Déformation et agrégation sous écoulement de globules rouges et vésicules en microcanaux

par Luca Lanotte

Thèse de doctorat en Physique pour les Sciences du Vivant

Sous la direction de Lionel Bureau et de Chaouqi Misbah.

Soutenue le 17-05-2013

à Grenoble en cotutelle avec l'Università degli studi di Napoli Federico II , dans le cadre de École doctorale physique (Grenoble) , en partenariat avec Laboratoire Interdisciplinaire de Physique (Grenoble) (laboratoire) .

Le président du jury était Elisabeth Charlaix.

Le jury était composé de Giovanna Tomaiuolo.

Les rapporteurs étaient Abdul I. Barakat, Andy Salmon.


  • Résumé

    Les globules rouges (GR) jouent un rôle clé dans l’exercice de fonctions physiologiques du corps humain. Dans la microcirculation, par exemple, où ils s’écoulent dans des capillaires de diamètre comparable à leurs mêmes dimensions, les érythrocytes sont responsables de l’échange d’oxygène et nutriments avec les tissus. Il a été montré dans de nombreux articles scientifiques que des dysfonctionnements dans les propriétés des GRs et des dommages du tissu endothélial, en particulier au niveau de la couche de glycoprotéines qui le recouvre (glycocalyx), sont la cause principale des maladies vasculaires telles que la thrombose, le diabète et l’athérosclérose. En conséquence, la connaissance des propriétés mécaniques et rhéologiques qui permettent aux érythrocytes de se déformer et de s’organiser en agrégats dans les vaisseaux sanguins permettrait de mieux comprendre les mécanismes qui gouvernent la circulation du sang et, par conséquent, de faciliter le diagnostic des états pathologiques.Dans cette thèse l’attention s’est concentrée sur deux thèmes principaux : l’agrégation des GRs pendant l’écoulement dans les microcapillaires et la fonction du glycocalyx dans la microcirculation. Même si le sujet est à la fois essentiel et d’intérêt scientifique considérable, une analyse quantitative de la formation d’agrégats de GRs (cluster) n’avait pas encore été réalisée. Dans une première phase de ce projet de thèse des expériences in vitro ont été réalisées sur des suspensions de GRs avec un hématocrite d’environ 10%, afin d’observer leur tendance à s’agréger au cours du déplacement dans des tubes en verre de diamètre égal à 10 µm. Ce comportement a été évalué en fonction de la pression imposée et du temps de résidence dans de microcanaux, en mesurant la longueur des clusters et leur composition numérique. Le but principal a été comprendre le type d’interaction entre les cellules composantes un cluster : il s’agit d’une interaction purement hydrodynamique ou des autres forces sont également impliquées ? Les résultats expérimentaux présentés dans cette thèse clairement montrent que la véritable force motrice du phénomène est la pression imposée dans les capillaires. Cette approche microfluidique permet de jeter les bases pour le développement de dispositifs cliniques et diagnostiques.Dans la deuxième partie du projet, une campagne expérimentale a été réalisée sur microcapillaires en verre revêtus de brosses de polymères, afin de simuler les conditions in vivo dans la microcirculation. Il a été établi avec certitude que le lumen des vaisseaux sanguins est recouvert d’une couche de glyco-polymères (glycocalyx) liés à la membrane des cellules endothéliales qui tapissent leurs parois. La compréhension du rôle hydrodynamique du glycocalyx est essentielle pour expliquer le lien entre le dysfonctionnement cette couche et le maladies vasculaires et pour développer des tests basés sur la microfluidique, capable de représenter correctement les interactions entre les parois et le composants sanguins. Des couches nanométriques de poly-hydroxyéthylméthacrylate (pHEMA) ont été produites par ce qu’on appelle la technique grafting-from et, après une caractérisation approfondie, utilisées pour revêtir les surfaces internes de canaux en verre de 10 µm de diamètre. Dans cette thèse, nous présentons les profils de vitesse obtenus en étudiant la circulation dans des tubes recouverts avec brosses de différentes épaisseurs. On montre que il y a une augmentation de la résistance à l’écoulement dans les canaux recouverts et que la réduction de la vitesse est significativement plus grande par rapport à ce qui se produirait à la suite d’une simple réduction géométrique du lumen disponible. De plus, à partir de l’observation de l’écoulement de GRs à l’intérieur des microcapillaires recouverts par les brosses de polymère, il a été constaté que la vitesse et la déformabilité des GRs dépendent strictement de la présence de la bio-couche sur les parois des microtubes.

  • Titre traduit

    Deformation and aggregation in flow of red blood cells and vesicles in microchannels


  • Résumé

    The investigation of red blood cells (RBCs) dynamics in blood circulation is one of the most innovative and intriguing challenge of science nowadays since erythrocytes are involved in fundamental physiological functions of human body. In particular, RBCs play a key role in microcirculation where narrow dimensions of vessels (comparable to cell size) promote a close contact between cells and capillary walls and, as a consequence, the exchange of oxygen between blood and tissues. It is well established in scientific literature that disorders in RBCs properties and damages of endothelium are the main causes of common vascular diseases, such as thrombosis, diabetes and atherosclerosis. Thus, the full understanding of mechanical and rheological properties of RBCs would allow not only to shed light on the mechanisms leading blood circulation, but also to develop increasingly reliable diagnostic devices. In this thesis, the attention is mainly focused on two topics: RBCs aggregation in microcapillaries and the role of glycocalyx in microcirculation. As regards the first theme, despite the considerable scientific importance, a quantitative analysis of RBCs aggregates formation (clustering) in microvessels is still lacking. In a first phase of the project, experimental investigations in vitro have been performed on RBCs suspensions with hematocrit almost equal to 10% to observe their tendency to aggregate during the flow in glass microtubes (diameter equal to 10 µm). RBCs aggregation has been evaluated as a function of the fixed pressure drop (Δp) and the residence time in microchannels by measuring clusters length and their statistical composition. The main aim of the experiments was to clarify the nature of the force acting on consecutive cells in a cluster: is it a pure hydrodynamic interaction or are other kinds of forces involved too? The experimental results presented in this thesis clearly show that the driving force of the phenomenon is the imposed Δp in the microtubes. The outcomes of these investigations suggest that microfluidics can represent an efficient means to develop clinical and diagnostic tests on healthy and pathological blood.In the second part of the thesis, an experimental campaign was performed on glass capillaries lined with polymer brushes to mimic in vivo conditions in microvascularity. Several scientific papers show that the lumen of vascular vessels is coated by a layer of glycopolymers linked to the endothelial cells. The full understanding of the hydrodynamic role of glycocalyx is essential to elucidate the link between its dysfunctions and vascular diseases. Moreover, it would be helpful to develop innovative clinical tests by microfluidics that could take in account the interactions between “hairy” walls and blood components. Nanometric brushes of poly-hydroxyethylmethacrylate (p-HEMA) have been produced by a grafting-from technique and, after characterization, they have been used to line internal surfaces of silica capillaries with 10 µm diameter. Here, we present the experimental results obtained by measuring velocity profiles in glass channels bearing polymer brushes of different thickness. An increasing flow resistance is observed in hairy channels as a function of brush thickness. The measured velocity decrease is significantly higher than expected from a simply geometrical reduction of the available capillary lumen. Furthermore, the observation of RBCs flow in such brush-coated channels reveals that cells velocity and deformation are closely depending on the presence of the bio-layer on the internal walls of the capillaries.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Service Interétablissement de Documentation. LLSH Collections numériques.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Collections numériques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.