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A B S T R A C T

The work presented in this thesis aims to contribute to finite element analysis of weak-
coupling magneto-mechanical and magneto-thermal phenomena.

In general, magneto-mechanical and magneto-thermal problems are made up of subprob-
lems of which the physical nature differs. Using weak-coupling strategies, these subproblems
can be calculated separately using finite element methods, and thus on their own meshes, in
order to ensure precision. To obtain a precise solution for the entire problem, it is crucial
to ensure the transmission of information between the subproblems. In this work, we study
field projection methods on overlapping domains.

Field projection formulations are given for classical L2 or L2 spaces, as well as for H(grad),
H(curl) and H(div) in order to obtain increased projection accuracy for the distributional
derivatives. A Petrov-Galerkin method is presented to fill the test space using a bi-orthogonal
basis, in order to reduce the computation cost of L2 or L2 Ritz-Galerkin projections. Practical
implementation techniques are also discussed in detail with respect to their accuracy, speed
and simplicity of their implementation. Subsequently, with energy-conserving formulations
for electromagnetic fields, applications of mesh-to-mesh projections are demonstrated. The
accuracy and efficiency of the presented projection methods are given through multi-physics
problems. The thesis closes with some conclusions and possibilities for future work.

Keywords: finite element methods, multi-physics, weak-coupling, magneto-mechanical,
magneto-thermal, Galerkin method, field projection.
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I N T R O D U C T I O N

In recent years, greater attention has been paid to studies of multi-physics problems. These
studies deal with the interactions between different physical phenomena (electromagnetic -
thermal [1, 2, 3, 4], magnetic - mechanical [5, 6, 7, 8, 9, 10, 11, 12], etc.). This is due, not only
to the development of industrial applications for new model designs, but also to scientific
motivation for accurate modeling of complex systems.

scope and objectives

The work presented in this thesis aims to contribute to finite element analysis of magneto-
mechanical and magneto-thermal phenomena.

In electrical machines, magneto-mechanical and magneto-thermal interactions are impor-
tant sources for mechanical vibrations and temperature rise respectively. In order to meet
the growing demand of users regarding the silence and reliability of machines, the under-
standing and precise modeling of magneto-mechanical and magneto-thermal phenomena
has become crucial.

Thanks to modern computers and finite element methods, numerical models have increas-
ingly been used to simulate physical phenomena with great precision. Numerous software
packages can be found on the market nowadays to solve electromagnetic, mechanical and
thermal problems. Few of them, however, take into account the interactions between differ-
ent physical phenomena.

In general, multi-physics problems can be treated with different coupling strategies de-
pending on the importance of the internal interaction [7]. In the cases of weak-coupling mod-
els, the original problem is divided into subproblems of which the physical nature differs (e. g.
electromagnetic, thermal and mechanical problems). The studied domain is thus discretized
on different meshes for different subproblems. These subproblems are then solved separately
using finite element methods. This strategy is particularly useful for coupled problems with
weak interaction, because of the simplicity of its realization.

The model coupling is of crucial importance in such multi-physics problems, in order to
ensure the information transmission and the communication between the subproblems. In
this work, we study field projection approaches on overlapping domains.

This work has been carried out in Valeo Electrical Systems based in Créteil1 and at the
Laboratory of Electrical Engineering and Power Electronics at Lille2, both located in France.

1 Valeo, 2 Rue André Boulle, 94000 Créteil, France. http://www.valeo.com/
2 L2EP, Bât. P2, Université Lille1, 59650 Villeneuve d’ascq, France. http://l2ep.univ-lille1.fr/
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2 Introduction

This thesis has also been conducted within the “Motors and Electrical Devices for Energy
Efficiency” (MEDEE) project.

outline

This thesis is divided into three chapters.
Chapter 1 presents the computational models we use in this work. After the definition of

the hypotheses on which all studies are based, we give a short reminder of the equations
governing three models: electromagnetic, mechanical and thermal. The continuous function
spaces to which physical fields belong are briefly presented, as well as the complexes they
form. The sequence of Whitney elements is then used to construct finite element spaces.

Chapter 2 studies field projection approaches for model coupling. Here projections consist
of transferring information from one computational model to another. First, depending on
the properties of the field to be projected, projection formulations are developed in different
spaces. Ritz-Galerkin as well as Petrov-Galerkin methods are used to apply test functions.
Second, we present two implementation techniques in order to carry out mesh-to-mesh pro-
jections in practice. They are compared in terms of accuracy, speed and simplicity of real-
ization. Third, we propose energetic formulations for the projection of electromagnetic fields.
Energy-conserving projections ensure greater accuracy in magneto-mechanical and magneto-
thermal calculations. For all three sections, numerical examples are presented in order to
support theoretical studies.

Chapter 3 highlights several applications of field projections, to the discretization of an-
alytical fields and the computation of magneto-mechanical and magneto-thermal problems.
For multi-physics problems we focus on the projection of electromagnetic fields between dif-
ferent computational models. The result of electromagnetic computation is projected onto
different meshes for downstream calculations (e. g. mechanical and thermal). In this chap-
ter, we study a magneto-mechanical example for which the analytical solution is given. We
also describe more common examples in electrical engineering, such as electromagnets and
electrical machines.
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C O M P U TAT I O N A L M O D E L S

In the case of small deformations, we assume that mechanical deformations have no in-
fluence on the distribution of electromagnetic fields. For mechanical problems, constitutive
laws are considered to be independent from electromagnetic fields. Under these conditions,
a magneto-mechanical model is presented using two separate submodels: an electromagnetic
model and a mechanical model.

Similarly, thermal time constants are in general much greater than electromagnetic wave
periods. Electromagnetic constitutive laws can be considered to be stable while evaluating
electromagnetic fields for a specific period (i. e. not depending on time or temperature varia-
tions). A magneto-thermal model is thus divided into an electromagnetic model and a ther-
mal model.

In this chapter, we first define the problems to be solved with electromagnetic, mechanical
and thermal models. Second, the continuous function spaces to which physical fields belong,
as well as the complexes they form, are briefly presented. Third, the definition of Whitney
elements is given. They are now widely used in finite element analysis.

1.1 electromagnetic model

The first model we present is the electromagnetic model. Given an electromagnetic system,
the electromagnetic model deals with the mathematical modeling of electromagnetic fields.

1.1.1 Continuous problem

Let us consider a domain Θ with regular boundary ∂Θ for the magnetic study. In the area
of electrical engineering, Θ can be composed of air, magnetic materials, conductors and mag-
netic sources such as excitation currents and permanent magnets (Figure 1).

Maxwell’s equations

Mathematically, electromagnetic problems to be solved are presented using Maxwell’s equa-
tions:

3
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N
S

Figure 1: Study domain for electromagnetic models.

curl E = −∂tB (1a)

curl H = J + ∂tD (1b)

div D = q (1c)

div B = 0 (1d)

Equations (1a), (1b), (1c) and (1d) represent respectively the Faraday’s law, the generalized
Ampère’s law, the electric Gauss’s law and the magnetic Gauss’s law. The five vector fields E,
H, J, B and D are respectively the electric field (V/m), the magnetic field (A/m), the electric
current density (A/m2), the magnetic flux density (T ) and the electric displacement field
(C/m2). q is the electric charge density (C/m3) and ∂t is the time derivative operator.

We should note that, (1b) together with (1c), imply the equation of the conservation of
electric charges:

div J + ∂tq = 0 (2)

In the area of electrical engineering, at low frequency, the time-derivative of the displace-
ment current density (the ∂tD term in (1b)) is usually assumed to be neglectable. In this case,
(1b) is replaced by:

curl H = J (3)

This assumption is justifiable when the wavelength of electromagnetic fields is much greater
than the characteristic size of the studied domain. Physically, this means propagation phe-
nomena are not taken into account. Under this condition, the current density is divergence-
free:

div J = 0 (4)

Constitutive laws

The different materials in the study domain impact on the relations between electromagnetic
fields. This impact is described by constitutive laws. In this work, only homogeneous medias
are considered.
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The first constitutive law we adopt is Ohm’s law, valid for conductors:

J = σE (5)

where σ is the electrical conductivity (S/m).
The second constitutive law expresses the relation between the magnetic flux density and

the magnetic field:

B = µH + Br (6)

where µ is the magnetic permeability (H/m) and Br is the remanent induction (T ).
In this work, Br is used to take permanent magnets into account. For other media, Br = 0.
For ferromagnetic materials, the magnetic permeability µ is in general non-linear and de-

pends on the module of the magnetic field, i. e. B = µ(H)H. In the linear working area of the
such materials, the non-linear B-H characteristics can be approximated with straight lines.
For other cases, non-linear models should be used [13].

Boundary conditions

The above Maxwell’s equations (1) as well as the constitutive laws (5) and (6) form a differ-
ential problem. This problem is completed with boundary conditions. From a mathematical
point of view, boundary conditions ensure the unicity of the solution for a studied problem.

Regarding temporal boundary conditions, the values of electromagnetic fields are usually
assumed to be zero at the starting point.

For spatial boundary conditions, the boundary of the studied domain ∂Θ is decomposed
into two parts: ΓH for the boundary condition with respect to the magnetic field and ΓB

for the magnetic flux density. Thus we have ΓH ∪ ΓB = ∂Θ and ΓH ∩ ΓB = ∅. Let the field of
outward directed normal unit vectors be denoted by n. The boundary conditions with respect
to magnetic quantities can be expressed as follows:

n×H|ΓH = 0 (7a)

n ·B|ΓB = 0 (7b)

Similarly, for the conducting subdomain Θc with the boundary ∂Θc = ΓE∪ ΓJ, the boundary
conditions with respect to electric quantities can be defined as follows:

n× E|ΓE = 0 (8a)

n · J|ΓJ = 0 (8b)

In the case where the conducting domain Θc shares a boundary with the study domain Θ
(i. e. ∂Θc ∩ ∂Θ 6= ∅), at the intersecting boundary we have the following relations:

• n× E = 0 implies n ·B = 0 because of (1a)

• n×H = 0 implies n · J = 0 because of (3)
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Figure 2: Boundary conditions for electromagnetic models.

1.1.2 Potential formulations

The Maxwell’s equations can be directly solved using field formulations. Potential formula-
tions are however more convenient for taking into account transmission conditions at the
interfaces of different media [14]. In this part, potential formulations for both magneto-
static and magneto-dynamic problems are presented. We note that, gauge conditions must
be added in order to ensure the unicity of the solution in the case of potential formulations.

1.1.2.1 Magneto-static problems

In the case of magneto-static problems, the equations to be solved are:{
curl H = Je
div B = 0

(9)

As no induced current is presents in static problems, here the current density (the J term in
Ampère’s law (3)) is replaced by Je, which stands for a given stable excitation current density.
In this work we restrict ourselves to the case of homogeneous excitation current densities.

If present, permanent magnets are also sources of magnetic fields: B = µH + Br.
Two potential formulations can be employed for magneto-static problems: the A formula-

tion and the Ω formulation. They focus on the differential equations of the magnetic field
and the magnetic flux density respectively.

A formulation

Since div B = 0, we can derive the magnetic flux density B from a vector potential A such
that

B = curl A (10)

As a consequence, the problem to be solved (9) can be expressed as:

curl (
1

µ
curl A) = Je + curl (

1

µ
Br) (11)

Different gauge conditions can be used in order to ensure the unicity of A. In this work,
the finite element methods are used for discretization and the conjugate gradient method for
solving the linear systems. This implies implicitly Coulomb’s gauge [15]: div A = 0.
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Ω formulation

Another possibility for solving magneto-static problems is to employ a scalar potential for-
mulation. We can decompose the magnetic field H into two components: the excitation part
He and the reaction part (H − He), such that:

curl He = Je (12a)

curl (H − He) = 0 (12b)

Hence we can derive the reaction part (H − He) from a scalar potential Ω such that:

H = He − grad Ω (13)

The problem to be solved (9) can then be expressed as:

div (µgrad Ω) = div (µHe + Br) (14)

In practice, fixing the value of Ω at the boundary ΓH gauges the problem. If ΓH = ∅, the

average value of Ω can be used, e. g. fixing
∫
Θ

Ω = 0.

1.1.2.2 Magneto-dynamic problems

Magneto-dynamic models consist of studying time-dependent electromagnetic phenomena.
With the time-derivative of the displacement current density neglected, the equations to be
solved are:

curl E = −∂tB
curl H = J
div B = 0

(15)

Similar to the static case, two formulations can be used: the A − φ formulation and the
T −Ω formulation.

A −φ formulation

Since div B = 0, we can, as in magneto-statics, derive the magnetic flux density B from a
vector potential A such that B = curl A in Θ.

We can thus deduce the following relation:

curl (E + ∂tA) = 0 (16)

Equation (16) leads to the definition of a scalar electric potential φ in the conducting do-
main Θc such that

E = −∂tA − grad φ (17)
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Using the definitions of A and φ, the magnetic field H and the induced current density
Jind in the conducting domain can be expressed as:

H =
1

µ
(curl A − Br) and Jind = −σ(∂tA + grad φ) (18)

Thus the problem to be solved (15) can be expressed in the following form: curl (
1

µ
curl A) + σ(∂tA + grad φ) = Je + curl (

1

µ
Br) in Θ

div (σ(∂tA + grad φ)) = 0 in Θc
(19)

T −Ω formulation

As we have presented in the magneto-static case, a field He can be defined such that Je =

curl He in Θ. The reaction part is thus curl-free: curl (H − He) = 0. Moreover, in the con-
ducing domain, since the divergence of the induced current density Jind is null, a vector
potential denoted by T can be introduced such that Jind = curl T.

Using the scalar potential Ω over the entire study domain and the vectorial potential T
which only appears in conductors, the magnetic field H can be defined as a piecewise func-
tion:

H =

{
He − grad Ω in Θnc
He + T − grad Ω in Θc

(20)

where Θnc describes the non-conducting domain.
In this case, the problem to be solved (15) can be expressed as follows:

curl (
1

σ
curl T) + ∂t(µ(T − grad Ω)) = −∂t(µHe) in Θc

div (µ(T − grad Ω)) = −div (µHe + Br) in Θc
div (µgrad Ω) = div (µHe + Br) in Θnc

(21)

As in the magneto-static case, gauge conditions have to be defined in order to select one
of the possible potential solutions.

1.2 mechanical model

The second computational model we present is the mechanical model. In this work, mechan-
ical problems are only considered as downstream models for electromagnetic computations.
The coupling terms between the two models are magnetic forces. These forces are calculated
from magnetic models and used as source terms for mechanical models.

Thus we focus on the deformations and the vibrations caused by electromagnetic origins.
Under the assumption of small deformations, we restrict ourselves to the case of linear elas-
ticity [16, 17].
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1.2.1 Continuous problem

Let Λ be a smooth and connected domain, which is identified with the solid body of interest
at the starting point. In the case of linear elasticity, we assume that all deformations are small
such that a linearization of the strain tensor is justifiable.

Governing equations

A linear elastic boundary value problem is based on the balance equation of linear momen-
tum (22a) and the infinitesimal relation between strain and displacement (22b):

ρ ∂2tu = div τ+ f (22a)

ε =
1

2

[
grad u + (grad u)T

]
(22b)

where ρ is the mass density (kg/m3), u is the displacement field (m), f is the volume force
density (N/m3), τ is the 3x3 stress tensor (N/m2) and ε is the 3x3 strain tensor (dimension-
less). ∂2tu signifies the second-order time-derivative of the displacement, i. e. the acceleration
(m/s2).

Constitutive law

Material law for linear elasticity, which states the relation between the strain and the stress
tensor, is described by Hooke’s law.

For isotropic homogeneous medias, we often use Young’s modulus E (N/m2) and Poisson’s
ratio ν (dimensionless) to characterize different materials. The relation between stress and
strain can be expressed as:

τ =
E

1+ ν

[
ε+

ν

1− 2ν
Tr(ε)I

]
(23)

where Tr(ε) is the trace of the strain tensor and I is a 3x3 identity tensor. Physically, sensible
values of E and ν vary as follows: E > 0 and 0 < ν < 1/2.

Boundary conditions

As for electromagnetic models, we add suitable conditions with respect to the stress and
displacement fields at the boundary of the studied domain ∂Λ. Correctly chosen conditions
ensure that the equations of elasticity have an unique set of solutions.

If the studied body is fixed along at least a part of its boundary, the deformations and
stresses can be uniquely determined because no rigid body motions can occur. Otherwise,
the solution can only be unique up to such rigid body motions which do not affect the
strains and stresses inside.

We can divide the boundary ∂Λ into two parts: ∂Λ = Γu ∪ Γτ. These two parts shall not
intersect: Γu ∩ Γτ = ∅.
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The boundary conditions for linear elasticity can then be expressed as follows:

u|Γu = u0 (24a)

τ n|Γτ = t0 (24b)

Equation (24a) is a Dirichlet boundary condition, i. e. we fix the displacement u to some given
surface displacement u0. On the remaining boundary Γτ, (24b) describes the given surface
traction t0.

1.2.2 Displacement formulations

A very common formulation in order to solve linear elastic problems is the displacement
formulation.

The strains and stresses are eliminated, leaving the displacements as the unknowns to be
solved:

E

2(1+ ν)
div(grad u) +

E

2(1+ ν)(1− 2ν)
grad(div u) + f = ρ ∂2tu (25)

If no other countervailing forces act in the interior of the material and the material is in a
static state, the force density must vanish throughout the materials interior due to Newton’s
law. Equation (22a) becomes:

div τ+ f = 0 (26)

In this case, the displacement formulation for static linear elastic problems is:

E

2(1+ ν)
div(grad u) +

E

2(1+ ν)(1− 2ν)
grad(div u) + f = 0 (27)

This equation is called the Navier-Cauchy equation.

1.3 thermal model

Another computational model we use in this work is the thermal model. Similar to the me-
chanical model, the thermal model is only considered as a downstream model for electro-
magnetic computations. In the domain of electrical engineering, the electromagnetic wave
period is usually much smaller than the time for temperature variation (i. e. thermal time
constants). The copper losses and iron losses issued from electromagnetic phenomena and
accumulated in periods, can thus be used as source terms for the thermal model.

For simplicity, here we restrict ourselves to the problems of heat conduction [18, 19].

1.3.1 Continuous problem

Let us consider a domain Π for the thermal study. Its boundary ∂Π is regular.
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Heat conduction is a transfer mode driven by a temperature difference between two regions
of the same medium, or between two media in contact. However, unlike the process of heat
convection, no displacement of material is present in the macroscopic scale.

Governing equations

The balance of the heat energy, which describes the relation between the heat source and the
time-derivative of the temperature, is governed by the following equation:

div Q + p = ρC∂tT (28)

where Q is the heat flux density (w/m2), p is the volume heat source (w/m3), ρ is the mass
density (kg/m3), C is the specific heat capacity (J/(kg ·K)) and T is the temperature (K).

Constitutive law

The law of heat conduction, also known as Fourier’s law, states the relation between the heat
flux density and the negative gradient of the temperature field:

Q = −k grad T (29)

where k is the thermal conductivity (W/(m ·K)).

Boundary conditions

Regarding the temporal boundary conditions of thermal problems, an initial temperature
distribution can be imposed depending on the environment.

Three types of spacial boundary conditions can then be used at the boundary ∂Π.

T |ΓT = T0 (30a)

n ·Q|ΓQ = Q0 (30b)

n ·Q|Γe = Ce(Te − T) (30c)

Here ΓT , ΓQ and Γe denote the boundaries with respect to specified temperatures T0, specified
heat flux densities Q0 and convection heat transfer respectively. In the case of the convection
heat transfer boundary, Ce is the heat transfer coefficient and Te is the environment temper-
ature.

1.3.2 Temperature formulations

The balance of the heat energy (28), together with Fourier’s law (29) and the boundary condi-
tions (30), characterize the problem to be solved under thermal conductions. We can eliminate
the heat flux density in these equations, leaving the distribution of temperature governed by
the following equation:

−div (kgrad T) + p = ρC∂tT (31)
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For steady-state cases, the T field is no longer a function of time. Thus no initial condition
is needed, and the governing equation is simplified to:

−div (kgrad T) + p = 0 (32)

1.4 functional framework

We can now set up our framework for the three computational models.
Different functional spaces can be defined in order to host the physical quantities presented.

These spaces are used later in the discretization process (Section 1.5) and the field projection
(Chapter 2).

For an open connected domain D ⊂ R3, let L2(D) and L2(D) be the spaces of square
integrable scalar and vectorial functions respectively:

L2(D) =

{
f,
∫
D
| f |2< +∞} (33a)

L2(D) =

{
f,
∫
D
| f |2< +∞} (33b)

L2(D) and L2(D) are basic spaces for physical fields, which are characterized by a finite
energy.

We can also introduce the subspaces H(grad, D), H(curl, D) and H(div, D) associated with
the three fundamental operators grad, curl, and div [20]:

H(grad, D) =
{
f ∈ L2(D), grad f ∈ L2(D)

}
(34a)

H(curl, D) =
{

f ∈ L2(D), curl f ∈ L2(D)
}

(34b)

H(div, D) =
{

f ∈ L2(D),div f ∈ L2(D)
}

(34c)

where the first-order derivatives are also square integrable.
These spaces provide the environment for physical quantities in electromagnetic, mechan-

ical and thermal models.
For instance, the electromagnetic quantities in the Maxwell’s equations (1) and the poten-

tials we have previously defined in Section 1.1.2, can be hosted in different spaces:

• Ω,φ ∈ H(grad, D)

• E, H, A, T ∈ H(curl, D)

• B, J ∈ H(div, D)

Since grad H(grad, D) ⊂ H(curl, D), curl H(curl, D) ⊂ H(div, D) and div H(div, D) ⊂
L2(D), the spaces H(grad, D), H(curl, D), H(div, D) and L2(D) form a complex:

H(grad, D)
grad−→ H(curl, D)

curl−→ H(div, D)
div−→ L2(D) (35)

which is usually called the de Rham complex.



1.5 finite element methods 13

In the case of regular bounded domains, the image of H(grad, D) in H(curl, D) by the
grad is the kernel of the curl operator, which means that all curl-free fields can be expressed
as gradients. Moreover, the image of H(curl, D) in H(div, D) by curl is the kernel of the div
operator, i. e. all divergence-free fields can be expressed as curls.

A basic continuous structure, which is often called “Maxwell’s house”, can be formed by
four de Rham complexes [14]. In Figure 3, two de Rham complexes (35) are placed on the
left (top to bottom), another two on the right (bottom to top). This symmetry reflects the
symmetry of Maxwell’s equations. The two complexes on each side are linked by the time-
derivative. The horizontal beams, which link the left and right sides, signify the constitutive
laws.

Figure 3: Maxwell’s house.

For the displacement formulations with respect to linear elasticity (Section 1.2.2), the dis-
placement field is sought in the Sobolev space [H(grad, D)]3. The stress tensor is eliminated
in these formulations, as it can be expressed in terms of the displacement field. We refer
to [8] for a functional-framework “house” concept in strong-coupling magneto-mechanical
problems.

Regarding the thermal model, the temperature formulation (Section 1.3.2) is very similar
to the Ω-formulation of the static magnetic model. H(grad, D), H(div, D) and L2(D) are
respectively the natural spaces for the temperature field, the heat flux density and the volume
heat source.

1.5 finite element methods

The electromagnetic, mechanical and thermal models can be analytically solved in the case
of simple geometries. For complex systems, they can be numerically calculated thanks to
computer technologies.

Among the different numerical methods (e. g. boundary element method, finite integration
technique, natural element method, etc. [21, 22, 23, 24]), finite element methods (FEM) are
nowadays widely used in both research and industrial domains of engineering. The general
idea is to weaken continuous formulations to a discrete subspace, and solve the correspond-
ing finite-dimensional problem. In particular, using finite element methods, the discretized
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subspaces are piece-wise defined on an union of geometrical elements. Whitney elements
[25, 26, 14] have been proven to provide a sound discretization basis for finite element analy-
sis.

Let us consider a tetrahedral mesh of the domain D . We denote by N , E , F and T the
sets of simplices of dimension 0 to 3, i. e. nodes, edges, facets, and tetrahedra respectively.
The Whitney functions for each simplex are defined as follows:

• Node: For each node ni ∈ N , a nodal linear function wni is associated. At point x, if
x is not located in a tetrahedron connected to ni, the value of wni is zero. Otherwise,
its value is equal to the barycentric coordinate of x with respect to ni in the tetrahedral
volume.

• Edge: For an edge ei ∈ E constructed by two nodes na and nb, a vectorial function is
associated:

wei = w
n
a grad wnb −wnb grad wna (36)

• Facet: Similarly, for a triangular facet fi ∈ F constructed by nodes na, nb and nc:

wfi =2(w
n
a grad wnb × grad wnc +wnb grad wnc × grad wna

+wnc grad wna × grad wnb)
(37)

• Tetrahedra: Finally, the volume Whitney function for each tetrahedron ti ∈ T is scalar.
Its value is equal to 1/vol(ti) in the same tetrahedron and zero elsewhere. Here vol(ti)
is the volume of the i-th tetrahedron.

Therefore, every simplex of dimension 0 to 3 is associated with a scalar or vectorial field.
All these fields together are the Whitney elements. Some of their main properties can be
highlighted as follows:

- The sum of all nodal functions is equal to 1 over the entire domain, i. e.
∑
ni∈N

wni = 1.

- The circulation of an edge function is equal to 1 along the same edge, i. e.
∫
ei

wei = 1.

- The flux of a facet function is equal to 1 across the same facet, i. e.
∫
fi

wfi = 1.

- The integral of a volume function is equal to 1 in the same tetrahedron, i. e.
∫
ti

wti = 1.

The Whitney elements provide great closeness when compared to the nature of physical
fields:

* The Whitney nodal element is continuous. It is well suited for the discretization of
a field with finite gradient (e. g. the scalar potentials in electromagnetic models, the
displacement field in the mechanical model, the temperature field in the thermal model,
etc.). Given the punctual evaluation of a field at these nodes, these values can be used
as weights (called degrees of freedom) for the nodal functions.
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* For the edge and facet elements, their tangential or normal components match at the
boundary of different tetrahedrons. They provide great conformity for the discretiza-
tion of vector fields of which the tangential or normal components are continuous
across material interfaces.

For instance, the electric and magnetic fields or the vectorial potentials can be better
discretized at edges than other elements. A facet element is more suitable for the mag-
netic flux density, the current density and the heat flux density. In these cases, their
degrees of freedom are the circulations along the edges and the fluxes across the faces
for edges and facets respectively.

* The Whitney volume element is constant in each tetrahedron. This makes it a suitable
target for the discretization of volume densities, e. g. the density of electric charge,
magnetic energy or joule heating.

Thanks to their continuous properties, the Whitney elements supply discretized subspaces
for the spaces H(grad, D), H(curl, D), H(div, D) and L2(D). If we define the size h for
the largest radius of the element circumsphere of the mesh used, the corresponding “h-
discretized” spaces are noted as: Hh(grad, D), Hh(curl, D), Hh(div, D) and L2h(D).

As noted previously with respect to the different computational models, the problems to
be solved can be generalized in the following form: find a field (scalar or vectorial) u ∈ U
such that

A(u) = f (38)

For instance, u can be the magnetic potentials, the displacement, the temperature, etc.
Equation (38) is equivalent to its weak formulation, namely: find u ∈ U such that

a(u,ψ) = l(ψ), ∀ψ ∈ U (39)

where a(·, ·) is a bilinear form and l(·) is a linear form. Here ψ is called a test function.
With Whitney elements, u is discretized into the corresponding “h-discretized” space Uh:

uh =
∑
i

wixi (40)

where wi are the corresponding Whitney functions and xi are the degrees of freedom.
The obtained Galerkin equation is presented by: find uh ∈ Uh such that

a(uh,ψh) = l(ψh), ∀ψh ∈ Uh (41)

Equation (41) produces a linear system of equations, which can be presented in matrix
forms. The degrees of freedom can thus be solved thanks to numerical solvers.





2
M O D E L C O U P L I N G

In the domain of finite element analysis, computational models such as the electromagnetic,
mechanical and thermal models, are very often solved with respect to their specific regions
of interest and their efficient discretization. To obtain a precise computational result for the
entire coupled magneto-mechanical or magneto-thermal problem, a common mesh should
take all the particulars of the subproblems into account. Another solution is to carry out
the computations on different meshes: in this case the information transmission and the
communication between the subproblems are of crucial importance. In this work we are
interested in field projection approaches on overlapping domains.

Furthermore, we concentrate on Whitney elements which were previously presented in
Section 1.5. Whitney shape functions associated with coefficients (called degrees of freedom)
are used for the field discretization. The field projection methods consist of the numerical
computation of the degrees of freedom from a given solution. The proposed projection meth-
ods can be applied to mesh-to-mesh field transmission or to the imposition of analytical
source fields.

In this chapter, we first present general projection formulations in order to transfer fields
between different meshes. Second, implementation techniques are studied with respect to
practice considerations. Third, energetic formulations are given for the projection of electro-
magnetic fields.

2.1 projection formulations

In the literature, the basic projection idea is not new. Similar applications can also be found
in domain decomposition methods [27, 28, 29, 30, 31, 32, 33, 34]. In this work the L2 or L2

projection theory is extended to the subspacesH(grad), H(curl) and H(div). These extensions
of projection theory allow greater accuracy for the derivatives. A Petrov-Galerkin method
using local bi-orthogonal test functions is then presented.

This section is organized as follows: first, we give a brief reminder of the spaces used to
host physical quantities. Second, we define the problem to be solved using field projection
and give the corresponding weak formulations. In comparison with the literature, the formu-
lations introduced are also applied to the subspaces H(grad), H(curl) and H(div). Third, the
classical Ritz-Galerkin method is recalled and a Petrov-Galerkin method using the local bi-
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orthogonal test functions is presented. Using the Petrov-Galerkin method and bi-orthogonal
test functions, the projection is presented using a diagonal matrix. However, in the standard
Ritz-Galerkin projections, a linear system must be solved. In order to highlight some applica-
tions of the projection methods, numerical results are then presented for all Whitney element
types. In particular, the projection error will be given using the L2 or L2 norm, as well as the
subspace norm, to illustrate the performance of different approaches.

2.1.1 Spaces for field projections

In Section 1.4, we defined the different spaces in order to host the physical fields in elec-
tromagnetic, mechanical and thermal models: L2(D), L2(D), H(grad, D), H(curl, D) and
H(div, D). These spaces are Sobolev spaces. Each one is equipped with an inner product
[20]:

∀f,g ∈ L2(D) : (f,g) L2(D) =

∫
D
f · g (42)

∀f, g ∈ L2(D) : (f, g) L2(D) =

∫
D

f · g (43)

∀f,g ∈ H(grad, D) : 〈f,g〉H(grad,D) =

∫
D
f · g +

∫
D

grad f · grad g (44)

∀f, g ∈ H(curl, D) : 〈f, g〉H(curl,D) =

∫
D

f · g +

∫
D

curl f · curl g (45)

∀f, g ∈ H(div, D) : 〈f, g〉H(div,D) =

∫
D

f · g +

∫
D
div f · div g (46)

For simplicity, in what follows we note H 1(D) in a general way for the three subspaces.
H 1(D) stands for H(grad, D), H(curl, D) or H(div, D) depending on the context. Similarly
we will write both L2(D) and L2(D) as L 2(D).

For a (scalar or vectorial) function f ∈ L 2(D), the L 2(D)-norm is defined as

‖f‖L 2(D) = (f, f)
1
2

L 2(D)
(47)

If f ∈H 1(D), the H 1(D)-norm is given by

‖f‖H 1(D) = 〈f, f〉
1
2

H 1(D)
(48)
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2.1.2 Problem to be solved

Let v ∈ L 2(D) or H 1(D) be a known function in domain D . In practice v stands for an
analytical field or a numerical result derived from numerical approaches such as the finite
element method.

On the same domain D , we will consider a mesh of finite dimension. Its maximum diam-
eter of elements is h. This target mesh can be different from the source mesh of v (if v is
discretized). We introduce the related h-discretized subspaces L 2

h (D) and H 1
h (D).

The aim of the projection is to obtain, on the target mesh, an approximation uh of v.
Furthermore, we note that, on the target mesh uh is discretized using the Whitney elements
(Section 1.5):

uh =

N∑
i=1

wiXi (49)

with wi the Whitney basis functions (scalar or vectorial, depending on the target simplex),
Xi the degrees of freedom and N their total number.

For the sets of nodes, edges and facets, as a consequence of the combinatorial properties
of the Whitney complex, uh is ensured to be a member of H 1

h (D). For example, when we
are looking for a scalar field uh discretized on the nodes, we enforce in advance the target
function uh ∈ Hh(grad, D) ⊂ L2h(D); on the edges, uh ∈ Hh(curl, D) ⊂ L2h(D); and on the
facets, uh ∈ Hh(div, D) ⊂ L2h(D).

Thus depending on the chosen target elements and the importance of the derivative of the
field (i. e. grad, curl or div), the projection can be carried out in two ways: the L 2-projection
and the H 1-projection.

• L 2-projection

Given v ∈ L 2(D), find uh ∈ L 2
h (D) which minimize the L 2-norm of their difference:

‖uh − v‖L 2(D) → min (50)

• H 1-projection

Given v ∈H 1(D), on the corresponding element set (i. e. nodes, edges or facets) which
provides discrete corresponding H 1

h (D), find uh which minimize the H1-norm of their
difference:

‖uh − v‖H 1(D) → min (51)

A H 1-projection reduces the H 1-norm of the difference, i. e. the difference on the fields
themselves but also on their derivatives. The L 2-projection only reduces the difference in
terms of the L 2-norm (the fields themselves), regardless the precision on the derivatives.

Remark 1 To the author’s knowledge, the Whitney volume elements do not have any H 1(D)-like
properties. Thus, in this work, for the projections on volume elements, only L 2(D) is considered.
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In practice, if the source function v is only well defined in L 2(D), or the target elements
are the volumes, the L 2-projection is the only choice. If v ∈ H 1(D) but the chosen target
elements do not provide the corresponding discrete space, the H 1-projection is not possible.
If v ∈ H 1(D) and the target elements are chosen with care, either the L 2-projection or the
H 1-projection can be carried out.

2.1.3 Weak formulations

In the weak form using the Galerkin method, by introducing the test functions ψh in the
target space, we solve the following formulations:

• L 2-projection

Given v ∈ L 2(D): find uh ∈ L 2
h (D) which satisfies

(ψh,uh − v)L 2(D) = 0, ∀ψh ∈ L 2
h (D) (52)

• H 1-projection

Given v ∈H 1(D): find uh ∈H 1
h (D) which satisfies

〈ψh,uh − v〉H 1(D) = 0, ∀ψh ∈H 1
h (D) (53)

The Galerkin method ensures the uniqueness of the solution. Furthermore, another key
property of the Galerkin approach is that the error is orthogonal to the chosen subspace
[35, 36].

Let uh be the solution of equation (52) or (53) and ε = uh− v be the projection error. Using
Céa’s lemma [37, 38, 39], the norm of the projection error can be expressed as:

• For L 2-projections

‖ε‖L 2(D) 6 ‖ψh − v‖L 2(D) , ∀ψh ∈ L 2
h (D) (54)

• For H 1-projections

‖ε‖H 1(D) 6 ‖ψh − v‖H 1(D) , ∀ψh ∈H 1
h (D) (55)

We note that these equations are valid for every applied test function. Each test function
applied in the h-discretized space sets an upper bound for the error norm in the continuous
space.

2.1.4 Test function choices

In the previous section, our initial problem of the projection is converted into an error norm
minimizing problem by applying the test functions.
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By the Galerkin method, the test function choice is limited to a h-discretized space Vh(D).
Here Vh(D) stands for the target space chosen among L2h(D), L2h(D),Hh(grad, D), Hh(curl, D)

and Hh(div, D), depending on the projection to be carried out. In order to minimize the error
norm in the continuous space, it is crucial to then fill Vh(D) with test functions.

A natural idea is to choose a set of basis functions of Vh(D) as the test functions. If the test
functions ψh are chosen to be the same as the Whitney shape functions of the target function
uh, the method is called the Ritz-Galerkin method. Otherwise, it is called the Petrov-Galerkin
method.

2.1.4.1 Ritz-Galerkin method

In [27, 28], this method is developed and applied to the projection in L 2(D). Similar appli-
cations can also be found in [29, 30, 31, 33, 34]. Here we recall their contributions and extend
the theory to the subspaces H 1(D).

As the target function uh is discretized by Whitney shape functions {wi}
N
i=1, a natural

choice is to take the same functions as the test functions: {ψhi} = {wi} , i = 1..N.
Given that the advantages of this method are well discussed in the literature [40], we will

not dwell on them here.
We note that, by this method, a linear system is obtained such that:

[C] [X] = [F] (56)

where

Cp,q = 〈wp,wq〉V(D) (57a)

Fp = 〈wp, v〉V(D) (57b)

and [X] is the vector of the degrees of freedom to be solved.
Using the Ritz-Galerkin method, the obtained [C] matrix is similar to a typical stiffness

matrix in the finite element method computations. It is a symmetric positive-definite sparse
matrix describing the stiffness among the degrees of freedom.

2.1.4.2 Petrov-Galerkin method

In this case a second basis is introduced: {ψhi} = {wPGi} , i = 1..N. The new basis is different
from the shape functions. In the linear system (56), the components in the [C] matrix are
replaced by Cp,q =

〈
wPGp,wq

〉
V(D) and [F] becomes Fp =

〈
wPGp, v

〉
V(D).

In spite of the freedom with respect to the test function choices, in practice the Petrov-
Galerkin method is not widely used in comparison to the Ritz-Galerkin method. A set of test
functions chosen without caution usually results in an ill-conditioned, even dense [C] matrix
[41, 42].

In this part, we present a Petrov-Galerkin method with a specific choice of test functions.
This technique calculates the local bi-orthogonal functions and uses them as a test basis.
When applied to L 2(D)-projections, it allows a diagonal [C] matrix to be directly built.
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We note that local nodal bi-orthogonal functions have been used in [43] to define the inter-
polation operator and in [30, 44, 45] for domain decomposition theory. Here we determine
them on the edge and facet elements. These functions are then used to define the projection
test space.

Definition of bi-orthogonal functions

The mathematical definition of bi-orthogonal systems is given in [46]. When applied to a
L 2(D)-projection, we consider that :

Given a Whitney basis {wi}
N
i=1 associated with a mesh of tetrahedrons, the local bi-orthogonal

basis
{
ψBj
}N
j=1

is a family of functions in the dual space such that ∀K ∈ T :

(
ψBj ,wi

)
L 2(K)

=

 1

0

∀i = j

∀i 6= j
(58)

where L 2(K) is the space associated with a single tetrahedron K on the target mesh.

Remark 2 For L 2(K) and even the subspaces H 1(K), equation (58) guarantees the local bi-orthogonal
functions are well defined. However, we should note that the local bi-orthogonal functions are deter-
mined in each tetrahedron. As such, no continuous condition applies on the interface of two elements.
The thus determined functions are NOT included in the H 1(D) space. In this work, we thus restrict
ourselves to the L 2(D)-projections when using the bi-orthogonal test functions.

For a L 2(D)-projection, when a bi-orthogonal basis is chosen as the test functions, the
projection map is given by

[CB] [X] = [FB] (59)

where FBp =
(
ψBp , v

)
L 2(D) and [CB] is a diagonal matrix. In the classical Ritz-Galerkin

method a linear system of equations must be solved. The advantage of using a method such
as the Petrov-Galerkin method with bi-orthogonal test functions is that the obtained system
is much simpler to solve.

Determination of local bi-orthogonal functions

For a tetrahedron K on the target mesh, we can determine the local bi-orthogonal functions{
ψBj
}n
j=1

associated with the n local target Whitney elements. In this work, we restrict our-
selves to the case of polynomial degree one for the Whitney shapes as well as for the test
functions. Each bi-orthogonal function can be written as a linear combination of the Whitney
shape functions:

ψBj =

n∑
k=1

αjkwk in K (60)
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The coefficients
{
αjk
}

are obtained by solving equation (58). It can be shown that this is
the inversed matrix of the n×n matrix system of tetrahedron K:

[α] [M] = [I] (61)

where Mp,q = (wp,wq)L 2(K) is the scalar product of the classical Whitney functions and [I]

an identity matrix.
Scalar nodal bi-orthogonal functions can be found in [47] for both 2D and 3D cases. They

are also presented in Appendix A of this manuscript. We use them in this work as test func-
tions for the nodal L2(D)-projection. However, in practice for the projection on edge or facet
elements, a coordinate transformation using the Jacobian matrix is used when evaluating
the numerical integral. In this case the bi-orthogonal functions must be determined in each
tetrahedron [48].

In terms of application for the edge or facet elements, the first step is to solve equation
(61) in each tetrahedron. In this way we have determined the local bi-orthogonal functions.
However, so far, a determined function is associated to one single tetrahedron.

Then, in order to apply these functions in the projection, a second step is carried out. For
a target element (edge or facet), as it may appear in several tetrahedrons, we combine all the
functions (determined in the first step) connected to this element into one only. In this way,
we obtain a single novel function, which is piecewise-defined in all tetrahedrons connected
to the target element and null in the rest. This time the domain for the novel function is the
whole mesh.

To illustrate, let us consider a 2D mesh of two triangles. The two triangles share one com-
mon boundary. In Figure 4 and Figure 5, the Whitney functions associated with this bound-
ary, as well as the bi-orthogonal functions, are shown. Details of their precise determination
are presented in Appendix A.
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(b) Bi-orthogonal edge functions

Figure 4: Whitney functions and bi-orthogonal functions associated with the common edge.

Unlike the Whitney functions, the bi-orthogonal functions have no continuous condition on
the shared boundary. As previously indicated the bi-orthogonal functions are not members
of H 1(D). They can only be used in the L 2(D)-projections.
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(b) Bi-orthogonal facet functions

Figure 5: Whitney functions and bi-orthogonal functions associated with the common facet.

However, the discontinuity of the bi-orthogonal functions does not affect the continuity of
the obtained solution. We recall that the bi-orthogonal functions are used as test functions.
The target solution is always discretized with the continuous Whitney shape functions.

2.1.5 Mesh-to-mesh implementation

The projection formulations produce a matrix equation such as in (56) or (59). In spite of their
mathematical simplicity, the general assembly of this equation is quite difficult in practice.
In finite element computations, physical fields are associated with specific discrete elements
such as nodes, edges, facets and volumes. The shape function of an element is typically a
linear or quadratic piecewise function defined in the surrounding volumes. Together with the
degrees of freedom, the fields are discretized as piecewise polynomial over the considered
domain (Section 1.5).

In (57a), the entries of [C] matrix are the scalar products of the shape functions on the
target mesh. They can be iteratively calculated over the target elements.

Nevertheless, in (57b) for the calculation of the right-hand vector [F], wp and v are associ-
ated with different meshes. {wp}

N
p=1 are the shape functions of the target mesh, whereas v

is the source field given on the source mesh. Let us suppose that v is also discretized with
Whitney elements:

v =

N ′∑
j=1

w ′
jYj (62)

where
{
w ′
j

}N ′

j=1
are the shape functions on the source mesh.

In this case, the entries of [F] can be written as:

Fp =

∫
D
wp ·

N ′∑
j=1

w ′
jYj (63)
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In order to assemble these entries, it is necessary to calculate the scalar product of the
Whitney functions of different meshes: wi of the target mesh and w ′

j of the source mesh. To
achieve this aim, the accurate calculation should be carried out over an intermediate mesh
of which the cells are the intersections of the source and target meshes. In one intersection,
which is often a polyhedron, the Whitney functions wi and w ′

j can be easily defined since the
corresponding source and target elements are given. Both shape functions are polynomials
and therefore so is their product. After clipping the polyhedron into more regular shapes
(e.g. tetrahedrons in 3D cases), the product of the Whitney functions can be computed with
quadrature rules.

For illustrative purposes, let us consider two 2D triangular meshes. The intersections of
one target element with the source mesh are shown in Figure 6.

source mesh target mesh
intersections of meshes 
(clipped into triangles)

Figure 6: Intersections (green) of one target triangular element (red) with the source mesh (blue).
Three quadrature points can then be applied to each intersection (green stars). The resulting
mesh is actually the lowest common mesh for source and target meshes.

The algorithm of a general implementation of the projection with the intersections can be
summarized as follows:

(i) Find the intersecting pairs of source and target elements.

(ii) Loop over target elements:

1 Calculate the product of wi,wj and assemble in the [C] matrix: (57a).

2 Loop over intersecting source elements:

a) Identify the intersection region.

b) Clip the intersecting region into tetrahedrons.

c) Over tetrahedral intersections: calculate the product of wi, v and assemble in
the [F] vector: (57b).

(iii) Solve the linear system (56).

We refer to [49, 50] for further studies on the mesh intersection technique. Let N ′ and N be
the element number of the source and target meshes respectively; detecting the intersecting
pairs using a R-tree requires a time of O[(N +N ′)log(N ′)]. The intersections can then be
calculated using the Sutherland-Hodgman clipping algorithm [51, 52]: in order to find the in-
tersecting region, each face of the clipping element is considered in turn. Generally speaking,
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for field projections using the intersection technique, the most significant part of computation
time is consumed by the construction of intersections. In the 2D example (Figure 6), for two
meshes of 4 triangles the resulting intersections are 16 triangles. For 3D cases, the technique
of intersection is even more computationally expensive. The intersection of two tetrahedral
meshes of about 105 elements may results in millions of tetrahedrons.

2.1.6 Numerical example

The proposed projection methods are applied to the imposition of analytical fields and to
mesh-to-mesh field transmission [53].

As presented in Section 1.5, depending on the mathematical characteristics of a physical
field, the geometric support is usually different Whitney elements: nodes, edges, facets or vol-
umes. Here, we will present, on all four support types, different numerical results illustrating
the performance of various projection methods.

For the fields discretized on nodes, edges or facets, the classical L 2(D) theory, as well as
the presented H 1(D) formulations, will be used. For L 2(D)-projections, we apply the Ritz-
Galerkin method and the Petrov-Galerkin method using local bi-orthogonal test functions.
For H 1(D)-projections, only the Ritz-Galerkin method is used.

In implementation terms, for the mesh-to-mesh projections, the numerical integration of
vector [F] in (56) or [FB] in (59) is carried out on the lowest common mesh for the “source”
and “target” fields, as presented in Section 2.1.5. To solve the linear systems, the conjugate
gradient method is employed.

In this part, we project analytical fields on the different supports and then treat the mesh-
to-mesh projections.

We consider two meshes of tetrahedrons on a cubic domain: D = (0, 1)3 (Figure 7). The
characteristics of the meshes are given in Table 1.

(a) Mesh 1 (b) Mesh 2

Figure 7: Meshes of the cubic domain used here.
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Table 1: Characteristics of the meshes used.

mesh # nodes # edges # facets # volumes

1 729 4184 6528 3072

2 4913 31024 50688 24576

Remark 3 Here mesh 2 is obtained by a refinement of mesh 1. Thus the discretized spaces are enlarged:
L 2
h1 ⊂ L 2

h2 and H 1
h1 ⊂H 1

h2.

In the following, different analytical fields will be projected. All projected solutions will be
compared to the analytical solution. Let ε = uh − v be the projection error. We recall that its
norm in the space V(D) (i. e. L2(D), L2(D), H(grad, D), H(curl, D) or H(div, D)) is defined
as the root of its inner product with itself.

In this part, to illustrate the projection accuracy, we will also use the notion of relative error
such that:

εrV(D) =
‖ε‖V(D)

‖v‖V(D)

=
‖uh − v‖V(D)

‖v‖V(D)

(64)

2.1.6.1 Projection on the node elements

We consider a quadratic scalar field: v(x,y, z) = x2 with a linear gradient: grad v = vect(2x, 0, 0).

Imposition of the analytical solution

The analytical field is projected on the node elements of the two target meshes. In Table 2 and
Table 3, the projection errors are given using the L2(D)-norm as well as the H(grad, D)-norm.

Remark 4 Using the standard L 2(D) projections, the precision of the distributional derivatives is
not guaranteed. However, we still illustrate their error in the H 1(D)-norm for reference purposes.

Table 2: Projection errors on mesh 1 (node elements). The target fields are obtained from analytical-to-
discrete projections using different methods.

Projection method ‖ε‖L2(D) εrL2(D) ‖ε‖H(grad,D) εrH(grad,D)

L2(D) Ritz-Galerkin 1.16e-3 0.26% 7.21e-2 5.8%
L2(D) Petrov-Galerkin ψB 1.16e-3 0.26% 7.21e-2 5.8%
H(grad, D) Ritz-Galerkin 1.56e-3 0.35% 7.18e-2 5.8%

As shown in [47], for the nodal projections, using a H2-regular source field, the optimal
error using L2(D)-norm is of order h2, and for the H(grad, D)-norm, it is of order h.
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Table 3: Projection errors on mesh 2 (node elements), calculated in the analytical-to-discretized projec-
tion using different methods.

Projection method ‖ε‖L2(D) εrL2(D) ‖ε‖H(grad,D) εrH(grad,D)

L2(D) Ritz-Galerkin 2.91e-4 0.065% 3.61e-2 2.9%
L2(D) Petrov-Galerkin ψB 2.91e-4 0.065% 3.61e-2 2.9%
H(grad, D) Ritz-Galerkin 3.94e-4 0.088% 3.60e-2 2.9%

Here, by the different projection methods, the relative projection error for the L2(D)-
norm is smaller than 0.5%. Our numerical results show that, for a nodal L2(D)-projection,
the use of bi-orthogonal test functions has almost no influence on the result accuracy. The
H(grad, D) projection using the Ritz-Galerkin method slightly reduces the absolute error for
the H(grad, D)-norm, despite loss of accuracy for L2(D).

Mesh-to-mesh projection

We then carry out the mesh-to-mesh projections. Here a previously calculated field on mesh
2 (the L2(D) Ritz-Galerkin result in Table 2) is used as the source field, and we calculate the
projection approximation on mesh 1. We do not project in the opposite direction because the
projection does not improve the accuracy (mesh 2 is finer). For a coarse-mesh to fine-mesh
projection, the best possible result will be no more accurate than the source field. Here we
are interested in fine-mesh to coarse-mesh projections, in order to study the information
conservation.

In Table 4, we continue to compare the projection results to the analytical field v imposed
in the continuous domain.

The obtained results are at least as accurate as the continuous-to-discretized calculations
(Table 3). In Table 5, we show the computation time for the mesh-to-mesh projection using
the different methods. The consumed time by the intersection of meshes and the construction
of the linear system is also taken into account.

Table 4: Mesh-to-mesh projection errors. The target solution is obtained on mesh 1 (node elements)
using different methods.

Projection method ‖ε‖L2(D) εrL2(D) ‖ε‖H(grad,D) εrH(grad,D)

source field 2.91e-4 0.065% 3.61e-2 2.9%

L2(D) Ritz-Galerkin 1.16e-3 0.26% 7.21e-2 5.8%
L2(D) Petrov-Galerkin ψB 1.16e-3 0.26% 7.21e-2 5.8%
H(grad, D) Ritz-Galerkin 1.40e-3 0.31% 7.18e-2 5.8%
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Table 5: Used computation time for mesh1-to-mesh2 projections.

Projection method
L2(D)

Ritz-Galerkin
L2(D)

Petrov-Galerkin ψB

H(grad, D)

Ritz-Galerkin

Computation time 159s 156s 164s

Compared to the L2(D)-projections the projections using the H(grad, D) formulation (53)
require additional computation time on the gradient components.

In this analytical example, the use of the Petrov-Galerkin method and the bi-orthogonal
test functions gives little advantage in terms of the computation time. This approach does,
however, give a diagonal matrix in the linear system, thus reducing the memory cost and
simplifying its solution. The advantage with respect to the computation time becomes greater
on finer meshes.

2.1.6.2 Projection on the edge elements

For the edge elements, we consider an analytical vector field included in H(curl, D): v(x,y, z) =
vect(y2, 0, 0), where the curl is given by vect(0, 0,−2y).

Imposition of the analytical solution

Visually, using the different projection methods, the calculated vectorial fields are almost all
the same. We give the obtained result using the L2(D) Ritz-Galerkin method in Figure 8.

0.00622 0.487 0.967
X

Y

Z

Figure 8: Projected field on mesh 1 (edge elements), obtained in the analytical-to-discretized projection
using the L2(D) Ritz-Galerkin method.



30 model coupling

As for the nodal projections, we show the projection errors using the L2(D)-norm and the
H(curl, D)-norm (Table 6 for mesh 1 and Table 7 for mesh 2). We recall that, in comparison
to the L2(D)-norm, the H(curl, D)-norm contains an additional part, i.e. the scalar product
of the curl of the error.

Table 6: Projection errors on mesh 1 (edge elements), calculated in the analytical-to-discretized projec-
tion using different methods.

Projection method ‖ε‖L2(D) εrL2(D) ‖ε‖H(curl,D) εrH(curl,D)

L2(D) Ritz-Galerkin 5.07e-2 11.3% 6.43e-1 51.9%
H(curl, D) Petrov-Galerkin ψB 5.38e-2 12.0% 2.64e-1 21.3%

H(curl, D) Ritz-Galerkin 5.55e-2 12.3% 8.55e-2 6.9%

Table 7: Projection errors on mesh 2 (edge elements), calculated in the analytical-to-discretized projec-
tion using different methods.

Projection method ‖ε‖L2(D) εrL2(D) ‖ε‖H(curl,D) εrH(curl,D)

L2(D) Ritz-Galerkin 2.73e-2 6.1% 4.99e-1 40.3%
H(curl, D) Petrov-Galerkin ψB 2.82e-2 6.3% 1.89e-1 15.2%

H(curl, D) Ritz-Galerkin 2.89e-2 6.5% 4.36e-2 3.5%

We refer to [54] for a H(curl, D) application on non-overlapping domain decomposition
and the error estimation. When applied to the projection, on mesh 1 and mesh 2, the three
methods have almost the same level of accuracy in the L2(D)-space (Table 6 and Table 7).
However, the H(curl, D) Ritz-Galerkin method has the best accuracy in terms of the H(curl, D)

error norm. In Figure 9, we compare the curl of the fields projected using the different meth-
ods.

The H(curl, D) Ritz-Galerkin has a projection result which gives the smoothest curl at
the bounds. Indeed, as previously shown, for the node elements, no significant difference
is observed using the different projection methods. Here in comparison with the gradient
operator, the curl operator is, to a certain extent, “more complex”, and the advantage of
using the H(curl, D)-projection instead of a L2(D)-projection is illustrated by the fact that we
obtain better curl results.

Mesh-to-mesh projection

Let the previously projected field on mesh 2 using the H(curl, D) Ritz-Galerkin method (row
3 in Table 6) be the source field. We carry out a mesh-to-mesh projection and look for an
approximation on mesh 1.

The projected fields are then compared to the analytical field v (Table 8). The computation
time is illustrated in Table 9.
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0.035 1.06 2.09 X Y

Z

(a) L2(D) Ritz-Galerkin

0.0541 0.938 1.82 X Y
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(b) L2(D) Petrov-Galerkin ψB

0.0859 0.997 1.91 X Y

Z

(c) H(curl, D) Ritz-Galerkin

Figure 9: Curl of projected fields, plotted on the plane x = 0.5 of mesh 1.



32 model coupling

Table 8: Mesh-to-mesh projection errors. The target solution is obtained on mesh 1 (edge elements)
using different methods.

Projection method ‖ε‖L2(D) εrL2(D) ‖ε‖H(curl,D) εrH(curl,D)

source field 2.89e-2 6.5% 4.36e-2 3.5%

L2(D) Ritz-Galerkin 5.10e-2 11.4% 4.80e-1 38.7%
H(curl, D) Petrov-Galerkin ψB 5.39e-2 12.0% 2.08e-1 16.8%

H(curl, D) Ritz-Galerkin 5.55e-2 12.4% 8.55e-2 6.9%

Table 9: Computation time required for mesh2-to-mesh1 projections.

Projection method
L2(D)

Ritz-Galerkin
L2(D)

Petrov-Galerkin ψB

H(curl, D)

Ritz-Galerkin

Computation time 226s 163s 1174s

As the source field used here gives good accuracy in terms of the H(curl, D) error norm, the
mesh-to-mesh projected field is more accurate on the curl, as can be seen when compared
to the results in Table 7. This may explain an advantage of using projection approaches.
Indeed, to get an accurate target field, we launch the first calculation on a finer mesh and
then project the obtained field on the target mesh. The thus calculated field may be preferable
in comparison to direct computation on the target mesh.

In terms of the computation time, as a mesh of tetrahedrons has more edges than nodes,
here the actual computation time is greater than the nodal projections. In this case, the results
illustrate the performance of the approach using local bi-orthogonal test functions.

2.1.6.3 Projection on the facet elements

Let v(x,y, z) = vect(x2, 0, 0) be the analytical field to be projected, where its divergence is
equal to 2x.

Imposition of the analytical solution

Here we present the projected fields on mesh 1 (Figure 10) and their divergence (Figure 11).
The projection errors are then compared in Table 10 for the different methods.

By the H(div, D) Ritz-Galerkin method, we obtain a result which is the most accurate in
terms of the L2(D) error norm as well as for the H(div, D)-norm. However, this method
requires significant computation time.

Using the Petrov-Galerkin method with local bi-orthogonal test functions, we are unable
to guarantee the precision of the divergence. However, the obtained linear system is much
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Figure 10: Projected fields on mesh 1 (facet elements).
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Figure 11: Divergence of the projected fields on mesh 1 (facet elements).
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easier to solve than the one obtained using the classical L2(D) Ritz-Galerkin method. The
computation time, as well as the memory cost, are greatly decreased.

Table 10: Projection errors on mesh 1 (facet elements), calculated with respect to the analytical-to-
discretized projection using different methods.

Projection method ‖ε‖L2(D) εrL2(D) ‖ε‖H(div,D) εrH(div,D)

L2(D) Ritz-Galerkin 4.34e-2 9.70% 9.67e-1 78.0%
L2(D) Petrov-Galerkin - ψB 4.50e-2 10.08% 8.08e-1 65.2%

H(div, D) Ritz-Galerkin 4.06e-2 9.07% 9.04e-2 7.29%

Table 11: Computation time required for analytical-to-discrete projections.

Projection method
L2(D)

Ritz-Galerkin
L2(D)

Petrov-Galerkin ψB

H(div, D)

Ritz-Galerkin

Computation time 162s 89s 1780s

2.1.6.4 Projection on the volume elements

Unlike the other elements, for the field discretized using volumes, we only consider the
L2(D) projection. The reason for this is explained in Remark 1. As the Whitney volume shape
functions of the lowest degree are constant in each tetrahedron (Section 1.5), the obtained [C]

matrix to be inversed is already diagonal. Thus, no bi-orthogonal test function is calculated
in this part.

We consider a linear function v(x,y, z) = x. Using the L2(D) Ritz-Galerkin method, the
projected field on mesh 1 has an relative error of 4.4%.

2.1.7 Conclusion

Computation of coupling problems requires field communication when the subproblems
are discretized on multiple meshes. The field projection approaches based on the Galerkin
method presented in this section provide useful tools for such cases. The classical Ritz-
Galerkin method is recalled and extended to H(grad), H(curl) and H(div) in order to obtain
greater projection accuracy for the distributional derivatives. Subsequently, the bi-orthogonal
test functions are used to build a Petrov-Galerkin projection system with a diagonal ma-
trix. Through the analytical examples, the H(grad), H(curl) and H(div) projections give
greater accuracy than L2 or L2 projections. In the case of L2 or L2 projections, the Petrov-
Galerkin method with bi-orthogonal test functions allows the same level of accuracy as the
Ritz-Galerkin method, while notably reducing the computation cost.
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2.2 implementation consideration

In practice the general implementation of mesh-to-mesh field projections has proved chal-
lenging. As the source and target fields are discretized on different meshes, the accurate
assembly of the projection system necessitates numerical integration over an intermediate
mesh. In practice, such an intermediate mesh can be calculated by means of intersecting the
source and target meshes (Section 2.1.5). However, the use of intersection requires significant
programming work and a high computation cost [55, 49].

Another possibility is to avoid mesh intersections, by using a sampling-integration algo-
rithm. Instead of integrating over the lowest common mesh, the integrals are computed over
the target mesh. Over the quadrature points of target elements, the source solution is sam-
pled and approximately integrated. This is less accurate than integrating over intersections.
The accuracy, however, can be improved using high-order quadrature rules.

In this section, we focus on a comparison of the two implementation techniques for Galerkin
projection. For applications, depending on the problem to be solved, Galerkin projection can
be applied to different fields and at different times. Here we analyze the advantages and
disadvantages for the two implementation techniques, in terms of accuracy, speed and com-
putational complexity.

For the sake of simplicity, in this section we restrict ourselves to the case of L 2(D) (i. e.
L2(D) and L2(D)) Ritz-Galerkin projections. Nevertheless, the implementation techniques
we present, can be easily extended to H 1(D) projections and to the Petrov-Galerkin method
(e. g. bi-orthogonal test functions).

2.2.1 Sampling-integration over the target elements

Unlike the intersection of meshes (Section 2.1.5), the second implementation is solely imple-
mented over the target elements.

Over each target element, the Whitney functions wi can be easily defined because they are
associated with the same mesh. The shape functions w ′

j which are associated with the source
mesh, can be evaluated over the Gaussian quadrature points. As such, the product of wi and
w ′
j can be approximated with the weighted sum over the quadrature points. This technique is

much simpler in terms of computational complexity. However, the integration accuracy can
not be ensured. The quadrature scheme is in general exact for a specified polynomial order.
However, in the case where w ′

j is associated with a different mesh, w ′
j is piecewise-defined

and may has several subdomains in one specific target element. This error in the calculation
of the integral, leads to the inaccuracy of the assembly of the vector [F] as the right-hand side
of (56).

To illustrate, Figure 12 presents the quadrature points taken in a target element. Compared
to Figure 6, the computational complexity is clearly reduced.
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source mesh target mesh
Gauss points w.r.t. the

target elements 

Figure 12: Three quadrature points (green stars) taken with respect to one target triangular element
(red).

The implementation of the field projection with the sampling-integration algorithm over
target elements can be summarised as follows:

(i) Loop over target elements:

1 Calculate the product of wi,wj and assemble in the [C] matrix: (57a).

2 Calculate the product of wi, v and assemble in the [F] vector: (57b).

(ii) Solve the linear system (56).

We note that, although both are calculated over target elements, here steps (i)1 and (i)2 are
not constrained by the same quadrature rules.

• In the case of linear Whitney functions, as in this work, 4 Gaussian points is precise
enough to compute the scalar product of wi and wj in a linear tetrahedron. More
quadrature points would only lead to a waste of computation time.

• However, Gaussian quadrature produces accurate results only if the function is well
approximated by a polynomial. As one target element may overlap several source ele-
ments, w ′

j is piecewise and risks having several intervals. In this case, the computation
of the scalar product of wi and w ′

j is not accurate even if we take high-order quadra-
ture rules, because w ′

j can not be presented with one single polynomial over the target
element. Nevertheless, since more quadrature points takes more samples of the source
function, we can eventually improve the accuracy of the scalar product of wi and w ′

j.

2.2.2 Numerical example

The two implementation techniques are applied to mesh-to-mesh field transfers [56]. In par-
ticular, in this section, continuous analytical functions are used. The error of each projection
can thus be computed in comparison to the analytical function.

We consider two tetrahedral meshes of the cubic domain (0, 1)3 (Figure 13).

Remark 5 Unlike Section 2.1.6, here the two meshes used have no parental relation; i. e. they are both
randomly generated.
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Figure 13: Meshes used: M1 (58k elements) and M2 (4k elements).

In the following, skin-effect-current-density-like exponential analytical functions will be
considered. Significant value variations are located in only 25% of the volume of the studied
domain. Concerning the sampling-integration technique over target elements, in this work
the quadrature rules with 4, 16 and 29 Gaussian points are used for tetrahedrons.

Let the norm of the difference between the projected field and the analytical function be
the absolute error. The relative error is the ratio of the absolute error to the norm of the
analytical function. The two projection techniques are compared in Table 12 for accuracy and
in Table 13 for computation time.

Table 12: Relative errors of projections (w.r.t. the analytical function), calculated in the continuous-
to-discrete projections and the M1-to-M2 projections using different projection techniques.

node
e−12x

edge
[e−12y, 0, 0]

facet
[e−12x, 0, 0]

source solution on M1 1.25% 11.96% 10.37%

reference solution on M2 6.20% 24.21% 23.32%

M1→M2

intersection 6.05% 23.79% 21.53%
4 Gaussian points sampling 9.30% 24.90% 23.30%
16 Gaussian points sampling 7.83% 24.34% 22.55%
29 Gaussian points sampling 7.69% 24.20% 22.46%

In Table 12, “source solution on M1” and “reference solution on M2” are obtained us-
ing continuous-to-discrete projections. The M1-to-M2 projections can then be obtained from
“source solution on M1” with the two presented implementation techniques. As explained
before, we do not project from M2 to M1, because M1 is finer and the projection does not
improve the accuracy.
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Table 13: Computation time used in the M1-to-M2 projections using different techniques.

node
e−12x

edge
[e−12y, 0, 0]

facet
[e−12x, 0, 0]

M1→M2

intersection 92s 192s 117s
4 Gaussian points sampling 1.7s 1.7s 1.7s
16 Gaussian points sampling 4.5s 4.6s 4.7s
29 Gaussian points sampling 10.0s 10.3s 10.2s

Mathematical error estimation for the projections can be found in [47, 54]. For a H2-regular
analytical function, the optimal error is of order h2 for nodal projections and order h for edge
and facet elements. This is why the projection error at edge and facet elements is relatively
more important than at the nodes. Moreover, error for the facets are slightly smaller than for
edges because the number of unknowns is greater; e. g. M2 has 5713 edges but 8736 facets.

As the source field on M1 gives good accuracy, the M1-to-M2 projections using intersection
is more accurate in comparison to the reference solution on M2.

Using the approximate integration over the target mesh (the 3 last lines in Table 12), the
optimality of the solution in comparison to the reference solution on M2 can no longer be
ensured. Although more quadrature points can indeed improve the accuracy of the result, the
projection with the sampling-integration algorithm over the target mesh is always suboptimal
compared with intersection of meshes. Nevertheless, the sampling-integration algorithm over
target elements presents the important advantage of involving lower computation time.

2.2.3 Conclusion

Projection can be applied to mesh-to-mesh transfers of physical fields. In practice the accurate
implementation of the projection requires the intersection of source and target meshes and
is computationally expensive. Another solution is to directly integrate over target elements,
by means of sampling the source field distribution on quadrature points. Projection with the
latter implementation technique is in general less accurate than mesh-intersecting. However,
the accuracy can be improved using high-order quadrature rules.

2.3 energetic formulations for electromagnetic fields

In the previous sections, projection tools transfer fields between different meshes. We have
also compared the different implementation techniques. Now we can study formulations
which are better adapted for electromagnetic fields.

Remark 6 In this work, we concentrate on the projection of electromagnetic fields. The result of the
electromagnetic model (e. g. electromagnetic fields), is projected onto a second mesh and serves as the
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source term for mechanical or thermal models. However, under the assumption of weak interaction,
no projection is realized in the opposite direction (i. e. no major influence from mechanical / thermal
models to electromagnetic models).

In practice, depending on the nature of the electromagnetic field to be projected, projec-
tions can be carried out in the different Sobolev spaces. For example, L2(D) projections
can generally be used to find the approximation of a vector field on the target mesh, with
which the L2(D)-norm of their difference is minimized. For the fields with finite curl (e.g.
the magnetic and electric fields), the projections can also be carried out in H(curl, D). A
H(curl, D)-projection reduces the H(curl, D)-norm of the difference between our solution
and the given field, i.e. the difference on the fields but also on their curls. For example, the
H(curl, D)-projection of a magnetic field, returns an approximated field with similar current
density, which is its curl.

However, in multi-physics problems, after the transfer, we may need additional informa-
tion other than distribution of the fields. The accuracy of the energy distribution is often
crucial.

For instance, in electrical machines at low speeds range, the magnetic forces are the main
sources for mechanical vibrations and acoustic noises. In terms of numerical modeling, these
forces can be calculated from the distribution of magnetic fields and used as excitations in the
mechanical computation. Assuming that the projection of the magnetic field is used between
the magnetic and mechanical problems, the magnetic forces are thus calculated from the
projected field on the mechanical mesh. As forces are the derivatives of the magnetic energy
with respect to virtual displacements [57], the projection used should ensure great accuracy
with respect to the distribution of the magnetic energy. Otherwise, the non-conservation of
energetic quantities may lead to errors regarding magnetic forces and thus errors for the
entire magneto-mechanical modeling.

Another example concerns the magneto-thermal modeling. The eddy currents are impor-
tant sources for the joule heating in electrical machines. In order to calculate the magnetic
and thermal problems on different meshes, the transfer used should ensure the accuracy
regarding ohmic losses.

Here we focus on the mesh-to-mesh energy-conserving projection of electromagnetic fields.
The energetic formulations are investigated for magneto-static problems [58] as well as har-
monic eddy current problems [59]. The formulations with respect to nonlinear magnetic
media, are then presented.

2.3.1 Magneto-static problems

In order to solve magneto-static problems, different formulations can be employed, e.g. for-
mulations based on scalar or vectorial potentials (Section 1.1.2). Consequently, in the numer-
ical result either the magnetic field or the magnetic flux density better respects the physical
properties. In the following, we assume that only such discrete fields are projected.
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We denote by Hs and Bs the fields obtained on the source mesh and by Ht and Bt the fields
to be calculated on the target mesh. The magneto-static energetic norms of the interpolation
error are defined as:

εH =

∫
D

µ

2
|Ht − Hs|

2 dτ (65)

εB =

∫
D

1

2µ
|Bt − Bs|

2 dτ (66)

In comparison to the classic inner norms (Section 2.1.1), here the norms to be minimized are
weighted by the distribution of the magnetic permeability or reluctivity.

On the target mesh, using Whitney elements in 3D, Ht and Bt are discretized at the edge
and facet element spaces respectively (Section 1.5):

Ht =
E∑
i=1

weihi and Bt =
F∑
i=1

wfibi (67)

where wei (resp. wfi) and hi (resp. bi) are the shape functions and the values of Ht (resp.
Bt) associated with the i− th edge (resp. facet). E and F are the number of edge and facet
elements respectively.

To project fields onto a target mesh with respect to the magnetic energy, weak formulations
based on the minimization of the energetic norm are developed. In (65), the energetic error
norm is minimized when its derivatives with respect to all degrees of freedom are equal to
zero. Thus for each edge of the target mesh ∀i ∈ {1..E}:

∂

∂hi

∫
D

µ

2
|Ht − Hs|

2 dτ = 0 (68)∫
D

µ

2

∂

∂hi
(H2t + H2s − 2 Ht ·Hs)dτ = 0 (69)∫
D
µ(wei ·Ht − wei ·Hs)dτ = 0 (70)

Finally, the matrix equation to be solved can be written:

[C] [h] = [F] (71)

where

Cij =

∫
D
µwei ·wej dτ, Fi =

∫
D
µwei ·Hsdτ (72)

and [h] is the vector of the degrees of freedom to be calculated.
A similar demonstration can be applied to (66) for the projection of Bs with respect to the

magnetic energy: ∀i ∈ {1..F}∫
D

1

µ
(wfi ·Bt − wfi ·Bs)dτ = 0 (73)
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2.3.2 Eddy current problems

For eddy current problems, either magnetic (e. g. T −Ω) or electric (e. g. A −φ ) harmonic
formulations can be used in order to calculate the harmonic fields. On the source mesh, either
Hs or Es better respects the physical properties. Thus, depending on the formulation used,
the mesh-to-mesh energetic error norm to be minimized can be defined as [60, 61, 62]:

εH =

∫
D
µ |Ht − Hs|

2 dτ+

∫
Dc

1

σω
|curl Ht − curl Hs|

2 dτ (74)

εE =

∫
Dc

σ

ω
|Et − Es|

2 dτ+

∫
D

1

µ

∣∣∣∣curl Et − curl Es
ω

∣∣∣∣2 dτ (75)

with ω the angular pulsation. Here both norms contain the magnetic energy in the studied
domain D as well as the joule heating in conducting domain Dc.

On the target mesh, edge elements provide sound discrete spaces for Ht and Et. Weak
formulations can then be obtained by the minimization of the energetic norm (74): ∀i ∈ {1..E}

∫
D
µ(wei ·Ht − wei ·Hs)dτ+

∫
Dc

1

σω
(curl wei · curl Ht − curl wei · curl Hs)dτ = 0 (76)

or in the case of electric formulations (75): ∀i ∈ {1..E}∫
Dc

σ

ω
(wei · Et − wei · Es)dτ+

∫
D

1

µω2
(curl wei · curl Et − curl wei · curl Es)dτ = 0 (77)

Equation (76) gives rise to the following matrix equation:

([C] +
[
Ccurl

]
) [h] = [F] +

[
Fcurl

]
(78)

where [C] and [F] are the same matrices as in magneto-static problems and

Ccurlij =

∫
Dc

1

σω
curl wei · curl wej dτ (79)

Fcurli =

∫
Dc

1

σω
curl wei · curl Hsdτ (80)

The sum of [C] and [Ccurl] is a positive-definite matrix.
A similar matrix system can be obtained from (77) in order to project Es.

2.3.3 Numerical example (linear media)

The proposed projection formulations are applied in an academic example (Figure 14 [59]).
The studied domain is composed of two face-to-face cylindrical iron cores. Iron core 1 is
wound around by an excitation coil. Here all media have linear magnetic characteristics.
code_Carmel is used in order to solve the electromagnetic model.

Two meshes are considered: M1 (234k elements) and M2 (29k elements). In order to carry
out the mesh-to-mesh transfer, M1 is used as the source mesh to solve the magnetic problem
and M2 is considered as the target mesh for the projection.
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Coil

Iron core 1 Iron core 2

Figure 14: Geometry of the studied example. S is the clipping plane used to illustrate the result.

2.3.3.1 Magneto-static problem

First, a constant current is applied in the coil. Given Ampere’s law, magnetic fields appear
and the two iron cores tend to attract each other.

The magneto-static problem is solved on M1 using the scalar potential formulation. The
calculated magnetic field Hs, is then projected to M2 using the L2(D)-projection (52) and the
energetic formulation (70).

The obtained magnetic field Ht on M2 is presented in Figure 15 on a clipping plane. Here
the two projection methods return very similar distributions for Ht.

The Bt fields can then be calculated from the projected Ht fields using the magnetic con-
stitutive law. Although the projected magnetic field appears to be appropriate, the L2(D)-
projection fails to provide a correct distribution of Bt at the boundary of the iron cores (Fig-
ure 16(a)). The advantage of the energetic formulation is shown by the correct distribution of
the corresponding Bt (Figure 16(b)).

Table 14 compares the magnetic energy and interaction force calculated on M1, M2 and
then by M1-to-M2 projection. The energy-conserving projection allows us to calculate mag-
netic forces on M2 from the projected Ht field (Figure 17). As expected, iron core 2 is attracted
by iron core 1.

Table 14: Validation of the energetic projection approach (magneto-static problem).

calculated
on M1

calculated
on M2

M1→M2

energetic proj.

magnetic energy (mJ) 364 361 366

interaction force (N) 2.61 2.91 2.66
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Figure 15: M1-to-M2 projected Ht (A/m) field on iron core 1 (on a clipping plane), using: (a) L2(D)-
projection. (b) Energetic projection.
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Figure 16: Distribution of Bt (T ) on a clipping plane, calculated from the projected Ht fields (Fig-
ure 15). (a) L2(D)-projection. (b) Energetic projection.
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Figure 17: Magnetic forces (N) on iron core 2. They are calculated by applying the virtual work
method on the projected Ht field using the energetic formulation.

2.3.3.2 Eddy current problem

Second, a sinusoidal current is applied as excitation. In this case, eddy currents appear in the
iron cores.

On M1, the magneto harmonic problem is solved with the magnetic T-Ω formulation.
The obtained magnetic field Hs, is then projected onto M2 using the presented energetic
projection (76).

Table 15 presents the energetic values solely calculated on M1 and M2 for reference, and
then those issued from M1-to-M2 projections. Compared with the magneto-static case (Ta-
ble 14), here the accuracy is slightly lower in terms of magnetic energy. A difference up to 7%
can be observed between the energy obtained on M2 and that deduced from projected Ht.
However, the energetic formulation (76), aims to minimize the sum of the differences with
respect to the magnetic energy and joule heating.

Table 15: Validation of the energetic projection approach (eddy current problem).

calculated
on M1

calculated
on M2

M1→M2

energetic proj.

magnetic energy (mJ) 370.7 380.8 353.5

ohmic losses (mW) 13.5 14.3 12.8

magnetic energy
+ joule heating
per period (mJ)

372.8 383.1 355.5

Similar to the static case, the L2(D) projection and the H(curl, D)-projection of Hs are
capable of returning the approximated distribution on the target mesh. Important errors can
however be remarked with respect to the distribution of the magnetic flux density and the
eddy current density.
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On the contrary, the obtained Ht field using the energetic formulation, ensures good accu-
racy regarding the magnetic flux density Bt. Moreover, since curl H = J, the projection used
gives good accuracy with respect to the eddy current (Figure 18) and thus the joule heating.

Figure 18: Eddy current density (A/m2) in the two iron cores. This is calculated from the “energeti-
cally” projected Ht field.

2.3.4 Nonlinear magnetic media

We can now take into account the nonlinearity of magnetic media. The aim here is to project
a magnetic quantity from one mesh to another, and to conserve the magnetic energy with
respect to the nonlinear magnetic permeability. To ensure the simplicity of our illustration,
here we restrict ourselves to the case of static problems.

As before, we denote by Hs and Bs the fields obtained on the source mesh and by Ht and
Bt the fields to be calculated on the target mesh. As was the case with linear permeability,
the energetic error norm to be minimized for H-conform formulation is defined as:

εH =

∫
D

µ

2
|Ht − Hs|

2 dτ (81)

which can be illustrated by the blue area in Figure 19(a).
For nonlinear media, we can define a similar area as the error norm to be minimized. In

Figure 19(b), the Hs-Bs point stands for the working point on the source mesh. We look for
a working point Ht-Bt on the target mesh, which minimizes the red area defined as:

εnlH =

∫
D

∫Ht

Hs
[µ(Ht)Ht − µ(Hs)Hs]dHt dτ (82)

As in the linear cases, the Ht field is discretized at the edge elements of the target mesh:

Ht =
E∑
i=1

weihi (83)
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(a) Linear case (b) Nonlinear case

Figure 19: Energetic error norms to be minimized for H-conform formulations.

When the energetic error norm is minimized, its derivatives with respect to all degrees of
freedom are zero: ∀i ∈ {1..E}

∂εnlH
∂hi

= 0 (84)∫
D

{
∂

∂hi

∫Ht

Hs
[µ(Ht)Ht − µ(Hs)Hs]dHt

}
dτ = 0 (85)∫

D

{
∂

∂Ht

∫Ht

Hs
[µ(Ht)Ht − µ(Hs)Hs]dHt

}
· ∂Ht
∂hi

dτ = 0 (86)∫
D
[µ(Ht)Ht − µ(Hs)Hs] ·

∂Ht
∂hi

dτ = 0 (87)

Thus the final equation to be solved can be written: ∀i ∈ {1..E}∫
D
[wei · µ(Ht)Ht − wei · µ(Hs)Hs]dτ = 0 (88)

Or in matrix form:

[Cnl][h] = [F] (89)

with

Cnlij =

∫
D
µ([h])wei ·wej dτ , Fi =

∫
D
µ(Hs)wei ·Hsdτ (90)

and [h] the vector of the degrees of freedom to be solved.
A similar demonstration can be applied to the magnetic flux density B field, in order to

realize its energetic projection with respect to the magnetic energy: ∀i ∈ {1..F}∫
D

[
wfi ·

1

µ(Bt)
Bt − wfi ·

1

µ(Bs)
Bs

]
dτ = 0 (91)
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2.3.5 Numerical example (nonlinear media)

In order to illustrate the energetic projection regarding media with nonlinear permeability,
let us consider an iron circuit wound by an excitation coil (Figure 20). Two meshes are used
in this example: M1 (59k elements) and M2 (33k elements).

coil

nonlinear 
iron core

Figure 20: Mesh used for the studied example.

In this example the iron core has a nonlinear permeability. Its B versus H characteristic is
shown in Figure 21.
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Figure 21: B-H characteristic of the iron circuit used here.

The medium used saturates at 2T . The B-H curve folds around 1.75T . In order to validate
the proposed energetic formulations, three working points are considered by imposing differ-
ent currents in the coil (using code_Carmel). In terms of the maximum value of the magnetic
flux density, the first working point is located in the linear zone, the second one around 1.75T

and the third in the saturated zone. For each working point, we first solve the magnetic prob-
lem on M1 with the scalar potential formulation (14). The obtained magnetic field is then
used as Hs for the projection onto mesh M2 with the proposed energetic formulation (88).
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Once the projection is carried out, from the obtained Ht we can calculate the corresponding
Bt field and compare it to the source one Bs.

In terms of implementation, here the nonlinear system (89) is solved with a fixed-point
algorithm. For the first iteration, we replace the nonlinear permeability with a linear approxi-
mation. Then with the obtained result of step 1 (denoted by [h]1), we update the [Cnl] matrix
with the nonlinear permeability and solve the updated system for [h]2. This updating and
solving iteration continues until the difference between two steps (i. e.

∥∥[h]n − [h]n−1
∥∥) is

smaller than the imposed tolerance.
In the case of the second working point (i. e. Bmax around 1.75T ), the distribution of Bs

and Bt fields are shown in Figure 22.
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Figure 22: Comparison of the Bs field on the source mesh and the Bt field on the target mesh. Here
the Bt field is calculated from the “energetically” projected Ht field.

Table 16 compares the maximum values of Bs and Bt, for the three working points. The
number of iterations for solving the nonlinear system, is also given.

Table 16: Comparison of the maximum values of Bs and Bt, for the projections regarding nonlinear
magnetic media.

working point |Bs|max (T ) |Bt|max (T ) Nb. of iterations

1 0.468 0.456 3

2 1.77 1.74 9

3 2.05 2.01 22
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For all the three working points, the maximum values of Bs and Bt are very close (i. e.
differences are smaller than 2.6%). In general, a greater |Bs|max requires more iterations
in order to solve the nonlinear system using energetic projections. As a matter of fact, in
Figure 19(b), we can remark that the red part becomes very flat in the saturated zone. In this
case, even a great variation of Ht has little influence on the larger of the red areas. A greater
number of iterations is needed to find the result.

2.3.6 Conclusion

In order to transfer electromagnetic fields between different meshes, energy-conserving pro-
jection methods are presented in this section. The definition of energetic norms is given for
magneto-static problems as well as harmonic eddy current problems. Nonlinear cases are
then investigated in order to take into account nonlinear magnetic permeability.

For magneto-mechanical and magneto-thermal modeling, the presented formulations en-
sure accuracy regarding energy distribution for the mesh-to-mesh transfer of electromagnetic
fields. In the studied example, the projected magnetic fields can be used for the computation
of forces and joule heating.





3
A P P L I C AT I O N S

In Chapter 2, we presented field projection methods on finite element overlapping domains.
To illustrate some of their applications, in this chapter the projection tools are applied to the
discretization of uniform analytical current densities. Subsequently, using the computational
models presented in Chapter 1, several weak-coupling magneto-mechanical or magneto-
thermal examples are studied. Mesh-to-mesh filed projections are employed to ensure the
model coupling.

We begin with two conductor geometries for the discretization of uniform analytical cur-
rent densities. Different projection formulations are compared with respect to the quality of
the obtained field. Secondly, the computational models are tested with a magneto-mechanical
example of simple geometry, for which we can deduce the analytical field distributions. The
electromagnetic and mechanical problems are solved on a common mesh and then on dif-
ferent meshes with mesh-to-mesh field projections. Thirdly, we study the mechanical defor-
mations of an elastic plate due to the attraction forces of an electromagnet. The projection
formulations as well as their implementation techniques are compared, in terms of their in-
fluences on the result of the entire magneto-mechanical problem. Finally, a double-excitation
synchronous alternator from Valeo is considered. We propose a solution strategy in order to
calculate the vibrations on the stator due to the magnetic forces.

In the following, code_Carmel, code_Aster and Syrthes are used to compute the electro-
magnetic, mechanical and thermal models respectively.

3.1 discretization of uniform analytical current densities

In computational electromagnetism, we aim to calculate the field distribution produced by ex-
citations (e. g. currents, charges, magnetic flux, etc.). The accurate discretization of excitation
fields is thus very important for the purpose of setting up the correct discrete problem.

Let us focus on the discretization of given uniform current densities. Besides the discrete
values to be calculated, the difficulty in such processing is to satisfy specific physical prop-
erties - i. e. the obtained current densities should be divergence-free. However, the target
mesh often has flaws (e. g. approximation of a circular line with several straight lines). This
implies that the uniformity and the zero divergence of the discrete field can not be satis-
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fied at the same time. Several solutions can be found in the literature regarding this subject
[63, 64, 65, 66, 67, 68].

The projection methods presented in this manuscript (Section 2.1), are also convenient
tools for discretising excitation fields.

3.1.1 Formulations

Let us consider a uniform analytical current density Je defined on the domain D . It is
divergence-free: div Je = 0.

The aim of the discretization of Je, is to find in the facet space a discrete field Jh =
∑
F

wfiXi

such that the norm of their difference is minimized. This is the same concept we met in field
projections.

Since both Je and Jh are members of H(div, D) ⊂ L2(D), two formulations can be applied:

• L2(D) projection∫
D
‖Jh − Je‖2 → min (92)

• H(div, D) projection∫
D
(‖Jh − Je‖2 + ‖div Jh − div Je‖2)→ min (93)

After the application of the Galerkin method and test functions, the weak formulations to
be solved are:

• L2(D) projection

(ψh, Jh)L2(D) = (ψh, Je)L2(D) , ∀ψh ∈ L2h(D) (94)

• H(div, D) projection

〈ψh, Jh〉H(div,D) = 〈ψh, Je〉H(div,D) , ∀ψh ∈ Hh(div, D) (95)

The L2(D) projection returns a discrete field with minimized difference with respect to the
analytical field. The H(div, D) projection approximates not only the field but also the diver-
gence.

As we wish to obtain a field of zero divergence, another natural idea is to use the following
property in the de Rham complex (35): the image of H(curl, D) in H(div, D) by curl is the
kernel of the div operator. The divergence-free Jh field can be expressed as a curl:

Jh = curl Kh (96)

where Kh is a vector potential to be determined at the edge elements: Kh =
∑
E

weiYi.
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The problem to be solved becomes:∫
D
‖curl Kh − Je‖2 → min (97)

or in the weak form:

(curl ψh, curl Kh)L2(D) = (curl ψh, Je)L2(D) , ∀ψh ∈ H(curl, D) (98)

Here (98) can be understood as a projection using the semi-norm of H(curl, D) - i. e. the
module defined as:

∀f ∈ H(curl, D), |f|H(curl,D) =

[∫
D

curl f · curl f
]1/2

(99)

which contains only half of the H(curl, D)-norm.
Physically, (98) is equivalent to solving a magneto-static problem using the vector potential

formulation. Unlike the normal full-norm projections, a differential equation needs to be
solved. Boundary conditions must be added in order to ensure the unicity of the solution.

3.1.2 Applications

For illustration purposes, two geometries of conductors are considered (Figure 23). Uniform
analytical current densities are defined in these conductors. For simplicity, the module of the
analytical current densities is fixed at 1A/m2.

(a) Bent conductor

00

-1e-16-1e-16 00

11

11

11

(b) Twisted conductor

Figure 23: Two conductor geometries for the discretization of excitation current densities. The mesh
of the bent conductor only contains the conductor. For the twisted conductor, an air box
also is used.
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Figure 24: Discretized current densities, obtained using edge and facet trees (code_Carmel v1.7.2).

Before proceeding the projection approaches, in Figure 24 we present the obtained discrete
Jh field using edge and facet tree techniques [69, 70].

Edge and facet tree techniques verify the divergence in each element and calculate iter-
atively the current flowing through each facet. The advantage of such techniques is that
the divergence is ensured to be zero. However, in the example of the bent conductor (Fig-
ure 24(a)), all local errors are brought to one boundary of the conductor. The maximum
value 2.62A/m2 represents a local error of 162%. For the twisted conductor (Figure 24(b)),
the obtained current density is barely “uniform”.

Figure 25 and Figure 26 illustrate the results obtained using projection methods.
In Figure 25, (a) and (b) have no significant difference: both the L2(D) projection and the

H(div, D) projection are capable to discretise the analytical current density at facet elements.
The maximum local error is 3% for the L2(D) projection and 3.2% for H(div, D). In this
case the H(div, D) projection is much better than the L2(D) projection, because the obtained
divergence is hundreds of times smaller (comparing (d) with (c)).

When applied to the twisted conductor, the H(div, D) projection shows a similar perfor-
mance (Figure 26). The local error regarding the current density is smaller than for the edge
and facet tree techniques. Minor divergences, can however be remarked in the conductor.

We can also apply the H(curl, D) semi-norm projection (98) to both geometries. Boundary
conditions are added such that Kh = 0 at all boundaries of the studied domain.

In Figure 27 and Figure 28, the calculated Kh fields fill the study domain. As this time the
discrete current densities are described using curls, they are ensured to be divergence-free.
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Figure 25: Discretized current densities and their divergence, obtained using full-norm projection
methods (bent conductor, clipped).
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Figure 26: Discretized current densities and their divergence, obtained using full-norm projection
methods (twisted conductor).
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Figure 27: Kh field and discretized current densities, obtained using the H(curl, D) semi-norm projec-
tion (98) (bent conductor).
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Figure 28: Kh field and discretized current densities, obtained using the H(curl, D) semi-norm projec-
tion (98) (twisted conductor + air box).

3.1.3 Conclusion

Field projection methods are applied to the discretization of uniform analytical current den-
sities. Both the L2(D) projection and the H(div, D) projection are capable of discretising the
analytical current density at facet elements but the divergence is much smaller in the latter
case. In order to ensure the zero divergence, H(curl, D) semi-norm projections can be used.

3.2 cylindrical conductor carrying uniform currents

The second application considered is the magneto-mechanical modeling of a cylindrical con-
ductor carrying uniform currents. For this example, we can deduce an analytical solution
for the magneto-mechanical interaction thanks to the simple geometry [5]. In this case, we
can validate our numerical solution of computational models, by the calculation of electro-
magnetic and mechanical models on common meshes and a comparison with the analytical
solution. Subsequently, we will apply the mesh-to-mesh projection tools.

Let us consider an infinite cylinder, of which the magnetic permeability is µ0. The cylinder
is crossed by a uniform current density. Such current density creates magnetic forces and
elastic deformations in the cylinder. Under the assumption of small deformations, Ohm’s
law is independent from mechanical stresses. In the elastic problem the stress-strain relations
are decoupled from the magnetic fields. The exact solutions for the magnetic and elastic
problem can be obtained by analytical calculations [5].
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Using Ampere’s law, the distribution of the magnetic flux density is perfectly known as a
circumferential and linear function across the conductor. It can be written as:

Bθ(r) =


µ0J0r

2
, r < R

µ0J0R
2

2r
, r > R

(100)

with J0 the uniform current density and R the radius of the cylinder.
In the elastic problem, we take Lorentz forces (i. e. J× B) as the source terms. After satis-

fying boundary conditions, i. e. no deformation at the center and no traction at r = R, the
stresses in the cylinder are expressed as follows:

σrr(r) = −
µJ20R

2

16

(3− 2ν)

(1− ν)
(1−

r2

R2
)

σθθ(r) = −
µJ20R

2

16

(3− 2ν)

(1− ν)
(1−

(1+ 2ν)

(3− 2ν)

r2

R2
)

σrθ(r) = 0

(101)

We refer to [71, 72] for further magneto-thermo-electrostatic analytical study.
For a cylinder of 1mm radius and traversed by a current of 10A, with ν=0.3 we obtain at

the center of the cylinder: σrr = σθθ = -2.73N/m2.
In the computations which follow, two meshes are used: M1 (624k elements) and M2 (152k

elements) - see Figure 29.

(a) M1 (b) M2

Figure 29: Meshes of the cylinder used here.

3.2.1 Magneto-mechanical calculation on common meshes

First, we solve the magnetic and mechanical models on common meshes. Thus no projection
is used.
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Using the vector potential A-formulation (11), the distribution of the magnetic flux density
can be calculated. Figure 30 illustrates the obtained magnetic flux density on a clipping plane
of the studied domain.
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Figure 30: Distribution of the magnetic flux density (T ), plotted on a clipping plane.

Magnetic forces are the source terms for the elastic problem. In the literature different
methods are proposed regarding their calculation [73, 74, 75, 76, 77] Here we have used the
virtual work principle to calculate nodal forces [57]. The elastic problem can then be solved
with the static displacement formulation (27). We present, in Figure 31, the obtained stresses
on mesh M1.

Table 17 compares, on the two meshes, the obtained radial stress σrr at the center of the
cylinder to the analytical solution. Here by the numerical calculation on common meshes,
the final result for the magneto-mechanical problem is close to the analytical solution. The
relative errors is 3.3% on mesh M2 and 0.7% on the finer mesh M1. Thus in what follows we
consider that the solution of our magnetic and elastic models, as well as the calculation of
magnetic forces, are validated.

Table 17: Comparison with the analytical solution. Here the magnetic and elastic problems are solved
on the common mesh.

mesh σrr at r=0 relative error

M1 -2.71 N/m2 0.7%
M2 -2.64 N/m2 3.3%
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Figure 31: Obtained Von Mises stress (N/m2) in the cylinder.

Table 18: Comparison with the analytical solution. Here both meshes are used and the M1-to-M2

projection of B field is carried out.

mesh σrr at r=0 Relative error

M1-to-M2 with proj. -2.66 N/m2 2.2%

3.2.2 Magneto-mechanical calculation with M1-to-M2 projection

Secondly, using the projection techniques, we can now solve the problem with two meshes:
M1 for the magnetic problem and M2 for the elastic problem.

Remark 7 In terms of the communication between the two models, various strategies can be investi-
gated e. g. the projection of the magnetic potential, the magnetic field or the forces directly. As indicated
in Remark 6, in this work we focus on the mesh-to-mesh transfer of electro-magnetic quantities.

Here in our case, the magnetic flux density B is projected from M1 to M2. The magnetic
forces are calculated on M2 by applying the virtual work principle on the projected B field.
The elastic problem is then solved on the submesh of M2 which consists of the cylinder.
Regarding the implementation technique for the projection, here the intersection of M1 and
M2 is undertaken.

In Table 18 regarding the stress at the center, the calculation with the M1-to-M2 projection
is very close to the analytical solution.

Compared with the magnetic and elastic computations both on M1 (line 2 in Table 17),
here the solution strategy with projection is indeed less accurate. This is because M1 is finer
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than M2. In the M1-to-M2 field projection, accuracy losses should not be ignored between
the source and target meshes. Similar phenomena can be remarked in Chapter 2.

The advantage of using the M1-to-M2 projection strategy, is shown by the greater precision
in comparison with the solution on M2 alone (line 3 in Table 17). As a matter of fact, using
both these two strategies the elastic problem is solved on M2. The M1-to-M2 projection is
advantaged because the magnetic problem is solved on M1, which is finer.

3.2.3 Conclusion

In this section we have treated a simple magneto-elastic example. The obtained results from
finite element analysis are compared with analytical solutions. Subsequently we have com-
pared the mesh-to-mesh field projection approach with the strategy of solving magnetic and
mechanical problems on common mesh.

In practice, solving several models on common meshes implies an important computa-
tional cost. The projection approaches can transfer magnetic fields from one mesh to another,
allow us to solve different models on different meshes. Moreover, in the studied example
the projection used provides great accuracy regarding the final result for the entire magneto-
mechanical problem.

3.3 two face-to-face iron cores

In Section 2.3.3, we considered an example of two face-to-face iron cores (Figure 14). For
this example, two cases were studied: a magneto-static problem and a magneto-harmonic
problem. For each case we solved the electromagnetic model and projected the results onto a
second mesh using energetic formulations. Now we can continue and calculate downstream
mechanical deformations and thermal temperature rises.

3.3.1 From the magneto-static problem to mechanical deformations

When the excitation currents are stable, the two iron cores are attracted by static magnetic
forces.

The magneto-static problem has been solved on mesh M1 using the scalar potential Ω-
formulation. The obtained magnetic field Hs is then projected onto mesh M2 using the ener-
getic approach. With the virtual work principle, the magnetic forces have then been calculated
(e. g. the forces on iron core 2 previously calculated are reminded in Figure 32).

Using these forces as the source terms in the mechanical model, we can calculate the
corresponding elastic deformations (Figure 33) and stresses (Figure 34). Here the von Mises
stress is a scalar stress value computed from the 3×3 stress tensor, in order to state the
distortion energy. In terms of boundary conditions, here we have embedded the right-hand
face of iron core 2.
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Figure 32: Magnetic forces (N) on iron core 2. They are calculated by applying the virtual work
method on the projected Ht field using the energetic formulation.

Figure 33: Displacement field (m) in iron core 2. Here the left-hand face is attracted by magnetic forces.

Figure 34: Von Mises stresses (N/m2) in iron core 2.
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3.3.2 From the magneto-harmonic problem to temperature rises

Subsequently, an alternating current were applied in the excitation coil.
The magneto-harmonic problem was solved on mesh M1 using the T-Ω formulation. The

energetic projection transfered the magnetic field onto mesh M2 with respect to the magnetic
energy. Moreover, the joule heating was well conserved between the two meshes (Figure 35).

Figure 35: Ohmic losses densities (w/m3) in the two iron cores. They are calculated from the “ener-
getically” projected Ht field.

The thus obtained joule heating can then be used as source terms in the thermal model.
After imposing a uniform initial temperature of 20°C and fixing the temperature at the air
box boundaries, the temperature evolution can be solved using the temperature formulation
(31). The maximum temperature can be traced as a function of time (Figure 36).
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Figure 36: Evolution of the maximum temperature (°C) versus time (s).

From the initial state to the static state, the evolution of the distribution of the tempera-
ture is shown in Figure 37. Here the temperature field is plotted on the clipping plane S of
Figure 14. The cylindrical iron cores are presented by rectangles in this case.

Due to the great thermal conductivity, the distribution of the temperature inside both iron
cores are almost uniform. Iron core 1 is heated faster because of the greater eddy currents
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(a) 5min (b) 100min

(c) 200min (d) 300min

(e) 400min (f) 500min

(g) 750min (h) 1000min

Figure 37: Evolution of the distribution of the temperature field T (°C), plotted on a clipping plane of
mesh M2.
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and the copper losses insider the coil. In the absence of convection, air is a good insulator
between the two iron cores.

3.3.3 Conclusion

Following the example of energetic projections presented in Section 2.3.3, here we have used
the projected fields as inputs for mechanical and thermal models. In the static problem the
projected magnetic field has been used for the calculation of magnetic forces and the cor-
responding elastic deformations. For the harmonic case the joule heating has allowed us to
simulate the temperature variations.

3.4 electromagnet facing an elastic plate

In Chapter 2, we presented different techniques for field projections - e. g. the space of pro-
jection can be L 2(D) or H 1(D) depending on the objectives to be satisfied. In the case of
L 2(D)-projections, we can use either the Ritz-Galerkin method or specific bi-orthogonal test
functions. Moreover, in terms of the mesh-to-mesh implementation, either the intersection
of meshes or the approximate integration on the target mesh can be used. Now we setup a
magneto-mechanical example, with which the influence of these techniques can be studied.

The example given concerns the calculation of the magnetic force acting on the embedded
plate of an electromagnet and the elastic deformations [53, 56]. The geometry of the electro-
magnet is shown in Figure 38. The yoke we used has an axial symmetry. A total current of
100 Ampere turns is applied to the excitation coil. The initial air gap between the yoke and
the plate is fixed at 1mm.

Coil

Plate

Yoke 

(clipped)

Figure 38: Geometry of the considered electromagnet.

Let us consider two different meshes: m1 (384k tetrahedrons) and m2 (133k tetrahedrons),
the first being for the magnetic computation and the second for the elastic problem. Here
we focus on the strategy involving the projection of B (Figure 39). In order to conserve the
energy (Section 2.3), the projections are weighted with 1/µ.
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Figure 39: Computation strategy using the projection of B.

The magneto-static problem is solved using the vector potential A formulation (11). The
elastic-static problem is solved using the displacement u formulation (27). The coupling terms
between the magnetic model and the elastic model are, as in the previous examples, the
magnetic forces. They are calculated on the plate using the virtual work principle from the
magnetic fields. In the elastic problem, assuming boundary conditions such that the sides are
clamped, these forces are then used as source terms for the calculation of the deformations.

For instance, the forces acting on the plate and the deformations calculated from the pro-
jected B are illustrated in Figure 40.

(a) magnetic forces

(b) elastic deformations

Figure 40: Magnetic forces on the plate and the induced deformations.
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3.4.1 Comparison of projection techniques

First, we compare the different projection techniques. As the magnetic flux density is in-
volved, we can carry out the projections in either L2(D) or H(div, D). For the L2(D)-projection,
we can use both the classic Ritz-Galerkin method and the Petrov-Galerkin method with bi-
orthogonal test functions. In terms of implementation, here the intersection of the two meshes
is calculated.

Table 19 compares the different projection approaches of B in such a magneto-elastic prob-
lem, In terms of the magnetic energy and the elastic deformations. The results obtained by
magneto-elastic computation on common mesh are also given for reference purposes.

Since m1 is finer than m2, the result obtained on m1 by the direct calculation (line 2 in
Table 19) is considered as the most accurate solution. In comparison to L2(D)-projections, the
H(div, D)-projection allows greater conservation of the divergence during the projection and
thus better precision when calculating the magnetic energy.

On the other hand, the projected field B, using all three methods, allows a precision level
which is equal in each case for the computation of the deformation. In fact, the deformation
is calculated from the magnetic forces and the forces are actually the derivative of the mag-
netic energy with respect to virtual displacements. The H(div, D)-projection allows better
conservation for the divergence of B and thus better precision with respect to the magnetic
energy. But this advantage is no longer valid for the deformations. Thus if we are interested
in the deformations, a L2(D)-projection is able to provide adequate accuracy. In this case the
use of the Petrov-Galerkin method with bi-orthogonal test functions is more interesting than
the classical Ritz-Galerkin method, because the computation cost is lower.

3.4.2 Comparison of implementation techniques

Second, Table 20 compares the different implementation techniques (Section 2.2). For this,
we restrict ourselves to the case of L2(D)-projections using the Ritz-Galerkin method. The
projection system is calculated either with the intersection of m1 and m2, or approximately
on m2. For the later technique, we can also employ different quadrature rules.

In terms of magnetic energy, since m1 is finer than m2, the result on m1 by the direct cal-
culation (line 2 in Table 20) is considered as the most accurate solution. In comparison to the
projection using approximate integration, the intersection of meshes allows greater conserva-
tion of the distribution of the magnetic flux density and thus better precision when calculat-
ing the magnetic energy. However, as we have seen in the analytical example (Section 2.2.2),
for the integration over the target mesh, more quadrature points can indeed improve the
sampling of the given field, and thus improve the accuracy of the obtained magnetic energy.

On the other hand, in comparison to direct calculation results, the projected B allows a
precision level which is equal for the computation of the deformation. As a matter of fact,
at the center of the plate, the displacements obtained using both implementation techniques
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and high-order quadrature rules are practically the same. The greater precision for the mesh-
to-mesh projection of the magnetic flux density, can barely ensure greater accuracy in order
to solve the deformation in the mechanical problem. In this case, the integration over target
elements shows a significant advantage regarding the computation time.

3.4.3 Conclusion

In this section we have studied the performance of different projection techniques through a
magneto-elastic example.

Previously in the analytical example (Section 2.1.6), the H(div, D)-projection gives greater
accuracy than the L2(D)-projection. This advantage is weaker here in our magneto-elastic
application. For the entire magneto-mechanical example with L2(D)-projections, the Petrov-
Galerkin method with bi-orthogonal test functions allows the same level of accuracy as the
Ritz-Galerkin method, and reduces the computation cost.

Regarding the implementation techniques, mesh-intersecting is still the best way to ensure
the accuracy of the field projection in our application but is computationally expensive. The
implementation technique of integration over target elements is less accurate but reduces
the computation cost. One compromise solution can be several projections with the later
technique but with different quadrature rules. The solution can be trusted if the different
quadrature rules have little influence on the final result. Moreover, the sum of the compu-
tation time is still preferable in comparison to mesh-intersecting, while also presenting the
advantage of being simple to implement.

3.5 double-excitation synchronous alternator

With all the tools previously presented, we can now study the magneto-mechanical phenom-
ena inside an electrical machine. The machine given concerns an alternator model under
development at Valeo.

One important issue to be solved for the design of this model, is the generalization of acous-
tic noises. Silence is nowadays a crucial element for the marketing of automotive alternators.
Thus several studies have been carried out in parallel for this alternator. At high speed ranges,
most noises have been identified as being of mechanical and aerodynamic origins. Neverthe-
less, for a velocity smaller than 6000tr/min, the magneto-mechanical interaction is the major
the major source for the vibrations.

3.5.1 Magneto-mechanical calculations

In order to calculate the mechanical vibrations issued from magnetic forces in this electrical
machine, the magnetic model and the mechanical model are coupled. For simplicity, here
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we use linear media in the magnetic model. In the mechanical model, only the stator is
considered. The meshes used are presented in Figure 41.

In the following, we consider that this alternator runs off-load at 1000tr/min. The rema-
nence for each permanent magnet is equal to 1.15T . The rotor is double excited, i. e. a current
of 5A is also applied to its coil.

For the accuracy of the magnetic computation, the air gap has been finely meshed in
Figure 41(a). Due to the symmetry of the magnetic study, only one layer of mesh is necessary.
On the contrary, in the mechanical computation, as only the stator is considered, the mesh
of the rotor and air gap is no longer necessary (Figure 41(b)). Multiple layers are however
required for the computation of deformations.

Remark 8 Here for the mechanical mesh the stator teeth are covered by at least one layer of air
elements. These air elements are not used in the mechanical computation. They are however useful for
the force calculation with virtual work principle.

In order to calculate the nodal forces, the virtual work principle consists of calculating the energy
derivatives in all neighboring elements (i. e. the patch of the node of interest). For this reason the air
elements surrounding the stator also contribute to the acting magnetic forces.

The computation strategy for the entire magneto-mechanical problem can be summarised
as Figure 42.

It can be recalled that in our case code_Carmel and code_Aster are the software packages
for the magnetic and mechanical calculations respectively.

To take into account the movement of the rotor with the fixed-step technique, the magnetic
mesh of the air gap is uniform. n=1656 steps is used in the magnetic computation. For each
step, a magnetic quasi-static problem is solved using the Ω-formulation (14) - e. g. , the
obtained magnetic flux density B at the first step is illustrated in Figure 43.

The obtained magnetic field H for each step is then projected to the mechanical mesh (edge
elements). In order to take into account the computation time, the L2(D)-projection and the
bi-orthogonal test functions have been used (Section 2.1). For the same reason the projection
systems are calculated on the mechanical mesh using the sampling-integration technique
(Section 2.2). Moreover, the energetic formulations have been used for the conservation of
magnetic energy and the accuracy of magnetic forces (Section 2.3).

Once the magnetic field H is projected onto the mechanical mesh, the magnetic forces can
be obtained by applying the virtual work principle. Figure 44 shows the distribution of the
forces for the first time step.

These forces obtained at different time steps can then be transformed into frequency do-
main. For instance, we can focus one node at the middle of a tooth, such as node 4899 in
Figure 44. Figure 45 plots its nodal force as a function of time and the corresponding fre-
quency spectrum.

After the fast Fourier transform, the obtained sample frequencies ranges from 0Hz to
13.78kHzwith an interval of 16.67Hz. These forces are source terms for the mechanical model.
Assuming that the stator is embedded by two faces, the vibrations can be calculated using the
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Figure 41: Meshes used in the magnetic and mechanical models.
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Magnetic problem

code_Carmel : n steps of movement

n * Projection

Magnetic fields (magnetic mesh)

n * Virtual work 

Temporal forces

Frequential forces

Fast Fourier Transform

Magnetic fields (mechanical mesh)

Deformations & vibrations

code_Aster : m frequencies

Figure 42: Computation strategy for the electrical machine.

modal analysis. Figure 46 and Figure 47 illustrate the deformation and acceleration at node
4899. The distribution of the vibrations inside the electrical machine can also be obtained by
harmonic calculations (Figure 48).

As the rotor rotates at 1000tr/min, the interval between two pole-facing positions for each
stator tooth is 5ms. The fundamental frequency for the magnetic forces and the vibrations
is thus 200Hz. Indeed, in comparison with Figure 47, in Figure 45 no magnetic force is vis-
ible at 9kHz. However, the acceleration is the second-derivative of the displacement and is
proportional to the square of the frequency.

Last but no least, we can illustrate the computation time consumed in such magneto-
mechanical analysis (Table 21).

Table 21: Computation time overview for the magneto-mechanical analysis (with a cpu of 2.4GHz
single thread).

electromagnetic model model coupling mechanical model

time (hour) 2.31 0.59 4.30

percentage 32.1% 8.1% 59.8%

In fact, in this application, for all the 1656 projections, the target mesh is always the same.
We have thus calculated only once the local bi-orthogonal test functions and the projection
system (requires 2 minutes). For the other time steps the projection time can be reduced to
less than 2 seconds. In this case, the total time cost of the projections is equal to 8.1% in the
entire magneto-mechanical analysis.
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Figure 43: Obtained magnetic flux density (T ) at the first time step (Collaboration with R. Fratila).
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Figure 44: Obtained magnetic forces (N) on the stator (mechanical mesh), calculated from the pro-
jected H field at the first time step.
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Figure 45: Module of the normal component of the force (N) on node 4899. Plotted as a function of
time (above) and the corresponding frequency spectrum (below).
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Figure 46: Module of the deformation (m) versus frequency (Hz) at node 4899 (collaboration with A.
Tan-Kim).
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Figure 47: Module of the acceleration (m/s2) versus frequency (Hz) at node 4899 (collaboration with
A. Tan-Kim).

3.5.2 Conclusion

Magnetic forces are important origins of vibrations and acoustic noises in electrical machines.
In this section we have simulated the magneto-mechanical phenomena inside a double-
excitation synchronous machine. In particular, the magnetic and mechanical models are
solved separately on their meshes.

The rotation of the rotor is taken into account using fixed time steps. The magnetic field for
each time step is projected onto the mechanical mesh using the previously studied techniques.
The projected magnetic field allows us to calculate the forces and the vibrations.

In terms of computation time, the presented projection approaches require times which
are relatively small percentages within the entire magneto-mechanical analysis.
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Figure 48: Distribution of the module of the acceleration filed (m/s2).





G E N E R A L C O N C L U S I O N S

The work presented in this thesis is focused on the model-coupling for finite element magneto-
mechanical and magneto-thermal analysis.

Under the hypotheses of weak-coupling interactions, magneto-mechanical and magneto-
thermal problems are divided into subproblems of which the physical nature differs. The
subproblems are solved separately with electromagnetic, mechanical and thermal models
(Chapter 1).

In the domain of finite element computation, the subproblems are very often solved with
respect to their specific regions of interest and thus on different meshes. To obtain a precise
computational result for the entire coupled problem, the information transmission and the
communication between the subproblems are of crucial importance. In this thesis, we present
field projection approaches for model coupling (Chapter 2).

To highlight some applications of field projections, numerical examples are studied through
magneto-mechanical and magneto-thermal problems (Chapter 3).

The main conclusions and original contributions of this thesis are summarized hereafter,
along with some future prospects.

conclusions

Computation of weak-coupling magneto-mechanical and magneto-thermal problems requires
field communication when the subproblems are discretized on multiple meshes. The field
projection approaches based on the Galerkin method presented in this thesis provide useful
tools for such cases.

• The classical Ritz-Galerkin projection is recalled in this thesis and extended to H(grad),
H(curl) and H(div) in order to obtain greater projection accuracy for the distributional
derivatives. Subsequently, local bi-orthogonal test functions are used to build a Petrov-
Galerkin projection system with a diagonal matrix.

Through the analytical examples, we have shown that the H(grad), H(curl) and H(div)

projections give greater accuracy than L2 or L2 projections regarding the obtained
derivatives. In the case of L2 or L2 projections, the Petrov-Galerkin method with bi-
orthogonal test functions allows the same level of accuracy as the Ritz-Galerkin method,
and reduces the computation cost.

• The accurate implementation of field projections requires the intersection of source and
target meshes. Another solution is to directly integrate over target elements, by means
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of sampling the source field distribution at quadrature points. Projection with the latter
technique is simpler but in general less accurate than mesh-intersecting.

Mesh-intersecting is still the only way to ensure the accuracy of the field projection
but is computationally expensive. The sampling-integration algorithm over target ele-
ments is less accurate but reduces the computation cost. In our opinion the compro-
mise solution should be several projections with the latter technique but with different
quadrature rules. The solution can be trusted if the different quadrature rules have little
influence on the final result. Moreover, the sum of the computation time is still prefer-
able in comparison to mesh-intersecting, while also presenting the advantage of being
simple to implement.

• In order to transfer electromagnetic fields between different meshes, energy-conserving
projection methods are presented in this work. The definition of energetic norms are
given for magneto-static problems as well as harmonic eddy current problems. Non-
linear cases are then investigated in order to take into account nonlinear magnetic
characteristics.

For magneto-mechanical and magneto-thermal modeling, the energetic formulations
presented ensure the accuracy regarding energy distribution for the mesh-to-mesh
transfer of electromagnetic fields.

contributions

Here is a list, with references to papers published in the frame of this thesis and section
numbers in this manuscript, for the contributions we believe to be (at least partly) original:

+ Generalized summary of projection formulations in different spaces. Besides L2 and
L2, in this work projections are also carried out in H(grad), H(curl) and H(div). These
extensions of projection theory allow greater accuracy for derivatives. More details are
presented in Section 2.1.2. This is published in [53] and connected to [9].

+ Local bi-orthogonal test functions for L2 and L2 projections. Within the framework of
the Petrov-Galerkin method, special test functions are constructed in order to simplify
projections. Using this approach, the projection map is turned into a diagonal matrix.
However, using the classical method, a linear system must be solved. We refer to Sec-
tion 2.1.4 for further explanations. This has led to publication [53].

+ Comparison of two implementation techniques for mesh-to-mesh field projections. In
practice the accurate implementation of the projection requires the intersection of source
and target meshes and is computationally expensive. Another solution is to directly in-
tegrate over target elements, by means of sampling the source field distribution on
quadrature points. In this work we have compared these solutions in terms of accuracy,
speed and simplicity of realization. See Section 2.2. This is published in [56].
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+ Energy-conserving projections for electromagnetic fields. The definition of energetic
norms are given for magneto-static problems as well as harmonic eddy current prob-
lems. Nonlinear cases are then investigated in order to take into account nonlinear
magnetic permeability. This is presented in Section 2.3 and has led to publications
[58, 59].

future prospects

Several subjects for future research can be considered:

- The field projections presented can be enhanced in the time domain. In this work pro-
jections allow us to transfer fields between different meshes. Space-time projections
would enable transferring between different time discretization bases.

- The space norm defined in this work can be modified into other forms. For instance, the
norm of H(div) used in this thesis contains of the volume integration of the divergences.
This could be replaced (improved) with a plane integration of the discontinuities of
fields at the element boundaries.

- High-order bi-orthogonal functions can be sought in the spaces H(grad), H(curl) and
H(div). Unlike the linear degree-one bi-orthogonal functions used in this thesis, high-
order ones can take into account the continuity of derivatives at boundaries. This re-
duces the computation cost for high-precision H(grad), H(curl) and H(div) projections.





A
A P P E N D I X : B I - O RT H O G O N A L F U N C T I O N S

Bi-orthogonal functions are demonstrated in this appendix for nodes, edges and facets.
In particular, the nodal functions presented can be directly used for projections in a gen-

eral way. For edges and facets, as the coordinate transformation is much more complex,
the corresponding bi-orthogonal functions have to be determined on real meshes. Here we
demonstrate the determination process of edge and facet functions, in the framework of the
example previously presented in Section 2.1.4.

nodal bi-orthogonal functions

Nodal bi-orthogonal functions are given in this part for a reference triangle and tetrahedron.
In this thesis, they are used as test functions for L 2(D) projections with the Ritz-Galerkin
method onto the node elements.

Triangles

Let (0, 0), (1, 0) and (0, 1) be the three nodes of the reference triangle. The nodal Whitney
functions are:

wn1 = 1− ξ− η

wn2 = ξ

wn3 = η

(102)

The corresponding bi-orthogonal functions are:
ψnB1 = 18− 24ξ− 24η

ψnB2 = 24ξ− 6

ψnB3 = 24η− 6

(103)
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Tetrahedrons

For the reference tetrahedron, let (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1) be the four nodes. The
nodal Whitney functions are:

wn1 = 1− ξ− η− ζ

wn2 = ξ

wn3 = η

wn4 = ζ

(104)

The corresponding bi-orthogonal functions are:
ψnB1 = 96− 120ξ− 120η− 120ζ

ψnB2 = 120ξ− 24

ψnB3 = 120η− 24

ψnB4 = 120ζ− 24

(105)

edge bi-orthogonal functions

In general, edge bi-orthogonal functions are determined on real meshes. Figure 49 recalls the
2D mesh previously used in Section 2.1.4.

Figure 49: Mesh of two triangles. They share a common edge.

We determine the bi-orthogonal functions separately on both sides of the common edge.

Triangle on the left: K1

For the triangle on the left side, the nodal functions are:
wn1 = 1+ x− y

wn2 = −x

wn3 = y

(106)
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The edge functions can thus be constructed:
wa1 = wn1 grad wn2 −wn2 grad wn1 = (y− 1)ex − xey

wa2 = wn1 grad wn3 −wn3 grad wn1 = −yex + (x+ 1)ey

wa3 = wn2 grad wn3 −wn3 grad wn2 = yex − xey

(107)

Let us write the bi-orthogonal function associated with edge 2 (oriented from n1 to n3) as
the linear combination of the edge functions:

ψeB2 = a wa1 + b wa2 + c wa3 (108)

with a, b and c the coefficients to be determined.
By definition, ψeB2 satisfies:

∫
K1

ψeB2 ·w
a
1 = 0∫

K1

ψeB2 ·w
a
2 = 1∫

K1

ψeB2 ·w
a
3 = 0

(109)

We can thus obtain the solution for the coefficients:
a = −2

b = 4

c = 0

(110)

and the bi-orthogonal function associated with edge 2 (left-hand side):

ψeB2 = (2− 6y)ex + (6x+ 4)ey (111)

Triangle on the right: K2

For the triangle on the right side, the nodal functions are:
wn1 = 1− 2x− y

wn4 = 2x

wn3 = y

(112)

The edge functions can thus be constructed:
wa4 = wn1 grad wn4 −wn4 grad wn1 = (2− 2y)ex + 2xey

wa2 = wn1 grad wn3 −wn3 grad wn1 = 2yex + (1− 2x)ey

wa5 = wn4 grad wn3 −wn3 grad wn4 = −2yex + 2xey

(113)

Let us write the bi-orthogonal function associated with edge 2 (oriented from n1 to n3) as
the linear combination of the edge functions:

ψeB
′
2 = a

′ wa4 + b
′ wa2 + c

′ wa5 (114)
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with a ′, b ′ and c ′ the coefficients to be determined.
The equations to be solved are:

∫
K2

ψeB
′
2 ·w

a
4 = 0∫

K2

ψeB
′
2 ·w

a
2 = 1∫

K2

ψeB
′
2 ·w

a
5 = 0

(115)

We can thus obtain the solution for the coefficients:
a ′ = −8/5

b ′ = 28/5

c ′ = 12/5

(116)

and the bi-orthogonal function associated with edge 2 (right-hand side):

ψeB
′
2 = (

48

5
y−

16

5
)ex + (

28

5
−
48

5
x)ey (117)

Comparison with Whitney functions

The Whitney functions and obtained bi-orthogonal functions are illustrated in Figure 50.
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Figure 50: Whitney functions and bi-orthogonal functions associated with the common edge.

For both triangles, we can remark that the tangential component of the Whitney function
is zero at the bottom boundary. This is however not the case for bi-orthogonal functions:
their tangential components are not continuous from one element to another. The gradient
operator is thus non-applicable at the boundaries.

facet bi-orthogonal function

In the same was as for the edges, the determination of the facet bi-orthogonal functions can
be demonstrated on the 2D mesh (Figure 49). For the sake of simplicity, a new point n5(0, 0, 1)
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is considered. The two triangles thus become the bottom of two tetrahedrons which share a
common facet.

We can now determine the bi-orthogonal functions separately on both sides of the common
facet.

Tetrahedron on the left: K1

For the tetrahedron on the left side, the nodal functions are:
wn1 = 1+ x− y− z

wn2 = −x

wn3 = y

wn5 = z

(118)

The Whitney functions can thus be constructed on each facet:
wf1 = (2x)ex + (2y)ey + (2z− 2)ez

wf2 = (−2x)ex + (2− 2y)ey + (−2z)ez

wf3 = (2x+ 2)ex + (2y)ey + (2z)ez

wf4 = (−2x)ex + (−2y)ey + (−2z)ez

(119)

where facet f1 is constructed by n1, n2 and n3; f2: n1, n2 and n5; f3: n1, n3 and n5; f4: n2,
n3 and n5.

The bi-orthogonal function to be determined at facet 3 is then described as the linear
combination of Whitney functions and solved using a 4×4 linear system. The result is given
as follows:

ψfB3 = (
20

3
x+

14

3
)ex + (

20

3
y−

5

3
)ey + (

20

3
z−

5

3
)ez (120)

Tetrahedron on the right: K2

For the tetrahedron on the right side, the nodal functions are:
wn1 = 1− 2x− y− z

wn4 = 2x

wn3 = y

wn5 = z

(121)

The Whitney functions can thus be constructed on each facet:
wf5 = (−4x)ex + (−4y)ey + (4− 4z)ez

wf6 = (4x)ex + (4y− 4)ey + (4z)ez

wf3 = (2− 4x)ex + (−4y)ey + (−4z)ez

wf7 = (4x)ex + (4y)ey + (4z)ez

(122)
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where facet f5 is constructed by n1, n4 and n3; f6: n1, n4 and n5; f7: n4, n3 and n5.
The bi-orthogonal function associated with facet 3 at the right side is calculated:

ψfB
′
3 = (−

80

9
x+

64

9
)ex + (−

80

9
y+

20

9
)ey + (−

80

9
z+

20

9
)ez (123)

Comparison with Whitney functions

The Whitney functions and obtained bi-orthogonal functions are illustrated in Figure 51.
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Figure 51: Whitney functions and bi-orthogonal functions associated with the common facet.

The normal component of the Whitney functions is continuous at the common facet and
strictly zero for all other facets. Neither condition is however satisfied for bi-orthogonal func-
tions. The thus determined bi-orthogonal functions are not members of H(div, D).
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