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Abstract

Accurate border delineation of pigmented skin lesion (PSL) images is a vital first step in
computer-aided diagnosis (CAD) of melanoma. This thesis presents a novel approach
of automatic PSL border detection on color and multispectral skin images. We first
introduce the concept of energy minimization by graph cuts in terms of maximum a pos-

teriori estimation of a Markov random field (MAP-MRF framework). After a brief state
of the art in interactive graph-cut based segmentation methods, we study the influence
of parameters of the segmentation algorithm on color images. Under this framework,
we propose an energy function based on efficient classifiers (support vector machines
and random forests) and a feature vector calculated on a local neighborhood. For the
segmentation of melanoma, we estimate the concentration maps of skin chromophores,
discriminating indices of melanomas from color and multispectral images, and integrate
these features in a vector. Finally, we detail a global framework of automatic segmen-
tation of melanoma, which comprises two main stages: automatic selection of "seeds"
useful for graph cuts and the selection of discriminating features. This tool is compared
favorably to classic graph-cut based segmentation methods in terms of accuracy and
robustness.

Keywords: Image segmentation, Graphs, Melanoma, Lesion delineation, Classification.
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Chapter 1

Introduction

1.1 Motivations

Melanoma is a malignant tumor of melanocytes. Although less common than basal

and squamous cell cancers, it is the most fatal skin cancer which causes a considerable

number of deaths especially in fair skinned population worldwide [52]. Since treatment

for metastatic melanoma is difficult [64], early diagnosis and prompt excision are criti-

cal to improve patient survival rate. Several diagnosis systems of melanoma have been

defined, such as the ABCDE system [77], a checklist of five parameters (asymmetry, bor-

der, color, dimension and evolving), or the 7-points checklist [10], a scoring approach for

different features depending on color, shape and texture. Improvements in diagnostic

sensitivity and specificity have been reported with the application of dermoscopy [17].

However, the interpretation of dermoscopic images is time-consuming, subjective thus

lack of accuracy and reproducibility. It finally relies on the clinical experience of indi-

vidual dermatologist. Studies have also shown that dermoscopy may actually lower the

diagnostic accuracy in the hands of inexperienced dermatologists [86]. Therefore, there

is great need to develop computer-aided diagnosis (CAD) systems.

A standard approach in automatic dermoscopic image analysis typically includes

four stages: (a) image acquisition; (b) image segmentation; (c) feature extraction and

feature selection and (d) lesion classification. The segmentation stage which delineates

the borders of pigmented skin lesions (PSLs) is one of the most importance since the

border characteristics provide important information for an accurate diagnosis [32]. For

instance, lesion dimension, shape, border irregularity are some of important features

calculated on the delineated lesion border. However, the implementation of accurate

PSLs delineation remains a challenging task due to several reasons: (a) low contrast

1
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between lesion and surrounding skin; (b) variegated pigmentations inside the lesion;

(c) fuzzy and irregular lesion boundary and (d) presence of artifacts like hair, bubble

and specular reflection. Our work is motivated by the need to offer a robust and ef-

ficient segmentation tool for accurate delineation of dermoscopic PSLs images. This

thesis investigates and reviews important aspects of automatic lesion segmentation and

proposes a novel approach for automatic delineation of pigmented skin lesions based

on dermoscopic and spectroscopic skin images under the Graph-Cut/MAP-MRF frame-

work. The developed software has been tested on various dermoscopic lesion images

and both qualitative and quantitative studies indicate the efficiency and reliability of the

proposed automatic lesion delineation method.

1.2 General Framework: Graph Cuts

Our image segmentation tools are based on graph cuts, which is a rather recent and

rapidly expanding field in computer vision. In a first part, we describe the optimization

problems in context of computer vision and clarify the relationship between minimum

graph-cut and maximum a posteriori estimation in Markov random field (MAP-MRF) in

context of optimization problem for image segmentation. From the practical point of

view, we objectively compare state-of-the-art interactive graph-cut based image segmen-

tations via qualitative segmentation accuracy assessment on natural color images and

highlight the strengths and the weakness of each method. We address the optimization

of two fundamental parameters in the graph-cut segmentation framework.

1.3 Combining Classification Techniques and Graph Cuts Seg-

mentation

The second part of the thesis is dedicated to innovative methods combining graph-

cut based segmentation and classification techniques. We propose in this chapter the

formulation of data term (likelihood energy term) of the binary segmentation energy

function defined by posterior classification of a classifier, Support Vector Machine or

Random Forest. We show how to combine color feature (RGB tri-channel values) and

texture feature (LBP code) within a neighborhood template (shape feature) to enhance

the discrimination between foreground and background, where the color information

alone is less discriminative.
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1.4 Application to Melanoma Detection

We detail in Chapter 4 our proposed approaches in application to skin chromophore

extraction and melanoma detection. The first application is the estimation of distribu-

tions of skin chromophores. It consists of skin chromophore extraction in different color

spaces, skin chromophore quantification on regular color images and multi-spectral im-

ages within visible wave range. We reviews in detail several existing methods and

describe some new extensions. The second application aims at precisely segmenting

dermoscopic PSLs images. We develop an automatic seeding approach to build a suffi-

cient training set for the classifier and propose to add chromophore features to the fea-

ture configuration of the classifier. In qualitative and quantitative studies, segmentation

results are compared to manual delineations and the proposed approach outperforms

the state-of-the-art methods.

1.5 Perspectives

We present in the last chapter some interesting perspectives concerning the improvement

of our proposed automatic lesion segmentation approach. We first propose to simplify

the automatic seed-region selection stage by localizing the lesion region approximately

via automatically generated rectangle. At the feature configuration and classification

stage, we show the ability of infrared imaging to reveal chromophore properties of

deeper skin layer and propose to add multi-spectral PSLs images at certain wave bands

(ranges) into the feature configuration.
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In fields of computer vision, graph cuts have been widely employed to efficiently

solve low-level computer vision problems such as image restoration or segmenta-

tion, stereo vision and many other associated problems that can be formulated as an en-

ergy minimization task of pixel labeling. In corporation with the Markov Random Field

(MRF), the Bayesian model provides a probabilistic framework where optimal labeling

of image pixels can be estimated by maximizing the posterior probability. This MAP-

MRF framework was first introduced by Besag [16] in 1974 and later popularized in

computer vision by Geman and Geman [44] in 1984 for binary image restoration. Graph

cut was first applied in computer vision by Greig et. al [46] in 1989. They showed that

exact MAP estimation of a binary image can be reformulated as solving a min-cut/max-

flow problem via certain energy functions. The energy (object) function is formulated

such that minimization of the energy is equivalent to compute a minimum graph cut.

Generally in computer vision, an energy function is the sum of two terms correspond-

ing to "data" and "smoothness" constraints that an acceptable solution should satisfy.

The former constraint restricts a preferable solution to have a good explain of the ob-

served data while the latter constraint restricts a solution to be spatially smooth. In fact,

only energy minimization of binary labeling problems (e.g. binary image denoising,

foreground/background image segmentation) can be estimated exactly via graph-cut

framework where a global optimum is guaranteed. For these multi-labeling problems

(e.g. multi-camera stereo, grayscale image restoration), strong approximate solution of

finding global optima can still be converged through iterative versions of min-cut/max-

flow algorithms within this powerful framework. In particular, the Graph-Cut/MAP-

MRF framework provides researchers a clear and flexible formulation for image seg-

mentation. It provides a convenient interface to encode local segmentation cues, and a

set of powerful computational mechanisms to extract global segmentation.

In this chapter, we provide a general overview of the theoretical background of the

thesis and the related work. In Section 2.1, we clarify the concept of optimization prob-

lems in context of computer vision and formulate an general energy function framework

which is the core and basis of the whole work in this thesis. In Section 2.2, we review

the standard definitions and notations for graphs and details some basic theorems as

well as fundamental algorithms for minimum cut/maximum flow problem. Section 2.3

introduces the general framework for minimization of an energy function via graph cuts
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as well as the optimization problem for image segmentation in the probabilistic Markov

random field model. In Section 2.4, we briefly review some state-of-the-art interactive

image segmentation approaches, and highlight the strengths and the weakness of each

method through real data experiments. Finally, in Section 2.5, we discuss briefly on the

selection of two fundamental parameters in the framework of graph cut segmentation

in order to yield most preferable and robust segmentation results for later comparison

of some state-of-the-art techniques as well as the proposed approaches in this work.
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2.1 Labeling Problems as Energy Minimization

Existing low-level computer vision problems, such as image segmentation, stereo match-

ing, image restoration, etc. (cf. Figure 2.1) can be formulated as image labeling prob-

lems. These problems aim at assigning a label lp from a label set L to each pixel p of the

observed image P , where the labels represent some local quantity such as disparity [89].

An example of binary image labeling is shown in Figure 2.2. Such labeling problems are

naturally represented in terms of energy minimization, where the energy function E has

two terms: one term called "data energy" penalizes solutions that are inconsistent with

the observed data, whereas the other term called "smoothness energy" encodes smooth

constraints of the spatial coherence:

E = Edata + λ · Esmooth. (2.1)

where the constant λ controls the relative importance of data and smoothness energy.

In particular, the data energy has the form:

Edata = ∑
p∈P

Dp(lp), (2.2)

where Dp(lp) : L → R measures how much assigning label lp to a pixel p disagrees with

the data. Let N be the set of all neighboring pairs {p, q}. N is called the neighborhood

system. Given the neighborhood system N , the smoothness energy has the following

form:

Esmooth = ∑
{p,q}∈N

V{p,q}(lp, lq), (2.3)

where V{p,q}(lp, lq) : L×L → R is neighbor interaction function which encourages spatial

coherence by penalizing discontinuities between neighboring pixels. Thus, the smooth-

ness energy Esmooth is the sum of neighbor interaction functions for all neighbor pairs. It

assigns the labelings which are not smooth a high cost by counting all penalties between

neighbor pairs having different labels [94].
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(a) Binary image segmentation (b) Stereo matching (c) Image restoration

Figure 2.1: Applications of image labeling problems. (a) Binary image segmentation
of "Flower" (Ref. 124084) using classic graph-cut segmentation algorithm [22]; (b)
Stereo matching of "Tsukuba" using α-expansion algorithm [59]; (c) Image restoration
of "House" using α-β-swap algorithm [26].

Combining Equation (2.1), Equation (2.2) and Equation (2.3) we get the general form

of the energy function that has proven to be sufficiently robust and is the most commonly

used in computer vision [46]:

E(L) = ∑
p∈P

Dp(lp) + λ · ∑
{p,q}∈N

V{p,q}(lp, lq). (2.4)

(a) A gray image

1 1

1 1 0 1 000

1

10

1 1 0 1 1

0

011

0

0 00 0 0 0

0 1 1 0 0 0 0

(b) A labeling

Figure 2.2: An example of binary image labeling. A gray image in (a) is a set of pixels P
with observed intensities Ip for each pixel p ∈ P ; A labeling L in (b) assigns labels lp ∈
{0, 1} to each pixel p ∈ P . Such labels can denote object index (image segmentation),
depth (stereo matching), original intensity (image restoration), etc. Thick lines show
labeling discontinuities between neighboring pixels.
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One of the reasons why this general form is so popular is that it can be justified

in terms of maximum a posteriori estimation (MAP) of a Markov random field (MRF)

[16, 44] – more justification on this topic will be provided in Section 2.3.

2.2 Graph Cuts Basics

In this section, we briefly review some standard definitions and notations on graph and

fundamental theorems as well as basic algorithms in context of combinatorial optimiza-

tion in computer vision.

Definition 2.2.1. (Graph). A directed weighted (capacitated) graph G is an ordered pair

G = 〈V , E〉, where V is the set of graph nodes (vertices) and E ⊆ {(p, q)|p, q ∈ V , p (= q}

is the set of graph edges that connect these nodes. An edge (p, q) of E is denoted ep,q.

For each edge ep,q in G, we assign a value wp,q ∈ R
+ and wp,q, named the weight of the

edge ep,q.

Note that in directed graphs, edge ep,q is distinguished from edge eq,p by its orien-

tation. Directed edge can also be called arc or arrow. In the following we will mainly

focus on directed graphs, especially in the presentation of graph flow problems in Sec-

tion 2.2.1.

Definition 2.2.2. (Cut). A cut is a subset of edges C ⊂ E such that two additional

distinguished nodes become separated on the induced graph G(C) = 〈V , E\C〉. The

cost (or weight) of a cut is defined as the sum of the weights of the edges that it severs:

|C| = ∑
ep,q∈C

wp,q. (2.5)

Definition 2.2.3. (s/t Cut). An s/t cut is a special case of graph cut, where the node set

V = {s, t} ∪P contains two special terminal nodes, the source, s and the sink, t, and a set

of non-terminal nodes P . Consequently, an s/t cut is defined as a partition of the nodes

in the graph into two disjoint subsets S and T meaning — S ∪ T = V and S ∩ T = ∅

— where s ∈ S and t ∈ T .

Note that in the context of image processing, an edge is called a t-link if it connects a

non-terminal node in P with a terminal and an edge is called a n-link if it connects two

non-terminal nodes. A set of all (directed) n-links is denoted by N . The set of all graph

edges E consists of n-links in N and t-links {(s, p), (p, t)} for non-terminal nodes p ∈ P .

In Figure 2.3 (c) we show a simple example of a graph with the terminals s and t. Here,
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each non-terminal nodes (depicted as square) corresponds to a pixel of the 3× 3 image

in Figure 2.3 (b). Two terminal nodes s (red circle) and t (blue circle) correspond to

"foreground" label and "background" label, respectively. Red arrows represent one kind

of t-links, (s, p), while blue arrows stand for another kind of t-links, (p, t); n-links (p, q)

are depicted as yellow lines. Thickness of arrow or line reflects the edge weight. Figure

2.3 (d) shows an s/t cut (expressed as green dash line), which separates the terminal

nodes s and t, resulting a partition of image pixels into "foreground" and "background"

(cf. Figure 2.3 (e)).

S

T

S

T

source

sink

source

sink

cut

(b) Image sample 

of 3x3 size

(c) A corresponding graph (d) A cut on

(a) Part of "Flower" 

with seeds

(e) Segmentation 

results

and q
being the same as wp,q) such that p

p,q ws,p

s,p wp,tin

Consider a directed weighted graph G Consider a directed weighted graph G

Figure 2.3: A graph-cut based segmentation framework proposed by Boykov and Jolly
[22]. (a) Part of "Flower" manually planted with seeds (hard constraints). Pixels in red
and blue are a prior labelings to "foreground" and "background", correspondingly; (b) A
sample 3× 3 image from (a); (c) Each pixel in (b) corresponds to a non-terminal node
in graph. Neighboring nodes (pixels) are interconnected by edges in a regular grid-like
fashion (4 neighborhood system). Edge weights are reflected by thickness; (d) n-links
with lower weight are attractive choices for the minimum cut, which is expressed as
green dash line; (e) Global optimal segmentation results can be computed using min-
cut/max-flow algorithms [44, 46, 41].
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Definition 2.2.4. (s/t Minimal Cut). Given a directed weighted graph G = 〈V , E〉, where

V = {s, t}∪P . The s/t minimal cut problem is to find an s/t cut Ĉ with the smallest cost:

Ĉ = arg min
C∈C{s,t}

|C|. (2.6)

where C{s,t} denotes a set of all possible s/t cuts.

Note that there are 2|V|−2 possible s/t cuts in total, making it impossible to find a

minimal s/t cut in a large graph via enumeration. An alternative solution is to compute

the maximum flow in a directed weighted graph according to the Min-Cut/Max-Flow the-

orem [36] given by Theorem 2.2.1 in Section 2.2.1. We will detail the min-cut/max-flow

problem in the following section and several polynomial algorithms for this problem

will be reviewed briefly. Also notice that we deal with s/t cuts solely in this work, thus

the s/t prefix will be omitted in the following text.

2.2.1 The Min-Cut and Max-Flow Problems

One of the important facts in combinatorial optimization is that the minimum cut prob-

lem can be solved by finding a maximum flow from the source s to sink t [2, 41]. In graph

theory, a graph edge can be interpreted physically as a "pipe" with capacity equal to the

edge weight. The maximum flow is here depicted intuitively as the maximum "amount

of water" that can flow through this edge.

Definition 2.2.5. (Flow). Given a directed weighted graph G = 〈V , E〉 with two terminal

nodes {s, t} ∈ V , a flow in G is defined as a function f : E → R
+
0 assigning each edge

(p, q) ∈ E a non-negative value fp,q such that:

0 ≤ fp,q ≤ wp,q ∀(p, q) ∈ E , (capacity constraints) (2.7)

∑
(p,q)∈E

fp,q = ∑
(q,p)∈E

fq,p ∀p ∈ V \ {s, t}. ( f low conservation law) (2.8)

Equation (2.7) known as the capacity constraint property, indicates that the amount

of a flow in an edge cannot be greater than the weight of that edge. Equation (2.8),

known as the flow conservation property, implies that for each non-terminal node the

total amount of incoming and outgoing flow must be the same. The value of a flow | f | is

defined as the total amount of flow leaving the node s, called the source, or equivalently
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the total amount of flow entering the sink t, called the sink:

| f | = ∑
(s,p)∈E

fs,p − ∑
(p,s)∈E

fp,s = ∑
(p,t)∈E

fp,t − ∑
(t,p)∈E

ft,p. (2.9)

We will now focus on the problem of finding a feasible flow of maximum value from

the source node s to the sink node t. This is known as a combinatorial optimization

problem in which the objective is to maximize f , subject to the constraints given by

Equation (2.7) and Equation (2.8). Before we recall some classical algorithms for solving

this optimization problem, we first define the maximum flow problem.

Definition 2.2.6. (Maximal Flow). Given a directed weighted graph G = 〈V , E〉, the

maximum flow problem between source node s and sink node t is to find a feasible flow

f̂ of maximal value:

f̂ = argmax
f∈F

(

∑
(s,p)∈E

fs,p − ∑
(p,s)∈E

fp,s = ∑
(p,t)∈E

fp,t − ∑
(t,p)∈E

ft,p

)

. (2.10)

where F is a set of all possible flows in G. Note that a feasible flow of maximum value

is not necessarily unique.

To find the maximum flow, Ford and Fulkerson [41] firstly proposed a "augmenting

paths" strategy, followed by Edmons-Karp [38], Dinic [37] and Boykov-Kolmogorov [24].

The main idea of this kind of approach is to push flow along non-saturated edges from

the source to the sink until the maximum flow in the graph G is reached. Another

kind of popular strategy is so called "push-relabel" method, proposed by Goldberg and

Tarjan [45]. Quite different from the "augmenting path" style, they do not maintain a

valid flow invariant during the operation, instead, they maintain a labeling of nodes

giving a low bound estimate on the distance to the sink along non-saturated edges.

During the operation, the flow conservation rule is relaxed and flow is optimistically

pushed from the source to the sink with positive flow excess allowed at the nodes. Nodes

that have a positive flow excess are called active. Typically, the push operation is applied

to active nodes based on FIFO selection ("Queue-based Selection Rule") or the largest

estimated distance to the sink ("Highest Level Selection Rule"). All these algorithms for

min-cut/max-flow problems have polynomial computational complexity (cf. Table 2.1).
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Table 2.1: Computational complexity for different min-cut/max-flow algorithms.
"Q_PRF" and "H_PRF" denote "Queue-based Selection Rule" and "Highest Level Selec-
tion Rule" for push operation in "push-relabel" methods.

Algorithms Computational complexity

Ford-Fulkerson O(|E || f |)
Edmons-Karp O(|V||E |2)

Dinic O(|V|2|E |)
Boykov-Kolmogorov O(|V|2|E ||C|)

Q_PRF O(|V|3)

H_PRF O(|V|2
√

|E |)

A well-known theorem proposed by Ford and Fulkerson [41] establishes an equiva-

lence between the maximum flow between two nodes and the minimum cut separating

these two nodes.

Theorem 2.2.1. (Min-Cut/Max-Flow Theorem). For any directed graph the maximal flow

value from a source node s to a sink node t is equal to the minimal capacity of all cuts separating

s and t.

Namely, the minimization problem of computing a minimal cut is equivalent to the

maximization problem of finding a maximal flow. In fact, the maximum flow value is

equal to the cost of the minimum cut (cf. Figure 2.4 (f)). In addition, we intuitively

demonstrate that by solving the min-cut/max-flow problem on a graph, we can opti-

mize the energy for image labeling. Consider an example of binary image segmentation

in Figure 2.3. The graph corresponds to a 3× 3 image. If edge weights are appropri-

ately set based on parameters of an energy like Equation (2.4), a minimum cost cut will

correspond to a labeling with the minimum value of this energy.
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Figure 2.4: Example execution of the augmenting paths strategy proposed by Ford and
Fulkerson [41] for min-cut/max-flow computation. (a) Input graph with a zero flow.
Each edge is labeled with its flow/weight; (b) Initial graph after pushing 10 flow units
along the path (s, u, v, t); (c) Residual graph of (b) with an augmenting path shown
in red; (d) Updated graph after pushing 10 flow units along the augmenting path
(s, p, u, q, t); (e) Updated residual graph of (d) with a new augmenting path shown
in red; (f) Final graph after pushing 5 flow units along the new augmenting path
(s, p, q, t). A minimum cut cut1 = (s, u) ∪ (p, u) ∪ (p, q) while another minimum cut
cut2 = (u, v) ∪ (q, t).

2.2.2 A Brief Description of Ford & Fulkerson Algorithm

Before the brief description, it is better for us to review the notion of a residual graph and

residual capacity. Given the original graph G and a flow f , the residual capacity rp,q of an

edge (p, q) ∈ E is used by algorithm to determine how much flow can pass through the

edge (p, q), formally rp,q = wp,q − fp,q. An edge is called saturated if its residual capacity

is zero. A residual graph is a directed graph Gr with the same topology as G and edge

weights reflecting the actual residual capacity with respect to f .

The general idea of the Ford-Fulkerson algorithm can be detailed in pseudo-code as

demonstrated in Algorithm 1. An example of the whole process is depicted in Figure

2.4. At the final stage of the augmenting path strategy (cf. Figure 2.4 (f)), there is no way

of transmitting more flow through the graph, from source s to sink t, since edges (s, u),

(p, u), (p, q) are all saturated, so that the flow shown in Figure 2.4 (f) is the maximum

flow. Namely, those edges form a minimum cut cut1. The cost of a cut is calculated

by sum of the weights of edges that it severs, which is 25 in this example. It equals

the amount of flow leaving the source as well as entering the sink. Finally, neither the

solution of the minimum cut problem nor the maximum flow problem has to be unique,
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several minimum cuts may be possible in the graph, as we can find in Figure 2.4 (f),

there are two different forms of minimum cuts sharing one graph.

Algorithm 1 Ford-Fulkerson Algorithm
1: for each edge (p, q) ∈ E do

2: fp,q ← 0
3: fq,p ← 0
4: end for

5: while there exits a path P from s to t with no cycles in the residual graph Gr do

6: ∆ ← min{rp,q : (p, q) ∈ P}
7: for each edge (p, q) ∈ P do

8: fp,q ← fp,q + ∆

9: fq,p ← − fp,q
10: end for

11: end while

2.2.3 A Min-Cut/Max-Flow Algorithm for Vision

All the augmenting path based algorithms reviewed in Section 2.2.1 is based on the

breadth-first search (BFS) strategy. In context of graphs in computer vision, operation of

BFS strategy can be very expensive thus unpractical since every node (pixel) and every

edge in the graph corresponding to the given image will be explored in the worst case.

Real-data experiments in computer vision executed by Boykov and Kolmogorov [24]

also confirmed that standard augmentation path based algorithms performed poorly

due to the rebuilding of a BFS tree on graphs. Subsequently, inspired by Dinic [37], they

proposed a new min-cut/max-flow algorithm with a dynamic tree structure that proved

to be practical for large sparse grids common in computer vision. Specifically, their par-

tially dynamic min-cut/max-flow algorithm is a technique with which they could update

capacities of certain t-links in a graph, and recompute the minimum cut dynamically.

They used this method for performing interactive image segmentation (cf. Section 2.4),

where the user could improve segmentation results by giving additional segmentation

cues (seeds) in an online fashion.

The main idea of the Boykov-Kolmogorov algorithm is illustrated in Figure 2.5. From

Figure 2.5, we can clearly observe that it maintains two non-overlapping search trees S

and T with roots at the terminal nodes s and t respectively. In tree S all edges from

each parent node to its children are non-saturated, while in tree T edges from children

to their parents are non-saturated. The nodes that are not in S or T are called free. The

nodes in the search trees S and T can be either active (can grow by acquiring new children

along non-saturated edges) or passive. The algorithm starts by setting all nodes adjacent
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Figure 2.5: A schematic of state-of-the-art min-cut/max-flow algorithm proposed by
Boykov and Kolmogorov [24] with the search trees S (red nodes) and T (blue nodes)
and active (A), passive (P) and free (F) nodes. An augmenting path (bold yellow line) is
found when the two dynamic trees touch.

to the terminal nodes as active. The three basic stages of the algorithm are as follows:

• "growth" stage: search trees S and T grow until they touch giving an s → t path

• "augmentation" stage: the found path is augmented, some nodes become "or-

phans" (edges them to their parents are saturated), search tree(s) break into for-

est(s),

• "adoption" stage: trees S and T are restored.

Assume there is a directed graph G = 〈V , E〉. As for any augmenting path algo-

rithm, it maintains a flow f and the residual graph Gr (cf. Section 2.2.2). In addition, it

keeps the list of all active nodes, A, and all orphans, O. The general framework of the

algorithm is presented in Algorithm 2:

Algorithm 2 Boykov-Kolmogorov Algorithm
1: S ← s, T ← t, A ← {s, t}, O ← ∅

2: while true do

3: grow S or T to find an augmenting path P from s to t
4: if P = ∅ then

5: terminate
6: end if

7: augment on P
8: adopt O
9: end while

Note that Boykov and Kolmogorov’s approach does not guarantee a shortest possible

path for flow augmentation and thus the strongly polynomial time complexity is lost.

In the worst case, time complexity is O(|V|2|E ||C|), which is worse than complexity
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of the standard algorithms discussed in Section 2.2.1. However, on typical problem

instances in vision, this algorithm significantly outperforms the standard min-cut/max-

flow algorithms.

2.3 Energy Minimization via Graph Cuts on MAP-MRF Frame-

work

In this section we first justify the ability of graph cuts to minimize exactly energy func-

tions associated to binary labeling problems in computer vision. Then, the binary image

segmentation problem is treated as an optimal configuration of a Markov random field

(MRF) which can be solved via maximum a posteriori estimation (MAP) according to the

Bayesian inference. Some definitions and useful properties of Markov random field will

be recalled. Finally, we prove the feasibility of this Graph-Cut/MAP-MRF framework

to obtain an optimal solution of binary labeling problem in terms of exact energy mini-

mization.

Given a directed weighted graph G(C) = 〈V , E\C〉, where V = {s, t} ∪ P and a cut

C partitions nodes in this graph into two subsets S and T . Each non-terminal node p

with t-link solely connected to node s (i.e. p ∈ S) is assigned a label lp = 1 and lp = 0

for node with t-link solely connected to node t (i.e. p ∈ T ). Thus, the cost of cut can be

calculated as:

|C| = ∑
p∈V

ws,p · lp + ∑
p∈V

wp,t · (1− lp) + ∑
(p,q)∈E

wp,q · (1− lq) · lp. (2.11)

Note that we enforce the non-negativity on the value of edge weights since it is possible

to compute a minimal cut of a graph if and only if the edge weights of this graph is

non-negative.

Rewrite Equation (2.11) by separating constant terms from the terms depending on

up to two binary variables, we have the following transformations:

|C| = ∑
p∈V

wp,t + ∑
p∈V

(ws,p − wp,t) · lp + ∑
(p,q)∈E

wp,q · lp − ∑
(p,q)∈E

wp,q · lp · lq, (2.12)

|C| = ∑
p∈V

wp,t + ∑
p∈V

(ws,p − wp,t + ∑
q∈V

wp,q) · lp − ∑
(p,q)∈E

wp,q · lp · lq. (2.13)
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Finally, the weight of cut in this graph can be formulated as a energy function E(L)

of binary variable (label) field lp ∈ L = {l1, · · · , ln} (n = |V|):

E(L) = |C| = const+ ∑
p∈V

αp · lp + ∑
(p,q)∈E

βp,q · lp · lq. (2.14)

where






















const = ∑p∈V wp,t,

αp = ws,p − wp,t + ∑q∈V wp,q,

βp,q = −wp,q.

(2.15)

Notice that Equation (2.14) differs from Equation (2.4) by a constant term which does

not depend on variable l. Thus, we can state that any energy function of a binary labeling

problem in computer vision can be minimized with the following characterization:

Theorem 2.3.1. (Exact Energy Minimizations via Graph Cuts). Any function that can be

written as a sum of functions of up to two binary variables lp ∈ {0, 1} at a time:

E(L) = const+ ∑
p

Ep(lp) + ∑
p,q

Ep,q(lp, lq) = const+ ∑
p∈V

αp · lp + ∑
(p,q)∈E

βp,q · lp · lq (2.16)

can be minimized exactly via graph cuts techniques if and only if βp,q ≤ 0 for all p, q.

A constructive proof of this theorem can easily be given by following the procedure

that we described previously to calculate the cost of a cut in the given graph. From

the theory of combinatorial optimization, it is always possible to find a minimal cut as

long as the edge weights are non-negative. Thus, it is straightforward to verify that

the minimization of an energy formulated as in Equation (2.16) can be solved with

appropriate edge weight settings. Alternatively, it can be proven using the following

theorem described in [42] or [60].

Theorem 2.3.2. (Energy Regularity for Graph-representability). Any function that can

be written as a sum of functions of up to two binary variables lp ∈ {0, 1} at a time:

E(L) = ∑
p

Ep(lp) + ∑
p,q

Ep,q(lp, lq) (2.17)

can be graph-representable if and only if each pairwise term satisfies the inequality:

Ep,q(0, 0) + Ep,q(1, 1) ≤ Ep,q(0, 1) + Ep,q(1, 0) ∀i, j (2.18)

This theorem is very useful and important for providing minimization of an energy
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function which fulfills the condition of Theorem 2.3.1 a combinatorial optimization tool

with power. Kolmogorov and Zabih [60] and Freedman et al. [42] have extended the

theorem in application of approximate minimization of energy functions depending on

n ≥ 3 binary variables.

2.3.1 Markov Random Field

Consider a graph G = 〈V , E〉, with each node p assigned a label lp ∈ L. The set of

neighbor nodes of a given node p is denoted as Np. The neighborhood system N

specifies a configuration called clique of the given graph.

Definition 2.3.1. (Clique). A clique in an undirected graph G is a set of nodes such that

for every couple of nodes in the set, there exists an edge between the two nodes.

Consider a field of random variables L = L1, · · · , Ln with n = |V|. Each variable Lp

takes a value lp from the label set L, which is called an event L = l. Here, l = (lp)p∈V

denotes the specific configuration of the random field L. Let Pr(L = l) = Pr(l) denote

the probability that the random field L takes the particular configuration l. Also let

Pr(Lp = lp) = Pr(lp) denote the probability that a node p is assigned the label lp.

Definition 2.3.2. (Markov Random Fields). L is said to be a Markov random field if

and only if:










Pr(l) > 0, ∀l ∈ F , (positivity)

Pr(lp|lV\{p}) = Pr(lp|lNp
). (markovianity)

(2.19)

where F denotes the set of all possible labelings and lNp
= {lp|p ∈ Np} denotes all

labels of nodes in Np.

Note that the positivity is assumed for some technical reasons and can usually be

satisfied in practice. In case that the positivity condition is satisfied, the joint probability

of any random field is uniquely determined by its local conditional probabilities [15].

The Markovianity describes the local characteristics of L, that is, only neighboring labels

have direct interactions with each other.

When the probability distribution of a random field satisfies the positivity condition

mentioned in Definition 2.3.2, it is also referred to as a Gibbs random field. Gibbs random

field (GRF) is a well known probabilistic model for the description of particles systems

in statistical physics.

Definition 2.3.3. (Gibbs Random Fields). L is said to be a Gibbs random field if and

only if the probabilities of its configurations Pr(l) obey a Gibbs distribution with the
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following form:

Pr(l) = Z−1 · exp(−U(l)), (2.20)

where

Z = ∑
l∈F

exp(−U(l)), (2.21)

is a normalizing constant called the partition function, and U(l) is an energy function.

The energy

U(l) = ∑
c∈C

Vc(l). (2.22)

is the sum of clique potentials Vc(l) over all possible cliques C and the value of Vc(l)

depends on the local configuration of the clique.

An MRF is depicted by its local property (the Markovianity) whereas a GRF is char-

acterized by its global property (the Gibbs distribution). The Hammersley-Clifford the-

orem recalled in the following establishes the equivalence of these two types of random

field.

Theorem 2.3.3. (Hammersley-Clifford Theorem). L is a Markov random field on V with

respect to N if and only if Pr(L = l) obeys a Gibbs distribution.

2.3.2 Maximum A Posteriori Estimation

Given a binary labeling problem on image X = {xp|p ∈ V}, where xp denotes the

pixel-wise property (e.g. pixel-intensity) and |V| equals the total number of pixels. The

problem can be interpreted as the event L = l where l = (lp)p∈V , lp ∈ {0, 1}, is a

configuration of this binary field L. Generally, the field L is not directly observable and

we have to estimate its configuration l based on the observation x. The most popular

way to estimate an MRF is to maximize the posterior probability Pr(l|x) within the

Bayesian inference framework. According to the Bayesian rule, the posterior probability

Pr(l|x) can be written as:

Pr(l|x) =
Pr(x|l) · Pr(l)

Pr(x)
. (2.23)

Since Pr(x) is constant for a given realization x, Equation 2.23 can be rewritten as:

Pr(l|x) ∝ Pr(x|l) · Pr(l). (2.24)

Thus, the maximum a posteriori estimation of l is equivalent to the maximization of
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the following energy function:

l̂ = argmax
l∈F

Pr(x|l) · Pr(l). (2.25)

2.3.2.1 Prior Model Pr(l)

We first consider an appropriate model for Pr(l). Suppose that the labels l are special

configurations of a Markov random field L. According to the Hammersley-Clifford

Theorem (Theorem 2.3.3), the probability Pr(l) obeys a Gibbs distribution:

Pr(l) ∝ exp

(

− ∑
c∈C

Vc(l)

)

, (2.26)

In order to specify the Markov random field L, we hereby specify the clique potential

function Vc(l) as follows:

Vc(l) = V{p,q}(lp, lq) = Up,q · δlp (=lq , (2.27)

where Up,q is a function independent of the configuration l and δ is the indicator func-

tion: δ = 1 for lp (= lq and δ = 0 othewise.

This specification simplifies the MRF by setting its clique potential function to zero

for all cliques of size larger than two (i.e., the clique potentials involve only pairwise

interaction). And for the cliques of size two, the potential functions are non-zero only if

neighbor nodes are assigned different labels. Combining Equation (2.26) with Equation

(2.27), we obtain the prior model Pr(l) formulated as:

Pr(l) ∝ exp

(

− ∑
p∈V

∑
q∈Np

Up,q · δlp (=lq

)

. (2.28)

2.3.2.2 Likelihood Function Pr(x|l)

We now need an appropriate model for the likelihood function Pr(x|l). Let xp be the

observed data x at pixel (node) p and assume that the conditional probabilities Pr(xp|lp)

are mutually independent. This assumption holds, for example, when noise at each

pixel p is also independent:

Pr(x|l) = ∏
p∈V

Pr(xp|lp) = exp

(

− ∑
p∈V

− ln(Pr(xp|lp))

)

. (2.29)
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2.3.2.3 Energy Function

With both prior model Pr(l) and likelihood function Pr(x|l) in Equation (2.25) appropri-

ately defined under the MAP-MRF framework, the binary image labeling problem can

finally be estimated in terms of maximization of the following energy function:

l̂ = argmax
l∈F

exp

(

− ∑
p∈V

− ln(Pr(xp|lp))− ∑
p∈V

∑
q∈Np

Up,q · δlp (=lq

)

, (2.30)

Equivalently, this maximization problem is to minimize the following energy func-

tion:

l̂ = argmin
l∈F

(

∑
p∈V

− ln(Pr(xp|lp)) + ∑
p∈V

∑
q∈Np

Up,q · δlp (=lq

)

. (2.31)

Corollary 2.3.1. (Energy Minimization via Minimal Graph Cut on MAP-MRF Frame-

work). Consider the binary labeling L =
{

lp|lp ∈ {0, 1}
}|V|

p=1
on a given observation X =

{xp|p ∈ V}, the energy of this labeling problem

E(L) = ∑
p∈V

− ln(Pr(xp|lp)) + ∑
p∈V

∑
q∈Np

Up,q · δlp (=lq . (2.32)

can be minimized exactly via computing the minimal cut of a graph with its edge weights appro-

priately assigned, if and only if the condition Up,q ∈ R
+ is satisfied.

Proof. Firstly, we can formulate the indicator function δ in context of binary labeling (i.e.

lp, lq ∈ {0, 1}):

δlp (=lq = lp · (1− lq). (2.33)

Putting Equation (2.33) back to Equation (2.32), we have:

E(L) = ∑
p∈V

− ln(Pr(xp|lp)) + ∑
p∈V

∑
q∈Np

Up,q · lp · (1− lq), (2.34)

E(L) = ∑
p∈V

− ln(Pr(xp|lp)) + ∑
p∈V

∑
q∈Np

Up,q · lp + ∑
p∈V

∑
q∈Np

−Up,q · lp · lq. (2.35)

Then, according to Theorem 2.3.1, any function that can be written as a sum of func-

tions of up to two binary variables lp ∈ {0, 1} at a time can be minimized exactly

via graph cuts techniques if and only the coefficient of the pairwise energy term of

variable-product is non-positive. Thus, we must have −Up,q ≤ 0, so that Up,q ∈ R
+, as

required.
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2.4 Graph Cuts in Image Segmentation

Image segmentation is an important problem in early vision. It is aimed at highlighting a

more meaningful and simplified representation of an original image by locating objects

and boundaries in it. Basically, the task of image segmentation can be treated as the

process of discrete pixel labeling of an image such that pixels assigned the same label

are partitioned into the one "segment" with respect to certain visual properties (e.g. pixel

intensity, color, texture, etc.). Various existing approaches for image segmentation, for

example, thresholding method, clustering method, region growing or split-and-merge,

etc., have been popularized for years due to their simplicity and speed. However, none

of these methods promise a robust performance in practice since they do not incorporate

any clear form of energy (object/cost) function. A more robust way of segmentation can

be formulated as solving an optimization problem of certain energy function. One group

of these energy based approaches, for instance, snakes [55], geodesic active contour [28]

and level-set based approaches, rely on the continuous energy function via variational

optimization techniques. In application to real data segmentation task, however, they

are limited due to the local optima property.

Inspired by the successful introduction of graph cut theory from the field of combina-

torial optimization to computer vision problem like image restoration [26, 25] and stereo

[19, 50, 57], Boykov and Jolly [23] first proposed an interactive object segmentation ap-

proach based on optimization of discrete energy function (e.g. energy function defined

on the binary label set) via computing a minimal graph cut. The main contribution pre-

sented in their work is the appropriate definition of energy function of binary labeling

problem under MAP-MRF framework (cf. Section 2.3.1 and Section 2.3.2 for the detail of

this framework) as well as the user-interaction interface, namely, the ability to incorpo-

rate with manually/automatically set hard constraints or seeds. Despite its simplicity in

both energy function formulation and user-manipulation, this graph-cut based interac-

tive segmentation framework epitomizes the best features of combinatorial best features

of graph cuts and combinatorial optimization: global optima, practical efficiency, nu-

merical robustness, ability to integrate multiple visual cues and constraints, unrestricted

topological properties of segments, and applicability to N-D problems [23]. Through-

out this thesis, we focus on binary image segmentation (i.e. foreground/background

segmentation) by formulating it as a binary discrete labeling problem and optimize the

labeling energy in graph-cut based framework.

In this section, we give a brief review of the interactive graph-cut based segmentation

framework proposed by Boykov and Jolly, as well as two extensions that build directly
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on this framework: one is called "GrabCut", which interprets regional cues based on

Gaussian mixture model (GMM) and adopts an iterative scheme for optimization allow-

ing significant reduction of user interaction; another is named "Lazy Snapping", which

interprets regional cues via a clustering technique, the k-Means algorithm and speeds

up the original segmentation framework based on watershed pre-segmentation. Note

that both "GrabCut" and "Lazy Snapping" introduce their novelties by reformulating the

data term (likelihood energy) of the energy function to be optimized. We will also adopt

this methodology to enhance the state-of-the-art graph cuts segmentation techniques

in the following section. At the end of this section, we evaluate all these approaches

qualitatively yet objectively through comparative experiments on several natural color

images.

2.4.1 Interactive Graph-Cut Based Segmentation Framework

We now address the graph-cut based segmentation framework first outlined by Boykov

and Jolly [23]. Given an input image X = {xp|p ∈ V}|V|p=1, where xp denotes the visual

cues of a pixel p and xp ∈ R
+ for grayscale image while xp ∈ R

3
+ for color image,

segmentation of one object from its background in this image can be formulated as a

binary labeling problem (cf. Section 2.1). This problem is aimed at assigning each pixel

p a unique label lp ∈ {0, 1} from the label set L, where lp = 0 if p is a "background"

pixel and lp = 1 is a "foreground" or "object" pixel. By imposing soft constraints on both

"region" and "boundary" properties of the segmentation (the complete labeling "event"),

Boykov and Jolly proposed an appropriate definition of energy function introduced in

Equation (2.4), where the data term interprets the region property while the smooth-

ness term reveals the boundary property. In addition, by imposing hard constraints

via user-painted strokes, a subset of pixels can be pre-labeled either as "foreground" or

"background". Subsequently, the reformulated energy function of binary labeling prob-

lem can be minimized exactly via graph cuts satisfying both soft and hard constraints.

2.4.1.1 Data Energy

Motivated by the MAP-MRF formulation described in Section 2.3, the data terms in

Equation (2.2) were chosen as negative log-likelihoods of the foreground and back-

ground gray-level distributions, namely histograms of intensities of pre-labeled pixels:

Dp(lp) = − log Pr(xp|lp) = − log h(xp; lp) p ∈ V , lp ∈ L (2.36)



26 Chapter 2. Graph Cut Based Segmentation

where Pr(xp|lp) denotes the conditional probability of intensity xp assigned the label lp

based on the observed data. The value of the conditional probability is estimated from

two histograms of intensities of user-labeled pixels h(xp; lp ∈ {0, 1}), one for background

and one for foreground. The data energy evaluates how well the gray-level distribution

fits into a given intensity model (e.g. histogram) based on the observed data. High-level

penalty is given when the label assigned to each pixel is inconsistent with the observed

data, and low-level penalty for the preferable labeling, otherwise.

2.4.1.2 Smoothness Energy

Further, the neighbor interaction functions V{p,q}(lp, lq) in the smoothness term in Equa-

tion (2.3) were chosen as:

V{p,q}(lp, lq) =

{

Bp.q, if lp (= lq

0, if lp = lq
(2.37)

Considering that the smoothness term encourages spatial coherence in region of similar

gray level, the coefficient Bp,q ≥ 0 should be interpreted as the penalty for discontinuity

between neighboring pixels p and q. Sufficiently, we can set penalty Bp,q as a function:

Bp,q ∝ exp

(

−
(xp − xq)2

2σ2

)

·
1

dist(p, q)
(2.38)

where σ is a parameter adjusts the sensitivity of intensity difference between neighbor-

ing pixels and dist(·) denotes the Euclidean distance of neighboring pixels.

Combining these two terms together, we have the general energy function E(L) of the

binary image labeling problem under the interactive graph-cut segmentation framework:

E(L) = − ∑
p∈V

log h(xp; lp) + λ · ∑
{p,q}∈N

exp

(

−
(xp − xq)2

2σ2

)

·
1

dist(p, q)
· δlp (=lq (2.39)

where neighborhood system N contain all unordered pairs {p, q} of neighboring pixels.

In practice, N is set as a 8-way connectivity neighborhood system in which neighboring

pixels are adjacent either horizontally/vertically or diagonally.

It can be seen from Equation (2.39) that the energy function is a linear combination of

the data term and the pairwise term so both factors have to be taken into considerations,

with coefficient λ balancing both terms to result an optimal solution. Note that the

form of Equation (2.39) and the coefficient Bp,q > 0 in the smoothness term satisfy
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the condition in Corollary 2.3.1, a global optimal solution for this energy function like

Equation (2.39) can be found by computing the minimal cut on a graph with appropriate

settings of edge weights. An efficient min-cut/max-flow algorithm proposed by Boykov

and Kolmogorov [24] (cf. Section 2.2.3) was adopted to accelerate the optimization.

In conclusion, this graph-cut based framework is well suited to image segmentation.

As illustrated in Figure 2.3 (d) and (e), a cut separates a given image into two regions,

one region including the terminal nodes S as "foreground labels" and the other including

the terminal nodes T as "background labels", respectively. Red and blue brushes (known

as "seeds" or "hard constraints") shown in Figure 2.3 (a) denote the a priori labelings of

selected pixels as "foreground" and "background" via user interaction. Assume that

O and B denote the subsets of pixels a prior to be a part of "foreground" (pixels in red)

and "background" (pixels in blue), corresponding. By satisfying these hard constraints, a

minimum cut on a graph can be found with appropriate edge weight settings to generate

an optimal segmentation. The edge weights of the graph are given in Table 3.2. In

addition, the user-planted seeds are also used to guess the foreground and background

intensity models required for the data term.

Table 2.2: Edge weights for maximum a posteriori estimation in Boykov-Jolly approach
[23].

Edge Weight For

ws,p

− log h(xp; 0) p ∈ V \ {O ∪ B}
+∞ p ∈ O
0 p ∈ B

wp,t

− log h(xp; 1) p ∈ V \ {O ∪ B}
0 p ∈ O

+∞ p ∈ B

wp,q λ · exp
(

−
(xp−xq)2

2σ2

)

·
δlp (=lq

dist(p,q) {p, q} ∈ N

2.4.2 Lazy Snapping

An extension of Boykov-Jolly’s graph-cut based segmentation approach was proposed

by Li et al. [65] in 2004. In this work, they presented an interactive image cutout

which makes full advantages of the interactive graph-cut based segmentation frame-

work reviewed in Section 2.4.1: simple and coarse user-specification (also called "seed"

or "hard constraint" as mentioned in Section 2.4.1) of "foreground" region or "back-

ground" area allows optimal estimation of the segmentation satisfying both soft and

hard constraints. In addition, the authors improved the algorithm efficiency for instant

feedback of segmentation results via a modified graph-cut segmentation framework on
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pre-segmentation. Instead of building a graph on pixel-level of a given image, they

corresponded each node of a graph to a pre-segmented region from the watershed seg-

mentation. Since the watershed algorithm they chose declares good characteristics in lo-

cating object boundaries whereas preserving small differences inside each small region,

the pre-segmentation produces reasonable approximative representation of the given

image and improves the speed significantly. We will detail their work in the following

text with respect to the augmentation in the Boykov-Jolly’s approach.

2.4.2.1 Data Energy

Given an color image X = {xp|p ∈ V}|V|p=1, where xp = [Rp,Gp, Bp]⊤ denotes a 3-

dimensional vector of RGB intensities of a pixel p. As the increase in dimensions of

visual properties makes it difficult to construct reliable histograms in RGB color space,

Li et al. [65] proposed to model the foreground/background color distributions by clus-

tering the RGB intensities of user-seeded pixels via the k-Means algorithm [67]. After

the same hard constraints assignment as in the Boykov-Jolly segmentation framework,

k-Means is employed to cluster colors in foreground seeds O and background seeds B.

The resulting mean colors corresponding to each foreground cluster CO
i and background

cluster CB
j are denoted as mO

i and mB
j . The k-Means is initialized to have 64 clusters for

both foreground and background colors, namely, ⌈i⌉ = ⌈j⌉ = 64 in their experiments.

For each pixel p, by computing the minimal distance from its color xp to foreground

clusters as dOp = mini ||xp −mO
i ||, and similarly, dBp = minj ||xp −mB

j ||, they define the

data term in Equation (2.2) as:

Dp(lp) =
d
lp
p

d1p + d0p
, (2.40)

where lp = 1 for p ∈ O and lp = 0 for p ∈ B. This definition encourages the pixels to be

assigned the label with similar colors to foreground or background.

2.4.2.2 Smoothness Energy

Since the smoothness term represents the energy due to the gradient along the object

boundary, they defined the neighbor interaction functions V{p,q}(lp, lq) in the smoothness

term in Equation (2.3) as a function the color gradient between pixels p and q:

V{p,q}(lp, lq) =
|lp − lq|

||xp − xq||2 + 1
, (2.41)
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This definition allows the interaction functions V{p,q}(lp, lq) to give high penalty when

two pixels assigned different labels are similar in color, that is, two pixels with similar

color are less likely on the segmentation boundary.

Putting Equation (2.40) and Equation (2.41) to Equation (2.4), the complete energy

function is defined as:

E(L) = ∑
p∈V

d
lp
p

d1p + d0p
+ λ · ∑

{p,q}∈N

|lp − lq|

||xp − xq||2 + 1
. (2.42)

Note that the form of Equation (2.42) and the pairwise term V{p,q}(lp, lq) satisfy the

condition in Theorem 2.3.2, this energy function is graph-representable and can be mini-

mized exactly using min-cut/max-flow algorithm proposed by Boykov and Kolmogorov

[24]. The settings of edge weights are given in Table 2.3.

Table 2.3: Edges weights for maximum a posteriori estimation in Lazy Snapping [65].
Edge Weight For

ws,p

d0p
d1p+d0p

p ∈ V \ {O ∪ B}

+∞ p ∈ O
0 p ∈ B

wp,t

d1p
d1p+d0p

p ∈ V \ {O ∪ B}

0 p ∈ O
+∞ p ∈ B

wp,q λ ·
|lp−lq|

||xp−xq||2+1 {p, q} ∈ N

2.4.3 GrabCut

Another extension of Boykov-Jolly’s graph-cut based segmentation approach, named

GrabCut, was introduced by Rother et al. [78] in 2004. It is aimed at achieving high

segmentation performance at the cost of only modest user interaction. The novelty of

GrabCut in terms of the formation of energy minimization on the basis of segmentation

approach of Boykov and Jolly lies mainly in three aspects as following:

• Color data modeling

Since it is impractical to model foreground/background color distribution in sep-

arated gray-level histogram, an GMM (Gaussian Mixture Model) color model was

adopted to define the data term in the energy function (cf. Equation (2.2)). Due

to the fact that GMM is a parametric alternative to the non-parametric histogram,

it is more flexible and precise in modeling the underlying data to a multimodal
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density distribution. Such flexibility and precision allow qualitative performance

of color-feature based image segmentation. For a brief view of color data mod-

eling in GrabCut approach, suppose that the pixel value of an input color image

in RGB color space or other 3-dimensional color space is denoted by xp ∈ R
3,

with the corresponding label lp ∈ {foreground(= 1), background(= 0)}. Given

two full-covariance GMMs as descriptions of foreground and background color

distribution, each GMM consists of K components (typically K = 5), with mean

µ(·) ∈ R
3 and covariance Σ(·) ∈ R

3×3 assigning to each pixel p a unique compo-

nent, kp ∈ {1, · · · ,K}. Now the data term is defined as:

Dp(lp, kp) = − log Pr(xp|lp, kp) = − logπp(lp, kp)N (xp; µ(lp, kp), Σ(lp, kp))

= − logπp(lp, kp) +
1
2
logdetΣ(lp, kp) +

1
2
[xp − µ(lp, kp)]

⊤
Σ(lp, kp)

−1[xp − µ(lp, kp)],

(2.43)

where the mixing weights denoted by π(·) are non-negative and add up to one.

For smoothness term in the energy function (cf. Equation 2.3), its definition re-

mains unchanged from Equation (2.37) and Equation (2.38):

V{p,q}(lp, lq) = exp

(

−
||xp − xq||2

2
〈

(xp − xq)2
〉

)

·
1

dist(p, q)
· δlp (=lq . (2.44)

• Iterative energy minimization

The procedure of iterative energy optimization is aimed at refinement of a binary

labeling L = {l1, l2, · · · , lp|lp ∈ {0, 1}} for each undefined pixel, which initially

locates inside of the user-specified rectangles, marked with green in Figure 2.8

and Figure 2.9. Firstly, initialization is done by labeling the pixels outside of the

rectangle (the region outside of the rectangle is denoted as B) with l = 0, while

the undefined pixels are labeled with l = 1. Each undefined pixel is then assigned

a GMM components k by simple enumeration and parameters of the color GMM

model, π̂(l, k), µ̂(l, k) and Σ̂(l, k), are learnt subsequently. Finally, optimal segmen-

tation (updated binary labeling) is obtained by computing the minimum cut on a

graph with two additional terminal nodes, foreground s and background t. The

edge weights of the graph are given in Table 2.4. The updated binary labeling is

adapted to optimize the color GMM parameters in the successive iteration. This

whole iteration scheme terminates automatically when the energy function E(L)

stops to decrease significantly and converges at least to a local minima.
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• Incomplete user interaction

Due to its iterative optimization scheme, GrabCut considerably simplifies the user

interaction for algorithm initialization. Instead of providing manual hard labeling

to explicitly indicate some pixels must be either part of the "foreground" or "back-

ground" (via user-imposed strokes in both Boykov-Jolly and Lazy Snapping frame-

works), GrabCut requires only specification of "background" pixels via roughly en-

closure of the intended "foreground" pixels with a rectangle. The incompleteness

of prior knowledge on "foreground" specification can be compensated through the

iterative minimization allowing tentative labeling of some pixels in the foreground.

Table 2.4: Edges weights for maximum a posteriori estimation in GrabCut [78].
Edge Weight For

ws,p
− log π̂p(0, k)N (xp; µ̂(0, k), Σ̂(0, k)) p /∈ B

0 p ∈ B

wp,t
− log π̂p(1, k)N (xp; µ̂(1, k), Σ̂(1, k)) p /∈ B

+∞ p ∈ B

wp,q λ · exp
(

−
||xp−xq||2

2
〈

(xp−xq)2
〉

)

·
δlp (=lq

dist(p,q) {p, q} ∈ N

2.4.4 Application to Natural Color Image Segmentation

We present in this section some segmentation results obtained by previously reviewed

approaches, Boykov-Jolly’ s approach, Lazy Snapping method and GrabCut method on

natural color images from the Berkeley Segmentation Dataset [35]. We divided the

experimental objects into two groups: 10 images for training and 20 images for testing.

Each of the image has a size of 481× 321 pixels. Several examples of segmentation results

are presented from Figure 2.6 to Figure 2.9. To evaluate the performance objectively,

we initialize each method appropriately with user-interactions and parameter settings

performed according to the principle of equity.

2.4.4.1 Experiment Configuration

• User Interaction

Since approaches developed based on the interactive graph-cut segmentation frame-

work are very sensitive to the spatial distribution of user-input hard constraints

(seeds), it is fair to initialize Boykov-Jolly’s approach and Lazy Snapping with

exactly the same user interaction (user-input seeds), and the degree of user inter-

action (amount of seeds) is limited to a moderate level. For GrabCut, the rectangle
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imposed manually encloses the object as tightly as possible so that it can include

as few background seed as possible in the same image.

• Parameter Setting

The universal parameter λ for all three approaches is selected as 20 by optimizing

the performance against ground truth in the training set of 10 images. Parameter σ

of Boykov-Jolly approach is defined as σ =

√

〈

(xp − xq)2
〉

, according to Equation

(2.44). Other individual parameters like the number of clusters and the number

of GMM components remain the same as described in the related literatures (see

Section 2.4.2 and Section 2.4.3). Particularly for GrabCut, we execute the algorithm

subject to different number of iterations (number of iteration = 1, 2, 40). We ter-

minate the iterative segmentation procedure manually after 40 iteration, and the

corresponding results are used as final segmentations for the later comparison.

Note neither pre-processing nor post-processing (e.g. watershed pre-segmentation

for Lazy Snapping and border matting for GrabCut) is involved during the experiments,

we simply focus on the graph-cut based segmentation mechanism.

2.4.4.2 Results and Discussions

Figure 2.6 and Figure 2.7 present comparatively the results obtained by Boykov-Jolly

method and Lazy Snapping. We can observe that Lazy Snapping outperforms Boykov-

Jolly method in extracting more accurate object region from the background where the

contrast is at a high level. For example, arms of the "Starfish", hind leg of the "Kangaroo",

shoes of the "Woman" and the upper left corner of the "Boat" are all mis-segmented as

background by Boykov-Jolly method whereas Lazy Snapping performs better segmen-

tations on these regions because it utilizes the clustering method to build a more reason-

able model for the color distributions of foreground and background regions. However,

the color distribution model that Lazy Snapping adopts is not so "reliable" as mentioned

in their literature: performance of Lazy Snapping decreases with the increase of overlaps

of foreground and background distributions in color space, especially in the regions of

low contrast at the transition from foreground to background. For instance, wall close

to the right leg of "Woman" and precipice behind the "Sheep" are mis-segmented as

foreground while claws of "Birds", nose of "Plane" are mis-segmented as background.

Since the performance of k-Means algorithm that Lazy Snapping uses to cluster col-

ors of foreground/background seeds highly relies on the choice of cluster number and

initialization of cluster means, it can be converged to local minimum which results ar-
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bitrarily bad clustering for many natural examples due to inappropriate starting means

assigned randomly. This weakness can further explain unsatisfied segmentations of im-

ages where foreground/background color profiles are quite similar (e.g. "Sheep"). One

solution to enhance the performance of Lazy Snapping is to increase the amount of ac-

curate seeds, another is to use an more robust version of k-Means, named k-Means++

[12], which is guaranteed to find a solution competitive to the optimal clustering. We

will detail k-Means and k-Means++ in Section 4.5.2 and employ k-Means++ to enhance

Lazy Snapping for later experimental use.

Figure 2.8 and Figure 2.9 demonstrate the results obtain by GrabCut subject to dif-

ferent number of iterations. It can be seen that GrabCut is efficient in the iterative opti-

mization scheme and can converge at least a local minima, often only after 2 iterations.

Similar to Lazy Snapping, GrabCut can generate comparative better segmentations than

Boykov-Jolly’ approach in some simple or moderately difficult images (e.g. "Starfish",

"Japanese" and "Boat"). Unfortunately, it fails in the following cases: (i) foreground

and background share partial color profiles (e.g. "Kangaroo", "Birds", "Plane"); (ii) color

distributions of foreground/background overlap largely in color space (e.g. "Sheep").

Iterative optimization of the data energy defined by GMM color model converges at

local minima far from the global optimum. For the former case, we can improve the

performance by replacing the user-dragged rectangle with a lasso to increase the accu-

racy of background color sampling. For the latter case, however, neither accurate user

interaction nor precise color model can be useful to achieve a promising segmentation.
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Image with User Interaction Boykov-Jolly Lazy Snapping

Figure 2.6: Segmentations results by Boykov-Jolly method [23] and Lazy Snapping [65]
on natural color images from Berkeley Segmentation Dataset [35]. First column: origi-
nal color images include "Starfish" (Ref. 12003), "Kangaroo" (Ref. 69020), "Birds" (Ref.
163085) and "Lady" (Ref. 388016). Second column: segmentations obtained by Boykov-
Jolly method. Last column: segmentations obtained by Lazy Snapping.



2.4. Graph Cuts in Image Segmentation 35

Image with User Interaction Boykov-Jolly Lazy Snapping

Figure 2.7: Segmentations results by Boykov-Jolly method [23] and Lazy Snapping [65]
on natural color images from Berkeley Segmentation Dataset [35]. First column: orig-
inal color images include "Plane" (Ref. 37073), "Japanese" (Ref. 65019), "Sheep" (Ref.
41025) and "Boat" (Ref. 92059). Second column: segmentations obtained by Boykov-
Jolly method. Last column: segmentations obtained by Lazy Snapping.
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Image with User Interaction No. of Iteration = 1 No. of Iteration = 2 No. of Iteration = 40

Figure 2.8: GrabCut segmentations [78] for increasing number of iterations on natural
color images from Berkeley Segmentation Dataset [35]. First column: original color
images from Figure 2.6. Second column: segmentations after 1 iteration, third column:
segmentations after 2 iterations; last column: segmentations after 40 iterations.
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Image with User Interaction No. of Iteration = 1 No. of Iteration = 2 No. of Iteration = 40

Figure 2.9: GrabCut segmentations [78] for increasing number of iterations on natural
color images from Berkeley Segmentation Dataset [35]. First column: original color
images from Figure 2.7. Second column: segmentations after 1 iteration, third column:
segmentations after 2 iterations; last column: segmentations after 40 iterations.

In conclusion, by employing more accurate and robust model for color distribution,

Lazy Snapping and GrabCut outperform Boykov-Jolly approach on simple and moder-

ately difficult color images. However, when foreground/background color information

is less discriminative, none of these methods can generate satisfying segmentations. In

the following chapter, we will focus on the solution to overcome this drawback in cor-

poration with multiple visual cues (e.g. image texture) and propose a novel binary

segmentation method under the interactive graph-cut based segmentation framework.
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2.5 Parameter Determination for Graph Cut Segmentation

Although graph-cut based segmentation framework proposed by Boykov and Jolly [23]

is verified to guarantee a global optima for wide class of energy function [60] and in-

teractive with user-friendly planted seeds labeling "foreground" and "background", a

fundamental yet unsolved issue of such framework is the parameter selection. Inappro-

priate choice of parameters can result unsatisfied segmentation, which is obscure for

us to compare some state-of-the-art segmentation techniques as well as our proposed

approaches (cf. Chapter 3) within this framework.

2.5.1 Selection of Parameter σ

In this section, we first take the parameter σ into consideration. Since our experimental

object can never be ideal, unavoidably corrupted by some so-called image noises (e.g.

Gaussian/Amplifier noise, Salt-and-pepper noise, Shot noise, etc.), it is important to

find out the relationship between parameter σ and noise level of the sample image to

yield better result in image segmentation. Intuitively, the function presented in Equation

(2.38) corresponds to the distribution of noise among neighboring pixels of an image.

Thus, σ can be estimated as image noise.

An example of the proposed experiment is demonstrated in Figure 2.10. We add

Gaussian noise to a set of natural color images taken from the Berkeley Segmentation

Dataset [35] and the MSRC (MicroSoft Research Cambridge) GrabCut Segmentation

Database [20], perform binary image segmentation under this graph-cut segmentation

framework and calculate the segmentation error subject to variations of parameter σ and

standard deviation of Gaussian noise while parameter λ is fixed on 1 to put the equal

emphases on both data and smoothness terms in Equation (2.4). Quantitative evaluation

of segmentation performance is measured simply and sufficiently by the segmentation

error rate defined as

ǫ =
number of mis-classified pixels

number of pixels in classified region of gold truth
=

FP+ FN

P
(2.45)

where false-positive FP = AA − AA ∩ AG, false-negative FN = AG − AA ∩ AG and positive

P = AG. AG denotes the foreground area in gold truth; AA denotes the segmented

foreground area using graph-cut segmentation algorithm proposed by Boykov and Jolly

[23]. In addition, we define two more measurements, false-positive rate FPR and false-
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negtative rate FNR:

FPR =
AA − AA ∩ AG

AG
FNR =

AG − AA ∩ AG

AG
(2.46)

(a) (b) λ = 1; σ = 27; ǫ = 5.34% (c)

(d) (e) λ = 1; σ = 35; ǫ = 12.85% (f)

Figure 2.10: Segmentation results for two natural color images, "Flower" (Ref. 124084)
and "Elephant", one from the Berkeley Segmentation Dataset [35] and the latter from
the MSRC GrabCut Segmentation Database [20]. (a, d) Two sample images from the
test database, corrupted by a gaussian noise with the standard deviation fixed to 35; (b,
e) The corresponding segment results evaluated by Equation (2.45), different values of
σ chosen to yield the optimal results; (c, f) Gold truth from the test database [35, 20],
which assigns binary labels L = {0, 1} as background (black) and foreground (white).

Figure 2.11 (a) illustrates how error of segmentation varies according to the selection

of parameter σ in a single object (e.g. "Flower") added by different levels of Gaussian

noise, while Figure 2.11 (b) illustrates how error of segmentation varies according to

the variation of parameter σ within a set of sample images corrupted by a fixed level of

Gaussian noise (e.g. the value of standard deviation of Gaussian noise equals 35which is

very "noisy" for an image in reality). A conclusion can be drawn from Figure 2.11 is that

if we set parameter σ close to the value of standard deviation of an additive Gaussian

noise, the error of segmentation will decrease to a certain extend, namely, segmentation

results can be improved significantly.

More precisely, since σ is closely related to the level of pixel intensity variation of

a sample image, it is reasonable to let σ be the average of absolute intensity difference
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(a) ǫ-σ for "Flower" with various noise levels (b) ǫ-σ for 9 benchmark images with a fixed noise level

Figure 2.11: Relationship between parameter σ and noise level of the experimental ob-
ject.

between two neighboring pixels, p and q [78, 75]:

σ =

√

〈

(Ip − Iq)2
〉

(2.47)

where 〈φ〉 denotes the average or expected value of φ over a sample image. This choice

of σ guarantees the exponential term in Equation (2.38) switches appropriately between

high and low contrast thus suitable for the precise adjustment of parameter λ for the

optimal segmentation performance.

2.5.2 Selection of Parameter λ

Now we start to address briefly the selection of parameter λ. Figure 2.12 (b-h) shows

the segmentation results of Figure 2.12 (a) provided with different values of λ as well as

a fixed parameter σ equals 20.

For Figure 2.12 (b, c), over-segmentation occurs when λ is low, while under-segmentation

tends to appear under higher value of λ in Figure 2.12 (f-h). In between the over-

segmentation and under-segmentation, there is a range of λ, under which results rela-

tively good segmentation (cf. Figure 2.12 (d, e)). All these can be explained by the role

which parameter λ plays in the energy function in Equation (2.39). For example, large

value of λ encourages the smooth term to be dominant in the whole energy function

so that the discontinuity between neighboring pixels is sufficiently or even over penal-

ized, which leads the boundary between foreground and background segments to be too

smooth and the background segments may contain parts of the foreground. From the
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(a) (b) λ = 1 (c) λ = 3 (d) λ = 5

(e) λ = 10 (f) λ = 25 (g) λ = 35 (h) λ = 45

Figure 2.12: Manually Tuning of Parameter λ. (a) is the original image "Banana" with
manually planted seeds; (b, c) are over-segmentations; (d, e) are well segmentations; (f-h)
are under-segmentations.

perspective of classification, the false-negtative rate of the segmentation result is far larger

than that of the false-positive rate in under-segmentation while the false-negtative rate of

the segmentation result is lower than that of the false-positive rate in over-segmentation

(cf. Table 2.5).

Table 2.5: The error rate ǫ, FNR and FPR of segmentations subject to different λ on
"Banana". Ground truth for quantitative assessment is taken from the MSRC GrabCut
Segmentation Database [20].

λ ǫ (%) FNR (%) FPR (%)

1 9.65 2.86 6.97
3 5.11 2.92 2.19
5 4.29 3.66 0.63
10 4.73 4.64 0.09
25 5.73 5.64 0.09
35 8.6 8.49 0.11
45 9.58 9.47 0.11

Unlike parameter σ which can be reasonably well determined from a given sample

image, parameter λ has to be learnt from each particular class of images, since for each

image belong to a particular class, the range of appropriate λ may be different [58]. The

most efficient way to estimate λ is so-called empirical approach [20, 75]. In [20], Blake et

al. learned the parameter λ discriminatively by optimizing performance against ground

truth over a training set of 15 images. In [75], Peng and Veksler proposed a novel ap-

proach based on binary classification. After the measure of segmentation performances

on a training set of 80 images with 10 segmentations each under different values of λ,
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segmentations were manually labeled as "good" (positive) or "bad" (negative). Then, a

classifier was trained using the AdaBoost algorithm [43] with features based on intensity,

texture, gradient direction, and corners.
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Most well-developed interactive segmentation approaches based on graph cuts, for

example, Lazy Snapping [65] and GrabCut [78], have been successful in color im-

age segmentation with relatively high segmentation accuracy and few user-interaction.

However, the common drawback of these techniques is the undesirable performance

when the foreground object and the background share similar color profiles. For in-

stance, in Figure A.4 (a), color information of pixels around the church-cross part is not

distinct enough for color-feature-based image segmentation techniques to discriminate

foreground object from the background. Significant decrease of segmentation perfor-

mance thus occurs in Figure A.4 (b, c, e). More negative examples can be found from

Figure 2.6 to Figure 2.9 in Section 2.4. In such cases, texture information is a preferred

discriminant.

In this chapter, we propose to formulate the data energy in the energy function

considering not only a single pixel but also its neighboring pixels, not only color infor-

mation but also texture features and utilizing two highly scored classification methods,

Support Vector Machine (SVM) and Random Forest (RF), to enhance the discrimination

between foreground and background, where the color information is less discriminative.

Experimental results on both synthetic and nature images indicate that our approach

outperforms the other color-feature-based methods in yielding promising segmentation

accuracy.
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(a) Initialization with seeds (b) Boykov-Jolly; ǫ = 75.81% (c) Lazy Snapping; ǫ = 18.43%

(d) Initialization with rectangle ROI (e) GrabCut; ǫ = 57.82% (f)

Figure 3.1: A negative example for color based graph-cut segmentation techniques.
"Cross" monument in the foreground, church and gravestone in the background share
the similar color profile which makes color feature less discriminative in their joint re-
gions. (a) Input image with user-planted seeds. This initialization is applied to both
Boykov-Jolly algorithm [23] and Lazy Snapping algorithm [65]. (b) Results obtained by
Boykov-Jolly algorithm. Church is misclassified as "foreground". (c) Results obtained by
Lazy Snapping algorithm. Joint regions are misclassified to certain extents. (d) Initial-
ization with a user specified rectangle ROI whose exterior is labeled as "background",
while the interior remains unlabeled. This initialization is unique for GrabCut algorithm.
(e) Results obtained by GrabCut algorithm. Misclassification occurs within the ROI. (f)
Manual segmentation as the gold truth.
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3.1 Local Binary Pattern for Texture Description

Local binary pattern (LBP) was firstly introduced by Ojala et al. [71] in 1996 as a tex-

ture descriptor that showed high discriminative power in texture classification. Later,

Ojala et al. [72] extended the original LBP operator to a circular neighborhood of arbi-

trary radius to describe the multi-scale texture patterns. In addition, uniform pattern and

rotation-invariant LBP were introduced to improve the discriminative property while

decrease the feature labels that a LBP operator produces. Due to the low computational

complexity and high discrimination of various types of textures, LBP and its general-

izations have been widely used with considerable success in texture classification and

segmentation [72, 70], image retrieval [90] and more recently face recognition [1].

The original LBP operator was designed to label pixels of an input image by thresh-

olding a 3× 3 neighborhood of each pixel with the center pixel value, binomially weight-

ing the thresholded neighbors and summing them up. Semantic diagram of the whole

LBP coding process is illustrated in Figure 3.2. As the neighborhood consists of 8 pixels,

a total number of 28 = 256 patterns of texture features can be obtained. Examples of

LBP images are shown in Figure 3.6 (b, e). Formally, the original LBP operator is defined

as:

LBP(xc, yc) =
7

∑
n=0

s(in − ic)2n (3.1)

where n scans over 8 neighbors surrounding the center pixel c, in and ic denote the gray

levels of the neighborhood pixel n and its center pixel c, (xc, yc) are the coordinates of

the center pixel c. s(φ) is the thresholding function

s(φ) =

{

1, if φ ≥ 0

0, if φ < 0
(3.2)

The original LBP operator was subsequently extended to encode a pixel with neigh-

borhood of arbitrary size and sampling points, thus making it more feasible to deal with

textures differing in scales [72]. The idea is to align N evenly spaced neighbors n on a

circle with radius R around the central pixel c so that

in = I(xn, yn), n = 0, 1, · · · , N − 1 and (3.3)

xn = xc + R cos(2πp/N), yn = yc − R cos(2πp/N) (3.4)

where (xn, yn) are the coordinates of the neighborhood pixel n and I(a, b) denotes the
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Figure 3.2: Calculation of the original LBP code.

gray level of a pixel at coordinate (a, b). Same as the original LBP operator, this extension

LBP operator (denoted by LBPN,R) is defined as

LBPN,R(xc, yc) =
N−1

∑
n=0

s(in − ic)2n (3.5)

Figure 3.3 demonstrates three circularly symmetric neighborhood with different value

of N and R. Value of a neighbor that is not exactly in the center of a pixel grid is esti-

mated via interpolation.

N = 8, R = 1.0 N = 8, R = 2.0 N = 16, R = 2.0

Figure 3.3: LBPs in different circular neighborhoods. Pixel value is obtained via inter-
polation whenever sampling point that is not in the center of a pixel grid.
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3.1.0.1 The uniform LBP

Another extension of the original LBP operator is the use of so-called uniform patterns

[72]. It was noticed that most of texture features contain a small subset of the total

256 LBP patterns. A LBP pattern is called uniform if it contains at most two bitwise

transitions from 0 to 1 or vice versa. "11111111" and "00001110" for instance are uniform

patterns whereas the pattern "01011111" (the case in Figure 3.2) is non-uniform. There are

in total N(N − 1) + 2 uniform patterns generated by LBPN,R, which mainly represent

primitive micro-features such as line, edge and corner (cf. Figure 3.4). With all the

patterns that are not uniform labeled as a unique pattern, the uniform LBP operator

(denote by LBPu2
N,R) produces N(N − 1) + 3 patterns of texture features. Figure 3.5 (b)

shows a LBPu2
8,1 histogram with 59 bins.

Spot Spot/Flat Line end Edge Corner

Figure 3.4: Examples of different texture patterns encoded by LBP.

3.1.0.2 The rotation invariant uniform LBP

Inspired by the idea of mapping uniform patterns to the original LBP patterns, a subset

of the uniform patterns called rotation invariant uniform patterns (riu2) can be encoded

by rotation to their minimum values. For example, 8-bit uniform pattern, "00001110",

"00011100" and "00000111" all map to the minimum pattern "00000111". Compared to

LBPu2
N,R, a rotation invariant uniform LBP operator (denoted by LBPriu2

N,R) produces in

total N + 2 patterns of texture features.

Figure 3.5 shows the robustness of rotation texture discriminant of LBPriu2
N,R compared

with LBPu2
N,R. Texture image in Figure 3.5 (b) is the rotated version of (a). Observe the

LBPu2
N,R and LBPriu2

N,R histograms correspondingly, one can tell that LBPu2
N,R histograms for

the two images are markedly irrelevant, while the LBPriu2
N,R histograms are approximately

equivalent.
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Figure 3.5: First column: texture image with rotation 0◦ and 30◦. Second column: bins
1–59 of the corresponding LBPu2 histograms. Third column: bins 1–10 of the corre-
sponding LBPriu2 histograms.
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3.1.1 Preprocessing with Gaussian Filtering

When LBP is applied to large scale texture features, for instance, the leopard-print shown

in Figure 3.6 (a), it is natural to set a large value of the neighborhood radius R to capture

large details. However, larger radius comes with greater aliasing effect, which results in

noise-sensitive, unreliable and thus less discriminative texture feature description. This

is mainly due to the fact that LBP operator thresholds the neighbor with only the center

pixel ic, namely, sampling information at a single pixel position. Applying a Gaussian

low-pass filter as preprocessing prior to LBP operation might be an appropriate solution

to this dilemma.

Consider a 2-dimensional Gaussian filter, G(x, y), as a zero-mean distribution of

two independent variables with equal standard deviations, the size of the filter can be

described as the standard deviation σ:

G(x, y) =
1

2πσ2 e
− x2+y2

2σ2 (3.6)

where x and y denote the pixel coordinates. By using Gaussian filter, each sample

in the neighborhood can be made to collect intensity information from a larger range

defined by σ. Additionally, high-frequency image noise can be filtered efficiently and

simultaneously.

Figure 3.6 shows the advantage of using Gaussian filtering to increase the discrim-

inative ability for large-scale texture. LBP code without Gaussian filtering is difficult

to interpret (Figure 3.6 (b, c)) while Gaussian filtering with appropriate filter size can

improve the discriminative ability a LBP operator (Figure 3.6 (e, f)). Throughout this

thesis, the combination of Gaussian filtering and LBP operator is denoted by GLBP.
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Figure 3.6: Combining gaussian filtering as preprocessing prior to LBP coding. First
column: "Leopard" image (Ref. 160068) before (a) and after (b) gaussian blurring. Dif-
ferent type of texture "Leopard-print" and "Tree" marked via red and blue square ROIs
respectively. Second column: corresponding original LBP images. Third column: bins
1–59 of the corresponding LBPu2 histograms, "Leopard-print" texture features (red solid
line) and "Tree" texture features (blue dash line).
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3.2 Support Vector Machine

Support Vector Machine (SVM), firstly introduced by Cortes and Vapnik [34], is a super-

vised learning model originally used for binary classification tasks. Known as a class

of kernel based method, SVM is able to create nonlinear classifiers by applying a Kernel

Trick [3] that maps low-dimensional vectors of input datapoints into a high-dimensional

feature space and constructing an optimal hyperplane that separates mapped datapoints

into two classes with the distance from this hyperplane to the nearest datapoints of each

class maximized. The ability to perform nonlinear classification makes SVM successful

in many real-world pattern recognition problems like text categorization [53], handwrit-

ten character recognition [81], face detection in images [73]. In the following text, we

will review the basic theory of SVM for both linear and nonlinear cases.

3.2.1 Linear Support Vector Classifier

To detail the basic definition and theory of SVM, we will start with the simplest case: bi-

nary classification on linear separable data. Let D = {(xi, yi)|xi ∈ R
p, yi ∈ {−1,+1}}n

i=1

denotes the input training dataset, where xi is a sample in p-dimensional vector, yi

is the corresponding class label, the main idea of a SVM classifier is to construct a

(p − 1)-dimensional separating hyperplane, w · x+ b = 0, in this p-dimensional space

that maximize the margin 2/‖w‖ between two constraint hyperplanes, w · x+ b = +1

and w · x+ b = −1. Figure 3.7 shows a simple example of 2-dimensional binary classi-

fication implemented using SVM. Here, w is the normal vector of the hyperplane, b is

the intercept and |b|/‖w‖ is the perpendicular distance from the separating hyperplane

to the original. With respect to the description of two constraint hyperplanes, sample

datapoints that are separated into two classes (red circle denotes class label yi = +1 and

blue square denotes class label yi = −1 in Figure 3.7) can be described by

w · xi + b ≥ +1 for yi = +1 (3.7)

w · xi + b ≤ −1 for yi = −1 (3.8)

By combining Equation (3.7) and Equation (3.8), a uniform of constraints can be

expressed by one set of inequalities:

yi(w · xi + b)− 1 ≥ 0 ∀i (3.9)
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Figure 3.7: An example of SVM classification in 2-dimensional space. Red circle and blue
square represent two linearly separable classes. Support vectors (marked by double-
borders) are training samples that define the margin (distance between two dash lines)
of a hyperplane (solid line).

This constraint prevents sample datapoints from falling within the margin between

two constraint hype planes. Some particular datapoints that lie on each of the constraint

hyperplane and whose removal would change the current solution, are named Support

Vectors (indicated in Figure 3.7 by double-borders).

Since the aim of SVM is to find w and b for the hyperplanes that maximize the clas-

sification margin 2/‖w‖, the solution for this optimization problem can be formulated

as

min
w,b

Ψ(w), Ψ(w) =
1
2
‖w‖2, (3.10)

subject to constraints formulated in Equation (3.9).

By introducing the Lagrange multipliers αi, i = 1, · · · , n, Equation (3.9) and Equation

(3.10) can be reformulated as:

min
w,b

max
αi≥0

L(w, b, α), L(w, b, α) ≡
1
2
‖w‖2 −

n

∑
i=1

αi[yi(w · xi + b)− 1] (3.11)

The optimal solution for Equation (3.11) can be provided by stationary Karush-Kuhn-

Tucker (KKT) conditions [61] in terms of equality constraints:

w =
n

∑
i=1

αiyixi (3.12)

n

∑
i=1

αiyi = 0 (3.13)
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Substituting Equation (3.12) and Equation (3.13) into Equation (3.11) gives a Dual

form of L(w, b, α), denoted by L̂(α), to be maximized:

L̂(α) =
n

∑
i=1

αi −
1
2 ∑

i,j
αiαjyiyjxi · xj s.t. αi ≥ 0 ∀i,

n

∑
i=1

αiyi = 0 (3.14)

This is a quadratic programming optimization problem and the Lagrange multipliers

αi can be optimized by Quadratic Programming (QP) solver. Consider that any input

datapoint satisfying Equation (3.13) is a Support Vector, the offset b can be calculated as:

b =
1
Ns

Ns

∑
i=1

(yi −w · xi) (3.15)

where Ns is number of Support Vectors. Finally, the decision function of SVM is obtained

as

fSVM(x) = sgn[w · x+ b] = sgn

[

n

∑
i=1

αiyi(xi · x) + b

]

(3.16)

where sgn[·] denotes the signum function.

3.2.1.1 Linear non-separable case

It is worthing noting that in application of classification for real world data, there is

often the case that sample dataset is not fully linear separable. A modified maximum

margin idea called Soft Margin method was then proposed by Cortes and Vapnik [34]

that allows misclassified datapoints. To make the linear classifier slightly tolerable with

classification error, the constraints in Equation (3.9) can be relaxed by introducing a

positive slack variables ξi ≥ 0, i = 1, · · · , n:

yi(xi ·w+ b)− 1+ ξi ≥ 0 ∀i (3.17)

Also note that the tolerance of error occurrence must be limited as low as possible to

prevent overfitting. This can be accomplished by adding a penalty term to the objective

function Ψ(w) in Equation (3.10):

min
w,b,ξ

Ψ(w, ξ), Ψ(w, ξ) =
1
2
‖w‖2 + C

n

∑
i=1

ξi (3.18)

subject to the constraints formulated in Equation (3.17). The soft margin parameter C

is specified to control the tradeoff between the slack variable penalty and the margin.

The larger value of C, the larger penalty on misclassification of data to a certain class.

Consequently, the estimation of optimal hyperplanes (cf. Equarion (3.14)) is same as that
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in the linear separable case except that the Lagrange multipliers αi now have an upper

bound of C.

3.2.2 Nonlinear Support Vector Classifier

Consider a far more complex case depicted in the left hand side of Figure 3.8, where

sample dataset is extremely linear non-separable even with relaxation of constraints as

in Equation (3.17). However, instead of building linear classifiers, Bernhard et al. [21]

proposed to create nonlinear classifiers by applying the kernel trick to estimation of

optimal hyperplane. The main idea is based on the fact that original input space can

always be mapped to some higher-dimensional feature space where the sample dataset

is expected to be linearly separable (cf. Figure 3.8 in the right hand side). Soft Margin

method can be subsequently used in this transformed high-dimensional feature space

in a straightforward way.

Defining a feature mapping Φ : x → φ(x) and a kernel function k(xi, xj) = φ(xi) ·φ(xj),

the dot products of the input datapoints xi · xj in the optimization function L̂(α) (cf.

Equation (3.14)) can be replaced by k(xi, xj), without computing φ(x) explicitly:

max
α

L̂(α), L̂(α) =
n

∑
i=1

αi −
1
2 ∑

i,j
αiαjyiyjk(xi, xj) s.t. 0 ≤ αi ≤ C ∀i,

n

∑
i=1

αiyi = 0 (3.19)

And the decision function of nonlinear SVM can be finally obtained as:

fSVM(x) = sgn[w · x+ b] = sgn

[

n

∑
i=1

αiyik(xi, x) + b

]

(3.20)

There exists several popular kernel functions in SVM:

• polynomial kernel function

k(xi, xj) = (γxi · xj + δ)d (3.21)

• sigmoid kernel function

k(xi, xj) = tanh(γxi · xj + δ) (3.22)

• gaussian radial basis function (GRBF)

k(xi, xj) = e−γ‖xi−xj‖
2

(3.23)



56 Chapter 3. Combining Classification Techniques and Graph-Cut Based Segmentation Framework

where γ > 0, δ, d are parameters defining the kernel’s behavior. The GRBF is by far

the most popular choice of kernel function in SVM classification due to its ability of

localized similarity measurement in Euclidean distance. Throughout this thesis, we

adopt this kernel function as a similarity metric for both color and texture features.

Feature 

Mapping

Hyperp
la

ne

Input Space Feature Space

Figure 3.8: An example of kernel trick transforming linearly non-separable training
samples from the original 2-dimensional input space to 3-dimensional feature space
where samples are possible to be separated linearly by constructing a maximum margin
hyperplane.

3.2.3 Probabilistic Output of SVM

To combine the pixelwise binary classification results learned by a classifier (e.g. SVM or

RF) and graph-cut based segmentation framework, it is required to use soft classification

(posterior class probability, i.e. Pr(class|input)) instead of hard classification (class-label

prediction) to determine the data term of the energy function in Equation (2.2). By defi-

nition, data energy Dp(lp) measures how much assigning a label lp to a pixel p disagrees

with the data. This can be interpreted alternatively in scope of binary classification that

the data energy Dxi
(yi = −1) measures the probability of a sample datapoint xi assigned

an opposite class label, yi = +1. Thus, we can redefine the data energy as:

Dxi
(yi = −1) = Pr(yi = +1|xi), Dxi

(yi = +1) = 1− Pr(yi = +1|xi) (3.24)

However, standard SVMs [93] only predict a class label of any input sample x by

computing a decision function fSVM in Equation (3.20). Platt [76] proposed a method of

producing probabilistic output from SVM by fitting a sigmoid model:

Pr(y = +1|x) ≈ PA,B[ f (x)] ≡
1

1+ exp[A f (x) + B]
(3.25)
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where f (x) is the unthreshold decision function (cf. Equation (3.20)) of SVM,

f (x) =
n

∑
i=1

αiyik(xi, x) + b (3.26)

The parameter A and B are determined by solving a regularized maximum likeli-

hood problem:

min−
n

∑
i=1

(

ti log(pi) + (1− ti) log(1− pi)
)

, (3.27)

for

pi = PA,B[ f (xi)] and ti =







N++1
N++2 , if yi = +1

1
N−+2 , if yi = −1

(3.28)

where N+ counts the number of positive yi while N− negative. It was reported in that

an unbiased training set ( f (xi), yi) for optimization of Equation (3.27) could be derived

by a three-fold cross validation method efficiently.

3.3 Random Forest

Random Forest (RF), systematically introduced by Breiman [27], is a learning ensemble

consisting of Breiman’s bagging and randomized decision trees proposed by Amit et al.

[6]. It has been proven that RF classifiers have several advantages over state-of-the-art

classifiers (e.g. SVM) [95]: They are overfit free, highly efficient in computation on large

datasets, multi-class capable and resistant to outliers while yielding competitive classifi-

cation accuracy to SVM classifiers. In addition, the inherent-feature-selection mechanism

of a RF classifier provides us with ease of using multiple features (e.g. color, texture) in

this thesis to increase the binary pixelwise classification performance significantly.

Let T = {T1, · · · , TN} denotes set of binary decision trees and D = {(xi, yi)|xi ∈

R
p, yi ∈ {1, · · · , k}}n

i=1 denotes the input training dataset, where p is the dimension of

a datapoint xi and k is the class label. Randomization of the binary decision tree can be

performed by subsampling the entire training dataset using out-of-bag bootstrapping

so that each tree is trained with a different subset of the training dataset. Each split

node (non-terminal node) of a tree contains a binary decision function that best split the

space of input data to be classified while each leaf node (terminal node) is labeled by a

posterior class probability pt(yi|xt), t = 1, · · · , N, for the tth tree.

During the training stage of a binary decision tree, samples from the assigned sub-

set are propagated from a split node to its right or left child nodes based on a suitable

decision function in a top-down manner. For each split node, the best decision function
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is selected based on a splitting criterion such as Gini impurity ∑
n
i=1 ps(yi|xs) or Informa-

tion gain −∑
n
i=1 ps(yi|xs) log[ps(yi|xs)] with ps(yi|xs) denoting the posterior probability

of sample xs in the sth split node belonging to class yi. The selection process is repeated

until a split node receives too few samples or reaches a given depth. For the evaluation,

each testing sample is propagated through each tree producing a posterior class prob-

ability pt(yi|x), t = 1, · · · , N, for the tth tree. Finally, the probabilistic output of a RF

classifier can be obtain as a joint distribution:

Pr(yi|x) ≈
1
N

N

∑
t=1

pt(yi|x) (3.29)

as well as the decision function of RF:

fRF(x) = argmax
yi

1
N

N

∑
t=1

pt(yi|x) (3.30)

3.3.0.1 Performance evaluation between SVM and RF

To evaluate the classification performance comparatively between SVM and RF, four

synthetic datasets are generated from both linear and nonlinear function (cf. Figure

3.9). For each dataset, 200 randomized datapoints are used for training while 5× 105

randomized datapoints are used for testing. Parameters for SVM and RF are estimated

using cross validation method to ensure the optimal performance.

Performance of classifier can be evaluated quantitatively by calculating

Accuracy =
TP+ TN

P+ N
(3.31)

Table 3.1: Comparison of classification accuracy between SVM and RF on learning linear
and non-linear functions.

Classifier

Accuracy (%) Function
y = 1.5x y = cos(10x) y = tan(10x) y =

√

(arctan(y/x))2 − x2

SVM 98.05 93.36 77.20 96.41
RF 96.01 94.27 90.45 94.98

Table 3.1 shows the performances of SVM and RF in case of binary classification. In

general, RF classifier yields comparative classification accuracy to SVM classifier except

for the non-linear function y = tan(10x), where RF outperforms SVM in considerable

increase of classification accuracy.
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Figure 3.9: Comparison of SVM and RF on synthetic datatsets.
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3.4 Graph-Cut based Segmentation using Support Vector Ma-

chine and Random Forest

As mentioned at the beginning of this chapter, we propose to combine the original

graph-cut segmentation framework with multiple features learned by SVM or RF clas-

sifier to improve the segmentation. Input data for the classifier are provided by user-

interaction (brushstrokes or a rectangle) assigning a pixel to foreground or background

label. Color feature is stored in a 3-dimensional (tri-channel values) vector while LBP

texture feature is arbitrary (e.g. original LBP code in 256 bins of histogram, LBPu2
8,1 code

in 59 bins and LBPriu2
8,1 in 10 bins). To combine both color and texture features, we simply

add texture feature and shape parameter as the classical RGB input data. We introduce

texture penalties using LBP and shape using a certain neighborhood template, which

will be detailed in the following section.

3.4.1 Feature Configuration

3.4.1.1 Neighborhood template for feature modeling

Since texture feature of an image is a local region-based property, it does not make

sense to gather texture information from based on a particular pixel without specifying

a neighborhood around it. In application to texture classification [72, 70], image retrieval

[90], face recognition [1] etc, it is a common approach to divide the input image into non-

overlapping small blocks of equal size and modeling the texture feature by calculating

the histogram of LBP codes in each block. Possible criticism of this block-histogram

based texture feature configuration is arbitrary and non-trivial. In addition, it is likely

to cause both aliasing and loss of spatial resolution. Instead of modeling LBP texture

feature in histogram block by block, we introduce a neighborhood template (a sliding

window) gathering feature information pixel-wisely. During the scanning of this tem-

plate, LBP code of each pixel in the neighborhood as well as its center pixel is collected

in sequence to construct a feature vector. The number of neighbors (size of the window)

is fixed to 5 as a compromise of low computational complexity in feature space and

high discriminant spatially. Thus, the texture feature configuration using neighborhood

template is a 25-dimensional vector.

To demonstrate qualitatively the effectiveness of the proposed feature configuration

using 5 × 5 neighborhood template, we firstly apply it to the segmentation of a syn-

thetic "Texture" image in size of 382× 367 shown in Figure 3.10 (a). We can observe

that in this "Texture" image, different patterns of texture distinguish the foreground
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from the background, whereas color distribution vanishes this distinction, texture only

must give better results. Figure 3.11 shows the effectiveness of the 25-dimensional

LBP/GLBP texture-shape feature vector (Figure 3.11 (c, d)) compared to the pixel-wise

1-dimensional LBP/GLBP texture feature vector (Figure 3.11 (a, b)). We perform the

evaluation task effectively based on both probabilistic outputs of a classifier in terms of

probabilistic distribution map (cf. the first row of Figure 3.11) and the corresponding

segmentation obtained under the interactive graph-cut based segmentation framework

proposed by Boykov and Jolly [23] (cf. Chapter 2, Section 2.4).

(a) Synthetic "Texture" image with seeds (b) The corresponding gold truth

Figure 3.10: An synthetic "Texture" image of 382× 367 pixels with Polka dot texture in
the foreground and Chessboard texture in the background, whereas the distribution of
color information stays the same.

Recall that energy function of binary labeling problem appropriately defined under

MAP-MRF framework can be optimized via computing the minimum cut of a corre-

sponding graph (cf. Chapter 2, Section 2.3). In order to make our multi-feature based

segmentation compatible with the interactive graph-cut based segmentation framework,

we now reformulate the general energy function in Equation (2.4) with data term given

by the probabilistic output of a classifier and smoothness term defined similarly as in

Lazy Snapping (cf. Equation (2.41)):

E(L) = − ∑
p∈V

log Pr(lp|xp) + λ · ∑
{p,q}∈N

|lp − lq|

||xp − xq||2 + 1
·

1
dist(p, q)

. (3.32)

Some notations in Equation (3.32) should be interpreted particularly as follows: xp

denotes a multi-dimensional feature vector of pixel p. Labeling L = {lp|lp ∈ {−1,+1}}|V|p=1

comprises lp = −1 if pixel p is a "background" pixel and lp = +1 if p is a "foreground"

or "object" pixel. Also, a set of pixels pre-labeled as "foreground" via user-brushed red

strokes is denoted as foreground seeds O while the set of pixels pre-labeled as "back-
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ground" via blue strokes is denoted as background seeds B. Pr(lp|xp) denotes the pos-

terior probability of labeling a pixel p based on the observation of its features xp. It is

estimated by a classifier whose training data are taken from the seeds (hard constraints)

via user-interaction.

General experimental settings are as follows:

• Feature: 1-dimensional LBP/GLBP texture feature vector or 25-dimensional LBP/GLBP

texture-shape feature vector. For GLBP, parameter σ is 3 and the kernel size of the

gaussian filter is 9× 9. This ensures the possibility of GLBP texture feature encod-

ing large-scale texture patterns.

• Classifier: RF classifier is adopted and the parameters of the classifier are estimated

using cross-validation method.

• Energy function: Parameter λ is learned using empirical approach and fixed to 10

to ensure the optimal segmentation.

• Graph: A 8-neighborhood adjacent directed graph is constructed with two termi-

nal nodes s and t, respectively corresponds to the "foreground" labels and "back-

ground" labels. Note that this graph is hard-constraints free, that is, hard con-

straints (seeds) are only used for the training of a classifier to estimate the data

term of the energy function and it is relaxed during the construction of graph.

The edge weights of the graph are given in Table 3.2. Since the quality of final

segmentation strongly depends on the probabilistic distribution when hard con-

straints are not involved in determining the data energy directly (e.g. by assigning

pre-labeled pixels with very large penalties), our experiment is able to reveal the

discriminative property of the proposed feature configuration.

Table 3.2: Edge weights for maximum a posteriori estimation.
Edge Weight For

ws,p − log Pr(−1|xp) p ∈ V
wp,t − log Pr(+1|xp) p ∈ V

wp,q λ ·
|lp−lq|

||xp−xq||2+1 ·
1

dist(p,q) {p, q} ∈ N

As we can observe in Figure 3.11, the 25-dimensional GLBP texture-shape feature

vector outperforms the others in resulting the most discriminative probabilistic distribu-

tion. 1-dimensional texture vectors in Figure 3.11 (a, b) fail to model the texture patterns

and thus resulting undesirable segmentations (parts of the foreground object are suc-

cessfully extracted). In addition, Gaussian-blurring preprocess is verified to be a booster
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for the texture discriminative ability of LBP (comparing Figure 3.11 (a) with (b) and (c)

with (d)).

LBP GLBP LBP + Template GLBP + Template

(a) (b) (c) (d)

Figure 3.11: Texture feature configuration using neighborhood template improves the
graph-cut based segmentation performance on synthetic "Texture" image. RF classifier
is applied to learn the features and outputs the probability of each pixel classified to
foreground. The corresponding probabilistic distribution maps are shown in the first
row while the final segmentations in the graph-cut based framework without hard-
constraints are shown in the second row.

3.4.1.2 Fusion of texture/color features

Texture feature is a discriminant in segmentation of the synthetic "Texture" image, how-

ever, the contribution of the color feature alone, or the combination of texture and color

features is also experimented under same experimental settings but allowing color in-

formation in diverse configurations of features: (a) color feature without neighborhood

template (3-dimensional color feature vector, each vector consists of tri-channel values),

(b) combination of color and texture features (GLBP) without neighborhood template (4-

dimensional texture-color feature vector), (c) color feature using neighborhood template

(75-dimensional color-shape feature vector) and (d) combination of color and texture fea-

tures (GLBP) using neighborhood template (100-dimensional texture-color-shape feature

vector). Corresponding experimental results are illustrated in Figure 3.12.

Based on Figure 3.12 (a, c), color feature alone is unable to distinguish texture as

expected. It results ambiguous probabilistic distribution and false segmentation even

strengthened by using neighborhood template (cf. Figure 3.12 (c)). By adding GLBP tex-
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ture feature into the feature configuration, segmentation performance can be improved

considerably (cf. Figure 3.12 (b, d)). Nevertheless, comparing Figure 3.12 (d) with

Figure 3.11 (d), color feature in this particular case degrades the performances of the

segmentation. It is somewhat an injurious ingredient and should be excluded in feature

configuration.

Color Color + GLBP Color + Template Color + GLBP + Template

(a) (b) (c) (d)

Figure 3.12: Color feature has negative influence on segmentation of the synthetic "Tex-
ture" image. First row illustrates probabilistic distribution maps obtained by RF clas-
sifier. Second row shows final segmentations in graph-cut framework without hard-
constraints.

In conclusion, our proposed neighborhood template for feature modeling can en-

hance the discriminability of a feature descriptor allowing the classifier to predict clas-

sification results with high accuracy. Though neighborhood template was originally

designed as a refined alternative of the block-histogram based LBP feature configura-

tion, it also shows excellent generalizability to other local pixel-based properties like

color information. In this section, we test our feature configuration through a repre-

sentative example of the synthetic "Texture" image. The limitation of the example is

obvious: texture feature is the only discriminant that can be used to train a classifier

and perform the segmentation task in graph-cut based framework. However, for most

real-world examples, feature selection is more complicated and it is often the case that

we can benefit from the incorporation of multiple features.

In the following section, we will experiment on several natural images whose char-

acteristics depend mainly on pixel color information as well as the texture feature.



3.4. Graph-Cut based Segmentation using Support Vector Machine and Random Forest 65

3.4.2 Experiments on Natural Color Images

In this section, we perform two groups of experiments, (i) Graph-cut based segmenta-

tions using SVM and Random Forest classification learning different combinations of

features and (ii) Comparison of color-feature based graph-cut segmentation methods,

Boykov-Jolly’s approach, Lazy Snapping algorithm and GrabCut algorithm, with our

proposed multi-feature based approach, based on natural color images taken from the

Berkeley Segmentation Dataset [35] and the MSRC GrabCut Segmentation Database [20].

Images taken from the former dataset are in size of 481× 321 pixels while images from

the latter are in size of 450× 600 pixels. We divided the experimental objects into two

image subsets: 40 images for training and 60 images for testing. Quantitative evaluation

of segmentation performance on a natural color image is given by the calculation of per-

centage of mis-classified pixels compared to the corresponding gold truth (cf. Equation

(2.45)).

General experimental settings are as follows:

• Feature: In Experiment I, we have 6 different types of feature configurations: (a)

1-dimensional color feature vector ("color"), (b) 4-dimensional LBP texture-color

feature vector ("color+LBP"), (c) 4-dimensional GLBP texture-color feature vector

("color+GLBP"), (d) 75-dimensional color-shape feature vector ("color+Temp"), (e)

100-dimensional LBP texture-color-shape feature vector ("color+LBP+Temp") and

(f) 100-dimensional GLBP texture-color-shape feature vector ("color+GLBP+Temp").

In Experiment II, only the 100-dimensional texture-color-shape feature vector is

taken into consideration. For GLBP, parameter σ is 3 and the kernel size of the

gaussian filter is 7× 7. This ensures the possibility of GLBP texture feature encod-

ing unpredictable texture patterns without losing too much detail.

• Classifier: SVM and RF classifier are both adopted and the parameters of the

classifiers are estimated using cross-validation method. For SVM, kernel function

is GRBF, with its parameter γ fixed at 0.5; the soft-margin parameter C is 10. For

Random Forest, we train a RF classifier with 100 trees of depth 25.

• Energy function: Parameter λ is selected as 40 by optimizing the performance

against ground truth in the training set of 40 images. Other settings of parameters

particular for Boykov-Jolly approach, Lazy Snapping and GrabCut are detailed in

Section 2.4.4.

• Graph: A 8-neighborhood adjacent directed graph is constructed with two termi-

nal nodes s and t, respectively connected to the "foreground" seeds and "back-
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ground" seeds. By satisfying the user-specified hard constraints, a minimum cut

on a graph can be found with edge weights appropriately defined can to generate

an optimal segmentation. The edge weights of the graph are given in Table 3.3.

Table 3.3: Edges weights for maximum a posteriori estimation.
Edge Weight For

ws,p

− log Pr(−1|xp) p ∈ V \ {O ∪ B}
+∞ p ∈ O
0 p ∈ B

wp,t

− log Pr(+1|xp) p ∈ V \ {O ∪ B}
0 p ∈ O

+∞ p ∈ B

wp,q λ ·
|lp−lq|

||xp−xq||2+1 ·
1

dist(p,q) {p, q} ∈ N

Figure 3.13 and Figure 3.14 show the great effectiveness of the color-texture-shape

feature configuration on segmentation of 8 representative sample images. By compar-

ing correspondingly (e) with (b), (f) with (c), and (g) with (d) in Figure 3.13 and Figure

3.14, we find that neighborhood template can improve the segmentation performance by

enhancing the discrimination of both color and texture features. It allows the LBP code

to capture representative texture patterns and helps to gather additional color informa-

tion from the neighborhood pixels. Enhancement of performance is especially obvious

in regions where the color information is less discriminative for the distinction of fore-

ground and background. For instance, hip-leg part in "Leopard", cross-church part in

"Cross", gravestones in "Grave", shadow in "Plane", body-precipice part in "Sheep" and

plash in "Boat". In addition, by comparing (f) and (g) with (e) in Figure 3.13 and Figure

3.14, we can find that by adding the texture information to the feature configuration,

our proposed approach is robust in cases that classifiers trained with color information

alone fail to generate distinct soft classifications. Promising segmentations can still be

obtained in some difficult cases where foreground/background color profiles are similar

(examples are mentioned before), with multi-feature configuration under the proposed

segmentation framework. Note that LBP texture feature with Gaussian blurring (GLBP)

does not always guarantee higher segmentation accuracy: except for "Leopard" and

"Sheep", where strong large-scale texture features like "leopard-print" are excepted to be

recognized by GLBP, in other images like "Cross" and "Grave", small-scale or obscure

texture structures may be ignored by Gaussian-blurring preprocessing. Table 3.4 states

the corresponding segmentation error rates (cf. Equation (2.45) for its definition) subject

to different feature configurations on 8 natural color images shown in Figure 3.13 and

Figure 3.14. Quantitative evaluation listed in Table 3.4 verifies that feature configuration
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combining texture, color and shape information together leads superior segmentation

performance. Also, we notice that RF classifier shows competitive learning ability as

SVM. In some cases, for example, segmentations on "Cross" and "Grave", RF outper-

forms SVM in considerably decrease of segmentation error.
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Based on the results obtained in Experiment I, we decide to compare our proposed

approach using 100-dimensional texture-color-shape feature vector (except for the syn-

thetic "Texture" image, we do not add color information into the feature configuration,

i.e., 25-dimensional texture-shape feature vector) with other approaches that model color

distributions solely: classical graph-cut segmentation method proposed by Boykov and

Jolly (Boykov-Jolly), the Lazy Snapping algorithm and the GrabCut algorithm. The

segmentations are shown in Figure 3.15 and Figure 3.16 and the corresponding seg-

mentation error rates are listed in Table 3.5. Our proposed approach shows superior

performance on segmentation of both artificial and natural data.
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Table 3.5: Quantitative evaluation of Boykov-Jolly, Lazy Snapping, GrabCut and our
approach on synthetic texture image and natural color images taken from Berkeley Seg-
mentation Dataset [35] and the MSRC GrabCut Segmentation Database [20]. Value in
bold corresponds to the best performance.

Input image

Error ǫ (%) Method
Boykov-Jolly Lazy Snapping GrabCut Our approach

Texture 27.46 11.65 19.46 3.81

Leopard 37.22 55.95 47.16 11.84

Grave 20.63 10.89 5.15 7.61
Cross 75.81 18.43 57.82 3.99

Swimmer 16.25 8.02 165.20 13.10
Plane 15.59 19.00 38.10 6.78

Japanese 6.33 5.29 3.58 1.52

Sheep 55.23 70.97 51.43 20.66

Birds 19.05 18.64 25.50 10.82

Boat 18.60 17.17 10.58 9.64
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Melanoma, named after its high concentration of melanin, is a malignant tumor of

melanocytes. Melanocytes are cells that produce a dark chromophore, melanin,

which is primarily responsible for the skin color. Melanoma predominantly occurs in

skin, but also can be found in other parts of human body that contain melanocytes

(i.e. bowel, oral cavity, eye, etc.). As a skin cancer, melanoma is a less frequent type

compared to the other types like Basal cell carcinoma and Squamous cell carcinoma [4].

However, it is more likely to spread and most fatal (it causes 75 percent of deaths related

to skin cancer [9]) unless diagnosed in the early stage. People who have large numbers of

freckles or moles, fair skins with blue eyes, high tendency of sunburns (all these physical

signs are particularly common among Caucasians, especially northwestern Europeans

living under long-term sunlight exposure) are considered more risky in suffering from

melanoma.

Early detection of malignant melanoma when it remains in the epidermis layer

of skin can result almost 100 percent of cure rate. Clinical diagnosis of malignant

melanoma is mainly based on two different discriminating systems: the ABCDE cri-

teria [77] and the 7-point checklist [10]. For the former system, signs and symptoms

of melanoma are summarized by the acronym "ABCDE", which stands for Asymmetry,
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Border irregularity, Color diversification, Diameter greater than 6mm and Evolving over

time. For the later system, it provides a scoring diagnostic method for low number of

features based on shape, color and texture to conduct simplified epiluminescence mi-

croscopy (ELM) pattern analysis.

In dermatologic practice and clinical research, diagnosis of melanoma with human

visual inspection is often extremely complicated, thus time-consuming, and somewhat

subjective, thus less accurate, even for well-trained dermatologists [18]. In spite that

human eyes have the ability to distinguish malignant melanoma from other melanocytic

and non-melanocytic pigmented skin lesions (PSLs) when high-contrasting color, tex-

ture and other morphological features are observed, we are unable to precisely quantify

our feature perception without instrumental means. To obviate the problem of com-

plex and qualitative interpretation by human visual perception, there is of great interest

to develop a computer-aided automatic melanoma diagnosis system that can assist the

clinical evaluation of dermatologists. This system can be designed based on two sub-

systems: (a) imaging acquisition (i.e. dermoscopic images and spectroscopic images) on

PSLs with surrounding normal skin and (b) PSL image analysis including image seg-

mentation, feature extraction and selection, and PSLs classification. As a first step in

melanoma identification, image segmentation is essential to localize the PSL and deter-

mine its boundary for the further measurements of features such as maximum diameter,

irregular boundary, variegated colors.
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4.1 Structure and Optical Property of Human Skin

Human skin is the outmost covering of body and the largest organ in terms of both

weight and surface area. It has a very complex structure that consists of various types

of components including veins, capillaries, hairs, cells, fibers, etc (as depicted in Figure

4.1). The coexistence of these components makes skin a multi-layered tissue composed

of three primary layers: epidermis, dermis and hypodermis (also called Subcutaneous

tissue). Each layer is distinct in both functionality and optical property.

Subcutaneous tissue

Figure 4.1: Anatomy of human skin. Three primary layers of skin (epidermis, dermis,
and hypodermis) are illustrated as well as an inset with a close-up view of the types of
cells in the skin (squamous cells, basal cells, and melanocytes). Courtesy of Don Bliss as
illustrator of this image.

4.1.1 Skin Chromophores

A chromophore is the part of a molecule that has the ability to absorb light at a certain

wavelength with a characteristic efficiency given by the molecular extinction coefficient.

Among various types of chromophores in human skin, melanin and hemoglobin (in-

cluding oxy-hemoglobin and deoxy-hemoglobin) are most important for understanding

the skin color since they absorb light particularly in the visible wavelength range [7, 98].
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4.1.1.1 Melanin

The primary determinant of variability in human skin color is the concentration and

distribution of the chromophore melanin. Melanin is produced by melanocytes, which

can be found in the basal layer of the epidermis (cf. Figure 4.1). Basically, there are

two common types of melanin, eumelanin and pheomelanin, depending on its the chem-

ical structure. Eumelanin characterizes itself in black-to-dark-brown color and usually

locates in black hair and retina of eye, while pheomelanin is a yellow-to-reddish-brown

chromophore that can be found in red hair and feather. Since eumelanin is the most

abundant melanin in human skin, we will refer to the term "melanin" as "eumelanin".

4.1.1.2 Hemoglobin

Hemoglobin, the primary protein constituent of erythrocyte (cf. Figure 4.2), is respon-

sible for transport oxygen throughout body via vessels and capillaries. In general,

hemoglobin can be saturated with oxygen molecules (oxy-hemoglobin), or desaturated

with oxygen molecules (deoxy-hemoglobin). It mainly distributes in the superficial vas-

cular plexus of the skin (cf. Figure 4.3 (a)) and more than 47% of the hemoglobin is

oxy-hemoglobin [8]. Oxy-hemoglobin has a reddish hue while deoxy-hemoglobin has a

purplish color.

Figure 4.2: A scanning electron microscope image of erythrocytes (red blood cells)
from normal circulated human blood. Beside biconcave erythrocytes, this photo also
shows small amount of globular leukocytes (white blood cells) and disc-shaped platelets
(thrombocytes). Courtesy of Bruce Wetzel and Harry Schaefer as two photographers of
this image.
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4.1.2 Interaction of Light with Skin

Figure 4.3 (a) shows the schematic model of imaging process of three layered model

of skin. Three predominant chromophores found in epidermal and dermal layers are

melanin (abbreviated as Mel) and oxy-hemoglobin (abbreviated as HbO2) and deoxy-

hemoglobin (abbreviated as Hb) [7]. Based on the Beer-Lambert law, the absorbance of

this skin model at a wavelength λ can be expressed as

A(λ) = log(1/R(λ))

= ǫHbO2(λ)lHbO2(λ)cHbO2 + ǫHb(λ)lHb(λ)cHb + ǫMel(λ)lMel(λ)cMel (4.1)

where l is the light penetration depth, c denotes the concentration of the chromophore

and ǫ is the extinction coefficient that depends on absorbance spectrum of the chro-

mophore (cf. Figure 4.3 (b) plotted in logarithmic scale).

The extinction coefficient of hemoglobin has local maxima between 542 nm and 577

nm, which provides a convenient wavelength region for the quantification of hemoglobin.

The extinction coefficient of melanin has no characteristic maximum in the visible region

but demonstrates a monotonic decrease towards larger wavelengths. Particularly, in red

region of the spectrum (> 600 nm), the molar absorptivity of melanin is more prominent

compared with the other chromophores. Hence, the red region can be used for melanin

quantification.
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Figure 4.3: Optics of human skin. (a) Schematic of optical pathway in a 3-layered skin
model (scattering is omitted). (b) Estimation of relative molar absorptivity spectra of
three predominant chromophores, oxy-hemoglobin, deoxy-hemoglobin and melanin,
plotted in logarithmic scale.
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4.2 Skin Chromophore Extraction in Different Color Spaces

A variety of familiar cutaneous phenomena, such as tanning after a sunbath, redden-

ing after alcohol assumption are always responses to the quantitative variations of two

primitive skin chromophores, epidermal melanin and dermal hemoglobin. Also, many

skin diseases (e.g. melanoma) are induced by absence or overmuch of these two chro-

mophores. This makes it necessary and valuable to estimate melanin/hemoglobin con-

tent distributions objectively. To avoid ambiguity, the estimation of melanin/hemoglobin

content in terms of intuitionistic distribution map is named "skin chromophore extrac-

tion" throughout this thesis.

Color is easier to perceive than reflectance spectrum, however, difficult to quanti-

tate objectively. Color spaces, or color models (i.e. RGB, L∗a∗b∗, HSV, etc.), provide

us a mathematical and geometrical 3-dimensional representation of color information

thus allow quantitative measurement of perception of skin color to estimate skin chro-

mophore content.

In this section, we mainly focus on skin chromophore extraction in different color

spaces. The primary steps for chromophore content estimation in a skin color image

using color information are: (i) to represent image pixels in a suitable color space, (ii)

to model the melanin and hemoglobin components using a suitable distribution, (iii) to

quantitate the modeled distribution. There exists several relative researches presented

in recent literature, including but not limited to:

• Skin pigmentation quantification in L∗a∗b∗ space. Chardon et al. [33] proposed a

vector presentation for UV-induced tanning reaction and Jung et al. [54] proposed

to evaluate erythema and melanin content in port wine stain lesions in L∗a∗b∗

space. Three indices of L∗a∗b∗ system indicate close but dependent correlation

between melanin/hemoglobin contents. Moreover, L∗a∗b∗ system has been devel-

oped to approximate color perception and not to extract accurate physiological

information.

• Skin chromophore decomposition in HSV space. Intuitive color spaces, like HSV,

allow convenient measurement of skin color. Kim and Kim [56] proposed a method

for skin chromophore decomposition in HSV color space from a single digital im-

age. Though cone-shaped model and radially sorted hue values in HSV color space

result in hemoglobin/melanin maps closer to the real distribution of the human

subject, it is just a description rather than a true quantitative science without any

relation to the optical and biological properties of the skin.
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• Separation of spatial distributions of melanin and hemoglobin in RGB space. Prin-

cipal component analysis (PCA) and independent component analysis (ICA) are

applied to extract chromophore distribution in logarithmic RGB space (optical den-

sity space) by Tsumura et al. [91]. However, the direction of the color plane ex-

tracted by PCA varies as the sample skin region (with different illumination condi-

tion) changes. Therefore, their approach fails in producing absolute quantity of the

pigments from different samples of a human subject; rather, it produces relative

quantities varying from one sample to the other.

To overcome the deficiency of Tsumura’s approach in extracting false chromophore

distribution of skin sample under uneven illumination condition, we propose to model

skin chromophore distribution by fitting a quadratic surface in logarithmic normalized

RGB space and flattening it onto a 2-dimensional color plane. Qualitative evaluation

based on dermatologic knowledge via comparative experiments indicates that our pro-

posed method extracts more accurate chromophore distribution than other existing ap-

proaches.

4.2.1 L∗a∗b∗ (CIELAB) Color Space

CIE L∗a∗b∗ is the most complete color space specified by the Commission Internationale

d’Éclairage (CIE). Unlike the RGB color space, it is designed to represent perceptual

uniformity, which is similar to the color sensitivity of human vision system. It consists

of three coordinate axes: (i) L∗-axis represents "lightness", which measures the reflected

light intensity. Scale of L∗ value ranges from 0 indicating the theoretical black to 100

indicating the perfect white; (ii) a∗-axis represents "chromaticity", which measures the

color saturation varying from -60 for "green" to +60 for "red"; (iii) b∗-axis also describes

"chromaticity" and varies from -60 for "blue" to +60 for "yellow". Three axes are orthog-

onal to one another (cf. Figure 4.4 (a)).
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Figure 4.4: Skin color distribution in L∗a∗b∗ color space.
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To convert RGB color space to L∗a∗b∗ color space, RGB tristimulus coordinates are

first converted into device-independent CIE XYZ tristimulus coordinates by a linear

transformation:

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There are numbers of CIE spaces that can be created based on tristimulus values, X,

Y and Z, including L∗a∗b∗ color space. By nonlinear transformation, L∗a∗b∗ system can

be defined as:

L∗ =116× f (Y/Yn)− 16

a∗ =500× [ f (X/Xn)− f (Y/Yn)]

b∗ =200× [ f (Y/Yn)− f (Z/Zn)]

(4.3)

where f (φ) = φ1/3, for φ > 0.008856 and (Xn,Yn, Zn) are X, Y, Z values for the standard

white reference.

After conversion from RGB color space into L∗a∗b∗ color space, all skin colors fall

within a ’banana’ shaped volume (cf. Figure 4.4 (b,c)). Chardon et al. [33] proposed to

quantitate skin pigmentation based on the experimental fact that skin reddening (ery-

thema) can be represented as a shift on the L∗ − a∗ whereas variation of melanin content

can be represented as a shift on the L∗ − b∗ plane. The "individual typology angle"

or "alpha characteristic angle" α was calculated independently to measure the melanin

content:

α =

[

arctan
(

L∗ − 50
b∗

)]

×
180
π

(4.4)

This angular parameter is inversely proportional to the melanin content and has been

empirically shown to correlate well with the color appearance of skin.

In context of characterization of port wine stain (PWS) skin erythema and melanin

contents, Jung et al. [54] utilized cross-polarized skin color image to calculate the L∗a∗b∗

indices images, where a∗ index image was used as an indicator of erythema distribution

and the L∗ index image the inverse of melanin distribution.

According to the contributions of Chardon and Jung, we propose to measure skin

erythema and melanin contents utilizing a∗ index image and the combination of L∗ and

b∗ indices images to derive the erythema/melanin distribution maps based on digital
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camera images:

Erythema =a∗

Melanin =
b∗

L∗

(4.5)

For melanin content measurement, combination of L∗ and b∗ indices seems to be a

more accurate parameter than L∗ or b∗ index alone. Since in some particular cases,

for example, during application of sub-diastolic pressure with a pressure cuff, Stamatas

et al. [85] have shown that increase of hemoglobin content can result in synchronous

decrease of values of L∗ and b∗.

Except for the digital imaging based approaches mentioned above, there exists sev-

eral of tristimulus reflectance colorimeters, for example, Chromameter CR 200™(Minolta,

Osaka, Japan) and Photovolt™(UMM Electronics, Indianapolis, IN, USA) for commercial

use of calculation of L∗a∗b∗ values. These contact-instrument based approaches certainly

improve the accuracy of skin color measurement in L∗a∗b∗ system (X, Y and Z tristim-

ulus values are determined directly from the narrow-band reflectance data, instead of

device-dependent RGB tristimulus values of a digital camera image), however, they are

limited by (i) small measurement area (maximum 10 mm diameters), (ii) no resolution

of spatial resolution and (iii) possible artifacts (e.g. skin blanching or stasis) induced by

probe contact pressure.

It is worth noting that neither digital imaging approach nor reflectance colorimetric

approach is able to separate individual contributions of chromophores responsible for

skin color with high accuracy in L∗a∗b∗ system. Changes in content of hemoglobin or

melanin can influence all three indices. For instance, Shriver et al. [83] have shown that

a∗ value can be affected by epidermal melanin content. With high melanin content, the

a∗ value is not related solely to hemoglobin content due to high absorption of green

light by melanin.

4.2.2 RGB Color Space

RGB color space is the most commonly used model for for the sensing, representation,

and display of images in electronic systems, such as televisions and computers. It is

suitable for color display, however, characteristics of device-dependency and high corre-

lation between channels, make RGB space not suitable for color analysis. Tsumura et al.

[91] proposed to extract hemoglobin and melanin information by principal component

analysis (PCA) and independent component analysis (ICA) in the logarithmic RGB space

(optical density domain) assuming the linearity between contents of chromophores and
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observed color signals.

The Tsumura’s method to extract hemoglobin and melanin components from a sin-

gle skin color image is briefly reviewed in this section. As mentioned in Section 4.1,

skin is a turbid media with multiple layers. Among various chromophores, melanin

and hemoglobin are dominantly contained in the epidermal and dermal layer, respec-

tively. On the basis of the four assumptions made by Tsumura and the Lambert-Beer law

[47], skin color can be modeled as a linear combination of the densities of melanin and

hemoglobin in the optical density domain of three channels: − log(Rl,m), − log(Gl,m)

and− log(Bl,m) (cf. Figure 4.5), where Rl,m, Gl,m and Bl,m denote the tri-channel pixel

values of the skin color image on the image coordinate (l,m), respectively. It is seen that

three densities of skin color are distributed on the two-dimensional plane spanned by

two pure color vectors indicating melanin and hemoglobin. The color density vector cl,m

is denoted as

cl,m = [− log(Rl,m),− log(Gl,m),− log(Bl,m)]
⊤ (4.6)

According to the skin color model shown in Figure 4.5, the color density vector of skin

can be expressed by

cl,m = Cql,m + c(3) (4.7)

where C = [c(1), c(2)], ql,m = [ql,m(1), ql,m(2)]⊤. c(1) and c(2) denote density vec-

tors of melanin and hemoglobin, ql,m(1) and ql,m(2) are relative quantities of the two

chromophores, c(3) is spatially stationary vector cause by other chromophore and skin

structure (i.e. β-carotene and thickness of hypodermis). From Equation (4.7), skin color

can be considered as a mixed signal of two independent signals. PCA and ICA are

then applied to extract the 2-dimensional plane spanned by c(1) and c(2) (note that two

principle components p(1) and p(2) extracted by PCA will determine the 2-dimension

plane spanned by c(1) and c(2) , as shown in Figure 4.5) and to estimate the quantity

vector ql,m, respectively, for getting melanin distribution map and hemoglobin distribu-

tion map.
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Figure 4.5: A schematic of skin chromophore extraction method proposed by Tsumura
et al. [91].

In spite that Tsumura’s approach reviewed previously was able to extract relative

accurate hemoglobin and melanin distributions on the basis of skin optical property and

statistical analysis, its applications are restricted to small region of skin samples (64× 64

pixels) where the chromaticity and illumination condition roughly stay invariant. A 2-

dimensional color plane approximating the distribution of sampled skin color in optical

density domain can be extracted by PCA with high accuracy (99.3%). However, position

and direction of the color plane varies according to the changes of local chromaticity

and illumination of sampled skin region. For example, if PCA is applied to skin color

influenced by shading effect under nose (cf. Figure 4.6 (a)), the extracted color plane

will be rotated to the direction of illumination vector 1 = [1, 1, 1]⊤, which can result

false estimation of skin chromophores (cf. Figure 4.12 (a, b)). To eliminate the shading

effect, Tsumura et al. [92] proposed a projection technique for shading removal along

the illumination vector 1 and showed promising results particularly in shading skin part.

Nevertheless, when the normal of the color plane is tilted largely from the illumination

direction, projected color values can be out of the optical density cube. Thus the user

has to give different region for the sampling (in the literature, a slide window with size

of 100× 100 pixels was adopted for sampling task). In addition, Tsumura’s approaches

have not mentioned how to determine which separation vector corresponds to melanin

component and which corresponds to hemoglobin component.

In order to extract hemoglobin and melanin components from a single large-region

facial image with complex chromaticity and illumination (cf. Figure 4.6 (a)), it is crucial

to model the skin color distribution in a more suitable system as well as intelligent



4.2. Skin Chromophore Extraction in Different Color Spaces 87

(a)

-log(r)

-l
o
g
(b
)

-log(g)

(b)

-log(r)

-l
o
g
(b
)

-log(g)

(c)

-log(R)

-l
o
g
(B
)

-log(G)

(d)

-l
o
g
(B
)

-log(G) -log(R)

(e)

Figure 4.6: Color distribution of (a) large-region facial image of 454× 619 pixels in: (b,
c) logarithmic Nrgb color space and (e, d) optical density domain.

manner. As we can observe in Figure 4.6 (d, e) that distribution of skin color from

large-region facial image no longer lies on a approximate 2-dimension plane, instead,

it falls into a complex 3-dimensional volume. In this case, dimensionality reduction by

PCA fails in preserving the true structure of the data. Inspired by normalized RGB color

space, which is independent of image luminance, we propose to combine optical density

with normalized RGB color space to represent skin color so that the new color system

holds linearity between quantities of skin chromophores and observed color intensities

while being robust to the variation of illumination.

4.2.2.1 Normalized RGB color space

An effective and simple way to eliminate the distortion of skin color image caused by

uneven illumination condition (e.g. highlight and shadow) is to get the variations of

intensities uniformly across the spectral distribution. The normalized RGB (Nrgb) color

space is formulated as:






















r = R/(R+ G + B)

b = B/(R+ G + B)

g = G/(R+ G + B)

(4.8)
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This representation of RGB tristimulus values reduces the sensitivity of the distribution

to the color variability by normalization, however, loss of information due to the nonlin-

ear transformation from RGB color space to Nrgb color space leads to noise under low

intensity.

Skin color distribution of large-region facial image (cf. Figure 4.6 (a)) in the logarith-

mic Nrgb color space is demonstrated in Figure 4.6 (b, c). Color information of all pixels

of the sample image lies approximately on a 3-dimensional quadratic surface, therefore,

it is nature to fit this surface by regression of a second-order polynomial model and

flatten (project) it along a certain direction to get a 2-dimensional color plane where skin

color distribution can be separated subsequently into two components, hemoglobin and

melanin, via independent component analysis (ICA). The whole proposed procedure of

skin color distribution modeling by means of surface fitting and flattening (cf. Figure 4.7)

is denoted by "SF2 method".

(a) Input skin image with shadow

(c) Flattened 2-dimensional plane

(b) Logarithmic Nrgb color spacex

y x
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the clinician. A(xA, yA, zA)
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Figure 4.7: A schematic of our proposed SF2 approach based on Tsumura’s method.

For simplicity, we firstly formulate the quadratic surface by a quadratic polynomial

model defined as:

zi = c1x
2
i + c2y

2
i + c3xi + c4yi + c5, i = 1, 2, · · · , n (4.9)
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which can be compactly written in matrix form as:

z
n×1 =
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Also, as shown in Figure 4.7 (b), the assignments for three coordinate axes, x, y and

z are log r, log g and log b, respectively. According to the system of linear equations

in Equation (4.10), constant coefficients, c1, c2, · · · , c5, can be estimated through Moore-

Penrose pseudoinverse that minimize the the Sum of Squared Error (SSE):


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














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c5





















5×1

=
[

(log r) ◦ (log r) (logg) ◦ (logg) (− log r) (− logg) 1

]+

5×n

(− logg)
n×1

(4.11)

where r, g and b are the normalized images of red, green and blue channel, respectively.

n is the number of total pixels of the input image.

After the determination of the mathematical model of skin color distribution in

the logarithmic Nrgb color space via surface-fitting, we propose to flatten the fitted

quadratic surface vertically along the direction of negative z-axis. Suppose an arbitrary

point A(xA, yA, zA) lying on the surface (cf. Figure 4.7 (b)), the corresponding point

B(xB, yB) in the flattened 2-dimensional plane (cf. Figure 4.7 (c)) can be calculated as:

xB = distgeodesic

(

A(xA, yA, zA), P1(0, yA, c2y2A + c4yA + c5)
)

yB = distgeodesic

(

A(xA, yA, zA), P2(xA, 0, c1x2A + c3xA + c5)
) (4.12)

where P1 is the intersection point of curve u1 : z = c1x
2 + c3x + c2y

2
A + c4yA + c5 and

y-axis, P2 is the intersection point of curve u2 : z = c2y
2 + c4y + c1x

2
A + c3xA + c5 and

x-axis, distance function distgeodesic(p, q) computes the geodesic distance between two

points p and q on a Riemannian manifold M.
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4.2.2.2 Geodesic distance

By definition, the shortest curve on a Riemannian manifold M that connects two given

points is the geodesic. Given a continuously differentiable curve u : [a, b] → M and its

two terminal points p, q ∈ M with p = u(a) and q = u(b), the arc length L(u) of u can

be defined as:

L(u) =
∫ b

a
|u′(t)|dt (4.13)

If the tangent vector at each point along this curve stays constant, that is,

∇u′u
′ = 0 (4.14)

then we can call the curve a geodesic and the geodesic distance between p and q can be

defined as:

distgeodesic(p, q) =
∫ b

a
|u′(t)|dt ∀t ∈ [a, b],∇u′(t)u

′(t) ≡ 0 (4.15)

Combining Equation (4.15) and Equation (4.12), the projected point B(xB, yB) in the

flattened 2-dimensional plane from an arbitrary point A(xA, yA, zA) in the quadratic

surface can be determined as:

xB =
∫ xA

0

√

(2c1x + c3)2 + 1 dx

yB =
∫ yA

0

√

(2c2y+ c4)2 + 1 dy
(4.16)

Finally, we apply independent component analysis (ICA) to the skin color distri-

bution on the flattened 2-dimensional plane to estimate the distributions of two skin

chromophores, Q(1) = [qi,j(1)]m×n and Q(2) = [qi,j(2)]m×n, on a m× n skin color image.

Here, qi,j(1) and qi,j(2) are two elements of the quantity vector qi,j = [qi,j(1), qi,j(2)]⊤ in

Equation (4.7). One main problem which is not mentioned in Tsumura’s work is that it

is difficult to determine if Q(1) indicates the hemoglobin content distribution and Q(2)

for melanin content distribution, or vice versa, without a prior any relevant information.

To distinguish the estimated chromophore content distributions, the Pearson correlation

coefficient (PCC) is introduced to measure the correlation (linear dependency) between

Q(1) or Q(2) and a∗ index image of CIE L∗a∗b∗ color space, since a∗ index indicates
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close correlation with hemoglobin content, as mentioned in Section 4.2.1.

rk =
∑
m

∑
n
(Qij(k)−Q(k))(a∗ij − a∗)

√

(

∑
m

∑
n
(Qij(k)−Q(k))2

)(

∑
m

∑
n
(a∗ij − a∗)2

)

k = 1, 2 (4.17)

If r1 > r2, then Q(1) corresponds to the distribution of hemoglobin content and Q(2) to

the distribution of melanin content. Otherwise, Q(1) corresponds to the distribution of

melanin content and Q(2) to the distribution of hemoglobin content.

4.2.3 HSV Color Space

In this section, we briefly review the Kim’s method [56] for skin chromophore extraction

in HSV color space. One visualization model of the HSV is cone. In this representa-

tion, hue is depicted as the color wheel of a 3-dimensional cone; saturation is represented

by the distance from the center of a circular cross-section of the cone, and value is the

distance from the apex of the cone representing the brightness (cf. Figure 4.8 (b)). The

user-selected sample region S, from the body reflection image, is shown in Figure 4.8

(a). RGB color values (Ri,Gi, Bi) of the pixels pi ∈ S are mapped to HSV color space

(hi, si, vi). By averaging v, the third component of HSV color space, we can find the

color plane (i.e. a particular circular cross-section of the HSV color cone) (h, s, va), where

va = ∑
n
i=1 vi/n. It can be assumed that this color plane contains the two primitive com-

ponents, indicating melanin and hemoglobin, based on the following facts: the color

plane perpendicular to the value axis contains all hue and saturation informations; color

planes from different human subjects or from varying sample regions are different only

in their brightness. Then, the sample colors are projected along vector p = [hi, si, vi]
⊤

on to the color plane, as shown in Figure 4.8. Hemoglobin and melanin components are

then extracted successively by projecting the colors onto the color plane to two indepen-

dent axes. Since HSV color plane, well sorts out its hue values radically around its center

and sample color data is distributed nearly in the same area of red to green hues, it is

intuitionistic for the user to perceive where the independent color vectors are, without

counting on a statistical method such as ICA; this can be procedurally done simply by

radially searching the hue values, that encompass the color samples, on the color plane

projected, as shown in Figure 4.8 (c). In addition, based on the fact that melanin con-

tributes the yellow-brown color of skin and hemoglobin contributes the violet-red color,

it is reasonable that color vector with maximum hue value stands for hemoglobin com-

ponent while color vector with minimum hue value represents melanin. By assigning
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each pixel with its corresponding color vector magnitude, we can obtain the estimated

hemoglobin/melanin distribution map.

(a) Sampled skin region (b) HSV color space (c) Projection on circular cross section

Figure 4.8: A schematic of skin chromophore extraction method proposed by Kim and
Kim [56].

4.2.4 Experimental Results and Discussion

Skin chromophore extraction performances of the techniques mentioned in Section 4.2

are evaluated successively on two groups of experimental data (cf. Figure 4.9): one is

a 313× 257 resolution image of small-region facial skin (Figure 4.9 (b)) which contains

pimples, lips and freckles; another is a 454× 619 resolution image of large-region facial

skin (Figure 4.9 (c)) which contains not only freckles and pimples, but also highlighted

area (e.g. nose bridge), as well as shaded areas within and around the nose part (e.g. the

nostril, the in-between part of nose and lips, foot of the nose bridge, etc.). Both of the

two images are sampled from a 778× 1167 high-resolution image of entire facial skin

(Figure 4.9 (a)) where surface reflection that always produces highlight is reduced by

cross-polarization filter.
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(a) Entire facial skin 

(b) Small-region facial skin 

(c) Large-region facial skin 

1

2

1

2

3

3

4

Figure 4.9: Experimental inputs for skin chromophore extraction in different color
spaces: (a) a cross-polarized facial skin image of 778× 1167 pixels, (b) a small region
(313× 257 pixels) of the entire facial skin which contains lips (red circle 1), a pimple (red
circle 2) and two groups of freckles (black circle 1 and 2), (c) a large region (454× 619)
of the entire facial skin which contains highlighted/shading area, a pimple (red circle 3)
and two groups of freckles (black circle 3 and 4). Black indicates high concentration of
melanin while red for high concentration of hemoglobin.

One qualitative way to evaluate the results of skin chromophore extraction is to man-

ually observe if freckles or pimples/lips are successfully separated. Generally speaking,

freckles will mainly appear in melanin component while pimples/lips appear mainly

in hemoglobin component. Figure 4.10 presents extraction results on small-region facial

skin (cf. Figure 4.9 (b)). Here, the proposed method in L∗a∗b∗ color space gives false es-

timation on both melanin and hemoglobin extraction. Black circle 1 and 2 in Figure 4.10

(a) are supposed to have lower contents of hemoglobin while red circle 1 and 2 in Figure

4.10 (b) should contain no melanin at all. Kim’s method outperforms the L∗a∗b∗ method

by extracting relatively better melanin distribution map (though the melanin concentra-

tions marked by black circle 1 and 2 in Figure 4.10 (d) are supposed to be higher than

their surroundings), it also fails in estimation the hemoglobin distribution (Figure 4.10
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(a) and (c) are almost identical). On the other hand, both Tsumura’s method and our

proposed SF2 method obtain comparatively good extractions of skin chromophores as

they are able to estimate hemoglobin/melanin distributions much closer to the distribu-

tions of pimples/freckles.
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Figure 4.10: Skin chromophore extraction results of small-region facial skin by our pro-
posed method in L∗a∗b∗ color space: (a), (b); Kim’s method: (c), (d); Tsumura’s method:
(e), (f) and our proposed SF2 method: (g), (h). From left to right: hemoglobin distribu-
tion map and melanin distribution map.
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Figure 4.11 and Figure 4.12 show the extraction results on large-region facial skin (cf.

Figure 4.9 (c)). Firstly, we evaluate the performance of each method by verifying that

whether the extracted chromophore distributions match the actual distribution of pim-

ples and freckles or not. In Figure 4.11 (b), L∗a∗b∗ based method fails to exact accurate

melanin distribution where black circle 4 is supposed to indicate a region with relatively

higher content of melanin while the area marked by red circle 3 should have no melanin

at all. Kim’s method obtains slightly better estimation of melanin distribution (cf. Figure

4.11 (d)) than the former method. However, the contrasts between interior and exterior of

circles are lack of discrimination. Tsumura’s method in this case gives the worst estima-

tion on melanin distribution (cf. Figure 4.12 (b)) since no evidence of melanin contents

can be observed within black circle 3 or 4, which conflicts with the fact that regions

marked by black circles are freckle with high content of melanin. In addition, observe

the highlighted noise bridge part where black circle 4 locates. In the original image (Fig-

ure 4.9 (b)), this part appears pale with a large quantity of dark-brown freckles and pores

and a small quantity of red pimples, which is supposed to contains more melanin than

hemoglobin. However, falsely estimated by Tsumura’s method, hemoglobin content is

relatively high (cf. Figure 4.12 (a)), compared to the melanin content (almost nothing in

Figure 4.12 (b)). Best results of chromophore extraction are given by the proposed SF2

approach. One can easily indicate the locations of pimples and freckles according to the

hemoglobin/melanin distribution maps in Figure 4.12 (c) and (d).

Secondly, we evaluate the performance of each method by verifying whether they

are resilient to the shading effect at shaded parts including the in-between part of nose

and lips, as well as the foot of the nose bridge. Both L∗a∗b∗ based method and Kim’s

approach result in inaccurate estimation of hemoglobin distribution. In Figure 4.11 (a)

and (c), hemoglobin contents of the in-between part of nose and lips and the foot of nose

bridge are higher than that of the surrounding area, which is supposed to be virtually

constant. Tsumura’s method gives inaccurate estimation of the melanin distribution due

to the shading effect. In Figure 4.12 (b), melanin contents of the in-between part of

nose and lips and the foot of nose bridge are remarkably higher than their surrounding

skin area, which is supposed to have equivalent content of melanin. Compared to the

former three methods, our proposed SF2 method results in more accurate extraction of

hemoglobin/melanin distributions in Figure 4.12 (c) and (d), where the shading caused

by nose can not be observed.

Finally, we compare the extraction results of each method at another type of shaded

area, the nostrils. Due to its very low intensity, color distributions in RGB/HSV/L∗a∗b∗

color space are contaminated by noise, especially in the normalized RGB color space.
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Figure 4.11: Skin chromophore extraction results of large-region facial skin by our pro-
posed method in L∗a∗b∗ color space: (a), (b) and Kim’s method: (c), (d). From left to
right: hemoglobin distribution map and melanin distribution map.
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Figure 4.12: Skin chromophore extraction results of large-region facial skin by Tsumura’s
method: (a), (b) and our proposed SF2 method: (c), (d). From left to right: hemoglobin
distribution map and melanin distribution map.
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Thus, none of the four methods can estimate the chromophore distribution correctly.

Since we are lack of a prior knowledge about the chromophore concentration of nostrils,

a possible assumption that nostrils contain more hemoglobin than melanin due to the

fact there exist plenty of blood vessels which contain high content of hemoglobin will be

reasonable. Based on this, the proposed SF2 method gives estimation of chromophore

distribution close to the assumption.

In conclusion, our proposed SF2 method outperforms the other three methods in

more accurate extraction of hemoglobin/melanin distributions, especially at the high-

lighted and shaded parts of the facial skin image.

Essentially, both Kim’s method and Tsumura’s method adopt the same methodology

to perform skin chromophore extraction, which contains three main steps: (a) skin data

modeling; (b) data dimensionality reduction; (c) independent feature extraction. At the

first step, Kim’s method adopts an intuitive color model, HSV color model, making the

next two steps easier to be executed accurately without counting on any statistical tech-

niques, such as PCA and ICA. Due to insufficient knowledge of optical skin properties,

however, this method can give incorrect description of skin chromophore concentration

(cf. Figure 4.10 (c, d)) and thus cannot be employed as an aide for medical diagnosis.

Tsumura’s method, on the other hand, is based on optical density model of human skin.

Results obtained by this technique in Figure 4.10 (e) and (f) agree quite well with the

physiological knowledge. However, it performs incorrect chromophore extraction when

applied to process the large-region facial skin image (cf. Figure 4.12 (a, b)). Large-

region facial skin (cf. Figure 4.6 (a) or Figure 4.9 (c)) data in optical density domain

falls into a complex 3-dimensional volume (cf. Figure 4.6 (d, e)), which makes PCA fail

in preserving the true structure of the data and thus results in incorrect extraction. To

overcome the drawback of Tsumura’s approach in extracting false chromophore distri-

bution of skin sample under uneven illumination condition, we propose to model skin

chromophore distribution by fitting a quadratic surface in logarithmic normalized RGB

space and flattening it onto a 2-dimensional color plane. Qualitative evaluation based on

dermatologic knowledge via comparative experiments indicates that our proposed SF2

method extracts more accurate chromophore distributions than Kim’s and Tsumura’s

approaches.
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4.3 Skin Chromophore Quantification on Regular Color Images

with Physical Model

The focus of our work in this section is to estimate hemoglobin and melanin quantita-

tively based on regular color imaging of skin. We propose and compare four different

approaches using erythema/melanin indices, source separation algorithms (ICA and

NMF) and model-fitting. Both qualitative and quantitative evaluations indicate that

model-fitting approach outperforms the other three approaches.

4.3.1 Erythema Index and Melanin Index

In practice, quantification of skin chromophores can be characterized by the two param-

eters named ’Erythema Index’ (EI) and ’Melanin Index’ (MI) (or ’Pigmentation Index’),

which hold excellent linearity with hemoglobin concentration and melanin concentra-

tion respectively. Unlike color coordinates such as L∗a∗b∗, the EI and MI are not in-

dicators for evaluating ’color’ but indices for quantifying the amounts of hemoglobin

and melanin. To derive EI and MI, there exists several narrow-band reflectance instru-

ments for commercial use: Mexameter™(Courage & Khazaka GmbH, Cologne, Ger-

many), the DermaSpectrometer™(Cortex Technology, Hadsund, Denmark) and the Ery-

thema/Melanin Meter™(DiaStron Ltd, Andover, U.K.), etc. All these instruments utilize

the same basic approach, taking the log of ratios of reflectance within two or three se-

lected wavebands in the visible and infrared. These instrument-based approaches lead

a significant step forward in the quantification of the chromophores responsible for skin

color. However, as contact-type instruments, their applications are limited by the size of

measuring probe. It is difficult to readily evaluate an object larger or smaller than the

measurement area (approximately 10 mm diameter maximum). Also, probe pressure on

skin surface by direct contact can lead to artifacts such as blanching, which consequently

results in bad quantification of skin chromophores. Based on the theories of absorbance

of skin model (cf. Section 4.1), Takiwaki et al. [97] proposed a simple method to derive

EI and MI images from ordinary RGB images. The equations for calculating EI and MI

are written as follows:

EI = log10(1/Rgreen)− log10(1/Rred)

MI = log10(1/Rred)
(4.18)

where Rred, green = Sred, green/Wred, green. Rred, green are the calibrated red and green re-

flectance images of the sample under study, Sred, green are the acquired red and green
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color images of the sample and Wred, green are the average red and green values sup-

posed to be nearly equivalent in the white standard. In fact, this method is a simplified

application of algorithm proposed by Stamatas [85] within visible spectrum range.

4.3.2 Independent Component Analysis Based Approach

Hyvärinen et al. [49] proposed several techniques for Independent Component Analysis

(ICA) for decomposing multivariate data into independent components using a function

of non-Gaussianity. One of the most important contribution of their related works is

the FastICA algorithm. We have applied the FastICA for our problem of skin color

decomposition to quantify hemoglobin and melanin.

The general approach of ICA can be formulated as following: assume that we have a

sequence of observed data x1, x2, · · · , xn which can be arranged in the rows of the matrix

X. If each data xk is the linear combination of the source data (independent components)

sk then the observation matrix X can be represented as a product of two matrices

X = AS (4.19)

where A is a mixing matrix and S is a matrix of source data. The task of ICA is to

determine the mixing matrix A and the matrix of independent source data S given the

observation matrix X.

In our particular case, the application of ICA is based on independency of hemoglobin

and melanin, as well as the absorbance of the multi-layered model described in Section

4.1. Here, Equation (4.1) can be modified in form of Equation (4.19) (deoxy-hemoglobin

is omitted):








log(1/r(λR))

log(1/r(λG))

log(1/r(λB))









=









ǫHbO2(λR) ǫMel(λR)

ǫHbO2(λG) ǫMel(λG)

ǫHbO2(λB) ǫMel(λB)










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cHbO2

cMel



 (4.20)

where r(λR,G,B) are the calibrated reflectance images of red, green and blue channel,

respectively. ǫHbO2,Mel(λR,G,B) are extinction coefficients of hemoglobin and melanin at

’red band’, ’green band’ and ’blue band’, respectively. cHbO2,Mel denote concentration

distribution maps of hemoglobin and melanin. In Equation (4.20), we notice that the

number of reflectance images (three) in observation matrix is greater than the expected

number of independent components (two). Therefore, principle component analysis

(PCA) is applied to reduce the dimensionality of the observation matrix and prewhiten

the data so that the task of finding the mixing matrix reduces to the task of estimating a

square orthogonal matrix.
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The observation data is linearly transformed by PCA such that

X̃ = MX = MAS = ÃS (4.21)

where M is the whitening matrix calculated by eigen-value decomposition (EVD) of the

covariance matrix E{XX⊤} so that E{X̃X̃⊤}=I; Ã=MA is a new orthogonal mixing matrix

that can be seen from

E{X̃X̃⊤} = ÃE{SS⊤}Ã⊤ = ÃÃ⊤ = I (4.22)

The problem is now reduced to the estimation of the orthogonal mixing matrix Ã. The

columns of the matrix Ã are denoted by ãi and the ith source component can be com-

puted using X̃ by the following equation,

si = ã⊤i X̃ = w⊤X̃ (4.23)

The FastICA algorithm for one unit as described in Equation (4.23) is

w+ = E{X̃g(w⊤X̃)}− E{g′(w⊤X̃)}w (4.24)

wnew = w+/‖w+‖ (4.25)

The one-unit algorithm can be extended to the estimation of the whole ICA transfor-

mation S=W⊤X̃ using the Gram Schmidt deflation approach. This step of decorrelation

ensures that we do not obtain the same independent component.

4.3.3 Non-Negative Matrix Factorization Based Approach

Non-negative matrix factorization (NMF) suggested by Lee and Seung [63] is a useful

method of decomposition of multivariate data. The method explicitly enforces the non-

negativity constraint on the values of the source data as well as the mixing quantities of

the source data forming the mixed data.

Compared to the FastICA algorithm, NMF has two main advantages in application

to our problem. First, non-negativity constraint on the source data prevents meaningless

negative value of chromophore concentration. Second, no constrain on the orthogonality

of the source data allows dependency between skin chromophores, which is closer to

the reality.
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To extend NMF in our application, we simply employ the same linear mixture model

as described in Equation (4.19) and Equation (4.20). The non-negativity constraint is

enforced on the source data and the mixing matrix as S ≥ 0 and A ≥ 0 respectively.

Therefore, the problem can be formulated as a maximum-likelihood problem with least

squares solution as:

AML,SML = argmax
A,S

p(X|A,S) (4.26)

⇒ F = argmin
A,S

‖X−AS‖2 (4.27)

Subject to : A ≥ 0,S ≥ 0

In the maximum likelihood optimization, the negative log-likelihood of F is minimized

i.e. log ‖X−AS‖ is computed at each iteration. Here, ‖ · ‖ is the Euclidean norm. The

updates of A and S can be performed under the ’multiplicative update rule’ in forms as:

A ← A
XS⊤

ASS⊤
, S ← S

A⊤X

A⊤AS
(4.28)

This rule ensures the non-negative properties of the optimal solutions, AML and SML if

the initial matrices Ainitial and Sinitial are strictly positive. The initialization of the source

matrix S is given by EI and MI and the mixing matrix A can be initialized using least

squares estimation with a single constraint as given in Equation (4.29).

Sinitial =
[

EI
MI

]

(4.29)

argmin
Ainitial

‖X−AinitialSinitial‖
2 (4.30)

Subject to : Ainitial ≥ 0

4.3.4 Model-Fitting Based Approach

Source separation based approaches, like ICA and NMF, give us a statistical tool to

quantify skin hemoglobin and melanin if the mixing matrix A is unknown.

In this section, we employ a more accurate model which includes oxy-hemoglobin

and deoxy-hemoglobin based on the oxygen-saturation of hemoglobin. So that Equation

(4.19) can be rewritten as
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(4.31)
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where the mixing matrix A is approximated using tabulated extinction coefficients of

three predominant chromophores [82, 88], ǫHbO2(λ), ǫHb(λ) and ǫMel(λ). λR, λG and λB

are selected at 600 nm, 540 nm and 440 nm. Now the problem is simply to fit this model

by solving a system of linear equations. Since the number of equations is equal to the

number of unknowns in this linear system, we can obtain the solutions as

S = A−1
tabulateX (4.32)

4.3.5 Experimental Results and Discussion

In this section, we compare our NMF based and model-fitting methods to Takiwak’s

and ICA based methods. Firstly, we evaluate qualitatively the performances of these

methods using a ’lip-pimple’ image (cf. Figure 4.13 (a)) and a ’melanocytic nevus’ im-

age (cf. Figure 4.14 (a)). Based on the dermatologic knowledge that (i) lip or pimple has

higher concentration of hemoglobin and lower concentration of melanin, (ii) increase of

melanin content and decrease of hemoglobin content are responsible for the dark color

of melanocytic nevus, one can see that model-fitting method outperforms the other three

approaches in extracting relatively accurate concentration cartographies of hemoglobin

and melanin. ICA based method gives poor quantitative estimations due to some unre-

alistic negative values of independent components. Takiwaki’s method and NMF based

approach give similar results though less accurate compared with model-fitting method.

For example, Takiwaki’s method overestimates hemoglobin concentration in nevus (cf.

Figure 4.14 (b)) and NMF based method overestimates melanin concentration in lip (cf.

Figure 4.13 (g)).
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Figure 4.13: Comparison of hemoglobin and melanin concentration cartographies on
’lip-pimple’. ’H’: hemoglobin. ’M’: melanin. ’MF’: model-fitting.
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Figure 4.14: Comparison of hemoglobin and melanin concentration cartographies on
’melanocytic nevus’.
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In context of melanoma detection, a precise and robust segmentation of pigmented

skin lesion is required to discriminate tumor cell boundary and the surrounding tissue.

Thus, the accuracy of the different quantification methods can be evaluated by the ac-

curacy of the segmentation of melanoma, measured by Dice similarity coefficient (DSC),

false negative ratio (FNR) and false positive ratio (FPR). To define the three metrics, let

SG denote the result of graph-cut segmentation method, GT denote the result of manual

segmentation by expert dermatologist (the ground truth). Both SG and GT are binary

images such that all the pixels inside the boundary are labeled as 1 and all the others

have label 0. The metrics are calculated as follows (FNR and FPR were firstly intro-

duced in Section 2.5.1 and calculated in Equation (2.46) as two criteria for quantitative

evaluation of Boykov-Jolly proposed graph-cut segmentation algorithm on the natural

color image under different value of λ, which will be redefined in the context of PSLs

segmentation):

• Dice similarity coefficient (DSC)

This metric measures how the pixels classified as lesion by the graph-cut based

segmentation agree with the pixels classified as lesion by the expert dermatologist

(similarity between graph-cut segmentation and manual segmentation):

DSC(SG,GT) =
2 · #(SG ∩ GT)

#(SG) + #(GT)
. (4.33)

• False negative rate (FNR)

This metric measures the rate of pixels classified as skin by the graph-cut segmen-

tation that were not classified as skin by the expert dermatologist: (rate of lesion

pixels incorrectly identified as skin):

FNR(SG,GT) =
#(SG ∩ GT)

#(GT)
. (4.34)

• False positive rate (FPR)

This metric measures the rate of pixels classified as lesion by the graph-cut seg-

mentation that were not classified as lesion by the expert dermatologist: (rate of

skin pixels incorrectly identified as lesion):

FPR(SG,GT) =
#(SG ∩ GT)

#(GT)
. (4.35)

We use one representative ’Melanoma’ image (cf. Figure 4.15 (a)) from the total
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evaluated 30 melanoma lesions to present the evaluation task. These ’Melanoma’ im-

ages are 938×872 pixels. The ground truth (cf. Figure 4.15 (b)) is obtained by man-

ual segmentation of one expert dermatologist. First, we compare a classical graph-cut

segmentation approach proposed by Boykov and Jolly (Boykov-Jolly) with a modified

graph-cut segmentation approach on 5-level features: skin color feature (RGB tri-channel

values) and skin chromophore feature (concentrations of epidermal melanin and dermal

hemoglobin). It will be demonstrated below that by combining skin chromophore fea-

ture and color feature, graph-cut segmentation gives better results. Second, we compare

the modified graph-cut segmentations based on skin chromophore features obtained by

different quantification methods. Table 4.1 shows the average accuracy of segmentation

based on each proposed feature-configuration. In Table 4.1, we can observe how model-

fitting method achieves better results. The DSC is increased to 0.982while both FNR and

FPR decrease. NMF based method and Takiwaki’s method give similar results, which is

exactly the same as for the qualitative evaluation.

(a) Melanoma (b) Ground Truth (c) Model-Fitting

(d) NMF (e) Takiwaki (f) Boykov-Jolly

Figure 4.15: Quantitative evaluation of skin chromophore quantification approaches via
comparison of segmentation results on regular ’Melanoma’ color image.

As a conclusion, we propose and compare four different quantitative estimation ap-

proaches on skin color image using erythema/melanin indices, source separation algo-

rithms (ICA and NMF) and model-fitting. By means of two comparative experiments

based on dermatologic knowledge and graph-cut segmentation, model-fitting approach
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Table 4.1: Comparison of average segmentation accuracy, quantified by Dice similarity
coefficient, false negative rate and false positive rate. Borders of melanomas manually
drawn by 1 expert dermatologist are considered as the ground-truth reference for accu-
racy assessment. Value in bold corresponds to the best performance.

Criterion
Method

Model-Fitting NMF Takiwaki ICA Classic GC

DSC 0.982 0.967 0.971 0.954 0.965
FNR 0.013 0.044 0.012 0.059 0.061
FPR 0.023 0.024 0.027 0.031 0.028

obtains more accurate quantitative estimation of skin hemoglobin and melanin.

4.4 Skin Chromophore Quantification onMulti-Spectral Images

The interest of working with multi-spectral images is to have more accurate informa-

tion on skin properties than those obtained on conventional cameras. Integration of a

multi-spectral light will allow: (a) Reveal to the physicians the properties of non-visible

skin characteristics (e.g. hemoglobin, melanin, collagen, etc.); (b) Observation of the

cutaneous in-depth layers. Several methods based on spectrum in visible wavelength

range have already been presented in the literatures [97, 85]. The main idea of these

methods is to select specific spectral bands in the data to extract information on skin

chromophores.

In this section, we propose to extract hemoglobin and melanin components consid-

ering the whole spectrum. Multi-spectral images acquired in visible wavelength region

(e.g. 400-700 nm) are input into a mathematical optical skin model that considers the

contributions from different chromophores in the epidermis and dermis skin layers.

Through two different algorithms, non-negative factorization and least-squares based

model fitting, we can quantify the concentrations of hemoglobin and melanin in a given

area of skin lesion and surrounding heathy skin. To evaluate quantitatively, we apply

graph-cut segmentation to both inputs and outputs of the proposed algorithms. Exper-

imental results indicate that model-fitting approach obtains more accurate quantitative

estimation than NMF.

4.4.1 Multi-Spectral Image Acquisition and Pre-processing

As shown in Figure 4.16, the multi-spectral imaging system (SpectraCam™, Newtone

Technologies, Lyon, France) used in this work contains a liquid crystal tunable filter

(LCTF) (VariSpec™, Model VIS2, Cambridge Research & Instrumentation, Inc., Boston,
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MA) fitted in front of a PCO SensiCam Model 370 KL camera with 1168× 1036 pixels on

a progressive scan CCD image sensor (PCO Computer Optics, 93309 Kelheim, Germany)

and a linear polarizing filter. The LCTF has a nominal bandwidth of 30 nm and a

nominal accuracy of the selected peak wavelength of 4 nm. This allows to select about 80

significantly different tuning positions in the range from 400 nm to 720 nm. A linearly

polarized light source was used with its polarization plane positioned vertical to the

polarization plane of the camera polarizer. Thus, artifacts due to specular reflection

were eliminated. The multi-spectral images were acquired over the whole melanoma

area and the surrounding healthy skin in the wavelength range 400-700 nm with the

scanning step 10 nm.

Figure 4.16: A schematic representation of liquid crystal tunable filter (LCTF) based
multi-spectral imaging system.

4.4.1.1 Image Calibration

Proper calibration is essential in quantitative imaging (i.e. quantification of skin chro-

mophores) to validate the reproducibility of spectral reflectance of skin. Inhomogeneities

of illumination can be removed by correcting the acquired multi-spectral images S(λ)

at each wavelength λ with corresponding ones of white reflectance standard (defined at

100% at all wavelength), Sref(λ) and the dark current D:

R(λ) =
S(λ)−D

Sref(λ)−D
(4.36)
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where R(λ) is the calibrated reflectance image at wavelength λ.

4.4.2 Different Approaches of Skin Chromophore Quantification on Multi-

spectral Images

4.4.2.1 Erythema/Melanin Indices

Erythema is a kind of skin condition characterized by redness or rash, which can be

explained by the concentration of hemoglobin. Conventionally, Erythema Index (EI)

and Melanin Index (MI) provide the linear interval data scale for hemoglobin (type of

hemoglobin not specified) and eumelanin. According to the molar absorptivity spec-

tra of skin chromophores depicted in Figure 4.3 (b), melanin (eumelanin) absorbs in-

cident light strongly within the wavelength range 620-650 nm, where the extinction

coefficient of oxy-hemoglobin decreases sharply into its minimum. On the other hand,

oxy-hemoglobin absorbs incident light prominently within the wavelength range 540-

570 nm where melanin (eumelanin) slightly decreases. Based on the characteristics of

oxy-hemoglobin and melanin absorbances in visible wavelength region, we propose a

simple method to derive EI and MI images from multi-spectral images. The equations

for calculating EI and MI are written as follows:

EI = log10
(

1/R(λ1)
)

− log10
(

1/R(λ2)
)

(4.37)

MI = log10
(

1/R(λ2)
)

(4.38)

where R(λi) is the calibrated reflectance image of the sample under study at wavelength

λi, λ1 is set at a wavelength range of 540-570 nm, and λ2 is at 620-650 nm.

The limitation of the proposed EI/MI approach is that it lacks information on dis-

tinction of skin chromophores. For instance, extinction coefficient of melanin at 555

nm is higher than at 635 nm, which may allow a positive EI indicating certain con-

tents of hemoglobin for a pigmented skin area with no hemoglobin at all. Also, deoxy-

hemoglobin has a comparatively high extinction coefficient with that of melanin at 620

nm, which may result in positive MI for the blood stasis area with no melanin at all.

4.4.2.2 Non-Negative Matrix Factorization

As mentioned in Section 4.3.3, the non-negative matrix factorization (NMF) provides us

a efficient statistical tool for decomposition of multivariate data. To make NMF applica-

ble in our skin chromophore quantification on multi-spectral images, we simply redefine

the linear mixture model described in Equation (4.19). Here, X is the observation data
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matrix of m rows and n columns, with each row representing the absorbance image vec-

tor at each wavelength. S is a source data matrix of l rows and n columns, with l being

the number of sources to be extracted. The matrix A is known as the mixing matrix with

m rows and l columns. The columns of which represent the mixing values of each source

component. According to the absorbance of the multi-layered model described in Sec-

tion 4.1, Equation (4.1) can be modified in form of Equation (4.19) (deoxy-hemoglobin is

omitted):


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where R(λi) is the calibrated reflectance image at wavelength λi. ǫHbO2,Mel(λi) are ex-

tinction coefficients of hemoglobin and melanin at wavelength λi, respectively. cHbO2,Mel

denote concentration distribution maps of hemoglobin and melanin. The dimension m

is 26 in our experiment since we use multi-spectral images over 26 wavelengths sampled

between 450-700 nm.

4.4.2.3 Model Fitting Approach

Similar to the model-fitting method described in Section 4.3.4, we introduce a more

accurate model which includes oxy-hemoglobin and deoxy-hemoglobin based on the

oxygen-saturation of hemoglobin in case that the mixing matrix is provided with tabu-

lated extinction coefficients of these three chromophores. Thus, Equation (4.19) can be

rewritten as
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where the mixing matrix A is approximated using tabulated extinction coefficients of

three predominant chromophores [82, 88], ǫHbO2(λi), ǫHb(λi) and ǫMel(λi) at wavelength

λi. Now the problem is simply to fit this model by solving a system of linear equations.

Solutions of this overdetermined system can be obtained using least-squares estimation
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with a single constraint as given in Equation (4.41):

argmin
Atabulated

‖X−AtabulatedS‖
2 (4.41)

Subject to : S ≥ 0

4.4.3 Experimental Results and Discussion

In this section, we compare the proposed algorithms using acquired multi-spectral

images of melanoma (469 × 436 pixels) at 26 wavelength sampled equally from 450

nm to 700 nm. Based on the dermatologic knowledge that (i) vasculature contains

higher concentration of hemoglobin and lower concentration of melanin, (ii) increase

of melanin content and decrease of hemoglobin content are responsible for the dark

color of melanoma, one can see that model-fitting method outperforms NMF based

method in extracting relatively accurate concentration cartographies of hemoglobin and

melanin. For example, NMF based method overestimates the hemoglobin concentration

within the central melanoma area (cf. Figure 4.17 (b)) and underestimates the melanin

concentration on the near-border melanoma area (cf. Figure 4.17 (c)).

In context of melanoma detection, a precise and robust segmentation of pigmented

skin lesion is required to discriminate tumor cell boundary and the surrounding tis-

sue. Thus, the accuracy of the different quantification methods can be evaluated by

the accuracy of the segmentation of melanoma, measured by three metrics mentioned

in Section 4.3.5, the Dice similarity coefficient (DSC), false negative ratio (FNR) and

false positive ratio (FPR). We use extracted melanin images (cf. Figure 4.17 (c, e)) as

well as the 26 acquired multi-spectral images to perform the graph-cut segmentation.

The manual input seed map (cf. Figure 4.18 (a)) and the manual segmented ground

truth (cf. Figure 4.18 (b)) are both obtained from one expert dermatologist. First, we

compare a classic graph-cut segmentation on reconstructed color image (cf. Figure 4.17

(a)) with a modified approach on 26-level images (26 multi-spectral images). It will be

demonstrated below that using multi-spectral images, performance of segmentation can

be enhanced considerably. Second, we compare the segmentation results on 4-level im-

ages (reconstructed color image + melanin image) with 27-level images (multi-spectral

images + melanin image). Table 4.2 shows the average accuracy of segmentation based

on each proposed feature-configuration. In Table 4.2, we can observe that how model-

fitting method achieves better results compared with NMF based method. The DSC is

increased to 0.965 while both FNR and FPR decrease.

As a conclusion, we propose and compare two different quantitative estimation ap-
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(a) Reconstructed Color Image
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Figure 4.17: Comparison of hemoglobin and melanin concentration cartographies on
’Melanoma’. ’MF’: model-fitting method.
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(a) Seed Map (b) Ground Truth

(c) Classic GC (d) ’4-level’ GC with NMF

(e) ’4-level’ GC with MF (e) ’26-level’ GC

(f) ’27-level’ GC with NMF (g) ’27-level’ GC with MF

Figure 4.18: Quantitative evaluation of skin chromophore quantification approaches via
comparison of segmentation results on multi-spectral ’Melanoma’ images. ’GC’: graph-
cut.
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Table 4.2: Comparison of average segmentation accuracy, quantified by Dice similarity
coefficient, false negative rate and false positive rate. Borders of melanomas manually
drawn by 1 expert dermatologist are considered as the ground-truth reference for accu-
racy assessment. Value in bold corresponds to the best performance.

Criterion
Method

Classic GC 4-level NMF 4-level MF 26-level GC 27-level NMF 27-level MF

DSC 0.943 0.950 0.954 0.962 0.963 0.965

FNR 0.026 0.011 0.009 0.008 0.008 0.008

FPR 0.091 0.092 0.085 0.068 0.067 0.065

proaches on multi-spectral skin images using NMF and model fitting. By means of two

comparative experiments based on dermatologic knowledge and graph-cut segmenta-

tion, we show that model-fitting approach obtains more accurate quantitative estimation

of skin hemoglobin and melanin. In future work, scattering and penetration depth will

be taken into account in skin optics model.

4.5 Pigmented Skin Lesion Segmentation

Objective and accurate delineation of pigmented skin lesions (PSLs) without prior knowl-

edge provided by expert dermatologists is an ultimately ideal first step in computer-

aided skin cancer (melanoma) diagnosis system. Since objectivity and accuracy of a seg-

mentation approach are a prerequisite for good feature extraction of PSLs while automa-

tion (unsupervised framework) is highly efficient, extensively applicable (requires no

expertise in dermatology), thus commercially attractive, automatic PSLs segmentation

techniques have increased in popularity, especially in cooperation with dermatoscopy.

Dermatoscopy, also known as dermoscopy or epiluminescence microscopy, is a non-

invasive diagnostic technique involved in the examination of skin lesions with a der-

matoscope, which is typically a hand-held optical magnifier equipped with a non-

polarized light source, a transparent plate and a liquid medium between the instrument

and the skin, and allows inspection of skin lesions. It has been reported that compared

to visual diagnosis of melanoma, diagnostic accuracy by dermoscopy is significantly

increased from 20% to 30% [13]. This improvement in diagnostic accuracy, however,

is seen primarily with experts who have specialized training in dermoscopy, or when

the user applies specific diagnostic algorithms that are often not practical in the clini-

cal setting. In the expert-diagnosis approach, reproducibility remains a problem since

even experienced dermatologists do not always show a reliable intra- and inter-operator

agreement in delineation of lesion border. For user-applied specific diagnosis approach,

supervised segmentation methods require a prior knowledge input by analysts, such as
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samples of lesion and skin pixels (e.g. initializations of Boykov-Jolly method [23] and

Lazy Snapping [65]), or an approximation of lesion area (e.g. initialization of GrabCut

method [78]). In addition, user-specified initialization should be provided on each par-

ticular image being analyzed and the performance of this kind of approach also relies on

the initial values. Thus, although supervised PSLs segmentation methods may be very

effective, they are too time-consuming to be practically applicable in real-time clinical

examination.

Due to the fact mentioned above, in recent years, there has been increasing interest

in developing automatic segmentation techniques for dermoscopic images of PSLs from

the surrounding normal skin. The resulting boundary delineation not only provides a

basis for calculation of important clinical features such as color, texture and especially

the properties of lesion border (e.g. size, shape and irregularity), but it is also crucial for

extraction of discriminating dermoscopic features such as atypical pigment networks

and radial streaming [69]. Most common automatic segmentation algorithms rely on

techniques based on intensity histogram thresholding [96, 84, 29, 80], for instance, Xu

et al. [96] proposed a heuristic method using double thresholds to automatically seg-

ment lesion from skin through a few selected border points. Silveira et al. [84] recently

developed an automatic adaptive thresholding (AT) approach that segments an image

by comparing color of each pixel with a threshold. Other approaches includes PDE

based approaches, edge-based approaches [79, 39], clustering [68, 100] and region-based

techniques [84, 51, 31]. For the last type of approaches, Celebi et al. [31] recommended

a fast and unsupervised approach based on the statistical region merging algorithm

(SRM). SRM was proven to be a robust segmentation algorithm for segmentation of

color images. Iyatomi et al. [51] introduced a dermatologist-like tumor area extraction

algorithm. This segmentation algorithm first performs an initial segmentation by find-

ing high-frequency components and then thresholding using the Otsu method. Isolated

areas are separated and small regions are merged until they are of sufficient size. Af-

terwards, subset of regions which is considered to belong to the lesion is selected via

elaborate rules. Finally, to mimic dermatologists’ tendency to conservatively segment

the lesion, the border is slightly expanded by a region growing approach. It is worth

noting that all these automatic PSLs segmentation approaches reviewed above are on

the basis of color information/pixel intensity solely. Although researchers have also

attempted to explore different color spaces to enhance the segmentation performance,

color information alone is insufficient for adequate and reliable automated segmentation

of PSLs [100]. Properties of PSLs and skin conditions present large variabilities among

dermoscopic images, ranging from homogeneously distributed color (cf. Figure 4.20 (a))
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to non-uniform and variegated pigmentation (cf. Figure 4.32 (a)), from well-defined (cf.

Figure 4.20 (a) and Figure 4.32 (a)) to smoothly transited edges (cf. Figure 4.27 (a) and

Figure 4.29 (a)), from high contrast (cf. Figure 4.30 (a)) to low contrast (cf. Figure 4.34

(a)), from sizes smaller than a pin’s head to diameters larger than 15 mm. Therefore,

the implementation of an accurate automatic segmentation method for pigmented skin

lesions in dermoscopy images remains a challenge. In addition, irregular shapes (cf.

Figure 4.31 (a)), specular reflection (cf. Figure 4.28 (a)) and the presence of dark heavy

hairs along with oil bubbles (cf. Figure 4.34 (a) and Figure 4.35 (a)) occlude some use-

ful information of lesions required to perform an accurate segmentation. For instance,

thresholding-based methods achieve undesirable results when contrast is low between

lesion and skin; edge-based approaches perform poorly when boundary of the lesion

is not well defined. Smooth transition between skin and lesion allows the presence of

gaps in edges where the contour may leak. Another difficulty is due to the edge pixels

that do not belong to real lesion boundary. They can be the results of artifacts such as

hair, specular reflection or even irregularity of the skin texture and they may prevent

contour to converge to the lesion boundary; region-based approaches have difficulties

when lesion or skin regions are textured, which often leads to over-segmentation. In

conclusion, existing automatic PSLs segmentation approaches do not necessarily per-

form well for specific problems of dermoscopic PSLs delineation and it appears unlikely

that one particular method could outperform all other segmentation methods for any

lesion [101].

In this section, we propose a novel framework of fully automatic dermoscopic PSLs

image segmentation based on the multi-feature graph cuts segmentation approach in-

troduced in Chapter 3. Under this framework, clustering and thinning approaches

are co-operating with basic mathematical morphological pre/post-processing to accu-

rately localize seed regions without user intervention or supervision. Subsequently,

both color intensities and extracted chromophores of an automatically binary classified

pixel within the seed regions are collected via the neighborhood template to construct

a multi-dimensional feature vector. Learned by a nonlinear SVM classifier is trained on

seeded regions. Soft classification on lesion and skin pixels in terms of posterior prob-

ability is adopted to properly define the likelihood energy of binary labeling problem,

which can be globally optimized by minimization of graph cuts. In the following text,

we denote the proposed Automatic Pigmented Skin Lesion Segmentation framework as the

APS technique.
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4.5.1 Methodology

The proposed APS framework is characterized in the following two main stages where

it introduces novelties in the state-of-the-art approaches designed particularly for PSLs

image segmentation:

1. Auto-Seeding: seeds are used to build a training set for binary classification of

foreground lesion and background skin. In addition, they provide hard constraints

for the construction of graph. The performance of final segmentation depends on

the soft classification: seeds must be really either background skin or foreground

lesion. In this context, we propose an unsupervised approach for selection of

lesion (object) seed regions based on k-Means++ clustering and skeleton pruning

[14]. Clustering based on color characteristics of typical lesions provides the coarse

pre-segmentation that roughly locates the lesion area. Subsequent skeletonization

processing with efficient redundant skeleton branches pruning extracts stroke-like

lesion seed regions. The resulted lesion seed distributions lie on axes between

lesion center and vertices of the polygon simplified by Discrete Curve Evolution

(DCE) [62]. This kind of distribution ensures diversity of training samples from

definite inner lesion pixels to possible peripheral lesion pixels. For background

skin seeds, we propose a simple approach based on the fact that most of skin le-

sions approximately locate in the center of the dermoscope during the acquisition

process. A frame of certain thickness is added to the border of an acquired dermo-

scopic PSL image and pixels within the frame region are labeled as "skin". How-

ever, in cases of large scale skin lesions that cover the border of the dermoscopic

image, we left pixels of overlaps between lesion cluster and skin border unlabeled.

In addition, basic morphological operations like erosion, closing and dilation are

served as pre- and post-processing of the proposed seed generation approach. In

the following text, we denote the entire coarse-to-fine automatic seed-generation

scheme as the Auto-Seeding approach.

2. Feature configuration: the proposed PSLs image segmentation procedure is de-

signed to incorporate with multiple visual features of pixels in a given dermo-

scopic PSL image. According to the research presented in Section 3.4, Chapter

3, our proposed segmentation algorithm under the Graph-Cut/MAP-MRF frame-

work is based on binary classification. A nonlinear SVM classifier is served as

a probabilistic interface responsible for passing the posterior classification prob-

abilities to the likelihood energy function of a binary segmentation problem. To

train a classifier within one image, the training samples are automatically chosen
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via the proposed Auto-Seeding approach. Basically, color information of seeds is

sufficient to train a classifier to estimate the distribution of lesion and skin pix-

els. With the generic neighborhood template, we can improve the segmentation

by adding additional features like texture to the feature vector. Moreover, intrin-

sic properties of skin lesions objectively interpreted can be collected to enhance

the discriminability of our algorithm. Here we propose to combine other intrin-

sic characteristics of pigmented skin lesion related to skin chromophores with its

color information to construct a powerful feature vector. We expect this kind of

feature configuration to yield more accurate PSLs delineations. Same as the fea-

ture configuration described in Section 3.4, color information is interpreted in RGB

color space and texture feature is encoded using GLBP. As the newly introduced

feature, we choose the concentrations of two predominant chromophores of hu-

man skin, epidermal melanin and dermal hemoglobin, quantified by the proposed

model fitting approach (cf. Section 4.3.4).

A flowchart of the proposed APS framework is depicted in Figure 4.19.
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Figure 4.19: A schematic of our proposed Automatic Pigmented Skin Lesions
Segmentation (APS) approach which is particularly suitable for dermoscopic images.

4.5.2 Automatic Hard Constraint Generation using Clustering and Morpho-

logical Processing

4.5.2.1 K-Means Clustering Algorithm and Its Augmentation

Clustering literally means grouping a set of data instances into subsets in such a man-

ner that instances in the same group (called cluster) are more similar to each other than

to those in the different groups (clusters). As a fundamental problem in data mining,

clustering technique is also widely used in machine learning, pattern recognition, and

image analysis as a statistical data analysis tool. In context of machine learning, clus-

tering can be referred as a term "automatic classification", since classification is mostly

employed as a supervised learning method while clustering for unsupervised learning

method, except that selection of appropriate clustering algorithms and parameter set-
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tings (e.g. number of expected clusters, initial condition, distance function, etc.) depend

on the individual data set and intended use of the results. Although clustering and

classification both aim to partition set of observations into different categories (clusters

or classes), they differ from each other in the fact that principle of clustering is intrinsic,

which results in descriptive assessments, while that of classification is extrinsic (incorpo-

ration with reference set of observations and their corresponding classes), which results

in predictive assessments.

Currently, there exists numbers of clustering algorithms as the notion of "cluster"

cannot be precisely defined [40]. A simple but clear way of categorization of these

clustering algorithms is based on their distinct "cluster models". For instance, typi-

cal cluster models includes connectivity models (e.g. hierarchical clustering), centroid

models (e.g. k-Means algorithm), distribution models (e.g. Expectation-maximization

algorithm), density models (e.g. DBSCAN) and so on. Among various clustering algo-

rithms, k-Means is the most widely used technique in fields of machine learning as well

as image analysis for its simplicity and practical observed speed. Originally devised by

MacQueen [67] in 1967, k-Means is an unsupervised clustering algorithm whose goal

is to solve an optimization problem: find multiple cluster centers and assign each ob-

servation to its nearest cluster center, depending on the minimum squared Euclidean

distance in between. Solving this problem is theoretically NP-hard, even with just two

clusters [5]. Fortunately, an efficient heuristic algorithm proposed by Lloyd [66] is able

to find an approximate solution by iteratively refining the clustering encoded by cluster

centers. The basic idea of Lloyd’s algorithm is to find a clustering structure (Voronoi di-

agram) that minimize the Sum of Squared Error (SSE), which measures the distance of

each instance to its representative values. Problem of global optimization of SSE may be

solved by exhaustively enumerating all partitions, which is extremely time consuming,

or by giving an approximate solution using heuristics, which is capable to be converged

quickly to a local minimum. The latter opinion, adopted by Lloyd’s algorithm, is the

most common intuitive and frequently used alternative. That is the reason why Lloyd’s

algorithm is served as the standard algorithm for k-Means clustering.

For a brief view of standard k-Means algorithm (Lloyd’s algorithm), suppose that a

set of n input observations are given as a d-dimensional real vector X = {x1, x2, · · · , xn} ⊂

R
d, the Lloyd’s algorithm partitions input data into a clustering set of k (k < n) clusters,

C = {C1,C2, · · · ,Ck} with a set of corresponding means, M = {m1,m2, · · · ,mk} ⊂ R
d,
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so as to minimize the objective (potential) function:

φ(X ,M) =
k

∑
i=1

∑
xj∈Ci

||xj −mi||
2 (4.42)

where mi =
∑xj∈Ci

xj

|Ci|
.

Here, the potential (distortion) φ is defined as total summation of the distances of

data points from its cluster center. To minimize φ, Lloyd’s algorithm adopts an iterative

refinement technique (cf. Algorithm 3): starting with a set of randomly chosen initial

centers, one repeatedly assigns each input point to its nearest center, and then recom-

putes the centers given the point assignment. This local search, called Lloyd’s iteration,

continues until the solution does not change between two consecutive rounds.

Algorithm 3 k-Means (Lloyd’s) Algorithm

Require: k: number of expected clusters, {xi}
n
i=1: sample datapoints, {C(0)

j }k
j=1: optional

user-supplied initial clustering, tmax: optional maximum iteration number.
Ensure: {Cj}

k
j=1: final clustering

1: Initialize k clusters: C(0)
1 , · · · ,C(0)

k either randomly or given by user-specified cluster-
labeling. t ← 0.

2: Calculate centers for initial k clusters as:

m
(0)
j =

∑
xi∈C

(0)
j

xi

|C
(0)
j |

.

3: while {m
(t)
j }k

j=1 (= {m
(t−1)
j }k

j=1 (t ≥ 1) or t < tmax do

4: Label each datapoint xi based on cluster centers m(t)
j as:

l(t+1)(xi) = argmin
j

||xi −m
(t)
j ||2.

5: Update the clustering as:

C
(t+1)
j ← {xi : l(t+1)(xi) = j}.

6: Re-calculating the centers for all updated clusters:

m
(t+1)
j =

∑
xi∈C

(t+1)
j

xi

|C
(t+1)
j |

.

7: end while

In computer vision and image segmentation, k-Means often serves as a preprocess-
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Algorithm 4 k-Means++ (Arthur’s) Algorithm
Require: k: number of expected clusters, {xi}

n
i=1: sample datapoints.

Ensure: {Cj}
k
j=1: final clustering

1: Initialize one cluster center m(0)
1 uniformly at random from X . M ← {m

(0)
1 }.

2: while j < k do

3: j ← j+ 1.

4: Selecting m
(0)
j = x′ ∈ X with probability D(x′)2

∑x∈X D(x)2
.

5: M ← M ∪ {m
(0)
j }.

6: end while

7: Proceed as the standard k-Means (Algorithm 3) from Step 3 to Step 7.

ing step for other algorithms, for example, to find a starting configuration. In our case,

it helps to produce a primary yet coarse segmentation before we apply the effective

skeleton proposed by Bai et al [14].

Nevertheless, despite its popularity for general clustering, k-Means suffers from two

major shortcomings: (a) the running time can be exponential in the worst case; (b) the

final solution is locally optimal, it can be very far away from the global optimum, even

under repeated random initializations (cf. Figure 4.20 (d), Figure 4.21 (d) and Figure 4.22

(d)). Therefore, an augmented version named k-Means++ was proposed by Arthur and

Vassilvitskii [12]. They proposed to improve the initialization procedure of k-Means

by choosing random starting centers with very specific probabilities. k-Means++ is

proven to O(log k)-competitive with the optimal clustering. The general framework of

k-Means++ is presented in Algorithm 4.

4.5.2.2 Comparison of Accuracy between k-Means and k-Means++

In order to evaluate the performance of k-Means++ against k-Means in the context of

pre-segmentation of dermoscopic PSLs image, we tested each method on 3 dermoscopy

images, including 1 dysplastic nevus (cf. Figure 4.20 (a)), 1 melanoma (cf. Figure 4.21

(a)) and 1 basal cell carcinoma (cf. Figure 4.22 (a)). As both methods are randomly

initialized (for k-Means++ only the first cluster center is randomly selected), we ran

multiple trials (attempt= 1, 10, 80 and 100) for each case. Here, the internal evaluation of

clustering performance is measured by the calculating the value of the potential φ, while

the external evaluation is quantified in terms of Jaccard index, a metric for similarity

measurement between two datasets. In the context of segmentation of skin lesions, the

Jaccard index measures how the pixels classified as lesion by clustering agree with the

pixels classified as lesion by the expert dermatologist (manual segmentation served as

the ground truth, cf. Figure 4.20 (b), Figure 4.21 (b) and Figure 4.22 (b)). Given the
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following definitions:

TP: true positive, lesion pixels correctly classified as lesion,

FP: false positive, skin pixels incorrectly identified as lesion,

FN: false negative, lesion pixels incorrectly identified as skin,

the Jaccard index is given by:

J(SG,GT) =
#(SG ∩ GT)

#(SG ∪ GT)
=

#TP

#TP+ #FP+ #FN
. (4.43)

where the definitions of SG and GT are given Section 4.3.5.

Clustering-based segmentation results by k-Means and k-Means++ are shown in

Figure 4.20 through Figure 4.22, along with the internal/external evaluations displayed

in Table 4.3 through Table 4.4. Based on both qualitative and quantitative evaluations, we

can observe that k-Means++ substantially outperformed k-Means in terms of clustering

accuracy.

(a) Dysplastic Nevus (b) Manual segmentation

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 4.20: Comparison between clustering results of k-Means algorithm and k-
Means++ algorithm on dysplastic nevus (Ref. Fcl010) subject to increasing number
of attempts (first column: attempt = 1, second column: attempts = 10, third column:
attempts = 80, last column: attempts = 100).
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(a) Melanoma (b) Manual segmentation

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 4.21: Comparison between clustering results of k-Means algorithm and k-
Means++ algorithm on melanoma (Ref. Nbl006) subject to increasing number of at-
tempts (first column: attempt = 1, second column: attempts = 10, third column:
attempts = 80, last column: attempts = 100).

Table 4.3: Internal evaluation of k-Means algorithm and k-Means++ algorithm on 3

dermoscopic PSLs images (Dysplastic nevus in Figure 4.20 (a), melanoma in Figure
4.21 (a) and basal cell carcinoma in Figure 4.22 (a)) subject to different attempts. For
both algorithms, k-Means and k-Means++, we list the actual value of potential φ.
Additionally, for k-Means++, percentage of improvement over k-Means is presented:
∆ = 100% · (1− k−Means++

k−Means ).

Input
Approach

Attempt
1 10 80 100

Fcl010
k-Means 3.8496 · 104 1.0534 · 104 6.7350 · 103 4.4481 · 103

k-Means++ 2.9667 · 103 1.7060 · 103 1.6749 · 103 1.6522 · 103

∆ (%) 92.29 83.80 75.13 62.85

Nbl006
k-Means 3.8766 · 104 1.1121 · 104 6.5221 · 103 3.9642 · 103

k-Means++ 1.7394 · 103 1.7394 · 103 1.7103 · 103 1.7103 · 103

∆ (%) 95.51 84.36 73.78 56.86

Nhl011
k-Means 3.9974 · 104 1.1783 · 104 7.2221 · 103 4.6626 · 103

k-Means++ 1.5972 · 103 1.4104 · 103 1.4104 · 103 1.4102 · 103

∆ (%) 96.00 88.03 80.47 69.75
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(a) Basal Cell Carcinoma (b) Manual segmentation

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 4.22: Comparison between clustering results of k-Means algorithm and k-
Means++ algorithm on basal cell carcinoma (Ref. Nhl011) subject to increasing number
of attempts (first column: attempt = 1, second column: attempts = 10, third column:
attempts = 80, last column: attempts = 100).

Table 4.4: External evaluation of k-Means algorithm and k-Means++ algorithm through
segmentation of 3 dermoscopic PSLs images (cf. Figure 4.20 through Figure 4.22) subject
to different attempts, quantified by Jaccard index (%). Borders of PSLs manually drawn
by 1 expert dermatologist are considered as the ground-truth reference for accuracy
assessment.

Input
Approach

Jaccard Index (%) Attempt
1 10 80 100

Fcl010
k-Means 73.92 2.57 81.90 87.38

k-Means++ 91.69 88.24 87.62 88.66

Nbl006
k-Means 27.01 0.41 53.42 56.14

k-Means++ 69.78 69.78 75.61 75.61

Nhl011
k-Means 7.78 0.99 93.06 51.85

k-Means++ 91.42 86.20 86.20 86.17
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4.5.2.3 Skeletonization with Efficient Pruning

In order to efficiently sample pixels of a PSL image from the lesion area, we propose

to generate seeds from the k-Means++ clustering results based on skeletonization (or

thinning) algorithms. The idea is to automatically extract stroke-like regions (seeds) in

an intelligent way to mimic the supervised seeding process: try to label the most rep-

resentative pixels of large spatial dispersion but limited within the possible lesion area

as "lesion" seeds while the amount of seeds are limited. Skeletonization (or thinning)

suits well for this kind of problem. By definition, skeletonization is the act of identi-

fying the skeleton of an object, which is presumed to represent the shape of the object

in a relatively small number of pixels. Skeletonization is usually one step in prepar-

ing an image for further processing. The nature of the subsequent steps often dictates

the properties needed of the skeleton. The majority of existing thinning algorithms are

based on the iterative morphological approach firstly proposed by Steniford [87] in 1983.

Also, to eliminate possible artifacts in the resulting skeleton, for example, the redundant

or spurious skeleton branches, he proposed a pre-processing including smoothing and

acute angle emphasis. The Steniford’s algorithm is followed by Zhang-Suen algorithm

[99], Holt’s algorithm [48], and concluded by J. R. Parker [74], who suggested a effec-

tive skeletonization framework: Stentiford’s preprocessing scheme feeding images into

Zhang-Suen’s basic algorithm, with Holt’s staircase removal as a post-processor. How-

ever, these skeletonization algorithms still suffer from the problem of being sensitive to

an object’s boundary deformation (cf. Figure 4.23 (e-h)): little noise or a variation of the

boundary often generates redundant skeleton branches that may seriously disturb the

topology of the skeleton’s graph. To overcome this problem, Bai et al. [14] in 2005 pro-

posed a skeleton pruning algorithm based on contour partitioning using Discrete Curve

Evolution (DCE). It is proven to be stable on shape variation and accurate in generating

skeletons without spurious branches (cf. Figure 4.23 (a-d)). Considering the irregularity

of the skin pigmented lesion, Bai’s skeletonization method is a better alternative than

other skeletonization algorithms (e.g. Parker’s method), as shown in Figure 4.24.

4.5.2.4 Pre-processing and Post-processing of Auto-Seeding

Before we apply clustering to pre-segment the original PSLs images, it is necessary

to eliminate artifacts like heavy dark hairs which occlude the visual cues of lesion or

skin. The images were filtered with the morphological closing filter using a disk as

structuring element (diameter=10 pixels) and subsequently with a median filter (3× 3

neighborhood). After clustering, mathematical morphological erosion is then applied
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.23: Comparison between skeletonizing (thinning) results obtained by Bai’s
skeleton pruning method (first row) and Parker’s thinning approach (second row) on
Mpeg 7 shape database.

to the binary mask obtained from the binary clustering ("lesion" and "skin" clusters) to

eliminate small isolated regions and closing operation is used to fill the holes. In our

experiment, erosion is applied using a disk of diameter derode = 15 pixels and closing

using a disk of diameter dclose = ⌊ 1
6 ·
√

∑p Ip⌋ with Ip denoting the pixel value of the

binary mask image. The selection of size of structural element for erosion and closing

seems to be a safe choice since it allows refinement of the clustering results without

deforming the original topology of the "lesion" cluster. Finally, the largest connected

component in the binary image representing the inner region of skin lesion is ready to

be skeletonized into seeds. In the last step of the Auto-Seeding stage, morphological

dilation is adopted to generate the final stroke-like "lesion" seeds from the extracted

skeletons (painted in red). In order to prevent seeds from exceeding the lesion area

marked via clustering, a slightly smaller disk element of size ddilation = 10 pixels is used

for dilation. For ”skin" seeds, we simply add a frame on the border of the original PSLs

images with thickness of 20 pixels and paint the frame in blue color. Results of the

proposed Auto-Seeding approach on 60 dermoscopic PSLs images are present in Figure

4.25 and Figure 4.26.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.24: Comparison between skeletonizing (thinning) results obtained by Bai’s
skeleton pruning method (third row) and Parker’s thinning approach (last row) on
melanomas (a), (c) and dysplastic nevus (i), (m). Second row shows the clustering results
obtained by k-Means++ algorithm with 1 attempt.
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Figure 4.25: Results of the proposed Auto-Seeding approach on 30 dermoscopic images
of melanomas and basal-cell carcinoma (BCC).
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Figure 4.26: Results of the proposed Auto-Seeding approach on 30 dermoscopic images
of dysplastic nevi.
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4.5.3 Graph Cut based Segmentation with Skin Chromophore Features

4.5.3.1 Feature Configuration

Pigmented skin lesions can be distinct from the surrounding healthy skin tissues in

terms of darker color, varied texture and other discriminative morphological features.

However, from the histological point of view, concentration and distribution of two

primitive skin chromophores, epidermal melanin and dermal hemoglobin, are primary

and more reliable discriminators of PSLs since pigmented skin lesions are induced by

absence or overmuch of these two chromophores. Based on the research in Section 4.3,

we are able to quantify objectively the two chromophores with accuracy, particularly

when the proposed model-fitting approach is involve. Therefore, we decide to introduce

the chromophore feature into feature configuration under our proposed APS framework.

Skin chromophore features, in terms of melanin/hemoglobin concentration distribution

maps, are extracted using the proposed model-fitting approach and then combined with

color feature to build a new feature vector. We expect that by adding chromophore

feature to the feature configuration, SVM classifier can be well trained to improve the

discriminability of our APS technique, resulting more accurate PSLs delineation.

4.5.3.2 Experiments and Discussions

In this section, we evaluate both qualitatively and quantitatively the performance of our

proposed APS technique under different feature configurations, compared to state-of-

the-art graph-cut based segmentation approaches on PSLs delineation. All competitor

methods are initialized by our Auto-Seeding approach (cf. Figure 4.25 and Figure 4.26)

except for GrabCut, which is initialized manually by one expert dermatologist. We

experiment on 100 dermoscopic PSLs images including melanoma, dysplastic nevus,

basal cell carcinoma and Spitz-Reed nevus, taken from a dermoscopy atlas [11]. These

24-bit RGB color images were acquired in three university hospitals (University of Graz,

Austria, University of Naples, Italy and University of Florence, Italy), with a typical

resolution of 768× 512 pixels. For each image a manual delineation was performed by a

expert dermatologist and the final segmentation results in terms of binary images were

collected to build a reference dataset as ground truth.

General experimental settings are as follows:

• Feature: For the proposed APS technique, 3 different types of feature configura-

tions are tested: (a) color feature only, i.e. 75-dimensional color-shape feature vec-

tor, (b) the combination of color and texture feature, i.e. 100-dimensional GLBP
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texture-color-shape feature vector, (c) the combination of color and skin chro-

mophore features, i.e. 100-dimensional EI/MI-color-shape feature vector. Other

graph-cut based approaches are based on color feature only (3-dimensional color

feature vector). Note that the neighborhood template (shape feature) is adopted

by default in our proposed APS framework and the skin chromophore features are

extracted by the proposed model fitting approach (introduced in Section 4.3.4)

in terms of concentration distribution maps of epidermal melanin and dermal

hemoglobin. For GLBP, parameter σ is fixed at 3 and the kernel size of the gaussian

filter is fixed at 7× 7.

• Classifier: Nonlinear SVM classifier is adopted in the proposed APS technique to

generate more comprehensive posterior-probability distribution maps compared

to the results of random forest, which is empirically found resulting hard binary

classifications of skin and lesion pixels. Parameter of the SVM classifier is esti-

mated using cross-validation method: kernel function is chosen as GRBF, with its

parameter γ fixed at 0.5 and the soft-margin parameter C is 10.

• Energy function: Parameter λ is selected as 10 by optimizing the segmentation

performance against ground truth on 30 dermoscopic PSLs images. Other settings

of parameters particular for Boykov-Jolly approach, Lazy Snapping and GrabCut

are detailed in Section 2.4.4.

• Graph: A 8-neighborhood adjacent directed graph is constructed with two termi-

nal nodes s and t, respectively connected to the "lesion" seeds O and "skin" seeds

B. By satisfying the user-specified hard constraints, a minimum cut on a graph

can be found with edge weights appropriately defined to generate an optimal seg-

mentation. The assignment of edge weights for the proposed method are given

in Table 3.3 while the assignments for other methods can be explicitly found from

Table 3.2 to Table 2.4.

The conventional criterion for image segmentation evaluation, like the segmenta-

tion error rate (cf. Section 2.5.1, Equation (2.45)), is not sufficient for objective quan-

titative analysis in context of PSLs delineation. It merely gives quantitative evaluation

on whether the delineated lesion area for each dermoscopy PSLs image is "acceptable"

or "unacceptable" according to the manual segmentation by expert dermatologist (the

ground truth). Therefore, we introduce here two additional criteria, Precision and Recall,

and their derivation, F-measure. These criteria are commonly used in engineering and

will be redefined in context of PSLs segmentation as follows:
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• Precision

This metric measures the rate of pixels classified as lesion by computer-based ap-

proach are identically classified as such by the expert dermatologist, i.e. how

accurate the segmentation is:

Precision(SG,GT) =
#(SG ∩ GT)

#(SG ∩ GT) + #(SG ∩ GT)
=

#TP

#TP+ #FP
, (4.44)

• Recall

This metric measures the rate of pixels classified as lesion by the expert dermatol-

ogist are correctly identified as such by computer based approach. i.e. how well

the lesion region is segmented:

Recall(SG,GT) =
#(SG ∩ GT)

#(SG ∩ GT) + #(SG ∩ GT)
=

#TP

#TP+ #FN
, (4.45)

Note that in scope of classification, recall is also known as sensitivity.

• F-measure

Since precision and recall are two opposing metrics and good segmentation requires

high levels of both of them, we introduce here a criterion that combines precision

and recall into the harmonic mean, the F-measure. Particularly, we consider the

harmonic mean of evenly weighted precision and recall, named F1 measure. In

fact, the F1 measure is equivalent to the Dice similarity coefficient (cf. Section 4.3.5,

Equation (4.33)) which evaluates the similarity between graph-cut based segmen-

tation and manual segmentation. We will use the term "Dice similarity coefficient

(DSC)" instead of "F1 measure" in the following quantitative evaluation task.

F1(SG,GT) =
2 · Precison · Recall

Precision+ Recall
=

2 · #(SG ∩ GT)

#(SG) + #(GT)
= DSC(SG,GT). (4.46)

Note that the definitions of SG, GT as well as TP, FP and FN in context of PSLs

delineation can be found explicitly in Section 4.3.5 and Section 4.5.2.2.

For the purpose of qualitative evaluation, 9 examples of challenging dermoscopy

PSLs images are chosen for intuitive demonstration of segmentation results (cf. Fig-

ure 4.27 (a) to Figure 4.34 (a)). Besides ground truth (cf. Figure 4.27 (b) to Figure 4.34

(b)), three state-of-the-art graph-cut based segmentation methods and the proposed APS

method are performed on each example. As can seen clearly, conventional color-feature-

based segmentation approaches, like Boykov-Jolly’s method and Lazy Sapping, trend to



4.5. Pigmented Skin Lesion Segmentation 135

over-segment the PSLs areas while GrabCut trends to under-segment the PSLs regions.

None of these methods succeeded in segmenting adequate PSLs areas, only inner re-

gions of PSLs or PSLs with part of skin tissues are extracted via an ambiguous border.

For example, smooth transition between skin and lesion in Figure 4.27 (a) and Figure 4.29

(a) results gaps in the original PSLs edges and thus allows the extracted contours to leak

through them, as shown in Figure 4.27 (f-h) and Figure 4.29. Also, artifacts like hairs in

Figure 4.34 (a) and Figure 4.35 (a), specular reflection in Figure 4.28 (a) and irregular tex-

tures in Figure 4.31 (a) cause spurious PSLs "edges" that stopped the extracted contours

from converging to the real PSLs boundaries, as shown in Figure 4.28 (f,g), Figure 4.31

(f-h), Figure 4.34 (f-h) and Figure 4.35 (f-h), correspondingly. Since border properties

are important for the diagnosis of PSLs, an adequate PSLs delineation method should

perform segmentation without losing much information on the peripheral parts of PSLs,

for which the conventional color-feature-based segmentation approaches are inadequate.

Nevertheless, our proposed APS technique in corporation with multiple features con-

sistently outperforms the conventional color-feature-based segmentation approaches in

delineating more accurate boundary close to the peripheral parts of "real" skin lesions.

Significant improvement in PSLs delineation can be observed when the proposed APS

technique is involved, especially on these challenging dermoscopy PSLs images men-

tioned above. Moreover, under the proposed APS framework, different combination of

feature results in different accuracy level of delineation. In corporation with texture fea-

ture allows enhancement in discrimination between the lesion region and the skin region

where they are similar in color but distinct in texture. For example, the proposed APS

technique based on the combination of color and texture features (Color+LBP) yields

better delineation results than that of color feature solely (color), as shown in Figure

4.30 (d,e) and Figure 4.31 (d,e). Otherwise, in cases of non-textured or evenly textured

PSLs images, color feature based APS technique has comparable performance to that of

combination of color and texture features, for instance, in Figure 4.33 (d,e), Figure 4.34

(d,e) and Figure 4.35 (d,e). In general, by combining color feature with chromophore fea-

ture quantified by the proposed model-fitting method (Color+Chromophore), our APS

technique performs best in delineating out the entire lesion regions which is very close

to those delineated manually by the expert dermatologist, except for the case shown in

Figure 4.28 (c), where part of the actual lesion is segmented as healthy skin.

Qualitative evaluation addressed above can be verified objectively via quantitative

evaluation concerning the segmentation performance on these 9 challenging examples.

Table 4.5 shows the scores of four metrics, the Dice similarity coefficient (DSC), the

segmentation error rate ǫ, precision and recall, which are calculated for each candidate
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(a) Melanoma (b) Manual segmentation (c) Color+Chromophore (d) Color

(e) Color+LBP (f) Lazy Snapping (g) Boykov-Jolly (h) GrabCut

Figure 4.27: Segmentations on melanoma, Aal002 (a) obtained by our proposed APS
technique with different feature configurations (c-e) and other color-feature-based
graph-cut segmentation approaches (f-h).

(a) Melanoma (b) Manual segmentation (c) Color+Chromophore (d) Color

(e) Color+LBP (f) Lazy Snapping (g) Boykov-Jolly (h) GrabCut

Figure 4.28: Segmentations on melanoma, Fbl028 (a) obtained by our proposed APS
technique with different feature configurations (c-e) and other color-feature-based
graph-cut segmentation approaches (f-h).
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(a) Basal-cell carcinoma (b) Manual segmentation (c) Color+Chromophore (d) Color

(e) Color+LBP (f) Lazy Snapping (g) Boykov-Jolly (h) GrabCut

Figure 4.29: Segmentations on basal-cell carcinoma, Nel039 (a) obtained by our proposed
APS technique with different feature configurations (c-e) and other color-feature-based
graph-cut segmentation approaches (f-h).

(a) Melanoma (b) Manual segmentation (c) Color+Chromophore (d) Color

(e) Color+LBP (f) Lazy Snapping (g) Boykov-Jolly (h) GrabCut

Figure 4.30: Segmentations on melanoma, Fcl040 (a) obtained by our proposed APS tech-
nique with different feature configurations (c-e) and other color-feature-based graph-cut
segmentation approaches (f-h).
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(a) Melanoma (b) Manual segmentation (c) Color+Chromophore (d) Color

(e) Color+LBP (f) Lazy Snapping (g) Boykov-Jolly (h) GrabCut

Figure 4.31: Segmentations on melanoma, Nal020 (a) obtained by our proposed APS
technique with different feature configurations (c-e) and other color-feature-based
graph-cut segmentation approaches (f-h).

(a) Melanoma (b) Manual segmentation (c) Color+Chromophore (d) Color

(e) Color+LBP (f) Lazy Snapping (g) Boykov-Jolly (h) GrabCut

Figure 4.32: Segmentations on melanoma, Ngl015 (a) obtained by our proposed APS
technique with different feature configurations (c-e) and other color-feature-based
graph-cut segmentation approaches (f-h).
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(a) Dysplastic nevus (b) Manual segmentation (c) Color+Chromophore (d) Color

(e) Color+LBP (f) Lazy Snapping (g) Boykov-Jolly (h) GrabCut

Figure 4.33: Segmentations on dysplastic nevus, Nml030 (a) obtained by our proposed
APS technique with different feature configurations (c-e) and other color-feature-based
graph-cut segmentation approaches (f-h).

(a) Melanoma (b) Manual segmentation (c) Color+Chromophore (d) Color

(e) Color+LBP (f) Lazy Snapping (g) Boykov-Jolly (h) GrabCut

Figure 4.34: Segmentations on melanoma, Nml077 (a) obtained by our proposed
APS technique with different feature configurations (c-e) and other color-feature-based
graph-cut segmentation approaches (f-h).



140 Chapter 4. Application to Melanoma Detection

(a) Melanoma (b) Manual segmentation (c) Color+Chromophore (d) Color

(e) Color+LBP (f) Lazy Snapping (g) Boykov-Jolly (h) GrabCut

Figure 4.35: Segmentations on dysplastic nevus, Fcl032 (a) obtained by our proposed
APS technique with different feature configurations (c-e) and other color-feature-based
graph-cut segmentation approaches (f-h).

approach on a particular example. As can be seen in Table 4.5, the proposed APS

technique with different combinations of features achieves higher DSC score and lower

segmentation error rate on 8 examples (except for the melanoma image ’Fbl028’, on

which GrabCut achieves highest DSC score and lowest error rate), compared to the

three color-feature-based segmentation approaches. In particular, the proposed method

in corporation with skin chromophore feature has the highest DSC score and lowest

error rate (highlighted in pink color), which indicates that fundamental properties of

PSLs like chromophore concentrations can be a more reliable and discriminative feature

for improvement of the delineation performance on challenging PSLs images under the

APS framework. Note that the lesion image (cf. Figure 4.28 (a)) to fail using our method

is associated with strong specular artifacts dominant on the left part and only GrabCut

can obtain comparative result to the manual segmentation due to its iterative energy

minimization scheme which is converged to a good optimum. In terms of precision

and recall, our proposed method achieves better with both high value of precision and

recall, especially when chromophore feature is combine to the feature configuration

(highlighted in blue color). This indicates that the proposed APS technique obtains

results close to those of dermatologist. On the other hand, Boykov-Jolly’s approach and

Lazy Snapping show high precision but low recall, because these methods tend to extract

insufficient inner regions of the PSLs. GrabCut, on the contrary, shows low precision but

high recall, which indicates that it tends to overestimate the lesion area and misclassifies

the surrounding healthy skin part as lesion. In both cases, these conventional graph-

cut based approaches are not ideal as a preprocessing step in an automatic melanoma
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diagnosis system, since their inadequate segmentations may result in loss of information

on the peripheral parts of PSLs, which is very important for the diagnosis of melanoma.

Table 4.5: Quantitative evaluation on 9 dermoscopic PSLs images (presented from Figure
4.27 to Figure 4.34), measured by four metrics, the Dice similarity coefficient (DSC),
the segmentation error rate (ǫ), Precision and Recall. Value in bold corresponds to
the best performance according to a certain criterion. Cell in color indicates the best
performance subject to a certain pair of criteria. ’Chromo’: hemoglobin/melanin indices
for chromophore information, ’LS’: Lazy Snapping, ’BKJ’: Boykov-Jolly proposed graph-
cut algorithm.

Input
Criterion

Approach
Color Color + LBP Color + Chromo LS BKJ GrabCut

Aal002

DSC (%) 93.84 95.62 96.94 89.44 88.14 80.84
ǫ (%) 11.62 8.46 6.07 19.11 21.26 47.41

Precision (%) 99.97 99.17 97.73 99.92 99.70 67.84
Recall (%) 88.41 92.31 96.16 80.95 78.97 100

Fbl028

DSC (%) 84.40 85.23 86.63 85.17 82.00 91.97

ǫ (%) 27.05 25.77 23.67 25.89 30.55 15.06

Precision (%) 99.67 99.80 99.59 99.71 99.82 99.51
Recall (%) 73.19 74.38 76.63 74.32 69.58 86.24

Nel039

DSC (%) 93.79 92.59 94.60 89.78 82.30 61.95
ǫ (%) 12.57 14.00 10.73 19.27 30.20 122.73

Precision (%) 92.69 92.59 95.27 95.56 99.43 44.89
Recall (%) 94.91 86.20 93.94 84.66 70.21 99.90

Fcl040

DSC (%) 93.82 94.67 96.40 94.56 94.17 95.84
ǫ (%) 11.75 10.26 7.13 10.41 11.17 8.48

Precision (%) 98.96 98.54 97.55 99.01 98.52 93.99
Recall (%) 89.19 91.09 95.27 90.50 90.18 97.77

Nal020

DSC (%) 86.81 88.05 90.28 80.15 79.43 74.37
ǫ (%) 23.54 21.71 18.47 33.14 34.16 65.62

Precision (%) 98.71 97.95 95.26 99.95 99.83 61.02
Recall (%) 77.47 79.96 85.80 66.90 65.96 95.18

Ngl015

DSC (%) 95.22 96.40 97.30 95.59 93.67 94.98
ǫ (%) 9.13 7.05 5.28 8.45 11.92 9.57

Precision (%) 99.94 98.51 99.69 99.83 99.88 99.94

Recall (%) 90.93 94.38 95.11 91.70 88.19 90.48

Nml030

DSC (%) 95.57 94.01 96.20 93.91 94.42 95.10
ǫ (%) 8.52 11.31 7.51 11.56 10.69 9.61

Precision (%) 99.52 99.99 97.35 99.22 98.87 97.09
Recall (%) 91.92 88.70 95.09 89.14 90.35 93.19

Nml077

DSC (%) 91.67 91.89 94.40 90.23 91.40 90.52
ǫ (%) 15.40 15.04 10.57 17.95 15.97 20.58

Precision (%) 99.89 99.73 98.73 98.92 99.05 83.91
Recall (%) 84.69 85.19 90.44 82.95 84.85 98.27

Fcl032

DSC (%) 94.77 93.53 94.95 85.50 88.72 91.00
ǫ (%) 9.99 12.18 9.66 26.22 20.53 19.63

Precision (%) 99.49 99.78 99.53 95.62 98.48 84.03
Recall (%) 90.47 88.02 90.77 77.32 80.72 99.23

Table 4.6 summarizes the overall performance for each method by calculating the

mean value and standard deviation of each metric on 100 dermoscopy PSLs images. As

can be seen in Table 4.6, GrabCut consistently achieves worse precision of 84.37% but

excellent recall of 95.53% while Boykov-Jolly’s approach consistently achieves excellent
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precision of 99.07% but worse recall of 80.66%. In fact, a precision of 100% can be easily

achieved as long as the delineated region is completely included in the actual lesion area

whereas a recall of 100% can be achieved if the delineated region totally includes the ac-

tual lesion area. However, high scores of both precision and recall require more accurate

segmentation, for example, the proposed method scores high precision above 98.36%

along with high recall above 84.91%. For Lazy Snapping, it achieves both intermedi-

ate values of precision and recall (98.76% and 80.89%, repectively). When examining

the more comprehensive metrics such as the Dice similarity coefficient (DSC) and seg-

mentation error rate ǫ, it is apparent that our propose APS technique outperforms the

alternative graph-cut based approaches. Our proposed method achieves considerably

higher score of DSC above 91.19% and lower scores of ǫ under 16.05% while the other

conventional segmentation approaches show poorer performance with DSC score lower

than 88.73% and ǫ higher than 20.13%.

Table 4.6: Quantitative evaluation of segmentation methods on 100 dermoscopic PSLs
images compared with manual segmentation by a expert dermatologist, measured by
four metrics, the Dice similarity coefficient (DSC), the segmentation error rate (ǫ), Preci-
sion and Recall. For each metric, the corresponding average (Mean) value and standard
deviation (SD) are specifically presented. Value in bold corresponds to the best per-
formance according to a certain criterion. ’Chromo’: hemoglobin/melanin indices for
chromophore information, ’LS’: Lazy Snapping, ’BKJ’: Boykov-Jolly proposed graph-cut
algorithm.

Approach
Criterion DSC Error ǫ Precision Recall

Mean SD Mean SD Mean SD Mean SD

Color 91.19 4.24 16.05 6.59 98.98 1.99 84.91 7.59
Color+LBP 91.41 3.89 15.70 6.47 98.74 2.02 85.69 7.68

Color+Chromo 93.85 3.08 12.26 5.95 98.36 1.68 88.27 7.56

LS 88.73 4.68 20.15 7.61 98.76 1.53 80.89 7.67
BKJ 88.70 5.00 20.13 7.90 99.07 0.81 80.66 8.14

GrabCut 87.90 9.90 29.97 32.39 84.37 16.45 95.53 4.08

The above experimental results based on average scores of metrics are effective for

the overall accuracy assessment, however, they do not contain information on the disper-

sion of the segmentation scores. Therefore, the standard deviation (SD) of each metric

is adopted as a criterion for the robustness assessment. Not surprisingly, the conven-

tional methods show higher variability compared to the proposed method. Overall, the

proposed APS technique based on the combination of color and chromophore features

is proven to be the most reliable and stable PSLs delineation approach since it achieves

best scores of both DSC and ǫ while maintains lowest degree of dispersion of the two

metrics.
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4.5.3.3 Conclusion

In this section, we have presented a fully automatic segmentation approach especially

suitable for delineation of dermoscopy PSLs images. It is well developed under the

Graph-Cut/MAP-MRF binary segmentation framework consisting of two innovative

processing stages, automatic seeding and color-texture-chromophore feature configura-

tion. Automatic seeding stage guarantees the precision and diversity of observed sample

selection to build a reliable training set, while adding chromophore features of PSLs to

the multi-feature configuration stage enhances the discriminability of SVM classifier to

predict objective soft classification. Finally, graph-cut based segmentation promises a

globally optimal skin lesion delineation with t-link edge weights appropriately defined

by posterior classification probabilities.

Qualitative and quantitative evaluations were performed on 100 varied types of der-

moscopic PSLs images of different difficulty levels, in proportion to the similarity be-

tween foreground lesion and background skin, as well as the degree of artifacts like

hairs, reflections or bubbles. For each dermoscopic image, a corresponding ground-

truth binary mask is provided via manual delineation. Scores of four statistical metrics

calculated based on this reference dataset indicate promising segmentation results ob-

tained by our proposed APS technique, compared to the alternative graph-cut based

segmentation methods. Improvements on lesion delineation accuracy are particularly

remarkable for challenging PSLs images. In addition, the proposed APS framework is

essentially classification based thus additional features other than color information can

be naturally fed into the algorithm to further enhance the performance. Both mean val-

ues and standard deviations of Dice similarity coefficient and segmentation error rate

suggest that our proposed APS technique based on the combination of color and chro-

mophore features is accurate and robust as expected and it can be effective and useful

for pigmented skin lesion delineation in scope of computer-aided skin cancer diagnosis

system.

Future work will focus on the simplification of automatic seeding procedure while

maintain its precision. Also, multi-spectral PSLs images which are able to reveal in-

depth chromophore features will be involved in our proposed APS framework for more

precise classification of foreground lesion and background healthy skin.
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Chapter 5

Conclusion

The main motivation of this thesis is to propose a novel fully automatic technique for

pigmented skin lesion delineation in computer-aided skin cancer diagnosis system. In

order to attain our goal, we have developed a tool based on graph cuts segmentation and

binary clustering/classification, which have been successfully applied to segmentation

of challenging synthetic textured image, natural color images and dermoscopic PSLs

images. Furthermore, our work on automatic lesion localization and feature selection

on multi-spectral PSLs images opens new perspectives which could lead to valuable im-

provements of existing image segmentation techniques. In the following, contributions

made in this thesis are reviewed by chapter.

5.1 Contributions

Interactive Graph Cuts Based Image Segmentation

We have compared objectively state-of-the-art interactive graph-cut based image seg-

mentations, Boykov-Jolly’s approach, Lazy Snapping and GrabCut via qualitative segmen-

tation accuracy assessment on 30 natural color images and highlighted the strengths and

the weakness of each method. We have also addressed the optimization of two funda-

mental parameters λ and σ in the framework of graph cut segmentation in order to yield

most preferable and robust segmentation results for later comparison of some state-of-

the-art techniques as well as the proposed approaches in this work.

Combining Classification Techniques and Graph Cut Segmentation Framework

We have proposed to define the likelihood energy term of the binary segmentation en-

ergy function using the posterior classification of a classifier, Support Vector Machine

or Random Forest. We have shown that the combination of shape feature, LBP texture

145
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feature, RGB color feature and other potential pixel-wise features can be to used to build

a powerful multi-feature vector. Finally, we have shown by qualitative and quantitative

evaluations on 100 natural color images that the proposed color-texture-shape feature

based graph cuts segmentation approach outperforms the conventional color-feature

based segmentation methods.

Application to Skin Chromophore Extraction

We have developed a novel skin chromophore extraction method named Surface Fitting

and Flattening (SF2) approach which fits a quadratic surface in logarithmic normalized

RGB space and flatten it onto a 2-dimensional color plane. As an extension of Tsumura’s

approach, we have introduced the Pearson correlation coefficient (PCC) to distinguish

the estimated chromophore content distributions. For skin chromophore quantification

on RGB color and mutispectral pigmented lesion images, we have proposed to apply

Non-negative Matrix Factorization (NMF) to obtain concentration distributions of skin

chromophores. In addition, we have developed a Model-Fitting approach using tabu-

lated extinction coefficients of skin chromophores to objectively and precisely quantify

skin chromophores.

Application to Melanoma Detection

Our main interest was to develop a robust and accurate segmentation tool for automatic

dermoscopic PSL image delineation. First, we have developed an automatic approach

for selection of seed regions (Auto-Seeding) based on binary clustering and mathemati-

cal morphological processing. Then, we have proposed to add chromophore features of

pigmented lesions to the feature configuration to improve the algorithm’s segmentation

accuracy. Distributions of skin chromophore concentrations quantified by the proposed

Model-Fitting approach are selected as chromophore feature. Finally, qualitative and

quantitative evaluations on 100 dermoscopic PSLs images indicate that the developed

Automatic PSLs Segmentation (APS) method incorporation with skin chromophore fea-

tures outperforms state-of-the-art interactive graph-cut based methods, even they are

equivalently initialized manually or by the proposed Auto-Seeding approach.

5.2 Perspectives

This chapter presents several perspectives concerning the improvement of pigmented

skin lesion delineation under our proposed APS framework. At the automatic seed-

region selection stage, background seeds can be generated using the same scheme of the

lesion seeding (except for the skeletonization part, Parker’s method will be preferred),
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instead of simple border-adding. Also, inspired by the initialization of GrabCut, an au-

tomatic approximated lesion localization in terms of bounding rectangle is possible to

simplify the auto-seeding approach. At the feature configuration and classification stage,

since multi-spectral imaging allows more accurate acquisition of chromophore proper-

ties of deeper skin layer which is unseen by dermoscopy, we could select multi-spectral

PSLs images at certain wave bands (ranges) using existing feature selection algorithms

to directly complement the existing feature configuration. Likewise, the resulting chro-

mophore distribution maps can be combined with other low level visual features to

build a new multi-feature vector.

Automatic Lesion Localization

According to the approximate lesion localization method proposed by Celebi et al. [30],

we could determine the lesion region of a dermoscopic PSLs image approximately via an

accurate bounding rectangle which encloses the probable lesion area. This kind of initial-

ization might allow: (a) improvement of lesion delineation accuracy since the subsequent

segmentation procedure is focused on the region guaranteed in containing the lesion.

In addition, from the classification perspective, it increases the foreground/background

seeds number to provide better training set compared to the stroke-like small region of

seeds. (b) simplification and speed-up of lesion delineation since skeletonization process

in order to explicitly extract the stroke-like seed regions is omitted and the segmentation

algorithm could simply focus on a smaller region rather than two whole dermoscopic

image.

With this kind of initialization approach, an iterative optimization scheme of seg-

mentation should be adopted and after each iteration, new updated training samples

will be fed into a classifier to better estimate segmentations until converged (i.e. optimal

segmentation is found).

Feature Selection

Multi-spectral imaging relies on the principle that light of different wavelengths, for

example, of the visible and infrared spectrum, penetrates the skin in different depths.

When coupled with computer-based analysis, some features of deeper skin layer which

are not visible in macroscopic and dermoscopic analysis can be visualized.

Infrared light image, for instance, is specifically complemental to the computer-aided

melanoma diagnosis. Indeed, the IR light at 850 nm reveals the melanin present in

the deeper layers of the skin. We see in particular in Figure 5.1 (b,d) that for nevus

or superficial spreading melanoma (e.g. Dubreuil melanoma), distribution of melanin

concentration appears uniform and slightly visible in infrared light, whereas for deep



148 Chapter 5. Conclusion

extensive melanoma in Figure 5.1 (f), the distribution of pigmentation appears more

clear and especially non-uniform, which is a possible sign of malignancy.

(a) Nevus in RGB (b) Nevus at IR

(c) Dubreuil melanoma in RGB (d) Dubreuil melanoma at IR

(e) Melanoma in RGB (f) Melanoma at IR

Figure 5.1: RGB and spectral images of PSLs at wavelength of 850 nm.

The involvement of multi-spectral images increases the dimensionality of feature

space. Therefore, feature selection which aims to reduce the dimensionality of the fea-

ture space by eliminating redundant, irrelevant or noisy features could be a preferred

pre-processing step before training a classifier. From the classification perspective, five

main benefits associated with feature selection can be concluded: (a) reduced feature ex-

traction time and storage requirements, (b) reduced classifier complexity, (c) increased

prediction accuracy, (d) reduced training and testing times, (e) enhanced data inter-

pretability and (f) enhanced generalization by reducing overfitting.
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Cette annexe est un résumé long en français de ce manuscrit de thèse. Après une

introduction du contexte et des objectifs de ce travail qui concerne la détection

automatique du contour des lésions pigmentaires sur des images couleurs ou multis-

pectrales de la peau, nous présentons un rapide état de l’art des algorithmes de seg-

mentation interactive d’images. Ils sont formulées comme la minimisation d’énergie par

coupes de graphes en terme de Maxima A-Posteriori d’un champ de Markov (cadre

MAP-MRF). Dans ce cadre, nous proposons une fonction d’énergie basée sur la classifi-

cation et la combinaison de caractéristiques multiples. Nous présentons ensuite l’extrac-

tion des chromophores de la peau et son application à la détection du mélanome via un

schéma global de segmentation automatique des lésions cutanées pigmentées. Enfin, les

contributions des cette thèse sont résumées.
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A.1 Introduction

A.1.1 Motivations

Le mélanome est une tumeur maligne des mélanocytes. C’est le cancer de la peau le

plus mortel qui entraîne un nombre considérable de décès en particulier de la popu-

lation mondiale à peau claire [52]. Puisque le traitement du mélanome métastatique

est difficile [64], le diagnostic précoce et l’excision rapide sont essentiels pour amélio-

rer le taux de survie des patients. Il existe plusieurs systèmes de diagnostic de méla-

nome, par exemple, la règle «ABCDE» [77] et la liste de «7-points» [10]. L’interprétation

d’images dermoscopiques est couteuse en temps, subjective, et manque de précision et

la reproductibilité. Elle s’appuie enfin sur l’expérience clinique du dermatologue. Par

conséquent, il est utile de développer des systèmes de diagnostic assisté par ordinateur.

Une approche standard de l’analyse d’image dermoscopique automatique comprend

généralement quatre étapes : (i) l’acquisition d’images ; (ii) la segmentation d’images ;

(iii) l’extraction et la sélection de caractéristiques et (iv) la classification de la lésion.

L’étape de segmentation qui délimite les contours des lésions cutanées pigmentés est

très importante puisque les contours fournissent des informations importantes pour un

diagnostic [32]. Par exemple, la dimension des lésions, la forme, l’irrégularité du contour

sont des caractéristiques importantes calculées sur le contour de la lésion délimitée.

Cependant, la mise en œuvre de la délimitation précise reste une tâche difficile pour

plusieurs raisons : (i) un faible contraste entre la lésion et la peau environnante ; (ii) pig-

mentations variées à l’intérieur de la lésion ; (iii) le contour de la lésion flou et irrégulièr

et (iv) la présence d’objets comme des cheveux, des bulles et des réflexion spéculaires.

Cette thèse propose une nouvelle approche de la segmentation automatique des lésions

cutanées pigmentées, basées sur des images dermoscopique et spectroscopiques dans

le cadre MAP-MRF. Le logiciel développé a été testé sur différentes images de lésions

dermoscopique et des évaluations qualitatives et quantitatives indiquent l’efficacité et la

fiabilité de la méthode proposée.

A.1.2 Le cadre général : coupes de graphes

Nos outils de segmentation d’images sont basées sur la coupe de graphe. Dans la pre-

mière partie, nous décrivons les problèmes d’optimisation dans le contexte de la vision

par ordinateur et clarifions la relation entre coupe de graphe minimum et estimation

du maximum a posteriori d’un champ de Markov en segmentation d’images. Du point

de vue pratique, nous comparons objectivement des méthodes plus récentes de segmen-
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tation interactive d’images par coupe de graphe via l’évaluation de la précision de la

segmentation qualitative sur les images couleurs naturelles et mettre en évidence les

forces et les faiblesses de chaque méthode. En outre, nous nous adressons à l’optimisa-

tion de deux paramètres fondamentaux dans le cadre de la segmentation par coupe de

graphe. Les points sur lesquels le mise a focalise sont les suivants :

• la gestion de contraintes faibles

• l’amélioration de terme d’attache aux données

• la détermination automatique de graines

A.1.3 La combinaison des techniques de classification et segmentation par

coupe de graphe

La deuxième partie de cette thèse est consacrée à des méthodes innovantes en com-

binant segmentation par coupe de graphe avec des techniques de classification. Nous

proposons dans cette section de la formulation du terme d’attache aux données de la

fonction d’énergie de segmentation binaire défini par la probabilité à postérieur d’un

classificateur (Machines à support de vecteurs ou Forêts aléatoires). Nous montrons com-

ment combiner les caractéristiques de couleur, de texture (LBP) dans un voisinage local

(caractéristique de forme) pour améliorer la discrimination entre l’objet et le fond.

A.1.4 Application à la détection de mélanome

Nous détaillons dans cela section de l’extraction des chromophores de la peau et la

détection du mélanome. La premiére partie consiste à estimer les distributions des chro-

mophores de la peau. L’application vise à segmenter précisément les lésions cutanées

pigmentées sur des images dermoscopiques. Nous développons une approche determi-

nant automatiquement les graines donnant un ensemble d’apprentissage suffisant pour

le classificateur et proposons d’ajouter les chromophores à la configuration des caracté-

ristiques du classificateur. Dans les études qualitatives et quantitatives, les résultats de

segmentation sont comparés aux délimitations manuelles et l’approche proposée sur-

passe les méthodes classiques.
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A.2 Le cadre général : coupes de graphes

A.2.1 Problèmes d’étiquetage que la minimisation de l’énergie

Les problèmes existantes de vision par ordinateur de bas niveau, telles que la segmen-

tation d’image, l’appariement stéréo, la restauration de l’image (cf. Figure A.1), peuvent

être formulés comme des problèmes d’étiquetage d’images. Ces problèmes visent à af-

fecter une étiquette de lp d’un ensemble d’étiquettes L à chaque pixel p de l’image

observée P . Un exemple d’étiquetage d’image binaire est illustré dans la figure A.2. Un

tel problème d’étiquetage est naturellement représenté en termes de minimisation de

l’énergie, où la fonction d’énergie E a deux termes : un terme appelé «l’énergie d’at-

tache aux données», qui pénalise les solutions qui sont incompatibles avec les données

observées, tandis que l’autre terme appelé «l’énergie de régularisation» assure la cohé-

rence spatiale :

E = Edata + λ · Esmooth. (A.1)

(a) Segmentation d’images binaires (b) Appariement stéréo (c) Restauration de l’image

Figure A.1 – Application des problèmes d’étiquetage d’images binaires. (a) Segmenta-
tion d’images binaires sur «Flower» (Ref. 124084) par coupe de graphe [22] ; (b) Apparie-
ment stéréo sur «Tsukuba» par l’algorithme α-expansion [59] ; (c) Restauration de l’image
«House» par l’algorithme α-β-swap [26].

où la constante λ contrôle l’importance relative des données et de l’énergie de régulari-
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(a) Une image en niveaux de gris

1 1

1 1 0 1 000

1

10

1 1 0 1 1

0

011

0

0 00 0 0 0

0 1 1 0 0 0 0

(b) Un étiquetage

Figure A.2 – Un exemple d’étiquetage d’image binaire.

sation. En particulier, l’énergie d’attache aux données est de la forme :

Edata = ∑
p∈P

Dp(lp). (A.2)

Compte tenu du système de voisinageN , l’énergie de régularisation a la forme suivante :

Esmooth = ∑
{p,q}∈N

V{p,q}(lp, lq), (A.3)

En combinant l’équation (A.1), l’équation (A.2) et l’équation (A.3) nous obtenons la

forme générale de la fonction de l’énergie :

E(L) = ∑
p∈P

Dp(lp) + λ · ∑
{p,q}∈N

V{p,q}(lp, lq). (A.4)

Une des raisons pour lesquelles cette forme générale est si populaire, c’est qu’il peut être

justifié en termes d’estimation du maximum a posteriori (MAP) d’un champ de Markov

(MRF) [16, 44].

A.2.2 Notions de base de coupes de graphes

Dans cette section, nous passons en revue brièvement quelques définitions et notations

du graphe et les théorèmes fondamentaux ainsi que des algorithmes de base dans le

contexte de l’optimisation combinatoire en vision par ordinateur.

Définition A.2.1. (Graphe). Un graphe orienté G est une paire ordonnée G = 〈V , E〉, où

V est l’ensemble des nœuds d’un graphe (sommets) et E ⊆ {(p, q)|p, q ∈ V , p (= q} est

l’ensemble des arêtes du graphe reliant ces nœuds. Une arête (p, q) de E est notée ep,q.

Pour chaque arête ep,q de G, nous attribuons une valeur de wp,q ∈ R
+, qui est la capacité

de l’arête ep,q.



A.2. Le cadre général : coupes de graphes 155

Définition A.2.2. (Coupe). Une coupe est un sous-ensemble des arêtes C ⊂ E telles que

deux nœuds supplémentaires sont ajoutés au graphe induit G(C) = 〈V , E\C〉. Le coût

(ou la capacité) de la coupe est définie comme la somme des capacités des arêtes qu’il

sectionne :

|C| = ∑
ep,q∈C

wp,q (A.5)

Définition A.2.3. (s/t Coupe). Une s/t coupe est un cas particulier de coupe de graphe,

où l’ensemble des nœuds V = {s, t} ∪ P contient deux nœuds spéciaux de terminaux,

la source s et le puits t, et un ensemble de nœuds non terminaux P . Par conséquent,

une s/t coupe est définie comme une partition des nœuds dans le graphe en deux sous-

ensembles disjoints S et T , c.-à-d. S ∪ T = V and S ∩ T = ∅, où s ∈ S and t ∈ T .

En optimisation, trouver la s/t coupe avec le plus petit coût indique donc l’endroit

où le réseau est le plus limité, ce qui revient à établir le «flot» avec la valeur maximale

qui peut passer de la source s au puits t, selon le théorème flot-max/coupe-min (cf.

Théorème A.2.1) [2, 41]. En d’autres mots, le problème de coupe minimale et le problème de

flot maximum sont équivalentes.

Définition A.2.4. (Flot). Etant donné un graphe orienté G = 〈V , E〉 avec deux nœuds

terminaux {s, t} ∈ V , un flot dans le graph G est définie comme une fonction f : E → R
+
0

attribuant à chaque arête (p, q) ∈ E une valeur non négative fp,q. Ce flot doit vérifier

deux contraintes :

0 ≤ fp,q ≤ wp,q ∀(p, q) ∈ E , (La contrainte de capacité) (A.6)

∑
(p,q)∈E

fp,q = ∑
(q,p)∈E

fq,p ∀p ∈ V \ {s, t}. (La conservation du flot) (A.7)

La valeur du flot représente la quantité de flot allant de la source s au puits t. Elle se

définit par

| f | = ∑
(s,p)∈E

fs,p − ∑
(p,s)∈E

fp,s = ∑
(p,t)∈E

fp,t − ∑
(t,p)∈E

ft,p. (A.8)

Théorème A.2.1. (Théorème Flot-Max/Coupe-Min). Pour tout graphe orienté G, tout couple

{s, t} de sommets, et pour tout vecteur de capacités positives, la valeur maximale du flot de s à t

est égale à la capacité minimale d’une coupe séparant s de t.

Selon l’inférence bayésienne, la fonction d’énergie associée au problème d’étiquetage

binaire (cf. Equation (A.4)) est traitée comme une configuration optimale d’un champ

de Markov (MRF) qui peut être résolu via estimation du maximum a posteriori (MAP).
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En trouvant une coupe minimale d’un graphe, il peut être exactement minimisé par la

suite (cf. Corollaire A.2.1).

Corollaire A.2.1. (Minimisation de l’Energie via Coupe Minimale de Graphe dans le

Cadre MAP-MRF). Prenons l’étiquetage binaire L =
{

lp|lp ∈ {0, 1}
}|V|

p=1
sur une observation

donnée X = {xp|p ∈ V}, l’énergie de ce problème d’étiquetage

E(L) = ∑
p∈V

− ln(Pr(xp|lp)) + ∑
p∈V

∑
q∈Np

Up,q · δlp (=lq (A.9)

peut être minimisé exactement via le calcul de la coupe minimale d’un graphe avec ses capacités

d’arêtes attribués de façon appropriée, si et seulement si la condition Up,q ∈ R
+ est satisfaite.

A.2.3 Coupes de graphes dans la segmentation d’images

Segmentation d’image par coupe de graphe a été introduit par Boykov et Jolly [23] en

2001. Contrairement aux autres méthodes de segmentation d’images, par exemple, le

Modéle de contour actif [55, 28] et les approches fondées sur les surfaces de niveau, le

coupe de graphe garantit un optimum global, pour la segmentation d’image binaire.

La figure A.3 illustre le processus de segmentation par coupe de graphe proposé par

Boykov et Jolly. L’utilisateur marque certains pixels comme «objet» (le trait rouge) ou

«fond» (le trait bleu), «contraintes dures» pour la segmentation. Chaque nœud dans le

graphe représente un pixel de l’image d’entrée, tandis que deux nœuds supplémentaires,

la source et le puits, représentent l’objet et le fond, respectivement. La capacité de l’arête

entre deux nœuds voisins est donnée par le «terme de régularisation» de l’énergie (cf.

Equation (A.3)), tandis que la capacité de l’arête entre la source et le nœud ou nœud et le

puits, est définie par le «terme d’attache aux données» de l’énergie (cf. Equation (A.2)).

Pour le flot maximum, les arêtes sont saturées. Par conséquent, nous pouvons obtenir la

segmentation globalement optimale.

La fonction de l’énergie adoptée par Boykov et Jolly est défini sur l’équation (A.4)

comme suit :

E(L) = − ∑
p∈V

log h(xp; lp) + λ · ∑
{p,q}∈N

exp

(

−
(xp − xq)2

2σ2

)

·
1

dist(p, q)
· δlp (=lq (A.10)

L’énergie d’attache aux données est définie par l’estimation de la distribution d’intensité

de pixel utilisant un histogramme, alors que l’énergie de régularisation par pénalise les

discontinuités. Deux extensions de l’approche de segmentation par coupe de graphe de

Boykov-Jolly, Lazy Snapping et GrabCut, ont été proposés par Li et al. [65] et Rother et
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Figure A.3 – Un cadre de la segmentation basée sur le coupe de graphe proposé par
Boykov et Jolly [22].
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al. [78] en 2004. Contrairement à la méthode Boykov-Jolly, Lazy Snapping adopte un

algorithme de partitionnement des données nommé «k-Means» pour définir l’énergie

de données, tandis que GrabCut utilise un modèle de mélange gaussien pour estimer la

distribution des couleurs pour la définition de l’énergie des données.

A.2.4 Détermination des paramètres de segmentation par coupe de graphe

Le mauvais choix des paramètres λ et σ peut entraîner segmentation insatisfaisanté.

λ peut être estimée par apprentissage. σ est étroitement liée au niveau de variation

d’intensité de pixels d’une image, il est raisonnable de donner à σ de la moyenne des

différences d’intensité absolue entre deux pixels voisins :

σ =

√

〈

(Ip − Iq)2
〉

(A.11)

A.3 La combinaison des techniques de classification et segmen-

tation par coupe de graphe

Les classiques méthodes utilisent uniquement les caractéristique de couleur pour définir

l’énergie de données. Par exemple, dans la figure A.4, l’objet de la «croix» et le fond de

«l’église» sont très semblables en couleur. Ici, la caractéristique de la couleur ne suffit

pas à les distinguer. La caractéristique de la texture peut être un meilleur choix dans ce

cas.

Par conséquent, nous avons proposé dans cette thèse d’utiliser non seulement la cou-

leur, mais aussi la texture et la forme pour construire un vecteur de caractéristique pour

améliorer la perfomance de segmentation. Ce vecteur de caractéristiques, combinaison

de couleur, de texture dans un voisinage local (caractéristique de forme) est utilisé pour

classificateur (Machines à support de vecteurs ou Forêts aléatoires). La sortie probabi-

liste de ce classificateur est utilisée pour définir l’énergie des données.

A.3.1 Local Binary Pattern (LBP) pour reconnaître des textures

Pour la description de la texture, nous avons proposé d’utiliser Local Binary Pattern

(LBP), qui tout d’abord introduit par Ojala et al. [71] en 1996.

La figure A.5 montre le schéma de processus de codage LBP. En outre, le lissage

gaussien peut être adoptée pour améliorer la capacité discriminative pour la texture à

grande échelle (léopard) d’un opérateur LBP. Tout au long de cette thèse, la combinaison

de filtrage gaussien et l’opérateur LBP est notée par GLBP.
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(a) Initialisation par «graines» (b) Boykov-Jolly ; ǫ = 75.81% (c) Lazy Snapping ; ǫ = 18.43%

(d) IInitialisation par rectangle (e) GrabCut ; ǫ = 57.82% (f)

Figure A.4 – Un exemple négatif pour les techniques de segmentation par coupe de
graphe à base de couleurs.
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Figure A.5 – Calcul du code LBP original.

A.3.2 Un voisinage local pour reconnaître des formes

Comme la caractéristique de la texture est une propriété basée sur l’aspect local, nous

avons introduit un voisinage local (une fenêtre glissante, cf. Figure A.6).

. . . . .

. . 1 . .

. 4 2 .

. . 3 8 .

. . .. 24

0

Pixel cible

2x2 Voisinage

3x3 Voisinage

5x5 Voisinage

Figure A.6 – Un voisinage local.

Au cours du balayage de cette fenêtre, le code LBP de chaque pixel dans le voisinage,

ainsi que le pixel central est utilisé pour construire un vecteur de caractéristique.

Le voisinage local montre aussi une excellente généralisation à d’autres propriétés

locales des pixels, comme des informations de couleur. Le nombre de voisins (taille de

la fenêtre) est fixée à 5× 5 comme un compromis de faible complexité de calcul dans

l’espace de caractéristique et bonne discrimination spatiale. Ainsi, la configuration de

la caractéristique de texture en utilisant le voisinage local est un vecteur de dimensions
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100 (cf. Equation (A.12)).

F = [R0,G0, B0, T0 · · · , Rn,Gn, Bn, Tn]
⊤ (A.12)

où Ti, i = 0, · · · , n représente le code LBP.

A.4 Application à la détection de mélanome

Dans le contexte de la détection du mélanome, nous avons utilisé non seulement les

caractéristiques de la couleur, la texture et de la forme, mais aussi des caractéristiques de

chromophores. Afin d’extraire les chromophores, nous introduisons ici deux groupes de

méthodes d’extraction : i) les approches fondées traitement de l’image et ii) les approches

basées sur des modèles physiques.

A.4.1 Structure de la peau et la propriété optique
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Figure A.7 – Schéma de la voie optique dans un modèle de peau à 3 couches (dispersion
est omis).

Comme on peut le voir sur la figure A.7, une lumière qui pénètre dans la peau hu-

maine est principalement absorbée par trois chromophores prédominants, la mélanine,

oxyhémoglobine et désoxyhémoglobine. Ce sont les trois principaux déterminants de la

couleur de peau. Sur la base de la loi de Beer-Lambert, l’absorbance de ce modèle de

peau à une longueur d’onde λ peuvent être exprimée pour chaque pixel dans l’image
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de la peau comme ceci :

A(λ) = log(1/R(λ))

= ǫHbO2(λ)lHbO2(λ)cHbO2 + ǫHb(λ)lHb(λ)cHb + ǫMel(λ)lMel(λ)cMel (A.13)

où l est la profondeur de pénétration de la lumière, c désigne la concentration du chro-

mophore, et ǫ est le coefficient d’extinction.

A.4.2 Extraction de chromophore : approches fondées traitement de l’image

Parmi les approaches est basées sur le traitement d’image dans différents espaces co-

lorimétriques, qui comprend : i) la décomposition du chromophore de la peau dans

l’espace «TSL» proposé par Kim et Kim [56] et ii) séparation des distributions spatiales

de la mélanine et l’hémoglobine dans l’espace «RVB» proposé par Tsumura et al. [91].

Un schéma de la méthode de Tsumura est représenté dans la figure A.8. La répartition

de la couleur de la peau a d’abord été modélisée dans le domaine de densité optique.

Ensuite, l’Analyse en composantes principales (PCA) a été adoptée pour extraire un plan

bidimensionnel. Enfin, l’Analyse en composantes indépendantes (ICA) a été utilisé pour

l’estimation de la mélanine et l’hémoglobine.

− log(r )

− log(g)

− log(b)

c(3) c(2)

c(1) p(1)

p(2)

Skin color distribution

Figure 4. Skin color model in the optical density domain of three

-log(R)

-log(B)

-log(G)
Distribution approximative de la 

couleur de peau 

Figure A.8 – Un schéma de la méthode d’extraction de chromophore de la peau proposé
par Tsumura et al. [91]

Cependant, la méthode de Tsumura est sensible à la variation de l’éclairage, et n’est

valable que pour des petites régions de l’échantillon de peau. Pour pallier la faiblesse

de la méthode de Tsumura, nous proprosed une nouvelle méthode, nommée «Surface

Fitting and Flattening» (SF2).
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Figure A.9 – Un schéma de la méthode proposée «SF2».

Comme on peut le voir sur la figure A.9, la distribution de couleur de peau dans l’es-

pace de couleur RVB normalisée (Nrgb) se trouve à approximativement sur une surface

quadratique en trois dimensions. Nous proposons régression par un modèle de poly-

nôme du second ordre et dépliement de cette surface pour obtenir un plan de couleur à

deux dimensions. La distribution de la couleur de la peau peut être séparé par la suite

en deux composantes, de l’hémoglobine et de la mélanine, par l’ICA.

A.4.3 Extraction de chromophore : approches basées sur des modèles phy-

siques

Nous pouvons réécrire l’équation (A.13) sous une forme matricielle (cf. Equation (A.15)) :











log(1/R(λ1))
...

log(1/R(λm))











=










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














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




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(A.14)

X = AS (A.15)

où X est la matrice des données observées, A est une matrice de mélange et S est une

matrice de données de source.

Lorsque la matrice de mélange A est inconnue, les méthodes basées sur la sépara-
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tion aveugle de source (BSS), par exemple, la factorisation de la matrice non-négative

(NMF), peuvent être utilisés pour résoudre la matrice de données de source S, dans

le cas contraire, si la matrice de mélange A est donnée par les coefficients d’extinction

tableaux de trois chromophores, nous avons proposé une méthode «Modèle-Fitting»

(MF). Sur images couleur, nous pouvons résoudre le système d’équations linéaires (cf.

Equation (A.14)) :

S = A−1
tabulateX (A.16)

Si la méthode proposée est appliquée à des images multispectrales, nous pouvons

résoudre ce système surdéterminé (cf. Equation (A.14)) utilisant une estimation des

moindres carrés avec une seule contrainte donnée dans l’équation (A.17) :

argmin
Atabulated

‖X−AtabulatedS‖
2 (A.17)

Subject to : S ≥ 0

A.4.4 La Segmentation Automatique de lésion cutanée Pigmentée (APS) sur

les images dermoscopiques

Puisque nous sommes maintenant en mesure d’estimer les concentrations des chromo-

phores de la peau, il est utile d’ajouter les informations de chromophore de la peau á

la configuration des caractéristiques multiples (cf. Figure A.10 de la partie «la configu-

ration des caractéristiques»). Des expériences sur des images de lésions dermoscopique

vérifient que la combinaison d’informations des chromophores de la peau avec les ca-

ractéristiques de la couleur, la texture et la forme peut conduire segmenter la lésion plus

precis et robuste (cf. Table A.1).

Table A.1 – L’évaluation quantitative des différentes méthodes de segmentation sur 100
images dermoscopique. ’DSC’ : Dice similarity coefficient, ’LS’ : Lazy Snapping, ’BKJ’ :
Boykov-Jolly.

Approach
Criterion DSC Error ǫ Precision Recall

Mean SD Mean SD Mean SD Mean SD

Couleur 91.19 4.24 16.05 6.59 98.98 1.99 84.91 7.59
Couleur+LBP 91.41 3.89 15.70 6.47 98.74 2.02 85.69 7.68

Couleur+Chromophore 93.85 3.08 12.26 5.95 98.36 1.68 88.27 7.56

LS 88.73 4.68 20.15 7.61 98.76 1.53 80.89 7.67
BKJ 88.70 5.00 20.13 7.90 99.07 0.81 80.66 8.14

GrabCut 87.90 9.90 29.97 32.39 84.37 16.45 95.53 4.08

En outre, une approche a été proposé pour générer automatiquement des «graines»

(cf. Figure A.10 de la partie «Auto-Seeding»). Tout d’abord, l’algorithme de k-Means++
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Figure A.10 – Un schéma de notre approche de Segmentation Automatique de lésion
cutanée Pigmentée (APS), qui est particulièrement adapté pour des images de lésions
dermoscopiques.
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[12] a été adopté afin d’obtenir une segmentation grossière de lésion de la peau sur

l’image dermoscopique. Ensuite, les opérations morphologiques tels que l’érosion et

la fermeture ont été utilisés pour combler les trous et lisser la segmentation binaire

obtenu. Après cela, l’image binaire est squelettée via un algorithme de squelettisation

avec élagage [14] pour former les «graines» de l’objet. Les «graines» d’objets obtenues

sont placés dans la région de la lésion, malgré de la présence d’artefacts tels que les poils

ou la réflexion spéculaire. Pour obtenir les «graines» de fond, le bord de l’image suive

la dilatation ont été utilisé.

A.5 Conclusion

Cette thèse utilise la notion de coupe de graphe pour segmenter automatiquement des

images de mélanomes. Les contributions concernent l’utilisation d’un classifieur perfor-

mant comme terme d’attache aux donneés, la gestion de contraintes faibles ainsi que

la détermination automatique des graines pour notre application. Les résultats de cette

methode sont precis et robuste.
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Title: Segmentation of Color and Multspectral Skin Images

Abstract: Accurate border delineation of pigmented skin lesion (PSL) images is a vi-

tal first step in computer-aided diagnosis (CAD) of melanoma. This thesis presents a

novel approach of automatic PSL border detection on color and multispectral skin im-

ages. We first introduce the concept of energy minimization by graph cuts in terms

of maximum a posteriori estimation of a Markov random field (MAP-MRF framework).

After a brief state of the art in interactive graph-cut based segmentation methods, we

study the influence of parameters of the segmentation algorithm on color images. Un-

der this framework, we propose an energy function based on efficient classifiers (support

vector machines and random forests) and a feature vector calculated on a local neigh-

borhood. For the segmentation of melanoma, we estimate the concentration maps of

skin chromophores, discriminating indices of melanomas from color and multispectral

images, and integrate these features in a vector. Finally, we detail a global framework of

automatic segmentation of melanoma, which comprises two main stages: automatic se-

lection of "seeds" useful for graph cuts and the selection of discriminating features. This

tool is compared favorably to classic graph-cut based segmentation methods in terms of

accuracy and robustness.

Keywords: Image segmentation, Graphs, Melanoma, Lesion delineation, Classification.



Titre : Segmentation de l’Images Couleurs et Multispectrales de la Peau

Résumé : La délimitation précise du contour des lésions pigmentées sur des images

est une première étape importante pour le diagnostic assisté par ordinateur du mé-

lanome. Cette thèse présente une nouvelle approche de la détection automatique du

contour des lésions pigmentaires sur des images couleurs ou multispectrales de la peau.

Nous présentons d’abord la notion de minimisation d’énergie par coupes de graphes en

terme de Maxima A-Posteriori d’un champ de Markov. Après un rapide état de l’art,

nous étudions l’influence des paramètres de l’algorithme sur les contours d’images cou-

leurs. Dans ce cadre, nous proposons une fonction d’énergie basée sur des classifieurs

performants (Machines à support de vecteurs et Forêts aléatoires) et sur un vecteur

de caractéristiques calculé sur un voisinage local. Pour la segmentation de mélanomes,

nous estimons une carte de concentration des chromophores de la peau, indices dis-

criminants du mélanomes, à partir d’images couleurs ou multispectrales, et intégrons

ces caractéristiques au vecteur. Enfin, nous détaillons le schéma global de la segmen-

tation automatique de mélanomes, comportant une étape de sélection automatique des

«graines» utiles à la coupure de graphes ainsi que la sélection des caractéristiques dis-

criminantes. Cet outil est comparé favorablement aux méthodes classiques à base de

coupure de graphes en terme de précision et de robustesse.

Mots clés : Segmentation d’images, Graphes, Mélanome, Délimitation des lésions, Clas-

sification.
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