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Résumé

Les systèmes cryptographiques embarqués sont de plus en plus employé de nos
jours allant de la carte bancaire, à la SIM qui nous identifie sur le reseau télé-
phonique, jusqu’à nos smartphones qui contiennent de nombreuses données sen-
sibles voir secrètes. Ces systèmes doivent résister à un grand nombre d’attaques
autant physiques que logiques.

Les travaux qui suivent décrivent dans un premier temps la cryptographie ainsi
que les différents algorithmes classiquement utilisés. Un état de l’art sur les tech-
niques d’attaques par canaux cachés est ensuite présenté, ces attaques sont dé-
vastatrices car elle ne demandent pas forcément de détenir le dispositif, elles peu-
vent être effectuées à distance grace à du matériel performant. Elles consistent
à étudier les émissions produites par un composant pendant qu’il traite un secret
afin de retrouver ce dernier par des calculs statistiques ou de simples observa-
tions comme le temps de traitement. Nous présentons ensuite les attaques par
fautes qui sont un autre type d’attaque qui menacent les composants sécurisé,
il s’agit cette fois d’induire un comportement différent en introduisant des modi-
fications extérieures au composant comme l’envoie de photons ou des décharges
electriques afin de le mettre dans un état non standard et d’utiliser cela pour récu-
perer les secrets utilisés.

Puis dans une seconde partie nous proposons de nouvelles attaques et contre-
mesures associées ainsi que de nouvelles implémentations d’algorithme pour se-
curiser les calculs tout en les accélérant. Nous présentons également un simula-
teur d’émissions par canaux cachés ainsi qu’un simulateur de faute pour permettre
d’évaluer plus rapidement et à moindre coût la sécurité des systèmes sécurisés.

Mots clés: sécurité embarquée, simulateur, analyse par canaux auxilliaires,
algorithme d’exponentiation securisé.
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Abstract

Embedded cryptographic systems are more and more used nowadays, starting
from our credit card, to our SIM that identifies us on the GSM networks, or to our
smartphones for example that store personal or secret data. Those systems have
to be resistant against different kind of attacks, physical and logical.

Our work that we present thereafter first introduce cryptography with the dif-
ferent classic algorithms used. We proceed to present the state of the art on side-
channel attacks, those attacks are very dangerous since they do not always need
the physical possession of the target device, and can be done remotely with the
good material. They are based on the study of the emissions produced by a com-
ponent while it is using the secret stored in its internal memory to retrieve the
secret through statistic computations or simple observations like the time it takes
to treat data. We then propose a survey on faults attacks that also threaten se-
curity product. The idea is to produce a non standard behaviour by changing its
environment, like sending photons or power discharge and then trying to recover
the secrets.

In a second part, we propose new attacks, associated counter-measures and new
algorithm to secure computation while making them also quicker. We present after
a simulator of side channel emissions and faults attacks that allows us to assess
the security of embedded systems quicker and cheaper than standard methods.

Keywords: embedded security, simulator, side-channel analysis, secure expo-
nentiation algorithm.
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Introduction

Nowadays embedded devices are widespread in consumer, industrial, commer-
cial and military applications. More and more devices are appearing each day
with more processing power while standing in the pocket of the consumer. Smart-
phones are more powerful than computers from few years ago. Those devices used
by an always increasing population, and soon everyone will be using them, stor-
ing in the cloud personal informations they would not want to be exposed, with
growing memory and storage one will be able to store his whole life digitalised on
those platform. Those devices usually contain secret, like our bank key for credit
card, our client id for Global System for Mobile (GSM) networks or some login and
password for mail connection for example in smart-phones. Exchanging such data
between two parties without allowing anyone to spy on the conversation is a thou-
sands years old problem, addressed by cryptography, that arose in ancient Egypt
with scribes writing non-standard hieroglyphs to pass secret messages. This sci-
ence evolved up to the current cryptography with the addition of other needs like
proving his identity or signing contents and finding different ways to exchange the
key of the cipher to prevent its discovery.

Recent embedded devices are composed of hardware blocks, made from transis-
tors linked together with multiple level of lines, called intellectual property blocks
(IP). The security of those IP has been the subject of intensive research after the
rise of so called Side-Channel Analysis (SCA) attacks that were introduced by
Kocher et al. in 1998 [61] and started this new field of research in the applied
cryptography area. Those kinds of attacks are non intrusive as they only monitor
the environment of the target to deduce internal workings and potentially retrieve
the hidden secrets. Those systems are also vulnerable to so called Fault Attacks
where an attacker voluntary modify the processing of a component in order to re-
trieve information about the target. The combination of those two different threats
leads to very powerful attacks.

The first part of my PhD will be an introduction to the state of the art for those
SCA and faults Attacks. Then in a second part, we will present our contributions to
the embedded security. Those new attacks were presented in various recognized
embedded security workshops. In the last contribution chapter we will propose
a new cheap and quick way to assess the security of a product against faults and
SCA attacks through software simulation.

Then we will make a summary of our contributions and conclude.

1



Part I

Background
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Chapter 1

Cryptography

1.1 Introduction

Cryptography can be defined as the science of protecting sensible information.
Cryptography is intimately connected to a second term, namely cryptanalysis,
which aims at breaking cryptographic means and reading the secret information.
Often, the term cryptology is used to involve both of these aspects. Basically,
cryptography aims at providing four principal security aspects: privacy or confi-
dentiality, authenticity, integrity, and non-repudiation.

• Confidentiality: It authorizes the access for only allowed parties (or users).

• Authenticity: It allows different parties to identify each other (source/desti-
nation).

• Integrity: It guarantees that the message is properly transmitted from the
source to the destination.

• Non repudiation: It allows controlling message acknowledgment. It provides
proof of the integrity and origin of data.

Depending on the system to secure and the nature of the secret information,
usually one or all of the mentioned security aspects, that Cryptography can pro-
vide, are required.

1.2 Symmetric Ciphers

Symmetric-key algorithms are a class of algorithms for cryptography that use the
same cryptographic keys for both encryption of plaintext and decryption of cipher-
text.

Secret Key (SK) cryptography are defined as the class of ciphers that use an
unique key for both encryption and decryption. This key has to be shared between
the source and the receiver. For this reason, SK cryptography is also called Sym-
metric encryption, whereas Public Key (PK) Cryptography is called asymmetric.
Obviously, the main issue with symmetric encryption relies on the distribution of
the secret key. Secret-key cryptography schemes are classified into stream ciphers
and block ciphers.
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Cipher function E
Secret key K

Plaintext P

Ciphertext C

Figure 1.1: Cipher overview

1.2.1 Stream Cipher

A stream cipher is a symmetric key cipher where plaintext is combined with a
(pseudo) random stream named keystream. Each plaintext digit is encrypted with
the corresponding digit of the keystream, providing a digit of the cyphertext stream.
Such ciphers are also named state cipher, as the encryption of each digit is depen-
dent on the current state. In practice, a digit is typically a bit and the combining
operation an exclusive-or (xor). The pseudorandom keystream is typically gener-
ated from a random seed value using digital shift registers. The seed value serves
as the cryptographic key for decrypting the ciphertext stream.

Stream ciphers represent a different approach than block ciphers. Block ciphers
operate on large blocks of digits with a fixed transformation. In some modes of op-
eration, a block cipher primitive can be used in such a way that it acts effectively
as a stream cipher. Stream ciphers usually execute at a speed greater than block
ciphers and are simpler in term of hardware complexity. However, stream ciphers
can be susceptible to serious security problems if used incorrectly, the same start-
ing state (seed) must never be used twice.

The One-Time Pad (OTP), also known as Vernam Cipher, is proven to be an un-
breakable cipher. Stream ciphers can be viewed as trying to approximate its ac-
tion. A one-time pad uses truly random digits for its keystream, the keystream is
then combined with the plaintext to form the resulting ciphertext. Claude E. Shan-
non proved in 1949 that is was secure. A drawback though is that the keystream
has to be of at least the same length than the plaintext! Since the receiver has to
know both to recover the message, it usually has to be delivered by two different
paths, since if both would use the same path an eventual interception would break
the system. The system is consequently very hard to implement in practice and as
a result it is not widely used, except for the most critical applications and some
governmental transmissions.

Classical Stream Cipher use smaller key size like 8 or 16 digits long (64 or
128 bits). The key is derived in different ways and can be combined too with the
plaintext to generate a pseudo random keystream that is used then like the secure
OTP. However, the proof of security associated with the previous algorithm does
not hold anymore and such a Stream Cipher can be insecure.

Linear Feedback Shift Register-based Stream Ciphers

Binary stream ciphers are usually made using LFSRs (Liner Feedback Shift Reg-
isters) since they are really efficient hardware blocks that can be synthetized and
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optimized very efficiently. They can also be mathematically analyzed very well.
LFSRs as such are not enough to provide good security, they usually have to be
coupled with other mechanism in order to increase their security.

Security

A basic necessary condition for a stream cipher to be secure is to have a large
period for its keystream. The internal state of the keystream must be impossible
to recover too. Usually cryptographers requires for any key and any ciphertext the
following properties.

• The absence of any bias of the keystream that could help attackers to distin-
guish the keystream from a random distribution.

• No known relationships between the key or related nonces and the keystream.

For some stream ciphers though weak keys do exist that do not exhibit such prop-
erties.

Cryptographers do not need to actually break the cipher, but only to exhibit
weaknesses, in order to find an attack. To be successfully accepted an attack
complexity has only to be less than the complexity the exhaustive key search.

Securely using a synchronous stream cipher requires that one never reuses the
same keystream twice; that generally means a different nonce or key must be
supplied to each invocation of the cipher. Application designers must also recog-
nize that most stream ciphers do not provide authenticity, only privacy: encrypted
messages may still have been modified during the transmission. Short periods for
stream ciphers have been a practical concern. For example, 64-bit block ciphers
can be used to generate a keystream in output feedback (OFB) mode but in that
case by using the birthday theorem we get a probability of 1/2 to get 2 computa-
tions with the same output for 232 tries. The period of such a keysteam would then
be 232 on average.

1.2.2 Block Ciphers

A block cipher uses a fixed algorithm operating on a group of bits of fixed size.
The size of such a group of bit - called block - is dependent on the cipher. The
transformation is fixed and dependent of the key used. The block ciphers are
important cryptographic primitives in the design of secure protocols nowadays
and are widely used for encryption. The design of block ciphers is based on the
concept of an iterated product ciphers, such ciphers were analyzed by Claude
Shannon in his Communication Theory of Secrecy Systems to improve security by
combining simple operations such as substitutions and permutations [94].

The publication of the Data Encryption Standard (DES) by the National Institute
of Standards and Technology (NIST) in 1977 was a fundamental move in the un-
derstanding of modern block cipher design. That algorithm has been thoughtfully
studied and a palette of attack techniques that a block cipher has to be secure
against emerged from that in addition from the robustness to brute force attacks.

Multiple iterations (rounds) are usually required by iterated product ciphers to
do the encryption, each round using a roundkey derived from the master key. Feis-
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tel networks (section 1.2.2), named after their creator Horst Feistel, used in the
DES cipher are a widespread implementation of such ciphers. The Advanced En-
cryption Standard (AES) algorithm on another hand uses Substitution Permutation
Networks (SPN) (section 1.2.2).

We can cite some known block ciphers: DES, AES, Twofish, IDEA, RC5, Serpent,
Blowfish.

Definition

A block cipher consists essentially of two paired algorithms

1. An encryption algorithm E

2. A decryption algorithm D = E−1

Both algorithms accept two kind of inputs

1. A block input of size n bits.

2. A key of size k bits, K named the key.

The result of E and D are two blocks of n bits respectively C the ciphertext and P
the plaintext.

A block cipher is defined by its encryption function

EK(P ) := E(K,P ) : {0, 1}k × {0, 1}n → {0, 1}n (1.1)

For each K, the function EK(P ) is required to be an invertible mapping on {0, 1}n.
The inverse for E is defined as a function

E−1
K (C) := DK(C) = D(K,C) : {0, 1}k × {0, 1}n → {0, 1}n (1.2)

taking a key K and a ciphertext C to return a plaintext value P , such that

∀P∀K : DK(EK(P )) = P.

E

secure channel

D

K

P PC

Alice BobEve

Figure 1.2: Symmetric Cipher

Let us take the AES block cipher as example, its encryption algorithm takes a
128-bit block of plaintext as input and outputs a 128-bit block of ciphertext. The
transformation is dependent on the secret key that controls some internal state
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of the cipher. The decryption is similar, it takes the same block size as input and
output. Assuming the same secret key is used the decryption of the ciphertext
returns the plaintext. For any 2k key K, EK is a permutation over the set of input
blocks. Each key selects one permutation from the possible set of (2n)!.

Iterated block ciphers The vast majority of block cipher algorithm belongs to
the iterated block ciphers class, meaning that their transformation is done via
repeated application of an invertible transformation known as the round function.
Each iteration is commonly referred to as a round. Usually different round keys Ki

are used for the round function f on different rounds. Those round keys are derived
from the original key K through a commonly called key expansion algorithm. Let
r be the number of round, Pi the entry of the ith round, with P0 the plaintext and
Pr the ciphertext.

Pi = fKi(Pi−1) (1.3)

Frequently, key whitening is used in addition to this. At the beginning and the
end, the data is modified with key material for instance it can be ⊕, addition or
Subtraction operation. It would give by example:

Alg. 1.1 Simple Key Whitening
1: P0 = P ⊕K0

2: for i = 1 to r do
3: Pi = fKi(Pi−1) ;
4: end for
5: C = Pr ⊕Kr+1

6: return (C)

Substitution-Permutation Networks Another important type of Iterated block
ciphers is SPN. It works by taking a block of plaintext and a key as inputs, and
applying rounds of alternating substitution and permutation stages to produce
the ciphertext. The substitution stage should be non-linear and mixes the key bits
with the plaintext to create Shannon’s confusion. The permutation state is used to
create diffusion and to dissipate redundancies. A Substitution box named S-Box
substitutes a small block of input data replacing it with another block of output
bits. The S-Box must be bijective to ensure invertibility and decryption. To be
qualified secure, changing one bit in the input data should change about half of
the output bits. This principle is known as the avalanche effects. For example you
can have a look at Table 1.1.
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0 1 2 3 4 5 6 7 8 9 A B C D E F
00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 1.1: AES S-Box

A permutation shuffles all S-Box output bits to produce the input of the next
round. A good permutation should ensure that the output bits of any S-Box are
distributed to as many S-Box inputs of the next round.

The round key is usually obtained by combining some group operation like ⊕
or shifts on itself. Decryption is done simply by reversing the process using the
inverse S-Box −1 and the inverse permutation.

Feistel ciphers The plaintext entering such a cipher is split into two halves of
the same size. The round function is then applied on one half using a subkey then
XORed with the other half. The function then swaps both halves.

Let F be the round function and let K0,K1, . . . ,Kn be the round keys for rounds
1, . . . , n respectively. Then the basic operation is performed as follow:

Alg. 1.2 Feistel Encryption Algorithm
1: Split the plaintext into two block of same length L0 and R0

2: for i = 1 to n do
3: Li+1 = Ri
4: Ri+1 = Li ⊕ F(Ri,Ki)
5: end for
6: return (Rn+1, Ln+1)

The decryption of a ciphertext (Rn+1, Ln+1) is accomplished by computing the
same algorithm in reverse order.

One advantage of the Feistel model compared to a substitution-permutation net-
work is that the round function F does not have to be invertible. The best known
usage of a Feistel cipher is the one used in the DES detailed in Figure 1.5.
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Figure 1.3: Feistel Network

Mode of Operations

A block cipher is only suitable to securely transform either by encryption or de-
cryption one block. A mode of operation describes how to repeatedly apply a
cipher single-block operation to securely transform amounts of data larger than
one block.

• Electronic Code Book (ECB) mode The same block of ciphertext is always
generated for a given block of plaintext and a given key. ECB mode is often
used for small sizes of input block, such as encrypting and protecting secret
keys. The disadvantage of this method is that it does not hide data patterns
well since the same block is always encrypted to the same ciphertext. In
some senses, it does nOT provide serious message confidentiality, and it is
not recommended for use in cryptographic protocols at all.

• Cipher Block Chaining (CBC) mode This mode makes the being processed
ciphertext block dependent on plaintext blocks previously processed. Actu-
ally, the plaintext block currently processed is ⊕ with the previous ciphertext
block before being encrypted. Besides, an initialization vector must be used
for the initial block, in order to guarantee the uniqueness of the message.
Decrypting with the incorrect IV causes the first block of plaintext to be cor-
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rupted but subsequent plaintext blocks will be correct. This is because a
plaintext block can be recovered from two adjacent blocks of ciphertext. De-
cryption can be parallelized. Note that a one-bit change to the ciphertext
causes complete corruption of the corresponding block of plaintext, and in-
verts the corresponding bit in the following block of plaintext, but the rest of
the blocks remains intact.

• Cipher Feedback (CFB) mode Data are encrypted in new blocks smaller than
the initial block size. It can recover from an error received on stream de-
cryption after a certain number of blocks. That property makes it a so called
self-synchronizing ciphers.
CFB has two advantages over CBC mode:

– the block cipher is only ever used in the encrypting direction

– the message does not need to be padded to a multiple of the cipher block
size

• Output Feedback (OFB)mode It operates in amanner to guarantee the unique-
ness of generated ciphertext blocks.

1.3 Standard Systems

1.3.1 Data Encryption Standard

The DES used to be the Number one cryptographic algorithm for electronic data.
It had a high influence in the advancement of the study of modern cryptography
in the academic world. Thanks to it new attacks were found, and cryptographers
have a better understanding on what property are mandatory to a block cipher in
order to be secure! It appeared in the early 1970s at IBM and is based on an design
made by Horst Feistel [38]. The algorithm was submitted to the National Bureau
of Standars (NBS) after an invitation to propose the algorithm that would be used
for the protection of sensitive, unclassified government data. After consultation of
the National Security Agency (NSA), the NBS selected a slightly modified version
of the algorithm which was then published as an official FIPS (Federal Information
Processing Standard) for the United States or America (USA) in 1977.

The publication of an encryption standard algorithm recognized by the NSA re-
sulted in its quick adoption and widespread scrutiny. Since some design elements
were classified, controversies arose quickly. The relatively short key length 1 of
the block cipher design nourished suspicions about an eventual backdoor put in
by the NSA in the algorithm in order to be able to crack it. The intense academic
studies of the algorithm led over time to a much better understanding of block
cipher and their cryptanalysis. Nowadays DES is considered to be insecure, for
example in 1999 a collaboration broke a DES key in a little more than 22 hours.
Some analytical results [68] demonstrate theoritical weaknesses in the cipher but
none were implemented more efficiently than the brute force attack (first imple-
mented by the Electronic Frontier Fondation (EFF) in 1998). The cipher has been
superseded by the AES and DES was withdraw by the NIST.

1See the interesting transcript about DES modifications made by the NSA.
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Overall Structure

The algorithm overall structure is shown on Figure 1.4.

• There are 16 rounds of processing

• Use a Feistel Network (section 1.2.2) with two halves of 32-bit each.

• There is also initial and final permutation, termed IP and FP IP = FP−1. Those
fonctions have no cryptographic significance and were introduced mostly to
facilitate the task of 8-bit based hardware in 1970 2.

Figure 1.4: DES Overall Structure

Feistel Function

The F function, depicted on Figure 1.5, operates on half a block (32 bits) at a time
and consists of four stages:

2Benefits of the permutation tables in DES
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Figure 1.5: Feistel Function Figure

Expansion the 32-bit half-block are expanded to 48 bits using an expansion per-
mutation, denoted E in the diagram, by duplicating half of the bits. The output
consists of eight 6-bit parts, each containing a copy of 4 corresponding input
bits, and a copy of the immediately adjacent bit from each of the input pieces
to either side.

Key mixing the result is combined with a round subkey through an XOR opera-
tion. Sixteen 48-bit subkeys are derived from the master key using the key
schedule (section 1.3.1).

Substitution the block is divided into eight 6-bit parts before entering the S-Boxes.
Each of the eight S-Boxes replaces its six input bits with four output bits ac-
cording to a lookup table. The S-Boxes provide the core of the security of
DES. Without them, the cipher would be linear, and trivially breakable. The
S-Boxes are non-linear.

Permutation the 32-bit output from the S-Boxes are mixed according to a fixed
permutation. The permutation is designed in such a way that each S-Box’s
output bits are spread over 4 S-Box in the next round. The S-Boxes, permuta-
tion and E expansion provide the so-called "confusion and diffusion" respec-
tively, a concept that Claude Shannon identified as necessary for a secure
cipher.

DES Key Schedule

Figure 1.6 describes the algorithm which generates the subkeys known as the Key
Schedule. At first 56 bits of the key are chosen by the Permuted Choice 1 (PC1)
then the left bits are discarded. The bits are then split in two 28-bit halves treated
separately. Both halves are rotated left by one or two bits (depending on the round)
and 48 bits subkey are chosen by Permuted Choice 2 (PC2), 24 bits from the left
part, and 24 from the right one. The rotations "<<<" make that different set of
bits are used for each subkey. Each bit of the master key is used approximatively
on 14 of the 16 subkeys. For decryption, the key schedule does not change, only
the order of the subkeys that are used in reverse order compared to encryption.
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Figure 1.6: DES Key Schedule

1.3.2 AES

In 2001 the NIST published the specification of the new encryption cipher for
electronic data named the AES. It was named Rijndael after both its inventors, Joan
Daemen and Vincent Rijmen who submitted it during the five years NIST selection
process where fifteen competing designs were proposed and evaluated. AES after
being adopted by the USA government is used worldwide nowadays, superseding
the DES presented in subsection 1.3.1. The cipher uses symmetric keys. It became
effective as a federal government standard in 2002. AES is provided in the ISO/IEC
18033-3 standard. It is available in many different libraries, and is the first publicly
accessible cipher approved by the NSA for top secret information when used in an
NSA approved cryptographic module. The AES standard is a variant of Rijndael
with a block size fixed to 128 bits.

Overall Structure

AES is based on a design principle known as a SPN (section 1.2.2) not on Feistel
Networks and fast in both software and hardware. Its key size can be 128, 192, or
256 bits. In the Rijndael specification block and key sizes may be any multiple of
32 bits, both with a minimum of 128 and a maximum of 256 bits 3. AES operates
on a 4x4 matrix of bytes, named its state. Most AES computations are done in a
finite field. The number of rounds of the AES cipher is specified by the size of the
secret key, defined as follows:

3Rijndael Specifications
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• 10 cycles of repetition for 128-bit keys.

• 12 cycles of repetition for 192-bit keys.

• 14 cycles of repetition for 256-bit keys.

Each round consists of several steps containing four stages including one that
depends on the encryption key. Reverse rounds are alse provided to transform
back the ciphertext back to the plaintext assuming the same encryption key is
used.

The AES algorithm is composed of 5 states:

• Key Expansion: round keys are derived from the cipher key using Rijndael’s
key schedule.

• SubBytes: a non-linear substitution step. Each byte is replaced with another
thanks to a table.

• ShiftRows: a transposition step. Each row of the state is shifted circularly a
certain number of times.

• MixColumns: a mixing operation. It combines the four bytes in each column.

• AddRoundKey: round keys are derived from the cipher key using Rijndael’s
key schedule.

The algorithm is the following one:

Alg. 1.3 AES algorithm
Key Expansion
AddRoundKey
for all Rounds do
SubBytes
ShiftRows
if (round != lastRound) then
MixColumns

end if
AddRoundKeys

end for

AES is well suited for hardware design, only the S-Box part being non logical
operation.

SubBytes

In this step each byte of the state matrix is replaced with another one using a
S-Box table shown on Table 1.1. This operation gives the non-linearity needed
by the cipher to be secure. The S-Box used is derived from the multiplicative
pseudo-inverse over GF (28), since its known to have good non-linearity properties
and combined with an affine transformation (invertible) to prevent attacks based
on algebraic properties. The S-Box is chosen to avoid any fixed or opposite fixed
points.
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Figure 1.7: AES SubBytes

ShiftRows

This step operates on the rows of the state. The bytes are cyclically shifted for each
row by a certain offset. The first row is left unchanged. The row n are shifted by
n−1 to the left circularly. This steps tries to provide columns linearly independent.

Figure 1.8: AES ShiftRows

MixColumns

In this step each bytes of a column are combined using an invertible linear transfor-
mation. Each input byte affects the four output bytes of the MixColumn function.
It provides with ShiftRows the diffusion of the cipher. During this operation, each
column is multiplied by the known matrix that for the 128-bit key is:


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2
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Let define:

xtime(a) =


(a6, . . . , a0, 0),
if a7 = 0

(a6, . . . , a0, 0)⊕ (0, 0, 0, 1, 1, 0, 1, 1),
if a7 = 1

With the AES parameters, the multiplication of x resume to the following

01 · a = a

02 · a = xtime(a)

03 · a = 02 · a⊕ a.

Figure 1.9: AES MixColumns

AddRoundKey

In the AddRoundKey step the subkey is changed by combining it with the state. For
each round, a subkey is generated from the master key using the key schedule,
each key is the same size as the state. The subkey is obtained by using the ⊕
operation on each byte of the state with the corresponding byte of the subkey.
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Figure 1.10: AES AddRoundKey

Software Implementation

On systems with 32-bit or larger words, it is possible to speed up execution of this
cipher by combining the SubBytes and ShiftRows steps with the MixColumns step
by transforming them into a sequence of table lookups. This requires four 256-
entry 32-bit tables, and utilizes a total of four kilobytes (4096 bytes) of memory -
one kilobyte for each table. A round can then be done with 16 table lookups and
12 32-bit exclusive-or operations, followed by four 32-bit exclusive-or operations
in the AddRoundKey step. If the resulting four-kilobyte table size is too large for a
given target platform, the table lookup operation can be performed with a single
256-entry 32-bit (i.e. 1 kilobyte) table by the use of circular rotates. Using a
byte-oriented approach, it is possible to combine the SubBytes, ShiftRows, and
MixColumns steps into a single round operation.

1.3.3 Attacks on Symmetric Ciphers

In modern cryptography the attacker is supposed to know everything about the
algorithm, only the keys are assumed to be secret. This is called the Kerckhoff’s
princple. An attacker has to discover the key, a part of it, or be able to encrypt or
decrypt blocks of data.

Exhaustive keysearch : given a few plaintext/ciphertexts search through all the
possible keys until the correct one is found.

Ciphertex-only attack : the attacker has at his disposition only ciphertexts.

Known-plaintext attack : the attacker has at his disposition a certain number
of plaintext and corresponding ciphertext.

Chosen-plaintext attack : the attacker can choose the plaintexts that are en-
crypted.
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Double encryption

A common mistake is to think that a double encryption double the security of the
cipher. A meet in the middle attack is possible is that case.

Alg. 1.4 Double Encryption Attack
Input: P1, C1,P2,C2

1: A = L = ∅
2: for all Kf ∈ K do
3: SubCipherE = ENC(Kf , P1)
4: A[SubCipherE]← Kf

5: end for
6: for all Kb1 ∈ K do
7: SubCipherD = DEC(Kb, C1)
8: Kt = A[SubCipherD]
9: if ENC(Kt, P2) = DEC(Kb, C2) then
10: L← L ∪ (Kt,Kb)
11: end if
12: end for
13: If ‖L‖ 6= 1 do an exhaustive search on L
14: return (L)

1.4 Asymmetric Ciphers

PK cryptography, refers to a cryptographic algorithm which requires two separate
keys. One public that can be provided to everyone and one that is secret and must
be kept secure by the owner of the key. Although different, both parts are linked
mathematically. The public part is used to encrypt plaintext or verify signature.
The private part is used to generate the signature or retrieve the plaintext from
the encrypted ciphertext. It is also named asymmetric cryptography since different
keys are used to perform opposite functions (like encryption and decryption).

The most common algorithm in PK are Rivest Shamir Adleman (RSA) and Ellip-
tic Curve Cryptography (ECC). We will not get as deep as we did for the SK since
our work only depends on some base function from an exponentiation. We will
show in chapter 9 how to improve the exponentiation algorithm used on Embed-
ded Devices in order to increase the security and speed of such operations if the
required Hardware is available.

E D

Kpub Kpriv

P PC

Alice BobEve

Figure 1.11: Asymmetric Cipher
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Chapter 2

Side Channel Analysis

2.1 Introduction

SCA can be defined as any attack exploiting physical information leaked from a
cryptographic device depending on the data processed.

During a cryptographic process, the device is likely to leak sensitive informa-
tion, that can be timing information, power consumption, electromagnetic radia-
tions, sound leaks, etc. SCA are passive attacks, in that the device under attack is
not aware of its leaks being recorded.

In cryptography, a side channel attack is any attack based on information gained
from the physical implementation of a cryptosystem, rather than brute force or the-
oretical weaknesses in the algorithms (compared to cryptanalysis). In the common
literature information such as timing, power, electromagnetic or sound for sam-
ple were used in order to exploit and break a cryptosystem. Some SCA requires
knowledge about algorithm and internal operations made by the system in order to
break it while others like Differential Power Analysis (DPA) or Side Channel Anal-
ysis for Reverse Engineering (SCARE) attacks are effective as black-box approach
and can even help an attacker understand what is computed by a secret device.

Analyzing properties (electromagnetic radiations) leaked from systems started
many years years ago. The so-called TEMPEST project led by the US provided so-
lutions to exploit and counteract the electromagnetic emanations (EM) of different
electronic devices. It was used successfully in order to remotely view the screen of
old CRT screens for example. Later Wim Van Eck studied also later those attacks
in [101], then Paul C. Kocher et al. proposed in [60, 61] two variants of SCA: the
Simple Power Analysis (SPA) presented in subsection 2.2.1 and the DPA presented
in subsection 2.2.2. Those new attacks were a real breakthrough in the embedded
security field and could break almost all the devices on field in the late 90’s, like
DES and RSA implementations.

After the initial publications of SPA and DPA, the passive embedded security
field evolved quickly and some new generic attacks more powerful were found
like the Correlation Power Analysis (CPA) [20], then others attacks like Mutual
Information Analysis (MIA) or Templates Analysis appeared that can be efficient
in some specific cases.

19



2.2 Attacks

2.2.1 Simple Power Analysis

SPA is defined by the Bundesamt für Sicherheit in der Informationstechnik (BSI)
in the Common Criteria Protection Profile BSI-PP-0042 as "a direct analysis of pat-
terns of instruction execution, obtained through monitoring variations in electrical
power consumption of a cryptographic algorithm". One can try to break a chip se-
crets by finding in the patterns of a side-channel measurement enough information
on the key to be able to recover it.

Timing attacks is a kind of SCA where the attacker focus on the time spent by
the device to recover some secret information. It was introduced by Kocher on
asymmetric algorithm.

SPA involves measuring variations in power consumption of a device as it per-
forms an operation, in order to discover information about secret key material or
data. This is achieved by mapping certain operation types to consumption pat-
terns. For example, a series of ⊕ operations exhibits a different trace on an oscil-
loscope to a series of multiplication operations.

A good example in order to understand SPA is to take for sample a PIN verifi-
cation shown in Figure 2.1. We can clearly see the 4 bytes verification on a good
PIN that are done by the card when the PIN matches the one stored in its secret
memory. Now let us take the same card and compute a verification on a PIN that
has only its first 2 digits correct. The resulting SPA trace would be the one shown
in Figure 2.2. On this last diagram we voluntarily zoomed on the interesting part
containing the comparison of the PIN digits. While the green curve representing
the computation done with the complete PIN has clearly 4 verifications, the signal
of the one plotted in red changes after the second comparison when the 3rd digit
is checked. This information could then be used by an attacker to retrieve the PIN
stored on the card with a complexity reduced from 104 in the case where he would
have to check all the different PIN possible of 4 characters long, to 10 ∗ 4 since he
could test all the digits for the first one and look at the trace to see which one has
a longer comparison time than the other one. This one would be the good guess.
Then repeat for the 3 other digits.
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comparison of 4 bytes

time

power

Figure 2.1: Good Pin

comparison of 4 bytes

OK KO

time

power

Figure 2.2: Superposition of Good and Wrong PIN verification

Another good example of this is RSA, which has to perform large multiplica-
tions, and therefore leaks information about the internal state of a large integer
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multiplication via the pattern of operations it performs. If the algorithm is not pro-
tected, like the one presented in 9.1, one can deduce by the size of the pattern for
sample whether the secret exponent bit is 0 or 1.

One can also use the fact that unprotected signals are represented physically
by high or low voltages, therefore a 1 uses more power than a 0 for the period that
bit is used by the processor.

While smart cards are usually very specific and perform only a single thread at
a time, more complex systems are multithreaded and can execute multiple inter-
laced operations at the same time. The SPA on a modern desktop computer or a
smart-phone would be more difficult to implement from what is done on a smart
card, but other kinds of powerful attacks like cache attacks [13] are present on
those complex systems.

Acquiring the signal is necessary but most of the time it then has to be filtered
in order to remove any excessive noise or to display more information. We have
the same signal acquired from a contactless card, the first one (Figure 2.3) is not
filtered, while the second one (Figure 2.4) is. The reader can easily understand
that it is easier to retrieve what the card is doing when the noise is removed in the
second plot, and usually the attacks will also work better with noise reduction.

For more example of SPA, the reader should have a look at the section subsec-
tion 10.2.4.

Figure 2.3: Contactless SPA

Figure 2.4: Contactless SPA filtered
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2.2.2 Differential Power Analysis

SPA by itself is already a really efficient attack, but another breakthrough pub-
lished on the same paper [61] made it looks not so powerful. The noise introduced
by the component and the measurement bench and the fact that the difference in
consumption between two different operations is very subtle makes it very hard on
a single trace to get enough information about the internal of an algorithm when
no timing information appears. By using multiple traces though, assuming that the
same operation in all those traces appears at the same point in time, one can use
statistical means in order to remove the noise in the traces and to find statistical
bias in the measurement yielding to the secret key used.

A selection function D(i, G) depending on a part of a secret and an input is ap-
plied on measurements in order to split them in two parts, then statistical means
are used to find if the variables D(i, G) and the power traces Ti are independent
or not. If they are not independent then the correct part k of the key has been
retrieved.

In the original DPA the selection function denoted D(i, Gb,Ks) is defined as com-
puting the value of bit number b (0 <= b < 32) of the DES intermediate L at the
beginning of the 16th round for ciphertext Ci, where the 6 key bits entering the
S-Box corresponding to bit b are represented by Ks ( 0 <= Ks < 26 ). If Ks is
incorrect, then evaluating D(i, Gb,Ks) will yield the correct value for bit b with a
probability p ≈ 1

2 for each ciphertext.

The attacker would first observe n encryptions and capture power traces T1..n[1..k]
containing k samples each and the ciphertext C1..n without knowledge of the plain-
text.

Once the preparation phase is done, the attacker computes

∆D[j] =

∑n
i=1D(i, Gb,Ks)Ti[j]∑n
i=1D(i, Gb,Ks)

−
∑n

i=1 1−D(i, Gb,Ks)Ti[j]∑n
i=1 1−D(i, Gb,Ks)

(2.1)

If Ks is incorrect, the bit computed using D will differ from the actual target bit
for about half of the ciphertexts Ci and as a consequence the selection function
D(i, Gb,Ks) is uncorrelated to the power traces saved from the computations made
by the device. If a random function is used to divide a set into two subsets, the
difference in the averages of the subsets should approach zero as the subset sizes
approach infinity.

lim
n→∞

∆D[j] ≈ 0,∀j = 1, .., k (2.2)

Thus ifKs is incorrect because trace components uncorrelated toDwill diminish
with 1√

n
making the differential trace become flat. If Ks is correct the computed

value will equal the actual value of the target bit b with a probability of 1. The
selection function is thus correlated to the power traces and as a result ∆D[j] ap-
proaches the effect of the target bit on the power consumption as n → ∞ while
other data values, noise, ... that are not correlated to D approach zero. Since
power consumption is correlated to data bit values, only a few spot on the traces
will be correlated to the handling of the specified bit and as a result the plot of ∆D

will be almost flat everywhere with spikes in regions where D is correlated to our
selection function.
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One can then find the good values for Ks visually.

Figure 2.5: DPA sample

2.2.3 Distinguishers

We call distinguisher the function applied to the selection function in order to find
if it is or not correlated to the side-channel measurements [97]. Let Di,G be the
selection function that for a computation i and a guess G associates a model of
consumption that can be either 0 or 1 like in the original DPA an integer between
0 and 8 for a classical CPA ....

Alg. 2.1 Differential Power Analysis
Input: D(i, G), Ti, ∆
for all guesses G do
build ∆DG

[j],∀j = 1, .., n
end for
return argmaxG (|∆DG

[j]|,∀j = 1, .., n)

Original DPA , also called Difference of Means (DoM), involves a partition in two
sets as a single bit consumption activity is considered. This distinguisher is
simple and can be seen as:

DoM : ∆DG
[j] =

∑
(D(i, G)Ti[j])∑

D(i, G)
−
∑

(1−D(i, G)Ti[j])∑
(1−D(i, G))

(2.3)

CPA Using the normalized coefficient of correlation instead of the covariance. It
was introduced with the Pearson correlation coefficient with the form:

CPA : ∆DG
[j] :=

N
∑
Ti[j]D(i, G)−

∑
Ti[j]

∑
D(i, G)√

N
∑
Ti[j]2 − (

∑
Ti[j])2

√
N
∑
D(i, G)2 − (

∑
D(i, G))2

(2.4)
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Figure 2.6: CPA

Mutual Information Analysis (MIA) Issued from the probability and informa-
tion theory, theMIA of two random variables measure the mutual dependence
between them. The measurements and the model of consumption can be con-
sidered as two discrete variable X and Y and their mutual information then
express as:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x) p(y)

)
(2.5)

With p(x, y) the joint probability distribution function of X and Y , and p(x) and
p(y) the marginal probability distribution functions.

Intuitively, mutual information measures the information that X and Y share.
It can measures how much knowing one of these variables reduces the un-
certainty about the other one. If X and Y are independent, knowing X or
knowing Y does not give any information about the other and then their mu-
tual information is zero. On the other hand if X and Y are identical 1 then
knowing X yields the value of Y and as a result the mutual information is the
same as the uncertainty contained in X (or Y ) alone, namely the entropy of
X (or Y ).

Mutual information (MI) measures the dependence in the joint distribution of
X and Y relative to the joint distribution of X and Y under the assumption of
independence. Mutual information measures the dependence in the sense:
I(X;Y ) = 0 if and only if X and Y are independent random variables. This is
easy to see in one direction: ifX and Y are independent, then p(x, y) = p(x)p(y),
and therefore:

log

(
p(x, y)

p(x) p(y)

)
= log 1 = 0 (2.6)

1Or one of them is a deterministic function of the other.
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Moreover, mutual information is nonnative (i.e. I(X;Y ) ≥ 0 ) and symmetric
(i.e. I(X;Y ) = I(Y ;X) ).

Gierlichs et al. in [46] first applied the MIA to embedded security field. Let T
and D be the variable associated with the curves and the selection function,
t and d the realizations of T and D respectively, H(T ) is an estimation of the
entropy of T , H(T |D) is the conditional entropy of T knowing L,p(t, d) is the
joint probability density function of T and D, p(t) is the marginal probability
density function of T . By applying the previous equation formula we get:

MI(T ;D) =
∑
t∈T

∑
d∈D

p(t, d) log

(
p(t, d)

p(t) p(d)

)
(2.7)

MI(T ;D) = H(T )−H(T |D) (2.8)

The higher the value ofMI(T ;D) is, the higher the dependency between T and
D is. In practice, it is hard to get an accurate estimation for the probability
density functions. Manymethods have been proposed to estimate entropy his-
tograms, kernel density functions, Gaussian parametric estimators etc. [83].
With the distribution of (T,D) assumed Gaussian, the Gaussian parametric
estimation can be used as a first approximation of the distribution and then

H(T ) = −Σip(ti) log(p(ti)) = log(σt(2πe)) (2.9)

Moreover, under the Gaussian assumption, it can be verified that mutual in-
formation is intimately connected to the Pearson coefficient ρ and can be ex-
pressed as [88, 64] follows:

MI(T ;D) = −1

2
log(1− ρ2

T,D) (2.10)

2.2.4 High Order Attacks

Introduced in [61] and revisited in [71] a High Order Differential Power Analysis
(HODPA) attack is defined as a DPA attack that combines one or more samples
within a single power trace. A nth-order DPA attack makes use of n different sam-
ples in the power consumption signal that correspond to n different intermediate
values calculated during the execution of an algorithm. It usually requires more
computing power or more information on the targeted device than classical DPA.
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Chapter 3

Fault Analysis

3.1 Introduction

During the 1970’s some researchers noticed that sensitive areas of electronic chips
would be changed by radioactive particles. Starting from this observation and led
by the aerospace industry research on electronic devices resistance to various en-
vironments progressed. It produced various patents andmechanisms both for fault
creation and propagation and for protection against them. It was observed also
that many cryptographic algorithms implemented by electronic could be cracked
by using such faults, those kind of attacks were named accordingly "fault attacks".
Being able to prevent such faults while at the same time keeping good perfor-
mances is a non trivial problem. Such fault analysis were applied to almost every
cryptosystems in cryptography, on block ciphers like DES or AES and at the same
time on asymmetric cryptography like RSA CRT.

The first fault (active) attacks, named Differential Fault Analysis (DFA), were
published by Boneh, DeMillo and Lipton [19] and Biham and Shamir [15]. The
first technique, also known as the Bellcore attack, threatens implementations of
the RSA cryptosystem [86] while the second one targets the DES algorithm [39].

3.2 Cosmic Rays

The cosmic rays probably were the first cause of fault observed involuntary on
aviation or space travel research. Such faults cause issues since the first days
of space flights. They are subatomic particles with high-energy coming from the
outer space. They can be compared to high-energy protons and neutrons produced
by accelerators. Relying on such rays for attacksmeans that an attacker waits until
by chance such an event happend. The authors in [50] expect that an adversary
has to wait for several months until a bit flips caused by cosmic rays in DRAM cells.

3.3 Heat / Infrared Radiation

Electronic equipment works reliably only in certain range of temperature. If the
outside temperature is under or above a certain threshold, faults start to occur.
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Most PCs have a fan to prevent overheating. In [50] the authors experimented
infrared radiation coming from a spotlight lamp together with a variable power
supply. They successfully induced faults on a standard PC (single bit flip) for tem-
peratures between 80 and 100 Celsius.

3.4 Power Spike (glitch)

A glitch is a fault with a short life in a system. It is usually used in order to de-
scribe a fault that is difficult to troubleshoot. The term is common in computing,
electronic components as well as video games. It can be however applied to all
types of systems.

An electronic glitch can be defined as an unexpected transition that occurs in
the transistors. In other words, it is a short electrical pulse that changes the be-
havior of the system. For example flip-flops are triggered by a pulse that must
not be shorter than a specified minimum duration; otherwise, the component may
malfunction. A pulse shorter than the specified minimum is called a glitch. Two
related concepts are the runt pulses, a pulse whose amplitude is smaller than the
minimum level specified for correct operation, and a spike, a short pulse similar to
a glitch but often caused by ringing or crosstalk. A glitch can occur in the presence
of race condition in a poorly designed digital logic circuit.

Such glitches introduced in amicroprocessormay allow an attacker to introduce
faults in cryptosystems and consequently "break" them. Spikes allow to induce
both memory faults as well as faults in the execution of a program (code change
attacks), cf. [63].

3.5 Clock glitches

An attacker may replace the smart-card reader by laboratory equipment, he may
then provide his own clock signal with incorporates short massive deviations which
are beyond the required tolerance bounds. Such signals are called clock glitches
and can be used to both induce memory faults or to change the code executed.
Hence, the possible effects are the same as in power spike.

3.6 Laser

Power or clock glitches while already powerful are the big hammer tool for fault
attacks. They are very global and can trigger lot of different behaviors on the chip
at the same time. By using laser to send photons to specific part of an electronic
component, attackers may target part of an hardware, like a specific IP or even a
bit in memory on in a register depending on the product.
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3.7 Electromagnetic Pulses

The electromagnetic (EM) medium may be used to conduct active attacks. Two
kinds of near-field EM perturbations are usually considered: transient pulses [84,
90] and harmonic emissions [3, 12].

For example the effect of both electric and magnetic fields along the x-, y-, and
z-axes were studied. Their test circuits were found sensitive to both magnetic and,
to a greater extent, electric fields. Those results create new threats against the
security of random generator using such IP as source of entropy.

We will not go more into detail on fault attacks since we did not create a new
kind of fault attack, but combined them with side-channel to create a new kind of
attack. We will present some consequences of fault attacks.

3.8 Focused Ion Beams (FIB)

They are frequently used in the reverse engineering of smart-cards. They are
composed of a particle gun shooting ions ( for example Gallium ions from a liquid
metal cathode), and a microscope which focus the beam of ions. FIB are used to
drill holes in different layers of a smart-card to access single elements of bus lines
with measuring equipment. FIB can also be tuned finely to ionize silicon locally,
that action may be interpreted as a signal by the circuit.

3.9 Sample Attacks

Examples of those attacks can be found in subsection 10.3.2

3.9.1 PIN Verification

In order to make a PIN verification, a target tests at some points whether an input
match a secret stored by the card. If not protected correctly, one can easily bypass
a PIN verification with a simple laser pulse by tricking the target into thinking that
the input matched the expected value, while they were actually different.

3.9.2 RSA CRT

RSA CRT is a way of implementing RSA based on splitting the exponentiation in
two halves. Using the Chinese Remainder Theorem, one computes a result modulo
n = pq by splitting it into two computations modulo p and q respectively.

So, in RSA we need to compute c = md (mod n), but what we actually do is
computing intermediate results modulo p and q and then combining them. So we
compute cq = mdq (mod q) and cp = mdp (mod p) , and we combine them to obtain the
whole result like this:

c = (((cq − cp) ∗ Ip) (mod q)) · p+ cpwhereIp = p−1 · (mod q)
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Now, imagine you are able to modify one of the two exponentiations, for instance
you modify cq and get c′q instead. Now, if we subtract the two results, c and c′, we
get the following:

c− c′ = (((cq − cp) ∗ Ip) (mod q)) · p+ cp − ((((c′q − cq) ∗ Ip) (mod q)) · p+ cp)

Obviously, many of these terms are the same on both sides, and thus we can
simplify this result a lot:

c− c′ = (((cq − c′q) ∗ Ip) (mod q)) · p

This number is a multiple of one of the primes. By computing the greatest com-
mon divisor between c − c′ and n, we obtain the common factor p. From there we
can compute the other prime q, by just dividing n by p.

3.9.3 Dump of ROM

One can also too use faults attacks in order to dump ROM parts. For sample a
routine used for emission could be coded as:

void transmit_array(unsigned char* array,size_t len)
{

for(int i=0;i<len;i++){
transmit_byte(array[i]);

}
}

In that case if the variable len is faulted during the loop to 0xFFFF (worst case
on a 16 bits platform) we would dump 65kb of memory, possibly the whole RAM,
ROM, EEPROM depending on the hardware architecture.

3.9.4 Hack of the Playstation 3

The Playstation 3 (PS3) is a really powerful console made by Sony and depends on a
hypervisor to enforce security. This console allowed users to run an ordinary Linux
if they wanted under the management of this hypervisor. The hypervisor prevents
the Linux kernel from accessing different devices like the GPU by acting as a fire-
wall layer between the OS and the hardware. Hacking the hypervisor would give
the user full control over the console and the possibility to run whatever game,
original or not that would be inserted. The hack of the console, first published by
George Hotz, compromises the hypervisor after booting standard Linux through
fault injection. He connected an Field-Programmable Gate Array (FPGA) to a sin-
gle line on his PS3 memory bus. He then programmed the FPGA to send a pulse
of 40 ns when instructed to do so via a switch. It represents about 100 memory
clock cycle for the PS3. Even though the fault attack itself is very imprecise, he
used software means in order to enhance the likelihood of success.

The internals of the exploit is to prevent memory deallocation by the hypervisor
through glitch. The memory is deallocated by the processor first but since there
is a cache the writing is done to the cache, once the cache tries to write back to
the memory bus the attack takes place and prevents it. The hypervisor now thinks
that the memory is not mapped anymore while the Linux kernel has still access
to it. The next step consists in making requests to the hypervisor to create new
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virtual code segment until one is found to be positioned in the memory controlled
by the Linux Kernel. Then one can modify the data of the virtual code segment
and allows it to have full access of the memory. The Linux kernel has then access
to the whole hardware with the same rights as the hypervisor.

3.10 Countermeasures

A variety of hardware countermeasures have been developed as fault attacks be-
came stronger and stronger. These countermeasures are usually specific to a cer-
tain kind of physical attack. Sensors and filters aim to detect attacks like light
detectors, anomalous voltage detectors or anomalous frequency detectors. Re-
dundancy is another countermeasure commonly used in dual-rail logic for sample,
where each bit of memory is doubled at the cost of twice the hardware size, where
each computation is done twice in parallel and checked to detect any discrepancy.
If both results are identical then one can assume that no fault occurred. Random-
ized clocks are another countermeasure commonly used to provides some unsta-
ble frequency of the internal clock and makes the synchronization works harder.
Memory encryption, passive or active shields, dummy random cycles are others
hardware countermeasures used to protect smart-cards.

Hardware only countermeasures are very expensive though and usually specific
to a special kind of attack, since new kind of faults frequently appear, detecting
only currently known ones is required but not sufficient to provide resistance dur-
ing the lifetime of a secure product. Therefore software countermeasure are used
since they are easier to implement, cost less in hardware size of price and are
usually easier to deploy since a simple patch can add new countermeasures. The
current state of the art for software countermeasures are masking, checksums,
randomization, redundancy, golden values (baits) and counters.
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Part II

Contributions
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Chapter 4

Our work

During the three years of my PhD we contributed to different fields of the em-
bedded security. I will now present briefly the different results we got and the
improvement over the state of the art.

Horizontal Correlation Analysis on Exponentiation In chapter 5 a new side-
channel analysis on an RSA exponentiation. It computes correlation esti-
mates, which are generally used by side-channel analysis to infer information
on a secret key from numerous exponentiation traces. Our method allows a
secret exponent to be recovered from a single trace under realistic assump-
tions. This was presented in ICICS 2010 [29].

Improved Collision-Correlation Power Analysis on AES The recent results pre-
sented by Moradi et al. on AES at CHES 2010 and Witteman et al. on square-
and-multiply always RSA exponentiation at CT-RSA 2011 have shown that
collision-correlation power analysis is able to recover the secret keys on em-
bedded implementations. However, we noticed that the attack published last
year by Moradi et al. is not efficient on correctly first-order protected imple-
mentations. We propose in chapter 6 improvements on collision-correlation
attacks which require less power traces than classical second-order power
analysis techniques. We present here two new methods and show in practice
their real efficiency on two first-order protected AES implementations. We
also mention that other symmetric embedded algorithms can be targeted by
our new techniques.This was presented in CHES 2011 [31].

ROSETTA In most efficient exponentiation implementations, recovering the se-
cret exponent is equivalent to disclosing the sequence of squaring and mul-
tiplication operations. Some known attacks on the RSA exponentiation apply
this strategy, but cannot be used against classical blinding countermeasures.
In chapter 7, we propose new attacks distinguishing squaring from multipli-
cations using a single side-channel trace. It makes our attacks more robust
against blinding countermeasures than previous methods even if both expo-
nent andmessage are randomized, whatever the quality and length of random
masks. We demonstrate the efficiency of our new techniques using simula-
tions in different noise configurations. This was presented in INDOCRYPT
2012 [27].

Passive and Active Combined Analysis Tamper resistance of hardware prod-
ucts is currently a very popular subject for researchers in the security domain.
Since the first Kocher side-channel (passive) attack, the Bellcore researchers
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and Biham and Shamir fault (active) attacks, many other side-channel and
fault attacks have been published. The design of efficient countermeasures
still remains a difficult task for IP designers and manufacturers as they must
also consider the attacks which combine active and passive threats. It has
been shown previously that combined attacks can defeat RSA implementa-
tions if side-channel countermeasures and fault protections are developed
separately instead of being designed together. In chapter 8 we demonstrates
that combined attacks are also effective on symmetric cryptosystems and
show how they may jeopardize an allegedly state of the art secure AES im-
plementation. This was presented in FDTC 2010 [28].

Square Always In chapter 9 we present new exponentiation algorithms using
squarings only while implementing the atomicity principle. The proposed al-
gorithms are shown to be more resistant against attacks than previous atomic
methods, we also achieve higher speed than known regular algorithms. We
then propose parallelization of squarings to make our algorithms the most
efficient. This was presented in INDOCRYPT 2011 [32].

Simulation In chapter 10 we start by having a look at setup needed to produce
fault attacks, laser and other glitch bench are expensive and need quite a time
of setup each time a new product has to be tested. We then review previous
work done on hardware and software simulation and present the work we
started to develop in 2010 by modelizing CPU at the instruction level for the
simulation of power consumptions traces used in some of our papers like [30].
We then expose the rationale and inner working of the fault simulator we used
to understand and fix software code that was embedded in product destined
to be used worldwide. This part was not presented at any conference, but we
think that the Linux compatibility and other implementation details are new
in the security field.
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Chapter 5

Horizontal Correlation Analysis

5.1 Introduction

Securing embedded products from Side-Channel Analysis (SCA) has become a dif-
ficult challenge for developers who are confronted with more and more analysis
techniques as the physical attacks field is studied. Since the original Simple Side-
Channel Analysis (Simple Side-Channel Analysis (SSCA)) – which include Timing
Attacks, SPA, and Simple ElectroMagnetic Analysis (SEMA) – andDifferential Side-
Channel Analysis (Differential Side-Channel Analysis (DSCA)) – including DPA and
Differential ElectroMagnetic Analysis (DEMA) – have been introduced by Kocher et
al. [60, 61] many improvements and new SCA techniques have been published.
Messerges et al. were the first to apply these techniques to public-key implemen-
tations [70]. Later on, original DSCA has been improved by more efficient tech-
niques such as the one based on the likelihood test proposed by Bevan et al. [14],
the Correlation Power Analysis (CPA) introduced by Brier et al. [20], and more
recent techniques like theMutual Information Analysis (MIA) [45, 82, 98]. A com-
mon principle of all these techniques is that they require many power consumption
or electromagnetic radiation curves to recover the manipulated secre . Hardware
protections and software blinding [34, 60] countermeasures are generally used
and when correctly implemented they counteract these attacks.

Among all those studies the so-called Big Mac attack is a refined approach intro-
duced byWalter [104, 105] fromwhich our contribution is inspired. This technique
aims at distinguishing squarings from multiplications and thus recovering the se-
cret exponent of an RSA exponentiation with a single execution curve. This can
be achieved by averaging and comparing the cycles of a device multiplier during
long integer multiplications.

We present in this chapter another analysis which uses a single curve. We
named this technique horizontal correlation analysis, which consists of computing
classical statistical treatments such as the correlation factor on several segments
extracted from a single execution curve of a knownmessage RSA encryption. Since
this analysis method requires only one execution of the exponentiation as the Big
Mac attack, it is then not prevented by the usual exponent blinding countermea-
sure.

The chapter is organized as follows. The section 5.2 gives an overview of asym-
metric algorithms and the way to compute long integer multiplication in embedded
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implementations. The section 5.3 reminds to the reader previous studies on power
analysis techniques discussed in this article. The horizontal correlation analysis is
presented in section 5.4 with some practical results and a comparison between our
technique and the BigMac attack. Known and new countermeasures are discussed
in section 5.5 and in section 5.6 we deal with horizontal side channel analysis in
the most common cryptosystems.

5.2 Public-Key Embedded Implementations

RSA is well-known to be currently the most used public-key cryptosystem in smart
devices. Other public-key schemes such as Digital Signature Algorithm (DSA) [41],
Diffie-Hellman key exchange [36] protocols, and their equivalent in Elliptic Curve
Cryptography (ECC) – namely Elliptic Curve Digital Signature Algorithm (ECDSA)
and Elliptic Curve Diffie–Hellman (ECDH) [41] – are also often involved in security
products. Interestingly, all of them are based on the modular exponentiation or the
scalar multiplication and in both cases the underlying operation is modular long in-
teger multiplication. Heavy efficiency constraints thus lie on this operation, espe-
cially in the context of embedded devices. Many methods such as the Montgomery
multiplication [77] and interleaved multiplication-reduction with Knuth, Barrett,
Sedlack or Quisquater methods [35] can be applied to perform efficient modular
multiplications. Most of them have in common that the long integer multiplication
is internally done with a loop of one (or more) smaller multiplier(s) operating on
t-bit words. An example is given in Alg. 5.1 which performs the schoolbook long
integer multiplication using a t-bit internal multiplier giving a 2t-bit result. The
decomposition of an integer x in t-bit words is given by x = (xl−1xl−2 . . . x0)b with
b = 2t and l = dlogb(x)e. Other long integer multiplication algorithms may also be
used such as Comba [33] and Karatsuba [58] methods.

Alg. 5.1 Long Integer Multiplication
1: x = (xl−1xl−2 . . . x0)b, y = (yl−1yl−2 . . . y0)b LIM(x, y) = x× y
2: for i = 0 to 2l − 1 do
3: wi = 0
4: end for
5: for i = 0 to l − 1 do
6: c← 0
7: for j = 0 to l − 1 do
8: (uv)b ← (wi+j + xi × yj) + c
9: wi+j ← v and c← u
10: wi+l ← c
11: end for
12: end for
13: return (w)

We consider that a modular multiplication x× y mod n is performed using a long
integermultiplication followed by a Barrett reduction denoted byBarrettRed(LIM(x, y), n).

Alg. 5.2 presents the classical square and multiply modular exponentiation al-
gorithm using Barrett reduction. More details on Barrett reduction can be found
in [10, 69] and other methods can be used to perform the exponentiation such as
Montgomery ladder [75] and sliding window techniques [22].
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Alg. 5.2 Square and Multiply Exponentiation
1: integers m and n such that m < n, v-bit exponent d = (dv−1dv−2 . . . d0)2

Exp(m, d, n) = md mod n
2: a← 1
3: Process Barrett reduction precomputations
4: for i = v − 1 to 0 do
5: a← BarrettRed(LIM(a, a), n)
6: if di = 1 then
7: a← BarrettRed(LIM(a,m), n)
8: end if
9: end for
10: return (a)

We assume in the following of this chapter that Alg. 5.2 is implemented in an
SPA resistant way, for instance using the atomicity principle [23].

While we have chosen to consider modular multiplication using Barrett reduc-
tion, and square andmultiply exponentiation, the results we present in this chapter
also apply to the other modular multiplication methods, long integer multiplication
techniques and exponentiation algorithms mentioned above.

5.3 Side-Channel Analysis

We have chosen to introduce the terms of vertical and horizontal side-channel
analysis to classify the different known attacks. The present section deals with
known vertical and horizontal power analysis techniques. Our contribution, the
horizontal correlation analysis on exponentiation is detailed in section 5.4.

5.3.1 Background

Side-channel attacks rely on the following physical property: a microprocessor
is physically made of thousands of logical gates switching differently depending
on the executed operations and on the manipulated data. Therefore the power
consumption and the electromagnetic radiation, which depend on those gates
switches, reflect and may leak information on the executed instructions and the
manipulated data. Consequently, by monitoring the power consumption or radi-
ation of a device performing cryptographic operations, an observer may recover
information on the implementation of the program executed and on the secret data
involved.

Simple Side-Channel Analysis

In the case of an exponentiation, original SSCA consists in observing that, if the
squaring operation has a different pattern from the one of the multiplication, the
secret exponent can be read from the curve. Classical countermeasures consist of
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using so-called regular algorithms like the square and multiply always or Mont-
gomery ladder algorithms [75, 55], atomicity principle which leads to regular
power curves as presented in Appendix section 5.7 in Figure 5.9.

Differential Side-Channel Analysis

Deeper analysis such as DSCA [70] can be used to recover the private key of an
SSCA protected implementation. These analysis make use of the relationship be-
tween the manipulated data and the power consumption/radiation. Since this leak-
age is very small, hundreds to thousands of curves and statistical treatment are
generally required to learn a single bit of the exponent. Usual countermeasures
consist of randomizing the modulus, the message, and/or the exponent.

Correlation Power Analysis

This technique is essentially an improvement of the Differential Power Analysis.
Initially published by Brier et al. [20] to recover secrets on symmetric implemen-
tations, CPA is also successful in attacking asymmetric algorithms [8] with much
fewer curves than classical DPA. The power consumption of the device is sup-
posed to vary linearly with HW(D ⊕ R), the Hamming distance between the data
manipulated D and a reference state R. The consumption model W is then de-
fined as W = µ ·HW(D ⊕R) + ν, where ν captures both the experimental noise and
the non modelized part of the power consumption. The linear correlation factor
ρC,H = cov(C,H)

σCσH
is then used to correlate each power curve C with HW(D⊕R). The

maximum correlation factor being obtained for the right guess of secret key bits,
an attacker can try all possible secret bits values and select the one corresponding
to the highest correlation value.

In [8], Amiel et al. apply the CPA to recover the secret exponent of public-key
implementations. Their practical results show that the number of curves needed
for an attack is much lower compared to DPA: less than one hundred of curves is
sufficient. It is worth noticing that the correlation is the highest when computed
on t bits, t being the bit length of the device multiplier.

The authors shows the details [8, Fig. 8] of the correlation factor obtained for
every multiplicand t-bit word Ai during the squaring operation A×A using a hard-
ware multiplier. Interestingly a correlation peak occurs for HW(Ai) each time a
word Ai is involved in a multiplication Ai ×Aj.

We present in the next section our horizontal correlation analysis which takes
advantage of this observation.

Collision Power Analysis

The Doubling attack from Fouque and Valette [42] is the first collision technique
published on public-key implementations. It is originally presented on elliptic
curve scalar multiplication but can be applied on exponentiation algorithms. It
recovers the whole secret scalar (exponent) with only a couple of curves. Other
collision attacks have been presented in [5, 53, 108]. They all require at least two
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power execution curves, therefore the classical exponent randomization (blinding)
countermeasure prevents those techniques.

Notations Let Ck denote the portion of an exponentiation curve C corresponding
to the k-th long integer multiplication, and Cki,j denote the curve segment corre-
sponding to the internal multiplication xi × yj in Ck.

Big Mac Attack

Walter’s attack needs, as our technique, a single exponentiation power curve to
recover the secret exponent. For each long integer multiplication, the Big Mac
attack detects if the operation processed is either a × a or a ×m. The operations
xi × yj – and thus curves Cki,j – can be easily identified on the power curve from
their specific pattern which is repeated l2 times in the long integer multiplication
loop. A template power trace T 1

m is computed (either from the precomputations
or from the first squaring operation) to characterize the message value m manip-
ulation during the long integer multiplication. The Euclidean distance between
T 1
m and each long integer multplication template power trace is then computed. If
it exceeds a threshold the multiplication trace is supposed to be a squaring, and
a multiplication by m otherwise. An example of such calculation is given in the
following: for each t-bit word mi of the message m, compute T 1

mi
= 1

l

∑l−1
j=0C

1
i,j by

averaging the l subcurves C1
i,0 . . . C

1
i,l−1. Then the template curve T 1

m is the concate-
nation of the average curves T 1

m0
...T 1

ml−1
. In the exponentiation loop, at each k-th

long integer multiplication, the curve T k is computed in the same manner. The
Euclidean distance between T k and T 1

m is computed. If it exceeds a threshold the
multiplication is supposed to be a squaring, and a multiplication by m otherwise.
The attack is innovative and has been presented by Walter with theoretical and
simulation results. The efficiency of the attack increases with the key length and
decreases with the multiplier size.

Cross-Correlation

Cross-correlation technique has been used in [70] to try to recover the secret expo-
nent with a single curve. However the cross correlation curve obtained by the au-
thors did not allow distinguishing a multiplication from a squaring. More generally
no successful practical result for cross correlation using a single exponentiation
power curve has been yet published.

5.3.2 Vertical and Horizontal Attacks Classification

We refer to the techniques analyzing a same time sample in many execution curves
– see Figure 5.1 – as vertical side-channel analysis. The classical DPA and CPA
techniques thus fall into this category. We also include in the vertical analysis class
the collision attacks mentioned above. Indeed even if many points on a same curve
are used by those techniques, they require at least two power execution curves
and manipulate them together. All those attacks are avoided with the exponent
blinding countermeasure presented by Kocher [60, Section 10].
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Figure 5.1: Vertical Side Channel Analysis
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Figure 5.2: Horizontal side-channel analysis

We propose the horizontal side-channel analysis denomination for the attacks
using a single curve. First known horizontal power analysis is the classical SPA.
Single curve Cross-correlation and BigMac attacks are also horizontal techniques.

Our attack, we present in the next section, computes the correlation factor on
many curve segments extracted from a single consumption/radiation curve as de-
picted in Figure 5.2. It thus contrasts with vertical attacks which target a partic-
ular instant of the execution in several curves. The exponent blinding is not an
efficient countermeasure against horizontal attacks.

5.4 Horizontal Correlation Analysis

We present hereafter our attack on an atomically protected RSA exponentiation
using Barrett reduction.

5.4.1 Recovering the Secret Exponent with One Known Message
Encryption

As in vertical DPA and CPA on modular exponentiation, the horizontal correlation
analysis reveals the bits of the private exponent d one after another. Each exponent
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bit is recovered by determining whether the processing of this bit involves a mul-
tiplication by m or not (cf. Alg. 5.2). The difference with classical vertical analysis
lies in the way to build such hypothesis test. Computing the long integer multi-
plication x × y using Alg. 5.1 requires l2 t-bit multiplier calls. The multiplication
side-channel curve thus yields l2 curve segments Cki,j available to an attacker.

Assuming that the first s bits dv−1dv−2 . . . dv−s of the exponent are already known,
an attacker is able to compute the value as of the accumulator in Alg. 5.2 after
processing the s-th bit. The processing of the first s bits corresponds to the first s′
long integer multiplications with s′ = s+HW(dv−1dv−2 . . . dv−s) known by the attacker.
The value of the unknown (s+1)-th exponent bit is then equal to 1 if and only if the
(s′ + 2)-th long integer multiplication is as2 ×m.

as �
��1

PPPq

dv−s−1=1

dv−s−1=0

as × as
as × as

- as
2 ×m

-dv−s−2=0,1as2 × as2 · · ·

· · ·

Cs
′+1 Cs

′+2

At this point there are several ways of determining whether the multiplication
by m is performed or not.

First, one may show that the series of consumptions in the set of l2 curve seg-
ments is consistent with the series of operand values mj presumably involved in
each of these segments. To this purpose the attacker simply computes the correla-
tion factor between the series of Hamming weights HW(mj) and the series of curve
segments Cs′+2

i,j – i.e. taking D = mj and R = 0 in the correlation factor formula. In
other words we use the curve segments as they would be in a vertical analysis if
they were independent aligned curves. A correlation peak reveals that dv−s−1 = 1
since it occurs if and only if m is actually handled in this long multiplication.

Alternatively one may correlate the curves segments with the intermediate re-
sults of each t-bit multiplication xi × yj, cf. Alg. 5.1, with x = as and y = m, or in
other words take D = ai×mj. This method may also be appropriate since the words
of the result are written in registers at the end of the operation. Moreover in that
case l2 different values are available for correlating the curve segments instead of
l previously. This diversity of data may be necessary for the success of the attack
when l is small. Note that other intermediate values may also lead to better results
depending on the hardware leakages.

Another method consists of using the curve segments Cs′+3
i,j of the next long in-

teger multiplication and correlating them with the Hamming weight of the words
of the result as2 × m. If the (s′ + 2)-th operation is a multiplication by m then the
(s′+3)-th operation is a squaring as+1

2, manipulating the words of the integer as2×m
in the t-bit multiplier. As pointed out by Walter in [105] for the Big Mac attack, the
longer the integer manipulated is and the smaller the size t of the multiplier, the
larger the number l2 of curve segments will be. Thus longer keys are more at risk
with respect to horizontal analysis. For instance in an RSA 2048-bit encryption, if
the long integer multiplication is implemented using a 32-bit multiplier we obtain
(2048/32)2 = 4096 segments Cki,j per curve Ck. In Appendix section 5.8 Table Ta-
ble 5.1 proposes examples of values for l and l2 for different sizes of the modulus
n and different sizes t of the multiplier. Remark The series of Hamming weights
HW(mj) is not only correlated with the series of curve segments in Cs

′+2 (provided
that dv−s−1 = 1), but also with the series of curve segments in each and any Ck
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corresponding to a multiplication by m. Defining a wide segment C∗i,j as the set of
segments Cki,j for all k on the curve C and correlating the series of HW(mj) with the
series of wide segments C∗i,j (instead of the series of segments Cs

′+2
i,j ) will produce

a wide segment correlation curve with a peak occurring for each k corresponding
to a multiplication by the message. It is thus possible to determine in one shot the
exact sequence of squarings and multiplications by m, revealing the whole private
exponent with only one curve and only one correlation computation.

5.4.2 Practical Results

This section presents the successful experiments we conducted to demonstrate
the efficiency of the horizontal correlation analysis technique. We used a 16-bit
RISC microprocessor on which we implemented a software 16×16 bits long integer
multiplication to simulate the behavior of a coprocessor. We aim at correlating a
single long integer multiplication with one or both operands manipulated – i.e. yj
or xi × yj.

The measurement bench is composed of a Lecroy Wavepro oscilloscope, and
homemade softwares and electronic cards were used to acquire the power curves
and process the attacks.

Firstly we performed a classical vertical correlation analysis to characterize our
implementation and measurement bench, and to validate the correlation model;
then we processed with the horizontal correlation analysis previously described.

Figure 5.3: Beginning of a long integer multiplication power curve, lines delimitate
each Cki,j

Vertical Correlation Analysis

This analysis succeeded in two cases during the operation x × y. We obtained
correlation peaks by correlating power curves with values xi and yj and also by
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correlating the power curves with the result value of operation xi × yj. Figure 5.4
and Figure 5.5 show the correlation traces we obtained for both cases with 500
power curves.

Figure 5.4: Vertical CPA on value yj.

Figure 5.5: Vertical CPA on value xi × yj.

This suggests that one can perform horizontal correlation as explained previ-
ously either using yi values or using result values xi × yj for correlating with seg-
ment curves of the long integer multiplication.
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Horizontal Correlation Analysis

We have chosen to test our technique within a 512-bit multiplication LIM(x, y). This
allows us to obtain 1024 curve segments Cki,j of 16-bit multiplications to mount the
analysis, which should be enough for the success of our attack regarding the ver-
tical analysis results. From the single power curve we acquired, we processed the
signal in order to detect each set of cycles corresponding to each t-bit multiplica-
tion xi × yj and divide the single power curve in 1024 segments Cki,j as depicted in
Figure 5.3.

We performed horizontal correlation analysis as explained in section 5.4 for
the two cases D = ai × mj and D = mj and recovered the operation executed as
shown in Figure 5.6 and Figure 5.7. In each figure, the grey trace shows a greater
correlation than the black one and thus corresponds to the correct guess on the
operation.

Since our attack actually enabled us to distinguish one operation from another,
it is then possible to identify a squaring a×a from amultiplication a×m in the Step 3
of Alg. 5.2. The secret exponent d used in an exponentiation can thus be recovered
by using a single power trace, even when the exponentiation is protected by an
atomic implementation.

Figure 5.6: Horizontal CPA on value ai ×mj.
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Figure 5.7: Horizontal CPA on value mj.

We have presented here a technique to recover the secret exponent using a
single curve when the input message is known and have proven this attack to be
practically successful. Although the attack is tested on a software implementation,
results obtained by Amiel et al. [8, Fig. 8] prove that correlation techniques are
efficient on hardware coprocessors (with multiplier size larger than 16 bits), and
enable to locate each little multiplication involved in a long integer multiplication.
We thus consider that our attack can also threaten hardware coprocessors.

5.4.3 Comparing our Technique with the Big Mac Attack

We now compare our proposed horizontal CPA on exponentiation with the Big Mac
attack which is the most powerful known horizontal analysis to recover a private
exponent. A common property is that both techniques counteract the randomiza-
tion of the exponent.

A first difference between both methods is that the Big Mac templates are gen-
erated by averaging the leakage dependency from a not targeted argument. It
is thus implicitly accepted to lose the information brought by this auxiliary data.
On the other hand, horizontal correlation exploits the knowledge of both multi-
plication operands a and m (under assumption on the exponent bit) to correlate it
with all l2 segments Cki,j. This full exploitation of the available information included
in the l2 curve segments tends us to expect a better efficiency of the correlation
method particularly when processing noisy observations.

But the main difference is not there. What fundamentally separates the Big
Mac and correlation methods is that the former deals with templates – which the
attacker tries to identify – while the later rather consider intermediate results –
whose manipulation validates a secret-dependent guess. With the Big Mac tech-
nique an attacker is able to answer the question Is this operation of that particular
kind? (squaring, multiplication bym or a power thereof) while the correlation with
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intermediate data not only brings the same information but also answers the more
important question Is the result of that operation involved in the sequel of the com-
putation? The main consequence is that horizontal CPA is effective even when the
exponentiation implementation is regular with respect to the operation performed.
This is notably the case of the square and multiply always1 and the Montgomery
ladder exponentiations which are not threaten by the Big Mac attack. In this re-
spect we can say that our horizontal CPA combines both the advantage of classical
CPA which is able to validate guesses based on the manipulation of intermediate
results (but which is defeated by the randomization of the exponent) and that of
horizontal techniques which are immune to exponent blinding.

On the other hand the limitation of the Big Mac attack – its ignorance of the
intermediate results – is precisely the cause of its noticeable property to be ap-
plicable also when the base of the exponentiation is not known from the attacker.
The Big Mac attack thus applies when the message is randomized and/or in the
case of a Chinese Remainder Theorem (Chinese Remainder Theorem (CRT)) imple-
mentation of RSA. While the horizontal correlation technique does not intrinsically
deals with message randomization, we give in the next section some hints that al-
low breaking those protected implementations when the random bit-length is not
sufficiently large.

5.4.4 Horizontal Analysis on Blinded Exponentiation

To protect public-key implementations from SCA developers usually include blind-
ing countermeasures in their cryptographic codes. The most popular ones on RSA
exponentiation are:

• Additive randomization of the message and the modulus: m? = m+r1 ·n mod r2 ·
n = m + u · n with r1, r2 being λ-bit random values different each time the
computation is executed, and u = r1 mod r2.

• Multiplicative randomization of the message: m? = re·m mod nwith r a random
value and e the public exponent,

• Additive randomization of the exponent: d? = d+r ·φ(n) with r a random value.

All these countermeasures prevent from the classical vertical side-channel analysis
but the efficiency of the implementations is penalized as the exponent andmodulus
are extended of the random used bit lengths.

Guessing the randomized message m?

In this paragraph we consider that the message has been randomized by an addi-
tive (or multiplicative) method, the secret exponent has also been randomized and
the message is encrypted by an atomic multiply always exponentiation. We analyze
the security of such implementation against horizontal CPA. The major difference
with vertical side-channel analysis is that the exponent blinding has no effect since
we analyze a single curve and recovering d? is equivalent to recovering d.

1Referring to the description given in subsection 5.4.1 the method using the curve segments Cs′+3
i,j

validates that the value produced by the multiplication by m is involved or not in the next squaring
operation. A similar technique also applies to the Montgomery ladder.

47



Assuming that the entropy of u is λ bits, there are 2λ possible values for the
message m? knowing m and n. The first step of an attack is to deduce the value of
the random u. This is achieved by performing one horizontal CPA for each possible
value of u on the very first multiplication which computes (m?)2. Since this mul-
tiplication is necessarily computed, the value of u should be retrieved as the one
showing a correlation peak. Once u is recovered, the randomized message m? is
known and recovering the bits of the exponent d is similar to the non blinded case
using m? instead of m. Consequently, the entropy of u must be large enough (e.g.
λ ≥ 32) to make the number of guess unaffordable and prevent from horizontal
correlation analysis.

Actual Entropy of Randomization

In the case of additive randomization of the message, m? depends on two λ-bit
random values r1 and r2. Obviously, the actual entropy of this randomization is
not 2λ bits, and interestingly it is even strictly less than λ bits. The reason is that
m? = m+ u · n with u = r1 mod r2, and thus smaller u values are more probable than
larger ones.

Assuming that r1 and r2 are uniformly drawn at random in the ranges
[
0, . . . , 2λ − 1

]
and

[
1, . . . , 2λ − 1

]
respectively, statistical experiments show that the actual entropy

of u is about λ− 0.75 bits2.

A consequence of this bias on the random u is that an attacker can exhaust only
a subset of the smaller guesses about u. If the attack does not succeed, then he
can try again on another exponentiation curve. For λ = 8 guessing only the 41
smaller u will succeed with probability 1

2 .

An extreme case, which optimizes the average number of correlation curve com-
putations, is to guess only the value u = 0 3. This way, only 38 and 5352 correlation
curve computations are needed in the mean when λ is equal to 8 and 16 respec-
tively.

These observations demonstrate that the guessing attack described in the pre-
vious paragraph is more efficient than may be trivially expected. This confirms the
need to use a large random bit length λ.

5.5 Countermeasures

Having detailed the principle and the threats of our horizontal side-channel analy-
sis on exponentiation, we now study the real efficiency of the classical side channel
countermeasures and propose new countermeasures.

5.5.1 Hardware Countermeasures

Classical countermeasures consisting in perturbing the signal analysis e.g. clock
jitters, frequency clock dividers or dummy cycles, may considerably complicate

2The loss of 0.75 bits of entropy is nearly independent of λ for typical values (λ ≤ 64).
3Or u = 1 if the implementation does not allow u = 0.
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the analysis but should not be the only countermeasures since efficient signal pro-
cessing could bypass them depending on their real efficiency.

Techniques consisting in balancing the power consumption of the chip with dual
rail, precharge logics or other methods, if really efficient, could be a better solu-
tion. However they are expensive countermeasures from the chip surface point-
of-view.

5.5.2 Blinding

All SSCA resistant algorithms that can be used to implement the exponentiation –
either those protected with atomicity principle or regular ones as square and mul-
tiply always and Montgomery ladder – are threatened by the horizontal analysis.
It is then necessary to randomize the data manipulated during the computation.
As said previously the blinding of the exponent is not an efficient countermeasure
here, it is thus highly recommended to implement a resistant and efficient blinding
method on the data manipulated, for instance by using additive message random-
ization with random values larger or equal to 32 bits. As regard to the previous
analysis on the actual entropy of u, an additional solution consists in eliminating
the bias on u by setting r2 to a constant value, for instance 2λ − 1.

5.5.3 New Countermeasures

We suggest protecting sensitive implementations from this analysis by introduc-
ing blinding into the t-bit multiplications, by randomizing their execution order
or by mixing both solutions. These countermeasures are presented on modular
multiplication using the Barrett reduction.

Blind Operands in LIM

A full blinding countermeasure on the words xi and yj consists in replacing in
Alg. 5.1 the operation (wi+j + xi × yj) + c by (wi+j + (xi − r1)× (yj − r2)) + r1 × yj + r2 ×
xi − r1 × r2 + c with r1 and r2 two t-bit random values. For efficiency purposes, the
values r1 × xi, r2 × yj, r1 × r2 should be computed once and stored. Moreover, these
precomputations must also be protected from correlation analysis. For example,
performing them in a random order yields (2l + 1)! different possibilities. In this
case the LIM operation requires l2 + 2l + 1 t-bit multiplications and needs 2(n + 2t)
bits of additional storage.

In the following we improve this countermeasure by mixing the data blinding
with a randomization of the order of the internal loops of the long integer multi-
plication.

Randomize One Loop in LIM and Blind

This countermeasure consists in randomizing the way the words xi are taken by
the long integer multiplication algorithm. In other words it randomizes the order
of the lines of the schoolbook multiplication. Then computing correlation between
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xi and Cki,j does not yield the expected result anymore. On the other hand it re-
mains necessary to blind the words of y. An example of implementation is given in
Alg. 5.3.

The random permutation provides l! different possibilities for the execution or-
der of the first loop. For example, using a 32-bit multiplier, a 1024-bit long integer
multiplication has about 2117 possible execution orders of the first loop and with
2048-bit operands it comes to about 2296 possibilities.

Alg. 5.3 LIM with lines randomization and blinding
1: x = (xl−1xl−2 . . . x1x0)b, y = (yl−1yl−2 . . . y1y0)b
2: LinesRandLIM(x,y) = x× y
3: Draw a random permutation vector α = (αl−1 . . . α0) in [0, l − 1]
4: Draw a random value r in

[
1, 2t − 1

]
5: for i = 0 to 2l − 1 do
6: wi = 0
7: end for
8: for h = 0 to l − 1 do
9: i← αh, ri ← r × xi and c← 0
10: for j = 0 to l − 1 do
11: (uv)b ← (wi+j + xi × (yj − r) + c) + ri
12: wi+j ← v and c← u
13: while c 6= 0 do
14: uv ← wi+j + c
15: wi+j ← v, c← u and j ← j + 1
16: end while
17: end for
18: end for
19: return w

Compared to the previous countermeasure, Alg. 5.3 requires only l2 + l t-bit
multiplications and 2t bits of additional storage.

Remark One may argue that in the case of very small l values such a countermea-
sure might not be efficient. Remember here that if l is very small, the horizontal
correlation analysis is not efficient either because of the small number of curve
segments.

Randomize the Two Loops in LIM

We propose a variant of the previous countermeasure in which the execution or-
der of the both internal loops of the long integer multiplication are randomized.
This means randomizing both lines and columns of the schoolbook multiplication.
The main advantage is that none of the operands xi or yj needs to be blinded any-
more. The number of possibilities for the order of the l2 internal multiplication is
increased to (l!)2. An example of implementation is given in Alg. 5.4.

Unlike the two previous countermeasures, Alg. 5.4 requires no extra t-bit multi-
plication compared to LIM. It is then an efficient and interesting countermeasure,
while the remaining difficulty for designers consists in implementing it in hard-
ware.
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Alg. 5.4 LIM with lines and columns randomization
1: x = (xl−1xl−2 . . . x1x0)b, y = (yl−1yl−2 . . . y1y0)b
2: MatrixRandLIM(x,y) = x× y
3: Draw two random permutation vectors α, β in [0, l − 1]
4: for i = 0 to 2l − 1 do
5: cj = 0
6: end for
7: for h = 0 to l − 1 do
8: i← αh
9: for j = 0 to 2l − 1 do
10: cj = 0
11: end for
12: for k = 0 to l − 1 do
13: j ← βk
14: (uv)b ← wi+j + xi × yj
15: wi+j ← v and ci+j+1 ← u
16: u← 0
17: end for
18: for s = i+ 1 to 2l − 1 do
19: (uv)b ← ws + cs + u
20: ws ← v
21: end for
22: end for
23: return (w)

5.6 Concerns for Common Cryptosystems

We presented our analysis on straightforward implementations of the RSA sig-
nature and decryption algorithms which essentially consist of an exponentiation
with the secret exponent. In the case of an RSA exponentiation using the CRT
method our technique cannot be applied since the operations are performed mod-
ulo p and q which are unknown to the attacker. On the other hand DSA and Diffie-
Hellman exponentiations were until now considered immune to DPA and CPA be-
cause the exponents are chosen at random for each execution. Indeed it natu-
rally protects these cryptosystems from vertical analysis. However, as horizontal
CPA requires a single execution power trace to recover the secret exponent, DSA
and Diffie-Hellman exponentiations are prone to this attack and other counter-
measures must be used in embedded implementations. It is worth noticing that
ECC cryptosystems are theoretically also concerned by the horizontal side-channel
analysis. However since key lengths are considerably shorter – for instance ECC
224 bits is considered having equivalent mathematical resistance than RSA 2048
– very few curves per scalar multiplication will be available for the attack. On the
other hand, scalar multiplication involves point doublings and point additions in-
stead of field multiplications and squarings. Each point operation requires about
10modular multiplications and thus correlation computation could take advantage
of all the corresponding curves. Nevertheless, a factor of about 10 should not bal-
ance the key length reduction which has a quadratic influence on the number of
available curve segments.
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5.7 Square and Multiply Power Curves Examples

The following figures illustrate the SPA as described in section 5.3.1. Figure 5.8
corresponds to the power curve execution of a classical square and multiply al-
gorithm. We can observe that the multiplication operation has a different pattern
from the squaring one. The multiplications can then be identified and the secret
exponent be recovered.

On Figure 5.9, the implementation analyzed uses the atomicity principle. It al-
lows the exponentiation to be SSCA resistant since we cannot distinguish anymore
the squarings from the multiplications.

Figure 5.8: Power curve of a leaking square and multiply algorithm

Figure 5.9: Power curve of an atomic square and multiply algorithm
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5.8 Examples of l and l2 values

In this paragraph, we illustrate with examples the property: the longer the keys,
the more efficient the horizontal correlation analysis. The following table proposes
examples of values for l and l2 using different key lengths and different multiplier
sizes.

length n in bits multiplier size t l l2

2048 32 64 4096
2048 64 32 1024
1536 32 48 2304
1536 64 24 576
1024 16 64 4096
1024 32 32 1024
1024 64 16 256
512 16 32 1024
512 32 16 256

Table 5.1: Examples of n, t, and l values with the number of available segments l2

Considering that n ≥ 500 should be enough to perform the horizontal correlation
analysis, many implementations may be subject to this attack.
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Chapter 6

Improved Collision-Correlation
Power Analysis on AES

6.1 Introduction

Side-channel analysis was introduced by Kocher et al. in 1998 [61] and marks
the outbreak of this new research field in the applied cryptography area. Mean-
while, many side-channel techniques have been published. For example Brier et
al. proposed the Correlation Power Analysis (CPA) [20] which has shown to be very
efficient as it significantly reduces the number of curves needed for recovering a
secret key, and more recently the Mutual Information Analysis from Gierlichs et
al. [45] has generated a lot of interest.

Since side-channel attacks potentially concern any kind of embedded imple-
mentations of symmetric or asymmetric algorithms, it is recommended to apply
various masking countermeasures (among others) in sensitive products [2, 73].
Second-order or higher-order side-channel analysis can however defeat such coun-
termeasures by combining leakages from different instants of the execution of an
algorithm and canceling the effect of a mask [66, 71]. Such attacks are considered
very difficult to implement and generally require an important number of power
curves.

A specific approach for side-channel analysis is using information leakages to
detect collisions between data manipulated in algorithms. Side-channel collision
attacks against a block cipher were first proposed by Schramm et al. in 2003 [93].
Their attack uses differential analysis to exploit collisions in adjacent S-Boxes of
the DES algorithm. In [92] an attack against the AES is proposed to detect colli-
sions in the output of the first round MixColumns. Later, Bogdanov [17] improved
this attack by looking for equal S-Boxes inputs in several AES executions. He then
studied in [18] statistical techniques to detect collisions between power curves.
Two recent papers have updated the state-of-the-art by introducing correlation
based collision detection: Moradi et al. [78] proposed a collision attack to defeat
an AES implementation using masked S-Boxes, while Witteman et al. [106] applied
a cross-correlation analysis to an RSA implementation using message blinding.

In this chapter, we present two collision-correlation attacks on software AES im-
plementations protected against first-order power analysis using masked S-Boxes
and practical results on both simulated and real power curves. Our attacks are
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much more efficient and generic compared to the one presented in [78]. Moreover
we believe our techniques to be applicable to other embedded implementations of
symmetric block ciphers.

The remainder of the chapter is organized as follows: The section 6.2 presents
the two AES first-order protected implementations targeted by our study. Then
in section 6.3 we present our attacks and practical results on simulated power
curves and on a physical integrated circuit. In section 6.4 we compare our tech-
nique with second-order power analysis and section 6.5 deals with the possible
countermeasures.

6.2 Targeted Implementations

The AES Algorithm.

For the sake of simplicity in this contribution we focus on the AES-128 which in-
cludes 10 rounds, each one decomposed into four functions: AddRoundKey, Sub-
Bytes, ShiftRows and MixColumns. It encrypts a 128-bit messageM = (m0, . . . ,m15)
using a 128-bit secret key K = (k0, . . . , k15) and produces a 128-bit ciphertext C =
(c0, . . . , c15). Note however that the techniques presented in this contribution are
easily applicable to AES-192 and AES-256.

The only non-linear function of the AES is SubBytes (also referred to as the
S-Boxes S in the following) which is a substitution function defined by the pseudo-
inversion I in GF(28) and an affine transformation. In this chapter, we consider the
two following solutions that have been proposed to protect this function against
first-order attacks.

6.2.1 Blinded Lookup Table

The first targeted implementation uses amasked substitution table as proposed by
Kocher et al. [62] and Akkar et al. [2]. This masked table S′ is defined by S′(xi⊕ui) =
S(xi)⊕ vi, with ui (resp. vi) the mask of the i-th input byte xi (resp. output byte) of
function SubBytes, xi, yi, ui, vi ∈ GF(28), 0 ≤ i ≤ 15. This table is usually computed
before the AES execution and stored in volatile memory.

We further consider that the same masks u and v are applied on all S-Boxes
during one execution (or a round at least) of the algorithm, i.e. ui = u and vi = v
for 0 ≤ i ≤ 15. We believe that this hypothesis is realistic for embedded security
products considering that an expensive recomputation of the 256-byte substitution
table S′ is necessary for each new pair (u, v) and that the storage of many masked
tables is not conceivable in memory constrained devices.

6.2.2 Blinded Inversion Calculation

An alternative solution has been proposed by Oswald et al. [79] and improved on
by Canright et al. [21]. It consists in computing the inversion in GF(28) using a
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multiplicative mask. To do this efficiently it is proposed to decompose the compu-
tation using inversions in the subfieldGF(24) (and possibly inGF(22)). Suchmasking
method is well suited for hardware implementations.

We recall some properties of the masked inversion. Let I ′ denote the masked
pseudo-inversion such that I ′(xi ⊕ ui) = I(xi) ⊕ ui. The element xi ⊕ ui in GF(28) is
mapped to a couple (xi,h ⊕ ui,h, xi,l ⊕ ui,l) of GF(24) such that xi ⊕ ui ∼= (xi,h ⊕ ui,h)X +
(xi,l⊕ui,l). As detailed in [79] many calculations occur on these subfield elements to
compute the masked inversion of xi ⊕ ui. The exact details of these computations
can be found in [79]. Note that in these formulas neither xi,h nor xi,l is directly
inversed in GF(24) but the following value:

di ⊕ ui,h = x2
i,h × 14⊕ (xi,h × xi,l)⊕ x2

i,l ⊕ ui,h .

Then themasked inversion inGF(24) of di⊕ui,h gives d−1
i ⊕ui,h and is used to compute

I ′(xi ⊕ ui).

The 16 input bytes of SubBytes are blinded using different masks ui, but one can
notice that input and output masks of the inversion stage are identical. Therefore
another threat to take into consideration is the zero value power analysis. This
technique has been introduced in [49] and [65], and recently implemented on the
masked inversion in [78]. Finally, note that the technique presented in this chapter
also applies to the improved version of Canright et al. [21] when input and output
of the inversion are masked with the same value.

6.2.3 Measurements and Validation of Implementations

Curve Acquisition.

We have developed software implementations on a contact smart card using a 16-
bit RISC CPU with low power consumption. Two different methods were used to
validate our attacks.

First, we used simulated curves: a proprietary tool was used to simulate power
curves based on the chip architecture and the code executed. This tool gener-
ates ideal power consumption curves without any noise which enables to validate
in practice the resistance of an implementation to a set of side-channel attacks
leaving aside the acquisition and signal processing problems.

Second, we used real curves: we made physical measurements on the chip itself
using a MicroPross MP100 reader and a Lecroy WavePro numerical oscilloscope.

First-Order Resistance Validation.

Since our aim was to present techniques able to defeat first-order protected de-
vices, we performed the classical first-order differential and correlation analysis
on the two implementations presented above, before testing our collision attacks.

To do so, we applied DPA and CPA on the AddRoundKey, SubBytes and Mix-
Columns functions at the first and the last rounds of our implementations. We also
performed detailed SPA for each input byte value using many average curves to
detect any noticeable (biased) power traces that would reveal a potential leakage.
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Figure 6.1: General description of the collision-correlation attack

In any case no leakage were observed. We also verified that both implementations
were immune to zero value power analysis and to the attack presented by Moradi
et al.

We have thus checked that to the best of our knowledge both considered AES im-
plementations are resistant to known first-order attacks. Nevertheless we present
in the next section two new collision-correlation techniques which jeopardize these
implementations.

6.3 Description of our Attacks

In this section, we present the general principle of collision-correlation attacks
and then detail how it can be applied on the two considered AES implementations.

6.3.1 The Collision-Correlation Method

The principle of the attacks presented in this chapter is to detect internal collisions
between data processed in blinded S-Boxes on the first round of an AES execution.
We demonstrate in the following that if i) we are able to detect that the same data
is processed at instants t0 and t1, and ii) the S-Boxes are blinded such that either
the same mask is applied to all message bytes or the mask is identical at the input
and the output of each S-Box, then it is possible to infer information on the secret
key with very few curves.

In the following, we will denote (Tn)0≤n≤N−1 a set of N power traces captured
from a device processing N encryptions of the same messageM . Then we consider
two instructions1 whose processing starts at times t0 and t1 and denote l the num-
ber of points acquired per instruction processing. As depicted in Figure 6.1 we
finally consider Θ0 = (Tnt0)n and Θ1 = (Tnt1)n the two series of power consumptions
segments at instants t0 and t1.

1In our attacks we only consider the correlation between two identical instructions, but it may
even be possible to detect that two different instructions manipulate identical data, e.g. by spotting
a data bus using EMA.
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Note that in practice the N power curves should start at the same instant of
the encryption and be perfectly aligned. Such conditions generally require signal
processing to be performed first. Note also that as the sampling rate is usually such
that l > 1 points are acquired per instruction, we can generalize the definition of
Θ0 and Θ1 as being series of l-sample curve segments instead of series of single
power consumption samples.

The final stage of the attack consists in applying a statistical treatment to (Θ0,Θ1)
in order to identify if the same data was involved in Tnt0 and Tnt1 for 0 ≤ n ≤ N−1. Let
Collision(Θ0,Θ1) denote a decision function returning true or false depending on
whether this property is presumed to be fulfilled or not. Such a decision function
would usually compare the value of a synthetic criterion with a practically deter-
mined threshold. Possible examples of such a criterion include the mean2 squared
difference, the least squared difference with binary or ternary voting [18], and the
maximum Pearson correlation factor. As we used this latter criterion in our study,
we recall that an estimation of the Pearson correlation factor between series of
curve segments Θ0 and Θ1 at time offsets t (0 ≤ t ≤ l − 1) is expressed as

ρ̂Θ0,Θ1(t) =
Cov(Θ0(t),Θ1(t))

σΘ0(t)σΘ1(t)

=
N
∑

(Tnt0+tT
n
t1+t)−

∑
Tnt0+t

∑
Tnt1+t√

N
∑

(Tnt0+t)
2 − (

∑
Tnt0+t)

2
√
N
∑

(Tnt1+t)
2 − (

∑
Tnt1+t)

2

where summations are taken over 0 ≤ n ≤ N − 1, and Θi(t) = (Tnti+t)n for i ∈ {0, 1}.

Collision(Θ0,Θ1) thus consists in comparingmax0≤t≤l−1(ρ̂Θ0,Θ1(t)) to a given thresh-
old. In our experiments a preliminary characterization of the targeted device en-
abled us to find proper values for l and the threshold.

Note that in this collision-correlation technique we compute the correlation fac-
tor between a set of real power consumptions Θ0 with another set of real power
consumptions Θ1, rather than with model dependent estimations. As Bogdanov al-
ready described in [18] about binary and ternary voting techniques, an interesting
property of this method is that, unlike Hamming weight based CPA, our criterion
does not rely on a particular leakage model. The consequences of this are that
i) the attack is more generic and requires much less knowledge of the targeted
device, and ii) the secret S-Boxes may be attacked as well as known ones.

As said above, correlating two instants (curve segments) on different traces has
already been applied by Moradi et al. [78] on a particular AES implementation.
However they collect many traces obtained by encrypting random messages and
average them according to the value of an S-Box input byte. This results in 28 aver-
aged curves for each byte position, fromwhich they try to detect collisions between
two bytes. They successfully carried out this attack on their implementation of the
Canright et al. [21] first-order protected implementation. However as indicated by
the authors their implementation presented a remaining first-order leakage based
on zero-value attack. We applied Moradi’s attack to the first-order protected im-
plementations considered in this study without success. We thus consider that
this attack is not applicable to most first-order protected implementations. In-
deed averaging different traces implies the use of new random mask values which
should spoil the influence of the unmasked data and make the collision of interme-
diate values undetectable. The technique we develop in this chapter improves on

2The mean being taken over the N traces as well as over the l samples.
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Figure 6.2: Collision between the computation of two S-Boxes on bytes 4 and 9 on
the blinded lookup table implementation

Moradi’s attack in order to detect data collisions by comparing two instants on a
same trace and repeating it on many executions without the destructive averaging
process. In the following we detail two applications of our attack on two different
implementations.

Remark Collision based analyzes are also known as cross-correlation attacks
in [106] and multiple-differential collision attacks in [18]. We prefer the term
collision-correlation attacks since cross-correlation may be ambiguous depending
on the context, and multiple-differential collision attacks seems us too generic for
our method.

6.3.2 Attack on the Blinded Lookup Table Implementation

First, we present an application using principle presented above on the implemen-
tation described in subsection 6.2.1. This attack targets the execution of the first
round SubBytes function. Each 16 masked input byte x′i = xi ⊕ u is substituted
by a masked output byte y′i = yi ⊕ v where y′i = S′(x′i). We try to detect when two
SubBytes inputs (and outputs) are equal within the first AES round as depicted on
Figure 6.2.

Detecting a collision in the first AES round between bytes i1 and i2 yields that
xi1 ⊕ u = xi2 ⊕ u and considering that xi = mi ⊕ ki ⊕ u implies the following relation
of the two involved key bytes:

ki1 ⊕ ki2 = mi1 ⊕mi2 . (6.1)

Description.

Practically, we encrypted N times the same messageM and collected the N traces
corresponding to the first AES round. For each of the N traces we identified the
16 instants ti corresponding to the beginning of the computation S′(xi ⊕ u). This
allowed us to extract 16 segments from each trace and construct the series Θi

used for collision-correlation as explained in subsection 6.3.1.

Performing Collision(Θi1 ,Θi2) for all the 120 possible pairs (i1, i2) yields a set of
relations (i1, i2,mi1 ⊕ mi2) given by Eq. (Equation 6.1). By repeating this process
for several random messages M one can accumulate enough relations so that the
secret key is recovered up to a guess on one key byte.
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Figure 6.3: Correlation curves ob-
tained for a message giving one colli-
sion (black curve)
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Figure 6.4: Correlation curves obtained
for a message giving no collision

Based on 10000 simulations we observed that on average 59 random messages
(each one being encrypted N times) provide enough relations to retrieve the key
up to an unknown byte.

Practical Results.

We present hereafter our results on both simulated and real curves.

On simulated curves. The threshold of Collision was fixed to having at least
one point among the l points correlation curve equal to 1. Under this condition
our attack was successful for N = 16. Since a mean of 59 different messages are
required, then 16 × 59 = 944 traces are sufficient on the average for the attack to
succeed on simulated curves.

Figures Figure 6.3 and Figure 6.4 show the correlation curves obtained for two
different messages. Both figures present the 120 outputs of ρ̂Θi1

,Θi2
(t), i1 < i2 for

each message. The black curve on Fig. Figure 6.3 corresponds to a collision found
for the first message, whereas the second message yields no collision.

On real curves. The attack was successful using N = 25 so that less than 1 500
traces allow to recover the key. Notice how few traces are needed to detect a colli-
sion by correlation. This confirms that the collision-correlation technique is much
more efficient than classical model-based CPA which would not obtain high corre-
lation levels with only 25 traces. The Figure 6.5 shows an example of a correlation
peak when an equality between two S-Box outputs occurs, while Figure 6.6 shows
the correlation curve when all S-Box outputs are different.

Note that in the case of real curves the threshold is slightly different. To identify
a clear relation between two S-Box outputs the correlation curve must be greater
than 0.8 in the interval [130, 160]. So only these l = 30 points must be considered
when computing Collision(Θ0,Θ1).
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Figure 6.5: Correlation peak on real
curves when a collision occurs (black
curve)
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Figure 6.6: No correlation peak occurs
on real curves when intermediate data
differ

Attack Improvement.

The method for obtaining information about the key as described above basically
exploits collision events where a pair (i1, i2) of indices gives a high correlation
between Θi1 and Θi2 revealing the value of ki1 ⊕ ki2. While very informative, such
collision events occurmuch less frequently than non-collision ones, that is whenΘi1

and Θi2 show no significant correlation between each other. Non-collision events
individually bring quite few information – namely that ki1 ⊕ ki2 is different from
mi1 ⊕mi2 – but they are so numerous that it appears worth trying to exploit them
also.

As was already noted in [26, 17], the problem of solving a set of equations in-
volving sub-parts of the key can be formulated in terms of a labelled undirected
graph. Each vertex i represents a key byte index and the knowledge of the XOR
between two key bytes is represented by an edge (i1, i2) labelled with ki1 ⊕ ki2. At
the beginning the graph does not include any edges. Each time a collision occurs
between two unrelated key bytes a new edge is put on the graph and results in the
merge of two connected components into a single larger one. All key byte values
belonging to the same connected component can be derived from each other, and
the goal of the attacker is to end up with a fully connected graph.

For a given message, only 0, 1, or 2 from the 120 pairs (i1, i2) lead to collisions in
most cases. All other pairs reveal some impossible value for each ki1 ⊕ ki2. Gather-
ing all the information provided by these non-collisions, for each (i1, i2)wemaintain
a blacklist of impossible values for the XOR of the two key bytes3.

Given the information provided by previous messages to the current graph and
blacklists, we adaptively choose the next message in order to maximize its use-
fulness which we define as the number of pairs (i1, i2) where one can expect new
information (either positive or negative) to be obtained. As a first idea we could
define the penalty of a candidate message as the number of pairs (i1, i2) for which
mi1 ⊕ mi2 is already blacklisted. Obviously the chosen message should minimize
the penalty. Actually this is slightly more complex and the definition of the penalty
of a message should be refined. Indeed we must also consider cases where the
message is useful for (i1, i2) and (i1, i

′
2) – that neither mi1 ⊕ mi2 nor mi1 ⊕ mi′2

are
blacklisted – but the value of ki2 ⊕ ki′2 is known to be precisely equal to mi2 ⊕mi′2

.
In such a case the two usefulness opportunities brought by the message on pairs

3Some of these blacklists must also be updated when two connected components are merged.
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0⊕ u3
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0⊕ u3
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y′0 y′1 y′2 y′3 y′4 y′15. . .

1⊕ u3

Figure 6.7: Collision between the input and the output on byte 3 of the blinded
inversion I ′ (values 0 and 1 lead to a collision)

(i1, i2) and (i1, i
′
2) would bring the same information so that they should count for a

single one and the penalty of that message must be increased by one.

In order to find a message with minimal penalty we devised a heuristic which
works in two steps. In the first step we consider some random messages (say
a few hundred) and select the one with the lowest penalty. This first step ends
with a somewhat good candidate. Then in a second step we repeatedly attempt to
decrease further the penalty by trying small modifications on this candidate until
no more improvements occur by small modifications.

We simulated ourmethod for adaptively choosing themessages. In these simula-
tions we assumed that the attacker is always able to correctly distinguish between
collision and non-collision events. Based on 1000 simulations with random keys,
we show that the key is fully recovered (up to the knowledge of one of its bytes)
with as few as 27.5 messages instead of 59 messages with the basic method. As
distinguishing between a collision and a non-collision necessitates only 25 traces
per message, a mere 700 executions would suffice to recover the key by analysing
real curves.

6.3.3 Attack on the Blinded Inversion Implementation

The previous attack cannot be applied to the blinded inversion implementation
described in subsection 6.2.2 since the different S-Box input and output bytes are
masked with different values ui. However there may exist a possible leakage lead-
ing to what we may call a Zero & One value attack.

One can notice that values 0 and 1 produce a collision between the input and
the output of the masked pseudo-inversion stage I ′ as depicted on Figure 6.7. This
is due to the following properties of the pseudo-inversion:

I(0) = 0 ⇒ I ′(0⊕ ui) = 0⊕ ui
I(1) = 1 ⇒ I ′(1⊕ ui) = 1⊕ ui

The two cases leading to a collision are indistinguishable from one another.
Detecting a collision between the input and the output of a blinded inversion gives
either x′i = 0⊕ ui or x′i = 1⊕ ui which reveals a key byte except one bit:

ki = mi or ki = mi ⊕ 1 .
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Figure 6.8: Collision-correlation curves in the pseudo-inversion of the first byte in
GF(28)

Description.

Assume we want to recover the 7 most significant bits of k0. For every even byte
value gwe encrypt N times a single message M with m0 = g and collect the corre-
sponding power consumption traces Tn,g, 0 ≤ n ≤ N − 1. Note that in this attack
we only need to guess the 7 most significant bits because the least significant one
is indistinguishable. Let’s denote t0 and t1 the instants when x0 ⊕ u0 is loaded be-
fore the pseudo-inversion I, and when the result is stored respectively. For each
of the N traces we extract the two segments Tn,g[t0,t0+l−1] and T

n,g
[t1,t1+l−1] and construct

the series Θg
0 = (Tn,g[t0,t0+l−1])n and Θg

1 = (Tn,g[t1,t1+l−1])n. For this step of our attack it is
helpful to have some experience on the targeted implementation identify exactly
where these two segments are located.

Applying the decision function Collision(Θg
0,Θ

g
1) for all the 128 possible values

g will reveal two possibilities for k0. Repeating this step for all key bytes allows
the key space to be reduced to 216 values only. Note that a trick which allows
to considerably reduce the number of traces is to encrypt the messages Mg =
(g, g, . . . , g) with all bytes equal.

Results on Simulated Curves.

As for previous attack on simulated curves, a relation is established when at least
one point among the l points correlation curve is equal to 1. The attack is successful
using N = 16 curves for each key guess. The Figure 6.8 shows the 128 correlation
curves for all possible guesses on k0. The black curve corresponds to the correct
guess for k0.

The attack on this second implementation has thus been validated on simulated
curves. We did not acquire real curves for this implementation. Based on what
has been observed on the previous attack (successful results obtained using sim-
ulations have led to successful results on the chip in practice), we believe that the
attack would be successful on the real chip too, using a value for N of the same
order to what was necessary for the first attack.
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Figure 6.9: Success rates of different simulated second-order attacks

6.4 Comparison with Second Order Analysis

In this section, we present a brief comparison between the collision-correlation
method and some known second-order attacks. Our analysis was inspired from the
recent framework introduced by Standaert et al. in [100] and refined later in [99].
This comparison gives an overview on the efficiency of these different second-order
techniques, and highlights how much the collision-correlation analysis improves
on second-order attacks.

Our analysis targets the first implementation only. We compared the collision-
correlation analysis with the second-order analysis involving the absolute differ-
ence combining function f1, the squared absolute difference combining function f2

and the normalized product combining function f3, when using as distinguisher the
Pearson linear correlation factor ρ̂. Note that we did not used Mutual Information
Analysis, whose results remain less efficient than the classical CPA in practice.

For sake of simplicity, we consider that the power consumption at instant t is the
Hamming weight of the intermediate data involved in the computation plus a cen-
tered Gaussian noise ωσ with standard deviation σ. Therefore HWn(z) corresponds
to the handling of the value z for the n-th encryption. We now define θ0 and θ1 as:

θ0 = (HWn(S(mi ⊕ ki ⊕ u)⊕ v) + ωσ)0≤n≤N−1

θ1 = (HWn(S(mj ⊕ kj ⊕ u)⊕ v) + ωσ)0≤n≤N−1

Let gi (resp. gj) denote a guess on ki (resp. kj). We compute the estimated
values wgi,gj = HW(S(mi ⊕ gi) ⊕ S(mj ⊕ gj)). Considering the N messages we obtain
the series Wgi,gj = (wngi,gj )0≤n≤N−1. Using the combining function fj, the right key
bytes are obtained for the highest correlation value ρ̂(fj(θ0, θ1),Wgi,gj ).

Then as in [99] we execute many times the attack with the different combining
functions and calculate the success rate of each one. The Figure 6.9 shows two
comparison graphs, one for σ = 0.75 and the other for σ = 2. Both graphs plot the
success rates on 50 runs with respect to the number of curves used.

We emphasise that in this comparison the second-order attacks are shown in
a very favorable light. Indeed the correlation model used here is exactly the one
applied to simulate the curves. In practice an attacker would not have such good
properties.
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6.5 Countermeasures

The attacks presented in this chapter defeat first-order protected implementa-
tions. Therefore, an obvious countermeasure would be to apply second-order
masking. To the best of our knowledge, the best solution should be the coun-
termeasure presented by Rivain et al. [85]. It allows the implementation of proven
d-order DPA resistant AES for any d ≥ 1.

Another countermeasure against our first attackmay simply consist in executing
the SubBytes function in a random order. Even if this method is not theoretically
perfect, it may be sufficient to practically resist to second-order attacks. Consid-
ering the second implementation, we think that its main weakness is the use of a
same mask before and after each byte pseudo-inversion. If the result is masked
with a different value then the collision-correlation attack is no longer feasible.

It is also necessary to consider that depending on the quality of the hardware
countermeasures provided by the device, these attacks can become much more
complicated in practice.

6.6 Masked Inverse

To simplify the notations we denote by a ′+′ the bitwise operation XOR. To compute
the masked value y′i = xi

−1⊕ui we define the functions fxi,h, fxi,l, fdi and fd′i in GF(24)

as follow :

((xi,h + ui,h)X + (xi,l + ui,l))
−1 = (yi,h + vi,h)X + (yi,l + vi,l)

yi,h + vi,h = fxi,h
((xi,h + ui,h), (d′i + vdi), ui,h, vi,h, vdi)

= xi,h × d−1i + vi,h

yi,l + vi,l = fxi,l
((yi,h + vi,h), (xi,l + ui,l), (d

′
i + vdi

), xi,l, vi,h, vi,l, vdi
)

= (xi,h + xi,l)× d−1i + vi,l

di + udi
= fdi

((xi,h + ui,h), (xi,l + ui,l), 14, ui,h, ui,l, udi
)

= x2i,h × 14 + xi,h × xi,l + x2i,l + udi

d′i + vdi
= fd′i((di + udi

), udi
, vdi

)

= d−1i + vdi

In [79] Oswald et al. consider that masks before and after inversion remain the
same, then we have: vi,h = ui,h, vi,l = ui,l and vdi = vd′i = ui,h. The previous functions
becomes:
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fxi,h
= (xi,h + ui,h)× (d′i + ui,l) + (d′i + ui,l)× ui,h
+ (xi,h + ui,h)× ui,l + ui,h + ui,h × ui,l

fxi,l
= (yi,h + vi,h) + (xi,l + ui,l)× (d′i + ui,h) + (d′i + ui,h)× ui,l
+ (xi,l + ui,l)× ui,h + ui,l + ui,h + ui,h × ui,l

fdi = (xi,h + ui,h)2 × 14 + (xi,h + ui,h)× (xi,l + ui,l) + (xi,l + ui,l)
2

+ (xi,h + ui,h)× ui,l + (xi,l + ui,l)× ui,h
+ u2i,h × 14 + u2i,l + ui,h × ui,l + ui,h

6.7 Practical Results on Real Curves

The following figures show results of collision-correlation on first implementation.
Every time a relation occurs and then Collision(Θ0,Θ1) = true, we can see a cor-
relation peak as in Figure 6.5.Every time no such relation is present and then
Collision(Θ0,Θ1) = false we obtain curves as in Figure 6.6 where no correlation
peak is present.
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Chapter 7

ROSETTA

7.1 Introduction

Although crypto-systems are proven secure against theoretical cryptanalysis, they
can be easily broken if straightforwardly implemented on embedded devices such
as smart cards. Indeed, the so-called Side-Channel Analysis (SCA) takes advantage
of physical interactions between the embedded device and its environment during
the crypto-system execution to recover information on the corresponding secret
key. Examples of such interactions are the device power consumption [74] or its
electromagnetic radiation [43]. SCA can be mainly divided into two kinds: Simple
Side-Channel Analysis (SSCA) and Differential Side-Channel Analysis (DSCA). The
first kind aims at recovering information on the secret key by using only one ex-
ecution of the algorithm whereas DSCA uses several executions of the algorithm
and applies statistical analysis to the corresponding measurements to exhibit in-
formation on the secret key.

Amongst crypto-systems threatened by SCA, RSA [87] is on the front line since
it is the most widely used public key crypto-system, especially in embedded en-
vironment. Therefore, many researchers have published efficient side-channel
attacks and countermeasures specific to RSA over the last decade. Due to the
constraints of the embedded environment, countermeasures must not only resist
each and every SCA known so far but must also have the smallest impact in terms
of performance and memory consumption. Nowadays, the most common counter-
measure to prevent SSCA on RSA consists in using an exponentiation algorithm
where the sequence of modular operations leaks no information on the secret ex-
ponent. Examples of such exponentiation are the square-and-multiply-always [34],
the Montgomery ladder [55], the Joye ladder [56], the square-always [32] or the
atomic multiply-always exponentiation [24]. The latter is generally favorite due to
its very good performance compared to the other non-atomic methods. Regarding
DSCA prevention, most common countermeasures consist in blinding the modulus
and/or the message, and the exponent [61, 34]. Their effect is to randomize the in-
termediate values manipulated during the exponentiation as well as the sequence
of squarings and multiplications. In this chapter we denote by blinded exponenti-
ation an exponentiation using the atomic implementation presented in [24] where
modulus, message and exponent are blinded.

Today blinded exponentiation remain resistant to most SCA techniques. Only
the Big Mac attack presented by Walter [104] theoretically threatens this imple-
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mentation, although no practical result has been ever published. Other attacks
introduced later partially threaten this implementation. First, Amiel et al. [7] show
how to exploit the average Hamming weight difference between squaring and mul-
tiplication operations to recover the secret exponent. Their technique is efficient
when the modulus and the message are blinded. However it requires many ex-
ponentiation traces using a fixed exponent, so this attack can be thwarted by the
randomization of the exponent. To circumvent the blinded exponentiation, they
suggested to apply their attack on a single trace but did not try it in practice.
Clavier et al. present in [30] the so-called Horizontal Correlation Analysis. They
apply DSCA using the Pearson correlation coefficient [20] on a single exponenti-
ation side-channel trace. The exponent randomization has no effect against this
attack. Modulus and message blinding are efficient only if randommasks are large
enough (32 bits or more).

Other attacks on the RSA exponentiation are not mentioned in our study as they
do not apply to the blinded exponentiation.

In this chapter we propose new attacks on the blinded exponentiation which
make use of a single execution trace. We achieve this by introducing two new
distinguishers — the Euclidean distance and the collision correlation applied to the
long-integer multiplication—which allow to efficiently distinguish a squaring from
a multiplication operation without the knowledge of the message or the modulus.

7.1.1 Roadmap

In section 7.2, we recall some basics on RSA implementations on embedded de-
vices. In particular, we describe the attacks presented in [7, 30, 104] and we
show that one of them can be extended using the collision-correlation technique.
In section 7.3, we present the principle of the so-called Rosetta analysis using
two different distinguishers. In section 7.4, we put into practice our attack and
we demonstrate its efficiency using simulated side-channel traces of long-integer
operations using a 32 × 32-bit multiplier. Moreover, we also compare our tech-
nique with previous attacks and show that it is more efficient especially on noisy
measurements. We discuss in section 7.5 possible methods to counteract Rosetta
analysis.

7.2 Background

In this section, after presenting some generalities on RSA implementation in the
context of embedded environment, we present three of the most efficient side-
channel attacks published so far on RSA: the Big Mac attack published by Walter
at CHES 2001 [104], the one published by Amiel et al. at SAC 2008 [7] and theHor-
izontal Correlation Analysis published at ICICS 2010 by Clavier et al. [30]. Also,
we explain how the latter can be extended using a collision-correlation technique.

7.2.1 RSA Implementation

The standard way of computing an RSA signature S of a message m consists of
a modular exponentiation with the private exponent: S = md mod N . The corre-
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sponding signature is verified by comparing the message m with the signature S
raised to the power of the public exponent: m ?

= Se mod N .

In order to improve its efficiency, the signature is often computed using the
Chinese Remainder Theorem (CRT). Let us denote by dp (resp. dq) the residue
d mod p− 1 (resp. d mod q − 1). To compute the signature, the message is raised to
the power of dp modulo p then to the power of dq modulo q. The corresponding
results Sp and Sq are then combined using Garner’s formula [44] to obtain the
signature: S = Sq + q(q−1(Sp − Sq) mod p).

If used exactly as described above, RSA is subject to multiple attacks from a
theoretical point of view. Indeed, it is possible under some assumptions to recover
some information on the plaintext from the ciphertext or to forge fake signatures.
To ensure its security, RSA must be used according to a protocol which mainly
consists in formatting the message. Examples of such protocols are the encryp-
tion protocol OAEP and the signature protocol PSS, both of them being proven
secure and included in the standard PKCS #1 V2.1 [54]. Note that, as they do not
require the knowledge of the exponentiated value, the new attacks described in
this contribution also apply when either OAEP or PSS scheme is used.

From a practical point of view, the RSA exponentiation is also subject to many
attacks if straightforwardly implemented. For instance, SSCA, DSCA or collision
analysis can be used to recover the RSA private key. SSCA aims at distinguishing
a difference of behavior when an exponent bit is a 0 or a 1.

DSCA allows a deeper analysis than SSCA by exploiting the dependency which
exists between side-channel measurements and manipulated data values [9]. To
this end, thousands of measurements are generally combined using a statistical
distinguisher to recover the secret exponent value. Nowadays, themost widespread
distinguisher is the Pearson linear correlation coefficient [20].

Finally, collision analysis aims at identifying when a value is manipulated twice
during the execution of an algorithm.

Algorithm 7.1 presents the classical atomic exponentiation which is one of the
fastest exponentiation algorithms protected against the SPA.

Alg. 7.1 Atomic Multiply-Always Exponentiation
Input: x, n ∈ N, d = (dv−1dv−2 . . . d0)2

Output: xd mod n
1: R0 ← 1
2: R1 ← x
3: i← v − 1
4: k ← 0
5: while i ≥ 0 do
6: R0 ← R0 ×Rk mod n
7: k ← k ⊕ di [⊕ stands for bitwise X-or]
8: i← i− ¬k [¬ stands for bitwise negation]
9: end while
10: return R0

When correctly implemented, Alg. 7.1 defeats SSCA since squarings cannot be
distinguished from other multiplications on a side-channel trace, as depicted by
Figure 7.1.
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Figure 7.1: Atomic multiply-always side-channel leakage

To prevent the implementation of RSA exponentiation from DSCA, the two main
countermeasures published so far are based onmessage and exponent blinding [34,
61]. Instead of computing straightforwardly S = md mod n, one rather computes
S̃ = (m + k0 · n)d+k1·ϕ(n) mod 2λ · n where ϕ denotes the Euler’s totient and k0 and
k1 are two λ-bit random values, then finally reduce S̃ modulo N to obtain S. Us-
ing such a blinding scheme with a large enough λ (32 bits are generally consid-
ered as a good compromise between security and cost overhead), the relationship
between the side-channel leakages occurring during an exponentiation and the
original message and exponent values is hidden to an adversary, therefore cir-
cumventing DSCA.

As the modular exponentiation consists of a series of modular multiplications,
it relies on the efficiency of the modular multiplication. Many methods have been
published so far to improve the efficiency of this crucial operation. Amongst these
methods, themost popular are theMontgomery, Knuth, Barrett, Sedlack or Quisquater
modular multiplications [76, 35]. Most of them have in common that the long-
integer multiplication is internally computed by repeatedly calling a smaller mul-
tiplier operating on t-bit words. A classic example is given in Alg. 7.2 which per-
forms the schoolbook long-integer multiplication using a t-bit internal multiplier
giving a 2t-bit result. The decomposition of an integer x in t-bit words is given by
x = (x`−1x`−2 . . . x0)b with b = 2t and ` = blogb(x)c+ 1.

Alg. 7.2 Schoolbook Long-Integer Multiplication
Input: x = (x`−1x`−2 . . . x0)b, y = (y`−1y`−2 . . . y0)b
Output: x× y
1: for i = 0 to 2`− 1 do
2: zi ← 0
3: end for
4: for i = 0 to `− 1 do
5: R0 ← 0
6: R1 ← xi
7: for j = 0 to `− 1 do
8: R2 ← yj
9: R3 ← zi+j
10: (R5R4)b ← R3 +R2 ×R1 +R0

11: zi+j ← R4

12: R0 ← R5

13: end for
14: zi+` ← R5

15: end for
16: return z

In the rest of this section we recall some previously published attacks on atomic
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exponentiations which inspired our new technique detailed in section 7.3.

7.2.2 Attacks Background

Distinguishing Squarings from Multiplications in Atomic Exponentiation

In [7] Amiel et al. present a specific DSCA aimed at distinguishing squaring from
other multiplications in the atomic exponentiation. They observe that the average
Hamming weight of the output of a multiplication x× y has a different distribution
whether:

• the operation is a squaring performed using the multiplication routine, i.e.
x = y, with x uniformly distributed in

[
0, 2`t − 1

]
;

• or the operation is an actual multiplication, with x and y independent and
uniformly distributed in

[
0, 2`t − 1

]
.

Thus, considering a device with a single long-integer multiplication routine used
to perform either x × x or x × y, a set of N side-channel traces computing mul-
tiplications with random operands can be distinguished from a set of N traces
computing squarings, provided that N is sufficiently large to make the two distri-
bution averages separable. This attack can thus target an atomic exponentiation
such as Alg. 7.1 even in the case of message and modulus blinding. Regarding the
exponent blinding, authors suggest that their attack should be extended to suc-
cess on a single trace but do not give evidence of its feasibility. We thus study this
point in the following of the chapter.

Horizontal Correlation Analysis

Correlation analysis on a single atomic exponentiation side-channel trace has been
published in [30] where the message is known to the attacker but the exponent
is blinded. This attack called horizontal correlation analysis requires only one
exponentiation trace to recover the full RSA private exponent.

Instead of considering the whole k-th long-integer multiplication side-channel
trace T k as a block, the authors consider each inner side-channel trace segment
corresponding to a single-precision multiplication on t-bit words. For instance, if
the long-integer multiplication is performed using Alg. 7.2 on a device provided
with a t-bit multiplier, then the trace T k of the k-th long-integer multiplication x×y
can be split into `2 trace segments T ki,j, 0 ≤ i, j < `, each of them representing
a single-precision multiplication xi × yj. More precisely, for each word yj of the
multiplicand y, the attacker obtains ` trace segments T ki,j, 0 ≤ i, j < `, corresponding
to a multiplication by yj. The slicing of T k into trace segments T ki,j is illustrated on
Figure 7.2.

In the horizontal correlation analysis the attacker is able to identify whether
the k-th long-integer operation T k is a squaring or a multiplication by computing
the correlation factor between the series of Hamming weights of each t-bit word
mj of the message m and the series of corresponding sets of ` trace segments T ki,j,
0 ≤ i, j < `. This correlation factor is expected to be much smaller when the long-
integer operation is a squaring (i.e. R0 ← R0 × R0 in Alg. 7.1) than when it is a
multiplication by m (i.e. R0 ← R0 × R1). The correlation factor can be computed
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Figure 7.2: Horizontal side-channel analysis on exponentiation

by using the Pearson correlation coefficient ρ(H,T k) where H = (H0, . . . ,H`−1), with
Hj = (HW(mj), . . . ,HW(mj)), HW(mj) standing for the Hamming weight of mj and
T k = (T k0 , . . . , T

k
`−1) with T kj = (T k0,j , . . . , T

k
`−1,j).

Big Mac Attack

Walter’s attack needs, as our technique, a single exponentiation side-channel trace
to recover the secret exponent. For each long-integer multiplication, the Big Mac
attack detects if the operation performed is either R0 ×R0 or R0 ×m. The multipli-
cations xi × yj — and corresponding trace segments T ki,j — can be easily identified
on the side-channel trace from their specific pattern which is repeated `2 times in
the long-integer multiplication loop. A template side-channel trace is computed
(either from the precomputations or from the first squaring operation) to charac-
terize the manipulation of the message during the long-integer multiplication. The
Euclidean distance between the template trace and each long-integer multiplica-
tion trace T k is then computed. If it exceeds a threshold then the attack concludes
that the operation is a squaring, or a multiplication by m otherwise.

Walter uses the Euclidean distance but we noticed that other distinguisher could
be used. In the following section, we extend the Big Mac attack using a collision-
correlation technique.

7.2.3 Big Mac Extension using Collision Correlation

A specific approach for SCA uses information leakages to detect collisions be-
tween data manipulated in algorithms. A side-channel collision attacks against
a block cipher was first proposed by Schramm et al. in 2003 [93]. More recently
Moradi et al. [78] proposed to use a correlation distinguisher to detect collisions
in AES. The main advantage of this approach is that it is not necessary to define
a leakage model as points of traces are directly correlated with other points of
traces. Later, Clavier et al. [29] presented two collision-correlation techniques
defeating different first order protected AES implementations. The same year,
Witteman et al. [106] applied collision correlation to public key implementation.
They describe an efficient attack on RSA using square-and-multiply-always expo-
nentiation and message blinding. All these techniques require many side-channel
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execution traces. In this section, we extend Walter’s Big Mac attack using the
collision correlation as distinguisher instead of the Euclidean distance.

We consider a blinded exponentiation and use the fact that the second and third
modular operations in an atomic exponentiation are respectively 1 ∗ m̃ and m̃ ∗ m̃,
where m̃ is the blinded message. The trace of the second long-integer multipli-
cation yields ` multiplication segments for each word m̃j of the blinded message.
Considering the k-th long-integer multiplication, k > 3, we compute the correlation
factor between the series of ` trace segments T 2

j — each one being composed of
the ` trace segments T 2

i,j involved in the multiplication by m̃j — and the series of `
trace segments T kj . Since the blinded value of the message does not change during
the exponentiation, a high correlation occurs if the k-th long-integer operation is
a multiplication, and a low correlation otherwise. Once the sequence of squarings
and multiplications is found, the blinded exponent value is straightforwardly re-
covered. Notice that recovering the blinded value of the secret exponent is not an
issue as it can be used to forge signature as well as its non-blinded value.

This attack also works if we use the trace segments T 3
j of the third long-integer

operation instead of the trace segments T 2
j . One can also combine the information

provided by the second and third long-integer operations to improve the attack.

Remark

As the original Big Mac, this attack also applies to the CRT RSA exponentiation
since no information is required on either the message or the modulus. This is of
the utmost importance since, to the best of our knowledge, this is the first prac-
tical attack on a CRT RSA fully blinded (message, modulus and exponent) atomic
exponentiation.

7.3 ROSETTA: Recovery Of Secret Exponent by Triangu-
lar Trace Analysis

7.3.1 Attack Principle

The long-integer multiplication LIM(x, y) in base b = 2t is given by the classical
schoolbook formula:

x× y =

`−1∑
i=0

`−1∑
j=0

xiyjb
i+j

and illustrated, with for instance ` = 4 by the following matrix M :

M =


x0y0 x0y1 x0y2 x0y3

x1y0 x1y1 x1y2 x1y3

x2y0 x2y1 x2y2 x2y3

x3y0 x3y1 x3y2 x3y3
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In the case of a squaring, then x = y and the inner multiplications become:

S =


x0x0 x0x1 x0x2 x0x3

x1x0 x1x1 x1x2 x1x3

x2x0 x2x1 x2x2 x2x3

x3x0 x3x1 x3x2 x3x3


We consider four observations to design our new attacks, assuming a large

enough multiplier size t ≥ 16:

(Ω0) LIM(x, y) s.t. x = y ⇒ Prob(xi × yi are squaring operations) = 1 ∀i

(Ω1) LIM(x, y) s.t. x 6= y ⇒ Prob(xi × yi are squaring operations) ≈ 0 ∀i

(Ω2) LIM(x, y) s.t. x = y ⇒ Prob(xi × yj = xj × yi) = 1 ∀i 6= j.

(Ω3) LIM(x, y) s.t. x 6= y ⇒ Prob(xi × yj = xj × yi) ≈ 0 ∀i 6= j.

From observations (Ω0) and (Ω1) one can apply the attack presented in [7] on a
single trace as suggested by the authors. The main drawback is that only ` such
operations are performed during a LIM which represents a small number of trace
segments. It is likely to make the attack inefficient for small modulus lengths (with
respect to the multiplier size t).

From observations (Ω2) and (Ω3) we notice that collisions between xi×yj and xj×
yi for i 6= j can be used to identify squarings from other multiplications. Moreover,
LIM(x, y) provides `2 − ` operations xi × yj, i 6= j, thus (`2 − `)/2 couples of potential
collisions. This represents a fairly large number of trace segments. The principle
of our new attack consists in detecting those internal collisions in a single long-
integer operation to determine whether it is a squaring or not. Visually, we split
the matrix M into an upper-right and a lower-left triangles of terms, thus we call
this technique a triangle trace analysis.

We present in the following two techniques to identify these collisions on a single
long-integer multiplication trace. The first analysis uses the Euclidean distance
distinguisher and the second one relies on a collision-correlation technique.

7.3.2 Euclidean Distance Distinguisher

We use as distinguisher the Euclidean distance between two sets of points on a
trace asWalter [104] in the BigMac analysis. In order to exploit properties (Ω2) and
(Ω3) we proceed as follows. For each LIM(x, y) operation we compute the following
differential side-channel trace:

TED =
2

`2 − `
∑

0≤i<j<`

√
(Ti,j − Tj,i)2

If the operation performed is a squaring then the single-precision multiplications
xi × yj and xj × yi store the same value in the result register (or in the memory) at
the end of the operation. The side-channel leakage of the result storage of both
operations should thus be similar. On the other hand, if x 6= y, products differ and
the side-channel leakage should present less similarities. Assuming a side-channel
leakage function linear in the Hammingweight of the datamanipulated, a squaring
should result in E(TED) ≈ 0, whereas we should expect a significantly higher value
(about t/2 for each of the product halves) in the case of a multiplication.
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7.3.3 Collision-Correlation Distinguisher

We define the two following series of trace segments, where the ordering of cou-
ples (i, j) is the same for the two series:

Θ0 = {Ti,j s.t. 0 ≤ i < j ≤ `− 1}

Θ1 = {Tj,i s.t. 0 ≤ i < j ≤ `− 1}

Each set includes N = (`2 − `)/2 trace segments of base b multiplications.

In order to determine the operation performed by the LIMwe compute the Pear-
son correlation factor between the two series Θ0 and Θ1 as described in [29]:

ρ̂Θ0,Θ1(t) =
Cov(Θ0(t),Θ1(t))

σΘ0(t)σΘ1(t)

=
N
∑

(Ti,j(t)Tj,i(t))−
∑
Ti,j(t)

∑
Tj,i(t)√

N
∑

(Ti,j(t))2 − (
∑
Ti,j(t))2

√
N
∑

(Tj,i(t))2 − (
∑
Tj,i(t))2

where summations are taken over all couples 0 ≤ i < j ≤ `− 1.

In case of a squaring operation, a much higher correlation value ρ̂Θ0,Θ1 is ex-
pected than in case of a multiplication. Computing this correlation value for each
LIM operation allows to determine its nature and to recover the sequence of expo-
nent bits.

Remark

Contrary to differential analysis on symmetric ciphers, each exponent bit requires
to distinguish one hypothesis out of only two, instead of for instance 256 consid-
ering a differential attack on AES. Thus fixing a decision threshold is easier when
dealing with the exponentiation. This has already been observed when applying
DPA or CPA on RSA [9, 72] compared to DES or AES.

7.4 Comparison of the Different Attacks

In order to validate these two techniques, we generated simulated side-channel
traces for a classical 32×32-bit multiplier. As generally considered in the literature,
we assume a side-channel leakage model linear in the Hamming weight of the
manipulated data — here xi, yj, and xi × yj — and add a white Gaussian noise of
mean µ = 0 and standard deviation σ. We build simulated side-channel traces based
on the Hamming weight of the data manipulated in the multiplication operation
such that each processed single-precision multiplication generates four leakage
points HW(xi), HW(yj), HW(xi × yj mod b), and HW(xi × yj ÷ b), where ÷ stands for
the Euclidean quotient.

Besides validating our two Rosetta variants — the Euclidean distance distin-
guisher (Rosetta ED) and the collision-correlation one (Rosetta CoCo) — we com-
pare Rosetta with other techniques discussed previously, namely the classical Big
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Mac, the Big Mac using collision correlation (Big Mac CoCo), and the single trace
variant of the Amiel et al. attack presented at SAC 2008.

We proceed in the following way: we randomly select two `-bit integers x and
y. Then we generate the side-channel traces of the multiplication LIM(x, y) and of
the squaring LIM(x, x).

Each different attack is eventually applied and we keep trace of their success
or failure to distinguish the squaring from the multiplication. Finally, we estimate
the success rate of each technique by running 1 000 such experiments. These tests
are performed for three different noise standard deviation values1: from no noise
(σ = 0) to a strong one (σ = 7).

Characterisation and Threshold

A threshold for the attackmust be selected for each technique to determinewhether
the targeted operation is a multiplication or a squaring. Using simulated side-
channel traces, it was possible to determine the best threshold value for each tech-
nique. Without any knowledge on the component, it is more difficult to fix those
threshold values. The attacks could be processed with guess on these thresholds,
for instance selecting 0.5 for the collision correlation, but it could not reach opti-
mal efficiency or fail. It is then preferable to determine the best threshold values
through a characterization phase of the multiplier, either with an access to an open
sample or using the public exponentiation calculation as suggested in [9].

Results

We obtain the success rates given in tables Table 7.1 (σ = 0), Table 7.2 (σ = 2)
and Table 7.3 (σ = 7) for different key lengths ranging from 512 bits to 2048 bits.
Figure 7.3 and Figure 7.4 present a graphic comparison of these results for σ = 0
and σ = 7.

Technique 512 bits 768 bits 1024 bits 2048 bits
Big Mac [104] 0.986 0.990 0.993 0.995
SAC 2008 [7] 0.533 0.618 0.734 0.897

Big Mac CoCo (§subsection 7.2.3) 0.999 1.00 1.00 1.00
Rosetta ED (§subsection 7.3.2) 1.00 1.00 1.00 1.00
Rosetta CoCo (§subsection 7.3.3) 1.00 1.00 1.00 1.00

Table 7.1: Success rate with a null noise, σ = 0

Results Interpretation

We observe that with no noise (cf. Table Table 7.1) all techniques are efficient when
applied to large modulus bit lengths (1536 bits or more). For smaller modulus
lengths, the SAC 2008 technique is inefficient (probability of success close to 0.5)
as expected since the number of useful operations in that case is too small.

1Regarding the standard deviation of the noise, a unit corresponds to the side-channel difference
related to a one bit difference in the Hamming weight.
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Technique 512 bits 768 bits 1024 bits 2048 bits
Big Mac [104] 0.767 0.775 0.807 0.818
SAC 2008 [7] 0.546 0.629 0.717 0.855

Big Mac CoCo (§subsection 7.2.3) 0.981 0.998 0.999 1.00
Rosetta ED (§subsection 7.3.2) 1.00 1.00 1.00 1.00
Rosetta CoCo (§subsection 7.3.3) 1.00 1.00 1.00 1.00

Table 7.2: Success rate with a moderate noise, σ = 2

Technique 512 bits 768 bits 1024 bits 2048 bits
Big Mac [104] 0.557 0.577 0.621 0.632
SAC 2008 [7] 0.551 0.577 0.623 0.702

Big Mac CoCo (§subsection 7.2.3) 0.737 0.855 0.909 0.981
Rosetta ED (§subsection 7.3.2) 0.711 0.821 0.878 0.992
Rosetta CoCo (§subsection 7.3.3) 0.685 0.816 0.906 0.997

Table 7.3: Success rate with a strong noise, σ = 7
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Figure 7.3: Success rate of the different attacks with no noise.
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Figure 7.4: Success rate of the different attacks with a strong noise, σ = 7.
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In case of a noisy component, we observe that the original Big Mac and the
attack from SAC 2008 are not efficient, their probability of success is about 0.5–
0.7. Big Mac analysis using collision correlation, and both Rosetta techniques
start to be efficient from 1024-bit operands and are very efficient for 1536-bit and
2048-bit operands.

Our study demonstrates that these three last techniques are the most efficient
ones and represent a more serious threat for blinded exponentiation than the orig-
inal Big Mac.

From Partial to Full Exponent Recovery

Depending on the component, on the leakage and noise level of the chip, we ob-
serve that the success rate of the attack varies and may reveal too few information
to recover the whole exponent value. In the case where uncertainty remains on
some exponent bits, the attack from Schindler and Itoh [89] may help to reveal
them. If necessary, Rosetta analysis can thus be advantageously combined with
this technique to completely recover the exponent.

7.5 Countermeasures

As for the other attacks considered in this chapter, both Rosetta techniques we in-
troduced present the following interesting properties: (i) they make use of a single
side-channel trace and, (ii) they do not require the knowledge of the message nor
of the modulus. As a consequence they are applicable even when the classical set
of blinding countermeasures (message, modulus, exponent) is implemented and
whatever the size of the random values used.

A first idea to prevent these attacks is to improve the message blinding by ran-
domizing it before each long-integer multiplication, for instance by adding the
modulus n or a multiple thereof to the message. At this point, it is worth noticing
a specific difference between both Rosetta and other attacks. Rosetta can dis-
tinguish a squaring from a multiplication without using any template or previous
leakage. This is not the case with the other techniques — except for the single
trace variant of the SAC 2008 attack which we demonstrate not to be efficient in
the previous section. The consequence is that Rosetta is still applicable even when
this improved blinding is implemented.

We recall hereafter three existing countermeasures that we believe to withstand
all the techniques presented in this contribution.

Shuffled Long-Integer Multiplication In [30], a long integer multiplication al-
gorithm with internal single-precision multiplications randomly permuted is pre-
sented. More details are given in [102, Sec. 2.7]. This countermeasure makes
Rosetta analysis virtually infeasible as indices i, j of multiplication xi × yj are not
known anymore.
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Always True Multiplication This solution consists in ensuring that multiplica-
tion operands are always different (or different with high probability). To achieve
this objective, before each multiplication LIM(x, y), both operands x and y are ran-
domized by x? = x+ r1.n and y? = y+ r2.n. If r1 6= r2, two equal operands x and y are
traded for x? and y? with x? 6= y? and the operation LIM(x?, y?) is not a squaring.

Square-Always algorithm The square-always algorithm presented in [32] pro-
cesses any multiplication using two squarings. As for the solution of using multi-
plications of different terms only, Rosetta does not apply. Regular atomic square
always algorithms can be used to prevent SSCA. Exponent blinding countermea-
sure must be associated with this solution.
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Chapter 8

Passive and Active Combined
Analysis

8.1 Introduction

Countermeasures against active and passive attacks are generally studied and pro-
posed separately, and protecting a product from both techniques usually consists
in superposing both kinds of countermeasures. In [6] the authors showed that
simply superposing countermeasures is not sufficient as they succeeded in break-
ing an RSA implementation that used state of the art countermeasures against
side-channel attacks and fault attacks. Their Passive and Active Combined Attack,
Passive and Active Combined Attack (PACA), on an RSA implementation demon-
strates that naively adding countermeasures together is not sufficient and that
implementing these protections must be done carefully be means e.g. of the infec-
tive methodology.

In this chapter we present another passive and active combined attack on a
state of the art SCA protected AES [40]. We combine a particular fault attack
technique named Collision Fault Analysis (Correlation Fault Analysis (CFA)) that
was introduced by Blömer and Seifert [16] in 2003, with the classic Correlation
side-channel analysis (Correlation Side-Channel Analysis (CSCA)) introduced by
Brier et al. [20] in 2004.

This chapter is organized as follows. The section 8.2 gives an overview of active
and passive attacks with a focus on the collision fault analysis and the correlation
side-channel analysis. We present in section 8.3 the AES state of the art imple-
mentation chosen for this study and explain why this implementation is resistant
to the previously published CFA. In section 8.4 we introduce our combined attack
and explain how, with the same fault model as the CFA, it can recover the secret
key on our AES implementation. We discuss the countermeasures in section 8.5
and describe a safe-error variant of our attack which defeats these countermea-
sures in section 8.6.
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8.2 Side Channel and Fault Analysis Background

Passive attacks consist in observing side-channel information, such as the power
consumed by the chip while performing sensitive operations during a cryptographic
computation. Active attacks consist in perturbing the device when it is processing
sensitive data or calculations. Both techniques may result in the recovery of the
secrets.

8.2.1 Side Channel Analysis

Power and electromagnetic analysis rely on the following physical property: a mi-
croprocessor is physically made of thousands of logical gates which switch differ-
ently depending on the operations being executed and the data being manipulated.
The power consumption and the electromagnetic radiation, which depend on these
gate switching may leak information on the executed instructions and the manip-
ulated data. Consequently, by monitoring the power consumption or radiation of
a device performing cryptographic operations, an observer can infer information
on the implementation of the program executed and on the secret data involved.
Basic SSCA consists in analyzing the secret key manipulations on a single power
curve, for instance during the key scheduling operations in the DES or AES rounds.
DPA is a more powerful method which consists in validating an hypothesis on some
key bits, by a statistical treatment on many execution power curves of the targeted
embedded implementation. The complexity is then reduced to very few calcula-
tions compared to a classical cryptanalysis or to a brute force attack on the key.
For instance a classical DPA on a unprotected software implementation of AES on
a standard microcontroller typically requires between 500 to few thousands power
curves. Some improvements of DPA have been published in the previous years,
among which the Correlation Power Analysis CPA technique requires far fewer
curves for recovering the key than the original DPA. Recovering the key by CPA
on unprotected AES implementations may require between only 50 and few hun-
dred curves. Other recent methods have been published that also improve the
side-channel attacks [45, 98, 82]. Most common countermeasures against power
analysis, and particularly DPA and CPA, consist in using random values for masking
the operations. In this case even if an attacker makes guesses on some secret key
bits, he can not predict any intermediate value as another unknown variable, the
random mask, is part of any intermediate data during the computation. However
in this case a more complex but realistic attack, named High Order Differential
Power Analysis (HODPA), presented by Messerges [71], is still applicable if the
mask values are identical on different bytes, and/or if some different instants on a
same power curve can be used to eliminate the random mask effect.

We now briefly present the CPA technique which is the passive component of
our combined attack.

Correlation Power Analysis

The power consumption of the device is supposed to vary linearly with HW(D⊕R),
the Hamming distance between the data manipulated D and a reference state
R. The power consumption model W is then defined as W = µ · HW(D ⊕ R) + ν,
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where ν captures both the experimental noise and the non modelized part of the
power consumption. The linear correlation factor: ρC,H = cov(C,H)

σCσH
is then used

to correlate the power curves C with this value HW(D ⊕ R). Knowing that the
maximum correlation factor is obtained for the correct guess of secret key bits, an
attacker can try all possible secret bits values and select the value corresponding
to the highest correlation.

8.2.2 Fault Analysis

Fault effects and perturbations on electronic devices were first observed in the
1970’s in the aerospace industry. Later the Differential Fault Analysis, DFA for at-
tacking embedded symmetric cryptosystemswas introduced by Biham and Shamir [15]
in 1997. In this paper the authors explain how to recover the secret key by using
between 50 and 200 ciphertexts. For years this threat was considered as only the-
oretical until the first practical results of light attacks were presented (on an RSA
implementation) by Anderson and Skorobogatov [95]. The DFA has subsequently
been studied and applied on DES in [47] where Giraud and Thiebeauld recover
the key by means of only 2 faulty ciphertexts. In the case of the AES many attacks
have been proposed [81, 37, 48] that allow the secret key to be recovered by using
as few as 2 faulty ciphertexts.

We now present the Collision Fault Analysis technique which is the active com-
ponent used in our combined attack.

Collision Fault Analysis

In [16] Blömer and Seifert first published a CFA on the first XOR of the AES. They
assume a fault model where the attacker has the ability to force to zero any chosen
bit of the result of this XOR operation. Then they compare a correct and a faulted
AES execution for the same message. If both ciphertexts are equal the original
value of the result bit is 0, otherwise it is 1. Knowing the message and scanning
the different key bits, the whole 128-bit AES key is retrieved with 128 faulty execu-
tions. An interesting property is that the classical countermeasures which consist
in checking the computation, for instance by executing the AES twice and compar-
ing the results, do not prevent this attack. Indeed whether the card detects the
fault or not will provide the attacker with the same information as whether or not
the fault corrupted the ciphertext.

Later Hemme [52] presented the first CFA on the DES. His attack consists in
introducing one bit errors in the first rounds of the algorithm. Then by computing
chosen message encryption with the card (without injecting faults) the attacker
obtains collisions that he can exploit to recover information on the secret key.
With enough collisions he can recover the whole secret key. In this case, verifying
the whole DES computation is an efficient countermeasure.

Another CFA analysis on the AES first XOR computation can be done when the
fault effect resets a whole byte (or many bytes) instead of a bit. In this attack an
induced fault resets the result of a XOR between one message byteMj and one key
byte Kj – with the other key addition byte results not being affected. The attacker
stores the faulty ciphertext C ′ and asks the card to encrypt the 256 messages M
with Mj taking all possible byte values. One of these 256 ciphertexts will be equal
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to C ′. This collision is produced for Mj verifying Mj ⊕Kj = 0, which indicates that
Kj = Mj.

Amiel et al. [4] adapted this CFA to an AES protected from first order DPA by
random masking. In this implementation the same random byte r1 is used for
masking all 16 message bytes and the same random byte r2 is applied on all 16
key bytes. In that case a single random byte r = r1⊕r2 is applied on all the bytes of
intermediate values throughout the computation. The authors succeeded in fault-
ing 2 to 16 bytes of the result of the first XOR. Then by searching collisions they
obtained relations between known input bytes and key bytes masked. Exploiting
these relations allows them to recover the secret key. This attack needs the pre-
computation with the card of 223 non faulty ciphertexts and in practice 112 faulty
ciphertexts were used. Note that this attack is applicable only if the same random
mask r is applied on all of the 16 bytes of the intermediate values. The targeted
implementation was not protected against high order differential analysis and in
particular against a second order analysis. State of the art implementations are
thus not vulnerable to this CFA.

8.3 Targeted AES Implementation

We present here the implementation targeted by our attack. We have chosen a
state of the art side channel resistant AES implementation. To prevent DPA and
CPA attacks, a 16-byte random mask is used to mask the input message (and an-
other one to mask the key). This random mask is composed of 16 different random
bytes that can change at each round. This targeted implementation is designed to
resist to the HODPA attack presented in [1] and [66].

To realize such an implementation it is not possible to use a 256-byte substi-
tution table as randomizing this substitution table for each random byte r0, . . . , r15

would necessitate precomputing and storing 16×256-byte substitution tables, one
for each byte ri. Moreover these tables would need to be recomputed at each
round for changing the mask between each round. The chosen implementation is
the one presented by Oswald et al. in [79], the inversion is here computed masked
in GF (24). In this case all the 16 bytes of the message and the intermediate calcu-
lations are masked with different random bytes. This implementation is described
in Figure 8.1 in Appendix.

Note that, as previously stated, the CFA presented by Amiel et al. is not appli-
cable on our targeted implementation.

We have carried out two implementations of a secure AES on an 8-bit micropro-
cessor with different security levels. The first one is resistant to DPA attacks and
takes 20000 cycles (2ms at 10MHz). Data are masked by the same byte which
requires precomputing only one substitution table for one AES execution. This
implementation is not resistant to HODPA attacks and is also vulnerable to Amiel
et al. CFA. We also carried out the implementation described above which uses
inversion in GF (24). All data are masked by different bytes which change between
each round. This implementation is resistant to HODPA attacks and takes 51000
cycles (5.1ms at 10MHz). We will refer to both these implementations as AESDPA
and AESHODPA respectively. The performance and memory footprint figures for
both implementations are presented in Table Table 8.1. We introduce the AESDPA
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Table 8.1: Performance (cyles) and memory costs (bytes) for AESDPA and AESHODPA
implementations

Cycles ROM RAM
AESDPA 20 000 4 000 256 + 65

AESHODPA 51 000 5 500 75

implementation here only for comparison purposes to illustrate the cost implied
for protecting an AES from HODPA. Only the AESHODPA implementation will be
referred to in our attacks.

8.4 Passive and Active Combined Attack onMasked AES

In this section we present an analysis that can be carried out on our AESHODPA im-
plementation with the same fault model as in previous publications. Our proposed
attack targets the first round calculations of the AES and necessitates choosing
the input message and obtaining the ciphertext computed by the card. Compared
to previous CFA on masked AES, it does not require a large number of messages
to be encrypted by the card.

Notation:We denote byM = (M0, . . . ,M15) the inputmessage and byK = (K0, . . . ,K15)
the key used by the card for encryptingM . Given a messageM , we also denote by
(M |condition) the message M modified so that the condition holds. For instance,
messages (M |Mj = 0) and (M |Mj = 1) are identical except on the jth byte which is
0 in first case and 1 in the other. We will also refer to a faulty computation or a
result thereof by means of the superscript symbol  . For instance C will refer to
a faulty ciphertext.

8.4.1 Fault Model

We consider the following fault model: the result of an operation XOR can be set
to zero – or to a not necessarily known constant value – by the attacker. This
model has previously been assumed in several fault analysis papers and can be
considered as realistic since practical results were also presented.

In practice such kind of fault effect can be induced in a card by the following
events:

• An operation can be bypassed. For instance the instruction to be executed
is replaced by a NOP. As explained in [103] the opcode fetched by the micro-
processor may be replaced by 0x00 that, in some products, corresponds to
the NOP operation. In this case the expected computation is not done, and
the result register keeps its previous value that may be either 0 or another
constant value. If the value is not constant the attack will be not possible.

• A loop counter can be modified, for instance in [4] the AddRoundKey opera-
tion is bypassed on some bytes by modifying (reducing) a counter value.
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• The processing in the ALU can be perturbed and an XOR result can thus be
modified to zero or a constant value.

Figure 1 gives an example of a typical code on an 8-bit microprocessor which can
be attacked by what has been presented above. It represents the XOR operation
between the masked message and the masked key carried out at the beginning
of a secure AES. We can observe in this code that our fault model can be used to
model different effects, if a NOP operation is executed, if a XOR result is forced to
0; if the counter value R2 is modified or if the JNZ operation is perturbed, etc. . .

Listing 1 Example code of masked AES AddRoundKey
Addition:

MOV R0, #address_message_masked
MOV R1, #address_key_masked
MOV R2, #16

LoopMessageXorKey:
MOV A, @R0
MOV B, @R1
XOR A, B
MOV @R0, A
INC R0
INC R1
DEC R2
JNZ LoopMessageXorKey

8.4.2 Attack on the First Key Addition

As in [4] we assume that the key addition before the first round can be perturbed
and one or many bytes resulting from this addition can be set to zero. We describe
our analysis for the first bytesM0 and K0 of the message and the key. The analysis
will be identical for the other byte indices.

We denote by rm = (rm0, . . . , rm15) and by rk = (rk0, . . . , rk15) the two 16-byte
random masks on the message and the key respectively. The resulting mask of the
XOR between the message and the key is denoted by r = rm⊕ rk.

For a normal execution the first byte of the XOR result is:

B0 = (M0 ⊕ rm0)⊕ (K0 ⊕ rk0) = M0 ⊕K0 ⊕ r0

For a faulty execution we have:

B 
0 = 0

The key observation is that the effect of the fault is to introduce a differential δ
on the byte value just before the first round S-Box computation.

B 
0 = B0 ⊕ δ, with δ = M0 ⊕K0 ⊕ r0
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The same effect on the execution would have been obtained, without a fault,
when using an input message which differs from the initial one by this differential.

Considering without loss of generality an initial message M = (0, . . . , 0), the dif-
ferential then reduces to δ = K0 ⊕ r0, and we have a collision opportunity corre-
sponding to the following equation:

C = AES (M) = AES(M |M0 = δ)

Note that a normal execution with (M |M0 = δ) will produce a collision with C 

whatever the random mask values for this execution.

For any ciphertext C obtained by injecting a fault we have the following prop-
erties:

1. C is characteristic of the mask value r0 in the faulty execution.

2. We can recover the value K0 ⊕ r0 of this execution by identifying which input
message leads to a collision with C without fault.

By computing AES(M |M0 = u) for all u = 0, . . . , 255, we can identify the u value
which verifies the relation:

u = δ = K0 ⊕ r0

At this point we are able, for any faulty execution, to recover the value of δ =
K0 ⊕ r0 involved in that execution. It is then possible to reproduce this analysis
many times to obtain k (k ≤ 256) such relations for k different values δi, i = 1, . . . , k,
and store the power consumption curve Wi of the faulty execution corresponding
to each δi.

Now, observe the following property: for any possible guess g about K0, g =
0, . . . , 255, we obtain a unique set Sg = {r0,1, . . . , r0,k} of k random mask values. In the
HODPA resistant implementation these random values are generated and manip-
ulated in the card at different moments during the inversion in GF (24) and during
the MixColumn computation applied to the mask in the first round. It is then pos-
sible to correlate these random values with the power curves Wi. By computing
the linear correlation factor between the set of curves {W1, . . . ,Wk} and the set of
random masks {r0,1, . . . , r0,k}, the most important correlation peak over the differ-
ent guesses identifies the correct set of random values manipulated in the card
and thus indicates that the corresponding guess g is equal to the secret key byte
K0.

The analysis can be repeated on the next bytes of the key addition operation to
recover the other key bytes K1 to K15.

We summarize the different steps of the attack in Figure 8.1. Note that in phase
2 of the attack, the expected number of faulty executions needed to obtain a new
informative δi grows constantly with i. The expected number of faults Nk required
to gather k relations is equal to

Nk =
k∑
i=1

256

256− (i− 1)
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so that an average of 126 faults generates 100 relations, while the complete set of
256 relations requires N256 = 1 568 faults.

Remark: Our attack is also applicable when the fault effect does not result in a 0
value but in an unknown constant c. Instead of recovering the 16-byte key K we
recoverK⊕(c, . . . , c). Then we just have to exhaust all 256 keys until a key matching
some correct plaintext/ciphertext pair is found.

Alg. 8.1 The attack algorithm on key byte Kn

1: Phase 1: dictionary precomputation
2: M = (M0, . . . ,M15)← (0, . . . , 0)
3: for u = 0 to 255 do
4: Cu ← AES(M |Mn = u)
5: end for
6: Phase 2: collision search
7: Γ = ∅
8: i← 1
9: while i < k do
10: C = AES (M)
11: if C 6∈ Γ then
12: δi ← u s.t. C = Cu with u ∈ {0, . . . , 255}
13: Wi ← power curve of the faulted execution
14: Γ← Γ ∪

{
C }

15: i← i+ 1
16: end if
17: end while
18: Phase 3: correlation
19: for g = 0 to 255 do
20: for i = 1 to k do
21: rn,i ← δi ⊕ g
22: ρg ← correlation trace between {rn,1, . . . , rn,k} and {W1, . . . ,Wk}
23: end for
24: end for
25: return Kn ← g which gives the highest correlation peak

8.5 Countermeasures

While data randomization with a full mask (i.e. 16 different bytes) is enough to
protect the AES algorithm against the Amiel et al. attack as well as high order
differential analysis, it is not sufficient against our combined attack. Below we
mention some possible countermeasures.

8.5.1 Inverse computation

A classical and efficient countermeasure used to protect cryptographic algorithms
against fault attacks in smartcards is the verification of the computation done. Be-
fore returning the ciphertext the card performs the inverse computation on the
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Table 8.2: Performance and memory costs (bytes) for two Fault Analysis resistant
implementations

Cycles ROM RAM
AESHODPA with Inverse Computation 102 000 5 500 75

AESHODPA with 6 Duplicated Rounds 81 000 5 900 91

result. If the value obtained corresponds to the input message then the computa-
tion is considered valid and the card can return the result.
However if the comparison is not successful, it means that a fault was generated
during one of the two cryptographic computations. In this case, nothing is re-
turned by the card. As our attack requires faulty ciphertexts, it is not applicable
when the inverse computation countermeasure is implemented.

8.5.2 Duplicated Rounds

An alternative to the previous countermeasure consists in duplicating the execu-
tion of the rounds exposed to the attacks, for instance the first and the last rounds.
The rounds which are duplicated must be performed with two different masks.
Their executions are carried out together, and bytes are processed in a random
order regardless of their masks. At the end of the round the following property
must hold: the addition of the two results must be equal to the addition of the
masks. If this property does not hold then a fault is detected. In order to pro-
tect against DFA, it is recommended to duplicate the first three and the last three
rounds.

8.5.3 Data error

Another way to protect an algorithm may be the deliberate introduction of data
errors appearing under some kinds of sequence flow disruptions. This notion of
infective countermeasure can be applied to loop counters, round counters,. . . Some
infectious data are supposed to be equal to zero or to a fixed value in a normal exe-
cution, but when a fault modifies a loop counter (for instance during the AddRound-
Key operation in AES) these values become erroneous when they are XORed with
this counter.

8.5.4 Checksums

Data used at the beginning of a cryptographic algorithm (message, key, mask,
...) may be associated with a checksum. After executing sensitive operations a
checksum on the obtained data is computed and compared to these values stored
in memory. A comparison error implies that a fault occurred during this part of
the algorithm. These checksums can be carried out using hardware mechanisms.

We have implemented the first two countermeasures on the HODPA secure al-
gorithm described in section 8.3. Their performances and memory costs are pre-
sented in the Table 8.2.
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8.6 Passive and Active Combined Attack onMasked AES
with Safe Errors

Here we present a variant of our combined attack which is not precisely based on
collisions but rather on safe errors, also known as ineffective faults.

In this variant, the way to obtain the knowledge of Kn ⊕ rn for some faulty ex-
ecution differs from the attack described in subsection 8.4.2. Instead of compar-
ing a faulty ciphertext C = AES (M |Mn = 0) with a pool of normal ciphertexts
{Cu = AES(M |Mn = u)}, the attacker repeatedly compares some normal ciphertext
Cu = AES(M |Mn = u) with a faulty one C 

u = AES (M |Mn = u) obtained with the
same input, until both ciphertexts collide. Once this collision occurs the attacker
knows that Kn ⊕ rn = u.

At first sight this variant may seem irrelevant since the distributions of the two
random variables C 

u and C 
0 are the same. Also this variant requires 256 faulty

executions on average to obtain one single collision, while the previously described
attack requires only one.

The great advantage of the safe errors variant becomes clear when the HODPA
resistant implementation is also protected against CFA, either by means of the
inverse computation countermeasure or by means of the duplicated rounds one. In
both cases the attacker identifies the collision event each time a result is returned.
Indeed the result is returned whenever the fault has not been detected, that is
whenever it was safe and had no local effect on the XOR result. Note that it is not
possible to distinguish a safe error event from a no fault at all event. Consequently
the safe errors variant may be difficult to perform in practice if the fault injection
tool is not highly reliable.

An interesting and unexpected property of the safe errors variant is that it is eas-
ier to perform when the computation checking countermeasures are implemented
than when they are not. Indeed when either of these countermeasures is present
the attack consists in a known message attack, otherwise it is a chosen message
attack.

8.6.1 Countermeasures

The countermeasures presented in section 8.5 no longer work here as no data has
been modified. Then the question is how can we prevent attacks which do not
modify data processed by the card? It seems to be an open problem and we do not
have any good response. However we can mention several mechanisms which can
complicate the attacker’s task.

We have not yet addressed hardware mechanisms. As stated previously by
Blömer and Seifert [16] we must insist on the fact that efficient hardware mecha-
nisms to detect or resist light injections help software implementations and help
to prevent many fault attacks.

The randomization (time or order) during execution is also a good means to
destabilize the attacker as he does not exactly know where the targeted data is
manipulated.
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Due to the somewhat large number of fault injections required to perform the
safe errors variant, an efficient means to defeat the attacker could be to limit the
number of possible faulty executions. If more than a specified number of faults
is detected the card can kill itself or at least refuse to answer except under priv-
ileged conditions. Note however that this principle may be difficult to implement
in practice depending on the card operating environment and requirements.

The best solution will be tomask the key with a value which is nevermanipulated
during the processing. It is then not possible to correlate power curves with the
mask and the only data that an attacker can find would is the masked key.

8.7 Targeted AES Implementation

Figure 8.1: Secure HODPA Implementation
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Chapter 9

Square Always

9.1 Introduction

Nowadays most embedded devices implementing public key cryptography use
RSA [86] for encryption and signature schemes, or cryptographic primitives over
(Fp,×) such as DSA [41] and the Diffie-Hellman key agreement protocol [36]. All
these algorithms require the computation of modular exponentiations. Since the
emergence of the so-called side-channel analysis, embedded devices implement-
ing these cryptographic algorithms must be protected against a wider and wider
class of attacks.

Moreover, the cost and timing constraints are crucial in many applications of
embedded devices (e.g. banking, transport, etc.). This often requires crypto-
graphic implementors to choose the best compromise between security and speed.
Improving the efficiency of algorithms or countermeasures generates thus a lot of
interest in the industry.

An exponentiation is generally processed using a sequence of multiplications,
some of them having different operands and some of them being squarings. In
[7], Amiel et al. showed that this distinction can provide exploitable side-channel
leakages to an attacker. Classical countermeasures consist of using exponentiation
algorithms where the sequence of multiplications and squarings does not depend
on the secret exponent.

Our contribution is to propose a new exponentiation scheme using squarings
only, which is faster than the classical countermeasures. Also, we introduce new
algorithms having a particularly low cost when two squarings can be parallelized.

This chapter is organized as follow: in section 9.2 we recall classical exponenti-
ation algorithms and present some well-known side-channel attacks and counter-
measures. Then we propose our new countermeasure in section 9.3 and study its
efficiency from the parallelization point of view in section 9.4. Finally we present
some practical results in section 9.5.
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9.2 Background on Exponentiation on Embedded De-
vices

We recall in this section some classical exponentiation algorithms. First we present
the square-and-multiply algorithms upon which are based most of the exponen-
tiation methods. Then we introduce the side-channel analysis and in particular
the simple power analysis (SPA). We present some algorithms immune to this at-
tack, and we finally recall a particular side-channel attack aimed at distinguishing
squarings from multiplications in an exponentiation operation.

9.2.1 Square-and-Multiply Algorithms

Many exponentiation algorithms have been proposed in the literature. Among the
numerous references an interested reader can refer for instance to [69] for details.
Alg. 9.1 and Alg. 9.2 are two variants of the classical square-and-multiply algorithm
which is the simplest approach to compute an RSA exponentiation.

Alg. 9.1 Left-to-Right Square-and-Multiply Exponentiation
Input: m,n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n
1: a← 1
2: for i = k − 1 to 0 do
3: a← a2 mod n
4: if di = 1 then
5: a← a×m mod n
6: end if
7: end for
8: return a

Alg. 9.2 Right-to-Left Square-and-Multiply Exponentiation
Input: m,n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n
1: a← 1 ; b← m
2: for i = 0 to k − 1 do
3: if di = 1 then
4: a← a× b mod n
5: end if
6: b← b2 mod n
7: end for
8: return a

Considering a balanced exponent d, these algorithms require on average 1S +
0.5M per bit of exponent to perform the exponentiation – S being the cost of a mod-
ular squaring andM the cost of a modular multiplication. It is generally considered
in the literature – and corroborated by our experiments – that on cryptographic
coprocessors S ≈0.8M .

These algorithms are no longer used in embedded devices for security applica-
tions since the emergence of the side-channel analysis.
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9.2.2 Side-Channel Analysis on Exponentiation

Side-channel analysis was introduced in 1996 by Kocher in [60] and completed
in [61]. Many attacks have been derived in the following years.

On one hand, passive attacks rely on the following physical property: a micro-
processor is physically made of thousands of logical gates switching differently de-
pending on the executed operations and on the manipulated data. Therefore the
power consumption and the electromagnetic radiation, which depend on those
gates switchings, reflect and may leak information on the executed instructions
and the manipulated data. Consequently, by monitoring such side-channels of a
device performing cryptographic operations, an observer may infer information
on the implementation of the program executed and on the – potentially secret –
data involved.

On the other hand, active attacks intend to physically tamper with computations
and/or stored values in memories. Such effects are generally obtained using clock
or power glitches, laser beam, etc.

Finally some works [6] have highlighted the fact that passive and active attacks
may be combined to threaten implementations applying countermeasures against
both of them but not against their simultaneous use.

In the remainder of this section we focus on two passive attacks : the SPA pre-
sented hereafter with classical countermeasures, and a particular analysis from
[7] discussed in subsection 9.2.3.

Simple Power Analysis

Simple side-channel analysis [59] consists in observing a difference of behavior de-
pending on the value of the secret key on the component performing cryptographic
operations by using a single measurement.

In the case of an exponentiation, the original SPA is based on the fact that, if
the squaring operation has a different pattern than a multiplication, the secret
exponent can be directly read on the curve. For instance, in Alg. 9.1, a 0 exponent
bit implies a squaring to be followed by another squaring, while a 1 bit causes
a multiplication to follow a squaring. Classical countermeasures consist of using
regular algorithms or applying the atomicity principle, as detailed in the following.

Regular Algorithms

These algorithms include the well known square-and-multiply always and Mont-
gomery ladder algorithms [75, 55]. The latter is presented hereafter in Alg. 9.3.
It is generally preferred over the square-and-multiply always method since it does
not involves dummymultiplications which makes it naturally immune to the C safe-
error attacks [107, 55].

Such regular algorithms perform one squaring and one multiplication at every
iteration and thus require 1M + 1S per exponent bit.
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Alg. 9.3 Montgomery Ladder Exponentiation
Input: m,n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n
1: R0 ← 1 ; R1 ← m
2: for i = k − 1 to 0 do
3: R1−di ← R0 ×R1 mod n
4: Rdi ← Rdi

2 mod n
5: end for
6: return R0

Alg. 9.4 Left-to-Right Multiply Always Exponentiation
Input: m,n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n
1: R0 ← 1 ; R1 ← m ; i← k − 1 ; t← 0
2: while i ≥ 0 do
3: R0 ← R0 ×Rt mod n
4: t← t⊕ di ; i← i− 1 + t [⊕ is bitwise XOR]
5: end while
6: return R0

Atomicity Principle

This method, presented by Chevallier-Mames et al. in [23], can be applied to pro-
tect the square-and-multiply algorithm against the SPA. It yields the so-calledmul-
tiply always algorithm, since all squarings are performed as classical multiplica-
tions. We present a left-to-right multiply always algorithm in Alg. 9.4.

The interest of the multiply always algorithm is its better performances com-
pared to the regular ones. Indeed it performs an exponentiation using on average
1.5M per exponent bit.

9.2.3 Distinguishing Squarings from Multiplications

Amiel et al. showed in [7] that the average Hamming weight of the output of a
multiplication x× y has a different distribution whether:

• the operation is a squaring performed using the multiplication routine, i.e.
x = y, x uniformly distributed in [0, 2k − 1],

• or the operation is an “actual” multiplication, i.e. x and y independent and
uniformly distributed in [0, 2k − 1].

This attack can thus target an atomic implementation such as Alg. 9.4 where the
same multiplication operation is used to perform x× x and x× y.

First, many exponentiation curves using a fixed exponent but variable data have
to be acquired and averaged. Then, considering the average curve, the aim of the
attack is to reveal if two consecutive operations are identical – i.e. two squarings
– or different – i.e. a squaring and a multiplication. As in the classical SPA, two
consecutive squarings reveal that a 0 bit has been manipulated whereas a squar-
ing followed by a multiplication reveals a 1 bit. This information is obtained using
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the above-mentioned leakage by subtracting the parts of the average curve cor-
responding to two consecutive operations: peaks occur if one is a squaring and
the other is a multiplication while subtracting two squarings should produce only
noise. It is worth noticing that no particular knowledge on the underlying hard-
ware implementation is needed which in practice increases the strength of this
analysis.

A classical countermeasure against this attack is the randomization of the ex-
ponent1, i.e. d∗ ← d + rϕ(n), r being a random value. The result is obtained as
md mod n = md∗ mod n.

In spite of the possibility to apply the exponent randomization, this attack brings
into light an intrinsic flaw of the multiply always algorithm: the fact that at some
instant a multiplication performs a squaring (x×x) or not (x× y) depending on the
exponent. In the rest of this chapter we propose new atomic algorithms that are
exempt from this weakness.

9.3 Square Always Countermeasure

We present in this section new exponentiation algorithms which simultaneously
benefit from efficiency of the atomicity principle and immunity against the afore-
mentioned weakness of the multiply always method.

9.3.1 Principle

It is well known that a multiplication can be performed using squarings only.
Therefore we propose the following countermeasure which consists in using ei-
ther expression (Equation 9.1) or (Equation 9.2) to perform all the multiplications
in the exponentiation. Combined with the atomicity principle, this countermeasure
completely prevents the attack described in subsection 9.2.3 since only squarings
are performed.

x× y =
(x+ y)2 − x2 − y2

2
(9.1)

x× y =

(
x+ y

2

)2

−
(
x− y

2

)2

(9.2)

At the first glance, (Equation 9.1) requires three squarings to perform a multi-
plication whereas (Equation 9.2) requires only two. Further analysis reveals how-
ever that using (Equation 9.1) or (Equation 9.2) in Alg. 9.1 and 9.2 has always the
cost of replacing multiplications by twice more squarings. Indeed, notice that in
the multiplication a← a×m of Alg. 9.1 m is a constant operand. Therefore imple-
menting a ×m using (Equation 9.1) yields y = m, thus m2 mod n can be computed
only once at the beginning of the exponentiation. The cost of computing y2 can
then be neglected.

1Notice however that the randomization of the message has no effect on this attack, or evenmakes
it easier by providing the required data variability.
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This trick does not apply to Alg. 9.2 since no operand is constant in step 4.
However b ← b2 is the following operation. Using (Equation 9.1) in Alg. 9.2 then
yields to store t ← y2 and save the following squaring: b ← t. The resulting cost is
thus equivalent as trading one multiplication for two squarings.

Remark In our context, (Equation 9.1) or (Equation 9.2) refer to operations mod-
ulo n. Notice however that divisions by 2 in these equations require neither inver-
sion nor multiplication. For example, we recommend computing z/2 mod n in the
following atomic way:
t0 ← z
t1 ← z + n
α← z mod 2
return tα/2

9.3.2 Atomic Algorithms

Trading multiplications for squarings in Alg. 9.1 and 9.2 just requires to apply
(Equation 9.1) or (Equation 9.2) at step 5 in Alg. 9.1 or step 4 in Alg. 9.2. However
the resulting algorithms would still present a leakage since different operations
would be performed when processing a 0 or 1 bit. Hence it is necessary to apply
the atomicity principle on these algorithms.

This step is achieved by identifying a minimal pattern of operations to be per-
formed on each loop iteration and rewrite the algorithms using this pattern. For
the considered algorithms, the minimal pattern should obviously contain a single
squaring since it is the only operation required by the processing of a 0 bit and
performing dummy squarings would lessen the performances of the algorithm.
An addition, subtraction and division by 2 should also be present to compute
(Equation 9.1) or (Equation 9.2). Finally some more operations are required to
manage the loop counter and the pointer on exponent bits.

Algorithm 9.5 presented hereafter details how to implement atomically the square
always method in a left-to-right exponentiation using (Equation 9.1).

As in [23] we use a matrix for a more readable and efficient implementation:

M =


1 1 1 0 2 1 1 1 2 1
2 0 1 2 2 2 2 2 3 0
1 1 3 0 0 0 0 2 0 0
3 3 3 0 3 3 1 1 3 1


The main loop of Alg. 9.5 can be viewed as a four state machine where each

row j of M define the operands of the atomic pattern. The atomic pattern itself is
given by the content of the loop, i.e. steps 4 to 9. An exponent bit di is processed
by the state j = 0 (resp. j = 3) if the previous bit di+1 is a 0 (resp. a 1). This state
is followed by the processing of the next bit if di = 0, or by the states j = 1 and
j = 2 if di = 1. For more clarity, we present below the four sequences of operations
corresponding to each state. The dummy operations are identified by a ?.
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Alg. 9.5 Left-to-Right Square Always Exponentiation with (Equation 9.1)
Input: m,n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n
1: R0 ← 1 ; R1 ← m ; R2 ← 1 ; R3 ← m2/2 mod n
2: j ← 0 ; i← k − 1
3: while i ≥ 0 do
4: RMj,0 ← RMj,1 +RMj,2 mod n
5: RMj,3 ← RMj,3

2 mod n
6: RMj,4 ← RMj,5/2 mod n
7: RMj,6 ← RMj,7 −RMj,8 mod n
8: j ← di(1 + (j mod 3))
9: i← i−Mj,9

10: end while
11: return R0

j = 0
(di = 0 or 1)

R1 ← R1 +R1 mod n ?
R0 ← R0

2 mod n
R2 ← R1/2 mod n ?
R1 ← R1 −R2 mod n ?
j ← di [? if di = 0]
i← i− (1− di) [? if di = 1]

j = 2
(di = 1)

R1 ← R1 +R3 mod n ?
R0 ← R0

2 mod n
R0 ← R0/2 mod n
R0 ← R2 −R0 mod n
j ← 3
i← i− 1

j = 1
(di = 1)

R2 ← R0 +R1 mod n
R2 ← R2

2 mod n
R2 ← R2/2 mod n
R2 ← R2 −R3 mod n
j ← 2
i← i ?

j = 3
(di = 0 or 1)

R3 ← R3 +R3 mod n ?
R0 ← R0

2 mod n
R3 ← R3/2 mod n ?
R1 ← R1 −R3 mod n ?
j ← di
i← i− (1− di) [? if di = 1]

We also present in Alg. 9.6 a right-to-left variant of the square always exponen-
tiation using (Equation 9.2). This algorithm requires the following matrix:

M =


0 0 2 0 0 0 2 1
2 1 2 2 1 0 1 0
0 2 1 1 0 0 2 0
0 0 0 0 1 2 1 1


As for the previous algorithm, the main loop of Alg. 9.6 has four states. Here,

the state j = 0 corresponds to the processing a 0 bit and the sequence j = 1, j = 2,
and j = 3 corresponds to the processing of a 1 bit, as detailed below.

j = 0
(di = 0)

j ← 0 [? if j was 0]
R0 ← R0 +R0 mod n ?
R2 ← R0/2 mod n ?
R0 ← R0 −R2 mod n ?
R0 ← R0

2 mod n
i← i+ 1

j = 2
(di = 1)

j ← 2
R0 ← R2 +R0 mod n ?
R1 ← R1/2 mod n
R0 ← R0 −R2 mod n ?
R1 ← R1

2 mod n
i← i ?
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Alg. 9.6 Right-to-Left Square Always Exponentiation with (Equation 9.2)
Input: m,n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n
1: R0 ← m ; R1 ← 1 ; R2 ← 1
2: i← 0 ; j ← 0
3: while i ≤ k − 1 do
4: j ← di(1 + (j mod 3))
5: RMj,0 ← RMj,1 +R0 mod n
6: RMj,2 ← RMj,3/2 mod n
7: RMj,4 ← RMj,5 −RMj,6 mod n
8: RMj,3 ← RMj,3

2 mod n
9: i← i+Mj,7

10: end while
11: return R1

j = 1
(di = 1)

j ← 1
R2 ← R1 +R0 mod n
R2 ← R2/2 mod n
R1 ← R0 −R1 mod n
R2 ← R2

2 mod n
i← i ?

j = 3
(di = 1)

j ← 3
R0 ← R0 +R0 mod n ?
R0 ← R0/2 mod n ?
R1 ← R2 −R1 mod n
R0 ← R0

2 mod n
i← i+ 1

9.3.3 Performance Analysis

Algorithms 9.5 and 9.6 are mostly equivalent in terms of operations realized in a
single loop. The number of dummy operations (additions, subtractions and halv-
ings) introduced to fill the atomic blocks are the same in the two versions – it
is generally considered that the cost of these operations is negligible compared
to multiplications and squarings. Both algorithms require 2S per exponent bit
on average or 1.6M if S/M =0.8 which represents a theoretical 11.1% speed-up
over Alg. 9.3 which is the fastest known regular algorithm immune to the attack
from [7]. Table 9.1 compares the efficiency of the multiply always, Montgomery
ladder, and square always algorithms when S = M and S/M =0.8.

In addition, our algorithms can be enhanced using the sliding window or m-ary
exponentiation techniques [69, 51] while the Montgomery ladder cannot. These
techniques are known to provide a substantial speed-up on Alg. 9.4 when extra
memory is available. Though we did not investigate this path, we believe that a
comparable trade-off between space and time can be expected.

Algorithm General cost S/M =1 S/M =0.8 #registers
Multiply always (9.4) 1.5M 1.5M 1.5M 2

Montgomery ladder (9.3) 1M+1S 2M 1.8M 2
L.-to-r. Square always (9.5) 2S 2M 1.6M 4
R.-to-l. Square always (9.6) 2S 2M 1.6M 3

Table 9.1: Comparison of the expected cost of SPA protected exponentiation al-
gorithms (including the multiply always which is not immune to the attack from
[7])
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9.3.4 Security Considerations

Our algorithms are protected against the SPA by the implementation of the atom-
icity principle. The analysis from [7] cannot apply either since only squarings are
involved. As a matter of comparison, notice that the exponent blinding counter-
measure does not fundamentally remove the source of the leakage but only ren-
ders this attack practically infeasible. Embedded implementations should also be
protected against the differential power analysis (DPA) which we do not detail in
this study. However it is worth noticing that classical DPA countermeasures, like
exponent or modulus randomization, can be applied as well. The interested reader
may refer to [61, 34].

We recommend implementing Alg. 9.6 instead of Alg. 9.5 since left-to-right al-
gorithms are vulnerable to the chosen message SPA and doubling attack [42], and
more subject to combined attacks [6]. Besides, Alg. 9.6 requires one less register
than Alg. 9.5.

It is well-known that algorithms using dummy operations generally succumb
to safe-error attacks. Immunity to C and M safe-errors can be easily obtained by
applying the exponent randomization technique, which also prevent the DPA. Nev-
ertheless, special care has been taken in our algorithms to ensure that inducing
a fault in any of the dummy operations would produce an erroneous result. For
instance, in the following sequence of dummy operations in Alg. 9.6 (j = 0), no
operation can be tampered with without corrupting R0 and thus the result of the
exponentiation:

R0 ← R0 +R0 mod n

R2 ← R0/2 mod n

R0 ← R0 −R2 mod n

Only operations i← i and j ← 0, appearing in some instances of Alg. 9.5 and 9.6
patterns, have not been protected for readability reasons. It is easy to fix these
points: perform i← i±Mj,· + α instead of i← i±Mj,· in Alg. 9.5 and 9.6 and add a
step i ← i − α in the loop. The j ← di(1 + . . . ) operation should be protected in the
same manner. In the end, our algorithms are immune to C safe-error attacks.

Further work may focus on implementing on our algorithms the infective com-
putation strategy presented by Schmidt et al. in [91] in order to counterfeit the
combined attacks.

9.4 Parallelization

It is well known that the Montgomery ladder algorithm is well suited for paral-
lelization. It is thus natural to ask if the square always algorithms have the same
property. For example the two squarings needed to perform a classical multiplica-
tion using (Equation 9.2) are independent and can therefore be performed simul-
taneously. The same strategy applies for (Equation 9.1).
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We believe that the interest of this section extends beyond the scope of embed-
ded systems. Nowadays most of computers are provided with several processors
which enables using parallelized algorithms to speed-up computations.

9.4.1 Parallelized Algorithms

We noticed that right-to-left exponentiations are more suited for parallelization
than their left-to-right counterpart since more operations are independent. For
example in Alg. 9.2 one can first perform all squarings (step 6), store all values
corresponding to a di = 1, and then perform the remaining multiplications. We
present in Alg. 9.7 a right-to-left square always algorithm using (Equation 9.2) and
two parallel squaring blocks (i.e. two 1-operand multipliers). For a better readabil-
ity Alg. 9.7 is not atomic and two operations o1 and o2 performed simultaneously
are denoted o1 || o2.

Alg. 9.7 Right-to-Left Parallel Square Always Exponentiation with (Equation 9.2)
Input: m,n ∈ N, m < n, d = (dk−1 . . . d0)2, require 5 k-bit registers a, b, R0, R1, R2

Output: md mod n
1: a← 1 ; b← m ; extra← 0
2: for i = 0 to k − 1 do
3: if di = 1 then
4: if extra = 0 then
5: R0 ← (a− b)2 mod n || R1 ← b2 mod n
6: a← (a+ b)2 mod n || R2 ← R1

2 mod n
7: a← (a−R0)/4 mod n
8: b← R1

9: R1 ← R2

10: extra← 1
11: else
12: R0 ← (a− b)2 mod n || a← (a+ b)2 mod n
13: a← (a−R0)/4 mod n
14: b← R1

15: extra← 0
16: end if
17: else
18: if extra = 0 then
19: b← b2 mod n
20: else
21: b← R1

22: extra← 0
23: end if
24: end if
25: end for
26: return a

Algorithm 9.8 is an atomic variant of Alg. 9.7. It requires two extra registers
compared to the non atomic version and the following matrices:
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M =


1 1 5 6 5 5 5 0 1
0 6 4 3 0 1 3 1 1
2 5 3 1 5 5 5 0 0
2 5 0 6 0 1 5 0 1

 N =

(
1 1 0
5 2 2

)

Alg. 9.8 Right-to-Left Atomic Parallel Square Always Exp. with (Equation 9.2)
Input: m,n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2, require 7 k-bit registers R0 to R6

Output: md mod n
1: R0 ← 1 ; R1 ← m ; v ← (0, 0, 0) ; u← 1 [v0 is i and v1 is extra from Alg. 9.7]
2: while v0 ≤ k − 1 do
3: j ← dv0(v1 + u+ 1)
4: R5 ← (R0 −R1)/2 mod n
5: R6 ← (R0 +R1)/2 mod n
6: RMj,0 ← RMj,1

2 mod n || RMj,2 ← RMj,3
2 mod n

7: RMj,4 ← R0 −R2 mod n
8: RMj,5 ← R3

9: RMj,6 ← R4

10: v1 ←Mj,7

11: u←Mj,8

12: t← 1− v1(1− dv0+1)
13: RNt,0 ← R3

14: vNt,1 ← 0
15: vNt,2 ← vNt,2 + 1
16: v0 ← v0 + u
17: end while
18: return R0

It is possible to further enhance the efficiency of Alg. 9.7 if more memory is
available by storing more free squarings when 1’s sequences are processed. This
observation yields Alg. 9.9 which allows the storage of extramax simultaneous
precomputed squarings using as many registers R3, R4, . . .Rextramax+2. Alg. 9.9
with extramax = 1 is thus equivalent to algorithms 9.7 and 9.8. Though Alg. 9.9 is
not atomic for readability reasons and because of the difficulty to write an atomic
algorithm depending on a variable (here extramax), it should be possible to write
an atomic version for each extramax value in the same way than we processed
with Alg. 9.7.

Remark Notice that multiple assignments of steps 8, 13, and 20 may be traded
for a cheap index increment if registers R1, R2, . . . , Rextramax+2 are managed as a
cyclic buffer.

9.4.2 Cost of Parallelized Algorithms

We demonstrate in Appendix section 9.6 that, as the length of the exponent tends
to infinity, the cost per exponent bit of Alg. 9.9 tends to:(

1 +
1

4extramax+2

)
S

It yields a cost of 7S/6 for Alg. 9.7, 9.8, and 9.9 with extramax = 1, 11S/10 for
extramax = 2, 15S/14 for extramax = 3, etc. The difference between this limit
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Alg. 9.9 Right-to-Left Generalized Parallel Square Always Exp. with (Equation 9.2)
Input: m,n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2, extramax ∈ N∗, require extramax+4

k-bit registers a, R0, R1, . . .Rextramax+2

Output: md mod n
1: a← 1 ; R1 ← m ; extra← 0
2: for i = 0 to k − 1 do
3: if di = 1 then
4: if extra < extramax then
5: R0 ← (a−R1)2 mod n || Rextra+2 ← Rextra+1

2 mod n
6: a← (a+R1)2 mod n || Rextra+3 ← Rextra+2

2 mod n
7: a← (a−R0)/4 mod n
8: (R1, R2, . . . Rextramax+1)← (R2, R3, . . . Rextramax+2)
9: extra← extra+1
10: else
11: R0 ← (a−R1)2 mod n || a← (a+R1)2 mod n
12: a← (a−R0)/4 mod n
13: (R1, R2, . . . Rextramax+1)← (R2, R3, . . . Rextramax+2)
14: extra← extra−1
15: end if
16: else
17: if extra = 0 then
18: R1 ← R1

2 mod n
19: else
20: (R1, R2, . . . Rextramax+1)← (R2, R3, . . . Rextramax+2)
21: extra← extra−1
22: end if
23: end if
24: end for
25: return a

and costs actually observed in our simulations is negligible for 1024-bit or longer
exponents.

It is remarkable that if S/M =0.8 these costs become respectively 0.93M , 0.88M ,
0.86M , etc. per exponent bit. We believe that such performances cannot be
achieved by binary algorithms using two parallelized 2-operands multiplication
blocks. Indeed at least k multiplications have to be performed sequentially in
Alg. 9.1 and 9.2, which requires at least 1M per exponent bit. Moreover when
extramax tends to infinity, the cost of Alg. 9.9 tends to 1S, which we believe to be
the optimal cost of an exponentiation algorithm based on the binary decomposition
of the exponent since k squarings at least have to be performed sequentially.

Table 9.2 summarizes the theoretical cost of parallelized algorithms cited in this
study.

9.5 Practical Results

In this section, we briefly present practical implementation results of the non-
parallelized square always algorithm. As discussed in subsection 9.3.4 we focused
the right-to-left version.
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Algorithm General cost S/M = 1 S/M = 0.8

Parallelized Montgomery ladder 1M 1M 1M
9.7, 9.8, 9.9 with extramax = 1 7S/6 1.17M 0.93M

9.9 with extramax = 2 11S/10 1.10M 0.88M
9.9 with extramax = 3 15S/14 1.07M 0.86M

...
...

...
...

9.9 with extramax→∞ 1S 1M 0.8M

Table 9.2: Comparison of the expected cost of parallelized exponentiation algo-
rithms

Algorithm Key Length (b) Code Size (B) RAM used (B) Timings (ms)

Montgomery
ladder (9.3)

512 360 128 30
1024 360 256 200
2048 360 512 1840

Square
Always (9.6)

512 510 192 28
1024 510 384 190
2048 510 768 1740

Table 9.3: On chip comparison of the Montgomery ladder and square always algo-
rithms

We implemented this algorithm and theMontgomery ladder on an Atmel AT90SC
smart card chip. This component is provided with an 8-bit AVR core and the AdvX
coprocessor dedicated to long integer arithmetic. We used the Barrett reduc-
tion [11] to implement modular arithmetic.

We present in Table 9.3 thememory (code and RAM) and timing figures obtained
with the chip and the AdvX running at 30 MHz. The observed speed-up of the
square always algorithm over the Montgomery ladder is 5% on average. This is
less than the predicted 11% but the difference can be explained by the neglected
operations of the atomic pattern. Keep in mind that such results highly depend on
the considered device and its hardware capabilities.

We performed careful SPA on both implementations and observed no leakage
on power traces.

9.6 Cost of Algorithm 9.9

We present hereafter a demonstration of the claimed asymptotic cost of Alg. 9.9.

We first recall the principle of this algorithm: since 3 squarings are required to
process a 1 bit, a fourth squaring slot is available at the same cost (2S). Thus, the
algorithm scans the exponent from the right to the left and computes one squaring
in advance at each 1 bit (↗ in the following), within the limit of extramax. Then,
as 0’s are processed, the free squarings are consumed (↘) at null cost (0S). Two
other cases may happen: first, a 1 bit can be processed but extramax squarings
are already stored in registers, then one free squaring is consumed (↘) and 1S is
enough to perform the two other squarings. Second, a 0 bit can be processed with
no free squaring in registers (extra = 0). Only in this latter case one squaring is
performed at the cost of 1S and the parallel squaring slot is wasted (→).
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We can consider the evolution of extra as exponent bits are processed using a
diagram as below. For example, we have represented here the evolution of extra
for the 5 first bits of an exponent d = (dk−1 . . . 00110)2 with extramax ≥ 2. The cost
of the first 0 bit is 1S since extra = 0 at the beginning of the exponentiation, the
cost of two next 1 bits is 2S each and extra is incremented, finally the two last 0
bits have cost 0S and extra is decremented. The total cost of the 5 bits is 5S.

0

1

2

...
extramax

bit:0 1 2 3 4 5 . . . k − 1

-0 �
���1
�
���1 @

@@R
0

@
@@R
0

Observe now that the same bits have a higher cost if extramax = 1: as previously
the two first bits 01 cost 1S and 2S respectively. However, the next 1 bit cannot
lead to the computation of a second free squaring since extramax = 1. So the bit
is processed at the cost of 1S and the free squaring is lost. Finally, the two last 0’s
cost 1S each since no free squaring is stored anymore. The cost of the sequence
is 6S.

0

extramax = 1

bit:0 1 2 3 4 5 . . . k − 1

-0 �
���1 @

@@R
1

-0 -0

For a given exponent and extramax, let’s call a c-cycle a sequence of bits starting
with extra = c, ending with extra = c, and inside which extra > c. In particular, we
can decompose any exponent as a sequence of 0-cycles, except that the last one
may be unterminated with extra > 0.

Then, letBe
c stand for the expected number of bits of a c-cycle when extramax = e

and Cec its expected cost.

extramax = 1

For a random exponent and extramax = 1, a 0-cycle is “0” with probability 1/2 and
“1x”, x ∈ {0, 1} otherwise. The cost of a 0-cycle “0” is 1S and the cost of a 0-cycle
“1x” is 2S if x = 0 which happens with probability 1/2, or 3S if x = 1.

B1
0 = 1/2× 1 + 1/2× 2 = 3/2

C1
0 = 1/2× 1S + 1/2× (1/2× 2S + 1/2× 3S) = 7S/4

The expected cost of a 0-cycle with extramax = 1 is then C1
0/B

1
0 = 7S/6 per bit.

As the length of the exponent tends to infinity, the contribution of the possibly un-
terminated last 0-cycle becomes negligible. Therefore the cost per bit of a random
exponent tends to the cost per bit of a 0-cycle as its length tends to infinity. So we
can approximate the cost of algorithms 9.7, 9.8 and 9.9 to 7S/6 for exponents of
thousands of bits.
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extramax = e

A 0-cycle starts with a 0 with probability 1/2 and with a 1 otherwise. In the first
case its cost is 1S as previously. Let B̃e

c , respectively C̃ec , denote the expected
length, respectively the expected cost, of a c-cycle starting with a 1 bit when
extramax = e.

Be
0 = 1/2× 1 + 1/2× B̃e

0 (9.3)

Ce0 = 1/2× 1S + 1/2× C̃e0 (9.4)

First we demonstrate that B̃e
0 = 2e. As depicted below, one can observe that

B̃e
0 = B̃e+1

1 .
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As depicted hereafter, the length B̃e+1
0 of a 0-cycle with extramax = e + 1 and

starting by a 1 bit is sB̃e+1
1 + 2 where s is the number of inner 1-cycles starting by

a 1 bit. Notice also that s = i with probability 2−(i+1), which gives:

B̃e+1
0 = 2 +

∞∑
i=0

iB̃e+1
1

2(i+1)
= 2 + B̃e+1

1 = 2 + B̃e
0

0

1

2
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e+ 1

bit:i i+ 1 . . . i+ B̃e+1
1 + 1 . . . i+ sB̃e+1

1 + 2
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(B̃e
0)e≥1 is thus an arithmetic progression with common difference 2 and B̃1

0 = 2.
This yields B̃e

0 = 2e.

In a same manner, we can observe that:

C̃e+1
0 = 2S +

∞∑
i=0

iC̃e+1
1

2(i+1)
= 2S + C̃e+1

1 = 2S + C̃e0

Since C̃1
0 = 5S/2 we obtain that C̃e0 = (1/2 + 2e)S.

Using the above results in (Equation 9.3) and (Equation 9.4), we obtain finally:

Be
0 = 1/2× 1 + 1/2× 2e = 1/2 + e

and Ce0 = 1/2× 1S + 1/2× (1/2 + 2e)S = (3/4 + e)S
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The expectation of the cost per bit of a 0-cycle is then:

Ce0
Be

0

=

(
3/4 + e

1/2 + e

)
S =

(
1 +

1

4e+ 2

)
S

Therefore the expectation of the cost of Alg. 9.9 with extramax = e tends then
to (1 + 1

4e+2)S as the length of the exponent tends to infinity.
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Chapter 10

Simulation

10.1 Introduction

A typical product audit gets through different stages, from documentation to secu-
rity test in order to validate its robustness. Two kind of attacks are usually used to
assess the security of a device, SCA attacks and faults. Setting up a laser bench or
a power consumption bench and running the required tests is a long task specially
in the laser case and most often the laboratory have to choose some target IP and
focus on those in order to bypass the security mechanism. Basically once a suc-
cessful fault is found the analysis of the auditor ends and the company designing
the product has to understand through the position and the time-frame where the
fault where injected what exactly happened in the product in order to fix the flaw.
It can be a really long and tedious process and the only way to verify if the patch
is successful is to go through another laser test. Those tests are expensive and are
time consuming.

We propose a novel method of simulating such attacks through software to
greatly enhance the speed at which one can test the security of such products.
Software power simulation is usually done by using software like Mathematica or
python in order to generate a few points of interest like around a S-Box or around
a key operation and then try to apply some attacks. We modelize the full system
(smart-card) with all its buses and CPU in order to achieve a simulation closer to
the one we could get through a real bench.

We also propose an implementation where software simulation is applied to fault
based on a realistic fault model at every instruction. The effect on the program
execution is then checked based on some heuristic rules in order to determine
whether to save the mutant application or not for further analyze. That way we
can proactively detect weak points in the software and fix them, or target more
specifically some physical area or some time-frame in order to retrieve the same
results that were obtained during a live analysis on a real product to understand
how the fault happened and how to fix it. Software fault injection tries to measure
the degree of confidence that one can have in a given system by evaluating what
could happen when faults are injected. Traditionally, the software-based fault in-
jection involves the modification of the software execution on the system under
analysis in order to provide the capability to modify the system state according
to the programmer model view of the system. All sorts of faults may be injected,
from the register, flags, and memory faults.

107



Later enhancements of our simulator allow us to run Linux program and test
them against faults and power leaks while the acquisition and signal processing
required on such devices can be troublesome.

Such approach eases the validation of crypto library, JavaCard implementation
or a whole OS. The complexity of the simulation increases with the number of
instructions simulated but power is quite cheap nowadays, and cluster or Amazon
EC2 like systems can be used in order to have a lot of CPU power available at a
good price.

10.2 Power Simulation

Our first simulation engine was from a secure 16-bit microprocessor with propri-
etary language. It was the core powering some of Inside Secure chips while I was
working there. We shall not be able to give much more details about the core
besides it was a RISC microprocessor with 16-bits registers.

10.2.1 Core simulation

The main component of the simulator is represented by the simulation of the core
itself. The algorithm looks like:

Alg. 10.1 CPU simulation
loadMemories()
setupPeripherals()
reset()
while true do
ExecuteInstruction()

end while
finalize()

loadMemories() This function loads a specified ROM and NVM image into the
core.

setupPeripherals() Initialize the different peripherals like UARTS, Crypto IPs,
Timers, and all HW IPs in general around the microprocessor.

reset() Setup the CPU the way it is after going out of the loader. The loader ROM
is not present in the simulator. The registers or memory for example are not
encrypted while they are on the real product. It would be an enhancement for
sure to implement that encryption/decryption mechanism to reproduce more
closely the observed behaviors.

The main loop retrieves and executes each instruction. It is where most of the
code of the simulator is present since all instructions have to be coded in
detail, with flag and internal register management.
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Memory Access

We simulate a read hardware bus, each read or write operations are caught and
monitored. Peripherals register themselves to listen for read or write operation
on the bus like real hardware does. This provides us with powerfull mechanism to
monitor memory access or implement coprocessor.

Peripherals

The following peripherals were implemented in my first simulator:

• RFUART: this UARTwas responsible of simulating the radio-frequency transpon-
der used in our product.

• Contact UART: this UART simulated the ISO-7816 interface present on some
of our hardware, only the T=1 mode was implemented.

• DES coprocessor: we implemented also the coprocessor that was used for
DES computations.

• RSA coprocessor: we also implemented some coprocessor that was used dur-
ing some RSA computations on some products. Most of the code was the
implementation of a multiplier.

Power Model

Different power models can be used during the simulation:

• Hamming Weight: We compute the sum of the Hamming Weights of all regis-
ters.

• Hamming Distance: We compute the sum of the Hamming Distance for each
registers.

• Multi Points: For each instruction we compute multiple points, for example
one point for Hamming weight and one point for the Hamming distance.

Noise can also be added to fit closer to real power measurements.

10.2.2 Enhancements

• Multi Architecture: We developed a nice working proof of concept while
working for Inside Secure. After leaving the company we decided to rewrite
from scratch a simulator. Using open source libraries we quickly built a sim-
ulator able to perform side channel analysis for different standard processor
architecture like ARM, x86, Mips, Sparc, sh4...

• Linux Compatibility: We made the simulator compatible with standard Linux
program. You can now for example use a program already compiled for a
supported architecture and get nice power traces out of the box. No special
work is required for the compilation. It is important to note though that kernel
calls are not traced by the current implementation so you only get power
consumption for the user space.
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• Automatized Tests: Software crypto libraries providing the good interfaces
can now be tested automatically by the tool on a first step. It is only prelim-
inary work for an evaluator but gives surprisingly good results close to the
target.

10.2.3 Usage

There are two different mode for the simulator. The first one is full simulation
where each device has to be implemented and a full ROM loaded in the simulator,
the second one is the Linux simulation where the host kernel is used (assuming
we are running on a Linux host) to replace the guest OS.

While in the first case all hardware connected and used in the ROM have to be
implemented in order to simulate either power or faults, in the second case we
can simply compile a standard Linux program and then execute it as if we were
executing it directly by passing him arguments. The simulator will take care of
loading shared librairies and simulating kernel calls. The easiest way to setup a
simulation environment if other architecture for host and guest are used is simply
to compile the program with −static gcc option and run it through our simulator.

A typical usage for a AES simulation for sample would be:
# gcc −static aes.c −o aes
# ./aes <plaintext> <key>
> <ciphertext>
# sim −p x86 −curve aes.cb ./aes <plaintext> <key>
> <ciphertext>
# display aes.cb

10.2.4 Showcase

In this section we will show pin program, AES, DES and RSA computation obtained
for different hardware architecture.

Pin

This program corresponds to an insecure Pin verification.

110



Figure 10.1: Simulated Pin on an ARM architecture

Figure 10.2: Simulated Pin on a x86_64 architecture
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AES

Figure 10.3: Simulated AES on an ARM architecture

Figure 10.4: Simulated AES on a x86_64 architecture
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DES

Figure 10.5: Simulated DES on an ARM architecture

Figure 10.6: Simulated DES on a x86_64 architecture
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RSA

Figure 10.7: Simulated RSA on an ARM architecture

Figure 10.8: Simulated RSA on a x86_64 architecture
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Attacks

The power simulator is a great tool to test new attacks on a device closer to the real
one than usual power simulation. Usually one would generate a few points through
Python or Matlab or any other tool and then assert if the attack is working or not
only on those few points, biasing the attack since the simulation is too much time
narrowed. Since we simulate the whole transaction, we can also take into account
the usual counter measures and implement them in the simulator in order to be
more realistic. Such counter measures like noise, random cycle, ... can then be
added to the simulator.

In this part we will show some attacks results

DPA The following figures present a classical DPA attack on the output of the
S-Box of an AES. We can see a good pic and a ghost one, the good guess is the
highest one though.

Figure 10.9: DPA simulation sample

CPA The following figures present classical CPA on the output of S-Box in the
case of AES. The first figure shows all the 256 curves displayed at once, each one
with a different color, while the second one shows all wrong guess displayed in
black with the good guess displayed in red.
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Figure 10.10: CPA simulation sample

Figure 10.11: CPA simulation sample with good guess highlighted

Cross-Correlation such attacks were also tested through the simulator like in
Figure 6.3 and Figure 6.4.

10.3 Fault Simulation

Fault attacks are pretty hard to protect against since their effect has almost always
a random part, and it is hard to understand what the fault actually did even if we
can know from a time curve where it occurred and can try to deduce where in the
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code it happened. Using the same approach as previously we developed a fault
simulator that allowed us to test a good proportion of the first order faults on our
system. The simulator reuses the infrastructure used by the power simulator in
order to simulate the core and its peripheral. Let C be the compiled code of either
the ROM of the Linux program. Let T be the transaction we want to check against
faults. The transaction can be simply the execution of a Linux program in case of a
Linux one, or the processing of the core between two commands like between the
entrance of a card in a field and its answer to a GenerateAC command. Let H be a
set of state that can qualify the transaction as halted, for sample an infinite loop,
being stuck in a OS protection or simply exiting in the case of a Linux process. Let
S be a set of faults we want to apply. We chose that set of faults from different
elements:

• CPU registers

• CPU flags

• CPU memory bus

• Memory Cell (Absolute Address)

• Memory Cell (Relative Address) Stack Cells for sample were relative to the
stack register

Let I a set of informations saved used to check if the fault was successful or not,
for example an element from I element could be the fact that every golden values
in the OS are correct, another one could be the fact that the stack stay coherent
or that the command returned by the card match the one from the nominal trans-
action (without fault). The simulator executes each instruction of C required to
produce T , at each instruction it saves the current state, inserts a fault and then
resumes until a point of halt then check if the fault had any effects. It then re-
stores the state, tries to execute another fault. When no more fault are available
it goes to the next instruction and starts again its fault until the execution of the
last instruction.

The fault algorithm we use is the following one:
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Alg. 10.2 Fault Algorithm
Input: C,S,T ,H,I

Execute every instructions of C to have the behavior T and save It at different
instants.
while currentstate 6∈ H do
Save state
for all Fault ∈ S do
Apply Si
while currentstate 6∈ H do
Execute the next instruction
save Ii,t

end while
if (Ii 6= I) then
Log the fault and the result

end if
Restore state

end for
Execute Instruction

end while

The simulator has to be fast since each instruction will be executed many times.
For a nominal transaction of N instructions with S the number of faults simulated
at each instruction, we would have N instructions faulted. Each fault requires
the simulation to run until the end of the processing, so on the first instruction of
the simulation of a fault we assume that a fault would require on average N more
instructions to be executed until we hit a state ∈ H, on the second instruction
N − 1 and so on. By recurrence we could then prove than on average the number
of faults executed would be around

TI(S,N) = S ∗ N ∗ (N + 1)

2
(10.1)

Let a host instruction be defined as the native instruction understood by the hard-
ware on which the simulation is done (a typical PC for example) and target the in-
struction that the smard-card understand. For 100 faults on a transaction of 100000
instructions this gives 5 ∗ 1011 simulated instructions executed. Let us say that a
standard target instruction is simulated with 100 host instructions, that gives 5∗1013

host instructions to execute. A processor at 4 GHz computes 4 ∗ 109 operations per
second meaning that we need at least 4 hours to execute the simulation. This is a
very rough estimation, since the 4 GHz instructions per second assume no cache
miss... But the point is that all the functions have to be thought with efficiency in
mind. Lots of profiling need to be done too in order to improve the most critical
code path.

10.3.1 Results

The log file of every faulty Ii,t has then to be reviewed in order to understand if the
fault is dangerous or not. Different scripts are then being used on the Raw Logs in
order to extract meaningful information for the attackers. We used for example a
script that allowed us to find ROM dumps from raw log since it can yield to a failure
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to pass the security test depending on the evaluation targeted. The original log
simply displayed the faults and the faulty ciphertext generated by the processing
of the message. The algorithm used was quite simple:

Alg. 10.3 Find ROM Dump
Input: A log file L,C,The minimum size of considered ROM dump k

Compute the hashmap H of ROM image for all block of size k
for all inputs I in L do
for all blocks of size k ∈ I named B do
if B ∈ H then
Echo the ROM dump found

end if
end for

end for

For every contiguous sequence of ROM S of bytes of size k, we computed the
hash h of S and stored it in H. Then we looked up on every contiguous sequence of
k bytes present in the dumps, we computed its hash and checked if it was present
in H.

The resulting log file were looking like:

[At: @offset1] Found [DUMP1]
[At: @offset2] Found [DUMP2]
[At: @offset3] Found [DUMP3]
[At: @offset4] Found [DUMP4]

The information obtained there was really important for us. We managed for
example to find through simulation some ROM dumps that happened during an
evaluation. From that information we went back to the FAULT-ID that caused it.
The simulator then generates a script file to load in our development tool in order
to give us a debugger at the exact point where the fault happened with the context
already modified to include the fault.

Standard debuggingmethod then allowed us to track backwhat really happened
and how to fix it. Once the patch was available a new cycle of simulation was then
launched in order to validate it and prevent another potential flaw that could have
been introduced. The product were then tested again on the laser bench and got
a green light!

10.3.2 Showcase

By mixing at the same time the fault and the consumption simulator, one can get
the power trace corresponding to the execution of the faulted transaction like the
ones depicted below. It can be only for information like in the first PIN case, or
can be useful to mount other attacks like in chapter 8.
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PIN Fault Simulation

We present some quick results on the fault simulation of the PIN verification. We
run the nominal case program with 2 good digits on 4 the program returns KO.

# sim −p arm bin/pin_arm 2
> KO

Then we execute the fault simulator and we quickly find that some fault do man-
ages to return OK.

# sim −p arm −faults bin/pin_arm 2
> [0:8024:r1:0]
> KO
> [0:8024:r2:0]
> KO
> ...
> [1:8028:r1:0]
> KO
> ...
> [1511:830c:r3:0]
> OK
> ...

We can now look inside the binary source in order to understand what happened.
# arm_objdump −D bin/pin_arm | grep −B 2 −A 1 −i 830c
> 8304: eb000559 bl 9870 <__GI_strlen>
> 8308: e1a03000 mov r3, r0
> 830c: e1540003 cmp r4, r3
> 8310: 3affffea bcc 82c0 <pin_verification_vuln+0x20>

/* Extract from pin.c program */
int pin_verification_vuln(const char *value,const char *secret)
{

int i;
for(i=0;i<strlen(secret);i++){

if(value[i] != secret[i] ){
return 1;

}
}
return 0;

}

In fact at 0x830C the register r3 contains the length of the secret stored in the
card, by setting it to zero we ensure that both strings match and we get the OK
results! In the following figure, we can see that 3 bytes comparison are done in the
KO case, each comparison highlighted by a gray band, while in the faulted case
leading to OK no comparison are done.
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3rd byte KO

Fault → OK

time

power

Figure 10.12: Pin Fault Simulation

AES Fault Simulation

We can see another example where we skip some rounds of AES computation. We
could do the same things we did for the PIN in order to retrieve the code that lead
us not doing the full computation. On this fault simulation, only the last round is
executed all the others are skipped. In that case the attack proposed in [25] for
sample could be applied to break the key.
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time

power

Figure 10.13: AES Fault Simulation
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Conclusion

In the first part of this thesis, we provide an overview of the state of the art on some
of the attacks actually used on embedded devices like smartcards. We reviewed
the Side Channel Analysis and Faults Attacks and presented the classical way to
protect against those threats.

We then presented our contributions to the field:

In chapter 5 we presented a way to apply classical power analysis techniques
such as CPA on a single curve to recover the secret key in some public key
implementations – e.g. non CRT RSA, DSA or Diffie-Hellman – protected or
not by exponent randomization. We also applied our technique in practice and
presented some successful results obtained on a 16-bit RISC microprocessor.
However even with bigger multiplier sizes (32 or 64 bits) this attack can be
successful depending on the key size, cf. subsection 5.4.1. We discussed
the resistance of some countermeasures to our analysis and introduced three
secure multiplication algorithms.

Our contribution enforces the necessity of using sufficiently large random
numbers for blinding in secure implementations and highlights the fact that
increasing the key lengths in the next years could improve the efficiency of
some side-channel attacks. The attack we presented threatens implementa-
tions which may have been considered secure up to now. This new potential
risk should then be taken into account when developing embedded products.

Further work could target the use of other values and distinguishers for the
horizontal correlation analysis and then improve its efficiency. Possible ideas
include: using more intermediate values, some likelihood tests, guessing si-
multaneously many bits of the secret exponent to increase the number of
available curves for the analysis, using different models like the bivariate
one for correlation factor computation on curves.

In chapter 6 we presented a new collision-correlation analysis method on first-
order secured AES implementations. We highlighted the fact that this kind
of attack is more powerful and practicable than previous second-order power
analyzes, and increases the risk of these implementations being broken in
practice. This confirms the necessity for developers to take into account how
collisions of masked data may be unsafe in cryptographic implementations.
A possible countermeasure could be the use of second (or higher) order re-
sistant schemes.

Though we presented practical results on software implementations, we be-
lieve that this technique may also be a threat for hardware coprocessors.
Therefore the collision-correlation threat should be taken into consideration
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by developers and designers during their embedded cryptographic design.

In chapter 7 we presented new side-channel methods — the Big Mac using col-
lision correlation and the two Rosetta techniques — allowing to distinguish
a squaring from a multiplication when the same long-integer multiplication
algorithm is used for both operations. They can be used to recover an RSA
secret exponent — both in standard or CRT mode — with a single execution
side-channel trace. We compare our new techniques with other single trace
side-channel analyzes and demonstrate that they are more efficient than pre-
vious ones, especially on noisy measurements. We show that classical combi-
nation of message, modulus and exponent blindings is not sufficient to coun-
teract our analysis and we suggest more advanced countermeasures. As a
conclusion, we quote Colin Walter to recall the very interesting property of
these attacks: "The longer the key length, the easier the attacks.".

In chapter 8 we have shown that even if sound countermeasures are known for
protecting embedded cryptographic implementations from either high or-
der side-channel analysis or differential and collision fault analysis, simply
putting them together may not be sufficient. We have presented a Combined
Active – CFA – and Passive – CPA – Attack (PACA) which breaks a proposed
state of the art side-channel resistant AES implementation with a limited num-
ber of faults. We have enumerated some possible countermeasures, but re-
mark that a safe errors variant of our attack can defeat most of them, such as
executing and comparing twice a HODPA resistant implementation – though
it requires a significant number of fault injections and a highly reliable fault
injection tool. Although we have given some hints about how our last attack
may be renderedmore difficult, it seems to be an open problem how to protect
implementations from ineffective faults, which are informative even though
they do not alter the computations.

In chapter 9 we have shown that tradingmultiplications for squarings in an expo-
nentiation scheme together with the atomicity principle provides a new coun-
termeasure against side-channel attacks aimed at distinguishing squarings
from multiplications. Moreover, this countermeasure is intrinsically more se-
cure against such analysis than the classical multiply always atomic algorithm
with exponent blinding, and provides better performances and flexibility to-
wards space/time trade-offs than regular algorithms such as the Montgomery
ladder or the square-and-multiply always.

As a complementary work, we present new algorithms using two parallel
squaring blocks, and show how to write them atomically. We point out that, as
far as we know, it leads to the fastest results in terms of speed. On the hard-
ware side, an interesting conclusion is that two parallel squaring blocks en-
able faster exponentiation algorithms than two parallel multiplication blocks.
We believe that these observations are of great interest for the embedded
devices industry and for everyone looking for fast exponentiation.

In chapter 10 we devised and implemented a SCA and fault simulator able to
provide to developers or evaluators tools to asset the resistance of a specified
code before even putting it on any hardware.
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