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Chapter 1

Introduction

The PhD Thesis, presented in this document, deals with Large-Scale Combinatorial
Optimization on Computational Grids. It has been completed within the DOL-
PHIN 1 research group from CNRS/LIFL , Inria Lille-Nord Europe and Université
Lille 1. The presented works are part of the Inria HEMERA large-scale initiative,
which involves several research teams using the Grid’5000 French experimental grid
infrastructure.

Combinatorial Opimization Problems (COPs) are often NP-hard. Depending
on the expected quality of the solutions, resolution methods for these problems fall
into two categories: near-optimal methods, also referred to as heuristics, and exact
methods. There also exists hybrid methods which combine complementary elements
from multiple methods. Among heuristics, one can find metaheuristics which can
be applied to a greater variety of problems. These methods are often used to tackle
large problems and can produce good solutions within a short amount of time but
these solutions are rarely optimal. On the contrary, exact methods allow to find
optimal solutions along with the proof of optimality. However, their cost in terms
of computation time is huge which makes them unpractical.

Large-scale parallelism, based on computational grids, appears to be a useful
tool to face the processing cost issue of exact optimization methods. A grid can be
seen as a set of resources located on multiple geographical sites, connected through
a large-scale network and characterized by their volatility and heterogeneousness.
Exploiting the potential computing power of such an environment requires the
design of parallel algorithms which deal with the issues of volatility (for Fault-
Tolerance purposes), heretogeneity (for Load Balancing purposes) and efficient
communication management (for Scalability purposes).

During a resolution process, the irregularity of the search tree explored by
exact methods as well as the heterogeneity of computational grids and their
volatility, induce a huge amount of load balancing and checkpointing operations
[Mezmaz 2007a]. All these operations imply high amounts of communications
for storing and transferring work units between computing entities. Besides,

1Discrete multi-objective Optimization for Large-scale Problems with Hybrid dIstributed tech-
Niques
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the cost of such communications may be even much more important due
to the scale of a grid and its communication delays. It becomes crucial to
design appropriate mechanisms to deal efficiently with these issues. Most
of existing works propose approaches based on the Master-Slave paradigm
[Mezmaz 2007b, Drummond 2006, Mans 1995, V.K. Janakiram 1988], where,
however, the roles of the master and the slave entities can vary greatly from one
approach to another. In a general way, a slave entity is in charge of applying
a given optimization method on a subproblem for the problem being solved. It
computes a partial result which is sent to the master entity. The latter manages
global information and is in charge of balancing workload among slave entities as
well as detecting the termination of the computation (the moment when all the
solutions have been explored).

However, every approach based on the Master-Slave paradigm faces a major
limitation, related to scalability. Indeed, harnessing a huge amount of computa-
tional power to perform a task requires an intensive process of synchronization
between the computing entities. In the case of an exact method, it consists in
sharing the best solution found among all entities, balance the load over the
network, handle checkpointing operations for fault-tolerance purposes. These tasks
generally induce a communication bottleneck on the master entity, degrading
significantly the performance of the approach.

To overcome this limitation, two classes of approaches have been explored in
the literature. The first one consists in introducing additional levels of centraliza-
tion. Such algorithms are better known as hierarchical Master-Slave algorithms
[Bendjoudi 2009]. Additional "sub-master" processes are in charge of overseeing
only a part of the whole network, including communication operations. These
processes send synthesized information to the global master. This kind of approach
reduces the communication load upon the global Master but introduces delays
in processing slaves’ requests as communications have to cross multiple levels of
hierarchy.

The second class includes Peer-to-Peer (P2P) approaches. The Peer-to-Peer
paradigm is usually used for data sharing. In this thesis, we believe that it can be
used for computation purposes, as in [Nguyen 2012].In [Di Constanzo 2007], the
main idea is to provide a generic platform, so that communications induced by a
parallel algorithm can be handled into a P2P fashion, using routing mechanisms.
In their experiments, they validate the platform by using a Master-Slave based
Branch-and-Bound algorithm, named Grid’BnB. Computing entities act as peers,
each one having a set of neighbors. At the application level, one of these peers acts
as the master entity and other peers act as slaves. Thus, whenever a slave peer
needs to communicate with the master, its message is relayed through multiple
peers before being delivered to the master. The main drawback of such an approach
is that the communication load on the master entity is momentarily reduced,
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but it is distributed through time. Indeed, for a given number of slaves, this
architecture simply allows one to delay the requests from the slaves located far
away from the master in the Peer-to-Peer overlay network so that the master
can process incoming requests within a more reasonable amount of time. The
main issue inherent to a Master-Slave architecture, that is the communication
bottleneck preventing the approach from being scalable, is not overcome. Another
Peer-to-Peer approach has been designed by Bendjoudi et al. [Bendjoudi 2009].
The application is based on a Master-Slave architecture but direct communications
between the computational entities are allowed for sharing the best solution and
other collaboration tasks to reduce the load on the master. The main limitation
is that this kind of optimization can be performed only in specific situations by
defining a sort of P2P communication layer beneath the application level. The
main operation of the algorithm still relies heavily on the master entity and thus,
remains an obstacle to scalability. Moreover, to the best of our knowledge, none of
these works provide a formal proof of the correctness of the designed approaches.

In this thesis, we propose a new approach to overcome this limitation of
scalability. The approach is completely decentralized, that is computational
entities operate in a fully Peer-to-Peer fashion. Designing adequate mechanisms
under such a decentralized architecture is very challenging. Indeed, there is no
entity in the network which has a global view of the network. In the case of the
Branch-and-Bound algorithm, no entity can determine immediately what the best
solution found so far is nor if the termination of the calculation has occurred.
Whereas those two tasks can be handled easily in a centralized2 environment,
they become major challenges in a fully decentralized one. Thus, to face these
challenges, our approach provides the following mechanisms. Each peer is in charge
of handling a local work pool and sharing it with other peers. Global information,
like the best solution found so far by the optimization method, is broadcast over
the network by the peers. Termination detection is handled in an innovative
and decentralized way. Each peer can detect locally the presence or absence of a
work unit somewhere in the network only by communicating with its neighbors
and using some of the network overlay’s properties. Performing all the required
synchronization operations in a fully distributed manner allows to harness resources
at very high scales by reducing significantly the communication load upon the
computational entities. In addition, we propose a formal proof of the correctness
of our approach, that is, the termination of the computation is detected in an
appropriate way, the exploration process is achieved in a finite amount of time and
no deadlock situations can occur during communication operations.

Moreover, we provide an extensive experimental study on the influence of
the network overlay’s topology on the scalability of our approach. Indeed, to the
best of our knowledge, almost none of the existing works take into account the

2Whether Master-Slave or hierarchical architectures.
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way in which computing entities communicate with each other. Most works using
decentralized architectures simply conduct experiments using a predefined P2P
overlay and present the subsequent results as a proof of concept of the involved
distributed algorithm. We consider various topologies among the most commonly
used in the literature. Experiments show that our approach can operate indepen-
dently from the used topology and that best results are achieved using small-world
graphs, which offer the best compromise for distributing communications over the
network.

Finally, we extend our approach to dynamic environments, that is where re-
sources are volatile. We design additional mechanisms for checkpointing operations,
reassigning work units from failed peers, and handling efficiently the joining or the
departure of peers from the network. Experiments demonstrate the robustness of
the approach when facing real-case as well as "failure-intensive" scenarios.

This thesis is organized into 7 chapters. Chapter 2 introduces some key con-
cepts dealing with Combinatorial Optimization as well as Grid Computing. It also
provides an overview of existing works among Master-Slave based approaches and
P2P-based approaches. Chapter 3 describes our fully Peer-to-Peer approach into a
static environment, that is where all the resources are considered to be reliable, as
well as a complexity study in terms of time and messages. Chapter 4 details the
formal proof of the correctness of our approach. Chapter 5 provides an extensive
experimental study of our approach and the impact of the network topology on its
performances. Chapter 6 describes our Fault-Tolerant approach and the different
mechanisms designed to handle resources volatility. We also demonstrate the
robustness of our approach by simulating various failure scenarios. In Chapter
7, we summarize the major achievements of our contributions in this thesis and
give some perspectives. Appendix A provides an additional study of Peer-to-Peer
protocols.
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2.1 Introduction

Many real-world problems can be modeled as Combinatorial Optimization Problems
(COPs). Solving such problems in an exact manner may be computing-intensive
and time-consuming and thus requires a huge amount of computational resources to
be achieved. More and more computational resources can be made available from
computational grids, clusters, personal computers connected through the internet,
etc. Solving difficult and large scale combinatorial problems on these environments
requires the design of efficient and scalable distributed algorithms that can be ef-
fectively deployed over large scale distributed environments. In this chapter, we
introduce some key concepts at the crossroads of Combinatorial Optimization and
Distributed Computing related to the issues underlying the design and the deploy-
ment of such algorithms. More precisely, Section 2.2 introduces the main concepts
related to Combinatorial Optimization and particularly, the Branch-and-Bound al-
gorithm. Section 2.3 introduces some concepts related to Grid Computing and
presents an overview of Grid environments and some state-of-the-art works related
to the parallelization of the B&B algorithm. Section 2.4 introduces more technical
elements to be used in our contributions. More precisely, we introduce some elements
from an existing approach and problem-encoding procedure which our contributions
are based on.

2.2 Combinatorial Optimization and the Branch-and-
Bound Algorithm

2.2.1 Preliminaries

Generally speaking, in Combinatorial Optimization, also referred to as discrete opti-
mization, the goal is to find one or several configuration(s), among a finite but large
set of possible configurations, optimizing a given objective function. A configuration
is termed as a solution of the problem being considered and belongs to a mathe-
matical space called solution space. Selecting a solution depends on its cost, which
is defined by an objective function. Solving a combinatorial optimization problem
then turns out to be the process of finding a solution with an ’accurate’ value of its
objective function. Depending of the expected accuracy, resolution methods can be
classified into two categories (See Figure 2.1):

• Exact methods: Exact methods allow to obtain a set of solutions which are
optimal with respect to the objective function. In other words, the output
solutions are guaranteed to maximize (or minimize) the objective function. In
this class of methods, one can cite Branch-and-Bound algorithms, constraint
programming, dynamic programming, etc. Although an exact method allows
to solve a given problem to optimality, it however requires to enumerate (in
an implicit or explicit way) all the possible solutions for the problem being
solved.
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• Approximate methods: Approximate algorithms, also referred to as heuris-
tics, allow one to obtain "good" solutions without strong guarantees on the
optimality of computed solutions. They can be applied to problems for which
the size of the solution space is subsequent. Some of these heuristics can be
designed to solve a specific type of problems while others are more generic.
The latter are called metaheuristics. These methods can operate in two dif-
ferent ways. They can be single-solution based, meaning that one solution
is initially considered and then improved iteratively along with the solution
space exploration process (Tabu search, simulated annealing, steep descent
methods, hill climbing, etc). The other type is called population-based, mean-
ing that an initial set of solutions is considered and then, all these solutions
are improved simultaneously or independently, during the exploration process
(Particle Swarm optimization, Ant Colonies, Evolutionary Algorithms, etc).

Figure 2.1: Taxonomy of resolution methods in combinatorial optimization.

The goal of this thesis is to design efficient exact algorithms for combinatorial
optimization problems. In fact, although exact methods allow one to find a solution
with optimality guarantees, they are computing intensive and very time consum-
ing when tackling hard and large scale problem instances. In this context, parallel
computing is more than just a possible alternative, it is in fact crucial to not say
mandatory to solve such instances. The contribution of this thesis lies precisely in
the design of parallel Branch-and-Bound algorithm in large scale distributed envi-
ronments. In the next section, we give a brief overview of how a B&B algorithm
operates before switching to a literature review on parallel approaches for B&B.

2.2.2 The Branch-and-Bound Algorithm

2.2.2.1 Main Operation

Let us consider a set S of all candidate solutions with respect to an optimization
problem and a real-valued objective function f which associates a numerical value
to every solution in S. Remark that a candidate solution is not necessary a feasible
solution with respect to problem constraints, but all possible feasible solutions are
assumed to be included in the set S. Without loss of generality, our goal is to
find the solution(s) in S minimizing the value of the f function: argminf (S) =
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{
s ∈ S | f(s) = min

r∈S
f(r)

}
. In the following, we assume that the set S of feasible

solutions is finite, thus making our problem be a discrete optimization problem. The
Branch-and-Bound algorithm [Gendron 1994, Papadimitriou 1998, Ralphs 2003] can
be viewed as an implicit enumeration of all the possible solutions in S in order
to find the best one(s) w.r.t function f . This algorithm takes its origins in the
years 1960’s: Land and Doig [Land 1960] designed an iterative algorithm to solve
what they refer to as "Discrete Programming Problems". Dakin [Dakin 1965] later
proposed improvements to this algorithm and proposed a tree-based algorithm for
mixed integer programming. Those two algorithms were among the first one to be
classified as "Branch-and-Bound" techniques, as defined by Little, Murty, Sweeney
and Karel [Little 1963].

From a more technical point of view, this algorithm decomposes the original
optimization problem into several subproblems of smaller size. The resulting search
tree is explored by building a tree where the root node represents the entire prob-
lem to solve, inner nodes represent subproblems and leaves represent solutions for
the problem being solved. This exploration process can be decomposed into four
mechanisms: branching, bounding, elimination and selection.

1. First, the algorithm performs the branching operation. It is also referred to
as decomposition and consists in partitioning the set of feasible solutions for a
given problem into smaller subsets (subproblems) on which the same optimiza-
tion problem applies. These subproblems are recursively decomposed until the
solution level is reached (leaves in the search tree), or these subproblems are
not likely to improve the best solution found so far.

2. Second, the algorithm bounds the generated subproblems. It computes a
lower bound of the optimal solution for the problem, using data available
from the generated subproblem. Different bounding functions are available
in the literature. We use the well-known lower bound proposed by Lageweg
et al. [Lageweg 1978] for the Flow-Shop Scheduling problem, based on the
Johnson’s algorithm [Johnson 1954].

3. Third, the B&B proceeds with an elimination process. The purpose is to
avoid exploring subproblems that will likely not lead to the discovery of the
optimal solution. This process is achieved in two steps. The algorithm (i)
determines whether the solutions are feasible or not (and then discards non-
feasible solutions) and (ii) compares for the remaining subproblems their lower
bound with the best solution found so far1 and discards subproblems whose
bound is greater (for minimization problems).

4. The last step of the B&B exploration process is to determine a policy for
exploring the remaining subproblems to be explored. More precisely, one
has to determine which problem will be selected for exploration. Multiple

1Solution which can be seen as an upper bound of the optimal solution.
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strategies exist in the literature and are described in detail in the following
section.

Therefore, the Branch-and-Bound algorithm consists in recursively branching
and bounding (sub)problems aside eliminating some of these and exploring the re-
maining ones according to a predefined strategy.

The previous exploration steps are repeated until all solutions are explicitly or
implicitly visited. The B&B is then guaranteed to output the optimal feasible solu-
tion(s) for the problem being solved. It should be clear from the previous discussion
that the B&B exploration process can be seen as a tree-based process. In fact, the
original problem (whole set S) can be seen as the root of the tree and the subprob-
lems resulting from its decomposition as its direct children nodes. The subproblems
resulting from the decomposition of a subproblem can be recursively considered as
children nodes, and so on until we end up with single solutions being the leaves of
the tree.

Figure 2.2: General illustration of the operation of the Branch-and-Bound algorithm
for a 3-element permutation-based problem.

2.2.2.2 Exploration Strategies

After a problem is decomposed into subproblems, it is necessary to determine which
subproblem will be explored next, according to a specified strategy. Three main
exploration strategies can be distinguished:

• Depth-First Strategy: This policy assumes the existence of an arbitrary or-
der among subproblems. When a problem is decomposed into several subprob-
lems, this strategy consists in always exploring those subproblems according
to the so-defined order. Let us consider a set of n subproblems ordered from
S1 to Sn at some iteration of the B&B algorithm. This strategy then begins
exploring subproblem S1 first. If this subproblem can be decomposed further,
then the first (with respect to the considered order) of its subproblems will
be explored first, then the second subproblem and so on recursively until the
subtree rooted at S1 is completely explored. When the exploration is done
with subproblem S1, then and only then the second subproblem S2 can be
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explored. The procedure is then recursively applied until the whole tree is ex-
plored. Note that this exploration process is independent from the numbering
of the subproblems. Here, problems are labeled according to the order they
were generated by the problem decomposition mechanism, that is S1 is the
first subproblem generated during the decomposition.

• Best-First Strategy: This strategy relies on the lower bounds obtained when
evaluating generated subproblems. It assumes that, when a set of subproblems
is generated, the optimal solution has a greater probability to be contained in
the subproblem having the "best" (lowest) lower bound. When this subprob-
lem is explored, the algorithm explores the subproblem whose lower bound
is immediately higher than the previous one, and so on. This policy implic-
itly assumes that the bounding function is discriminating, meaning that, all
the subproblems resulting from the same decomposition have different lower
bound values. Nevertheless, this limitation can be overcome by defining a
sub-policy to deal with equal priority subproblems.

• Breadth-First Strategy: This policy does not introduce any arbitrary order
in the exploration of subproblems. When a problem is decomposed into several
subproblems, all the generated subproblems are first evaluated then some may
be discarded by the B&B algorithm. The others are again decomposed into
new subproblems. More technically speaking, let us consider a problem B.
The strategy consists in generating its Bi∈[1,n], n ∈ N subproblems at once,
evaluating them all, possibly branching them and then, for all the remaining Bi

subproblems, their subproblems Bi,j∈[1,n′] are generated and so on. The main
advantage of this strategy is that it generates many large subproblems at the
beginning of its execution. In the case of the Branch-and-Bound algorithm, it
enables the branching operator to discard potentially large sets of solutions and
speed up the resolution process. One can note that this exploration strategy
requires to store a potentially sizeable list of subproblems in memory.

Now that we reviewed the main generic components of a Branch-and-Bound
algorithm, we give an overview on which parts of the algorithm can be parallelized
and how this parallel strategies can be effectively deployed. This is the goal of the
next Section where we start providing a general overview of grid-based environments.

2.3 Parallel Branch-and-bound literature overview

In this section, we give an overview of the different works existing in the literature
as well as the parallel models of Branch-and-Bound algorithms. Deploying parallel
B&B algorithms requires to take into account the characteristics of the target exe-
cution environment. Therefore, we shall first study these parallel environments as
well as their characteristics.
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2.3.1 Large scale Grid Environments

A Grid can be viewed as a set of computational resources scattered over several
geographically distributed sites and connected through a wide-area network. In the
following, we present the main properties defining more precisely a grid environment
[Melab 2005].

2.3.1.1 Multiple administrative domains

First, the computing resources in a grid environment are typically distributed among
multiple administrative domains and managed by different organizations. With re-
spect to this property, one major issue appearing in grid computing is security. In
fact, very often, users and resources providers can be clearly identified, which al-
lows one to improve security. Nevertheless, communicating between multiple sites
typically through firewalls can be an obstacle and pauses challenging issues. In
global computational systems like XtremWeb [Fedak 2003], which are based on
Internet-wide cycle stealing, this issue can be overcome quite easily as these sys-
tems are based on voluntary computing, meaning that computational units initiate
communications from inside the administrative domain. In Condor [Litzkow 1988],
multiple approaches for harnessing multi-domain resources as if they all belong
to a unique domain, have been designed such as Condor-G and Condor Glide-in
[Frey 2002] or flocking. The two first approaches are coupled with the Globus plat-
form [Foster 1997] whereas the latter solution consists in implementing a resource
manager for each administrative domain. These resources managers exchange the
tasks which can not be processed locally.

2.3.1.2 Heterogeneity

A grid is by essence heterogenous. Resources heterogeneity, whether at the hardware
level or the software level, can be viewed as the consequence of the large variety of
equipments composing the grid and the large variety of software tools that could
be run on them. A grid can integrate hardware from multiple vendors, run various
operating systems, and use different network protocols for remote communication,
etc. In contrast, a single site of the grid is often composed of homogeneous resources,
mostly aggregated into clusters.

2.3.1.3 Large-Scale systems

Due to the number of available computational units and the wide-area network in-
terconnection infrastructure, a computational grid is a large-scale system. Depend-
ing on the considered scale, a distinction is generally made between computational
grids on the one hand, and global/P2P computing systems on the other hand. Those
latter are usually believed to enable the aggregation of much more computational
resources and are dedicated to voluntary computing. One of the most famous vol-
untary computing systems is SETI@Home [Milojicic 2008, Anderson 2002]. We can
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also cite XtremWeb [Fedak 2003] which can be considered as a voluntary computing
system but serves more general purposes as it aims to convert any set of resources
into a fully operational grid-like environment. In such large scale systems, com-
puting intensive applications are not guaranteed to scale with the system. This is
typically due to communication latency and load imbalance issues occurring in such
heterogenous and large scale networked systems. Designing distributed protocols
which are both scalable and efficient is one of the most challenging tasks to achieve
high performance using grid environments.

2.3.1.4 Dynamic environment

The last major property characterizing a grid environment is resources’ volatility.
By volatility, we mean the fact that computing resources are not expected to be
always available for the application. This is due to hardware crash, software issues
or any other system variance. Volatility should not be viewed as unlikely or as
an exception in a grid environment. In fact, the probability that resources are
operational and available for the application is usually observed to decrease as the
amount of aggregated resources increases. Volatility poses several challenging issues
such as: dynamic resource discovery, fault tolerance, data recovery, synchronization,
etc. These issues are difficult to deal with at a hardware level as they are mainly
dependent on the nature of the application being executed. They are instead tackled
mostly at the application level.

2.3.2 Parallel models for the B&B

The Branch-and-Bound algorithm can be parallelized according to multiple mod-
els, each one focusing on a specific element of the algorithm. Here, we give
an overview of these different models based on the classification proposed by
[Gendron 1994, Cung 1994, Melab 2005]. Four models have been identified: multi-
parametric parallel model, tree-based exploration parallel model, parallel bounds eval-
uation model and the parallel evaluation of one bound.

2.3.2.1 Multi-parametric parallel model

The multi-parametric parallel model, not often studied in the literature, consists
in considering multiple B&B algorithms (See Figure 2.3), which is a coarse-grained
model. Multiple variants of this model can be derived by modifying one or several
parameter(s) of the algorithms. These algorithms may only differ through the sep-
aration operator (used to split a problem into sub-problems) in [Miller 1993], the
selection operator (determining the order in which sub-problems are explored) in
[V.K. Janakiram 1988] where a variant of the depth-first strategy is used for explo-
ration. Each algorithm randomly selects the next subproblem to explore among the
last generated subproblems. In [Kumar 1984], each algorithm uses a different upper
bound in the experiments. The main idea is that only one algorithm uses the best
solution found so far while others use this value increased by a value ε > 0. Another
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version of this parallel model consists in splitting the interval composed of the lower
bound for the problem and the best solution found so far into sub-intervals. Each
sub-interval is assigned to one of the algorithms.

Figure 2.3: Illustration of the Multi-Parametric parallel model.

The main advantage of the multi-parametric parallel model is its genericity,
enabling its use transparently for the user. Its main drawback is the additional
cost of exploration as some nodes of the exploration tree are visited multiple times.
Besides, as the number of algorithms involved is low, this model shall be used on
grids along with other parallel models.

2.3.2.2 Tree-based exploration parallel model

The tree-based exploration parallel model consists in exploring in parallel multi-
ple subtrees corresponding to subsets of the search space for the problem. (See
Figure 2.4). This implies that the separation, selection, evaluation and branch-
ing operations are executed in parallel, (a) synchronously by different algorithms
exploring these sub-spaces. In the synchronous mode, the Branch-and-Bound algo-
rithm contains multiple phases. During each phase, algorithms perform exploration
independently from each other. Between the phases, algorithms synchronize to ex-
change information, like the best solution found so far. In the asynchronous mode,
algorithms communicate unpredictably.

In comparison with other models, the tree-based exploration parallel model is
more attractive and is the main focus in many works for two main reasons. On
the one hand, the degree of parallelism of this model can be very high for large-
scale problems, which could justify by itself the use of a computational grid. On
the other hand, the implementation may be faced to multiple parallel programming
challenges. Among these issues, one can cite the localization and the management of
the list of sub-problems to solve, the load balancing, the communication of the best
solution found, the detection of the algorithm’s termination, and the fault tolerance.
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Figure 2.4: Illustration of the Tree-Based Exploration parallel model.

In [Gendron 1994], one can find an analysis of synchronous and asynchronous
Branch-and-Bound algorithms. It appears that synchronization comes to be useless
and inefficient on homogeneous machines with message passing features, consisting
of less than 32 processors. Its usage on computational grids (heterogeneous and
volatile) is not recommended. Still in this article, a study has also been conducted on
the problem of localizing and managing the remaining sub-problems. Two categories
of algorithms have been identified: those using a unique list of subproblems, shared
by all processes and those using multiple lists. In the conclusions of this study, the
authors claim that the use of a single list can be interesting for problems where
the calculation of the bound is not trivial, and for machines (especially with shared
memory) with a low number of processors. Therefore, the use of a single list is not
recommended when using grids. In our works, we will focus only on asynchronous
algorithms using multiple lists to store generated subproblems as they can be seen as
more adapted for grids. Three approaches exist for managing these lists: collegial,
grouped and mixed [Gendron 1994]. In the collegial approach, each process manages
its own list where it stores the subproblems it generates. The grouped organization
consists in defining sets of processes. A global list is defined for these processes to
store all the subproblems they generate. The mixed approach is a collegial approach
where each process manages its own list and simultaneously shares a global list with
all other processes. As the collegial approach is fully distributed, it can be expected
to have a greater scalability. However, the mixed approach can be efficient for grids
with multiple administrative domains: processes belonging to the same domain can
share a common list.

The load balancing issue consists in minimizing the number of situations where
processes have many sub-problems to explore while others have empty lists. A load
balancing policy is necessary. Its aim is to initiate, at some appropriate times,
transfers of sub-problems from overloaded machines to under-used machines. Three
agents define a load balancing policy: an information agent, a transfer agent and



2.3. Parallel Branch-and-bound literature overview 15

a localization agent [Melab 1996, Melab 1997]. The first agent collects information
about the load of processors. It provides a load indicator (number of sub-problems,
CPU usage, . . . ), which allows to define the load of a machine, and an information
exchange strategy (centralized, distributed or hierarchical). The transfer agent can
use a passive, active or mixed strategy. In the passive strategy (respectively active),
transfers are initiated by under-used (resp. overloaded) processors. The mixed
strategy combines both. The localization agent allows to determine the receiving
process (often the least used) for the sub-problems in excess in the overloaded ma-
chines. In a grid-like environment, to take into account the machines’ heterogeneity,
their power should be included into the definition of the load indicator. Gathering
information at large scales can induce a communication bottleneck when the global
load increases rapidly. In the large-scale cycle-stealing model, used in our works,
heterogeneity is considered in a more natural way: powerful machines ask for more
work to weaker machines.

The best solution found by a process can be communicated to other processes
whether through a shared storage space or by broadcasting mechanisms. The first
approach consists in the use of a global variable to store the best solution found so
far. This variable is updated each time a process finds a solution better than the
current one. The communication of this value to other processes can be achieved
through broadcasting or using any approach based on propagation through neigh-
bors. The broadcasting method shall not be considered in large scale environments.
The issue of termination detection is not specific to B&B algorithms. In our works,
a process detects termination through gathering information from other processes.

The fault tolerance issue for exact exploration methods is crucial. Indeed, the
loss of one or more sub-problems can prevent the processes from discovering the
optimal solution for the problem being solved. On a volatile computational grid,
the issue can be handled whether at the middleware level of at the application
level. At the middleware level, the proposed solutions are often independent from
applications. The failed process is restarted from scratch, which can be inefficient for
processes with long lifetimes. At the application level, the issue is handled through
a checkpointing mechanism. It allows to restart a failed process from its last saved
state. Thus, it is crucial to determine which data must be saved. The data saved
by each process usually contains the best solution found so far, the current problem
being explored and the list of pending sub-problems. Other data can be saved if the
current parallel model is combined with other models.

2.3.2.3 Parallel evaluation of solutions/bounds model

The Parallel evaluation of solutions/bounds Model can be compared to the Parallel
Population Evaluation Model, often used with metaheuristics. This model is data
parallel and allows the parallelization of the generated subproblems. It can be used
when the evaluation of the bounds is performed entirely after the generation of
the sub-problems. The B&B algorithm is not changed: only the evaluation phase
becomes faster. The main advantage of this method is its genericity (See Figure 2.5).
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Figure 2.5: Illustration of the Parallel evaluation of solutions/bounds model.

However, in a grid environment, it can be inefficient for the following reasons:
(i) the model is intrinsically asynchronous, which makes it costly in terms of CPU
time within a volatile and heterogeneous environment; (ii) its granularity (the cost
of the bound evaluation function) can be fine and thus, inefficient in large-scale
environments. For instance, in the case of the Flow-Shop Problem, the processing
cost of the bound’s evaluation may not be high enough to justify its parallelization.
(iii) The degree of parallelism of this model depends on the problem being solved.
It is often limited and decreases along with the exploration process: the number of
generated sub-problems decreases when the number of constraints for the problem
splitting operation increases. Combining this model with the tree-based exploration
model can induce a massive parallelism which can be efficiently employed only within
grid environments.

2.3.2.4 The Parallel Evaluation model for a single bound/objective func-
tion

This model can be used for the resolution of real-world problems where the evalu-
ation of the objective function/lower bound requires to access to massive amounts
of data that can not be handled on a single machine. Because of this hardware
constraint, those data are distributed among multiple sites. The evaluation of the
objective function takes advantage of the data parallelism. The parallel evaluation
of the objective function can be interesting when it is costly in terms of time.

This model requires the definition of new specific elements for the problem being
processed, like partial objective functions and a function to aggregate these partial
results. As the implementation of this model is naturally synchronous, it is crucial
to memorize all the partial evaluation value for the solution being evaluated, to
manage fault tolerance and variable availability of the resources in a grid. As its
scalability can be very limited, this model shall be combined with other models.
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2.3.3 Deploying parallel B&B

Having these different parallel strategies in mind, two main paradigms can used
to make a parallel B&B algorithm effective and to deploy it over a distributed
computing environment, namely, the Master-Slave model and the P2P model. In
the next sections, we give a literature review on these models while focusing on their
main characteristics with respect to B&B.

2.3.3.1 Master-slave approaches

In [Aida 2002, Aida 2005], a Master/Slave-based parallel B&B algorithm is
proposed and deployed on a grid. This approach is aimed to avoid performance
degradation caused by the communication overhead between the master process
and worker processes. Processes are organized into sets, where each set comprises a
group of worker processes and one master process to coordinate them. In addition,
a process called Supervisor is in charge of controlling and coordinating all the
sets of processes. One set of worker processes explores a given part of the search
tree. The supervisor assigns a subset of solutions to the master of the set and this
master dispatches the work to its worker processes. One can see the supervisor
as an entity performing load balancing operations between the sets of processes.
This supervisor, as well as the master process of each set of processes, is in charge
of gathering and broadcasting the best solution found so far, thus accelerating
the exploration process. The latter approach shows a limited scalability as it
may create a bottleneck on the Master processes and the Supervisor process.
The authors discuss the granularity of tasks, notably when tasks are fine-grained,
the communication overhead is too high compared to the computation of tasks.
The algorithm has been implemented using GridRPC middleware [Seymour 2002],
Ninf-G [Tanaka 2003], and Ninf [Sato 1997].

The granularity issue is studied in [Di Constanzo 2007] but yet a hierarchical
Master/Slave model is used therein. The architecture of the approach, named
Grid’BnB is quite similar whereas the communication layer is a bit different. The
application’s design is to fit a grid environment. It is composed of four different
types of entities: master, sub-master, worker, and leader. The master has the same
role as the supervisor in the previous approach. The sub-master is in charge of
coordinating one set of worker processes. The difference comes from the leader
role. The approach assumes that the physical architecture is cluster-based. Each
set of processes comprises several workers and is deployed on a physical cluster.
The cluster running the master process also hosts the sub-master processes which
are in charge of communicating with other clusters (see Figure 2.6). In those other
clusters, one worker is chosen to be the leader. It is given a specific role, which is
to handle communications with its sub-master. Thus, when a worker discovers a
new best solution for the problem being solved, it broadcasts it to all the workers
belonging to the same cluster, including the leader. This leader sends it to its
sub-master process, which broadcasts it to the whole network through the master
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process.

A middleware has been designed from this application. It enables to emulate
Master-Slave based parallel B&B techniques on P2P networks or platforms. The
main difference with a classical hierarchical Master-Slave model is that messages
are relayed through peers towards the master and the sub-masters. This approach
is less exposed to a communication bottleneck issue but it may end up with
huge communication delays as these communications can be relayed through a
great number of entities before reaching their destination point. The main goal
of [Di Constanzo 2007] is in fact to design a middleware that hides the network
architecture/topology for computational applications.

Figure 2.6: The Grid’BnB architecture

Xu et al. [Y. Xu 2005] and Eckstein et al. [Eckstein 2000] proposed respectively
ALPS and PICO which are parallel B&Bs based on Master-Hub-Worker in which a
layer of medium-level management is inserted between the master and the workers
where each hub manages a static set of workers. They consider in their approaches
cluster-based architecture. Each cluster contains a local Hub and one or multiple
worker(s). The number of hubs increases with the number of workers and they avoid
becoming overburdened by limiting the number of workers by cluster. Therefore,
some computational burden is moved from the master to the hubs.

In [Drummond 2006], Drummond et al. propose another hierarchical B&B al-
gorithm designed for grid environments. This approach is applied to the Steiner
problem in graphs. In this problem , the branching operation creates two new sub-
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problems. The approach performs the following operations: a master is run on the
processor of one given cluster. This entity runs and monitors a set of leader pro-
cesses, one on each cluster. Those leaders represent the processors of the cluster
on which they are running. A leader splits its subproblem into two left and right
subproblems. The right one is assigned to another leader. This process is repeated
until no leader is available. Then, each leader processes its subproblem by sharing
it with the workers being run on its own cluster.

In [Bendjoudi 2009], the authors suggest a hierarchical architecture to allow
workers to communicate directly together after receiving a task from the master,
the redundancy induced by [Mezmaz 2005]’s approach when exploring the search
space can be significantly reduced.

Bendjoudi et al. [Bendjoudi 2011] have proposed a fault tolerant hierarchical
B&B (See Figure 2.7), named FTH-B&B, in order to deal with the fault tolerance
and scalability issues in large scale unreliable environments. Their algorithm is com-
posed of several fault tolerant M/W-based B&Bs, organized hierarchically. Some
other works, e.g., Cabani et al.’s PHAC ([Cabani 2007]), Saffre et al.’s Hypergrid
[Saffre 2003], aim to dynamically redesign the topology in order to face communi-
cation bottleneck issues.

Figure 2.7: Illustration of a Hierarchical Master-Slave based architecture

In [Mezmaz 2005], an efficient encoding of the search space is proposed to reduce
the size of exchanged messages. The overall parallel efficiency is then improved
compared to previous solutions. The approach of [Mezmaz 2005] can be considered
as the best parallel Master-Slave B&B approach that can be applied in a large
scale computational environment such as grids [Mezmaz 2007b]. In particular, it
was successfully applied to find the optimal solution of an unsolved Flow-shop hard
instance, namely the Ta056 instance [Taillard 1993, Mezmaz 2007b]. The latter
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approach is also based on the Master-Slave model. We describe it more in details
later.

2.3.3.2 Peer-to-Peer approaches

Parallel applications designed under the Master-Slave paradigm may often face scal-
ability issues due to bottlenecks on the master. To overcome this limitation, some
works consider the use of the Peer-to-Peer (P2P) paradigm for parallel B&B as
in DIB by Finkel et al. [Finkel 1987] and in the work proposed by Iamnitchi et
al. in [Iamnitchi 2000]. The latter proposes a fully decentralized approach for the
Branch-and-Bound algorithm. The role of each process is to manage a local work
pool and share it with other processes whenever they receive a request. The best
solution is broadcast over the network through the most frequently sent messages.
By distributing the communication load among multiple processes, this approach
gains in terms of scalability.

Instead of dealing with the scalability issues at the applicative level, Di Con-
stanzo et al. [Di Constanzo 2007, Caromel 2007] propose a more generic approach
operating at the communication layer. The approach consists in defining a fully
P2P infrastructure and providing an information routing mechanism. Processes
are organized in a P2P fashion: one of them acts as the master and all others as
slaves. Whenever a slave needs to communicate with the master, its messages are
routed/relayed by multiple peers before reaching the Master. While this approach
enables to provide a better scalability, it only distributes the communication load
of the master through time and introduces additional delays for processing slaves’
requests.

More generally, P2P systems are used in wider fields of application, like vol-
untary computing as in SETI@HOME [Anderson 2002] where a central server
collecting radio signals to be processed dispatches the tasks among personal
machines provided by individuals around the world. Other systems were de-
signed for content sharing purposes like Bittorent [Bittorrent 2005], Kademilia
[Maymounkov 2002], Pastry [Rowstron 2001a], for massively distributed comput-
ing like Javelin [Cappello 1997], for data storage and retrieval like OceanStore
[Kubiatowicz 2000], Freenet [Clarke 2001], NaradaBrokering [Fox 2005], PAST
[Druschel 2001].

With respect to the large body of literature dedicated to Master-Slave based
parallel B&B, there is relatively few works dealing with parallel B&B in P2P net-
works. In this thesis, we propose to take benefit from the scalability properties of
P2P network in order to design new distributed B&B algorithms that are able to
handle a huge amount of computational resources. More precisely, we leverage the
tree-based Master slave approach of [Mezmaz 2005, Mezmaz 2007b] by providing a
fully distributed alternative. Although, the approach described in this thesis and
the one of [Mezmaz 2005, Mezmaz 2007b] share the same B&B work encoding, they
are fundamentally different, since the underlying distributed protocols are differ-
ent. In the next section, we give a more detailed overview of the parallel approach
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Figure 2.8: Example with a 3-variable permutation.

of [Mezmaz 2005, Mezmaz 2007b] which allows the reader to better appreciate our
contributions.

2.4 The B&B@Grid approach

In this section, we analyze more thoroughly the Master-Slave based parallelization
of the Branch-and-Bound Algorithm designed by Mezmaz et al. [Mezmaz 2005,
Mezmaz 2007b], named B&B@Grid, which is, to the best of our knowledge, the
most scalable ’Master-Slave’-based approach in the literature. This approach was
designed for grid environments and parallelizes the B&B algorithm according to
the tree-based exploration parallel model presented in Section 2.3.2.2. Some of the
mechanisms of this approach are reused or referred to in our works.

2.4.1 Tree encoding

For the sake of clarity let us assume that we are given a permutation-like opti-
mization problem, that is a problem where solutions can be encoded by mean of a
permutation of size N . Hence, a basic B&B strategy can be represented by a tree
where the root designates the problem to be solved, a leaf represents a solution (a
permutation) and a node inside the tree represents a partial solution (equivalently,
a sub-problem) where only some variables in the permutation are fixed. From a
parallel/distributed point of view, many B&B algorithms are based on depth-first
strategy when exploring the search space [Zhang 2000, Prieditis 1998, Mans 1995].
A sequential depth-first strategy explores the tree in a depth-first manner branching
and bounding according to some branching and bounding policies. A parallel ver-
sion of this strategy is to run several depth-first explorations in parallel on different
parts of the search tree. As soon as a new best solution for the problem is found,
it is communicated to other processes which allows them to update their own local
best solution and thus to speed up the overall search process.
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One major difficulty when setting up this general idea in a distributed envi-
ronment is to carefully encode the nodes of the B&B tree in order to reduce the
cost of exchanging messages between computational nodes and decide which part
of the tree should be explored by which computational node. A trivial approach
would be to encode a sub-problem of the B&B tree in a fully-comprehensive way
by providing all necessary information. In [Iamnitchi 2000], a tree node (a subprob-
lem) is encoded as a path from the root to the node itself which is still expensive.
In [Mezmaz 2005, Mezmaz 2007b], an extremely simple and efficient encoding is
proposed. Roughly speaking, the tree is labeled in such a way a sub-set of nodes
(corresponding to a subproblem) can be encoded by an interval, i.e., two integers.
A centralized model is then adopted to distribute intervals among computational
nodes. More specifically, the approach described in [Mezmaz 2005, Mezmaz 2007b]
consists in defining a central computational entity (the master) which is in charge
of controlling intervals (work units) assignment to other computational nodes (the
slaves).

In this thesis, we adopt the interval-based encoding of [Mezmaz 2005] while re-
moving the need of the central coordinator. We briefly give an example to illustrate
the tree encoding. For the sake of clarity and to make our results more compre-
hensive, we also recall the basic ideas of the Master-Slave approach and the main
challenges we are addressing. Figure 2.8 gives a simple example with a p-variable
permutation problem, (with p = 3) i.e., the optimal solution of our problem is one
of the 3! = 6 possible ordering of our variables. More precisely, a label (integer)
is assigned to each leaf of the tree, corresponding to a specific permutation. Then,
an interval [x, y[⊆ [0, p![ refers to a subtree of the whole search tree. For instance,
one can see in Figure 2.8 the subtrees corresponding to intervals [0, 3[, [0, 2[, and
[2, 6[. Having this labeling, two operators, defined in [Mezmaz 2005], allow us to
switch from the tree representation to the interval-based representation and con-
versely. Notice that exploring intervals [0, 3[ and [2, 6[ in parallel implies exploring
the same region of the search space (permutation 3) twice, while exploring only
interval [0, 2[ and [2, 6[ may fail to produce the optimal solution since permutation
2 is not explored.

2.4.2 Master-Slave tree exploration

In [Mezmaz 2007b], this tree encoding is coupled with a Master-Slave model. More
precisely, the master owns initially the whole interval to be explored, i.e., the whole
tree. Then, slaves ask the master for a sub-interval (a piece of the tree) to explore.
The master continuously removes from the list the subintervals that are already
explored and distributes those not explored yet. However, since many slaves having
different computational power can ask for some work at the same time, some Slaves
may end exploring the same part of the search tree inducing a so-called "redun-
dancy". Redundancy issue is highlighted in [Mezmaz 2007b] and work dealing with
this issue can be found in [Kumar 1984]. We also remark that each time a slave
finds a new solution better than the best solution found so far, i.e., an ordering of
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Figure 2.9: Operation of a Master-Slave based architecture.

variables, it directly informs the master which broadcasts this information to other
slaves. Hence, sharing the best known solution is straightforward and does not
induce any technical difficulty from a pure distributed/parallel point of view. In
addition, termination of the whole distributed search process can be easily detected
by the master, i.e. when the list of remaining sub-intervals maintained by the
Master becomes empty. Load balancing is also quite simple since the master can
control slaves progress and reassign work unit directly to under-used slaves.

A concrete scenario is proposed in Figure 2.9. Assume that we have initially
n slaves. Assume that a first slave wants to start participating in the exploration
process. Then, it sends a work request to the master. When receiving that request,
the master answers with the whole problem to process (since until now the master
has not received any request). In the second step, suppose that the master receives a
work request from a second slave. To balance the load, the master splits the original
interval into two parts and shares it equally between both slaves. Now, suppose that
in the third step, a new request coming from slave 3 reaches the master. The master
shall choose one of the already assigned intervals, split it into two parts and assign
one of them to Slave 3. In the scenario of Figure 2.9, the Master chooses the
interval assigned to slave 2 and shares it with slave 3. However, at this point of
the execution, slave 2 is not aware of its newly assigned sub-interval [p!2 ,

3p!
4 [. As

depicted in Figure 2.9, it may explore the solutions belonging to interval [3p!4 , p![,
i.e. the interval assigned to slave 3, leading to "redundancy". This issue is handled
in [Mezmaz 2007b] as following. The master and the slaves continuously checkpoint
together and update their intervals each fixed period of time. Depending on search
speed and on whenever the checkpoint is done, redundancy may or may not occur.
In our example, slave 1 has updated its work unit whereas slave 2 has not yet.
However, in [Mezmaz 2007b] this solution was shown to be efficient. More precisely,
experimental results have shown that the redundancy rate is of 0.39%. While this
rate may appear to be low, as we are dealing with large-scale instances, it represents
a huge amount of processing time. The associated total computation cost could be
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highly significant if the exploration time of each node is high.

2.5 Conclusion

In this chapter, we provided a comprehensive description of the Branch-and-Bound
algorithm and gave an overview of the main contributions related to the paralleliza-
tion of this algorithm. We introduced the interval-based encoding of parallel B&B
tasks which we use through this thesis. We also highlight the main characteristics
of existing Master-Slave approaches for B&B. The rest of this thesis is devoted to
provide a fully distributed P2P approach to Master-Slave approaches and assessing
its efficiency.
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3.1 Introduction

Most of the works related to the parallelization of the B&B algorithm are based on
a Master-Slave architecture. A Master-Slave architecture can be viewed as a star
graph where the center of the star is the Master and the leaves are the Slaves. Al-
though it allows one to have a global view of the network, this topology fails to scale
efficiently when a huge number of computational entities is involved. In this chap-
ter, we propose a new fully decentralized approach to distribute the computation
of parallel B&B among possibly a huge number of computing entities. Our goal is
to gain in scalability while handling more and more distributed resources. For that
purpose, we propose to view computing resources as peers and to organize them into
a peer-to-peer logical overlay, thus getting rid of the centralized bottleneck induced
by the master-slave organization of resources. However, in order to evolve in such
a fully distributed environment, many challenges and issues have to be tackled and
solved.
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on fully distributed environments.

Compared to a master-slave approach, information about search and system
state can not be handled in a centralized manner when dealing with a peer-to-peer
structured network. It is thus necessary to rethink the mechanisms of the B&B
algorithm to adapt them carefully. In particular, a peer should manage global
information (like the best incumbent solution for the B&B or the termination of
the computation) with only a limited view of the network — by communicating
only with its immediate neighbors. Besides, when designing a parallel algorithm
under the Peer-to-Peer paradigm, every peer has to manage its own local work pool
and eventually to share it with its neighbors in the network. Setting up such an
architecture implies ensuring two important properties:

• First, we want to gain not only in scalability but also in Parallel Efficiency.
Indeed, the entities will have to self-coordinate the B&B search process and
share work efficiently while having a local view of intervals being explored.
Handling an increasing number of computational nodes organized according
to a pure Peer-to-Peer overlay implies more communications and message ex-
changes which could lead to efficiency loss if not managed very carefully.

• Second, we want to guarantee that the parallel search process terminates cor-
rectly by effectively computing the optimal solution, which is not straightfor-
ward without any global view of the network.

In this chapter, we describe the peer-to-peer approach we designed to handle
these two major issues in a static environment where computational nodes are fully
available and do not crash. In the description of our approach, we shall first assume
that the computational nodes are organized according to any logical overlay. In
other words, each computational node can communicate with only a subset of other
computational nodes called its neighbors. We assume that the considered overlay
can be any connected graph G = (V,E), i.e., a node v ∈ V designates a compu-
tational node and an edge (u, v) designates the fact that u and v are neighbors in
the overlay. For the sake of simplicity, we also assume that we are given a permu-
tation optimization problem to be solved in parallel by a B&B algorithm. We then
use the interval-based encoding1 introduced in [Mezmaz 2005], and assume that the
problem to be solved is initially pushed into a unique peer in the system. Having
these assumptions in mind, we shall first provide a general and generic description
of the main algorithmic ingredients embedded in our framework by describing the
main operations performed by a peer during the whole execution. Our goal is to
first highlight the main algorithmic difficulties we are facing and the way we are
solving them when designing a generic parallel B&B running in a fully distributed
environment. The described approach is in fact overlay independent, in the sense
that it operates correctly without taking into account any specific property of the
considered overlay. However, the choice of the overlay is important for such an
approach to perform efficiently. Therefore, after describing our approach, we shall

1Notice that any other B&B work encoding could be plugged in our approach as far as a
mechanism for splitting work is provided
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Figure 3.1: State automata representing the behavior of a Peer.

highlight how it is expected to perform according to the properties of the chosen
overlay. As we will argue, choosing a scalable overlay is crucial in order to obtain a
good balance between communication cost and computing efficiency.

The rest of this paper is organized as following. In Section 3.2, we give a general
overview of the approach. In Section 3.3, we give a description of the mechanisms
dedicated to sharing the tasks among peers and to managing the information related
to the best incumbent solution found during the B&B exploration. In Section 3.4, we
provide technical elements about the design of the mechanism related to Termination
Detection. Finally, in Section 3.5, we discuss the scalability allowed by the peer-to-
peer overlay and its expected impact on the overall performance.

3.2 Overview of the approach

We use the state automaton of Figure 3.1 to summarize the main operations per-
formed by a peer. This mainly include the exploration task, the best solution sharing
task, the work sharing task and the termination detection task. The logical propo-
sitions related to the state automata in Figure 3.1 are as following:

• A = [x, y] ̸= ∅

• B = Number of requests strictly lower than the network’s diameter.

• C = A new improving solution is found.
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on fully distributed environments.

• D = A new improving solution is received from a neighbor.

• E = The new improving solution has been broadcast to neighbors.

• F = Received all replies (The current round of requests is finished).

• G = Neighbors are ready to communicate. (They are in the "Ready" state.)

• H = Initialization procedure complete.

• I = Neighbors have all claimed the termination of the calculation.

• J = Received Work Request.

• K = Sent back Work Reply.

As depicted in Figure 3.1, in our approach a peer first initializes itself by de-
termining its neighbors according to the input logical overlay. When it is ready, it
needs to ensure that its neighbors are also ready to communicate so it waits for them
to be ready as well. Once its neighbors are ready, a peer becomes idle if no initial
work is initially pushed into it (recall that we are assuming that only one peer owns
the B&B work initially). From this point, every idle peer starts requesting for a
work unit from its neighbors following a round-based communication pattern.
As long as the rounds of requests are unsuccessful (that is, no interval has been
obtained during a communication round), the peer keeps requesting work in subse-
quent rounds until a work is received or termination is detected. If a peer detects
termination, that is it detects that no work is remaining in the whole network,
it waits for its neighbors to claim termination as well before ending the execution
of the algorithm. If a round of work request allows a peer to obtain a new work
unit, then the peer starts exploring it. While a peer is exploring some work, it
may receive requests from other neighboring peers and thus it has to serve them
by sharing the locally available work. Once work is shared, the peer resumes the
exploration of its interval and so on. Moreover, during its execution, a peer may
either find or be informed about a new best solution found by another peer in the
network. In this case, a peer pauses its current task, broadcasts the new solution to
its neighbors and resumes its previous task.

Based on the state automaton of Figure 3.1, we derive a message passing
distributed algorithm corresponding to our peer-to-peer approach. This is depicted
in the high level code of Algorithm 1 (See Page 42), where the peer initializa-
tion phase is omitted for the sake of clarity. Generally speaking, the distributed
algorithm is organized into two parts executed concurrently in parallel by every peer.

Through lines 1 to 26, we give the main set of instructions executed by a peer
in order to coordinate the search process with its neighbors in a local manner. This
is the core of our distributed P2P framework.

In lines 5 to 7, a peer performs the B&B algorithm on an interval it has previously
received from a neighbor and, whenever it discovers a solution whose score is better
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than the best solution found so far (stored into variable solv), it broadcasts it over
the network through sending a New_Sol(solv) message to all its neighbors.

In lines 8 to 23, a peer performs a round of requests in order to obtain a new
work unit or to claim termination. This mechanism is based on the use of a counter
(stored in variable countv). Its operation is described more in detail later. This
counter is used to determine the distance between the current peer and the closest
peer in the network holding a work unit. If a peer explores an interval, this counter
is set to −1. Upon finishing its exploration, it is put back to 0. When requesting a
new work unit, a peer first sends a Count_Request to its neighbors to retrieve the
value of their respective counters. It waits for all the replies to be received. If a
neighbor claims to have a work unit (it replied with a Count_Reply(−1) message),
the current peer can send a Work_Request message to this neighbor to obtain a
new work unit (received through a Work_Reply message). Note that it is useful
to check the content of the received work unit. Indeed, between the moment
when the neighbor receives the Count_Request message and when it receives the
Work_Request message, it may have finished exploring its interval. If so, the
current peer may resume its round of requests. The last part of a round of requests
deals with synchronization. Indeed, as we evolve in an asynchronous environment,
one has to make sure that during the Count_Request/Count_Reply procedure, the
value of the retrieved counter remains coherent, that is they are not altered while
the current peer performs its round of requests. Thus, we added a synchronization
mechanism based on a α-synchronizer ([Awerbuch 1985],[Shabtay 1994]), using
Safe messages. When a peer receives a Safe message from all its neighbors , it
means that it can start a new round of requests and possibly change its counter
without disturbing the operation of other peers. Note that when a neighbor replied
with a Count_Reply(−1) message, it is exploring an interval and thus it is useless
for the current peer to synchronize with this neighbor. Such neighbors are stored
into the Qv variable.

In lines 24 to 26, a peer synchronizes with its neighbors upon claiming termi-
nation. This part of the algorithm aims to keep the current peer active so it can
process incoming requests from its neighbors until they detect termination too.

Through lines 28 to 42, we define the behavior of a peer upon receiving a
message. These behaviors are quite simple as the goal is to send back a piece of
information previously requested by a neighbor. Four different requests can be
processed: a request for a counter (Count_Request), a request for a work unit
(Work_Request), a new solution has been found by another peer (the solution
is forwarded to other neighbors if it improves the local best solution) and a
termination message (Terminated).

In the following sections, we describe the main issues tackled by Algorithm 1 and
give the details of the different distributed techniques used there-in with respect to
the B&B parallel computation.
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3.3 Best solution and Work Sharing

Let us recall that we are assuming that B&B work is encoded following the interval-
based approach of [Mezmaz 2005]. Hence, there are two main issues to handle when
exploring the B&B tree intervals in parallel. First, each computational node should
be assigned an interval to explore. To guarantee that the optimal solution will
be effectively computed, we must ensure that an interval is assigned to at least
one computational node. In addition, two intervals assigned to two computational
nodes should not intersect to avoid redundancy and thus efficiency loss. Second,
each computational node should be aware of the best solution found so far during
the search process to avoid exploring unwanted branches, i.e., branches not leading
to the optimal solution. The faster a computational node is aware of the best
solution the more the B&B branching is efficient. In the following two subsections,
we describe how these two issues are addressed in the framework of Algorithm 1.

3.3.1 Best solution sharing

During the B&B exploration process, a peer may compute a solution which is better
than the best solution found so far. To make sure that other peers do not explore
unwanted problems,(i.e. problems whose evaluation’s lower bound is higher than the
newly found best solution) it is necessary that the whole network becomes aware
of this new solution. As we evolve in a fully distributed environment, this piece of
information has to be broadcast among the peers. In Algorithm 1, the following
simple rules are used:

• If a solution solv improving the previous best known solution is found locally by
computational node v, then v sends a New_Sol(solv) message to its neighbors
(line 7).

• If a node w receives a New_Sol(solu) message from neighbor u then it updates
its current best solution solw. If solu is better than solw, then w also forwards
New_Sol(solu) to its neighbors (line 40).

In Figure 3.2, we give illustration of a simple scenario involving 3 peers P1, P2

and P3 connected through a path overlay: P1 is a neighbor of P2 and P2 a neighbor
of P3. Let us assume that these peers are exploring (respectively) the following
intervals : [x, y], [x′, y′], [x”, y”]? On step (1), peer P1 discovers a new solution while
exploring its interval. On step (2), peer P1 informs peer P2 about this solution by
sending it a message. On step (3), as peer P2 has been informed of a new improving
solution found by another peer (here, P1), it broadcasts it again to its neighbor P3.
Thanks to this process, peers P2 and P3 may be able to branch partly or entirely
their respective intervals.

One may think that forwarding new solutions to neighbors could slow down the
B&B search from two perspectives. First, the network may be flooded leading to
congestion problems. Second, the time needed to forward the best found solution
may be non negligible for an increasing number of computational nodes, hence
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slowing down the B&B pruning process. We latter argue, in Section 3.5, that the
above simple rules are sufficient to handle these two issues.

Figure 3.2: Scenario of best solution broadcasting.

3.3.2 Work Sharing

In Algorithm 1, a work unit corresponds to an interval [x, y[ where x < y, which
encodes a B&B subtree as introduced in [Mezmaz 2005]. We recall that initially
there exists one computational node in the network holding the interval [0, N [ en-
coding the whole problem to be solved. At any step of the algorithm, idle peers
having no interval to explore ask their neighbors for a piece of interval. This is done
by sending a Work_Request message (line 14). Upon receiving a Work_Request
message, a node v holding an interval [x, y[ halts the local B&B search process
and sends a Work_Reply([x′, y′[) message answering the neighbor request (line 36).
Here, subinterval [x′, y′[ is chosen in such a way [x′, y′[⊂ [x, y[ and [x′, y′[ has not
been explored by node v yet. More precisely, if node v is exploring the branch
corresponding to integer z ∈ [x, y[ when receiving a Work_Request message, then
it replies with interval [ z+y

2 , y[2 and continues its local exploration process using
interval [z, z+y

2 [. Notice that our work sharing mechanism guarantees that no kind
of redundancy can occur during the search (an interval cannot be explored by two
processors at the same time) which is to be contrasted with the Master-Slave ap-
proach of [Mezmaz 2005]. However, it may happen that at the time a computational
node v sends a Work_Request message, none of its neighbors has an interval to share

2If many requests are received simultaneously from more than one neighbor, then node v could
share its interval equally depending on the number of requests.
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Figure 3.3: Scenario of work units sharing.

with him. For the sake of clarity, the discussion of this issue is delayed to later when
addressing the termination detection of the B&B search process.

In Figure 3.3 represents a simple scenario with two neighboring peers P1 and
P2, where peer P1 is processing interval [0, 24[ and peer P2 is idle. On steps (1) and
(2), we consider the time where peer P1 is exploring solution 10 in interval [0, 24[
while receiving a work request sent by peer P1. As peer P1 has already explored
the interval [0, 10[, it would split the remaining part of its interval and thus share
subinterval [10, 24[. Consequently, peer P1 will send a work reply to P2 containing
the interval [17, 24[. We end up in Step (3) where peer P2 begins exploring interval
[17, 24[ and peer P1 exploring interval [10, 17[.

Our work sharing policy can be compared to the steal-half work-stealing mech-
anism [Blumofe 1996] where work-stealing occurs locally among neighboring peers.
Dividing an interval equally when receiving neighbor’s requests may appear ineffi-
cient from a dynamic load balancing point of view. However, one should keep in
mind that the length of an interval does not reflect how difficult it is to explore. In
fact, we may have a long interval which will be explored very quickly by the B&B
process, e.g., typically when the B&B pruning mechanism works very efficiently.
Conversely, we may have a short interval that actually needs an extensive explo-
ration and thus an increasing processing time. This is a well understood problem
due to the irregularity of the B&B search tree. Thus, one cannot say in advance
which interval is harder to explore than an other. In other words, different policies
taking into account the length of intervals according to the power of nodes will fail
to give strong guarantees on the load. However, we argue that the simple policy
described above still enables a good dynamic load balancing. In fact, we can rea-
sonably assume that the more a computational node is powerful, the more it will go
fast when exploring an interval and the more it will send work requests to neighbors.
Therefore, even if some powerful nodes are assigned some easy-to-explore intervals at
a given time, they will perform fast and get more difficult intervals quickly. Nodes
with powerful computational resources actually act like a black hole where work
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intervals are spontaneously attracted.

3.4 Termination Detection

3.4.1 Basic concept

As pointed previously, a Work_Request message sent by node v could not always
be satisfied since v’s neighbors could not have any interval to explore. From a local
point of view, all what v can learn at this point is that its neighbors (in the logical
overlay) have finished exploring their own intervals. Nevertheless, v could not say
yet whether (i) some other intervals are being explored by other nodes farther away
in the overlay or (ii) all nodes have finished exploring their intervals. In the former
case, we would like node v to get a sub-interval and enter again the exploration
process. In the latter case, we would like node v to stop computing and to detect
locally that the B&B exploration is terminated.

To handle this termination detection issue, we make use of the following key
observation which reflects the local nature of our work sharing mechanism: If a
node v sends a request message to its neighbors and none of them holds an interval,
then this means that neighbors are symmetrically requesting a work interval from
their own neighbors. Thus, a simple solution would be as follows: (i) every node
having an interval being explored and receiving a request answers with a sub-interval
as explained previously, and (ii) every other node requesting a work from neighbors
waits until effectively receiving an interval from one neighbor. However, this solution
will lead to a deadlock. To see this, consider for instance the situation where all
nodes finish exploring their intervals simultaneously and hence no more intervals
remain to explore. Then, all nodes will send request messages to their neighbors.
Hence, no node will respond since the search process is actually terminated but no
node can locally detect this global situation.

To correctly detect the global termination of the B&B search process, we use
another more advanced technique. In fact, suppose that node v has made a first
request to all its neighbors without receiving any interval. Then, node v resubmits
its request. If node v does not receive an interval in this second round then node
v concludes that its neighbors did not receive an interval during their first round.
Thus, no node at distance two from v (in the overlay graph) owns an interval.
Roughly speaking, by repeating the local request/response process t rounds, then
a node can detect that no intervals are available in the ball of radius t around it.
Therefore, after Θ(D) unsuccessful rounds3 where D is the diameter of the overlay
graph, a node can locally conclude that no interval is being explored by any node
in the network and termination can thus be detected.

Remark 1. At this point of the chapter, we recall that a large amount of litera-
ture is devoted to termination detection [Dijkstra 1980, Mittal 2004] in distributed

3That is after Θ(D) local requests without getting an interval to explore.
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systems. All existing termination detection techniques (wave-based, tree-based, snap-
shot, channel counting, etc.) have a cost [Mattern 1987]: delays and/or mes-
sage overhead. Roughly speaking, distributed detection in our approach mimics
a snapshot-based one (coupled with wave techniques) while using the computation
proper messages. In fact, to detect termination we only have to detect that in a
ball of radius D (the diameter) there remain no work intervals. Conversely, if in a
ball Bt of radius t < D, the property P=’some work remains’ holds, then termina-
tion cannot be announced. Counting (in a consistent manner) the number of times
a node had performed unsuccessful work requests to neighbors is then sufficient to
answer whether property P holds or not. In addition, this idea is both symmetric4

and topology independent (meaning for instance that when switching to a dynamic
environment, there is a hope that it could still work under additional assumptions
regarding overlay connectivity). For the sake of scalability, we thus use the basic
messages of our algorithms, and we deliberately reduce the amount of required con-
trol/signal information and simplify at most the detection process to avoid congestion
and delays. In other words, termination detection is carefully embedded in the work
sharing mechanism. However, for our termination detection to work correctly, we
need a knowledge about the diameter D of the overlay. Actually, even a rough upper
bound will do correctly and efficiently. In Remark 2 in section 3.5, we argue why in
practice the knowledge of D is not a requirement.

3.4.2 Technical details

Technically speaking, we use an adaptation of the termination detection idea
sketched in previous section in order to take into account the specificity of our
B&B exploration process. More specifically, every node v owns a variable countv
counting the number of times v asks its neighbors for an interval. This request is
performed by sending Count_Request messages and receiving Count_Reply messages
containing neighbors counters values. Initially, if node v is exploring an interval,
countv is set to −1. If v does not hold any interval or has just ended exploring an
interval, countv is set to 0 and a work request round is started (lines 2 and 21). An
unsuccessful round, meaning that none of v’s neighbors holds an interval, makes v

increment countv by one and start a new request round until reaching Θ(D). How-
ever, since a node can possibly terminate exploring the whole piece of work interval
before being able to share it with a neighbor5, incrementing countv can lead to a
situation where v increments its counter in an inconsistent manner, i.e., too fast.
To illustrate this issue, let us consider the simple example of Figure 3.4 where the
overlay is a simple path of four nodes6. Suppose that initially node v0 owns an
interval, i.e., all nodes but v0 have their counters set to 0. After a first work request

4It is initiated symmetrically by all nodes
5For instance, this may happen when a request message takes a long time to be delivered
6We choose a line topology for this example for only a sake of simplicity. The reasoning can be

applied for any overlay topology. In particular, the path of the example can be thought to be a
subgraph of a more general overlay. An example with a grid topology is given in Appendix B to
summarize our work sharing algorithms.
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round, only node v1 gets an interval. Nodes v2 and v3 increment their counters to 1.
Suppose that during the second work request round, node v1 terminates exploring
its interval before receiving the request of its neighbor v2. We term this situation as
an "Interval Vaporization". Then, after the second request round, node v2 does not
receive any work interval. Thus, if node v2 increments its counter, as depicted in
Figure 3.4, then after the third request round, nodes v2 and v3 will set their counters
to 3 reaching the diameter of overlay path. This interval vaporization situation can
then occur further in future rounds as we can imagine that the intervals that node
v1 gets from node v0 are always explored/prunned very quickly.
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Figure 3.4: Interval Vaporization

When an interval vaporization occurs at some node v, the counter of v is first set
to −1 then to 0. Thus, a neighbor u of v, having a counter set to some value x > 0

in previous rounds, can detect that actually an interval vaporization has occurred
at node v. Therefore, when detecting such a situation, node u does not increase its
counter until v’s counter reaches value x. This rule is implemented by lines 39 and
40 using the received Count_Reply(count) messages.

3.4.3 Asynchrony issues

The previous work sharing and termination detection mechanisms are based on
request/response rounds. At each round, every node asks for neighbors’ counters
and possibly asks for some work interval if any. This clearly implies a kind of
synchronism between nodes in order to perform efficiently. However, in a fully
asynchronous distributed environment, we cannot have any guarantees about the
time it takes to deliver a message from a node to its neighbors, i.e., link latencies
could be arbitrary but finite. To illustrate these issues, let us consider the simple
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example of Figure 3.5 given below.
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Figure 3.5: Synchronization issues

Assume that we have three nodes u, v and w connected by a path somewhere
in the network overlay. Assume that the network latency is high between v and
u whereas it is low between v and w. Suppose that node v and w have set their
counters to x while node u has executed a successful round and thus has a counter
set to −1. Then, the request message sent from v to u will take much time, while
node w will by the meanwhile perform a large number of requests. These requests
are obviously useless as node v has not yet received the piece of information that
can make it update its counter.

In addition, we remark that due to network latencies, whenever a piece of infor-
mation (e.g., a counter value) is exchanged between two nodes, this information may
become incoherent with the sender status before it is actually received. For instance,
using the example of Figure 3.5, one can imagine the situation where node v performs
a request round by sending Count_Request messages to its neighbors, including node
w. Node w shall receive this message and send back a Count_Reply(countw = x)
message to v. Meanwhile, node w may have symmetrically done the same process.
Thus, during the time the Count_Reply(x) message is transmitted from node w to
v, node w may set its counter to −1 (if it gets a work from another neighbor), 0 (if
it detects an interval vaporization), or x+ 1.

To avoid these situations and let nodes operate correctly and efficiently under
unknown network latencies7, we use an adaptation of a well known technique, called
α-synchronizer [Awerbuch 1985, Moran 2000, Shabtay 1994]. This technique allows
us to abstract away the problems induced by network latencies and to efficiently
coordinate request rounds. Generally speaking, each time a work request round
is started by some node v, node v performs the following local actions. First, it
waits for neighbors responses, i.e., Count_Reply messages. This allows node v to
detect that its requests were actually received by neighbors and to receive neighbors

7Actually, in our distributed algorithm, we only assume that messages are received in the same
order they are sent, i.e., asynchronous FIFO model.
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counters. If node v detects that some neighbor owns an interval then it asks to share
it, i.e., Work_Request and Work_Reply messages. After finishing this work request
round, a node then sends a Safe message to neighbors (line 20) and symmetrically
waits for their Safe messages before starting a new round (line 21) and so on until
termination is detected or a piece of interval is received. Notice that nodes being
exploring some intervals do not send any Safe messages (line 12). Symmetrically,
a node that has detected that a neighbor is exploring an interval (by receiving a
Count_Reply(−1) message) does not send any Safe message to it (line 20). The
same reasoning is applied for a node that claims termination (lines 24-26).

3.5 Complexity issues and overlay properties

In this section, we give a complexity analysis of the distributed mechanisms designed
for our P2P Branch-and-Bound approach. We first remark that since our distributed
algorithms were designed to work under a fully asynchronous environment and due
to irregularity/non-determinism of the B&B tree exploration process, it is very dif-
ficult to give a rigorous complexity analysis of our P2P approach. To our best,
no previous studies have neither been able to give any theoretical analysis of dis-
tributed B&B algorithms, mainly due to the hardness of mathematically predicting
how the pruning process can act in function of the tackled instance. Therefore, the
goal of this section is to highlight the main complexity issues of our approach while
stressing on the scalability of the overlay and the congestion that may be created
at the network level. For that purpose, we shall make the following assumptions:

• A message is an infrangible piece of information which is sent along a logical
link between two nodes (peers) in the overlay, independently from the number
or the nature of physical equipments required to transmit it over the physical
network.

• During one time unit, a node in the network may send to each neighbor at
most one message. Equivalently, this means that a message sending induces a
delay of one time unit. We emphasis on the fact that time units are introduced
for the sake of analysis only. In other words, our algorithms do not assume
any shared global clock nor any known bound on the time needed to transmit
a message over the network.

Let us recall that D denotes the diameter of the network overlay G = (V,E)

connecting n computing peers and dv denotes the degree of peer v ∈ V . From a
message complexity point of view, the two following properties can be claimed:

• Whenever a new best solution is found by a node during the B&B local search
process, it costs at most O(|E|) messages until all other nodes in the network
update their local solutions. In addition, assuming that sending a message to
neighbors costs one time unit, it takes at most D time units to update the
local solutions of all nodes.
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• Consider that, at a given time, a node v has no work interval to explore.
Assume that no interval vaporization occurs during any work request round.
In the worst case, node v sends at most O(dv ·D) messages within at most O(D)

time units until either it receives a work unit or it detects the termination of
the B&B algorithm.

Since our approach can properly operate whatever the logical network topology
is, it becomes clear from the previous analysis that it requires specific properties for
the overlay graph to perform efficiently. Before pushing the discussion further, let us
remark that when tackling large instance problems, the B&B process is initialized
with some good solution (computed for instance using a given heuristic8). Thus,
it is rather rare that many new solutions are found by many peers at the same
time. Equivalently, most of the time peers just prune the explored intervals without
finding new solutions. Therefore, we can reasonably state that the communication
complexity of our approach is dominated by the work sharing mechanism. Thus,
to gain in efficiency, the overlay graph should have a good balance between node
degrees (i.e., each peer must have a low number of neighbors) and network diameter
(i.e., peers must stay relatively close in the logical overlay). In fact, spreading a
piece of information (intervals) over the network must be performed quickly while
keeping the communication load of the peers at a low level to avoid bottlenecks
around peers.

To satisfy these constraints, one may use several kinds of overlay constructions.
Let us consider a toric hypercube overlay9 constructed in the following way.

Considering N vertices in the graph, the dimension of the hypercube is set
to ⌈log(N)⌉ i.e. the toric hypercube is defined as a ⌈log(N)⌉-dimensional lattice.
Figure 3.6 provides an example of a toric 2-dimensional 5x5 lattice. Peers a1 to a5
are linked to peers e1 to e5. Peers a1 to e1 are linked to peers a5 to e5.

More precisely, to generate the overlay topology, we proceed the following
way. Let N be the number of peers in the network. Two values are calculated:
k = ⌈log(N)⌉ and m = ⌈N

1
⌈logN⌉ ⌉. Those two values correspond to the number of

dimensions and the length of the edges of the hypercube. Consider a peer whose
identifier is p ∈ [0, N − 1].

For a given integer b, we define pb the representation of the number p in base

b: pb = (xc, xc−1, . . . , x2, x1) with c = ⌈logb(p)⌉ and
c∑

i=1

(xi · bi−1) = p and ∀i ∈

[1, c], xi ∈ [0, b− 1].
Still considering the peer identified by p, we consider its representation in base

m : pm = (xk, xk−1, . . . , x2, x1).
∀u ∈ [1, k], we define the following numbers in base m:

qum = (xk, xk−1, . . . , f
+(xu), . . . , x2, x1)

8It is generally admitted that starting a B&B from scratch is rather very costly.
9The implementation and deployment in Grid’5000 of the overlay is presented in Section 5.2.3.
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and
rum = (xk, xk−1, . . . , f

−(xu), . . . , x2, x1)

where

f+(xu) =

{
xu + 1 mod m, ifq10 = q ≤ N ;

0, else.

and
f−(xu) = xu − αu mod m

where αu is the smallest strictly positive integer such that r10 = r ≤ N . When
converted back into base 10, q10 = q and r10 = r represent the identifiers of two
other peers that are neighbors of the current peer p.

Note that, to ensure that we do not miss any neighbors during the procedure,
the number of digits (the number of xi elements in pm) has to be set to k. Indeed,
consider the peer whose identifier is set to 0, pm would have only one digit x1 and
we would forget considering neighbors defined along the k − 1 other dimensions of
the hypercube ! This process is applied to all the N peers.

Figure 3.6: Illustration of a 2-dimensional toric lattice whose edges length is 5.

Having this overlay constructed, one can show that the diameter of the under-
lying graph and its average degree is order of log(n) with n being the number of
peers. Therefore, it holds from the previous discussion that the combined work
sharing and termination detection in our approach running over a hypercube over-
lay costs roughly O(log(n)2) messages per node. To illustrate how this can improve
the scalability of the Master-Slave approach, let us assume that the limitation of the
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Master-Slave approach is only due to the bottleneck created around the master, that
is to the number of slaves or equivalently to the degree of the star overlay induced
by such an architecture. Let n be the maximum number of slaves that can be han-
dled simultaneously by the Master, i.e., n is now the maximum number of Slaves
that leads to a bottleneck around the Master. Then, we can reasonably assume
that n would be also the maximum number of neighbors before a communication
bottleneck around a given peer can be observed. Thus, considering a P2P over-
lay with size n′ = Θ(exp(n)), we obtain a mean node degree of Θ(log n′) = Θ(n).
This means that while the Master-Worker model can handle only up to n computa-
tional nodes before breaking down, the P2P approach scales up to Θ(exp(n)) nodes.
Of course, exponentially more computational resources does not straightforwardly
mean exponential gain in load balancing/parallel efficiency nor in search speed-up,
since handling more resources has a communication cost. In the Master-Slave ap-
proach, in order to share work or to announce termination, the Master sends O(1)

messages to each Slave. Overall, the number of messages sent is thus Θ(n) with
the Master having a degree equal to n. Assume now that it can be proven that
Θ(n) is the maximum number of messages that can be sent simultaneously over the
network before network delays/congestion can lead to the system breaking down.
Thus, under the assumption that no work vaporization occurs which is a reasonable
assumption for large scale and difficult instances, our P2P approach can still handle
up to n′ = Θ(n/ log2(n)) peers which is asymptotically better than Θ(n1−ε) for an
arbitrary small positive constant ε < 1. Thus, overall, we obtain a better balance
between scalability in terms of number of peers and scalability in terms of communi-
cation cost that is in Parallel Efficiency. As our experimental results show in chapter
5, we even obtain lower communication overheads than expected theoretically while
being more efficient in terms of space exploration and in parallel efficiency.

Remark 2. Notice that for the sake of termination detection, we have assumed that
the diameter D of the graph is known. This may appear as a strong and penal-
izing assumption. However, we argue that an upper bound on D is sufficient. In
addition, using an upper bound instead of the exact value of D does not affect the
communication cost as long as some work interval remains somewhere in the net-
work, i.e., message overhead will only occur when the search space is fully explored.
According to the previous discussion, the overlay graph should be chosen such that
D = Θ(log n). Thus, in practice, for n around, let us say, 1010, even an over
estimated upper bound of, let us say, 100 is perfectly plausible.

3.6 Conclusion

In this chapter, we presented our P2P-B&B approach for parallelizing the Branch-
and-Bound algorithm in a large-scale distributed environments. Our approach does
not undergo any centralized mechanism. From a logical point of view, computa-
tional nodes are peers that can communicate with only a subset of other computa-
tional nodes called neighbors and the network overlay can be any connected graph
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G = (V,E). On the algorithmic side, a peer is in charge of managing its own local
work pool, to share its work units with other peers through the use of the Work
Sharing Mechanism defined in Section 3.3.2, to broadcast any new improving so-
lution discovered during the exploration process to other peers through the Best
Solution Sharing Mechanism described in Section 3.3.1 and detect the termination
of the calculation in a distributed way based on a local vision of the network thanks
to the Termination detection mechanism defined in Section 3.4. We also provided
a complexity analysis of our approach in terms of time and messages showing how
the choice of the logical overlay connecting peers could impact the overall perfor-
mances. The latter analysis is however conducted assuming a simplified model of
communication and B&B search process. In Chapter 5, we shall provide a through-
out experimental study of the performances of our approach as well as its scalability
when effectively implemented and deployed over a real large-scale experimental grid.

One should remark that the informal description given in this chapter allows
one to have a general idea of our approach; however, it does not guarantee the
correctness of the designed distributed protocols. Therefore, and before turning to
an experimental evaluation of our approach, the next chapter of this thesis shall
provide a formal analysis of our approach.
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Chapter 3. B&B-P2P : a P2P approach for scalable Branch-and-Bound

on fully distributed environments.

Algorithm 1: General overview of our B&B distributed algorithm
High level code executed by node v (in parallel with receive triggers1
below):

while countv < X do2
;3
incrementv := true; readyv := true; Qv := ∅;4
while [x, y[ ̸= ∅ do5

Explore [x, y[ using the B&B algorithm;6
As soon as a better solution solv is found Send New(solv) to all7
neighbors;

if countv = −1 then countv := 0;8
Send Request to all neighbors;9
Wait Upon Reception of Reply(countw) from every neighbor w :10

if countw = −1 then11
incrementv := false; countv := 0; Qv := Qv ∪ {w};12
if [x, y[ = ∅ then13

Send Work_Request to w;14
Upon Reception of Work_Reply([z′, y′[) from a neighbor w15
do :

if [z′, y′[ ̸= ∅ then [x, y[ := [z′, y′[;16

if countw ≥ X then Qv := Qv ∪ {w};17

readyv := false;18
if [x, y[ ̸= ∅ then countv := −1;19
Send Safe(countv) to every neighbor w /∈ Qv;20
Wait Upon Reception of Safe(countw) from every neighbor w /∈ Qv :21

if (countw < countv) then incrementv := false;22

if incrementv then countv := countv + 1;23

Send Terminated to all neighbors;24
readyv := true;25
Wait Upon Reception of Terminated from all neighbors;26

High level code for receive triggers executed by node v (in parallel):27
Upon Reception of Request from a neighbor w do :28

if readyv ∧ w /∈ Qv then Send Reply(countv) to w;29
else30

/* Inqueue the Request and delay the response (v waits until31
it is ready for the next round) */

Send Reply(countv) to w later as soon as readyv ∧ w /∈ Qv is32
verified;

Upon Reception of Work_Request from a neighbor w do :33
if [x, y[ is not yet entirely explored then34

Let z ∈ [x, y[ be the integer corresponding to the solution being explored35
last;
[x, y[ := [z, z+y

2 [ ; Send Work_Reply([ z+y
2 , y[) to w;36

else Send Work(∅) to w;37

Upon Reception of New(solw) from a neighbor w do :38
if solw is better than solv then39

solv := solw; Send New(solv) to all neighbors w′ ̸= w;40

Upon Reception of Terminated from a neighbor w do :41
if readyv = false then Qv := Qv

∪
{w};42
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4.1 Introduction

The goal of this chapter is to provide a formal analysis of the correctness of our fully
distributed approach. In fact, the work-sharing, solution exchange, and termination
distributed protocols embedded in our approach are inter-dependent which may
lead to hidden and unpredictable deadlocks issues. In order to guarantee that such
issue cannot occur in our P2P approach, we provide a complete correctness analysis
that guarantees several properties of our distributed protocol. More precisely, we
shall state different lemmas proving the following main properties: (i) there is no
redundancy during the exploration process (that is, the P2P network processes the
tasks to be performed in a finite time), (ii) there is no deadlock in the communication
protocol (that is, two peers are blocked waiting for a message from each other), (iii)
a peer cannot claim termination if there still exist a peer in the network which
is processing a task and (iv) once the last task is processed, a peer can detect
and claim termination within a finite time and. Besides proving the correctness of
our approach, the analysis we conduct provides insights into the properties of our
approach and highlights the challenging issues we had to deal with in designing and
deploying our approach.
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4.2 Correctness Analysis (Termination Detection)

4.2.1 Overview of the proof

In the following, we give a step by step proof assessing the correctness of Algo-
rithm 1, depicted and described in the previous chapter. We consider the whole
execution process and distinguish between two phases. The first phase starts with
peers deployed and beginning the computations and ends when the very last B&B
solution is explored by some peer. The second phase starts from the time the last
B&B solution was explored, i.e., no work remains in the system and ends with all
peers having detected that indeed, the computation is finished. Notice that from
the peer local view, no information is available about those two phases. In other
words, these phases are introduced only for the sake of analysis. During those two
phases, we proceed by proving the following crucial properties:

• During Phase 1, one has to prove that:

– All the solutions will be explored within a finite amount of time, i.e. no
solution can be explored at least twice (Lemma 1) and thus Phase 2 can
effectively start.

– A peer synchronizes its rounds of requests with its neighbors, to avoid
continuously asking for the same piece of information repeatedly and
uselessly. This is to make sure that the information being communi-
cated remains identical and coherent during the communication process.
(Lemma 2 and Lemma 3)

– A peer cannot detect termination while another peer is still exploring
solutions. (Lemma 4)

• Once Phase 2 starts:

– Every peer may detect termination within a finite amount of time.
(Lemma 6)

• During both phases:

– Any round of requests is achieved within a finite amount of time.
(Lemma 5)

Figure 4.1 represents the logical relationships between the properties that are to
be proved. We start with the basic observation that no redundancy can occur in
Algorithm 1. From the algorithm pseudo-code, a node shares its interval with at
most one neighbor, i.e., Work messages. Whenever an interval is shared, it is split
into disjoint pieces. Thus, the following is straightforward.

Lemma 1. Algorithm 1 guarantees that two peers never explore two intersecting
intervals, i.e., there is no redundancy.
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Figure 4.1: Visual representation of precedence constraints between the properties
to be proved.

4.2.2 Properties of communication rounds

Given a node v executing Algorithm 1, we denote by countv(t) the counter of v at
time t, where a global an unique time clock is assumed for all peers. We recall that
the counter of a peer v is used in order to handle communication round local syn-
chronization and termination detection. Hence, it is crucial in proving the correct
behavior of our protocols. Suppose that countv(t) = x for some integer x verifying
x ≥ 0 and at some fixed time point t ≥ 0. From the algorithm description, it is clear
that v must have successively incremented its counter starting from 0 until reaching
x. We then denote by ti(v) the time when the counter of node v reached value
i ∈ {0, 1, 2, · · · , x− 1, x}. More precisely, for i ∈ {1, . . . , x}, ti(v) is the time node v

incremented its counter by 1 in line 23 of algorithm 1. For i = 0, t0(v) is defined as
the last time node v sets its counter to 0 and begins a new Request/Reply/Safe com-
munication round. We remark that node v may end such a round without necessarily
incrementing its counter on line 23. Thus, it may perform y ≥ x rounds before being
able to increment its counter up to x. Thus, let us denote t′j(v) the time when node
v executed the instruction on line 23 for the jth time on its way for incrementing its
counter from 0 up to x with j ∈ {0, 1, 2, · · · , y − 1, y}. Hence, we have tx(v) = t′y(v),
t0(v) = t′0(v) and ∀i ∈ [1, x − 1], ∃j ∈ [1, y − 1]|ti(v) = t′j(v). Figure 4.2 represents
a simple example illustrating the so-defined time sequences with x = 4, y = 9.

Note that both defined time sequences ti(v) and t′j(v) depend on the considered
time point t. For simplicity and clarity, we have omitted to mention this fact in our
notations.

Lemma 2. Consider a node v and an integer x ≥ 1. Suppose that there exist two
time points t′j(v) < t′j+1(v), j ∈ N such that node v sets his counter successively to
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Figure 4.2: Example of definition of the time sequences used in lemmas’ proofs.

x at time t′j(v) then to αx ∈ {x, x+ 1} at time t′j+1(v). Then, for every neighbor
u ∈ N(v), there exist time points −→s u and ←−s v verifying:

• t′j(v) <
−→s u <←−s v < t′j+1(v).

• At time −→s u, node u sends a message Safe(y) to v with y ≥ 0.

• At time ←−s v, node v receives and processes u’s Safe(y) message.

Proof. In order to be able to set its counter from x to αx, node v must have executed
a Request/Reply/Safe communication round. In particular, v waits for Safe messages
from all its neighbors w /∈ Qv in line 21. Consider a node u ∈ N(v) and suppose
that u ∈ Qv. From the algorithm description, this means that u replied to v’s
request by a Reply(−1) message. Thus, v would have set its counter down to 0 in
line 12. Thus, v cannot set its counter to αx in line 23: contradiction. Therefore,
u /∈ Qv meaning that u must have replied with a Reply(≥ 0) message to v’s Request
message. Similarly, by line 21 of the algorithm, it is clear that v must have received
message Safe(≥ 0) from u before setting its counter to αx.

Now, let us consider the time t when node u receives and process v’s request in
line 28. We distinguish two cases:

1. Suppose that u does not delay v’s Request. This means that readyu = true

and v /∈ Qu at time t. By the previous discussion u replies with a counter value
at least 0 (otherwise v could not have set its counter to αx). Thus at time t,
node u is already executing a Request/Reply/Safe communication round. In
particular, node u has already sent a Request message to v. Let t′ be the
time corresponding to u starting that communication round. Let t′′ be the
time by which u’s Request arrived at node v. Note that from time t′ to time t

node u could not have sent a Safe message yet: Otherwise, it would have set
its readyu variable to false and would have delayed v’s request leading to a
contradiction. We have two cases:

• Suppose that u’s request is received after time t′j(v), i.e., t′′ > t′j(v) (See
Figure 4.3). Thus, v’s Reply is sent after time t′j(v) (after v’s request was
sent) and thus it arrives to u after time t (recall that we assumed a FIFO
message passing model). Since a node is blocked after a request waiting
for the corresponding response, u would send a Safe message to v only at
time −→su verifying −→su > t > t′j(v).
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Figure 4.3: The case where u’s request arrives after time t′j(v) in the proof of
Lemma 2

• Suppose that u’s request is received before time t′j(v), i.e., t′′ < t′j(v).
Assume for contradiction that countv(t′′) = −1, i.e., node v still holds an
interval by time t′′. Thus, node v would have replied with a Reply(−1)
message. Thus, node u would have added node v in the queue Qu and
would have never replied to v by time t which is a contradiction (recall
that by definition of t′, node u is still executing a unique communica-
tion round from time t′ and t). Suppose now that countv(t

′′) ≥ 0. This
means that v has completed a Request/Reply/Safe communication round
before time t′j(v). Let t1 be the time node v begins executing this com-
munication round. Let t2 be the time node v sent its Safe messages
(equivalently, completed its Request/Reply process). Again, we have to
distinguish between two cases.

– t′′ > t2 (See Figure 4.4). In this case, u’s Request message is delayed
by v. Hence, until time t, node u does not get any Reply message
from v (i.e., node u is blocked waiting for v’s Reply). Thus, node u

can send a Safe message to v only by time −→su > t > t′j(v).
– t1 < t′′ < t2. Here we distinguish two cases again. First, suppose that

v replied immediately to u (i.e., u /∈ Qv at time t′′). Thus, v must
have received a Safe message from u to complete its communication
round. Thus, u must have sent a Safe message to v in time period
[t′, t]: contradiction. Second, suppose that v does not reply to u’s
request and delay its reply (i.e., u ∈ Qv at time t′′). Thus, node u

will be blocked waiting for v response at least until time t and thus
it can send a Safe message to v only by time −→su > t > t′j(v).

2. Now, we consider the case where u delays v’s Request when executing the
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Figure 4.4: The case where u’s request arrives after time t2 in the proof of Lemma
2

receive trigger of line 28 at time t. Denote by t′ > t the time u sends its Reply
message (See Figure 4.5). From the algorithm description, v’s request can be
delayed only if at time t, either v ∈ Qu or readyu = false (i.e., u is waiting for
Safe messages). In the two cases, u’s Reply(≥ 0) message is sent just after time
t1 > t corresponding to u beginning a new Request/Reply/Safe communication
round. Thus, the Request message sent by u at time t1 arrives at v after time
t > t′j(v). At that time v is still blocked waiting for u’s Reply message and
thus v can only respond with a Reply(x ≥ 0) message. Hence, u does send a
Safe(≥ 0) message to v after time t > t′j(v).

To summarize, we have that if node u replied to v’s Request by a Reply(≥ 0)

message then it does send a Safe(≥ 0) message to v after receiving that request.
Now, suppose we have the following hypothesis:

(H) : At each time node v starts a new Request/Reply/Safe communication round,
there are no Safe messages pending/delayed at v, i.e., whenever a Safe message
is sent to a neighbor v, that neighbor actually processes that message before
its next communication/exploration round.

Assuming (H), it becomes clear from the previous discussion and the algorithm
description that before being able to set its counter from x to αx ∈ {x, x+ 1}, node
v must wait for the Safe(y ≥ 0) message sent by u at time −→su defined implicitly
from the previous discussion. Thus, assuming (H) we have that node v cannot set
its counter to α before receiving and processing u’s Safe(y) message at some time
←−sv verifying t′j(v) <

−→su <←−sv < t′j+1(v).
Proving that hypothesis (H) is verified for every node is done by induction. In

the following, we just give a sketch of how the proof goes. In fact, we can view the
execution of our distributed algorithm at a given node v as a sequence of time periods
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Figure 4.5: The case where node u delays v’s Request message in the proof of
Lemma 2

T ′
i where T ′

i is either a Request/Reply/Safe communication round or a time period
of work interval exploration (corresponding to node v exploring a B&B interval in
line 6). At time 0, the hypothesis (H) is verified. Thus, if at the very first sequence
T ′
0, node v is initially exploring an interval, the hypothesis stays true all along T ′

0

since from the algorithm description no neighbor u of v can send a Safe message to
v. Hence, the hypothesis stays true at the second sequence T ′

1. Now, suppose that
the first sequence T ′

0 corresponds to a Request/Reply/Safe communication round
(that is node v has no interval to explore initially). Consider a neighbor u of and
suppose that u holds no work interval initially. Then, neither node v nor node u

can switch to a new sequence T ′
1 before receiving a Safe message. That message is

then processed before switching to a new sequence T ′
1. Suppose now that initially

node u holds a work interval. If v’s request arrives at u while u still holds a piece
of interval to explore then no Safe message is sent by to v by u. Otherwise, if u

has no interval to explore at the time it receives v’s request, then by the previous
discussion, it is also clear that a Safe message is sent by u to v and processed by v

before switching to a new sequence T ′
1. By the same arguments, and by induction

on the sequences of communication/exploration periods T ′
i , it is not difficult to see

that hypothesis (H) is always verified throughout the algorithm execution. This
concludes our proof.

Lemma 3. For every integer x ≥ 2, at any time t ≥ 0, and for every node v ∈ V

such that countv(t) = x, it holds that for every neighbor u ∈ N(v), there exists a
sequence of x− 1 time points Sv,u

x =
{
t′1(u), t

′
2(u), · · · , t′x−1(u)

}
verifying:

• ∀i ∈ {1, . . . , x− 1}, t′i−1(v) < t′i(u) < t′i+1(v) and t′i−1(u) < t′i(u)
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• ∀i ∈ {2, . . . , x− 1}, ∀t′ ∈ [t′i−1(u), t
′
i(u)[, countu(t

′) ≥ i− 1

• countu(t
′
x−1(u)) ≥ x− 1

Proof. In the following, we give a constructive and inductive proof that defines
precisely the sequence of time points t′i throughout the algorithm execution. We
recall that for v to set its counter from y ≥ 0 to αy ∈ {y, y + 1} during time period
[t′j(v), t

′
j+1(v)[ for j ∈ {0, . . . , x− 1}, node v must (at least) do the following actions :

send a Request message to u then receives a Reply message from u, and send a Safe
message1 to u and symmetrically receive a Safe message from u.

From the algorithm description, it is clear that node v must have performed
at least x successive rounds to set its counter up to x. Thus, if we name{
t′0(v), . . . , t

′
x−1(v)

}
the last x dates when v started a Request/Reply/Safe commu-

nication round and t′x(v) the time when it ended the last round and set its counter
to x, it is clear that ∀i ∈ [0, x− 1], ∀t′ ∈ [t′i(v), t

′
i+1(v)[, countv(t

′) ≥ i.
From the algorithm description and by lemma 2, it holds that for v to perform

the rounds taking place during [t′x−2(v), t
′
x−1(v)[ and [t′x−1(v), t

′
x(v)[. Let −→s u,x−2

(resp. −→s u,x−1) be the time by which u sends its safe message to v. From the
algorithm description, node u must have executed a round of Request/Reply with
neighbors in time period [−→s u,x−2,

−→s u,x−1[. In fact, after time −→s u,x−2, node u makes
the following actions: (1) it waits for Safe messages, (2) it sends Request messages
again to neighbors, (3) it waits for their Reply, and, only after that, (4) it can send
a new Safe message at time −→s u,x−1.

Let qx−2 (resp. qx−1) be the time by which u receives the Request sent by v in
round [t′x−2(v), t

′
x−1(v)[ (resp. [t′x−1(v), t

′
x(v)[). Let px−2 and px−1 be the times that

node u replies respectively to those requests. Since v sends his request in time period
[t′j(v), t

′
j+1(v)[ where j ∈ {x− 2, x− 1}, it is clear that t′j(v) < qj ≤ pj < t′j+1(v).

By Lemma 2 and the proof therein, we also have that pj < −→s u,j < t′j+1(v). Note
also that node u cannot wait indefinitely for Safe messages from neighbors2 by time
−→s u,x−1.

Since v sets its counter to αx−1 ∈ {x− 1, x} then to x, the Safe(y) message sent
by u at time −→s u,x−2 (resp. −→s u,x−1) must verify y ≥ x− 2 (resp. y ≥ x− 1). Thus,
countu(

−→s u,x−2) ≥ x− 2 and countv(
−→s u,x−1) ≥ x− 1.

Let y = countu(
−→s u,x−2) ≥ x− 2. Before time −→s u,x−2 the counter of u was also

equal to y and u has executed a Request/Reply communication round. We denote
by rx−2 the time corresponding to u beginning its requests. It is clear (Lemma 2)
that rx−2 <

−→s u,x−2 and from time rx−2 to time −→s u,x−2 the counter of u is at least
y. Suppose that after time −→s u,x−2 node u does not set its counter to αx−1 ≥ x− 1,
i.e.,either it sets its counter to x− 2 or it resets its counter. In the first case, during
round [t′x−1(v), t

′
x(v)[, node v would have received a Reply(x − 2) and then, would

have set its incrementv variable to false. Node v could not increment its counter
1Otherwise, if v does not send a Safe message to u, then it resets its counter to 0 and does not

increment it.
2Otherwise, it cannot send new Safe messages and v would never have set its counter to x
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from x−1 to x should the case rise, which contradicts our definition of date t′x(v). In
the second case, the next time u sends a Safe(y′) message to neighbors, this message
must verify y′ ≤ −1. However, by Lemma 2 and the discussion therein, this Safe
message is sent at time −→s u,x−1 and thus y′ ≤ −1 ≥ 0, contradiction. Therefore,
node u does set its counter to αx−1 at some time, say rx−1, verifying rx−1 >

−→s u,x−2.
Since after −→s u,x−2, node u stops replying to new requests until receiving all Safe
messages from neighbors not in Qu, it is clear that rx−1 < px−1. After time rx−1,
node u executes a new Request/Reply communication round. Thus, it cannot receive
a Reply(−1) message from any neighbor since otherwise it would not have sent a
Safe(≥ 0) message to v by time −→s u,x−1. Thus, until −→s u,x−1, the counter of u is still
equal to α.

Thus, to sum up, for j = x− 1 we have defined two time points rx−2 and rx−1

such that: rx−2 < rx−1, t′x−2(v) < rx−1 < t′x(v), ∀t′ ∈ [rx−2, rx−1[, countu(t′) ≥ x−2
and ∀t′ ∈ [rx−1,

−→s u,x−1], countu(t′) ≥ x− 1. In other words, rx−2 and rx−1 stands
respectively for time points t′x−2(u) and t′x−1(u) claimed in the lemma for rank
j = x− 1.

Now, suppose that we have defined similarly the dates rj−1 = t′j−1(u) and rj =

t′j(u) for a rank j ∈ {2, . . . , x− 1}. Recall that this assumption implies the definition
of dates qj , pj , qj−1, pj−1 as explained earlier. Now consider the round performed by
v during time period [t′j−2(v), t

′
j−1(v)[. Let −→s u,j−2 be the time by which u sends its

Safe message to v. Still from the algorithm description, node u must have executed a
round of Request/Reply with neighbors in time period [−→s u,j−2,

−→s u,j−1[. Again, after
time −→s u,j−2, node u makes the following actions : (1) it waits for Safe messages, (2)
it sends Request messages again to neighbors, (3) it waits for their Reply messages
and, finally, (4) it can send a new Safe message at time −→s u,j−1.

Let qj−2 be the time by which u receives the Request sent by v in round
[t′j−2(v), t

′
j−1(v)[. Let pj−2 be the time by which u replies to this request. Since

v sets its counter from α ≥ j − 2 to α′ ≥ j − 1, the Safe(y) message sent by u at
time −→s u,j−2 must verify y ≥ j − 2. Thus, countu−→s u,j−2 ≥ j − 2.

Let y = countu(
−→s u,j−2) ≥ j − 2. Before time −→s u,j−2, the counter of u was also

equal to y and u has executed a Request/Reply communication round. We denote
by rj−2 the time corresponding to u starting its requests. It is clear (Lemma 2)
that rj−2 <

−→s u,j−2 and from time rj−2 to time −→s u,j−2, the counter of u is at least
y. Suppose that after time −→s u,j−2, node u does not set its counter to α′ ≥ j − 1

i.e. either it sets its counter to j − 2 or it resets its counter. In the first case,
during round [t′j−1(v), t

′
j(v)[, node v would have received a Reply(j − 2) and then,

would have set its incrementv variable to false. Node v could not increment its
counter from j − 1 to j should the case rise (i.e. if countv(t

′
j−1) = j − 1 and

countv(t
′
j) = j). This contradicts our inductive assumption. In the second case,

the next time u sends a Safe(y′) message to neighbors, this message must verify
y′ ≤ −1. However, by Lemma 2 and the discussion therein, this Safe message is sent
at time −→s u,j−2 and thus, y′ ≤ −1 ≥ 0, contradiction. Therefore, node u does set its
counter to α′ ≥ j − 1 at time rj−1 , with rj−1 > −→s u,j−2. Since after −→s u,j−2, node
u stops replying to new requests until receiving all Safe messages from neighbors
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not in Qu, it is clear that rj−1 < pj−1. After time rj−1, node u executes a new
Request/Reply communication round. Thus, it cannot receive a Reply(−1) message
from any neighbor since otherwise it would not have sent a Safe(≥ 0) message to v

by time −→s u,j−1. Thus, until −→s u,j−1, the counter of u is still equal to α.
Thus, to sum up, for a rank j − 1, the definition of points rj−1 and rj permits

to define a new time point rj−2 such that : rj−2 < rj−1, t′j−2(v) < rj−1 < t′j(v) ,
∀t′ ∈ [rj−2, rj−1[, countu(t

′) ≥ j − 2. In other words, rj−2 stands for the time point
t′j−2(u) claimed in the lemma for rank j−1. Thus, by assuming the property proven
for a rank j, we proved that property for rank j−1 and thus for all ranks from x−1

down to 2.

Lemma 4. Any Request/Reply/Safe communication round of our algorithm is dead-
lock free.

Proof. From the algorithm description, if a node v gets blocked waiting for a message
from a neighbor u, then this is because either:

• node u does not respond to v’s Request with a Reply message, or

• node u does not respond to v’s Safe message with a Safe message.

Let us first prove that whenever a node v sends a Safe message to a neighbor u

during a Request/Reply/Safe communication round, it does not get blocked waiting
for a Safe message from u. From the algorithm description, whenever node v sends a
Safe message to neighbor u, this means that u ∈ Qv, i.e., u replied with Reply(≥ 0)

to v’s Request. Consider the t by which node u received v’s Request. Node u replied
with a Reply(≥ 0) message to v. Then node v ends its round by sending a Safe
message to u and waiting for a Safe message from u. From this point, two situations
can occur:

• Node u begins a new round with countu < X. It sends a Request message to
v, receives a Reply(≥ 0) from v because v is waiting for a Safe message. Thus,
we have v /∈ Qu, meaning that, after receiving all the replies from neighbors,
node u will send a Safe message to v.

• Node u set its counter to a value ≥ X. After receiving the Safe message from
v, node u sends Terminated message to v. Node v will add node u in Qv and
then gets unblocked.

Now, consider the case where a node v gets blocked waiting for a Reply message,
say from a neighbor u. First remark that as long as node v is waiting for u’s Reply,
we have that readyv = true. In addition, we remark that a node requesting for an
interval is necessarily executing the while loop of algorithm 1, i.e., it has not yet send
its Terminated message. Thus, none of its neighbors has terminated the algorithm.
Thus, these neighbors do process v’s Request in a finite time, i.e., the neighbors do
execute the receive triggers of line 28. Consider the time t node v begins sending
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Figure 4.6: The inductive proof in Lemma 3

its requests to neighbors. Let t′ be the time by which node u receives v’s request.
When receiving v’s request, node u does not respond (i.e., it delays its response at
line 32) in only two cases: either readyu = false or v ∈ Qu at time t′. We thus
have two cases:

• If readyu = false, then from the algorithm description this means that node
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u is waiting for Safe messages at line 18 from neighbors in Qu. Symmetrically
u must have sent Safe message to those neighbors. Thus, from the previous
discussion u does not get blocked waiting for Safe messages from those neigh-
bors. Just after receiving those Safe messages, node u sets its readyu variable
to true, thus it can answer v’s request.

• If readyu = true, then necessarily v ∈ Qu. This means that v replied to u’s
request with a Reply(−1) message, i.e., before beginning its requests at time
t, node v had a work interval but had entirely explored it. Thus, node u does
not sent a Safe message to v and does not get blocked for neither a Reply nor a
Safe message from v. Thus, the only way that node u does not respond to v’s
request is that node u gets blocked waiting for a Reply message from a neighbor
u1. Let us denote by t1 the time node u sends its Request to node u1. It is clear
that that u1 ̸= v since v ∈ Qu (v has already replied). We thus can repeat the
same reasoning for node u waiting now for a Reply from neighbor u1. We then
get two cases: either readyu1 = false or u ∈ Qu1 . If readyu1 = false, then
by the same reasoning u1 cannot stay blocked indefinitely for a Safe message
and thus ends by replying to u’s request within a finite time. Hence v ends by
receiving a Reply from u. If now readyu1 = true and u ∈ Qu1 , we can apply
the same reasoning and find a node u2 ̸= u1 such that: u1 is blocked for a
Reply message from u2. Similarly it is easy to see that u2 ̸= u. Assume that
u2 = v meaning that u1 is blocked waiting for a Reply message from v. Denote
by t2 the time node u1 sends its Request to node u2 = v. Consider the time t′2
by which that message arrives at u2. If t′2 > t we are done since readyv = true

after time t meaning that u1 ends by receiving a reply from u2 = v and also
node u. Suppose now that t′2 < t. Recall that just before time t, node u2 = v

was exploring an interval. Denote by t′′ the time node v begins exploring that
interval. It is not difficult to see that from time t′′ to time t, we have that
countv = −1. Suppose that t′2 ∈ [t′′, t], then node u2 = v immediately respond
to u1 request and we are done. Suppose that t′2 < t′′. Consider the time t′′′

corresponding to the Request/Reply/Safe communication round (If no such a
time point exists, then this means that t′′ = 0 and we are done since necessarily
t′2 ∈ [0, t]). Since v terminated that round, it has necessarily responded to u1’s
request with a Reply message at most by time t′′. Thus u1 ends receiving a
Reply message from u2 = v within a finite time and we are done. Now if u2 ̸= v,
then we can repeat the same arguments for node u2 verifying u2 /∈ {u1, u, v}.
It is not difficult to see that we can repeat our reasoning by induction at most
ℓ ≤ n times and find a path of node (v, u = u0, u1, u2, · · · , uℓ) where for every
i < ℓ node ui is waiting for a Reply from node ui−1 and node uℓ does respond
to node uℓ−1. Thus, node v cannot get blocked for an infinite time.
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4.2.3 Termination Detection

The following lemma aims at proving that whenever the counter of a peer reaches a
given bound, then the peer can locally decide that no work remains in the network.
Notice that the Lemma does not guarantee that the value of the counter of a node
will eventually reach that bound — This is proved afterward.

Lemma 5. At any time t ≥ 0, and for any node v ∈ V , if countv(t) = 4D then no
work interval remains anywhere in the network.

Proof. For conveniency, let X = 4D. Suppose that countv(t) = X. Consider
any node w ̸= v and the shortest path P of length ℓ starting from v and lead-
ing to w. By definition, we have that ℓ ≤ D. Denote this path P = (u0 =

v, u1, · · · , uj , · · · , uℓ = w) with j ∈ {0, . . . , ℓ}. From Lemma 3, we get a se-
quence of time points Su0,u1

X =
{
t′i1(u1) | i1 ∈ {1, . . . , X − 1}

}
that verifies the four

properties stated in Lemma 3. In particular, for i1 ∈ {1, X − 1}, it holds that
countu1(t

′
1(u1)) ≥ 1 and countu1(t

′
X−1(u1)) ≥ X − 1. By Lemma 3, we have also:

t′1(u1) < t′2(u0)

t′2(u1) < t′3(u0) (4.1)

· · ·
t′X−4(u0) < t′X−3(u1) (4.2)

t′X−3(u0) < t′X−2(u1)

t′X−2(u0) < t′X−1(u1)

We can again apply Lemma 3 for node u2 with respect to time point t′X−1(u1)

corresponding to the time where neighbor u2 sets its counter to X − 1. Thus, we
obtain a new sequence of time points Su1,u2

X−1 =
{
t′i2(u2) | i2 ∈ {2, . . . , X − 2}

}
for

node u2. This sequence of time points also verifies the properties of Lemma 3. In
particular, for i2 ∈ {1, X − 2}, countu2(t

′
2(u2)) ≥ 2 and countu2(t

′
X−2(u2)) ≥ X−2.

We also have:

t′2(u2) < t′3(u1) (4.3)

t′3(u2) < t′4(u1)

· · ·
t′X−4(u1) < t′X−3(u2)

t′X−3(u1) < t′X−2(u2) (4.4)

By combining Eq. 4.3 with Eq. 4.1, and Eq. 4.4 with Eq. 4.2, we get that node
u2 (at distance 2 from u0 = v) verifies:

t′2(u2) < t′4(u0 = v)

t′X−4(u0 = v) < t′X−2(u2)
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Because the counter of a node u ∈ {v, u1, u2} is at least 0 at time t′2(u) and can not
decrease (by Lemma 3), the counters of nodes v, u1 and u2 are at least 0 in time
interval3 [t′4(v), t

′
X−4(v)], i.e., none of these nodes holds a B&B work interval.

By induction, it is not difficult to see that, for every j ∈ {1, . . . , ℓ}, there exist a
sequence of time points S

uj−1,uj

X−j+1 =
{
t′ij (uj) | ij ∈ {j, . . . , X − j}

}
for node uj with

respect to time point t′X−j+1(uj−1) that verifies the properties of Lemma 3. In
particular, by a routine induction on j, the following holds for well chosen values of
ij ∈ {j, . . . ,X − j}:

t′ij (uj) < t′ij+j(v) (4.5)

t′ij−j(v) < t′ij (uj) (4.6)

Let us take any j ∈ {1, . . . , ℓ}. From Eq. 4.5 and for ij = 2D − j ≥ 1, we
get: t′2D−j(uj) < t′2D(v). Similarly, for ij = 2D + j ≤ X − j in Eq. 4.6, we get:
t′2D(v) < t′2D+j(uj). Notice that by Lemma 3, the counter of uj in time period
[t′2D−j(uj), t

′
2D+j(uj)] is at least 0, i.e., node uj holds no B&B work interval. Thus,

for every j ∈ {1, . . . , ℓ}, neither v nor uj has a work interval at time t′2D(v).
Finally, since any node in the overlay graph is at distance at most D from node

v, no node in the network holds a B&B work interval to explore at time t′2D(v).
Since work intervals cannot appear spontaneously or be created by nodes after time
t′2D(v), the lemma is proved.

From the algorithm description, whenever a node u receives a work request (i.e.,
Get_Work message) from a neighbor v, it answers with a part of the interval it
holds if any (no redundancy). After requesting a sub-interval from a neighbor u,
a node v waits until receiving a sub-interval from u, i.e., it does not ask other
neighbors for a sub-interval unless4 it receives an empty one from u. Then, after
finishing a Request/Reply/Safe communication round, node v runs the B&B search
process on the obtained sub-interval. Thus, by Lemma 4, whenever a node asks
for an interval from a neighbor it either ends exploring the obtained sub-interval or
it starts a new Request/Reply/Safe communication round. Since the B&B process
eventually ends exploring the whole interval, it is easy to see that there exists a time
point throughout the algorithm execution such that no interval remains to explore
anywhere in the network. In the following, we denote by t⋆ the first time where
there remain no intervals to explore in the network.

Let us consider any node v at time t⋆. It is clear that either v has already started
a Request/Reply/Safe round at some time t0v < t⋆ and it has not finished it yet, or
node v is starting a new Request/Reply/Safe communication round at time t0v = t⋆.
Similarly, we define tiv (where i ≥ 1 is an integer) the time node v started its ith

Request/Reply/Safe communication round after time t⋆. Besides, let us define the
following : ∀k ∈ N, ∀v ∈ V,Nk(v) is the set of nodes located at a distance equal to
k from the node v.

3Of course, and to make the proof more comprehensive, we implicitly assume that X − 4 > 4.
4This may happen if node u finishes exploring its interval before receiving v’s Get_Work message.
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In the following, we argue that after time t⋆, the nodes cannot reset their counters
infinitely many, and thus the algorithm terminates by Lemma 5.

Lemma 6. ∀u ∈ V, ∃n ∈ N|∀i ≥ n, countu(t
i
u) ≥ 4D

Proof. Let us prove this lemma by absurd. Suppose that we have : ∃u ∈ V |∀i ∈
N, countu(t

i
u) < 4D

Thus, this property is true for i ≥ 5D. So, the statement becomes countu(t5Du ) <

4D. This means that if node u had set its counter to 4D − 1 upon finishing its
round ending at time t5D−1

u , it has not incremented its counter by the end of the
following round ending at t5Du . Considering Algorithm 1, the condition of line 23
is not satisfied. So, node u has received whether a Safe(< 4D − 1) message from a
neighbor not in Qu on line 20 or a Reply(−1) from a neighbor in N(u). The second
case obviously leads to a contradiction with the termination assumption. Let us
consider the first case.

Let us define ∀i ∈ N, ∀u ∈ V,Bi(u) =

min(i,D)∪
k=0

Nk(u). The second case de-

picted hereabove implies that one of u’s neighbors had its counter set at a value
strictly lower than 4D − 1 at the end of the previous round. More formally,
∃v1 ∈ B1(u)|countv1(t5D−1

v1 ) < 4D − 1. Using our initial assumption, one can state
: ∃v1 ∈ B1(u)|∀k ≥ 5D − 1, countv1(t

k
v1) < 4D − 1. (See Figure 4.7)

Figure 4.7: Initial step of the proof of Lemma 6

Let us prove the induction for an integer p ∈ [1, 4D]. Suppose that we have :
∃vp ∈ Bp(u)|∀k ≥ 5D − p, countvp(t

k
vp) < 4D − p

If this node vp has set its counter to 4D− (p+1) upon finishing its round ending
at time t5D−(p+1)

vp , then it does not increment its counter up to 4D−p by the end of
the following round ending at t5D−p

vp . Thus, similarly, the condition of line 23 has not
been satisfied which implies two cases. First,the condition incrementvp = false can
be due to a neighbor in vp+1 ∈ N(vp) ⊆ Bp+1(u) which sent a Safe(< 4D− (p+1))
message during its round ending at time t5D−(p+1)

vp+1
or due to a neighbor vp+1 ∈ N(vp)

which sent a Reply(−1) message to vp. The second case leads to a contradiction with
our initial assumption.
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Thus, in the first case, one of vp’s neighbors, referred to as vp+1, has set its
value to a value strictly lower than 4D − (p + 1) by time t5D−(p+1)

vp+1
. More for-

mally, ∃vp+1 ∈ N(vp) ⊆ Bp+1(u)|countvp+1(t
5D−(p+1)
vp+1

) < 4D − (p + 1). Us-
ing the induction’s assumption, one can state ∃vp+1 ∈ N(vp) ⊆ Bp+1(u)|∀k ≥
5D − (p+ 1), countvp+1(t

5D−(p+1)
vp+1

) < 4D − (p+ 1). The property remains valid for
rank p+ 1. (See Figure 4.8)

Figure 4.8: Inductive step of the proof of Lemma 6

Consequently, if we consider the case p = 4D, the property becomes ∃vp ∈
Bp(u)|∀k ≥ 5D − p, countvp(t

5D−p
vp ) < 4D − p which means equivalently: ∃v4D ∈

B4D(u) = V |∀k ≥ D, countv4D(t
D
v4D

) < 0.
This last property indicates that one peer in the network, arbitrarily named

v4D, had set its counter to a strictly negative value when it finished it round on
date tDv4D > t⋆ i.e. it sent whether a Reply(−1) message or a Safe(−1) message to
its neighbors, indicating that it was exploring a work unit by time tDv4D (See Figure
4.9). This contradicts the definition of time t⋆ after which no work units remain in
the Peer-to-Peer network and the lemma holds.

Figure 4.9: Final step in the proof of Lemma 6
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4.3 Conclusion

In this chapter, we provided a formal proof of the correctness of our approach. We
proceeded into five main steps successively proving that: (i) All the solutions will be
explored within a finite amount of time, i.e. no solution can be explored twice. (ii)
A peer synchronizes its rounds of requests with its neighbors, to avoid continuously
asking for the same piece of information repeatedly and uselessly and to make sure
that the information being communicated remains identical and coherent during
the communication process. (iii) A peer cannot detect termination while another
peer is still exploring solutions. (iv) Any round of requests is achieved within a
finite amount of time. (v) Every peer eventually detects termination within a finite
amount of time.
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5.1 Introduction

In this chapter, we report the experimental results we obtained for the performance
evaluation of our approach using the Grid’5000 experimental grid [Grid’5000 ]. Our
experiments have two main objectives: (i) proving experimentally the correctness of
our approach by correctly solving to optimality some Combinatorial Optimization
Problems, and (ii) assessing the performance and the scalability of our approach in
a large scale distributed setting. In particular, we show that the communication
load is efficiently distributed among all the peers in the network so that it allows
to harness huge amounts of resources. To achieve this goal, we first evaluate the
performances of our approach on a set of instances of the Flow-Shop Scheduling
Problem (FSPs) in a medium scale network. Then, we shift towards large-scale
environments and compare our results to a Master-Slave based approach to analyze
its scalability. Finally, we study the impact of the network overlay topology on
performance through studying various topologies taken from the literature.

The remainder of this chapter is organized as follows. Section 5.2 provides a
description of our experimental methodology. Section 5.3 consists in experiments
conducted on medium-scale networks involving up to 1000 physical cores to solve
some combinatorial optimization instances. Section 5.4 provides a study of the
performances of our approach at large scales involving up to 150.000 logical peers
and compared to a Master-Slave approach taken from [Mezmaz 2007b]. Section 5.5
studies the impact of the network overlay on the communications induced by the
Peer-to-Peer design of our approach.

5.2 Experimental Setting

5.2.1 Experimental Testbed

Our experiments have been conducted on the French nation-wide Grid’5000 Ex-
perimental Grid [Grid’5000 ]. The Grid5́000 project had been launched in 2003
thanks to the French Research and Higher Education Ministry, in the context of
the GRID project "Programme national Grid’5000". It was also supported by other
institutions such as INRIA, CNRS, various universities, RENATER and some local
and regional administrations throughout France. The interconnection network is
a Virtual Private Network (VPN) built on top of the RENATER network, com-
posed of 10 Gbps network links using optical fibers. At the time of writing, in
2012, the grid comprises about 8.150 computational cores which are geographically



5.2. Experimental Setting 63

dispatched on 10 different sites in France: Lille, Reims, Orsay1, Nancy, Rennes, Bor-
deaux, Toulouse, Grenoble, Lyon, Sophia-Antipolis (See Figure 5.1). Indeed, this
grid has an important scale in terms of computational resources and network inter-
connection. All the physical machines used features multi-core processors (varying
from 2 to 24 depending on the machine). These resources are managed by different
institutions. Each site of the grid is supervised by a dedicated engineer. However,
our experimental testbed is a dynamic environment. Indeed, resources in Grid’5000
have to be reserved before being used. A reservation (also called a job) can be
made under three modes: normal, deploy (where you can deploy your own operat-
ing system on the nodes) and best-effort (where some of the reserved resources can
be reassigned to another job during the reservation). In our experiments, where a
static environment is required (to avoid the volatility of the resources), we made
our reservations using the normal mode. This allows us to fulfill the requirements
that computational nodes are supposed to be reliable and no failure of any type can
occur. No entities can join or leave the network at any time.

Figure 5.1: Grid’5000 geographical Sites.

Having this in mind, our goal is to study the behavior of our approach at various
scales and for different overlay topologies. The target scales range from 1000 peers
up to 150.000 peers. For that purpose, a fixed set of machines is used on Grid’5000,
namely 569 physical nodes (consisting in 2046 computational cores) distributed on
8 geographical sites (all sites except Nancy and Reims). All the obtained results
are an average of three separate runs. Depending on the size of the overlay graph
we want to experiment, each physical machine can hold a well-defined number of
processes, each process modeling a node in the overlay. Each process then runs our
distributed algorithms as described in previous sections. In particular, exploration
of intervals is done using the classical sequential B&B algorithm and communication

1This site is used in our experiment but has been officially removed from the grid by early 2012.
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between processes is implemented using C++ sockets. The way these processes are
dispatched is described in Subsection 5.4.2 hereafter.

5.2.2 Experimental protocols

Since we target large scale P2P network with the number of peers being possibly
much larger then the actual number of computing cores available from the Grid’5000
platform, we will consider the following two protocols when experimenting our ap-
proach.

5.2.2.1 Real-Case deployment scenario

In this scenario, we deploy one peer per physical core. More precisely, let us consider
a number N of peers. To study the performances of a network composed of N

peers cooperating with each other, we deploy this network on exactly N of physical
computational cores (See Figure 5.2). One peer will be running "full-time" on a
single core and the N peers can run distributively in parallel using the N cores.
One has to notice that depending on how the logical overlay is constructed, two
peers on two different cores belonging to the same machine may or may not be
neighbors in the overlay.

Figure 5.2: Real-case deployment scheme

5.2.2.2 Simulated P2P Environment

In this scenario, we experiment our approach for large-scale P2P networks while
using a reduced amount of physical computing resources (see Figure 5.3). One of
the main issues which have to be dealt with when deploying large-scale P2P networks
over a reduced number of physical machines is the scheduling the processes. In our
experiments, we use approximatively 2000 physical cores, on which we deploy up
to 150.000 peers. This represents a ratio up to 75 peers per computational core.
One may think that, on each machine, the operating system will share equally the
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CPU time among all the peers. However, it is not the case, practically. On a given
machine, some of the peers may receive a work unit prior to the others. Thus, they
will start exploring solutions and then, require more computational resources than
the "idle" peers. The operating system will then allocate more CPU time to the
"resource consuming" peers. This situation can end up with some peers that have
been running for several hours whereas some other peers only for some seconds.

In our experiments, we manage explicitly the scheduling of the processes on the
CPU using a simple technical procedure. More precisely, let us consider a machine
whose CPU has a number n of physical cores and running a number X of peers.
Then, we allow a number α = β × n ≤ X of peers to access to the CPU, i.e. a
number β of peers per core and to pause the execution of the other peers. In the
case where none of the α peers are processing work units, it allows them to perform
some "low resource consuming" operations like sending messages. To make sure
that all the peers have access to the computational resources, these peers must be
periodically part of the α running peers. More precisely, consider that all the peers
running on the machine can be identified by a number comprised between 0 and
X − 1. Initially, peers ranging from 0 to α − 1 are allowed to run. Then, after an
arbitrary time period T , peers ranging from 1 to α will be allowed to run, then from
2 to α + 1 and so on. This procedure is depicted in more details in Figure 5.4 and
Algorithm 2.

Figure 5.3: Simulated environment deployment scheme.

5.2.3 Implementation and deployment of the overlay topology in
Grid’5000

Our P2P approach operates in static environments, where resources are stable and
non volatile i.e. no peer can dynamically join or leave the network during the
execution of the approach. Therefore, the overlay topology is given as an input to
our application, as a file named "topology.txt". We remind that a description of the
topology is given in Section 3.5. Let N be the number of peers in the network. The
deployment procedure of the toric hypercube overlay on Grid’5000 is performed in
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Figure 5.4: Scheduling processes on a single machine.

Algorithm 2: Scheduling procedure
/* Variables */

T : Arbitrary period of time;1

X : Number of peers running on the local machine. α : Number of peers2

allowed to access computational resources. {0, . . . , X − 1} : Set of integers
used to identify all the peers running on the local machine. i, j ∈ N : Local
variable.
/* Scheduling algorithm */

i← 0;3

j ← 0;4

while true do5

Wait for a period of time T ;6

j ← (i+ α mod X);7

Send SIGSTOP signal to peer i;8

Send SIGCONT signal to peer j;9

i← (i+ 1 mod X) ;10

several steps.
At the first step, upon reserving a set of machines on Grid’5000, the "oargrid"

tool (more precisely, the "oargridstat" command) is used to get the list containing
the hostnames of the reserved nodes, stored in "reserved_machines.txt".

The second step consists in creating the list of peers that will be deployed on
the machines. Technically speaking, for each machine <host> contained in "re-
served.txt", we define k<host> as the number of cores available on the machine.
Then, we create k couples "<host> <port>+m" where m ranges between 0 and
k<host> − 1. The variable <port> is an arbitrary value (it is set to 6000 in our
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experiments), and each couple "<host> <port>+m" indicates that a peer can be
joined on machine <host> on port <port>+m. These informations are appended
to a file named "peers.txt". This file constitutes a kind of global index for the P2P
network.

At the third step, the files "topology.txt", "peers.txt", and "reserved_nodes.txt"
are copied on the sites containing the reserved machines as well as the source
files needed to run the application. Then, the deployment script orders each ma-
chine <hosti> in "reserved_nodes.txt" to run a script named "machine_deploy.sh"
to continue the deployment procedure in parallel. This script takes two integers
begin and end as parameters. It first compiles locally the source files of the
application and runs all the peers whose identifiers are comprised in the inter-
val [begin, end]. These two integers are determined by the order of <hosti> in
the list contained in "reserved_nodes.txt". The mapping of the toric hypercube
overlay on the Grid’5000 physical network uses a cluster-based proximity of peers
provided by the OAR reservation tool. Such mapping is similar to the IP-based
proximity metric used in [Nguyen 2012]. For instance, if <hosti> is the first ma-
chine listed in the file, then the script launch the peers whose identifiers are in
[0, k<host1> − 1], that will communicate respectively on ports [< port >,< port >

+k<host1> − 1]. For the second machine, it will launch the peers whose identifiers
are in [k<host1>, k<host1>+k<host2>−1] that will communicate respectively on ports
[< port >,< port > +k<host2> − 1 and so on. This process stops when the number
of deployed peers reaches N .

So far, to illustrate this mechanism, consider an example of reservation on
Grid’5000. Suppose that some computing nodes are reserved as depicted in Fig-
ure 5.5. The OAR server returns a list of nodes similar to that in Figure 5.6 which
is saved in reserved_nodes.txt. Using this list, the list of all peers deployed over
the machines is created and saved in peers.txt, as shown in Figure 5.8. Then, each
machine is ordered to deploy peers corresponding to a range [begin, end]. Example
of these two values are given in Figure 5.7

Site Cluster Quantity Total of cores
Sophia azur 2 4

suno 2 16
Grenoble adonis 1 8

Lille chicon 2 8
chirloute 2 16

3 Sites Total 9 52

Figure 5.5: Example of Clusters that can be reserved.

At the fourth step, every peer in the network is assigned an identifier in [0, N−1].
When a peer is launched, it takes its identifier as a parameter. The peer parses the
(i+1)th line of the file "topology.txt" to retrieve the list of identifiers corresponding to
its neighbors. For each identifier j contained in this list, the peer parses the (j+1)th

line of the file "peers.txt" to retrieve the couple "<host> <port>" corresponding to
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Content of reserved_nodes.txt
azur-8.sophia.grid5000.fr
azur-9.sophia.grid5000.fr
suno-16.sophia.grid5000.fr
suno-24.sophia.grid5000.fr

adonis-7.grenoble.grid5000.fr
chicon-13.lille.grid5000.fr
chicon-24.lille.grid5000.fr
chirloute-3.lille.grid5000.fr
chirloute-4.lille.grid5000.fr

Figure 5.6: Example of reserved_nodes.txt file obtained from OAR

Content of reserved_nodes.txt begin end

azur-8.sophia.grid5000.fr 0 1
azur-9.sophia.grid5000.fr 2 3
suno-16.sophia.grid5000.fr 4 11
suno-24.sophia.grid5000.fr 12 19

adonis-7.grenoble.grid5000.fr 20 27
chicon-13.lille.grid5000.fr 28 31
chicon-24.lille.grid5000.fr 32 35
chirloute-3.lille.grid5000.fr 36 43
chirloute-4.lille.grid5000.fr 44 51

Figure 5.7: Example of the corresponding values of begin and end given as param-
eters to machine_deploy.sh

the peer identified by j and stores it into a list in its memory. Thus, the peer can
now contact its neighbors whenever needed during the remainder of its execution.

At the fifth step, before executing the P2P B&B algorithm, each peer must
ensure that its neighbors have been effectively deployed. To do so, every peer
continuously tries to send "ready" messages to its neighbors until it succeeds and
receives in return a "ready" message from each neighbor. Any other kind of received
message shall be delayed after the procedure is completed. This procedure is similar
to the tool Taktuk [Claudel 2009] available on Grid’5000.

Finally, as one peer must be initially assigned the entire interval [0, n![ of so-
lutions to explore (with n being the number of jobs to be scheduled in the FSP
instance), if the identifier of the peer is 0 then it starts immediately exploring the
interval [0, n![, else it begins performing rounds of requests with its neighbors.

Note that in our Simulated P2P environment protocol, the number of peers
deployed on each machine is greater than the number of cores. Therefore,
our deployment script takes a variable peers_per_core as a parameter. The
main difference with the described deployment procedure is that, for a machine
<host>, the script "machine_deploy.sh" will start a number of peers equal to
peers_per_core× k<host>.

The cost of this parallel deployment in terms of time is negligible and is not
taken into account in our experiments.
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Content of peers.txt Peer Identifier
azur-8.sophia.grid5000.fr 6000 0
azur-8.sophia.grid5000.fr 6001 1
azur-9.sophia.grid5000.fr 6000 2
azur-9.sophia.grid5000.fr 6001 3
suno-16.sophia.grid5000.fr 6000 4
suno-16.sophia.grid5000.fr 6001 5
suno-16.sophia.grid5000.fr 6002 6
suno-16.sophia.grid5000.fr 6003 7
suno-16.sophia.grid5000.fr 6004 8
suno-16.sophia.grid5000.fr 6005 9
suno-16.sophia.grid5000.fr 6006 10
suno-16.sophia.grid5000.fr 6007 11
suno-24.sophia.grid5000.fr 6000 12
suno-24.sophia.grid5000.fr 6001 13
suno-24.sophia.grid5000.fr 6002 14
suno-24.sophia.grid5000.fr 6003 15
suno-24.sophia.grid5000.fr 6004 16
suno-24.sophia.grid5000.fr 6005 17
suno-24.sophia.grid5000.fr 6006 18
suno-24.sophia.grid5000.fr 6007 19

adonis-7.grenoble.grid5000.fr 6000 20
adonis-7.grenoble.grid5000.fr 6001 21
adonis-7.grenoble.grid5000.fr 6002 22
adonis-7.grenoble.grid5000.fr 6003 23
adonis-7.grenoble.grid5000.fr 6004 24
adonis-7.grenoble.grid5000.fr 6005 25
adonis-7.grenoble.grid5000.fr 6006 26
adonis-7.grenoble.grid5000.fr 6007 27

chicon-13.lille.grid5000.fr 6000 28
chicon-13.lille.grid5000.fr 6001 29
chicon-13.lille.grid5000.fr 6002 30
chicon-13.lille.grid5000.fr 6003 31
chicon-24.lille.grid5000.fr 6000 32
chicon-24.lille.grid5000.fr 6001 33
chicon-24.lille.grid5000.fr 6002 34
chicon-24.lille.grid5000.fr 6003 35
chirloute-3.lille.grid5000.fr 6000 36
chirloute-3.lille.grid5000.fr 6001 37
chirloute-3.lille.grid5000.fr 6002 38
chirloute-3.lille.grid5000.fr 6003 39
chirloute-3.lille.grid5000.fr 6004 40
chirloute-3.lille.grid5000.fr 6005 41
chirloute-3.lille.grid5000.fr 6006 42
chirloute-3.lille.grid5000.fr 6007 43
chirloute-4.lille.grid5000.fr 6000 44
chirloute-4.lille.grid5000.fr 6001 45
chirloute-4.lille.grid5000.fr 6002 46
chirloute-4.lille.grid5000.fr 6003 47
chirloute-4.lille.grid5000.fr 6004 48
chirloute-4.lille.grid5000.fr 6005 49
chirloute-4.lille.grid5000.fr 6006 50
chirloute-4.lille.grid5000.fr 6007 51

Figure 5.8: Example of peers.txt file obtained from the list of reserved nodes, along
with peers IDs
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5.2.4 The Flow-Shop Scheduling Problem

Our Peer-to-Peer approach uses the interval based-encoding of work units proposed
in [Mezmaz 2007a]. Such encoding requires to know the total number of potential
solutions (the right value of the initial interval to be explored). Permutation-based
problems are good candidates as they meet such requirements. Indeed, for a permu-
tation problem of size n, the initial interval is [0, n![. Therefore, in our experimental
study, we have considered the Flow-Shop Scheduling permutation-based Problem.

The different variants [Abadi 2000, Allahverdi 2004, Reddi 1972, Bonney 1976,
KING 1980, Gangadharan 1993, Röck 1984, Hall 1996, Abadi 2000, Andrés 2005]
of the Flow-Shop Scheduling Problem include two main elements: (i) a set of M

machines and (ii) a set of N jobs that are to be processed on these machines. Each
job must be scheduled on each machine as a whole entity, implying no job splitting.
Furthermore, each machine can process only one job at a time and each job is pro-
cessed only once on each machine. Operations are not preemptable and set-up times
of operations are independent of the sequences and therefore can be included in the
processing time. The main goal of the Flow-Shop Scheduling Problem is to specify
the order and timing of the jobs on the machines, satisfying at most the objective
criteria and respecting the mentioned constraints. In our experiments, we focus
only on one objective function which is called makespan, that is the total processing
time, the elapsed time between the beginning of the first job on the first machine
and the ending of the last job on the last machine. In our experiments, we focus on
a classical variant of the FSP, named permutation Flow-Shop Scheduling Problem,
where the N jobs must be processed in the same order by each of the M machines
[Reza Hejazi 2005],[Allahverdi 1999]. In Figure 5.9, we represent an example of a
Permutation Flow-Shop Scheduling Problem, where 4 jobs have to be scheduled on
3 machines. Each job, labeled from J1 to J4, satisfies the above-mentioned criteria
and the total makespan is the parameter which has to be minimized.

Figure 5.9: Instance of a Permutation FSP: 4 jobs on 3 machines

5.2.5 Definition of Experimental Measures

Before evaluating the performances of our approach, we give some definitions of the
experimental measures we will perform as well as the data being collected during
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the experiments.

• Parallel Efficiency (PE): When a computational entity performs calcula-
tions in a parallel environment, it performs two main tasks during its entire
execution: it calculates and communicates with other entities. In the case of
our P2P B&B algorithm, a peer explores solutions and communicates with
other peers for load balancing purposes or for sharing the best solution found
so far. Thus, to ensure a good scalability for our approach, the time spent
to exploring solutions must be predominant and maximal. We define a mea-
sure named Parallel Efficiency (PE) which is calculated as the ratio of the
time spent to exploring solutions (Texpl) over the total execution time (which
includes the time spent to communications (Tcom)): PE =

Texpl

Texpl+Tcom
. The

higher this ratio is, the better our P2P approach scales up.

• Messages Exchanged: In order to deepen our measure of scalability, we fo-
cus on the amount of communications over the network. This measure consists
in the sum of all the messages each peer has sent to its neighbors, whatever the
reason is: for communicating a better solution to other peers, for requesting
a new work unit or for termination detection purposes.

• Speed-up: This measure intends to provide a more intrinsic view of the per-
formances of our approach. Indeed, the two first measures aforementioned
provide an indication on the amount of communication of the network. Here,
we determine if our approach takes efficiently advantage of the parallelism of
the environment, that is, if the size of the network increases, do the raw per-
formances of the network increase as well ?
When solving entirely an instance, this measure is done the following way: For
a given number of peers (N) and for a given problem instance, we compare
the Resolution Time for the N peers (tN ) with the time taken by one peer to
solve the same instance (t1) and we calculate the ratio ( tNt1 ). As peers need
to spend time to communication and termination detection purposes, one can
reasonably expect that this ratio remains under N . When experiments are
conducted on large instances where the Resolution Time is very important
and the duration of the experiment is fixed, the measure considers the number
of solutions explored. For a given number of peers (N) and during a given
period of time, we compare the number of solutions explored by the N peers
(sN ) with the number of solutions explored by one peer during the same period
of time (s1) and we calculate the ratio ( sNs1 ).

5.3 Small/Medium-Scale Experiments

In this section, we conduct an experimental study in order to validate our approach.
It is conducted according to the Real-case peer deployment presented in Section
5.2.2.1. Results are obtained on instances of the Flow-Shop Scheduling Problem,
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ranging from Ta021 to Ta030, aiming at scheduling 20 jobs on 20 machines. These
instances allow us to study the performances of our approach along the entire reso-
lution process. Indeed, as results will show, they can be solved entirely from scratch
within less than one hour, which allows to perform a larger number of runs and
deepen our study. In Figure 5.10 , we indicate the sequential resolution times for
the instances Ta021 to Ta030 obtained by using a single core of an Intel Xeon E5520
processor.

Instance Resolution Time (Seconds)
Ta021 98056
Ta022 120806
Ta023 384300
Ta024 93544
Ta025 376094
Ta026 18202
Ta027 165082
Ta028 31444
Ta029 97699
Ta030 17257

Figure 5.10: Sequential resolution times for instances Ta021-Ta030

Performances are to be analyzed using the aforementioned experimental mea-
sures. As mentioned in Section 3.5, our approach performs at best using an adequate
network overlay, having small-world properties. Thus, our P2P approach is deployed
using a toric hypercube topology. We remind that both the diameter of the graph
and the average degree can be guaranteed to be order of log(n) with n being the
number of vertices.

The characteristics of the physical machines used in our experiments are de-
scribed in Figure 5.11.

Site Cluster Quantity Total of cores
Bordeaux bordeplage 48 96

bordereau 45 180
borderline 3 24

Grenoble edel 38 304
Rennes paradent 31 248

parapide 19 152
3 Sites Total 184 1004

Figure 5.11: Clusters used in our Small/Medium Scale Experiments
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5.3.1 Experimental Measures

5.3.1.1 Parallel Efficiency

In this section, we focus on the Parallel Efficiency rate (following the same definition
as previously) for our approach. In Figure 5.12, it appears that the peers in our
P2P approach, spend most of their time to computing solutions. This shows that,
whereas the protocol is more complex in terms of time spent to communication, the
subsequent "load" seems to be efficiently distributed among all the peers. However,
this gain in performance comes at a price, in terms of messages.

Figure 5.12: Parallel Efficiency ratio when solving small instances with the P2P
approach using a toric hypercube topology.

5.3.1.2 Exchanged Messages

In Figure 5.13, we focus on the number of messages which are exchanged between
the computational entities during the whole execution. The number of messages
sent in the P2P approach is important. This result indicates that, during the ex-
ecution of the B&B algorithm, the amount of communications generated by our
approach’s protocol is non-negligible. This result can be expected from the nature
of the mechanisms2 of our approach as each peer has to send waves of messages to
its neighbors in order to gather a piece of information.

As the Parallel Efficiency remains high, this dos not impact the performances of
our approach at these scales. However, it is important to remind that this commu-
nication overhead can become very important at larger scales.

2The most message-consuming one being the termination detection mechanism.
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Figure 5.13: Messages exchanged between computational entities when solving small
instances with the P2P approach using a hypercube topology.

5.3.1.3 Speed-Up

In Figure 5.14, we study the Speed-Up, according to the number of peers in the
network for our P2P approach.

Figure 5.14: Speed-Up for small instances with the P2P approach using a toric
hypercube topology.

Results confirm that the ten instances are solved successfully to optimality.
One interesting point would be to determine the importance of the termination
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detection phase, as the related mechanism is the most message-consuming in our
approach. Thus, in Figure 5.15, we focus on the Speed-Up by considering the time
elapsed between the first peer starting its execution and ending on the last peer
starting the work request procedure for the last time i.e. the set of rounds which
led to claiming termination.

Linking this result to the Parallel Efficiency in Figure 5.12, the "termination
detection phase" represents, in average, about 10% of the total execution time. As
it may appear very important when solving small instances, one can reasonably
expect this duration to become negligible when solving large instances, that is
requiring days or months of computation. In the following section, we deepen our
study of the performances of our approach by focusing on the different execution
phases along the entire resolution process.

Figure 5.15: Speed-up for small instances with the P2P approach using a toric
hypercube topology, without the time taken to detect termination.

5.3.2 Execution Phases

In this section, we propose a more detailed analysis of the performances of our
approach by studying their evolution through time. For sake of simplicity, we focus
on a single instance of the FSP: Ta025. In the following figures, we present, for 1000
peers, the temporal evolution of the Parallel Efficiency ratio the number of messages
exchanged between entities. At first sight, three phases can be distinguished: an
Initialization phase, a "Full-Charge" phase and a Termination phase. The following
analysis is based on Figures 5.16 and 5.17.
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Figure 5.16: Temporal evolution of the Parallel Efficiency ratio when solving the
Ta025 instance with the P2P approach involving 1000 peers, using a toric hypercube
topology.

Figure 5.17: Temporal evolution of the number of exchanged messages when solving
the Ta025 instance with the P2P approach involving 1000 peers, using a hypercube
topology.
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5.3.2.1 Initialization phase

In this phase, the computational entities perform work requests to obtain their first
work unit. In our P2P approach, after deploying the peers upon the computational
cores, one of the peers is designated as the "Initiator", meaning that this peer will
hold the whole work unit which has to be processed. Its immediate neighbors will
ask for and obtain a work unit from this peer and, then their own neighbors will do
the same and so on. Work units somehow "propagate" among the peers until every
peer in the network gets a work unit to explore. This process is costly in terms of
communication because of the multiple requests performed by the peers and in terms
of time also. Indeed, considering the graph representing the P2P network, a peer
which is located ad a distance d from the "Initiator" will need to perform at least d
rounds of requests to obtain a work unit. This explains why the Parallel Efficiency
ratio for the P2P approach rises progressively. Similarly, it allows to understand
the fact that the number of exchanged messages increases significantly in the P2P
approach.

5.3.2.2 Full-Charge phase

In this second phase, most of the entities in our approach succeeded in obtaining
a work unit. As most of the entities are exploring solutions of the FSP problem,
the Parallel Efficiency ratio reaches its maximum level. Throughout this phase,
some of the entities may finish exploring their work unit and then, ask for a new
one. As in the P2P approach, an entity sends requests to multiple other entities,
the number of messages exchanged between entities thus rises quickly. However,
the subsequent communications are performed in a local fashion which allows the
Parallel Efficiency ratio to remain high in our approach. Indeed, as the communi-
cation load is distributed among multiple peers, there is no risk of witnessing any
bottleneck where an entity finds itself with too many requests to process at a time.

5.3.2.3 Termination phase

In this third phase, the entities spend their time performing work requests in order
to detect the presence (or absence) of a work unit somewhere in the network. For
the same reasons as for the Initialization phase, this process takes much time in our
approach and thus, the Parallel Efficiency ratio decreases.

The analysis of the different execution phases depicts an important property.
The P2P approach has a long initialization phase and a long termination detec-
tion phase. Thus, when solving very small instances or deploying very low-scale
networks, we can clearly imagine that these phases become predominant over the
full-charge phase. We can then conclude that, based on previously obtained results,
our approach is better suited for extreme scale environments.
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5.4 Large-Scale Experiments

In this section, we experiment our approach at larger scales ranging from 2.000

to 150.000 peers. All results are thus obtained using the "Simulation Protocol"
described previously in Section 5.2.2.2. The Grid’5000 experimental-bench is com-
posed of 2046 computational cores distributed over 8 geographical sites. The charac-
teristics of the physical machines used in our Large-Scale Experiments are described
in Figure 5.18.

Site Cluster Quantity Total of cores
Lille chinqchint 30 240

chti 10 20
chicon 20 40
chuque 8 16

Bordeaux bordereau 34 136
Grenoble genepi 29 232

edel 53 424
Sophia azur 49 98

sol 26 104
suno 8 64

Orsay gdx 156 312
Rennes paravent 48 96
Lyon capricorne 34 68

Toulouse pastel 34 136
8 Sites Total 569 2046

Figure 5.18: Clusters used in our Large-Scale Experiments

We also use Ta057 as input instance. This instance is in fact a typical instance
that one would like to solve using a huge amount of computing resources. It consists
in scheduling 50 jobs over 20 machines. Solving to optimality this instance is out
of the scope of this study. In our experiments, we choose to set the running time
of each entity to 10 minutes. One may think at first sight that this value may be
low. However, this value is relevant as medium scale instances (e.g., 20 jobs and
20 machines) can be solved within this amount of time with a low number of cores
(In our experiments in Section 5.3, we solved the instance Ta026 within 11 minutes,
using 500 cores). Moreover, since we will consider P2P networks managing several
thousands of entities, the overall running time from the B&B optimization point
of view is still huge. Secondly, considering such a value allows to conduct a larger
number of tests within a reasonable amount of time and thus to better understand
the behavior of our approach.

5.4.1 Comparison between P2P (toric hypercube) and Master-
Slave approaches

The following set of experiments is intended to show the gain in scalability of our
fully decentralized approach compared to a Master-Slave approach. More precisely,
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we report the performance of our Peer-to-Peer approach compared the Mezmaz et
al.’s Master-Slave approach [Mezmaz 2007b].

5.4.1.1 Parallel Efficiency

Figure 5.19: Parallel Efficiency rates with the number of entities.

As pointed earlier, the main drawback of a parallel application designed upon a
Master-Slave model is the use of a central entity which coordinates all other entities
in the network. In a large-scale scenario, this central entity, the Master, has to
process an increasing number of requests from slave entities. Consequently, the
mean delay taken to process a work request gets longer and the overall performance
of the network degrades. In Figure 5.19, we depict the Parallel Efficiency (PE
for short) rate along with the number of entities involved in the network. The
Parallel Efficiency is obtained by comparing, for each computational entity, the
amount of time spent on performing the B&B algorithm (i.e. exploring solutions
in the search space) to the overall execution time. Around about 60.000 entities
involved in the network, the PE of the Master-Worker approach begins to drop
significantly. In addition, around about 70.000 and 80.000 entities, the Master-
Slave curve does not go down as smoothly as for smaller values and breaks down
quickly to reach considerably low levels when involving more than 100.000 entities
(around 10%). This was expected in theory due to the increasing synchronization
operations and the increasing computational load on the Master entity. On the
opposite, in our Peer-to-Peer approach, work requests are processed locally since a
peer only communicates with its immediate neighbors. In fact, the load is somehow
"distributed" among the peers. Thus, the mean delay for processing a request is
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kept low. This is why the PE rate for the P2P approach remains high, namely
above 90%, even for large scale-simulations, involving more than 100.000 entities.
However, one may legitimately wonder if the gain in terms of Parallel Efficiency also
exists while evolving at very low scales. The graph provided in Figure5.20 confirms
this idea although the numerical difference is quite low.

Figure 5.20: Parallel Efficiency rates for small-scale networks.

5.4.1.2 Exchanged Messages

In Figure 5.21 (red/bottom curve with the left Y axis), we depict the ratio of the
number of messages sent by all processes (including local communications on the
same physical machine) in our P2P approach and in the Master-Slave approach. One
can see that for our P2P approach, peers send about 11 times more messages than the
Master-Slave approach. In Figure 5.21 (blue/top curve with the right Y axis), we can
also see that the experimental message overhead factor is significantly lower than the
ratio that could be expected according to the complexity analysis presented earlier.
Indeed, one can see that as the experimental overhead factor remains between 9

and 11, the theoretical overhead (a very worst-case scenario) expected according to
the constructed logical topology, is much higher, namely starting from 20 and rising
up to 75. We thus can state that the theoretical analysis of Section 3.5 is even
pessimistic compared to what happens in practice. Hence, we can conclude that
the message overhead cost we paid in order to design our fully distributed scheme
is perfectly negligible from a Parallel Efficiency point of view since compared to
a Master-Slave approach where the master becomes a communication bottleneck,
communication load is evenly shared among peers.
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Figure 5.21: Messages Overhead

5.4.2 Network Congestion and Simulation Scenarios

Figure 5.22: Theoretical and Experimental Network Load Ratios

While performing large-scale simulations, as the number of processes increases,
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the amount of communications made through the physical network increases. Thus,
for such a simulation to make sense, it is crucial to make sure that the network does
not undergo congestion/overload. As this possible congestion will be due to mas-
sive network operations, we have to focus on whether or not a computational entity
involved in our simulations (the process that simulates a peer) uses the physical
network to communicate with another entity. Indeed, since the number of physi-
cal machines remains constant throughout our experiments, the number of processes
deployed on each machine gets higher and higher. Thus, it may happen that two pro-
cesses communicating with one another are located on the same physical machine.
In this case, communications remain local and do not make use of the physical
network. In Figure 5.22, we report two important measures:

• The ratio r1 =
LP2P
LM−S

where LP2P (resp. LM−S) is the number of logical links
connecting two nodes (processes) deployed on two different physical machines
in the P2P (resp. Master-Slave) approach. (See the red/bottom curve).

• The ratio r2 = MsgP2P
MsgM−S

where MsgP2P (resp. MsgM−S) is the number of
messages exchanged through logical links connecting two processes deployed
on two different physical machines in the P2P (resp. Master-Slave) approach.
(See the blue/top curve).

In a Master-Slave architecture, it can be easily predicted that most of processes
will use the physical network as they will communicate with the same central
entity (Master process). Consequently, we pay attention to deploy our P2P
approach in such a way the physical network is also used in the same manner
than in the Master-Slave architecture. More precisely, we have deployed the peers
in a deterministic manner as described in Section 5.2.3 . After conducting the
experiment, we verified that the previous property is satisfied for every simulation
run. In [Nguyen 2012], this issue is handled in an explicit way. The overlay is
defined after deploying the peers on the reserved machines by using a metric based
on the IP addresses. Peers running on a same cluster have great chances to be
neighbors in the overlay. In our experiments, this locality is obtained by deploying
on the machines in the order they appear when collecting the list of reserved
machines. Indeed, machines belonging to the same cluster are contiguous in the list
and clusters belonging to the same site are also contiguous in the list.

In Figure 5.22, one can in fact see that the network is expected to be used by
our P2P overlay topology in the same way than by the Master-Slave star overlay.
In other words, this indicates that, in our simulation scenarios, none of the two
approaches is penalized by network congestion issues than the other.

Furthermore, when looking at the number of messages sent over the physical
network (blue curve in Figure 5.22), we see that our P2P approach costs more
messages than the Master-Slave approach. Thus, we can reasonably state that
the PE of the Master-Slave approach goes down because of the bottleneck created
around the Master and not due to network congestion issues. In opposite, our P2P



5.4. Large-Scale Experiments 83

Parallel Efficiency stays good even for large scale simulations using intensively the
physical network. In fact, although the network is solicited up to 6.5 times more in
the P2P approach, the Parallel Efficiency rate remains high, namely above 90%.

5.4.2.1 Search Space Exploration Speed-Up

Figure 5.23: Speed-up, in terms of solutions explored.

In previous sections, we showed that the loss of performance of the Master-Slave
approach is not due to a possible network congestion as our P2P approach induces
a network load several times more important in terms of messages exchanged, with-
out losing in Parallel Efficiency. However, designing an efficient and scalable parallel
technique avoiding network congestion and handling more computational resources
may not be sufficient to claim that, dealing with combinatorial optimization prob-
lems, it enables to explore the B&B search space efficiently. In Figure 5.23, we
depict the ratio of the number of solutions of the search space explored by each
computational node in our approach and in the Master-Slave approach. One can
see that our fully distributed approach explores up to 7 times more solutions than
the Master-Slave approach of [Mezmaz 2005]. To understand the obtained curve,
we should keep in mind that the space search speed-up is guided by two factors: the
degree of parallelism (PE as depicted in Figure 5.19) and the B&B pruning it-self
which is theoretically unpredictable. Observed at low scales, the communication
cost in both approaches is too low to have a significant impact on the global search
speed up. In fact, we claim that at low scales the speed up is mostly dominated
by the pruning since PE of both approaches are comparable with of course still an
advantage for our P2P approach. However, when involving about 70000 computa-
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tional nodes, the PE of the Master-Slave model is no longer competitive and it starts
dropping significantly as described previously in Figure 5.19. Hence, we observe a
breakpoint around 80000 entities in Figure 5.23. This breakpoint can be interpreted
as the network size where the impact of PE on search speed-up becomes critical and
the pruning cannot balance the loss in PE. We can thus state the gain in terms of
Parallel Efficiency of our P2P approach has a major impact when involving large
scale deployment of parallel B&B experiences on large instances.

5.4.2.2 Speed-up

Figure 5.24: Speed-up, in terms of solutions explored.

In Figure 5.24, for a given number N of entities in the network, we compute the
ratio sN

s1
where sN represents the number of nodes explored in the search tree by the

N entities and s1 the same number but for only one entity. For the sake of clarity, we
represented the case of a linear speed-up. We can see that our P2P approach has a
good ratio, close to the linear one, whereas the Master-Slave ratio remains very low.
The Master-Slave approach is not able to take advantage of an increasing amount
of computational resources because of the communication bottleneck around the
Master entity. At the opposite, the speedup observed for the P2P approach is up to
130.000 when involving 150.000 entities (while the Master-Slave approach reaches a
ratio of 12.000).



5.5. Impact of overlay topology 85

5.5 Impact of overlay topology

Up to now, we studied our approach by focusing on a particular topology: a toric hy-
percube. As mentioned before, this topology was chosen because of its small-world
properties: it has a low diameter, which reduces the time needed to broadcast global
information (the best solution found) and a low average node degree, which reduces
the number of messages required to perform communication operations. However,
one can reasonably wonder how would our approach perform if the overlay net-
work was organized in a completely different manner. In this section, we push
on our analysis by studying the impact of different overlays on the performances
of our approach. More precisely, in addition to the N-dimensional toric hyper-
cube, topology described previously, we further experiment the following classical
overlays: Kleinberg small world graphs [Kleinberg 2000a, Kleinberg 2000b] (regular
lattice), Barabasì-Albert graphs[Barabasi 1999] (preferential attachment graph, i.e.
Internet-like graph), Watts-Strogatz graphs [Watts 1998] (ring graph where each
node is connected to its k closest neighbors where k is a given parameter). We
also select more conventional topologies such as the 5-ary tree and random graphs
(Erdos-Reyni graphs [Erdös 1959, Erdos 1960]).

5.5.1 Overlay definitions

The overlay topologies that we shall experiment in the remainder are the following
(we will interchangeably use vertices to refer to peers and edges to refers to links
between peers). These topologies have been selected because their properties in
terms of graph diameter and node degree vary importantly from one another.

Watts-Strogatz Graphs: In [Watts 1998, Barrat 2000], the topology is built
from a regular pattern with "randomness" introduced afterwards. More precisely,
the construction process of the overlay relies on three parameters, namely: N , k

and p. Initially, the vertices are organized according to a ring. Edges are added
such that each of the N vertices is linked to the k closest vertices (See Fig 5.25).
Then, for each edge of the graph, one of the vertices is modified with a probability
p (See Fig 5.26). This topology presents a high average node degree, a low diameter
du to the "random" edges and a very low standard deviation for the degree. One
can expect this topology to consume a lot of messages while reducing the risk of
communication bottlenecks.

K-ary trees: This well-known topology is built as following. One node is consid-
ered as the root of the tree and every node is given, iteratively, k children to which
it is linked to. This process is repeated until the desired number N of nodes is
reached. As this topology has a low average node degree and a low diameter, it can
be expected to induce a very low communication overhead.

Kleinberg: In [Kleinberg 2000a, Kleinberg 2000b], the topology is built starting
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Figure 5.25: Watts-Strogatz topology’s initial pattern with k = 4 and N = 12

Figure 5.26: Example of final Watts-Strogatz pattern obtained with k = 4 and
N = 12 and a value of p ∈]0, 1[

from a two-dimensional grid network. The main goal is to artificially reduce the
graph diameter by introducing additional edges between distant vertices. More
precisely, the initial edges of the two-dimensional grid are called "short-range"
links. Then, the lattice distance is defined as the number of edges comprised in
the shortest path between two vertices of the graph, i.e., d(u, v) for two vertices
(u, v). Given a constant r ≥ 0 and for every pair of vertices (u′, v′), a new edge3

is added with a probability equal to
[d(u′, v′)]−r∑

v′∈V
[d(u′, v′)]−r

. (See Figure 5.27). This

probability law is referred as the inverse rth- power distribution. In terms of graph
diameter and node degrees, this topology is similar to the Klienberg one, while the
standard deviation of the nodes degree is higher, thus potentially increasing the

3The newly introduced edges are named "long-range" links.



5.5. Impact of overlay topology 87

communication load on some nodes.

Figure 5.27: Example of a resulting Kleinberg topology with red edges as short-range
links and green edges as long-range links.

Barabasi-Albert: [Barabasi 1999] This topology is inspired by the Internet
network with network properties close to small-world graphs. Indeed, a reduced
number of nodes hosts contents (like web pages, videos, databases...) whereas a
greater number of visitors connect to these nodes in order to access these contents
(See Fig 5.28). This type of graphs are called preferential graphs. The main idea
behind designing such graphs is that, assuming the existence of a graph G = (V,E),
if one chooses to introduce a new vertex, it has a higher probability to be linked
to a vertex with a higher degree. More analytically, if for a vertex u ∈ V , we call
ku its degree, then a new vertex v ∈ V will be linked to u with a probability equal

to
ku∑

l∈V
kl

. If ∀u ∈ V , ku = 0 then edges are created randomly. The main interest

of this topology is that, although it has a high diameter and a low average node
degree, the standard deviation for the degrees is very high, meaning that some of
the nodes may centralize most of the communications in the network.

Erdos-Reyni: [Erdös 1959, Erdos 1960] This consists in a classical randomly gen-
erated graph. They generate their random graphs using two different methods. The
method used here to generate such graphs consists in including each one of the(
N
2

)
= N×(N−1)

2 possible edges with a constant probability p, the presence or ab-
sence of any two distinct edges being independent. This topology has a low diameter
but a high average node degree.

The topologies presented in this section have very different properties in terms of
graph diameter, average node degree and standard deviation for the degrees. Each
one of these topologies represents a particular scenario for our experimental study as
it allows to influence significantly the time needed to broadcast global information,
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Figure 5.28: Example of a resulting Barabasi-Albert topology with red vertices as
preferential vertices due to their higher degree.

the number of messages exchanged in the network as well as the distribution of
the communication load among the peers. In the following subsection, we analyze
the performances of our approach, using the same measures as before, on these
topologies. We also show indicative results for the hypercube topology and a Star-
like one.

5.5.2 Results

5.5.2.1 Parallel efficiency

Figure 5.29 depicts the Parallel Efficiency along with the number of entities involved
in the network. Most of the topologies have a Parallel Efficiency rate that remains
high when the scale of the network increases, namely a PE rate comprised between
80% and 90% when involving 150.000 computational entities in the network. The
Barabasì-Albert and the Star topologies have a PE rate that decreases with the
scale of the network. Around 60.000 entities in the network, the PE rates begin to
drop. When using 150.000 computational entities, this rate reaches around 55% for
the Barabasì-Albert topology and less than 10% for the Star topology. This was
expected in theory. Indeed, the Star topology centralizes most of the communica-
tions around a single entity and similarly, the Barabasì-Albert topology centralizes
the communications around several but few entities. Both topologies induce com-
munication bottlenecks around some entities and thus, this slows down the entire
network. For the other topologies, the communication load is somehow more ef-
ficiently "distributed" among the entities. Thus, the mean delay for processing a
request is kept low. This is why the PE rate for the P2P approach remains high,
namely above 80%, even for large-scale evaluations, involving more than 100.000
entities.

5.5.2.2 Message Overhead

This measure intends to show how the non-negligible communication overhead on the
network affects the performance of the P2P approach. Thus, one has to ensure both
that this overhead is kept low and that the drop of performances observed for some
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Figure 5.29: Parallel Efficiency

of the topologies is effectively due to communication bottleneck issues around some
entities and not to a network congestion caused by this communication overhead.
This overhead is computed, for a given topology, as the ratio4 mtopo

mStar
where mtopo

(resp. mStar) represents the number of messages exchanged over the network with
the topo topology (resp. Star topology) approach during the entire experiment.

Most of the topologies have a communication overhead ratio comprised between 8
and 11. This means that the number of messages exchanged between computational
entities with these topologies is between 8 and 11 times higher than with the Star
topology. The 5-ary tree induces a reduced overhead, namely, a factor of 3 and
the Barabasi-Albert induces a lower overhead, similar to the Star topology. This
communication overhead is a phenomenon which is due to the fact that a computing
entity communicates with several other entities instead of one in a Master-Slave
architecture.

5.5.2.3 Topologies properties and Experimental Performances

According to the data presented in Section 5.5.1, we observe that the Barabasì-
Albert and the Star topology both have a quite low diameter, a low average node
degree and a high standard deviation for the nodes degree. The low-diameter prop-
erty of these topologies allows to reduce the number of messages and the amount
of time needed to communicate global information over the network (In our case,
this global information consists in the best incumbent for the B&B algorithm.).

4The obtained result is still an average measure on three separate runs.
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Figure 5.30: Message Overhead

Similarly, the low average node degree of these topologies reduces the number of
messages needed to perform work requests over the network as well as to detect
computation’s termination. This explains why both topologies show a low com-
munication overhead factor (See Figure 5.30). However, these topologies have a
distribution of nodes’ degree which presents high standard deviation (higher for the
Star topology). This implies that many nodes have a low number of neighbors and
conversely. Thus, network communications are aggregated around a small group of
"high-degree" nodes (several nodes for the Barabasí-Albert topology and one for the
Star topology), creating bottlenecks around these nodes. The amount of time spent
to communication rises which explains the drop of performances in terms of Parallel
Efficiency (See Figure 5.29). What we can conclude at this point is that choosing
a small-world graph for the P2P network is not sufficient in order to obtain good
performances. Indeed, this reduces the amount of communications over the network
but we have to make sure that no bottlecks appear around some nodes. This is done
by ensuring that the distribution of nodes’ degree has a low standard deviation.

5.5.2.4 Speedup

For a given scale and a given topology, we compute the ratio stopo
sStar

where stopo (resp.
sStar) represents the total number of nodes in the search tree5 which have been
explored by the entities with the topo (resp. Star) topology over the entire running
time. As expected, we can see that the topologies allowing a high Parallel Efficiency

5Recall that we use the tree-based exploration process proposed by [Mezmaz 2007b].
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ratio (See Figure 5.29) provide also a high speed-up ratio. The poor results obtained
for the Star topology and the Barabasí-Albert reflect the loss of performance due
to the communication bottleneck we described earlier through both experimental
results (See the Parallel Efficiency measure) and topology analysis (See Section
5.5.2.3).

In addition, we can observe that the 5-ary tree and the random (Erdos-Reyni)
topology are among the topologies on which our approach performs at best. These
topologies have a simple structure and, thus, can be easily maintained in a dynamic
environment, where computational nodes can join or leave the network at any time.

5.6 Conclusion

In this chapter, we conducted extensive experiments to provide a detailed and com-
prehensive study of the performances of our approach. The obtained results show
that our approach can efficiently solve difficult Combinatorial Optimization Prob-
lems for a range of instances taken from Flow-Shop Scheduling Problem. To study
the scalability of our approach, experiments have been conducted at large scales
and the results show that the load of communications induced by the use of a fully
Peer-to-Peer topology is efficiently distributed among the computational entities
even when considering large scales networks, namely up to 150.000 peers. Based
on our experiments, a limitation that should be mentioned concerns the cost of the
termination detection. The reported results show that it is in average, about 10%

for pools of processing cores up to 1000. However, as for very large pools (up to
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150.000 cores), the experimented problem instances are not solved to optimality,
it is difficult to predict the behavior of such cost at larger scales, even if the in-
volved communications are distributed. On the other hand, in our experiments, we
have considered the cluster-based proximity of peers provided by the OAR reser-
vation tool of Grid’5000 to deal with the mapping. Such mapping is quite similar
to the IP-based proximity metric used in [Nguyen 2012]. Other distance metrics
[Huffaker 2002] can be investigated to improve the efficiency of the mapping.
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6.1 Introduction

The approach described in previous chapters was designed to work in "static" en-
vironments where computational resources are assumed to be reliable over time.
Dealing with large scale distributed systems, it is however mandatory to also ad-
dress the fault tolerance issue and to allow the application to recover properly. In
particular, for parallel B&B, and to guarantee the optimality of the computed so-
lution, it is crucial to ensure that all the search space has been explored without
omitting any part of it. The goal of this chapter is precisely to extend our B&B
approach so that it can be executed in a dynamic context where peers are subject
to failures.

Generally speaking, faults can be of different types. The most common defini-
tion of a fault for a system is a malfunction or an unexpected deviation from normal
behavior. Faults can thus vary a lot in terms of nature and, for a parallel applica-
tion, they can be classified into four general classes [Bakken 2002, Tanenbaum 2002]
: Crash, Time, Omission and Byzantine. Crash faults occur when a process com-
pletely ceases operating, its execution is permanently stopped. Time faults deal
with situations where the duration of a given operation becomes longer than usual
or expected. Example of these faults is temporary network failures for distributed
applications. Omission faults designate the case where a process is supposed to per-
form a task upon a specific event but remains idle. One example could be a network
process ignoring an incoming request from a remote process. The last type of faults
is Byzantine: the output or the result of an operation is altered or corrupted by
external causes. In this work, we address Crash and Time faults.

When extending our fully distributed approach to a dynamic environment where
peers can fail, the critical issue is to guarantee that B&B work units are not lost after
some nodes have crashed. Tackling this issue in a pure distributed way is a chal-
lenging task. Besides the algorithmic difficulty of setting up distributed protocols
that can be proved to be correct, one has to keep in mind the possible performance
degradation implied by such a design. In fact, our distributed approach was proved
to perform good when the overlay topology verifies specific properties in terms of
peer degree and network diameter. In addition, it is not clear how termination
detection can be handled when faults can imply disconnected overlay components.

In order to extend our approach in a dynamic environment, we can make on two
major observations. Firstly, sharing work in a distributed cooperative manner was
proved to be extremely efficient in a static context. Thus, one should try to ensure
this property for those peers that are not failed. Secondly, managing faults in a fully
decentralized way may introduce difficult issues which can be avoided if a central
server can be made available to handle them. The idea developed in this chapter
is to design a hybrid approach where work units can be shared among peers in a
fully distributed way as before, whereas faults are managed by a centralized server
supervising the computations and helping peers to recover. As a consequence, we
shall be able to design a simple but effective fault-tolerant approach, where work
sharing and fault-tolerance are handled tightly but in a separable way. In the rest
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of this chapter, we describe this approach in more details. More precisely, Section
6.2.1 provides a detailed description of the structure of our FT approach as well as
the mechanisms involved in the Branch-and-Bound process. Section 6.2.2 describes
the main steps of the algorithm’s execution from a more functional point of view,
through the use of state automata.

Extensive experiments are conducted to evaluate the robustness of our ap-
proach. These experiments must emphasize one particular point: our approach
must be proved to be robust independently from the type or the frequency of
failures. To achieve this goal, we evaluate the performances of our approach as well
as the impact of failures on it by defining various failure scenarios which can reflect
some real-world situations, on an instance of the Flow-Shop Scheduling Problem.

This chapter is organized as follows: Subsection 6.3.1 provides a description
of our experimental protocol and methodology as well as the different scenarios.
Subsection 6.3.2 consists in experiments conducted on a small-scale network to prove
the robustness of our approach by solving completely an instance from scratch,
using the various failure scenarios. Subsection 6.3.3 extends the experiments to
include a failure model based on peers’ lifetime distribution.

6.2 The Proposed Approach

6.2.1 Overview of the Fault-Tolerant Architecture

Figure 6.1: The two-layer structure of the Fault-Tolerant Approach.

Our new fault tolerant-approach is build on top of two layers as summarized
in Figure 6.1). On the bottom layer, computing nodes are organized in a peer-to-
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peer manner. Peers are in charge of exploring the set of feasible solutions for the
problem being solved. As discussed in previous chapters, every peer explores its
own local pool of B&B intervals and shares it with its local neighbors in the P2P
overlay. Whenever a peer discovers a new solution, it forwards this information to
its neighbors. On the second upper layer, we introduce a server entity which is
dedicated to fault handling. This entity is in charge of recovering local pools of
peers in case of failures, maintaining the overlay and detecting termination.

When a peer starts its execution, it first needs to join the network. For that
purpose, it sends its communication information (its network address and the port
it is listening on) to the Server entity. Upon receiving this information, the Server
entity becomes aware of the newcomer’s existence. From this point, one may notice
similarities with the procedure used to initialize the Peer-to-Peer network in a static
context. Two cases are distinguished at the Server entity level:

• If the newcomer is the first peer to join the network, the Server entity sends
it the whole interval to explore so that the peer may share it with future
neighbors.

• In other cases, the newcomer is given a set of peers as neighbors so that the
peer may contact them to get a new work unit.

In both situations, the newcomer is informed about the initial/current value of the
best upper bound found so far for the problem being solved.

Once the newcomer has joined the network, it starts asking its neighbors for
a work unit. Unlike in the static approach in which a peer asks all its neighbors
following a one-to-all communication procedure, this is now done in an iterative
manner. The main reason for that is to be able to manage neighbors fault properly.
More precisely, a peer sends a request iteratively to each one of its neighbors and
then waits for a reply until it receives a work unit or until it has processed all its
neighbors.

If a work interval is received, the peer starts exploring the newly received interval
and, upon receiving requests, shares it with its neighbors. On a regular basis during
the processing of this work unit, the peer will perform checkpointing operations
towards the Server entity. More precisely, it saves information about the remaining
part of the work unit and communicates it to the Server entity. Similarly, when
sharing an interval with another peer, the current peer will save information about
the work unit it holds and the one it sends to the other peer. However, if the work
request procedure fails, the peer sends a request to the Server entity to obtain a
new neighborhood, say N neighbors. Upon receiving such a request, the Server
entity selects the N peers that performed their checkpointing operations the most
recently and sends back their identifiers. Indeed, one can reasonably assume that
peers that saved their work unit the most recently have a higher probability of being
still alive. Since peers are supposed to perform checkpointing operations every given
period of time, if a peer performed its last checkpointing operations more than one
period of time ago, the Server entity can presumably assume that this peer is facing
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an anomaly, and thus can suspect that the peer has crashed. As a consequence,
the server is allowed to reassign the interval of the suspected failed peer to another
one. In particular, in the case of a peer asking for a new neighborhood, the Server
entity is allowed in addition to provide the set of new neighbors, to reassign such an
interval (if it exists). To summarize, peers in the network first explore the intervals
they acquire from their neighbors in previous rounds, but they can also recover
intervals that were possibly held by failed peers and reassigned by the Server entity.
As for termination, it becomes easy for the server to detect it since all the peers
are checkpointing during the exploration process. When the termination occurs, the
peers are informed about it by the Server entity: when a peer fails in obtaining a
new work unit and asks a new neighborhood, the Server entity simply sends a special
flag. By receiving this message, the peer can determine that no more intervals are
explored by other peers and we have the guarantee that no intervals remain from
previously failed peers.

6.2.2 Detailed description of the approach

6.2.2.1 Functional description of a Peer and the Server

6.2.2.1.1 Operation of a Peer

In this section, we describe the behavior of a peer along its entire execution
for the fault tolerant approach, through the use of a state automata (See Figure 6.2).

Initially, a Peer initializes itself, that is it performs any operations needed to
be ready to run (like allocating resources or initializing network interface). Once
it is ready, it contacts the Server Entity to register itself, i.e. to make the Server
Entity be aware of its existence. When it receives a new identifier, it becomes idle.
From this point three situations can occur. If the peer does not have originally any
neighbor, it asks the Server entity for a new neighborhood, i.e. a new set of peers
that it will communicate with. Second, when a peer has neighbors but does not
have any interval to explore, it will start requesting a work unit from its neighbors.
If this request is unsuccessful, it will renew its neighborhood, otherwise it starts
exploring the newly received interval. During the exploration process, a peer may
save its state towards the Server entity for fault tolerance purposes, through a
checkpointing mechanism. Similarly, if it discovers a new improving solution,
it informs the Server about it and then resumes its exploration. Still during this
exploration process, the peer may be contacted by another peer willing to obtain
a new work unit to process. Then, the current peer pauses its exploration, shares
its interval with the requesting peer, informs the Server entity about the exchange
through the checkpointing mechanism and resumes exploring its interval. Finally,
when the peer contacts the Server entity for any of the tasks here-mentioned, it
may be informed about the termination of the calculation, i.e. no interval remains
in the network. Then, it goes in a terminating state and ends its execution.
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Figure 6.2: State automata representing the behavior of a Peer in our fault-tolerant
approach.

Here are the logical propositions related to the state automata in Figure 6.2.

• A = New Identifier Received.

• B = [x, y] ̸= ∅.

• C = N(v) ̸= ∅.

• D = A new improving solution has been discovered.

• E = Checkpointing time period has passed.

• F = Checkpointing operation accomplished.

• G = Received a work request from a neighbor.

• H = Interval shared with a neighbor.

• I = After updating [x, y], termination has been claimed by the Server Entity.

• J = All peers in the network are in Terminating state.

• K = No interval is received from neighbors.
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6.2.2.1.2 Operation of the Server entity

In this section, we describe the behavior of the Server entity along its entire
execution for the fault tolerant approach, through the use of a state automata (See
Figure 6.3).

Initially, the Server entity initializes itself, that is performs any operations
needed to be ready to run (like allocating resources or initializing network interface).
Once it is finished, it becomes idle and is ready to process incoming requests.
During its execution, the Server entity may face three types of requests. First, it
can receive a message from a peer requesting a new neighborhood. The Server
entity then sends a new set of neighbors (the related mechanism being described
more in details later) to the requesting peer and resumes processing incoming
requests. Second, it may be contacted by a new peer willing to register itself.
Then, the Server entity will attribute a new identifier to the newcomer and resume
its previous task. Third, the Server can process a checkpointing request from a
peer. It saves the state of the Peer and resumes it previous task. Nevertheless, if a
peer updates its interval to the Server, it is possible that no interval remain in the
network from the Server’s point of view. Then, the Server goes into a termination
state, meaning that upon any request received from a peer, the Server will inform
that peer that calculations are terminated. When all the peers are aware of the
termination of the calculations, the Server can end its execution.

Figure 6.3: State automata representing the behavior of the Server Entity in our
fault-tolerant approach.
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Here are the logical propositions related to the state automata in Figure 6.3.

• A = Received Registration request from a new peer.

• B = New peer successfully registered.

• C = Checkpointing request received.

• D = A new improving solution has been discovered by a peer.

• E = Checkpointing operation accomplished.

• F = No interval remain in the network.

• G = Termination flag set.

• H = Received a request for a new neighborhood from a peer.

• I = New neighborhood sent to the peer.

• J = All peers in the network are in Terminating state.

6.2.2.2 Registration mechanism

When a new peer joins the network, it sends a request to the Server entity for reg-
istering itself. Basically, it informs this entity with its communication information:
the machine where it is being run and the network information for communicating
with it. When the Server entity receives this request, it determines an identifier for
the new peer. This identifier will enable the Server entity to perform more easily
the operations described hereafter. Similarly to the approach we described in a
static environment, the Peer-to-Peer network, in order to begin the exploration of
the search tree, must be provided with the initial value for the upper bound and the
entire set of work to process. In the static approach, one peer is given initially the
whole task to perform and share with the rest of the network and all the peers are
informed about the upper bound initial value.

Now, in this dynamic approach, peers join the network at any time of the execu-
tion and do so in a given order. Thus, along with the identifier, the Server informs
the newcomer about the best upper bound discovered so far by the network, for the
problem being solved. If the newcomer is the first peer to join the network, then the
Server entity will communicate an initial value which has been defined by the user.
Proceeding this way allows one to whether begin the execution of the Branch-and-
Bound Algorithm from scratch, by setting this initial value to infinity or from the
best solution known so far for the problem being solved, for benchmarking purposes
or solving a "never-solved" instance of the problem. In addition to this, the first
peer to join the network is given the whole interval to explore. For the others, a list
of neighbors containing information to communicate with them is provided. The
mechanism defining the neighborhood is described in the following subsection.
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To illustrate this mechanism, we give a practical example on Figure 6.4. In this
case, we consider P and the Server entity S. Upon joining the network, P sends
to the S a Registration request by providing its communication information. More
technically, it is its network address and the port on which P is listening for incoming
messages. When P receives this request, its sends back a message containing a new
Identifier , the best solution found so far by the network, and, should the case arise,
an interval to explore and a list of neighbors to connect to for possible work requests.

Figure 6.4: Sequence diagram representing the Registration Procedure.

6.2.2.3 Neighborhood mechanism

As described earlier, the maintenance of the topology is now dealt with by the Server
entity. Reminding that a peer is granted neighbors upon joining the network, this
mechanism is involved to provide a new set of neighbors to a peer in case all the
existing ones fail to share an interval upon work requests. The number of neighbors a
peer has is arbitrarily chosen by the user. One may wonder which criteria are chosen
for selecting neighbors. In our approach, if a peer requests a number N of neighbors,
the Server entity selects the N peers which have performed checkpointing operations
the most recently. The idea is that if those N peers have performed checkpointing
operations lately, then the probability of this information being obsolete is lower
and thus the probability that these N peers still having work to share is higher.
Practically, this mechanism has a relatively simple operation as, when a peer P asks
the Server entity S for a new neighborhood, S sends back a set of peers information.
(See Figure 6.5)

In addition to this, this process allows the Server entity to reassign some work
units from failed peers. Indeed, the checkpointing mechanism makes the peers save
their work unit towards the master on a periodical basis. Based on this information,
the Server entity can easily determine which peers are facing faults. The work units
saved by crashed peers have an age greater than the checkpointing period duration.
In a more formal way, if tsave is the time when the current peer performed its last
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checkpointing operation, tnow the current time and Tcheck the checkpointing period
duration then the Server entity can determine whether a peer has crashed if it fulfills
the following condition: tsave < tnow − Tcheck.

Given this mechanism, when a peer contacts the Server entity for a new
neighborhood, the latter can deduce that the peer failed to obtain a work unit from
its neighborhood. Thus, along with a new set of neighbors, the Server entity sends,
if it exists, a work unit which satisfies the above condition. This allows the entire
network to recover work units from failed peers.

This mechanism raises concerns about another aspect of the P2P network: the
topology of the overlay. Indeed, when peers perform checkpointing operations and
requests for a new set of neighbors, the network’s topology can be dramatically over
time. In our "static" approach, the topology was predefined. It was chosen according
to specific characteristics about the graph diameter and the average degree of the
nodes. The graph was connected and non-oriented, and all the B&B mechanisms
were based on this property. Here, the resulting graph becomes oriented (if a peer P1

is a neighbor of a peer P2, the converse is not necessarily true) and non-connected.

Nevertheless, as peers can be all exploring an interval, each peer can be virtually
connected to any peer in the network, thus eliminating concerns about having peers
isolated from the network and remaining indefinitely idle. The second issue deals
with global information. As the graph is no longer connected, one can no longer
guarantee that if a peer discovers an improving solution and broadcasts it to its
neighbors, all the peers eventually become aware of this solution. Thus, in addition
to this P2P broadcast procedure, the new solution is communicated to the Server
Entity through the checkpointing mechanism, as every peer is supposed to contact
this entity at least on a regular basis. Similarly, the detection of the termination
will have to be handled by the Server Entity.

Figure 6.5: Sequence diagram representing the Neighborhood Request Procedure.
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6.2.2.4 Load Balancing Mechanism

Load balancing consists in sharing the tasks to perform among as many peers as
possible to take advantage of the involved computational resources. Similarly to the
approach described in a static context, this process is handled in a fully distributed
way. When a peer is assigned a set of peers as neighbors and whenever it finishes
the exploration of an interval, it sends requests to its neighbors in an iterative way.
If a neighbor holds an interval, it splits it into two equal parts and sends the second
half to the requesting peer. Otherwise, the requesting peer proceeds to the next
neighbor until all neighbors have been probed. (See Figure 6.6). Figure 3.3 recalls
the work sharing mechanism in a static context.

One can notice that this mechanism is strongly dependent from the neighbor-
hood granted by the Neighborhood Mechanism described hereabove. Indeed, the
neighborhood mechanism selects the peers that have saved their interval the most
recently. From a "load balancing" point of view, this strategy is based on the idea
that those peers have the highest probability of holding an interval when the current
peer begins its round of requests.

Of course, this strategy is advantageous when failures occur with a high proba-
bility. One can imagine other strategies for selecting neighbors. For instance, one
could select peers that have the biggest intervals, assuming that bigger intervals
have more chances to require more computation time.

Figure 6.6: Sequence diagram representing the Load Balancing mechanism between
two peers.

6.2.2.5 Checkpointing mechanism

To enable the network to recover from a fault of one of the peers, those latters have to
save periodically their state. Here, it consists in the tasks/sub-tasks they still have
to process. More precisely, they send a message containing the remaining interval
to explore towards the Server entity. The Server entity memorizes this data and,
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using similar information from other peers, it can update this interval by checking
if it has been explored whether partially or totally by another peer. Indeed, such
a situation can occur when the current peer undergoes a fault so that the Server
entity reassigns its interval to another peer. (See Figure 6.7).

One of the main concerns dealing with fault tolerance is the work sharing pro-
cedure. Indeed, one must ensure that the newly assigned interval is not lost and
that, in case of failure from the requesting peer, this interval can be reassigned later.
More technically, suppose that two peers P1 and P2 are neighbors and P2 asks P1 for
a work unit. Peer P1 shall proceed into three steps. First, it splits its interval into
two equal parts. Second, it informs the Server entity about the two newly created
intervals. Third, peer P1 sends the second half of the original interval to peer P2.
During this procedure, peers P1 and P2 may fail at any time. Three situations have
to be considered:

1. The failure occurs before step 1 or after step 3: If P1 fails, then its interval
will be reassigned to another peer. If P2 fails before step 1, nothing happens.
If it fails after step 3, its interval will be reassigned as well.

2. The failure occurs between steps 1 and 2: If P1 fails, the Server entity still
thinks it holds its previous interval. Thus, it will be reassigned to another
peer later, and peer P2 will ask another peer for an interval. If P2 fails, then
peer P1 will resume exploring the original interval.

3. The failure occurs between steps 2 and 3: If P1 fails, the Server entity now
thinks that the second half of its interval has been effectively sent to P2.
Thus, if P2 succeeds in obtaining an interval from another peer, the Server
entity will think that P2 is exploring two intervals. Actually, P2 is exploring
only the last one. As the former one will not be updated by P2, it will be
reassigned to another peer as well as the interval P1 was supposed to explore
after splitting the original interval. If peer P2 fails, then peer P1 will explore
its own interval and the interval assigned to P2 will be reassigned to another
peer.

6.2.2.6 Best Solution Sharing

In opposition to the static environment approach, sharing the best solution can not
be handled exclusively in a fully decentralized fashion. Indeed, for a given peer, the
neighborhood mechanism defines a set of neighbors unilaterally: if a peer P has a
set of neighbors {N1 . . . Nk}, the respective sets of neighbors of these peers might
not necessarily include P . More mathematically, the graph representing the network
topology becomes oriented. Thus, making use of the Server entity is the only way
to ensure that all the peers in the network get informed about a new upper bound
whenever it is discovered. In comparison with the approach in a static environment,
the mechanism differs slightly. Instead of broadcasting the new upper bound to
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Figure 6.7: Sequence diagram representing the checkpointing mechanism.

neighbors upon discovering it or receiving it from a neighbor, a peer performs a
checkpointing operation by sending the new upper bound along with the interval to
explore to the Server entity. Other peers get informed about this new upper bound
upon performing their next checkpointing operation.

From a practical point of view, we take advantage of the P2P mechanisms layer
by sending the new upper bound along with work requests messages. The idea here
is to allow a peer to be informed about a new upper bound faster if it performs
a work request before checkpointing towards the Server entity and receive the new
upper bound from it. (See Figure 6.8).

Figure 6.8: Sequence diagram representing the Best Solution Sharing mechanism.

6.2.2.7 Fault Tolerance

In this approach, the Fault Tolerance feature is handled in an implicit way. Indeed,
the fault of a peer is not detected in an active way through a dedicated mechanism.
The assumption is made that every peer is supposed to periodically save its data
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towards the Server entity. When this Server entity finds out that some data has
not been updated for a greater-than-period amount of time, it can deduce that
the related peer must be undergoing a fault (more generally, an anomaly). Thus,
its work unit can possibly be reassigned to another peer later, thus ensuring the
exploration of all the intervals in the network.

In the following section, we present a thorough experimental study of the per-
formance of our approach.

6.3 Experimental Evaluation

6.3.1 Experimental Setting

6.3.1.1 Protocol

The experiments have been conducted on the Grid’5000 Experimental Grid. As
the behavior of the Branch-and-Bound algorithm is, by nature, unpredictable, the
obtained results are an average of four separate runs. For each execution, the
computational resources that are involved are located on the same geographical site.

The goal is to study the impact of pre-determined failure scenarios on the
performance of our approach. The most accessible way to evaluate it is through
gathering information about the Branch-and-Bound algorithm’s execution. Indeed,
for example, if some peers in the network fail then the time needed to solve a
problem may increase and this could be seen by studying the evolution of the
number of remaining solutions to be explored through time.

In order to evaluate efficiently the robustness of our approach, this latter is run
using various models for simulating faults, those models being described hereafter.
The distribution of faults through time can be used as a parameter to simulate
real-case scenarios. Along with this parameter, we also vary the size of the network,
the failure rate (i.e. the proportion of peers that can fail) and the number of
neighbors for each peer. Figure 6.9 indicates the different settings used in our
experiments. Note that the failure models are numbered from 0 to 4: these models
are described later.

The problem being solved is the Flow-Shop Scheduling Problem. The instance
chosen is Ta050 (permutations of 50 jobs on 10 machines). The initial value of the
upper bound for the B&B algorithm has been set to the optimal solution’s score :
3065. The instance is run until it is completely solved. Using these parameters allow
to reduce the duration of the runs to dozens of minutes. In situations where the
failure rate is high, the performance of the approach can be significantly degraded
and the resolution time can become much higher. Thus, the duration of the runs
has been limited to 30 minutes.
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6.3.1.2 Fault Injection

Some works propose different protocols to inject faults into the network. OR-
CHESTRA [Dawson 1996] allows the user to act on the communication layer by
manipulating messages. These messages can be delayed, reordered, lost, duplicated,
altered and new messages can be spontaneously introduced in the system. NFTAPE
[Stott 2000] allows to simulate high workloads and trigger failures. This platform
allows the user to design custom injection mechanisms. LOKI [Chandra 2000] is a
fault-injection system whose policy is based on a partial view of the whole network
and faults are injected a posteriori (after analyzing global properties of the network
at a given time).

In our experiments, faults are injected into the network as follows: every 30

seconds, a peer determines if it can fail according to the failure rate parameter.
If so, a peer simulates a failure by remaining idle for a predetermined duration,
depending on the failure model. It remains active to reply to potential work request
that can be received from other peers. Once the duration has passed, the peer
restarts its execution from scratch, as if it were a new peer joining the network.

Model Network Size Failure Rate Number of Neighbors
0 100 25% 20% of Network Size
1 200 50% 40% of Network Size
2 300 75% 60% of Network Size
3 100% 80% of Network Size
4

Figure 6.9: Range of the parameters for failure simulation scenarios.

6.3.1.3 Failure scenarios

For our experiments, we studied four different scenarios for generating and injecting
faults in the network.

1. Failure-free model: This model is used as a reference to analyze the exper-
imental results. None of the peers fail during the execution of the approach.

2. Periodical renewal model: In this model, a fixed amount of peers (corre-
sponding to the failure rate parameter) leave the network and an identical
number of peers join the network. This simulates an environment where peers
regularly join/leave the network as, for instance, in P2P file-sharing systems
where users connect to the network, exchange data and leave the network.

3. Periodical renewal with fixed delay: This model is identical to the previ-
ous one, except that, after leaving the network, peers wait for a fixed amount
of time (here , 15 seconds) before joining back the network. This simulates
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situations where a whole set of peers fail simultaneously. Typically, it can
correspond to the crash of a machine or the network infrastructure.

4. Periodical renewal with random delay: Same model as the previous one,
except that the delay for a peer before rejoining the network is set to a random
value comprised between 0 and 30 seconds. This model simulates faults which
affect only individual peers. One can imagine situations where a peer running
on a given machine fails because of a software error or because of a temporary
network overload which suddenly increases network latency, for instance.

5. Periodical renewal with delay based on a normal distribution law:
This model is a combination of models 2 and 3. The durations of failure
are determined according to a normal law whose parameters are given by an
average value of 15 seconds and a standard deviation of 5 seconds.

Figure 6.10 gives an overview of the parameters used to simulate peers leaving
or joining the P2P network.

Figure 6.10: Parameters used to simulate peers leaving or joining the P2P network.

6.3.2 Experimental results

In this section, we intend to analyze the impact of each parameter upon the per-
formances and more precisely, the robustness of our approach. Note that, given the
parameters’ set described in Figure 6.9, the number of runs reaches 204. For the
sake of clarity, we perform our analysis by only selecting runs which allow one to
see the influence of each parameter as clearly as possible.

6.3.2.1 Reference executions

This experiment consists in running our approach without simulating any failure
in the network. This will allow to have a clearer view of the impact of failures on
the performances of our approach. The size of the network ranges from 100 to 300

peers. Figure 6.11 represents the evolution of the number of remaining solutions to
explore over time. The number of neighbors for a peer has very little impact so only
results for a neighborhood size equal to 20% of the network’s size are represented.
The Ta050 instance is solved within between 125 and 225 seconds.
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Figure 6.11: Evolution of the number of remaining solutions to explore without any
fault.

6.3.2.2 Failure rate

Figure 6.12: Evolution of the number of remaining solutions to explore with multiple
failure rates.

Figure 6.12 represents the results obtained by selecting model 1, setting the size
of the network to 300 and the percentage of neighbors to 20%.
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One can see that increasing the number of failures degrades significantly the
performance of the approach. Indeed, chances that a peer can obtain an interval
from a neighbor upon request diminish as the latter may face a fault. Results
indicate that for failure rates higher than 75%, the resolution process is almost
stalled.

6.3.2.3 Number of Neighbors

Figure 6.13: Evolution of the number of remaining solutions to explore with multiple
neighborhood sizes.

Figure 6.13 represents the results obtained by selecting model 2, setting the
failure rate to 25% and the size of the network to 100 peers.

This result can be somehow surprising at first sight. Indeed, one could have
expected that when the number of neighbors increases, the resolution process
performs faster as the load is balanced more quickly. However, results seem to
show the contrary. This emphasizes the following phenomenon: if a peer has a high
number of neighbors, then the work request procedure takes more time to complete
as neighbors are interrogated one at a time. Thus, if the number of failed peers
is high, it takes much more time in average for a given peer to obtain an interval
whether from another peer or from the Server entity, which increases the resolution
time in the experiment.

One intuitive idea comes to mind when analyzing the impact of the neigh-
borhood size on the performances of the P2P network. One may wonder if a
deployment based on a fully Master-Slave architecture, which can be achieved by
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setting the number of neighbors to zero, performs better.

Figure 6.14 compares, with the same parameters, the results obtained with a
number of neighbors equal to 20% of the size of the network and those with no
neighbors at all. One can see that the "Master-Slave" approach performs worse.
The main reason of this phenomenon is that all the load balancing operations
are now handled by the server entity, thus increasing significantly the load of
communications upon it. When the peers perform checkpointing operations as
well as work requests, additional delays are introduced because the central entity
requires extra time to process all the incoming requests, thus degrading the
performances of the network.

Figure 6.14: Evolution of the number of remaining solutions: Comparison with a
"Master-Slave" approach, with peers having no neighbors.

These results have been obtained by using intensive failure scenarios, where fail-
ures occur at a very high frequency. Our approach has been pushed to its limits and
its robustness has been confirmed experimentally. However, the studied scenarios
have one limitation: they distribute the failure only among peers and uniformly
through time. In real environments, systems can fail with a probability which gen-
erally increases with time: the longer a system has been active, the higher chances
are for it to fail.

In the following section, we study another model for which the main parameter
is the lifetime of the peers.
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6.3.3 Lifetime-based failure scenario

6.3.3.1 Failure model based on the Weibull exponential distribution law.

Figure 6.15: Evolution of the number of active peers through time.

Figure 6.16: Distribution of the peers’ lifetimes.

The failure models we used in the previous experiments as well as the most
commonly use fault injectors described earlier do not take into account the lifetime
of the computational entities. To give more realism to the experiments in a volatile
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environment, we consider a model in which the lifetime distribution of the processes
follows an exponential law.

In the literature, most of the lifetime-based failure models use such distributions
to describe the lifetime of computing entities. In [Stutzbach 2006], authors analyze
some properties of the most commonly used P2P applications, mainly dedicated to
data sharing like Bittorrent [Bittorrent 2005], Gnutella [Milojicic 2008], Kademilia
[Maymounkov 2002] and others. Most of the work focuses on churn (the dynamics
of peer participation in a P2P network) and authors study, from data gathered
from actual users, the rate of peer departure or arrival by using distribution
laws to describe it. Those laws include the normal distribution, the exponential
distribution, the Weibull distribution and other heavy-tailed distributions. In
[Bendjoudi 2012], Bendjoudi et al. base their fault injection mechanism on an
exponential law for the lifetime of the peers.

More generally, the reliability of a process i is considered as the probability that
it operates for a specified period of time. The reliability function Ri(t) is the proba-
bility that the process i will be successfully operating without failure during the time
interval [0, t], Ri(t) = P (T > t), where T is a random variable representing the fail-
ure time. Therefore, the failure probability is given by: F (t) = 1−R(t) = P (T = t).

The last model we make use in our experiments determines the lifetime of the
peers according to the Weibull exponential distribution law. In our experiment, we
choose to set the number of peers to 300 and, to generate the corresponding list of
lifetimes (in seconds), we used the R statistical tool. The parameters used for gen-
erating the distribution were 3 for the shape and 1 for the scale and the values have
been multiplied by a factor of 1800 afterwards. The probability density function
for the Weibull distribution (with two parameters) is: f(x) = k

λ(
x
λ)

(k−1) · e−( x
λ
)k ,

where k > 0 is the shape parameter and λ the scale parameter. With parameters
set to k = 3 and λ = 1, we have f(x) = 3x2 · e−x3 . The cumulative distribution

function becomes F (x; k, λ) = 1− e−(
x
λ)

k

= 1− e−x3 .

Figure 6.16 represents the distribution of lifetime values for the peers which are
represented by intervals. For instance, the column labeled "1100" represents the
number of peers whose lifetime is comprised between 1100 and 1200 seconds (here,
15). Figure 6.15 extrapolates this information by indicating the number of active
peers through time.

6.3.3.2 Protocol

The experimental protocol designed for our previous experiments was designed to
study the impact of failures on the robustness of our approach during the resolution
of a small instance. An instance was chosen as well as an initial value so that the
resolution could be achieved in a matter of minutes. This allows to perform a great
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number of runs within a short amount of time. Here, we changed these parameters
so the execution time without failures would be approximately 20 minutes or 1200

seconds. Thus, the size of the network is set to 300 peers, the instance being solved is
Ta050 and the initial value for the upper bound is set to 3165, the optimal solution
for this instance having a score equal to 3065.

6.3.3.3 Result

Figure 6.17: Evolution of the number of remaining solutions to explore through
time.

Figure 6.17 represents the evolution of the number of remaining solutions to
explore along with execution time. The 300 peers of the P2P network take ap-
proximately 2400 seconds to solve completely the Ta050 instance with the given
parameters. This shows that, in real-case scenarios, our approach can face failures
and recover from it in an efficient way. Note that the values for the remaining so-
lutions are shown using a logarithmic scale. Thus, the last value being 0 (when the
instance is solved) is not displayed, thereby creating a "gap".

6.4 Conclusion

In this chapter, we described a Fault-Tolerant approach based on the one designed
for static environments. This approach is based on the use of a central entity that
manages checkpointing information, network topology and termination detection.
The approach can handle the departure or the joining of a peer through a Reg-
istration mechanism which keeps trace of the existing peers in the network. The
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work sharing mechanism remains similar to the static approach. The best solution
sharing mechanism takes advantage of the central entity to broadcast more effi-
ciently the best solution found and the network’s connectivity is ensured through a
neighborhood mechanism which can redefine the neighbors of a peer in case of node
failure.

In addition, we conducted experiments to study and prove the robustness of
our Fault-Tolerant within a dynamic environment. Our approach has been tested
with two types of failure scenarios. We have chosen some failure-intensive situations
where failures occur periodically at a high pace and represent various situations that
can be encountered in the real world. Second, we have chosen a model based on the
lifetime of the peers, which is based on an exponential-like distribution law. The
obtained results show that our approach can efficiently recover from faults in most
of the situations and when the rate of failures is very high, our approach runs much
more slowly.





Chapter 7

Conclusion

In this thesis, we presented our contributions to grid-based and Peer-to-Peer
Branch-and-Bound algorithms for the exact resolution of Combinatorial Opti-
mization Problems. We particularly addressed some challenging issues related to
scalability, fault tolerance, resources heterogeneity and load balancing, and the
design and implementation of grid-aware applications.

We first began by defining some key concepts related to Combinatorial Op-
timization (different optimization methods, exploration strategies, . . . ), Parallel
Programming (what elements can be parallelized and how to synchronize multiple
processes), Grid Computing (existing parallelizations of the Branch-and-Bound
algorithm, issues faced when evolving at large scales, . . . ) and Peer-to-Peer
Computing. This study emphasized the importance of the degree of parallelism
used for a parallel algorithm, the main issues to be dealt with when evolving in
grid-like environments. It also gave an overview of the existing works, mostly based
on Master-Slave architectures and the main limitation they face when dealing with
scalability.

First, we designed a fully Peer-to-Peer approach to overcome the limitation of
scalability caused by network communications. The architecture of our application
is based on the concept of a Peer. Each peer executes the Branch-and-Bound on a
subset of solutions and computes a partial solution. To do so, several mechanisms
were designed to perform the main Branch-and-Bound operations. Through the
Work Sharing mechanism, a peer manages its local work pool and shares its work
units with its neighbors. This process is done so it guarantees no redundancy during
the exploration process. Through the Best Solution Sharing mechanism, a peer
can compute the best solution for its work pool and broadcast it over the network
through its neighbors which allows those latter to possibly branch their exploration
trees and speed up the exploration process. Through the Termination Detection
mechanism, a peer can determine the presence or absence of a work unit somewhere
in the network through iterative work requests sent to its neighbors. This approach
is implemented without using any third-party library or platform which makes
it deployable on a high variety of systems. To the best of our knowledge, no
parallel B&B algorithm was designed under the fully Peer-to-Peer paradigm at the
application level before. Along with this contribution, we provided a formal proof
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of the correctness of our approach, that is ensuring that the algorithm terminates
correctly, the exploration process is performed within a finite amount of time and
that when termination is detected, all peers are aware of the optimal solution for
the problem being solved.

Second, we make an extensive experimental study of our approach. Its correct-
ness has been proven experimentally by solving to optimality multiple instances of
the Flow-Shop Scheduling Problem from scratch. We then studied its performances
at large scales, by deploying our algorithm on networks of up to 150.000 peers.
By comparing it to a traditional Master-Slave based approach, results showed an
improved scalability, that is, with 150.000 peers deployed, those peers still spend
more than 90% of their time to exploring solutions whereas this ratio drops to
less than 10% in the Master-Slave approach. Through studying the amount of
communications over the network in both approaches, we showed that a drop of
scalability is not due to network congestion. In a second step, we analyzed the
impact of the network topology on the performances of our approach by testing it
with some of the most commonly used topologies in the literature. Results indicate
that our P2P approach can operate independently from the network topology and
that it operates at best with topologies having small-world properties.

Third, we extended our approach to adapt it to dynamic environments. We
introduced a central entity which is in charge of gathering checkpointing information
from peers and handle the joining and departure of the peers through a Registration
system. This central entity can reassign neighbors to the peers in case of failure and
thus can easily detect termination. To evaluate the robustness of our approach, we
chose multiple failure scenarios. Some are intensive, that is they simulate repetitive
failures occurring at a high rate. Results show that with low rates of failures, our
approach can successfully solve instances, but under high rates of failure (namely,
more than 75% of the peers failing), the exploration process is heavily impacted.
When the number of neighbors decreases, the load balancing mechanisms performs
faster. However, results also show that our Fault-Tolerant approach still performs
better than a fully Master-Slave approach as it again distributes efficiently the
communication load among the peers. Finally, we experimented our Fault-Tolerant
approach with a lifetime-based scenario, where the lifetime of the peers follow an
exponential-like law. Results showed that under real-case scenarios, our approach
remains robust as it successfully solves an instance of the Flow-Shop Scheduling
Problem.

In the future, we plan to investigate the following research tracks to extend
our work. The first issue we plan to address is the mapping of the toric hypercube
overlay on the Grid’5000 physical network. In our experiments, we have considered
the cluster-based proximity of peers provided by the OAR reservation tool of
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Grid’5000 to deal with the mapping. Such mapping is quite similar to the
IP-based proximity metric used in [Nguyen 2012]. In the future, other distance
metrics [Huffaker 2002] will be investigated to improve the efficiency of the mapping.

Second, fault tolerance is critical in order to solve large scale difficult instances.
Two main issues left open in our fault-tolerant approach will be addressed in
the Ph.D. thesis of Trong Tuan Vu: (i) using robust overlays while distributing
work among peers, and (ii) using different checkpointing strategies where different
distributed servers are in charge of collaboratively and distributively dealing
with churn and peer faults (e.g., [Nguyen 2012, Bendjoudi 2013]). We expect
that designing advanced robust overlays, e.g., by getting inspired from existing
data-oriented p2p frameworks, will allow us to increase the logical connectivity
among peers and thus to decrease the cost and the need to maintain the overlay
by using any centralized entities. We also expect that distributed checkpointing
strategies shall allow us to better balance the cost of checkpoint operations and
thus to improve performance. With respect to the Grid’5000 computational grid,
this would allow us to deploy a parallel B&B fault-tolerant framework under the
best-effort mode, in which one has no strong guarantee about the availability of
reserved resources. Such a framework would allow us to tackle large scale unsolved
instances and to effectively solve them, as was done in [Mezmaz 2007a] for one of
the 50× 20 highly time-intensive problem. instances.

Third, for validation we have considered the Flow-Shop single permutation-
based problem for which very short information (intervals, best solution, . . . ) is
communicated. Other problems requiring larger communication messages should
be investigated. For instance, for the 3D Quadratic Assignment Problem (Q3AP)
studied in [Mehdi 2011], more data (flow and distance matrices) are communi-
cated. The challenge will be to revisit the proposed P2P approach to deal with
work sharing involving larger-sized messages. In addition, other problems than
permutation-based ones should be investigated.

Fourth, according to many HPC experts (IDC - Analyze the Future, Nov. 2011),
heterogeneous (GPU-based) computing is the new paradigm for the Exascale Era.
The reason is, given that exascale computing is announced for 2018-2020, achieving
reasonable exascale performance in such compressed time frame presents an array
of daunting challenges that cannot be met only through evolutionary explorations
from existing technologies and approaches. With the arrival of GPU resources in
clusters and computational grids, our objective is to study the design of large scale
heterogeneous peer-to-peer GPU-based Branch and Bound based on the conjunc-
tion of GPU [Lalami 2012], multicore and distributed computing. The objective
is to combine the P2P approach proposed in this work with the GPU-based B&B
approach proposed in the Ph.D thesis of Imen Chakroun [Melab 2012].
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This section deals with the main constraints related to the Peer-to-Peer tech-
nology, which can have a non-negiligible impact on the deployment and the per-
formances of Peer-to-Peer applications and systems. In [Milojicic 2008], authors
provide a detailed analysis of the main characteristics of any Peer-to-Peer networks.

A.1 Main characteristics of a P2P network.

A.1.1 Decentralization

Peer-to-Peer models requestion the concept of storing and processing data using
centralized servers and accessing this data through "Request-Reply"-based protocols.
In traditional Client-Server models, data is stored on a few main servers and is
communicated, through network infrastructures, to client machines acting as user
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interfaces. Such centralized systems are best-fit for particular applications or tasks.
For instance, security-based accesses can be better handled using such systems.
However, this kind of architecture (Client-Server) can degrade performances because
of communication bottlenecks or non-optimal resource usage. Although hardware
performances and costs have improved, centralizing the sources of information can
remain expensive in terms of configuration and maintenance. Human intervention
maigh still be necessary to guarantee the coherence and non-obsoleteness of the
content.

One of the key ideas behind decentralization is the influence that every user
of the P2P network can have on data and resources. In a completely distributed
system, every peer contributes equally to the network. Thus, implementing P2P
can be very difficult to implement, technically speaking as there is no central entity
having a global view of the network as well as the information stored in it. This is
why many P2P systems are based on hybrid approaches like Napster [?], where a
centralized resource directory is used and peers directly exchange data.

In fully decentralized systems, like Freenet [Clarke 2001] and Gnutella
[Milojicic 2008], joining the network can be challenging. In Gnutella, for instance,
new peers must be aware of a given number of pre-existing peers belonging to the
network. They can also use a list of IP addresses of existing peers. The newcomer
joins the network by connecting to at least one of them. From that point, it can
proceed to discover other peers and gather their network information.

From a historical point of view, the first great project of Distributed Comput-
ing was the Great Internet Mersenne Prime Search (GIMPS, www.mersenne.org),
whose objective was to harness computational resources distributed over the Inter-
net network in order to calculate Mersenne’s prime numbers. The GIMPS project
initially used mails for communication purposes as this protocol is intrinsically de-
centralized. When a central entity assigns work units to unavailable computing
resources, mail servers put corresponding mails into a waiting queue and send it
again as soon as the resources becomes available again.

Then, another Distributed Computing project appeared ("distributed.net"),
which was dedicated to decryption/decyphering. Initially, only one central server
was used, which caused issues related to availability (Sometimes, for multiple weeks
in-a-row). Therefore, a two-level proxy-system was used, on which a version of the
server entity could be deployed and act as a proxy. Practically, task scheduling and
assignment was easy as work coding was very simple : each work unit was referred to
by a key and a set of work units could be represented by an interval of two integers.

P2P systems can be classified into two categories depending of their level of
autonomy : "Pure P2P" and "Hybrid P2P". Of course, the classification can be
made more precisely as shown in Figure A.1. This autonomy can have a direct
impact of the self-organization ability and the scalability of a system, as the most
decentralized systems are loosely linked to the network’s or machines’ infrastructure.
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Figure A.1: Degrees of decentralization into various P2P networks.

A.1.2 Scalability

One immediate advantage of decentralization is scalability. It can be limited by
various parameters like the number of "centralized" operations (i.e. synchronization
or coordination operations) which have to be performed, the application’s intrinsic
parallelism as well as the programming model used to design the calculation process.

Napster faced the scalability issue by making peers download music files directly
from the peers having these files. Thus, Napster gathered more than six million users
at its highest. On the opposite side, SETI@Home [2001] [?] focuses on a unique
task that is inherently parallel. The objective is to harness computational resources
over Internet to analyze data collected from telescopes in the hope of discovering
extraterrestrial life forms. This platform accounts for almost 3.5 million users. Other
systems like Avaki try to face the issue of scalability through a distributed object
programming model.

Scalability also depends on the ratio between communications and computation
between P2P nodes. Some computing-intensive application like decrypting or find-
ing prime numbers, spend most of the time to computation, thus having a ratio
close to zero. This makes these systems very extensible. In other situations, as
in SETI@HOME, a communication bottleneck appears around the central entity
during intensive data exchanges. For instance, one megabyte of data requires 10
hours of computation to be processed, necessitating a network bandwidth equal to
1 MB multiplied by the number of computational entities involved in its processing.
There exists other applications, like, graphical rendering, that require thousands
of machines to create an animation within hours instead of a year. However, this
application induces a lot of data transfers, which makes it much less extensible.
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A.1.3 Ad-hoc property

First data-sharing P2P systems like Gnutella [2001] et Freenet [Clarke 2001] are
ad-hoc by definition.

A peer blindly submits requests to other peers which will in turn search for the
requested resource. This can make the search time become unbounded. In addition,
the lookup process can fail even if the resource exists, thus making the system be
non-deterministic.

More recent systems like CAN, Chord ([Stoica 2001],[Castro 2002]), Oceanstore
[Kubiatowicz 2000] and PAST [Druschel 2001], impose a rigorous matching between
the resource’s identifier and the node providing that resource. Thus, a resource can
always be retrieved as long as the hosting machines can be reached. Nodes, in those
systems, become a network layer. Each node contains information about a small
number of other nodes of the system. This limits the number of states to update
if the list of resources changes through time and improves extensibility/scalability.
The logical topology of this new network layer guarantees some properties about
the cost of request processing. Oceanstore had been designed to extend to billions
of users, millions of servers and more than 1014 files [Kubiatowicz 2000].

A.1.4 Anonymity

One of the usage made of the Peer-to-Peer technology is to allow individuals to use
communication systems, without any sort of legal (or other type) constraints, on
one hand, and to guarantee that no censorship of digital content is possible. The
designers of Free Haven [Dingledine 2001] identified the following elements related
to anonymity :

• Author : The author or the creator of a document can not be identified.

• Publisher : The individual that published the document on the system can
not be identified.

• Reader : People that read or use content can not be identified.

• Server : Servers hosting a document can not be identified through this docu-
ment.

• Document : Servers do not keep any knowledge about the content they host.

• Request : A server can not say which document is used to satisfy somebody’s
request.

In addition to these points , there exist three different types of anonymity be-
tween each communicating peer :

• Sender anonymity, masking sender’s identity

• Receiver anonymity, masking receiver’s identity
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• Mutual anonymity, where both sender and receiver are hidden to each other
as well as other peers[Pfitzmann 1987].

It is also crucial to determine the degree of anonymity that can be reached
by a given method. Reiter and Rubin [1998] propose an overview of the different
degrees of anonymity that ranges among "absolute intimacy", "possible exposure"
and "definitely exposed" Absolute intimacy means that , even if an attacker can
determine that a message has been sent, the message’s sender can not be determine
with absolute probability.

There exist six methods among the most commonly used, adapted to different
degrees of anonymity under various constraints.

A.1.4.1 Multicasting

. Multicasting (or broadcasting) can be used to ensure receiver’s anonymity [Pfitz-
mann and Waidner 1987].

A multicast group is created for users willing to remain anonymous. A user
wanting to get a document registers to the corresponding group. The user inside
the group which holds the document, sends it to the whole group. The receiver’s
identity is then effectively hidden for the other peers and sender’s anonymity is
guaranteed. This technique takes advantage from the underlying network that has
the multicast feature, like Ethernet or Token Ring.

A.1.4.2 Mask sender’s identity

In non-connected protocols like UDP, sender’s anonymity can be guaranteed by
spoofing the sender’s IP adress. However, this requires to change protocol. Besides,
it can not always be achieved as most ISPs keep trace of network packets originating
from invalid IP adresses.

A.1.4.3 Spoof identity.

Instead of changing the sender’s identity, anonymity can be achieved by modifying
the identity of an interlocutor. For instance, in Freenet [Clarke 2001], a peer sending
data to another peer can claim itself as the data’s owner. Thus, an attacker can not
be sure that the sender of a data is the actual sender.

A.1.4.4 Stealth paths.

Instead of communicating directly, two entities can do so through intermediate
nodes. Most of existing techniques only ensure sender’s anonymity. A peer willing to
hide its identity elaborates a stealth path towards its interlocutor. One can cite Mix
, Onion [Syverson 1997], Anonymizing Proxy [Gabber 1999], Crowds [Reiter 1998]
and Herdes [Shields 2000]. Stealth paths can use persistent connections or buffered
connections. By varying the path’s length and by changing the path with a variable
frequency, multiple degrees of anonymity can be achieved.
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A.1.4.5 Untraceable aliases.

LPWA [Gabber 1999] is a proxy server that generates untraceable aliases for client
machines. The client can create an account and be identified through it, thus mask-
ing its true identity from the server. This kind of method ensure sender’s anonymity
and make use of reliable proxies. The degree of anonymity is almost absolute.

A.1.4.6 Unwanted hosting.

Another interesting approach is to provide anonymity by hosting non-voluntarily
a document on a node, using for instance hash functions. As the hosting is
non-determinist, host can not be held responsible for hosting a document.

Now, we sum up the different forms of anonymity used into the most popu-
lar P2P networks as well as the techniques employed.

Gnutella [2001] and Freenet [Clarke 2001] provide anonymity through the
way peers exchange documents. In Gnutella, a request is broadcast again and again
until it reaches a peer hosting the requested document. In Freenet, a request is sent
to peers that have the highest probability of hosting the requested document. The
reply is sent along the same path.

APFS [Scarlata 2001] deal with mutual anonymity by considering that reliable
centralization is impossible. Peers must inform a coordinator that they can act as di-
rectories. Both the sender and the receiver of a message must build up stealth paths.

Free Haven [Dingledine 2001] and Publius [Waldman 2000] are designed to
guarantee protection against censorship. Document’s anonymity is reinforced by
splitting it afterwards and saved on multiple servers. Thus, a given server never
hosts all the necessary data for external attackers. Mutual anonymity between the
publisher and the reader is ensured through stealth paths. Both platforms build
these paths by sending many anonymous emails. Publius could be improved by
integrating reader’s anonymity. Anonymous emails could be used also for publishing.

PAST [Rowstron 2001b], CAN [Ratnasamy 2001] and Chord [Stoica 2001] con-
stitute a class of P2P systems based on a reliable infrastructure. One common
characteristic is that object hosting is non-deterministic and a node can not be held
responsible for hosting that object. The included routing mechanisms can be easily
used to build stealth paths and ensure mutual anonymity.

A.1.5 Auto-organisation

In cybernetics, self-organization is defined as "a process where a system’s organi-
zation increases spontaneously, that is it increases without being controlled by its
environment or any external system". [Heylighen 1997].
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In P2P systems, self-organization is necessary for extensibility (scalability), fault
tolerance, resources volatility and infrastructure cost. The scale of P2P systems
can not be predicted according to the number of systems involved, the number of
users or the workload. Predicting one of these parameters can be very challenging
without centralizing partially the system. Scalability intrinsically induces a higher
probability of failure, which requires self-maintenance abilities from the system.

A similar reasoning can be applied to resources volatility. It can be challenging
for a system configuration to remain as it is for a long period of time. Adaptation
is necessary to face the departure or the joining of peers into the Peer-to-Peer
network. As it would be to maintain a dedicated equipment and/or hire staff
to manage such a dynamic environment, the issue is dealt with directly by the peers.

Some systems and products deal with self-organization. In Oceanstore
[Bindel 2002, Kubiatowicz 2000], self-organization is applied to data localization
and routing infrastructure [Kubiatowicz 2000],[Rhea 2001], [Zhao 2001]. Because
of the sporadic availability of peers as well as variations of network latency and
bandwidth, the infrastructure continuously adapts its routing and localization
mechanisms.

In Pastry, [Rowstron 2001a], self-organization is managed through protocols
dedicated to a node’s departure or joining and based on a Fault-Tolerant network
layer. Clients’ requests are routed within ⌈log16N⌉ hops.

FastTrack assigns faster searches and transfers to distributed self-organized
networks. In these networks, the most powerful machines automatically become
Superpeers and act as content directories, under criteria related to processing
capacity and network communication (for instance, latency time and bandwidth).

SearchLing uses self-organization to adapt the network according the nature of
search requests, allowing to reduce network traffic and the number of unsatisfied
requests.

A.1.6 Ad-hoc connectivity

The ad-hoc nature of connectivity has a major impact on all classes of P2P systems.
In the field of distributed computing, parallel applications can not be run on every
system indefinitely. This availability may vary from one system to another. P2P
systems and distributed applications must take into account this ad-hoc nature
and be able to manage the departure or joining of computational resources in the
network. Although it can be considered as an exceptional event in distributed
systems, it is seen as usual or frequent in P2P systems.

In P2P applications dedicated to content sharing, users expect to have access
to content whenever they want, regarding the connectivity of content providers.
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In the most reliable systems, with guarantees on quality of service, the ad-hoc
characteristic is diminished through redundant service providers, but some of them
may remain unavailable.

In collaborative P2P systems and applications, the ad-hoc nature of connectivity
becomes more obvious. Users cooperating with each other are more and more
interested in mobile devices, thus making them more connected to Internet and
better suited for collaborative work. To face this situation, cooperative systems
allow transparent communication delays from disconnected systems. this can be
achieved through the use of proxies dedicated to message reception , or other types
of relays which can temporarily suspend communications for a disconnected system.

Besides, not all the systems will be connected to Internet. Even if it were the
case, ad-hoc groups of users must be able to create ad-hoc networks to cooperate.
Existing infrastructures like 802.11b/g, Bluetooth and Infrared. Thus, P2P systems
and applications must be designed to support frequent exits or entries of peers.

A.1.7 Performances and security.

When designing a P2P system, those two points have a great importance regarding
extensibility/scalability of an application.

A.1.7.1 Intelligent routing and network topology.

To take advantage of the great potential of P2P networks, it is crucial to understand
and explore the possible interactions between peers. One of the most advanced
works about social interactions is the "small-world phenomenon" on the Milgram
experiment [1967]. The goal of that experiment was to find a series of acquaintances
(that is, two people who know each other) that could link any couple of people in the
US who do not know each other. By using postcards, Milgram discovered that, in the
1960’s, Americans were linked through a "path" of six people in average. Adamic et
al. explored power-law distributions for P2P networks, and introduced local search
techniques using nodes having a high degree and a scalability cost sub-linear with
the network size[Adamic 1999].

Ramanathan et al. [Ramanathan 2002] determine "good" peers, based on
interests and manipulate dynamically network connections between peers to
guarantee that high degree nodes with similar interests are strongly linked to
one another. Establishing a good set of peers reduces the number of broad-
cast messages on the network and the number of peers processing a request
before the result is found. Some academic systems like Oceanstore and Pas-
try, improve performances by moving data inside the network in a proactive
way. The main advantage of these approaches is that peers can choose who they
connect to and when to open or close a connection , based only on local information.
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Figure A.2: Using relays to cross firewalls

A.1.7.2 Firewalls.

P2P applications naturally require direct connections between peers. However, in
some administrative domains, internal networks are isolated from the external world,
granting only restricted access to applications. For instance, most firewalls block
incoming TCP connections. That is, a machine located behind a firewall shall not
be accessible from outside the network. Worse, individuals often use, at home,
a private IP address behind a router or a NAT (Network Address Translation)
service to share an Internet connection between multiple machines. This leads to
the issue of non-accessibility. However, as outgoing connections through port 80
(HTTP) are often allowed by firewalls, some mechanisms have been designed to
allow communications between hidden machines (behind a firewall or a NAT system,
unreachable from Internet). This procedure is somewhat limited as it requires the
connection to be initiated by the "hidden" machine. When other communicating
peers are located between different firewalls, the issue becomes even more complex.
A "reflecting" server on Internet will be necessary to allow connections between
hidden peers.(Figure A.2).

A.1.8 Fault Tolerance

One of the main characteristics of a P2P network is to avoid having any central
weak points. Although most of (pure) P2P networks already do it, they still face
some failures which are commonly linked to systems involving multiple hosts or
networks : disconnections, unreachable hosts, network partitioning and nodes
crashes. These failures can be more significant in some networks (for instance,
wireless networks) than others (corporate cabled networks). It would be more
interesting to pursue a collaborative work between peers still connected to the
network when facing such failures. One relevant example could be an application,
like Genome@Home [2001] running a distributed algorithm on multiple peers. Is
it still possible to continue calculations if one of the peers disappears because of
a network connection failure ? Similar questions have to be answered to by P2P
systems willing to provide more than a "best-effort" Internet service.
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In the past, client-server disconnections were studied for distributed filesystems
including mobile devices (for instance, Coda [Satyanarayanan 1990]) , and one
solution would be to have solvers proper to each application in order to deal
with inconsistences after reconnections. Some recent P2P networks (Groove
[Groove 2001],[Microsoft 2008]) define special nodes, called "relays", that tem-
porarily memorize any update or communication until the receiver (here, another
peer) reappears in the network. Others, like Magi [Bolcer 2000], delay messages at
the source, until the receiving peer is detected.

A disconnection can result from a resources unavailability. This can occur when
a machine becomes unreachable due to a network failure, or when the peer holding
the resource crashes. Whereas the first case can be solved by routing information
through an alternate path (a feature already provided by Internet), the second one
requires greater attention. Crucial resources duplication can simplify the problem.
Networks like Napster and Gnutella are systems allowing passive and uncontrolled
duplication of data, based only on date’s popularity. Depending on the application
being run on these networks, it can be necessary to implement data persistency, by
proposing a reliable data duplication policy.

Anonymous broadcasting services like Freenet [Clarke 2001] and Publius
[Waldman 2000] ensure data availability through controlled replication. Oceanstore
[Kubiatowicz 2000] introduces a system with two replication layers, and, through
monitoring administrative domains, avoids to send replicas to sites with a high
probability of failure. However, as a resource into a P2P network can be more than
just a file (like proxies on Internet, online storage space, or shared computational
power), the concepts of distributed data replication must be extended to other
types of resources. Some solutions for distributed computing on grids (for instance,
Legion [Grimshaw 1997]) propose fault tolerance for nodes by restarting calculations
on other nodes.

One of the main challenges for a P2P system is that it manages its own main-
tenance, a task distributed over all the peers, to ensure resources availability. This
is different from client-server systems, where resources availability is ensured by the
server.

A.2 Existing Implementations

In this section, we propose an overview of the main existing P2P networks : Avaki,
SETI@Home, Groove, Magi, FreeNet, Gnutella, JXTA, .NET, NaradaBrokering,
Pastry.

Avaki [Avaki 2002] is designed to allow to see a network of heretogeneous re-
sources as a single virtual machine. This is a classical example of "meta-computing"
which is applied to networks ranging from corporate systems and data grids to



A.2. Existing Implementations 131

global computational grids over Internet. This is an object-oriented system. Each
entity is considered as an addressable object with a set of methods and interfaces.
It is mostly inspired from Mentat [Grimshaw 1993].

SETI (Search for ExtraTerrestrial Intelligence)) is a collection of projects aim-
ing to discover extraterrestrial civilizations. One of these projects, SETI@Home,
analyzes radio signals received from space and collected by the giant telescope in
Arecibo, by using the computing power of millions of unused machines. [Anderson
2002].

Figure A.3: Groove Architecture

Groove [Microsoft 2008] is a collaborative P2P system, which can be also con-
sidered as a platform. Groove mainly addresses to Internet users as well as intranet
ones. It can also be used on mobile devices like PDAs, mobile phones or touchscreen
tablets (Figure A.3). It enables communications, content sharing and proposes tools
for joint activities. For instance, all Groove applications inherit from the integrated
security mechanism without the need to redefine algorithms linked to security. This
allows the deployment of safe applications.

Magi [Bolcer 2000] is a P2P infrastructure for designing secure, portable and
collaborative applications. It uses standardized protocols like HTTP, WebDAV and
XML to allow communications between applications inside corporate networks or
Internet (Figure A.4). Magi Enterprise, the final product, builds an infrastructure
which links computers of project teams to enable file sharing, instant messaging . . . .

FreeNet [Freenet 2001] is a P2P file sharing systems based on a model proposed
by Ian Clarke [Clarke 2001]. The prime objective of FreeNet is to guarantee user’s
anonymity. That is, when logging into the system, a user must be able to submit
requests without anyone discovering sender’s identity. a FreeNet user has no
knowledge about the content stored on its hard disk.
Gnutella [Osokine 2002] is a file sharing protocol. Applications implementing
Gnutella allow users to search and download content from other users connected to
Internet.
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Figure A.4: Magi Architecture

The objective of the JXTA project [Daniel Brookshier 2002] is to propose
an open and innovative collaboration platform which supports a wide range of
distributed computing applications and allows to harness computing power from
any device connected to the network [Gong 2001]. JXTA provides features on
multiple layers, including basic mechanisms and concepts, high-level services that
extend these mechanisms to a wide range of applications, which demonstrates the
platform’s potential.

NaradaBrokering [Fox 2005],[Pallickara 2003] is a technology that takes
advantage from two distributed application systems : P2P systems and grid-based
systems. Both systems have complementary advantages. This technology can be
interfaced with a JXTA P2P network. The main idea behind NaradaBrokering
is to provide users with a high quality network. To do so, NaradaBrokering
uses techniques from distributed objects, web services and message-oriented
middlewares. The architecture used is made of local networks of peers that are
linked at large scale through a "core" interconnection network. To access the
services, "brokers" are introduced. Messages-oriented middlewares are mainly
used on this part of the network. Brokers are considered as the smallest unit of
this network. They are in charge of processing and routing messages intelligently.
The NaradaBrokering network is considered as a network made of brokers which
cooperate with one another, whether they are located on client machines or
not. To avoid having a loosely connected network, NaradaBrokering integrates a
inter-broker communication protocol to manage links between brokers and manage
the addition (or substraction) of brokers into/from the network. The network’s
organization is hierarchical, each broker belonging to a sub-group, forming greater
groups with other sub-groups and so on. These first sub-groups have strongly
interconnected brokers to guarantee at least one link even in case of failure.
Thus, we have many small networks connected to one another. Network traffic
increases by a logarithmic trend and not exponential like disorganized networks.
NaradaBrokering also introduces Brokers Network Maps (BNM) that allow the
intelligent routing feature described here above.
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Pastry [Gendron 1994],[Castro 2002], [Rowstron 2001a] is a P2P system whose
main characteristic is to propose a topology and a routing algorithm that allows
to have a network traffic increasing logarithmically with the number of peers and
avoids the definition of another type of peers as in NaradaBrokering.

Tapestry [Zhao 2001] is very similar to Pastry, the only difference being a vari-
ant in the routing algorithm. In our works, we inspired ourselves from Pastry, which
we detail more thoroughly.
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Peer-to-Peer Branch-and-Bound Algorithms for Computational
Grids.

Abstract:
In the field of Combinatorial Optimization, the resolution to optimality of large

instances of optimization problems through the use of Branch-and-Bound algorithms
require a huge amount of computational resources. Nowadays, such resources are
available from computing grids, which are sets of computing nodes geographically
distributed over multiple sites. These parallel environments introduces multiples
challenges related to the scalability, the heterogeneity of resources and the fault
tolerance. Most of the existing approaches for the Branch-and-Bound algorithm
are based on the Master-Slave paradigm where a central entity shares work units
among slave entities in charge of processing them. Such an architecture represents
an obstacle to scalability. In this thesis, we propose to face the challenges of grid
environments and overcome this limitation by proposing an innovative and fully dis-
tributed approach based on the Peer-to-Peer paradigm. This architecture is based
on a unique type of entity, a peer which is in charge of exploring its own local work
pool and broadcasts global information to the network. We provide mechanisms to
deal with the main tasks of the Branch-and-Bound algorithm : the load balancing,
the diffusion of the best solution and the detection of the termination. Along with
extensive experiments conducted on the Flow-Shop Scheduling Problem using the
Grid’5000 Experimental Grid, we propose a formal proof of the correctness of our
approach.In addition to this, we tackle a central issue when designing a Peer-to-
Peer application : the impact of the P2P network topology on the performance
of our approach. This aspect is often ignored in most of existing works, where
only a predefined organization is chosen for the peers. The obtained results showed
that the approach allows to deploy computing networks at extreme scales, involv-
ing hundreds of thousands of computing cores. Our final contribution consists in a
Fault-Tolerant approach to deal with the dynamicity of the network (the volatility of
computational resources). Results indicate that it faces efficiently various real-case
and failure-intensive situations.
Keywords: Peer-to-Peer Computing, P2P, Parallel Branch-and-Bound, Fault Tol-
erance, Grid Computing, Large Scale Networks, Topologies, Network Protocols,
Flow-Shop Scheduling Problem, Grid’5000, Termination Detection, Combinatorial
Optimization, Exact Methods.



Algorithmes Branch-and-Bound Pair-à-Pair pour grilles de calcul.

Résumé:
Dans le domaine de l’Optimisation Combinatoire, la résolution de manière opti-

male de problèmes de grande taille par le biais d’algorithmes Branch-and-Bound re-
quiert un nombre très élevé de ressources de calcul. De nos jours, de telles ressources
sont accessibles grâce aux grilles de calcul, composées de grappes de clusters ré-
parties sur différents sites géographiques. Ces environnements parallèles posent
de nombreux défis scientifiques, notamment en termes de passage à l’échelle, de la
prise en compte de l’hétérogénéité des ressources ainsi qu’en termes de tolérance aux
pannes. La plupart des approaches existantes pour l’algorithme Branch-and-Bound
parallèle sont basées sur une architecture de type Maître-Esclave, où un processus
maître répartit les tâches à accomplir auprès de processus esclaves en charge de les
traîter. L’utilisation d’une telle entité centrale constitue un obstacle majeur en ce
qui concerne le passage à l’échelle. Dans cette thèse, nous proposons de relever ces
défis ainsi que de surmonter cet obstacle grâce à une approche innovante et com-
plètement distribuée, basée sur une architecture Pair-à-Pair (P2P). Celle-ci repose
sur un seul type de processus (le pair), qui a pour mission d’explorer son propre
ensemble de tâches, de le partager avec d’autres pairs et de diffuser l’information
globale. Nous définissons des mécanismes adaptés en lien avec l’algorithme Branch-
and-Bound, qui traitent de la répartition de la charge, de la diffusion de la meilleure
solution trouvée et de la détection de la terminaison des calculs. En plus de multi-
ples expérimentations sur le problème d’ordonnancement du Flow-Shop sur la grille
de calcul Grid’5000, nous proposons une preuve formelle de la correction de notre
approche. Par ailleurs, nous traîtons une problématique souvent ignorée dans les
travaux relatifs au calcul P2P, qui est l’importance de la topologie du réseau P2P.
Généralement, une topologie très simple est utilisée. Les résultats obtenus mon-
trent que notre approche permet le déploiement de réseaux de calculs à de très
grandes échelles, constitués potentiellement de centaines de milliers de coeurs de cal-
cul. Notre dernière contribution consiste en une approche Pair-à-Pair tolérante aux
pannes afin de prendre en compte la nature généralement très volatile des ressources
de calcul. Les résultats obtenus prouvent la robustesse de l’approche dans des envi-
ronnements à la fois réalistes et sujets à de nombreux dysfonctionnements.
Mots-clés: Calcul Pair-à-Pair, P2P, Branch-and-Bound Parallèle, Tolérance aux
pannes, Traitement réparti sur grille, Réseaux large-échelle, Protocoles réseau, Prob-
lème d’ordonnancement du Flow-Shop, Grid’5000, Détection de la terminaison, Op-
timisation Combinatoire, Méthodes exactes.
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