au modèle de coprécipitation. Des études de cinétique et d'isotherme de sorption du césium par le PPFeNi sont aussi menées afin d'acquérir les données nécessaires à la modélisation du procédé. La modélisation permet de prédire finement la concentration résiduelle en strontium et en césium en fonction du type de procédé utilisé : cela constitue un outil précieux pour l'optimisation d'unités existantes ou le dimensionnement d'unités futures. Le réacteur/décanteur continu présente de très nombreux avantages par rapport au procédé continu classique : il permet d'améliorer sensiblement les performances de décontamination en strontium et en césium tout en réduisant le volume de boues générées par le procédé. Le réacteur/décanteur assure aussi une bonne séparation liquide/solide, et l'installation résultante se révèle nettement plus compacte. Ainsi, le réacteur/décanteur continu permet d'intensifier les procédés de traitement d'effluents liquides radioactifs, et constitue une technologie très prometteuse pour une application industrielle future