Thèse soutenue

Approche numérique des transitions d’échelles appliquées à la diffusion et au piégeage de l’hydrogène dans des métaux de structures hétérogènes

FR  |  
EN
Auteur / Autrice : Esaïe Legrand
Direction : Sébastien Touzain
Type : Thèse de doctorat
Discipline(s) : Génie des matériaux
Date : Soutenance le 11/10/2013
Etablissement(s) : La Rochelle
Ecole(s) doctorale(s) : École doctorale Sciences et ingénierie des matériaux, mécanique, énergétique et aéronautique (Poitiers ; 2009-2018)
Partenaire(s) de recherche : Laboratoire : Laboratoire des Sciences de l'Ingénieur pour l'Environnement
Jury : Président / Présidente : Monique Gasperini
Examinateurs / Examinatrices : Thierry Couvant, Dongsheng Li, Xavier Feaugas, Jamaa Bouhattate
Rapporteurs / Rapporteuses : Benoît Panicaud, Jean-Marc Olive

Résumé

FR  |  
EN

Nos travaux se focalisent sur l’impact des hétérogénéités structurales sur la diffusion de l’hydrogène dans les métaux. Dans ce cadre, des essais de perméation sont simulés par la méthode des éléments finis, afin de comprendre l’impact des caractéristiques métallurgiques sur les données extraites lors de ce type d’analyse. Afin de pouvoir séparer les différents mécanismes intervenant lors de la diffusion, l’étude est conduite en plusieurs étapes. A l’échelle de la membrane, les effets du piégeage et de la présence d’une couche d’oxyde à la surface du matériau sont considérés. Tandis que le piégeage et la couche d’oxyde diminuent tous deux la diffusivité effective, leurs effets sont opposés sur les concentrations en hydrogène en subsurface mesurées. D’autre part, les effets du piégeage lors de la désorption de l’hydrogène sont plus particulièrement étudiés. Il s’avère nécessaire de prendre en considération les fréquences de saut des atomes d’hydrogène afin de se rapprocher des données expérimentales. Ces premières études ayant portées sur des membranes homogènes, nous nous sommes consacrés, dans une dernière partie, aux effets de la microstructure sur la diffusion. Pour cela, nous considérons l’influence des joints de grains dits « généraux », qui se comportent comme des courts-circuits de diffusion pour l’hydrogène. La microstructure entraîne l’apparition d’effets d’échelle, lorsque l’épaisseur de la membrane se rapproche de la taille de grains. Qui plus est, en considérant un modèle à trois dimensions, les triples joints amplifient ces effets d’échelle, notamment dans le cas de matériaux nanocrystallins.