Thèse soutenue

Étude expérimentale et numérique du mélange et de la dispersion axiale dans une colonne à effet Taylor-Couette

FR  |  
EN
Auteur / Autrice : Marouan Nemri
Direction : Éric ClimentSophie Charton
Type : Thèse de doctorat
Discipline(s) : Dynamique des fluides
Date : Soutenance le 26/06/2013
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Mécanique, énergétique, génie civil et procédés (Toulouse)
Partenaire(s) de recherche : Laboratoire : Institut de mécanique des fluides de Toulouse / IMFT
Jury : Président / Présidente : Jack Legrand
Rapporteurs / Rapporteuses : Benoît Haut, Laurent Falk

Résumé

FR  |  
EN

Les contacteurs centrifuges, basés sur les écoulements de Taylor-Couette, sont bien adaptés pour la mise en œuvre de réactions chimiques ou biochimiques, y compris en milieu polyphasique. Ils possèdent particulièrement plusieurs propriétés favorables à la mise en œuvre des opérations d'extraction liquide-liquide. Un dispositif expérimental a été conçu avec cette idée en tête. Il est constitué de deux cylindres concentriques avec le cylindre intérieur entraîné en rotation et l'externe fixe. L’écoulement de Taylor-Couette se produit dans l’espace annulaire entre eux. Il présente la particularité d’évoluer vers la turbulence par apparition successive d’instabilités. La dispersion axiale ainsi que le mélange, sont extrêmement sensibles à ces structures d’écoulement, ce qui rend difficile la modélisation du couplage entre l’hydrodynamique et le transfert de matière. Ce point particulier a été étudié expérimentalement et numériquement. L’écoulement et le mélange ont été caractérisés par des mesures simultanées de PIV (Vélocimétrie par Imagerie de Particules) et PLIF (Fluorescence Induite par Laser). Les champs de concentration PLIF ont permis d’identifier les différents mécanismes de transport intra et inter-vortex. Pour les régimes ondulatoires (WVF et MWVF), le mélange intra-vortex est contrôlé par l’advection chaotique, directement lié aux caractéristiques du champ de vitesse, qui confère aux vortex une capacité plus importante à convecter et à étirer les filets de fluide. En revanche, l’apparition des vagues brisent les frontières qui séparent les vortex ce qui favorise le transport inter-vortex. La combinaison de ces deux mécanismes contrôle principalement la dispersion axiale. Nous avons également mis en évidence le comportement non monotone des propriétés de mélange en fonction de l’histoire de l’écoulement. Notamment l’état d’onde (la longueur d’onde axiale et l’amplitude de la vague). Nous avons calculé le coefficient de dispersion axiale Dx à l’aide des mesures de distribution de temps de séjour (DTS) et de suivi Lagrangien de particules (DNS). Les deux résultats numériques et expérimentaux ont confirmé l’effet significatif des structures de l’écoulement et de l’histoire sur la dispersion axiale.