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École Centrale de Lyon
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Je tiens à remercier du plus profond du coeur M. Francis LEBOEUF, Pro-

fesseur de l’Ecole Centrale de Lyon, l’ancien directeur de ma thèse. Son
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sans leur soutien et leur aide, je n’aurais jamais pu réaliser ce travail doc-
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Abstract

The Fluid-Structure Interaction (FSI) effects are of great importance for

many multi-physical problems in academic researches as well as in engi-

neering sciences. Various types of numerical simulation approaches may

be used to investigate the FSI problems in order to get more reliable con-

ception and to avoid unexpected disasters.

In this work, the fluid sub-domain is simulated by a hybrid mesh-less method

(SPH-ALE), and the structure is discretized by the Finite Element (FE)

method. As the fluid is considered as a set of particles, one can easily track

the fluid structure interface. An energy-conserving coupling strategy is pro-

posed for transient fluid-structure interaction problems where different time

integrators are used for each sub-domain: 2nd order Runge-Kutta scheme

for the fluid and Newmark time integrator for the solid. By imposing a nor-

mal velocity constraint condition at the interface, this proposed coupling

method ensures that neither energy injection nor energy dissipation will oc-

cur at the interface so that the interface energy is rigorously zero during the

whole period of numerical simulation. This coupling method thus ensures

that the coupling simulation shall be stable in time, and secondly, the nu-

merical simulation will converge in time with the minimal convergence rate

of all the time integrators chosen for each sub-domain.

The proposed method is first applied to a mono-dimensional piston problem

in which we verify that this method does not degrade the order of accuracy

in time of the used time integrators. Then we use this coupling method to

investigate the phenomena of propagation of shock waves across the fluid-

structure interface. A good agreement is observed between the numerical

results and the analytical solutions in the 1-D shock wave propagation test

cases. Finally, some multi-dimensional examples are presented. The results

are compared with the ones obtained by other coupling approaches.

Keywords: SPH method; finite element method; fluid-structure interaction;

coupling algorithm; energy conservation at interface; numerical stability.



Résumé

L’Interaction Fluide-Structure (IFS) est un sujet d’intérêt dans beaucoup de

problèmes pratiques aussi bien pour les recherches académiques ainsi que

pour les applications industrielles. Différents types d’approches de simula-

tion numérique peuvent être utilisés pour étudier les problèmes d’IFS afin

d’obtenir de meilleurs conceptions et d’éviter des incidents indésirables.

Dans ce travail, le domaine du fluide est simulé par une méthode hybride

sans maillage (SPH-ALE), et la structure est discrétisée par la méthode

d’Éléments Finis (EF). Considérant le fluide comme un ensemble de partic-

ules, on peut suivre l’interface entre le fluide et la structure d’une manière

naturelle. Une stratégie de couplage conservant l’énergie est proposée pour

les problèmes d’IFS transitoires où différents intégrateurs temporels sont

utilisés pour chaque sous-domaine: 2nd ordre schéma de Runge-Kutta pour

le fluide et schéma de Newmark pour le solide. En imposant la conti-

nuité de la vitesse normale à l’interface, la méthode proposée peut as-

surer qu’il n’y a ni injection d’énergie ni dissipation d’énergie à l’interface.

L’énergie de l’interface est donc nulle (aux erreurs de troncature près) du-

rant toute la période de simulation numérique. Cette méthode de couplage

assure donc que la simulation de couplage est numériquement stable en

temps. Les expérimentations numériques montrent que le calcul converge

en temps avec l’ordre de convergence minimal des schémas utilisés dans

chaque sous-domaine.

Cette méthode proposée est d’abord appliquée à un problème de piston

mono-dimensionnel. On vérifie sur ce cas qu’elle ne dégrade pas l’ordre

de précision en temps des schémas utilisés. On effectue ensuite les études

des phénomènes de propagation d’ondes de choc au travers de l’interface

fluide-structure. Un exellent accord avec la solution analytique est observé

dans les cas de teste de propagation d’onde en 1-D. Finalement, les exem-

ples multi-dimensionnels sont présentés. Ses résultats sont comparés avec

ceux obtenus par d’autres méthodes de couplage.

Mots-clés: méthode SPH; méthode d’éléments finis; intéraction fluide-

strucutre; algorithme de couplage; conservation de l’énergie à l’interface;

stabilité numérique.
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Chapter 1

Introduction

1.1 Background

Let’s consider the vibration of aircraft wings or turbomachinery blades, the flow of

blood through arteries, the response of bridges and tall buildings to winds, etc. In all

these phenomena a common point can be found out, which is the interaction between

two different types of mediums, the fluid flows and the solid structures.

The abbreviation FSI, which means Fluid-Structure Interaction, is widely used to

denote this kind of phenomenon. In some cases, the interaction is only dedicated to the

exchange of momentum, but not to the heat transfer or any other types. In such FSI

problems, the movement and deformation of the structure are influenced by the fluid

flow state, at the same time, the fluid flow is also affected by the position and movement

of the solid structure. Concisely speaking, the interaction between the two mediums is

mutual and simultaneous.

To understand the FSI phenomena, people try to construct some mathematical mod-

els and obtain the results by resolving analytically the appropriate differential equa-

tions. However, in most cases this method is quite difficult or even impossible to realize

because of the complexity and nonlinearity of the differential equations. Sometimes

it’s hard to find the solutions, most of the time there exists no analytical solutions. In

this case, numerical methods, such as Finite Element (FE) method or Finite Difference

method (FD), are used to resolve numerically the complex and nonlinear differential

equations.

1



Even though this makes the resolution possible, the numerical methods often suffer

from other difficulties, for example, the numerical instability issues, the compatibility

of different numerical methods used in each sub-domain, and the requirement of large

computer resources etc. Hence, some approximative hypothesis have been made to

simplify the resolution of FSI problems in realistic engineerings, such as neglecting the

effect from one medium to the other or supposing that the interaction effect is static.

Unfortunately, such simplification in conception may cause accidents or disasters, for

example, the collapse of Tacoma Narrows Bridge due to the vibration induced by the

surrounding air flows, and the fracture of water pipe caused by the propagation of shock

waves (Figure 1.1), which is also called the Water Hammer problems in pipes [7, 56].

(a) Collapse of Tacoma Narrows

Bridge (1940).

(b) Fracture of water pipe.

Figure 1.1: Accidents caused by Fluid-Structure Interaction.

Hence, developing a robust numerical coupling method for FSI problems becomes

an important issue for scientific research as well as realistic industrial engineering.

1.2 Overview of existing methods for FSI

1.2.1 Lagrangian vs. Eulerian points of view

Typically, in continuum mechanics, a physical problem can be described in two dif-

ferent ways: the Lagrangian approach and the Eulerian approach. In the Lagrangian

approach, the physical variables, e.g. the density or the velocity etc., are defined at the

infinitesimal material domain which is moving with the material point. Hence, this La-

2



grangian description permits an easy tracking of free surfaces and interfaces between

different mediums. In addition, the constitutive equations are always evaluated at the

same material points, which is sensible for history-dependent materials. But it is hard

to follow large distortions of the computational domain without remeshing operations.

In the Eulerian approach, the variables are defined at the point which doesn’t move in

space as time varies, so the continuum moves with respect to the mesh. Large distor-

tions in the continuum can be easily handled, but the drawback of this approach is the

imprecise treatment of moving boundaries.

Based on the different characteristics of movement and state of solid and fluid medi-

ums, it’s often preferable to use Lagrangian approach in solid mechanics (the deforma-

tion apprears often moderate), and to use Eulerian approach in fluid mechanics.

However, a difficulty may occur for the treatment of mesh for the fluid sub-domain,

as presented previously. Because, in Eulerian approach the fluid mesh is fixed in space,

however, as the solid mesh is time-varying, there will be mesh incompatibility issues at

the fluid-structure interface.

Various methods are used to overcome this difficulty, such as the Level Set (LS)

method [65], the Volume of Fluid (VOF) method [35] and the Immersed Boundary (IB)

method [68] etc. These methods mentioned above are all based on the boundary track-

ing techniques on a fixed background mesh with the Eulerian approach for the fluid

sub-domain. Nevertheless the most widely used method is named as the Arbitrary-

Lagrangian-Eulerian (ALE) method [18], which combines the advantages of the above

classical Lagrangian and Eulerian descriptions, while minimizing their respective draw-

backs as far as possible.

In the ALE method, the nodes of the computational mesh may move with the con-

tinuum (Lagrangian description), or be held fixed in space as time varies (Eulerian de-

scription), or, move with an arbitrary velocity. When using this method to the fluid

sub-domain, it allows us to easily track the fluid-structure interface, and to follow the

large distortions or movements in the fluid continuum. However it requires additional

resolutions for updating the fluid mesh. This will need more computational resources

and sometimes lead to numerical instability issues, if the ALE mesh movement is not

properly calculated.

In this work, the fluid sub-domain is discretized by a meshless particle approach in

ALE description, and a Lagrangian mesh is used for the solid sub-domain. Since both
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the fluid and solid sub-domains are described in Lagrangian ways, it is easier and more

natural to track the fluid-structure interface, and also to handle the free surfaces flows

problems [16, 54].

1.2.2 Monolithic vs. Partitioned algorithms

Generally the coupling strategies or algorithms of the two different physical domains

can be classified into two categories [25]: monolithic and partitioned procedures.

In monolithic procedures [8, 57], the fluid and solid governing equations are solved

simultaneously or synchronously. Hence, in most cases, the resolution has to be carried

out in one numerical simulation solver or software. Preservation of accuracy and nu-

merical stability is the most important advantage of this sort of method. This monolithic

method is however difficult to handle if the fluid and the structure are described by two

very different solvers.

Partitioned procedures [26, 55, 70, 82] can overcome this limit, since the equations

of fluid and structure are integrated in time separately and alternatively, and different

numerical methods can be used in each sub-domain. However, in a partitioned scheme,

the interface conditions are often enforced asynchronously, which may lead to a time

lag between the time integration of the fluid and the structure [8]. As a consequence,

this partitioned method is sometimes energy increasing [57]. Considering the time dis-

cretization (different time schemes, different time scales for the fluid and the structure),

such approaches may suffer from a lack of accuracy, non-optimal convergence rate, and

possible numerical instabilities.

In 2001, Piperno and Farhat [70] proposed a very important improvement of par-

titioned solutions: it allows to recover an optimal convergence rate with a control of

the energy balance at the interface. More recently Farhat et al., [21, 22, 24, 25], have

shown that if an accurate time integration of the moving grid is done and the position of

the structure is predicted by a second-order time-integrator, then the resulting solution

procedure is formally second-order accurate, even though numerical stability is not for-

mally proved. In 2004, Michler, Hulshoff, van Brummelen and de Borst [57] compared

partitioned and monolithic solution procedures for the simulation of fluid-structure in-

teraction. They show that for the partitioned procedures, the time lag between the in-

tegration of the fluid and the structure implies that the interface conditions cannot be
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satisfied exactly. This induces an algorithmic energy production or dissipation at the in-

terface, which may cause numerical instability and restrict the admissible time step size.

Although stability and accuracy of partitioned schemes can be improved by means of

predictions techniques, their error remains larger than for a monolithic solution method

[57], for which the interaction of the fluid and the structure at the mutual interface is

treated synchronously.

The approach presented in the work of this thesis is a monolithic solution procedure

for the numerical simulation of Fluid-Structure Interactions as a fully coupled problem.

1.3 Motivations

The laboratory LMFA (Laboratoire de Mécanique des Fluides et d’Acoustique) has de-

veloped with ANDRITZ Hydro since 10 years a numerical method based on a mesh-less

technique with the aim of simulating and studying the free surface flows in hydraulic

turbines, especially for the Pelton turbine which is a widely used water impulse hy-

draulic turbine. A typical Pelton turbine’s configuration is shown in Figure 1.2. The

water jet impacts on the turbine blade (Figure 1.3) with a very high speed so that the

turbine wheel can be driven to rotate. As a consequence, the turbine rotates with a high

rotating speed under a periodic loading charge by the water jet, which may induce the

vibration or the fracture of the turbine blade. The rupture of blade will lead to a de-

crease of the turbine efficiency, or more dangerous, the cracked blade may crash the

other blades or the turbine case.

Figure 1.2: A typical Pelton turbine. Figure 1.3: The blades of Pelton turbine.

Some one-way coupling procedures (fluid-to-solid) may be used to simulate the wa-

ter impacting effect on the blade [52, 53, 67], as the deformation of the turbine’s blade

is normally very small, in such cases that the interaction effect due to the structural
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deformation is negligible.

Besides, lots of investigations in contact mechanics and coupling methods have been

performed in the laboratory LaMCoS (Laboratoire de Mécanique des Contacts et des

Structures).

Based on the knowledge of FSI methods and on the improvement of the SPH method

to compute the fluid pressure fields, this PhD work is aimed at proposing and validating

a two-way coupling strategy without time lag for numerical simulation of the fluid-

structure interaction problems with large deformation or displacement of the structure

in free surface flows where the usage of the SPH method is relevant.

Numerically, to track the fluid-structure interface and handle the free surface flows,

we choose to use the Smoothed Particle Hydrodynamics (SPH) method to discretize the

fluid sub-domain. And the semi-discrete fluid equations will be integrated in time with

the 2nd order Runge-Kutta scheme. For the structure, the Finite Element (FE) method

will be applied to simulate the solid sub-domain with a Lagrangian mesh. The Newmark

scheme is used to realize the time integration of the solid semi-discrete equations. The

Finite Element numerical simulation is carried out in an open-source FE software which

is called Code Aster developed by EDF R&D.

In this context, we developed a coupling strategy for numerical simulation of Fluid-

Structure Interaction (FSI) where different time and space schemes are used for the two

sub-domains. This proposed coupling strategy obtains the interface status by resolving

a system of equations at the fluid-structure interface, which is naturally compatible with

the fluid and solid sub-domains. From the viewpoint of energy, this presented coupling

approach can conserve the interface energy as time advances. Hence, this coupling

method can preserve the numerical stability of the used numerical schemes in each sub-

domain without degrading the optimal order of accuracy in time.

1.4 Structure of the thesis

This thesis is organized as follows: Chapter 2 presents the physical problems and the

mathematical description tools, and then the governing equations used for the fluid and

structure sub-domains; the numerical time and space schemes will be presented in Chap-

ter 3 and Chapter 4; Chapter 5 shows the interface condition to be imposed in order
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to conserve the energy of the coupled system, based on which we obtain the system of

equations at the interface to solve; to prove the quality of the proposed coupling method,

some numerical examples will be presented in Chapter 6; and finally, the conclusions

and perspectives will be given in Chapter 7.
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Chapter 2

Physical problems and governing

equations

Generally, a physical problem can be described by a set of mathematical equations,

which are often some partial differential equations. By solving these governing equa-

tions, if possible, with the appropriate Boundary Conditions (BC) and Initial Conditions

(IC), one can evaluate analytically the governed physical problem. However, the relia-

bility and accuracy of the results will depend on the mathematical model, i.e. the chosen

governing equations.

This chapter begins with a brief presentation of the continuum mechanics, in which

the physical variables are expressed and the governing equations are constructed. Then

a theorem used to derive the conservation equations, the Reynolds Transport Theorem

(RTT), will be presented secondly. The third part will describe the physical problems

investigated in the fluid and structure sub-domains. The last part will give the corre-

sponding governing equations for each sub-domain.

2.1 Continuum mechanics

Continuum mechanics is a branch of mechanics that deals with the analysis of the kine-

matics and mechanical behavior of materials modeled as a continuous domain, rather

than of the interaction effects between the molecules, such as molecular dynamics etc.

The objective of continuum mechanics is to provide models for the macroscopic be-
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havior of fluids, solids. In the following, some specialized terminology in continuum

mechanics will be presented.

2.1.1 Initial and current configurations

Consider a body in an initial state at the time t = 0 s, as shown in Figure 2.1. The

material domain of the initial state is called the initial configuration and denoted by Ω0

which is bounded by a closed surface Γ0. In many cases, it is also called the reference

configuration, because the variables and equations are usually referred to this configu-

ration. If in the initial state the body is not deformed, Ω0 also denotes the undeformed

configuration. Hence, if not specified otherwise, in most cases the initial configuration,

the reference configuration and the undeformed configuration are identical.

Figure 2.1: The mappings between the initial configuration Ω0 and the current configu-

ration Ω.

After a certain time, the body moves to a new position and possesses a new domain,

which is called the current configuration denoted by Ω which is bounded by Γ, as shown

in Figure 2.1. For deformable body, it is also called the deformed configuration.

2.1.2 Lagrangian and Eulerian coordinates

In Figure 2.1, the vector X denotes the initial position of the material point p in the

reference configuration Ω0. Notice that X is independent of time, i.e. it will keep the
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same value as time varies and is written as

X = Xex + Y ey + Zez (2.1)

where X , Y and Z represent the scalar components of the vector X in the three direc-

tions, and, ex, ey and ez are the unit vectors in the 3-dimensional space.

Because the vector variable X for a given material point does not change with time, it

provides a label for each material point, and then the variables X are called the material

coordinates or Lagrangian coordinates.

The current position of the material point p is written as

x = xex + yey + zez (2.2)

where x denotes the current position vector as shown in Figure 2.1, with x, y and z

being the scalar components of the vector x. The variables x give the spatial positions

and are called the spatial coordinates or Eulerian coordinates.

An application can be used to describe the relation between X and x, which repre-

sents the motion of the body

x = Φ(X, t) (2.3)

or in the inverse direction

X = Φ−1(x, t) (2.4)

where x is the position of the material point X at the time t.

2.1.3 Lagrangian and Eulerian descriptions

As presented previously in the part of introduction, a variable or function can be ex-

pressed with two different approaches: the Lagrangian description and the Eulerian

description.

If a function is expressed as F (X, t), it depends on the material or Lagrangian co-

ordinates and the time t, and this is called the Lagrangian description. The variable or

function is defined at the initial coordinates which are not time-dependent. Whereas,

if the function is expressed as f(x, t), it will depend on the spatial or Eulerian coordi-

nates and the time t. This function is then defined at the current coordinates which are
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time-dependent, and it is called the Eulerian description.

One of the major differences between the two sorts of descriptions will appear when

we carry out the time derivative of the function F (X, t) and f(x, t) with X held con-

stant, which is called the material time derivative or total time derivative

dF (X, t)

dt
=

∂F (X, t)

∂t

∣∣∣∣
X

+
∂F (X, t)

∂X

∣∣∣∣
t

· dX
dt

=
∂F (X, t)

∂t

∣∣∣∣
X

(2.5)

where dX/dt = 0 since X is held constant, i.e. not time-dependent, and we have

df(x, t)

dt
=

∂f(x, t)

∂t

∣∣∣∣
x

+
∂f(x, t)

∂x

∣∣∣∣
t

· dx
dt

=
∂f(x, t)

∂t

∣∣∣∣
x

+
∂f(x, t)

∂x

∣∣∣∣
t

·
[
∂Φ(X, t)

∂t

∣∣∣∣
X

+
∂Φ(X, t)

∂X

∣∣∣∣
t

· dX
dt

]

=
∂f(x, t)

∂t

∣∣∣∣
x

+
∂f(x, t)

∂x

∣∣∣∣
t

· ∂Φ(X, t)

∂t

∣∣∣∣
X

(2.6)

where Φ is an application describing the body motion by x = Φ(X, t), and the time

derivative holding the spatial coordinates constant is called the spatial time derivative.

2.1.4 Arbitrary Lagrangian-Eulerian description

To avoid the drawbacks of each of the two classical descriptions, a more generalized

description method is needed, which is called the Arbitrary Lagrangian-Eulerian (ALE)

approach. In the ALE description of motion, neither the material configuration nor the

spatial configuration is taken as the reference. The physical variables and equations are

expressed in a third domain which is named as the referential configuration where the

coordinates are denoted by χ. With another application, this reference coordinates χ is

related with the material coordinates X

χ = Ψ(X, t) (2.7)

and the motion of the computational mesh is described by

x = Φ̂(χ, t) (2.8)
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Consider a function or variable F(χ, t) expressed with reference coordinates χ, its

the material time derivative writes

dF(χ, t)

dt
=

∂F(χ, t)

∂t

∣∣∣∣
χ

+
∂F(χ, t)

∂χ

∣∣∣∣
t

· dχ
dt

=
∂F(χ, t)

∂t

∣∣∣∣
χ

+
∂F(χ, t)

∂χ

∣∣∣∣
t

· ∂Ψ(X, t)

∂t

∣∣∣∣
X

(2.9)

Remark: Consider a physical quantity expressed in these three different description

methods: f(x, t), F (X, t) and F(χ, t). Notice that f , F and F are three different

functions. In the following of this thesis, the same symbol will be used to express the

physical variable in different descriptions for the sake of brevity.

2.1.5 Displacement, velocity and acceleration

The displacement of a material point p is defined as the difference between the current

position and the initial position, as shown in Figure 2.1

u(X, t) = x(X, t)−X = Φ(X, t)−X (2.10)

where u(X, t) denotes the displacement vector of the material point p at the time t.

The velocity v(X, t) is the rate of change in time of the position vector for a material

point, i.e. the material time derivative of x(X, t) . With (2.5), we have

v(X, t) =
dx(X, t)

dt
=

d [u(X, t) +X]

dt
=

∂u(X, t)

∂t

∣∣∣∣
X

≡ u̇ (2.11)

The acceleration a(X, t) is the rate of change of velocity of a material point, in the

similar way, we have

a(X, t) =
dv(X, t)

dt
=

∂v(X, t)

∂t

∣∣∣∣
X

=
∂2u(X, t)

∂t2

∣∣∣∣
X

≡ v̇ ≡ ü (2.12)

Notice that the variables u(X, t), v(X, t) and a(X, t) are all expressed in Lagrangian

description. In fact, they can also be expressed in Eulerian description, e.g. the velocity
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vector v(x, t). As shown in (2.6), the material time derivative of v(x, t) writes

dv(x, t)

dt
=

∂v(x, t)

∂t

∣∣∣∣
x

+
∂v(x, t)

∂x

∣∣∣∣
t

· dx
dt

=
∂v(x, t)

∂t

∣∣∣∣
x

+
∂v(x, t)

∂x

∣∣∣∣
t

· v(x, t) (2.13)

As presented in [6], (2.13) can be also written as

dv(x, t)

dt
=

∂v(x, t)

∂t

∣∣∣∣
x

+ v(x, t) ·∇xv(x, t) (2.14)

or shortly written as
dv

dt
=

∂v

∂t

∣∣∣∣
x

+ v ·∇xv (2.15)

where ∇x denotes the left gradient operator [50] with respect to the spatial coordinates.

The left gradient of the velocity vector is a tensor which can be written in the matrix

form

∇xv =




∂vx
∂x

∂vy
∂x

∂vz
∂x

∂vx
∂y

∂vy
∂y

∂vz
∂y

∂vx
∂z

∂vy
∂z

∂vz
∂z




(2.16)

where vx, vy and vz represent the three components of the vector v in the three direc-

tions.

Remark: More generally, a “scalar” is a zero order tensor, a “vector” is a first order

tensor and, if not specified, a “tensor” is a second order tensor. The gradient of a

“scalar” is a “vector”, the gradient of a “vector” is a “tensor”, and the gradient of a

“tensor” is a third order tensor.

When the velocity is expressed with the reference coordinates χ, with (2.9) the

material time derivative of v(χ, t) writes

dv(χ, t)

dt
=

∂v(χ, t)

∂t

∣∣∣∣
χ

+
∂v(χ, t)

∂χ

∣∣∣∣
t

· dχ
dt

(2.17)

In most cases, it is more convenient to carry out the gradient with respect to the
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spatial coordinates, hence, taking

v(χ, t) = v(x, t) (2.18)

then

∂v(χ, t)

∂χ

∣∣∣∣
t

=
∂v(x, t)

∂χ

∣∣∣∣
t

=
∂v(x, t)

∂x

∣∣∣∣
t

· ∂x

∂χ

∣∣∣∣
t

= ∇xv(x, t) ·
∂x

∂χ

∣∣∣∣
t

(2.19)

Substituting (2.19) into (2.17), we have

dv(χ, t)

dt
=

∂v(χ, t)

∂t

∣∣∣∣
χ

+∇xv(x, t) ·
∂x

∂χ

∣∣∣∣
t

· dχ
dt

=
∂v(χ, t)

∂t

∣∣∣∣
χ

+∇xv(x, t) ·
∂Φ̂(χ, t)

∂χ

∣∣∣∣∣
t

· ∂Ψ(χ, t)

∂t

∣∣∣∣
X

(2.20)

Additionally, because x = Φ(X, t) = Φ̂(χ, t), the material velocity can be written

as

v(x, t) =
∂Φ(X, t)

∂t

∣∣∣∣
X

=
∂Φ̂(χ, t)

∂t

∣∣∣∣∣
X

=
∂Φ̂(χ, t)

∂t

∣∣∣∣∣
χ

+
∂Φ̂(χ, t)

∂χ

∣∣∣∣∣
t

· ∂Ψ(χ, t)

∂t

∣∣∣∣
X

= v̂(χ, t) +
∂Φ̂(χ, t)

∂χ

∣∣∣∣∣
t

· ∂Ψ(χ, t)

∂t

∣∣∣∣
X

(2.21)

where the time derivative of Φ̂(χ, t) holding χ constant represents the velocity of the

computational mesh, and is denoted by v̂(χ, t). Hence, with (2.21), (2.20) becomes

dv(χ, t)

dt
=

∂v(χ, t)

∂t

∣∣∣∣
χ

+∇xv(x, t) · [v(x, t)− v̂(χ, t)] (2.22)

or shortly written as
dv

dt
=

∂v

∂t

∣∣∣∣
χ

+ (v − v̂) ·∇xv (2.23)

which is usually used to calculate the material time derivative of a variable expressed

with the reference coordinates. It is very attractive since the motion of the mesh can
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be arbitrarily chosen. Hence, it allows to avoid the large distortion of the mesh, and to

track the interface of different sorts of mediums. For any function f(χ, t), its material

time derivative writes
df

dt
=

∂f

∂t

∣∣∣∣
χ

+ (v − v̂) ·∇xf (2.24)

Remark: The reference coordinates χ do not represent the position of the mesh points.

The mesh motion is the mapping from the referential configuration to the spatial config-

uration.

2.2 Reynolds Transport Theorem

To derive the basic conservation equations in continuum mechanics, a useful tool is

often applied, which is called the Reynolds Transport Theorem (RTT), and is also known

as the Leibniz-Reynolds transport theorem. [18] gives a generalized form of the RTT

∂

∂t

∣∣∣∣
χ

∫

Ω̂

f(x, t) dx =

∫

Ω̂

∂f(x, t)

∂t

∣∣∣∣
x

dx+

∫

Γ̂

[f(x, t)v̂(x, t)] · n dx (2.25)

where f(x, t) can be any function or quantity expressed in the spatial domain. Ω̂ is

an arbitrary time-varying domain bounded by the surface Γ̂, which is a function of the

reference coordinates χ and the time t, hence we can write Ω̂ = Ω̂(χ, t) and Γ̂ =

Γ̂(χ, t). Ω̂ is also called the control volume, which moves with the velocity v̂. n is the

outward-pointing normal vector at the boundary of Ω̂.

Here, χ can be arbitrarily chosen, which leads to the free choice of the velocity of

the control volume. There exist two special cases, when χ = X, Ω̂ = Ω(X, t) which

represents a material domain, and hence the time derivative of the integral within this

domain is time material derivative

∂

∂t

∣∣∣∣
X

∫

Ω

f(x, t) dx =

∫

Ω

∂f(x, t)

∂t

∣∣∣∣
x

dx+

∫

Γ

[f(x, t)v(x, t)] · n dx (2.26)

where v denotes the material velocity.

When χ = x, then Ω̂ = Ω(x, t) which is a spatial domain fixed in space, and

∂

∂t

∣∣∣∣
x

∫

Ω

f(x, t) dx =

∫

Ω

∂f(x, t)

∂t

∣∣∣∣
x

dx (2.27)
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where the surface integral term disappeared, since the velocity of the control volume is

zero.

2.3 Governing equations for fluid and solid domains

The system of governing equations usually consists of the conservation laws of the mass,

the momentum and the energy. All these conservation equations can be derived by using

the RTT with χ being the material coordinates X, i.e. the control volume represents a

material domain.

Conservation of mass Taking f(x, t) = ρ(x, t) in (2.26)

∂

∂t

∣∣∣∣
X

∫

Ω

ρ(x, t) dx =

∫

Ω

∂ρ(x, t)

∂t

∣∣∣∣
x

dx+

∫

Γ

[ρ(x, t)v(x, t)] · n dx (2.28)

where the integral of density ρ(x, t) over the material domain Ω equals the mass of this

material domain. In this thesis, it is considered that within a material domain the mass

can neither be created nor destroyed. Hence the material time derivative of the mass is

zero, i.e. ∫

Ω

∂ρ(x, t)

∂t

∣∣∣∣
x

dx+

∫

Γ

[ρ(x, t)v(x, t)] · n dx = 0 (2.29)

with the Gauss’s theorem, (2.29) can be rewritten as

∫

Ω

{
∂ρ(x, t)

∂t

∣∣∣∣
x

+∇x · [ρ(x, t)v(x, t)]
}

dx = 0 (2.30)

since Ω can be any material domain, the differential conservation equation of mass is

given as

∂ρ(x, t)

∂t

∣∣∣∣
x

+∇x · [ρ(x, t)v(x, t)] = 0 (2.31)

or, for the sake of brevity, (2.31) can also be written as

∂ρ

∂t

∣∣∣∣
x

+∇x · (ρv) = 0 (2.32)
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Conservation of linear momentum Taking f = ρv in (2.26)

∂

∂t

∣∣∣∣
X

∫

Ω

ρv dΩ =

∫

Ω

∂ρv

∂t

∣∣∣∣
x

dΩ +

∫

Γ

(ρv ⊗ v) · n dΓ (2.33)

where the left term represents the material time derivative of the linear momentum of

the material domain Ω, which equals the sum of the forces exerted onto this material

domain, i.e.

∫

Ω

∂ρv

∂t

∣∣∣∣
x

dΩ +

∫

Γ

(ρv ⊗ v) · n dΓ =

∫

Ω

ρb dΩ +

∫

Γ

σ · n dΓ (2.34)

where b denotes the body force vector, σ the tensor of stress. Using once more the

Gauss’s theorem, (2.34) becomes

∫

Ω

∂ρv

∂t

∣∣∣∣
x

dΩ +

∫

Ω

∇x · (ρv ⊗ v) dΩ =

∫

Ω

ρb dΩ +

∫

Ω

∇x · σ dΩ (2.35)

As the material domain Ω can be arbitrarily chosen, the differential conservation

equation of linear momentum is given as

∂ρv

∂t

∣∣∣∣
x

+∇x · (ρv ⊗ v) = ρb+∇x · σ (2.36)

Conservation of energy Taking f = ρe+
1

2
ρv · v in (2.26)

∂

∂t

∣∣∣∣
X

∫

Ω

(
ρe+

1

2
ρv · v

)
dΩ =

∫

Ω

∂

∂t

∣∣∣∣
x

(
ρe+

1

2
ρv · v

)
dΩ

+

∫

Γ

[(
ρe+

1

2
ρv · v

)
v

]
· n dΓ

(2.37)

where e denotes the internal energy per unit volume. The material time derivative of

the total energy over the material domain Ω equals the power of the volume and surface
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energy sources. Hence the balance of the energy can be expressed by

∫

Ω

∂

∂t

∣∣∣∣
x

(
ρe+

1

2
ρv · v

)
dΩ +

∫

Γ

[(
ρe+

1

2
ρv · v

)
v

]
· n dΓ =

∫

Ω

v · ρb dΩ +

∫

Γ

v · t dΓ +

∫

Ω

ρs dΩ−
∫

Γ

q · n dΓ

(2.38)

where t denotes the external force vector exerted on the boundary of the material do-

main, ρs the heat source per unit volume, and q the heat flux per unit area.

As mentioned previously, the interaction between the two physical domains consists

only in the exchange of the linear momentum, hence the thermal phenomena are ne-

glected, i.e. there is no heat transfer at the interface, or heat creation inside the material

bodies. As a consequence, in this thesis the equations of energy will not be used.

2.3.1 The fluid sub-domain

In fluid mechanics, the partial differential equations (2.32) and (2.36) are easily to be

implemented in the framework of Finite Difference (FD) method. For the reason of the

used numerical method for the fluid sub-domain, a integral form of the conservation

equations is given by [18].

Consider that at the instant t, the control volume Ω̂ and the material domain Ω oc-

cupy the same spatial volume, hence

∫

Ω̂

∂ρ(x, t)

∂t

∣∣∣∣
x

dx =

∫

Ω

∂ρ(x, t)

∂t

∣∣∣∣
x

dx (2.39)

then with (2.25) and (2.26)

∂

∂t

∣∣∣∣
X

∫

Ω

f dΩ =
∂

∂t

∣∣∣∣
χ

∫

Ω̂

f dΩ +

∫

Γ≡Γ̂

[(v − v̂)f ] · n dΓ

=
∂

∂t

∣∣∣∣
χ

∫

Ω̂

f dΩ +

∫

Ω̂

∇x · [(v − v̂)f ] dΩ

(2.40)

which represents an integral form of the ALE differential equation (2.24). Notice that

in (2.40) the material time derivative (the left term) is identical with the one in (2.26).
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Hence, when taking f = ρ
f

and f = ρ
f
v
f
, we have





∂

∂t

∣∣∣∣
χ

∫

Ω̂

ρ
f
dΩ +

∫

Ω̂

∇x ·
[
ρ
f
(v

f
− v̂)

]
dΩ = 0

∂

∂t

∣∣∣∣
χ

∫

Ω̂

ρ
f
v
f
dΩ +

∫

Ω̂

∇x ·
[
ρ
f
v
f
⊗ (v

f
− v̂)

]
dΩ =

∫

Ω̂

ρ
f
b dΩ +

∫

Γ̂

σ
f
· n dΓ

(2.41)

where ρ
f

denotes the fluid density, v
f

the fluid velocity and σ
f

the tensor of stress in

the fluid domain. (2.41) are the conservation equations of the fluid mass and linear

momentum within a volume Ω̂ moving with an arbitrary velocity v̂.

The water is chosen as the investigated medium for the study of the FSI effects,

which is considered in this work as a non-viscous quasi-incompressible fluid. Because

the viscous effect is neglected, the stress tensor reduces to

σ
f
= −p

f
I (2.42)

where p
f

is the fluid pressure and I denotes the unit tensor. With the Gauss’s theorem,

(2.41) becomes





∂

∂t

∣∣∣∣
χ

∫

Ω̂

ρ
f
dΩ +

∫

Ω̂

∇x ·
[
ρ
f
(v

f
− v̂)

]
dΩ = 0

∂

∂t

∣∣∣∣
χ

∫

Ω̂

ρ
f
v
f
dΩ +

∫

Ω̂

∇x ·
[
ρ
f
v
f
⊗ (v

f
− v̂) + p

f
I
]
dΩ =

∫

Ω̂

ρ
f
b dΩ

(2.43)

In addition, the fluid flows are considered as isothermal-barotropic, which means

that the fluid temperature is constant and the fluid pressure is only a function of the fluid

density (or vice versa). In 1966 [47], J.R. Macdonald proposed some simple isothermal

equations of state. In this thesis, the modified Tait equation is chosen as the equation of

state for the water

p
f
= B



(

ρ
f

ρref
f

)ζ

− 1


 (2.44)

where B = ρref
f

(cref
f

)2/ζ and ζ ≃ 7, with ρref
f

being the reference density and cref
f

the

reference speed of sound for the fluid.
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The equations (2.43) and (2.44) constitute the governing equations for the fluid sub-

domain, which are to be discretized in space and integrated in time.

2.3.2 The solid sub-domain

Equations (2.32) and (2.36) can also be used for the solid sub-domain as the governing

equations, where the physical variables are expressed in Eulerian description.

Eulerian description The conservation equations (2.32) and (2.36) are written in

the conservative form, which is often used in fluid mechanics to verify more accurately

the conservation properties. In solid mechanics, another form is preferred





dρ
s

dt
+ ρ

s
∇x · vs

= 0

ρ
s

dv
s

dt
= ρ

s
b+∇x · σs

(2.45)

which is mathematically identical with (2.32) and (2.36). The total time derivative for-

mulation is given in (2.15). If the solid is incompressible, the incompressibility condi-

tion is given by

∇x · vs
= 0 (2.46)

which is also applicable for the fluid.

Remark: An incompressible material or medium signifies that the material or total

time derivative of the density is zero, but not the local or spatial time derivative.

This system of governing equations in Eulerian description is usually used with the

Finite Element (FE) method in Updated Lagrangian Formulation (ULF). One important

advantage of this ULF is that the stress and strain are defined in the spatial domain,

which means that they both have the intuitive physical senses. Hence the constitutive

models are easily to be implied in the numerical simulation.

As presented previously, a physical variable can also be expressed with the La-

grangian description approach, i.e. with the material coordinates X.
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Lagrangian description Here the governing equations in Lagrangian description

way are given directly. More details can be found in [6].





ρ
s
(X, t)J(X, t) = ρ0

s
(X)

ρ0
s
(X)

∂v
s
(X, t)

∂t

∣∣∣∣
X

= ∇X ·P+ ρ0
s
(X)b

(2.47)

where ρ0
s
(X) denotes the initial solid density which depends on only the material coor-

dinates X, J(X, t) the determinant of the Jacobian matrix of the motion Φ(X, t), ∇X

the left gradient operator with respect to the material coordinates, and P is the nominal

stress tensor defined in the initial configuration Ω0.

The corresponding formulation of FE method is called the Total Lagrangian Formu-

lation (TLF), in which the weak form of (2.47) is obtained by integration over the initial

configuration.

More details about the two formulations ULF and TLF will be offered in Chapter 4

which presents the numerical method for the solid sub-domain.

Remark: These two formulations ULF and TLF can be transformed from one to the

other, i.e. ULF and TLF are theoretically identical. Besides, both of the two formula-

tions use the Lagrangian meshes.
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Chapter 3

Smoothed Particle Hydrodynamics

numerical method for fluid

Various numerical methods can be used to simulate numerically the movement of the

fluid, e.g. the Finite Volume (FV) method, the Finite Difference (FD) method [33, 34]

etc. Because of the difficulties of handling the motion of the computational mesh to

track the fluid-structure interface, particle methods are a solution in the case of free

surface flows with moving solid boundaries.

In this chapter, a well known particle method, the Smoothed Particle Hydrodynamics

(SPH) method will be presented first, followed by a special formulation developed by

J.P. Villa [80]. The treatment of the solid wall boundary condition will be presented

in the second part. The third part synthesizes the semi-discrete equations for the fluid

sub-domain. Finally, the Runge-Kutta scheme is shown as the used time integrator.

3.1 Smoothed Particle Hydrodynamics method

The Smoothed Partical Hydrodynamics (SPH) method was originally proposed in 1977

by R.A. Gingold and J.J. Monaghan [30], and independently by L.B. Lucy [46] for mod-

eling astrophysical phenomena, and later widely extended for applications to continuum

solid and fluid mechanics.

In the SPH method, the physical domain is discretized into a set of material particles

which move with respect to each other. As a Lagrangian mesh-less approach, the SPH
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method possesses several features, such as being natural to track the interface of dif-

ferent materials, and easy to handle the large deformation of the investigated medium.

When simulating the free surface flows, there is no need to put the particles in the air,

because the zero pressure condition at the free surface is automatically imposed. This

reduces the time for numerical simulation. For these reasons, the SPH method is cho-

sen as the numerical method to simulate the fluid sub-domain for the fluid-structure

interaction.

3.1.1 The basis of the SPH method

Essentially the SPH method is a technique for approximating the governing equations

in continuum mechanics. The basic idea of this method is to represent the value of a

function of a certain particle i by using the values of other particles which are located

sufficiently near to this particle i.

The concept of the SPH method starts with the integral representation of a function

f(x)

f(x) =

∫

Ω

f(x′)δ(x− x′) dx′ (3.1)

where x and x′ denote two independent spatial coordinates in the space Ω = R
d with d

being the number of the dimensions, and δ(x − x′) is the Dirac delta function defined

by

δ(x) =

{
+∞ , x = 0

0 , x 6= 0
(3.2)

which is also constrained to satisfy the identity condition

∫ +∞

−∞

δ(x) dx = 1 (3.3)

In the SPH method, this delta function is replaced by a smoothing function W (x−
x′, h) which is called the the smoothing kernel function or kernel function. Hence, f(x)

is approximated by

f(x) ≃< f(x) >=

∫

D

f(x′)W (x− x′, h) dx′ (3.4)
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where h is the smoothing length which defines the influence area D of the smoothing

kernel function W . In the SPH convention, < f(x) > denotes the kernel approximation

of the function f(x).

As < f(x) > is only an approximation of f(x), the choice of the kernel function is

very important. Some basic conditions for the kernel function W are presented in the

following:

◮ Normalization condition

∫

D

W (x− x′, h) dx′ = 1 (3.5)

◮ Symmetry condition

{
W (x− x′, h) = W (x+ x′, h)

∇x′W (x− x′, h) = −∇x′W (x+ x′, h)
(3.6)

◮ Delta Dirac function property

lim
h→0

W (x− x′, h) = δ(x− x′) (3.7)

◮ Compact condition

W (x− x′, h) = 0 when |x− x′| > κh (3.8)

where κ is a constant defining the non-zero area of the kernel function, which is

called the kernel ratio in this thesis.

An example of the kernel function is shown in Figure 3.1, in which i is the inves-

tigated fluid particle, j is one of the neighbor particles. The coordinates of the fluid

particle i and j are x and x′, respectively, and r = x − x′. Finally κh is the radius of

the influence area Di of the kernel function, which is bounded by ∂Di.

If the spatial integral over the influence area (the support domain Di) is approxi-
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Figure 3.1: Kernel approximation with the smoothing kernel function W (r, h).

mated by the sum carried out over all the neighbor particles, then (3.4) becomes

f(xi) ≃< f(xi) > =

∫

D

f(x′)W (xi − x′, h) dx′

≃
∑

j∈Di

f(xj)W (xi − xj, h)ωj

(3.9)

which is called the particle approximation, where ωj denotes the volume of fluid particle

j in 3-dimensional cases. For the sake of brevity, (3.9) is often written as

fi ≃
∑

j∈Di

fjWijωj (3.10)

where fi = f(xi) and Wij = W (xi − xj, h).

These kernel and particle approximations can also be applied to the gradient or di-

vergence of a function, i.e. ∇xf(x) or ∇x · f(x) when f(x) is a vector or tensor field.

Similarly to (3.4), the kernel approximation of ∇xf(x) is

∇xf(x) ≃< ∇xf(x) >=

∫

D

∇x′f(x′)W (x− x′, h) dx′ (3.11)

where ∇x′ denotes the gradient operator with respect to x′.
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With the help of the Gauss’s theory, we can obtain

∇xf(x) ≃< ∇xf(x) > =

∫

D

∇x′f(x′)W (x− x′, h) dx′

=

∫

∂D

[f(x′)W (x− x′, h)]n dx′

−
∫

D

f(x′)∇x′W (x− x′, h) dx′

(3.12)

where n is the out-pointing normal vector of the boundary ∂D. If the support domain D

is not truncated by the solid wall or the free surface, the integral over ∂D will dismiss,

since ∀x′ ∈ ∂D, W (x− x′, h) = 0. Hence, (3.12) becomes

∇xf(x) ≃< ∇xf(x) > =

∫

D

∇x′f(x′)W (x− x′, h) dx′

= −
∫

D

f(x′)∇x′W (x− x′, h) dx′

(3.13)

And finally, with the particle approximation, the gradient of a function is approxi-

mated by

∇xf(x)|x=xi
≃ < ∇xf(x) >|

x=xi
≃ −

∑

j∈Di

f(xj)∇jW (xi − xj, h)ωj

= −
∑

j∈Di

fj∇jWijωj

(3.14)

where ∇j is the gradient operator with respect to xj , and because of the symmetry

property of the kernel function W , we have ∇jWij = −∇iWij . Then (3.14) becomes

< ∇xf(x) >|
x=xi

≡ [∇xf(x)]i ≃
∑

j∈Di

fj∇iWijωj (3.15)

Remark: The interesting point of the SPH method is that the derivation is all carried

out on the known kernel function. (3.15) is for the fluid particle whose support domain

is not truncated by the solid boundary or the free surface. The truncation problem will

be presented in Section 3.2.
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3.1.2 Consistency of the SPH method

Because of the kernel and particle approximation, generally the SPH method using

(3.10) and (3.15) is not consistent even of zero order, if no correction techniques are

applied.

A numerical method is said to be pth order consistent means that it can represent

exactly a pth order polynomial field [5]. For example, if the numerical approximation

of a gradient function is zero order consistent, then the gradient of a spatially constant

function is supposed to be zero. However, the gradient calculated by (3.15) is generally

non-zero, even if the kernel function is symmetric, because the fluid particle can be

irregularly distributed in space. Similarly, for a linear function, the calculated gradient

should be a constant which equals the rate of slope, if the used numerical method is first

order consistent.

To make the SPH method consistent, several methods have been proposed, e.g. in

[58] Monaghan introduced a symmetrization procedure in which he assumed that

f(xi)

[
∑

j∈Di

∇jW (xi − xj, h)ωj

]
≡ 0 (3.16)

although this is only validate for a regular distribution of fluid particles which are far

from any boundary. Adding (3.16) to (3.15) gives

[∇xf(x)]i ≃
∑

j∈Di

(fj − fi)∇iWijωj (3.17)

which can theoretically represent a gradient function, and numerically ensure the zero

order consistency.

Based on (3.17), in 1996 Johnson et al. [40] and Randles et al. [74] introduced

independently a normalization correction method to ensure a first consistency for the

approximation of gradient. In this method, taking a linear function f(x) = b · x + a, a
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second order tensor B is used to correct the gradient operator for the particle i

[∇xf(x)]i ≃ Bi ·
{
∑

j∈Di

[b · (xj − xi)]∇iWijωj

}

= Bi ·
{
∑

j∈Di

∇iWij ⊗ (xj − xi)ωj

}
· b ≡ I · b

(3.18)

hence, with

Bi =

{
∑

j∈Di

∇iWij ⊗ (xj − xi)ωj

}−1

(3.19)

the new normalized gradient operator will possess a first order consistency.

Besides, other methods are also used to improve the accuracy of the SPH method,

such as the Moving Least Squares (MLS) method [4, 9, 17, 63], the Reproducing Kernel

Particle (RKP) method [45] etc. An analysis of truncation error for SPH method is

shown in the work of N. J. Quinlan [72].

3.1.3 SPH method in fluid mechanics

The most common SPH method in fluid mechanics uses Lagrangian description. How-

ever, the spatial gradient is carried out with respect to the Eulerian coordinates. The

governing equations for the fluid domain are written in differential form





dρ
f

dt
= −ρ

f
∇x · vf

ρ
f

dv
f

dt
= ρ

f
b+∇x · σf

(3.20)

where σ
f
= −p

f
I for inviscid flows, and b is usually the gravity vector g.

Applying the SPH method (3.17) to (3.20) gives [59]





dρi
dt

= ρi
∑

j∈Di

(vj − vi) ·∇iWijωj

ρi
dvi

dt
= ρigi −

∑

j∈Di

(pj − pi)∇iWijωj

(3.21)
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where the second equation is the momentum equation for the fluid particle i. As pre-

sented by Monaghan in [59, 61], in this equation the estimated pressure gradient van-

ishes exactly when the pressure is constant in space, which is an advantage that leads

to a zero order consistency. However, it does not conserve linear or angular momentum

exactly, since the force on particle i owning to j is not equal and opposite to the force

on j owning to i, which means

(pj − pi)∇iWijωjωi 6= −(pi − pj)∇jWijωiωj (3.22)

since (pj − pi)∇iWijωjωi = (pi − pj)∇jWijωiωj , with ∇iWij = −∇jWij .

In this case, Monaghan proposed a symmetrizing procedure to the pressure gradient

operator. The momentum equation rewrites

dv
f

dt
= g −

∇xpf
ρ
f

(3.23)

according to
∇xpf
ρ
f

= ∇x

(
p
f

ρ
f

)
+

p
f

ρ2
f

∇xρf (3.24)

to which applying the initial SPH approximation (3.15), the momentum equation (3.23)

becomes
dvi

dt
= gi −

∑

j∈Di

mj

(
pj
ρ2j

+
pi
ρ2i

)
∇jWij (3.25)

where mj = ρjωj denoting the mass of the fluid particle j. And now the conservation

of momentum is ensured by

mimj

(
pj
ρ2j

+
pi
ρ2i

)
∇jWij = −mjmi

(
pi
ρ2i

+
pj
ρ2j

)
∇iWij (3.26)

which describes the equilibrium of forces between the fluid particle i and j.

In addition, an artificial viscous term Πij is often added into (3.25) to simulate shock

phenomena, or simply to stabilize a numerical scheme

dvi

dt
= gi −

∑

j∈Di

mj

(
pj
ρ2j

+
pi
ρ2i

+Πij

)
∇jWij (3.27)
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the expression of Πij is given by Monaghan in [61].

Finally, with the equation of motion for the fluid particle i, the semi-discrete equa-

tions for inviscid fluids are written as





dxi

dt
= vi

dρi
dt

= ρi
∑

j∈Di

(vj − vi) ·∇iWijωj

dvi

dt
= gi −

∑

j∈Di

mj

(
pj
ρ2j

+
pi
ρ2i

+Πij

)
∇jWij

(3.28)

Notice that (3.28) is often seen in the SPH literature, but it is not unique. Other

schemes may also be used, if they satisfy basic needs as a numerical method. Some of

them keep the conservation property, whereas some of them improve the accuracy.

3.1.4 Vila’s formulation

In Chapter 2, the Reynolds Transport Theorem has been used to derive the governing

equations (2.43) for the fluid sub-domain. This system of equations can be rewritten in

a more concise way

∂

∂t

∣∣∣∣
χ

∫

Ω̂

Φ dΩ +

∫

Ω̂

∇x · F dΩ =

∫

Ω̂

S dΩ (3.29)

where Φ denotes the variables, F the flux tensor, and

F =

{
ρ
f
(v

f
− v̂) when Φ = ρ

f

ρ
f
v
f
⊗ (v

f
− v̂) + p

f
I when Φ = ρ

f
v
f

(3.30)

and S is the source term, when Φ = ρ
f
, S = 0; when Φ = ρ

f
v
f
, S = ρ

f
g.

Noting that ∫

Ω̂

∇x · F dΩ = ωi [∇x · F]i (3.31)

where [∇x · F]i denotes the mean value of the divergence of F over the fluid particle
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volume ωi, which is then approximated by the SPH method (3.15)

[∇x · F]i ≃
∑

j∈Di

Fj ·∇iWijωj (3.32)

With (3.31) and (3.32), (3.29) becomes

d(ωiΦi)

dt
+ ωi

∑

j∈Di

Fj ·∇iWijωj = Siωi (3.33)

where Φi denotes the mean value of Φ over the fluid particle i, and Si = ρigi. This

semi-discrete equation (3.33) for the fluid sub-domain has the same form with the one

obtained by J.P. Vila in [80]. As presented previously, this equation can not ensure the

conservation property, because

ωiFj ·∇iWijωj 6= −ωjFi ·∇jWijωi (3.34)

since usually Fi 6= Fj .

Taking an unit function H(x) = 1, ∀x ∈ R
d, hence ∇xH(x) = 0. Then inserting

Fi ·∇xH(x) into (3.29) gives

∂

∂t

∣∣∣∣
χ

∫

Ω̂

Φ dΩ +

∫

Ω̂

(∇x · F+ Fi ·∇xH) dΩ =

∫

Ω̂

S dΩ (3.35)

where Fi can be seen as a constant tensor which equals the flux tensor for the fluid

particle i. Since Fi ·∇xH(x) = 0, (3.35) is theoretically identical with (3.29).

Using the SPH approximation to this additional term in (3.35)

∫

Ω̂

Fi ·∇xH dΩ = Fi ·
∫

Ω̂

∇xH dΩ ≃ Fi ·
(
ωi

∑

j∈Di

Hj∇iWijωj

)

= ωi

∑

j∈Di

Fi ·∇iWijωj

(3.36)

where Hj = H(xj) = 1.
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With (3.36), the semi-discrete form for (3.35) writes

d(ωiΦi)

dt
+ ωi

∑

j∈Di

(Fj + Fi) ·∇iWijωj = Siωi (3.37)

As mentioned by Vila in [80], (3.37) keeps exactly the conservation property, since

ωi(Fj + Fi) ·∇iWijωj = −ωj(Fi + Fj) ·∇jWijωi (3.38)

Applying (3.37) in one-dimensional cases, it turns out to be a unconditionally un-

stable numerical scheme [80]. Although it is possible to insert an artificial viscosity as

in the Monaghan’s formula (3.27), we choose not to use this method in this work.

Vila [80] proposed an alternative method based on (3.37), which makes use of the

approximate Riemann solver to stabilize the numerical scheme. In this novel method,

(Fi+Fj) is calculated by 2GE,ij = 2GE(Φi,Φj) with GE,ij representing an intermedi-

ate flux tensor obtained by solving a Riemann problem between the two states of fluid

Φi and Φj , so that (3.37) is written as

d(ωiΦi)

dt
+ ωi

∑

j∈Di

2GE,ij ·∇iWijωj = Siωi (3.39)

with

GE,ij =

{
ρE,ij(vE,ij − v̂ij) when Φi = ρi

ρE,ijvE,ij ⊗ (vE,ij − v̂ij) + pE,ijI when Φi = ρivi

(3.40)

where ρE,ij , pE,ij and vE,ij are the solutions of the Riemann problem and the arbitrary

velocity v̂ij = v̂(xij, t) with xij = (xi + xj)/2. These solutions will be described in

the next sub-section.
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3.1.5 Riemann problem and Riemann solvers

The partial differential governing equations for inviscid fluid is given as





∂ρ

∂t

∣∣∣∣
x

+ ρ∇x · v + v ·∇xρ = 0

∂v

∂t

∣∣∣∣
x

+ v ·∇xv +
∇xp

ρ
= g

(3.41)

which are identical with the conservative form (2.32) and (2.36) already presented in

Chapter 1. Notice that, in these two equations, the fluid variables are all expressed with

the time t and the spatial coordinates x. And |
x

means that the partial time derivative

are carried out with respect to x. In the following, |
x

will be eliminated for the sake of

brevity.

Taking an example in two-dimensional space, (3.41) writes





∂ρ

∂t
+ ρ(

∂vx
∂x

+
∂vy
∂y

) + (vx
∂ρ

∂x
+ vy

∂ρ

∂y
) = 0

∂vx
∂t

+ (vx
∂vx
∂x

+ vy
∂vx
∂y

) +
1

ρ

∂p

∂x
= gx

∂vy
∂t

+ (vx
∂vy
∂x

+ vy
∂vy
∂y

) +
1

ρ

∂p

∂y
= gy

(3.42)

which are the classical two-dimensional Euler equations in non-conservative form for

inviscid flows [33, 34].

The following procedure has been realized and presented in the PhD thesis of J.C.

Marongiu [51] in 2007 and the one of J. Leduc [41] in 2010.

To calculate GE,ij in (3.39), we are going to study the interaction effect between the

fluid particle i and j as shown in Figure 3.2, where nij denotes the unit direction vector

defined as nij = (xj − xi)/|xj − xi|.
For each pair of fluid particles, such as i and j, let’s construct a new orthogonal

coordinate system (eξ, eη) where eξ is parallel to nij . Expressing the fluid variables in
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Figure 3.2: The Riemann problem between the fluid particle i and the particle j.

this new coordinate system, the system of equations (3.42) becomes





∂ρ

∂t
+ ρ(

∂vξ
∂ξ

+
∂vη
∂η

) + (vξ
∂ρ

∂ξ
+ vη

∂ρ

∂η
) = 0

∂vξ
∂t

+ (vξ
∂vξ
∂ξ

+ vη
∂vξ
∂η

) +
1

ρ

∂p

∂ξ
= gξ

∂vη
∂t

+ (vξ
∂vη
∂ξ

+ vη
∂vη
∂η

) +
1

ρ

∂p

∂η
= gη

(3.43)

Now, assume that all the gradients in direction eη are zero, which means that be-

tween the particle i and j, the fluid variables are constant in direction eη. Hence, only

the effect in direction nij or eξ is taken into account when studying the pair of fluid

particles i and j, which leads to a quit logical approximation, because the influence in

direction eη for the particle i will be compensated when studying the interaction effect

between i and the other particles.

With this approximation, (3.43) is simplified and written as





∂ρ

∂t
+ ρ

∂vξ
∂ξ

+ vξ
∂ρ

∂ξ
= 0

∂vξ
∂t

+ vξ
∂vξ
∂ξ

+
1

ρ

∂p

∂ξ
= gξ

∂vη
∂t

+ vξ
∂vη
∂ξ

= gη

(3.44)
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As the local speed of sound is defined as

∂p

∂ρ
= c2 (3.45)

hence,
∂p

∂ξ
=

∂p

∂ρ

∂ρ

∂ξ
= c2

∂ρ

∂ξ
(3.46)

with which (3.44) becomes





∂ρ

∂t
+ ρ

∂vξ
∂ξ

+ vξ
∂ρ

∂ξ
= 0

∂vξ
∂t

+ vξ
∂vξ
∂ξ

+
c2

ρ

∂ρ

∂ξ
= gξ

∂vη
∂t

+ vξ
∂vη
∂ξ

= gη

(3.47)

or in a more concise form
∂W

∂t
+A

∂W

∂ξ
= Q (3.48)

with,

W =



ρ

vξ

vη


 , A =




vξ ρ 0

c2/ρ vξ 0

0 0 vξ


 , and Q =



0

gξ

gη


 (3.49)

This quasi-linear system of first order partial differential equations (3.48) is hyper-

bolic, because its homogeneous part admits wave-like solutions [33], which means that

the matrix A possesses only the real eigenvalues obtained by solving det|A− λI| = 0





λ1 = vξ − c

λ2 = vξ

λ3 = vξ + c

(3.50)

which correspond to three associated waves in the ξ − t plane, as shown in Figure 3.3,

divided into three specific regions: the left region, the right region and a star region

denoted by ∗. WL and WR denote the state of variables for the left and the right

regions, respectively. This is a classical Riemann problem where the discontinuity is
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located at the point O, which has the exact solution. For more details for finding this

exact solution, the book [78] of Professor E. F. Toro is highly recommended.

Figure 3.3: Structure of the solution of the Riemann problem in the ξ − t plane for the

time-dependent Euler equations – three wave families associated with the eigenvalues

vξ − c, vξ and vξ + c.

Shortly speaking, the wave associated with the eigenvalue λ2 = vξ is a contact wave

across which we have the continuities

{
ρ∗L = ρ∗R = ρ∗

v∗L,ξ = v∗R,ξ = v∗ξ
(3.51)

The other two waves may be shock wave or rarefaction wave, depending on whether

it satisfies the entropy condition [11, 42, 78]. For a shock wave, the Rankine-Hugoniot

condition [75] is applied to determine the relation of variables between the left or right

region and the star region, whereas for a rarefaction wave, the Generalized Riemann

Invariants condition will be used.

As presented in [78], the Generalized Riemann Invariants (GRI) conditions are rela-

tions that hold true across the wave structure. The GRI conditions are given as





dρ+
ρ

c
dvξ = 0 across λ1-wave

dρ− ρ

c
dvξ = 0 across λ3-wave

(3.52)

or for the pressure {
dp+ ρcdvξ = 0 across λ1-wave

dp− ρcdvξ = 0 across λ3-wave
(3.53)
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Remark: The speed of wave in Figure 3.3 is not equal to the eigenvalue. Because the

system of partial differential equations is non-linear, the eigenvalues are different in the

left region and the right region. Hence, one should first detect the type of the wave,

then use different methods to determine the speed of the wave. Furthermore, as the

investigated flows are at low mach numbers, the speed of flows is markedly smaller than

the one of propagation of sound waves. Therefore, in such cases, we may only consider

the star region.

Since resolving the Riemann problem analytically for each pair of fluid particles

requires an iterating procedure which costs lots of computer sources for the entire fluid

domain, and is found not necessary through the practical experience [51]. In this case,

the use of some approximate Riemann solvers is reasonable and can save the time of nu-

merical simulation. Here two approximate Riemann solvers will be presented, which are

the Primitive Variable Riemann Solver (PVRS) [39] and the acoustic Riemann solver,

although there exist lots of other approximate Riemann solvers, e.g. the Roe’s approxi-

mate Riemann solver [77] and the Osher’s approximate Riemann solver [66].

In the first approximate Riemann solver, PVRS, the matrix A in (3.48) is replaced

by a constant matrix

A =




vξ ρ 0

c2/ρ vξ 0

0 0 vξ


 (3.54)

where 



ρ =
1

2
(ρL + ρR)

vξ =
1

2
(vL,ξ + vR,ξ)

c =
1

2
(cL + cR)

(3.55)

Instead of solving a non-linear Riemann problem, we are going to find the exact

solution of a linearized Riemann problem governed by

∂W

∂t
+A

∂W

∂ξ
= 0 (3.56)

This linear Riemann problem is easy to handle and its solution can be given directly
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[78] 



ρ∗ =
1

2
(ρL + ρR) +

ρ

2c
(vL,ξ − vR,ξ)

v∗ξ =
1

2
(vL,ξ + vR,ξ) +

c

2ρ
(ρL − ρR)

(3.57)

where vL,ξ = vi · nij and vR,ξ = vj · nij .

The acoustic Riemann solver is based on the linearization of the coefficients in the

Generalized Riemann Invariants relations (3.52) or (3.53). In such a procedure, the

approximated GRI conditions are





dρ+
ρL
cL

dvξ = 0 across λ1-wave

dρ− ρR
cR

dvξ = 0 across λ3-wave
(3.58)

with which one can obtain





(ρL − ρ∗) +
ρL
cL

(vL,ξ − v∗ξ ) = 0

(ρR − ρ∗)− ρR
cR

(vR,ξ − v∗ξ ) = 0
(3.59)

which gives the solution of the state of fluid variables in the star region





ρ∗ =
cL + cR + vL,ξ − vR,ξ

cL/ρL + cR/ρR

v∗ξ =
ρL − ρR + ρLvL,ξ/cL + ρRvR,ξ/cR

ρL/cL + ρR/cR

(3.60)

then the pressure p∗ will be calculated by the Tait equation (2.44).

Finally, the approximate Riemann solver can offer a sufficiently accurate and rapid

solution of the investigated Riemann problem between the two states of fluid Φi and

Φj . With this solution, the intermediate state can be calculated by





ρE,ij = ρ∗

vE,ij = v∗ξnij

pE,ij = p∗

(3.61)
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which are used to calculate GE,ij in (3.39).

This approach proposed by Vila is called the SPH-ALE method, because it combines

the Smoothed Particle Hydrodynamics method (SPH) and the Arbitrary Lagrangian-

Eulerian (ALE) method. Hence, essentially it is a particle method, but it is not necessary

for the particle to be a material fluid volume, which is the case in standard SPH methods.

In this approach, the fluid particle can move with an arbitrary velocity v̂. When v̂ is

imposed to be equal to the material velocity v
f
, the fluid particle is a material volume

which is followed as it moves through time and space. This feature allows us to naturally

track the interface with other medium, e.g. for free surface flows or interaction with

solid boundary. Imposing v̂ = 0, all the fluid particles are fixed in space, which means

that an Eulerian mesh is used to discretize the fluid sub-domain. This is similar with

the typical Finite Volume (FV) method, which is used to study the flows’ properties

in some fixed region. The difference is that in this SPH-ALE method the fluid flux

between the elemental volumes is calculated with taking into account the interaction

effects with all the particles near to the investigated one, whereas in the FV method

the flux is obtained by using a certain numerical scheme just at the interface between

the elemental volumes. Another important feature of the SPH-ALE method is the use

of Riemann solver, which introduces implicitly the artificial viscosity to stabilize and

improve the numerical simulation.

3.1.6 Higher order scheme

In the previous subsection, the intermediate status of fluid is obtained by solving ap-

proximately a Riemann problem between two fluid particles. This can be classified as

first order Godunov-type numerical scheme which was initially introduced by Godunov

in 1959 [31]. In such type of method, the solution is considered as piece-wise constant

over each mesh cell at a fixed time, as shown in Figure 3.4 and the evolution of the flow

to the next time step results from the wave interactions originating at the boundaries

between adjacent cells [34].

Through the practical experience of using this first order scheme in space [41, 51],

too much artificial viscosity is introduced to the numerical solution, which may interfere

the quality of the numerical results. A first possible solution is to use more fluid particles
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for the spatial discretization. However, this may increase largely the time of calculation.

Another solution is the use of higher order numerical schemes to represent the real

physical variable fields more accurately.

In 1979 [79], van Leer introduced a second order Godunov-type scheme, which

is called Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL). In

this method, the physical variable is considered to be linearly distributed in each mesh

cell, instead of the piece-wise distribution hypothesis for the first order Godunov-type

scheme.

Figure 3.4: Spatial distribution of solution for first order and second order Godunov-

type schemes.

Hence, the procedure of second order scheme applied in the SPH-ALE method is

summarized as follows:

• At the begging of each time-step or sub-time-step, the fluid domain is considered

to be discretized into a number of particles;

• When studying the interaction effect between two particles, the mono-dimensional

Riemann problem is solved by an approximate Riemann solver between the two

status of fluid which are obtained by a linear extrapolation in space;

• The results in the star region of the Riemann problem is then considered as the in-

termediate status between the two investigated particles. Then GE,ij is calculated

by this intermediate status.
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3.2 Boundary conditions treatment

For solving partial differential equations, the boundary conditions must be given prop-

erly, which is often called well-posed, in order to ensure the existence and uniqueness

for the analytical solution. Hence the boundary conditions treatment is an essential

aspect of the practical application of a numerical scheme.

In the SPH method, the treatment of solid wall boundary condition is a difficulty

obstructing the development of this numerical method. As the fluid is considered to be

inviscid, the solid wall boundary is treated with the slipping condition which imposes

only the equality of velocity in the normal direction of the solid boundary

[
v
f
(xk)− v

s
(xk)

]
· nk = 0 (3.62)

where xk denotes the position of the solid wall boundary, and nk is the normal vector.

In the literature, there exist different methods for treating this sort of solid wall

boundary condition (3.62), for instance, the repulsive force method [60], the fictive par-

ticle method [62], and the ghost particle method [32]. However, these methods appear

either inaccurate (the repulsive method), or difficult to handle the complex geometry

problems (fictive or ghost particle method). In 2010, Marongiu [53] introduced an orig-

inal method for treating the moving solid wall boundary condition. In this method,

the boundary effect is obtained by solving a partial Riemann problem at the solid wall,

which is coherent with the use of Riemann solver for studying the interaction effect

between two fluid particles. Furthermore, this method allows us to easily handle the

problems with complex geometries, since we do not need to set extra fictive particles in

the solid sub-domain.

Besides, there exist other types of boundary conditions, such as the free surface

boundary condition, or the multi-fluids interface boundary condition. While these will

not be presented in this work, because it is the solid wall boundary condition that is of

interest for the fluid-structure interaction, which is the main subject of this PhD work.

More details for these sorts of boundary conditions can be found in [41, 51].
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3.2.1 Hyperbolic propagation-dominated system

As presented in Chapter 2, the fluid sub-domain is governed by the Euler equations

which possesses the features of hyperbolic equations. This means that the physical

problems to be studied are propagation-dominated, but not dominated by diffusion phe-

nomena.

Figure 3.5: Boundary conditions treatment for hyperbolic fluid equations.

Consider a two-dimensional fluid flow, as shown in Figure 3.5, in a domain bounded

by four boundaries Γ1, Γ2, Γ3 and Γ4, of which the normal unit vectors are denoted by

n1, n2, n3 and n4. The fluid enters in the domain through the boundary Γ1, and leaves

the domain by the boundary Γ2. Γ3 and Γ4 represent two solid wall boundaries.

The homogeneous part of the governing equations writes

∂U

∂t
+A

∂U

∂x
+B

∂U

∂y
= 0 (3.63)

with,

U =



ρ

vx

vy


 , A =




vx ρ 0

c2/ρ vx 0

0 0 vx


 and B =




vy ρ 0

0 vy 0

c2/ρ 0 vy


 (3.64)

This system of equations possesses three real eigenvalues [33, 34]





λ1 = v · κ− c|κ|
λ2 = v · κ
λ3 = v · κ+ c|κ|

(3.65)

where κ is the direction vector of the propagation of the wave-like solution, which is

usually chosen to be the normal vector ni when studying the boundary condition at Γi.
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At the boundary Γi, a positive eigenvalue associates with a wave that brings the

information from the outside into the inside of the fluid domain, whereas a negative

eigenvalue corresponds to a wave bringing the information from the inside to the out-

side of the fluid domain. Hence, at a certain boundary, if there are totally m = p + n

eigenvalues, where p is the number of positive eigenvalues, and n is the one of nega-

tive eigenvalues, one should impose p physical boundary conditions, and n numerical

boundary conditions.

Imposing a physical boundary condition means imposing the value of certain phys-

ical variable or imposing a relationship among several physical variables. For instance,

at the entry of the domain Γ1 in Figure 3.5, the three eigenvalues are





λ1
1 = v · n1 − c

λ1
2 = v · n1

λ1
3 = v · n1 + c

(3.66)

where v · n1 > 0, hence if at the entry the flow is subsonic, there will be two positive

eigenvalues λ2 and λ3, and one negative eigenvalue λ1. In this case, one can only

impose two boundary conditions at this entry, for instance, the fluid density ρ = ρB1 and

the component in direction x of the fluid velocity vx = vB1
x , or any other combination of

two variables among ρ, vx and vy. However, one can not impose all the three physical

variables at the entry Γ1, since there are only two waves bringing the information from

the outside to the inside of the fluid domain. Hence, the third variable that is not imposed

should be given by some numerical methods, i.e. the numerical boundary condition.

For example, the linear or 2nd order extrapolation method can give the value of the

third variable by using the information coming from the inside of the fluid domain. In

contrast, if all the three variables are imposed, this boundary condition may be non-

compatible with the governing equations used in the fluid domain.

The method for imposing the numerical boundary conditions is very important and

can not be emphasized enough. From the theoretical point of view, as well as through

numerical experiments, it can be shown that the choice of the numerical boundary condi-

tions may have a dominating effect on the accuracy, numerical stability and convergence

rate of many numerical schemes. For instance, an unconditionally stable scheme may

appear to be only conditionally stable in practice, if an incompatible boundary condition
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is introduced [34].

3.2.2 Truncation of the support domain of kernel function

Chapter 3.1.1 presents the basis of the SPH method. In (3.13), the term associated

with the solid wall boundary is neglected since the kernel function W (x′ − x, h) = 0

for x′ ∈ ∂D, which is true only for the fluid particles sufficiently far from any solid

wall boundary. Hence, the semi-discrete equations (3.39) developed previously are not

adoptable for the fluid particles which are located near to the solid wall boundary.

A fluid particle is said to be near to the solid wall means that the support domain of

its kernel function is truncated by the solid wall, as the fluid particle i shown in Figure

3.6.

fluid

solid

Figure 3.6: The truncation of the support domain of the kernel function for the fluid

particle i by the solid wall boundary.

For this type of fluid particles, the boundary term in (3.12) can no longer be ne-

glected, because the kernel function W is not equal to zero at the solid wall boundary.

Hence the kernel approximation of a gradient function writes

∇xf(x) ≃< ∇xf(x) >

=

∫

D

∇x′f(x′)W (x− x′, h) dx′

=

∫

∂D

[f(x′)W (x− x′, h)]n dx′ −
∫

D

f(x′)∇x′W (x− x′, h) dx′

(3.67)
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Using the particle approximation gives the gradient for the fluid particle i

∇xf(x)|x=xi
≃ < ∇xf(x) >|

x=xi

≃
∑

k∈∂Di

f(xk)W (xi − xk, h)nksk −
∑

j∈Di

f(xj)∇jW (xi − xj, h)ωj

=
∑

k∈∂Di

fkWiknksk −
∑

j∈Di

fj∇jWijωj

=
∑

k∈∂Di

fkWiknksk +
∑

j∈Di

fj∇iWijωj

(3.68)

where k denotes the discrete surface element, nk is the unit normal vector pointing from

the fluid to the solid, as shown in Figure 3.6, and sk is the surface area of this element.

Remark: In this work, the “surface” element is assumed to be either a point (1-D) or

a straight line (2-D), or a plane surface (3-D). Hence the normal vector nk is constant

inside a “surface” element k.

When f(x) is the flux tensor in (3.29), [∇x · F]i rewrites

[∇x · F]i ≃
∑

k∈∂Di

WikFk · nksk +
∑

j∈Di

Fj ·∇iWijωj (3.69)

Now, applying the SPH approximation (3.68) to calculate the inserted term (3.36) in

(3.35), which is used to keep the conservation property

∫

Ω̂

Fi ·∇xH dΩ = Fi ·
∫

Ω̂

∇xH dΩ

≃ Fi ·
(
ωi

∑

k∈∂Di

HkWiknksk + ωi

∑

j∈Di

Hj∇iWijωj

)

= ωi

∑

k∈∂Di

WikFi · nksk + ωi

∑

j∈Di

Fi ·∇iWijωj

(3.70)

Combining (3.69) and (3.70) gives the semi-discrete equations of (3.35) for the fluid
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particles near to the solid wall boundary

d(ωiΦi)

dt
+ ωi

∑

k∈∂Di

Wik(Fk + Fi) · nksk + ωi

∑

j∈Di

(Fj + Fi) ·∇iWijωj = Siωi

(3.71)

which has an additional term associated with the effect of solid boundary, comparing

with (3.37). This equation has the same form with one used in [15], although the deriva-

tion procedure is different.

As presented in Chapter 3.1.4, Vila [80] proposed to approximate (Fj + Fi) by

2GE,ij(Φi,Φj) which is calculated with an intermediate status of fluid variable obtained

by solving a Riemann problem between the two fluid particles i and j. In 2010 [53],

Marongiu introduced a method for treating the moving solid wall boundary condition.

In this method, (Fk + Fi) is replaced by 2GE,ik(Φi,Φk) which is calculated with an

intermediate status obtained by solving a partial Riemann problem. Hence, (3.71) is

rewritten as

d(ωiΦi)

dt
+ ωi

∑

k∈∂Di

Wik2GE,ik · nksk + ωi

∑

j∈Di

2GE,ij ·∇iWijωj = Siωi (3.72)

Taking Φi = ρi and Φi = ρivi, one can obtain the semi-discrete equations of

conservation laws for the mass and the linear momentum





d(ρiωi)

dt
+ ωi

∑

k∈∂Di

Wik2ρE,ik(vE,ik − v̂ik) · nksk

+ ωi

∑

j∈Di

2ρE,ij(vE,ij − v̂ij) ·∇iWijωj = 0

d(ρiωivi)

dt
+ ωi

∑

k∈∂Di

Wik2 [ρE,ikvE,ik ⊗ (vE,ik − v̂ik) + pE,ikI] · nksk

+ ωi

∑

j∈Di

2 [ρE,ijvE,ij ⊗ (vE,ij − v̂ij) + pE,ijI] ·∇iWijωj = ρigiωi

(3.73)

where ρE,ik, vE,ik and pE,ik denote the intermediate fluid status obtained by solving a

partial Riemann problem at the solid wall boundary.

In this work, the Lagrangian mode is chosen to be used for coupling with the struc-
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ture. In such mode v̂i = vi and v̂ij =
1

2
(vi + vj). Moreover, we impose vE,ik = v̂ik

which leads to





d(ρiωi)

dt
+ ωi

∑

j∈Di

2ρE,ij(vE,ij − vij) ·∇iWijωj = 0

d(ρiωivi)

dt
+ ωi

∑

k∈∂Di

Wik2pE,iknksk

+ ωi

∑

j∈Di

2 [ρE,ijvE,ij ⊗ (vE,ij − vij) + pE,ijI] ·∇iWijωj = ρigiωi

(3.74)

One of the advantages of imposing vE,ik = v̂ik is that with the equation of conserva-

tion of mass in (3.74) we can enforce no mass transfer at the solid wall boundary, which

is a very important physical feature for the numerical method. Finally, the only value to

be solved at the solid wall boundary is the intermediate status of pressure pE,ik.

Remark: In Vila’s formula [80], the condition vE,ij = v̂ij is not necessary, which

means that even the Lagrangian mode is used, the mass transfer may occur between

two fluid particles. As Vila commented, although we loose this nice property of the

method, we keep global conservation of mass and momentum.

3.2.3 Partial Riemann problem

As mentioned in the previous part, the intermediate fluid status ρE,ik, vE,ik and pE,ik

are obtained by solving a partial Riemann problem. This approach was introduced by

Marongiu [51, 53] in the SPH method for treating the moving solid boundary condition.

Consider a solid surface element k truncating the support domain the fluid particle i,

as shown in Figure 3.7, nk is the normal vector of this surface element. Because the fluid

is considered to be inviscid, the slipping condition (3.62) is imposed. In other words,

when treating the solid boundary condition, only the effect in the normal direction nk

should be taken into account. For this reason, the partial Riemann problem will be

resolved in the ξ − t plane illustrated in Figure 3.7.

For the classical Riemann problem, such as in Section 3.1.5, the ξ−t plane is divided

into three regions by two waves associated with the two eigenvalues vξ − c and vξ + c.

Then the Generalized Riemann Invariants conditions or the Rankine-Hugoniot relation
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Figure 3.7: Partial Riemann problem at the solid wall boundary.

will be used to relate the status in the star region with the one in the left or right region

in order to determine the status in this star region, which will be used as an intermediate

status. However, in the case presented in Figure 3.7, we can have only one relation

across the wave associated with the eigenvalue vξ − c, because there is no fluid particle

inside of the solid wall. Hence we need another relation between the variables ρ and vξ.

This is called the partial Riemann problem [19], in which one needs to impose a

relation or manifold M(ρ∗, v∗ξ ) = 0 to determine the status in the star region. In fact,

this manifold plays a role of the physical boundary condition for the hyperbolic system

of equations. As presented in [53], across the wave associated with vξ − c, a relation

between ρ and vξ can be found and expressed as a curve in the ρ−vξ plane, as illustrated

in Figure 3.8. For instance, if M(ρ∗, v∗ξ ) = 0 is a condition that imposes that value of

the density in the star region ρ∗. Through the path indicated in the figure, one can find

the value of the velocity in the star region v∗ξ . Inversely, knowing the value of v∗ξ , one

can also find ρ∗ along the inverse direction of the path.

Remark: Due to the use of the Tait equation of state, the fluid density and pressure

have a bijective relation. Hence the ρ − vξ plane can also be considered as the p − vξ

plane.

Across the wave associated with the eigenvalue vξ − c, the Generalized Riemann

Invariants condition is

dp+ ρcdvξ = 0 (3.75)

or

dρ+
ρ

c
dvξ = 0 (3.76)
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Figure 3.8: Solving a partial Riemann problem at the solid wall boundary with a im-

posed value of the density ρ∗.

which relates the variable status of the particle i with the one in the star region. Nor-

mally, it is a non-linear equation, because ρ and c are not constant. However, we can

linearize (3.75) or (3.76) by assuming ρ = ρi and c = ci, which is quite an acceptable

approximation, since in most cases the density and speed of sound do not vary too much.

After this linearization, (3.75) becomes

dp+ ρicidvξ = 0 (3.77)

hence,

(p∗ − pi) + ρici(v
∗

ξ − vi,ξ) = 0 (3.78)

where vi,ξ = vi · nk and v∗ξ = vk · nk with vk being the velocity of the surface element

k, which is usually known and imposed to calculate the intermediate fluid pressure p∗

or pE,ik. Then (3.78) becomes

pE,ik = p∗ = pi − ρici(vk − vi) · nk (3.79)

with which we can calculate the boundary term ωi

∑

k∈∂Di

Wik2pE,iknksk in (3.74) in order

to take into account the effect of moving or fixed solid wall boundary.
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3.2.4 Fluid pressure at solid wall

In 2007, Marongiu [51] introduced a method for calculating the fluid pressure at the

solid wall boundary to estimate the pressure field on the impacted surface of the blade

of Pelton turbine.

When Φi = ρivi, (3.72) represents the conservation equation of the linear momen-

tum for the fluid particle i which is located near the solid wall boundary. It is obvious

that the linear momentum of the fluid particle i varies in time due to three types of

sources

• The solid wall boundary force

− ωi

∑

k∈∂Di

Wik2GE,ik · nksk (3.80)

• The interaction effect between the fluid particles

− ωi

∑

j∈Di

2GE,ij ·∇iWijωj (3.81)

• The body force (gravity) effect ρigiωi

As shown previously, in Lagrangian mode GE,ik = pE,ikI by imposing vE,ik = v̂ij .

Hence, for the fluid particle i, the force exerted by the solid surface element k is

Fk→i = −ωiWik2pE,iknksk (3.82)

Inversely, the Newton’s third law tells us that the force applied to the solid surface

element k from the fluid particle i is

Fi→k = −Fk→i = ωiWik2pE,iknksk (3.83)

then the force exerted to solid surface element k from the whole fluid domain Ωf can be

calculated by

FΩf→k =
∑

i∈Dk

Fi→k =
∑

i∈Dk

ωiWik2pE,iknksk (3.84)
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where i ∈ Dk denotes all the fluid particles which are sufficiently near to the solid

surface element k, i.e. the support domain of the kernel function is truncated by the

solid wall boundary.

Given the definition of the fluid pressure pk at the solid surface element k

FΩf→k = pknksk (3.85)

we can obtain

pknksk =
∑

i∈Dk

ωiWik2pE,iknksk (3.86)

then the fluid pressure pk can be calculated by

pk =
∑

i∈Dk

ωiWik2pE,ik (3.87)

3.3 System of semi-discrete equations for fluid

In Section 3.2.2, we obtained the semi-discrete equations (3.72) for the conservation of

mass and linear momentum. The temporal evolution equation of the position of fluid

particles is given as

dxi

dt
= v̂i (3.88)

where v̂i denotes the arbitrary velocity of the control volume Ω̂i. In Lagrangian mode,

v̂i = vi, whereas in Eulerian mode, v̂i = 0.

In addition, another equation is needed to describe the evolution of the volume of

Ω̂i. For doing this, let’s take f(x, t) = 1, ∀x ∈ R
d, ∀t ∈ R

+, in the Reynolds Transport

Theorem (2.25), we obtain

∂ωi

∂t

∣∣∣∣
χ

=

∫

Γ̂i

v̂(x, t) · n dx =

∫

Ω̂i

∇x · v̂ dx = ωi[∇x · v̂]i (3.89)

where ωi denotes the volume of the fluid particle Ω̂i, and [∇x · v̂]i is the mean value of

the divergence of v̂ over Ω̂i.

Using the kernel and particle approximations (3.68) gives the semi-discrete equation
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for ωi
dωi

dt
= ωi

∑

k∈∂Di

Wikv̂k · nksk + ωi

∑

j∈Di

v̂k ·∇iWijωj (3.90)

To ensure a zero order consistency for the approximation of ∇x · v̂, we insert an

additional term into (3.89)

∂ωi

∂t

∣∣∣∣
χ

=

∫

Ω̂i

(∇x · v̂ − v̂i ·∇xH) dΩ = ωi[∇x · v̂ − v̂i ·∇xH]i (3.91)

where H(x) = 1 ∀x ∈ R
d. Since ∇xH = 0, (3.91) is mathematically identical with

(3.89).

Using the same procedure (3.70) to discretize the inserted term, we can obtain the

semi-discrete form of (3.91)

dωi

dt
= ωi

∑

k∈∂Di

Wik(v̂k − v̂i) · nksk + ωi

∑

j∈Di

∇iWij · (v̂j − v̂i)ωj (3.92)

which describes the evolution in time of the volume ωi of the fluid particle.

Gathering (3.73), (3.88) and (3.92), we get the whole system of semi-discrete equa-

tions for the fluid sub-domain





dxi

dt
= v̂i

dωi

dt
= ωi

∑

k∈∂Di

Wik(v̂k − v̂i) · nksk + ωi

∑

j∈Di

∇iWij · (v̂j − v̂i)ωj

d(ρiωi)

dt
+ ωi

∑

k∈∂Di

Wik2ρE,ik(vE,ik − v̂ik) · nksk

+ ωi

∑

j∈Di

2ρE,ij(vE,ij − v̂ij) ·∇iWijωj = 0

d(ρiωivi)

dt
+ ωi

∑

k∈∂Di

Wik2 [ρE,ikvE,ik ⊗ (vE,ik − v̂ik) + pE,ikI] · nksk

+ ωi

∑

j∈Di

2 [ρE,ijvE,ij ⊗ (vE,ij − v̂ij) + pE,ijI] ·∇iWijωj = ρigiωi

(3.93)
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Choosing the Lagrangian mode, (3.93) becomes





dxi

dt
= vi

dωi

dt
= ωi

∑

k∈∂Di

Wik(vk − vi) · nksk + ωi

∑

j∈Di

∇iWij · (vj − vi)ωj

d(ρiωi)

dt
+ ωi

∑

j∈Di

2ρE,ij(vE,ij − vij) ·∇iWijωj = 0

d(ρiωivi)

dt
+ ωi

∑

k∈∂Di

Wik2pE,iknksk

+ ωi

∑

j∈Di

2 [ρE,ijvE,ij ⊗ (vE,ij − vij) + pE,ijI] ·∇iWijωj = ρigiωi

(3.94)

3.4 Explicit Runge-Kutta time integrator

The SPH method is used only for the spatial discretization of the fluid sub-domain

which is governed by the partial differential equations. The system of equations (3.94)

is called semi-discrete because the time domain is also needed to be discretized, or these

temporal differential equations should be integrated in time by using certain numerical

time integrators.

In this work, the 2nd order explicit Runge-Kutta scheme is used as the time inte-

grator. After the spatial discretization, the equations in (3.94) are all ordinary temporal

differential equations, which can also be written as

dU

dt
= H(U) (3.95)

where U = U(t) depending only on time t. In the system (3.94) for the fluid particle i,

U may be the position xi, the volume ωi, the mass ρiωi or the momentum ρiωivi. H(U)

is a function of U , which represents the spatial discretization part.

Assume that at the instant t = tn, all the fluid variables Un are already known, the

objective is to calculate the state of variables Un+1 at the next instant t = tn+1, as shown

in Figure 3.9.

The 2nd order explicit Runge-Kutta scheme is often called the two-stage Runge-

Kutta scheme, because there are two stages for going to tn+1 from tn.
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Figure 3.9: Advancing in time from the instant tn to tn+1 by using time integrator.

• Stage 1: Calculate the state of variables Un+1/2 at the instant tn+1/2

Un+1/2 = Un +
∆t

2
H(Un) (3.96)

where Un+1/2 denotes the state of variables at the instant tn+1/2, which is obtained

by using a first order time integrator.

• Stage 2: Calculate the state of variables Un+1 at the instant tn+1

Un+1 = Un +∆tH(Un+1/2) (3.97)

where the function H(Un+1/2) is calculated with the variables Un+1/2 obtained in

the first stage.

Because one should calculate first the state of variables at the instant tn+1/2, this

method is also called the mid-point version of the 2nd order Runge-Kutta scheme. How-

ever, the 2nd order Runge-Kutta scheme does not have a unique form, for example, the

Heun’s method is also classified as a 2nd order Runge-Kutta scheme. In this work, it is

the mid-point version that is used for time integration of the fluid equations and will be

coupled with the time integrator used in the solid sub-domain.

As an explicit time integrator is used, the Courant-Friedriech-Levy (CFL) condition

needs to be satisfied in order to have a stable numerical simulation. In this work, the

applied CFL condition is the one given in [41]

∆t 6 K
CFL

min
i

(
hi

ci + 2|vi|

)
(3.98)

where the coefficient K
CFL

∈ (0, 1) is in function of the used time integrator, which is

usually determined through the practical numerical experience.
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Chapter 4

Finite Element numerical method for

solid

The mechanical phenomena in the solid sub-domain are governed by some partial dif-

ferential equations (2.45) or (2.47). In general, solving analytically these equations is

difficult or even impossible. Hence, numerical methods are often used to obtain ap-

proximate solutions of these governing equations in engineering as well as in academic

research.

This chapter starts with a brief introduction of a widely used numerical method, the

Finite Element (FE) method [6, 27, 36], in solid mechanics. Secondly, the treatments

of different types of boundary conditions are presented. After the spatial discretization

by the FE method, the third part gives the semi-discrete system of equations in matrix

form. Finally, the used time integrator is presented at the end of this chapter.

4.1 Finite Element method

The Finite Element (FE) method is a numerical approach by which the partial differen-

tial governing equations can be solved approximately [27]. Comparing to other numeri-

cal methods, e.g. the Finite Difference (FD) method, one of the advantages of using the

FE method is the flexibility for complicated geometries.

The basic idea of the FE method in solid mechanics is to divide the body Ωs into
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finite elements

Ωs =
Ns⋃

e

Ωe (4.1)

where Ns denotes the number of the elements, Ωe is one of the elemental volumes. All

the elements are connected by the nodes, and this is called the computational mesh or

mesh. The FE method can give the approximate solutions of the governing equations at

these mesh points.

For linear problems, the solution is determined by solving a system of linear equa-

tions for which the number of unknowns is equal to the number of nodes. For the FE

method in solid mechanics, there are three major sources of non-linearity:

• Large deformation and displacement (non-linear geometry)

• Non-linear constitutive model (non-linear material)

• Contact problems

In this work only the non-linear geometry and non-linear material will be consid-

ered. The solid-solid contact problems are not investigated in this PhD work.

4.1.1 Weak form for updated Lagrangian formulation

As presented in Chapter 2, the FE discretizations are commonly classified as Updated

Lagrangian Formulations (ULF) and Total Lagrangian Formulations (TLF) [6]. Notice

that both the two formulations are with Lagrangian meshes, which means that the nodes

and elements move with the material, and the boundaries and interfaces remain coinci-

dent with element edges. Furthermore, the constitutive equations are always evaluated at

the same material points, which is advantageous for history-dependent materials. More

concretely, the time derivatives in the governing equations (2.45) or (2.47) are both car-

ried out holding the material coordinates constant. The differences between the two

formulations are that in ULF the spatial derivative is with respect to the spatial coor-

dinates and the corresponding weak form is obtained by integration over the current

configuration of the solid body, whereas in TLF the spatial derivative is with respect to

the material coordinates and its weak form is given by integration over the initial config-

uration. Because the ULF and TLF are mathematically equivalent, only the weak form

for the ULF is presented in this section.
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Figure 4.1: The solid domain Ωs discretized by a Lagrangian mesh under two types of

boundary conditions.

Consider a solid body Ωs shown in Figure 4.1, which is discretized into elements

connected by nodes. Two different types of boundary conditions are imposed:

• Velocity boundary condition

v(X, t) = vb(X, t) on Γv (4.2)

• Traction boundary condition

σ(X, t) · nb(X, t) = tb(X, t) on Γt (4.3)

where v(X, t) denotes the velocity vector expressed with the material coordinates X,

vb is the imposed velocity at the boundary Γv. σ(X, t) represents the stress tensor, nb

the normal vector of the boundary Γt, and tb(X, t) the traction or force exerted on Γt.

The relation between Γv and Γt is described as

Γv ∪ Γt = Γs Γv ∩ Γt = ∅ (4.4)

where Γs denotes the boundary of the whole solid domain Ωs.

The weak form is obtained by multiplying the momentum equation by a test function

and then integrating over the current domain, which gives

∫

Ωs

δv ·
(
ρ
dv

dt
−∇x · σ − ρb

)
dΩ = 0 (4.5)
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where δv(X) is the test function satisfying

δv(X) ∈ U0 U0 =
{
δv(X) | δv ∈ C

0(X), δv = 0 on Γv
}

(4.6)

and the condition on the trial function v(X, t) is

v(X, t) ∈ U U =
{
v(X, t) |v ∈ C

0(X), v = vb on Γv
}

(4.7)

where a C0 function is continuous in space, but its first order derivative is only piece-

wise differentiable.

Applying the traction boundary condition (4.3) and Gauss’s theorem, (4.5) can be

written as [6]

∫

Ωs

(∇xδv)
⊤ : σ dΩ−

∫

Ωs

δv · ρb dΩ−
∫

Γt

δv · tb dΓ +

∫

Ωs

δv · ρv̇ dΩ = 0 (4.8)

where (∇xδv)
⊤ is the spatial gradient tensor of the virtual velocity, which is denoted

by δL and can be calculated with the definition of the left gradient operator (2.16)

δL = (∇xδv)
⊤ =




∂δvx
∂x

∂δvx
∂y

∂δvx
∂z

∂δvy
∂x

∂δvy
∂y

∂δvy
∂z

∂δvz
∂x

∂δvz
∂y

∂δvz
∂z




(4.9)

This gradient tensor δL can be decomposed into symmetric and skew-symmetric

parts by

δL = δD+ δW (4.10)

with

δD =
1

2
(δL+ δL⊤) and δW =

1

2
(δL− δL⊤) (4.11)

where δD is called the virtual strain rate, which is the symmetric part of δL, and the

spin δW is the skew-symmetric part of δL. Because the Cauchy stress tensor σ is
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symmetric, i.e. σ⊤ = σ, then we have

(∇xδv)
⊤ : σ = δL : σ = (δD+ δW) : σ = δD : σ (4.12)

since δW : σ = 0.

The procedure for obtaining the weak form is also called the virtual power principle,

in which the test function δv is called the virtual velocity. In this principle, (4.5) or (4.8)

implies that for an arbitrary virtual velocity δv, the virtual power δPtot of the whole

system is equal to zero. In fact, in (4.8) each part possesses a physical sense:

• Virtual internal power δPint

δPint =

∫

Ωs

δD : σ dΩ (4.13)

• Virtual external power δPext

δPext =

∫

Ωs

δv · ρb dΩ +

∫

Γt

δv · tb dΓ (4.14)

• Virtual kinetic power δPkin

δPkin =

∫

Ωs

δv · ρv̇ dΩ (4.15)

Hence, we can write (4.8) in a concise form

δPtot = δPint − δPext + δPkin = 0 ∀δv ∈ U0 (4.16)

This weak form for Updated Lagrangian Formulation will be discretized in next

section.
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4.1.2 Finite Element discretization

In the FE method, the motion x(X, t) is approximated by

x(X, t) =
n∑

I

NI(X)xI(t) (4.17)

where I denotes the identification number of node, and n is the total numbers of the

nodes. NI(X) is a scalar function of X, which is called the shape function and xI is the

position vector of the node I . With the Einstein’s notation method, (4.17) can be simply

written as

x(X, t) = NI(X)xI(t) (4.18)

Using the same approximation methodology to the displacement field, one obtains

u(X, t) = NI(X)uI(t) (4.19)

where uI(t) = xI(t)−XI with XI being the initial position of the node I .

The velocity is obtained by taking the material time derivative of the displacement

v(X, t) =
∂u(X, t)

∂t

∣∣∣∣
X

=
∂ [NI(X)uI(t)]

∂t

∣∣∣∣
X

= NI(X)u̇I(t) (4.20)

Similarly, the acceleration field is approximated by

a(X, t) =
∂v(X, t)

∂t

∣∣∣∣
X

= v̇(X, t) = NI(X)üI(t) (4.21)

The test function or virtual velocity δv(X) is not a function of time, hence we ap-

proximate the test function as

δv(X) = NI(X)δvI (4.22)
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with which δL can be written as

δL =
∂δv

∂x
=

∂[NI(X)δvI ]

∂x
=




∂NI

∂x
δvxI

∂NI

∂y
δvxI

∂NI

∂z
δvxI

∂NI

∂x
δvyI

∂NI

∂y
δvyI

∂NI

∂z
δvyI

∂NI

∂x
δvzI

∂NI

∂y
δvzI

∂NI

∂z
δvzI




= δvI ⊗∇xNI(X)

(4.23)

or in matrix form

δL = δvI [∇xNI(X)]⊤ (4.24)

with,

δv =



δvxI
δvyI
δvzI


 and ∇xNI(X) =




∂NI

∂x

∂NI

∂y

∂NI

∂z



= BI (4.25)

where δvxI , δvyI and δvzI are the components of the virtual velocity δvI of the node I in

the three directions.

Remark: In this thesis, a variable or an equation may be expressed either in tensor

form or in matrix form, which are essentially equivalent. When the operation is carried

out with an operator like “·” or “⊗” etc., it means that we are using the tensor form.

Whereas, if in the equation it has the transpose symbol “⊤”, it is in the matrix form.

With the approximation methods presented previously, the three types of virtual

power can be calculated as





δPint = δv⊤

I

∫

Ωs

σBI dΩ = δv⊤

I f
int
I

δPext = δv⊤

I

(∫

Ωs

NIρb dΩ +

∫

Γt

NItb dΓ

)
= δv⊤

I f
ext
I

δPkin = δv⊤

I

(∫

Ωs

NIρNJ dΩ

)
v̇J = δv⊤

I MIJ v̇J

(4.26)

61



where f intI and f extI are the internal and external nodal forces for the node I , respectively,

and MIJ is one of the elements in the so called mass matrix M





f intI =

∫

Ωs

σBI dΩ

f extI =

∫

Ωs

NIρb dΩ +

∫

Γt

NItb dΓ

MIJ =

∫

Ωs

NIρNJ dΩ

(4.27)

Then the virtual power principle (4.16) becomes

δv⊤

I

(
MIJ v̇J + f intI − f extI

)
= 0 (4.28)

Because the virtual velocity can be chosen arbitrarily, one can obtain the momentum

equation for the node I

MIJ v̇J + f intI − f extI = 0 (4.29)

and then the system of equations for all the nodes writes

Mv̇
s
+ fint − fext = 0 (4.30)

or,

Ma
s
+ fint − fext = 0 (4.31)

with,

M =




M11I M12I . . . M1II . . . M1nI

M21I M22I . . . M2II . . . M2nI
...

...
. . .

...
...

MI1I MI2I . . . MIII . . . MInI
...

...
...

. . .
...

Mn1I Mn2I · · · MnII · · · MnnI




, fint =




f int1

f int2

...

f intI
...

f intn




, fext =




f ext1

f ext2

...

f extI
...

f extn




(4.32)

where I denotes the unit matrix of the dimension of the problems, and v is the velocity

matrix of dimension [nd× 1] with d being the number of dimensions of the investigated
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problems and n the total number of nodes

v
s
=
[
v1 v2 . . . vI . . . vn

]⊤
(4.33)

and u is the nodal displacement matrix

u
s
=
[
u1 u2 . . . uI . . . un

]⊤
(4.34)

4.1.3 Linear elastic constitutive equations

The semi-discrete equations (4.31) is applicable to linear or non-linear cases, since the

methods for calculating the internal and external nodal forces are not specified. For

instance, when calculating fint, the material property may be linear or non-linear, and

the deformation of the solid may be little or large.

A constitutive model gives the relation between the stress and the strain, which is

used to close the system of equations for the solid sub-domain. For measuring the stress

and strain, various choices may be applied, e.g. the Green strain E, the strain rate D,

the Cauchy stress σ, and the second Piola-Kirchhoff tress S etc.

In this part, we only give the example of linear elastic material with small strain.

The constitutive model is used to relate the Cauchy stress tensor σ with the Almansi

strain tensor ε

σ = C : ε (4.35)

where C is a fourth order tensor describing the linear elasticity, and C is independent

with ε. The Cauchy’s strain tensor is calculated by

ε =
1

2

[
∇xu+ (∇xu)

⊤
]

(4.36)

The Voigt notation method is often used for constitutive equations. In this method,

(4.35) is rewritten in matrix form

{σ} = [C] {ε} (4.37)
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with,

{σ} =
[
σxx σyy σzz σxy σyz σzx

]⊤
(4.38)

and,

{ε} =
[
εxx εyy εzz 2εxy 2εyz 2εzx

]⊤
(4.39)

In this linear elastic case, the 3-D Hook’s law for isotropic material gives

[C] =
E

(1 + ν)(1− 2ν)




1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0
1− 2ν

2
0 0

0 0 0 0
1− 2ν

2
0

0 0 0 0 0
1− 2ν

2




(4.40)

where E denotes the Young’s modulus, and ν is the Poisson’s ratio.

Similarly, the virtual strain rate tensor δD in (4.13) can also be expressed with Voigt

notation method

{δD} =
[
δDxx δDyy δDzz 2δDxy 2δDyz 2δDzx

]⊤
(4.41)

Then the virtual internal power δPint becomes

δPint =

∫

Ωs

{δD}⊤ {σ} dΩ (4.42)

Now let’s construct a matrix relating {δD} with the nodal virtual velocity δvI

{δD} = BIδvI (4.43)
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with,

BI =




∂NI

∂x
0 0

0
∂NI

∂y
0

0 0
∂NI

∂z
∂NI

∂y

∂NI

∂x
0

0
∂NI

∂z

∂NI

∂y
∂NI

∂z
0

∂NI

∂x




and δvI =



δvxI
δvyI
δvzI


 (4.44)

Using this matrix BI , we can express the strain tensor {ε} as

{ε} = BIuI (4.45)

where uI = [ux
I uy

I uz
I ]

⊤ denoting the nodal displacement for the node I .

With (4.37), (4.43) and (4.45), the virtual internal power can be calculated by

δPint =

∫

Ωs

(BIδvI)
⊤ [C]BJuJ dΩ

= δv⊤

I

(∫

Ωs

B⊤

I [C]BJ dΩ

)
uJ

= δv⊤

I f
int
I

(4.46)

Hence the internal nodal force f intI for the node I is

f intI =

(∫

Ωs

B⊤

I [C]BJ dΩ

)
uJ

= KIJuJ

(4.47)

with which the momentum equation for the node I (4.29) becomes

MIJ üJ +KIJuJ = f extI (4.48)
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then the semi-discrete equations for all the nodes in matrix form are

Mü
s
+Ku

s
= fext (4.49)

where Ku
s
= fint, and K is called the stiffness matrix, with

KIJ =

∫

Ωs

B⊤

I [C]BJ dΩ (4.50)

Notice that in linear elastic cases with small deformation, the stiffness matrix K

can be considered to be constant. The mass matrix is always the same, even for the

non-linear cases with large deformation, because the mass matrix is calculated by

MIJ =

∫

Ωs

NI(X)ρ(x, t)NJ(X) dx

=

∫

Ω0
s

NI(X)ρ(X, t)NJ(X)J(X, t) dX

=

∫

Ω0
s

NI(X)ρ0(X)NJ(X) dX

(4.51)

where ρ0(X) denotes the initial density at the material point X, and J(X, t) is the de-

terminant of the gradient matrix F =

(
∂x

∂X

)⊤

. As presented in (2.47), the mass con-

servation gives ρ0(X) = ρ(X, t)J(X, t).

Remark: The shape function NI(X) is always expressed with the material coordinates

X. Sometimes we see that it appears in the integral over the current configuration Ω(x).

In such cases, the shape function is expressed by NI

[
Φ−1(x, t)

]
with Φ−1(x, t) is the

mapping from x to X. However, this inverse mapping is never carried out explicitly in

the practical calculations.

4.2 Boundary conditions treatment

In the Finite Element method, the boundary conditions are usually of two types: the

essential boundary condition and the nature boundary condition corresponding to the

velocity boundary condition and the force boundary condition, respectively, as shown
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in Figure 4.1.

In the essential boundary conditions, the value of the variable is to be imposed in

order to solve the partial differential equations completely. This sort of condition is also

called the Dirichlet-type boundary condition.

As for the nature boundary conditions, they are often associated with the higher

order derivatives of the variables. This kind of boundary condition is not necessary for

solving the differential equations completely.

4.2.1 Essential boundary conditions

In the essential boundary conditions or the so called velocity boundary conditions, we

impose the values of nodal velocity at the boundary Γv. For instance, I = b is a node on

the boundary Γv, and the value of the imposed nodal velocity is vb = [vxb vyb vzb ]
⊤.

Usually, a linear system of equations is to be resolved to calculate the velocity field

Av = B (4.52)

where A is the coefficient matrix of dimension [nd×nd] and B is the source term matrix

which is of dimension [nd× 1]. A and B are both considered to be known. The aim is

to resolve the unknown matrix v of dimension [nd× 1].

In this work, the essential boundary conditions are treated by the elimination method.

In this method, if the velocity of the node I = b is imposed, the matrix A and B should

be modified:

• Modification to the matrix A

- Keep the value of Aii with i = d(b− 1) + 1, · · · , d(b− 1) + d;

- Set all the other elements in the line i or the column i to be zero.

• Modification to the matrix B

- Set Bi = Aiivi with vi = vxb , vyb , or vzb .

Other methods can also be applied to treat the Dirichlet-type boundary condition,

e.g. the Lagrange Multiplier method, in which the velocity boundary condition is con-

sidered to be a constraint condition when minimizing the power or the Lagrangian of the
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whole system. Comparing to the elimination method, the Lagrange Multiplier method

requires to resolve additional equations for the Lagrange multipliers λ. In such ap-

proach, the system of equations to be resolved is often written as

{
Av +C⊤Λ = B

Cv = D
(4.53)

where C is a matrix of dimension [nm × nd] with m being the number of nodes at the

velocity boundary Γv. Hence, Cv = D represents the essential boundary conditions.

The Lagrange multipliers matrix Λ contains the additional unknowns to be solved which

are related to the force or pressure applied to the solid domain at this boundary Γv. The

resolution procedure of this system of equation (4.53) is as follows:

• Calculate the condensed matrix H

H = C[A]−1C⊤ (4.54)

• Calculate the Lagrange multipliers matrix Λ

Λ = [H]−1
{
C[A]−1B−D

}
(4.55)

• Calculate the velocity field

v = [A]−1(B−C⊤Λ) (4.56)

4.2.2 Natural boundary conditions

The nature boundary conditions are also called the force boundary conditions. We im-

pose the external forces on the boundary Γt as shown in Figure 4.1.

In this work, the external forces are classified into two categories: (i) fext,s denotes

the external nodal forces applied directly on the solid, which is often known at each

instant of time; (ii) fext,f represents the external nodal forces associated with the effect

of the fluid-structure interaction, for which the exerted force can not be explicitly given.
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Hence the external nodal forces in (4.31) is calculated as

fext = fext,s + fext,f (4.57)

4.3 Newmark time integrator

Notice that the velocity matrix v in (4.33) and the displacement matrix u in (4.34)

contain only the time-depending values, since the governing equations are already dis-

cretized by the FE method. (4.31) is the semi-discrete system of equations for the solid

sub-domain, which will be resolved in time with the Newmark time integrator [64].

Given the linear dynamic equilibrium equation (4.49) at the instant t = tn+1

Mü
s
(tn+1) +Ku

s
(tn+1) = fext(t

n+1) (4.58)

or

Man+1
s

+Kun+1
s

= fn+1
ext (4.59)

where all the variables at the instant t = tn+1 are considered as unknowns and to be

resolved with the time integrator.

The general form of the Newmark scheme is





un+1
s

= un
s
+∆tvn

s
+

∆t2

2

[
(1− 2β)an

s
+ 2βan+1

s

]

vn+1
s

= vn
s
+∆t

[
(1− γ)an

s
+ γan+1

s

] (4.60)

where un
s

denotes the displacement field at the instant t = tn, vn
s

the velocity field and

an
s

the acceleration field, which are all already known. ∆t = tn+1 − tn representing the

time step. β and γ are the coefficients of the Newmark scheme. Different combinations

of β and γ give the different properties of the numerical scheme [3]:

• Unconditionally unstable, if

γ <
1

2
(4.61)

• Unconditionally stable, if
1

2
6 γ 6 2β (4.62)
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• Conditionally stable, if

γ >
1

2
, β <

γ

2
,∆t 6

Ωcrit

ωmax

(4.63)

where Ωcrit for undamped system is

Ωcrit =
(γ
2
− β

)−1/2

(4.64)

and ωmax corresponds to the highest natural frequency of

K− ω2M = 0 (4.65)

For example, taking β = 0.25 and γ = 0.5 is equivalent to assuming that the accel-

eration has a mean value during one time step, hence this is called the mean acceleration

Newmark scheme. An explicit central difference scheme is obtained if we set β = 0

and γ = 0.5. These two schemes are both second order accurate in time O(∆t2). If

γ > 0.5, the algorithmic damping effect will be introduced, and the numerical scheme

becomes first order accurate in time O(∆t).
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Chapter 5

One coupling strategy for FSI

Previously, Chapter 3 and Chapter 4 present the numerical methods used for the fluid

and solid sub-domains, respectively. The SPH-ALE method is used for the fluid sub-

domain and the Finite Element method is applied for the solid sub-domain. The contri-

bution of this PhD work consists in proposing an energy conserving approach for cou-

pling two different numerical methods for the simulation of fluid-structure interaction,

which can preserve the numerical stability as well as the minimal order of accuracy of

the used time integrators in all the sub-domains.

This chapter presents the main contribution of this PhD work, beginning with an

introduction of the physical conditions at the fluid structure interface. Then an energy

conserving approach is introduced for coupling of sub-domains simulated by means of

different discretization methods and different time integrators. As a monolithic proce-

dure, this proposed method requires to resolve a coupled system of equations for updat-

ing the status of variables at the interface, which is shown next. Finally, the coupling

algorithm is presented to give a survey of the proposed coupling method.

5.1 Interface conditions

In continuum mechanics, at the interface of two different mediums, the continuity of

physical variables should be imposed, according to different physical problems. In this

work, only the kinematic continuity and dynamic equilibrium are considered, which

leads to the continuity conditions on the velocity and force at the interface.
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For a viscous fluid flow interacting with a deformable structure, the continuity con-

ditions at the interface are usually given as

∀x ∈ ΓI

{
v
f
(x, t) = v

s
(x, t)

σ
f
(x, t) · n

f
(x, t) = −σ

s
(x, t) · n

s
(x, t)

(5.1)

where ΓI denotes the fluid structure interface, n
f
(x, t) and n

s
(x, t) are the normal vec-

tors pointing-out of each sub-domain at the interface, with n
f
(x, t) = −n

s
(x, t) as

shown in Figure 5.1.

For an inviscid fluid, the continuities of velocity and force are not enforced in the

tangential direction, hence the slipping condition or non-penetrating condition is used

at the interface

∀x ∈ ΓI

{
n

f
(x, t) · v

f
(x, t) = −n

s
(x, t) · v

s
(x, t)

n
f
(x, t) · [σ

f
(x, t) · n

f
(x, t)] = n

s
(x, t) · [σ

s
(x, t) · n

s
(x, t)]

(5.2)

which imposes only the continuities in the normal direction.

Because in this work the fluid is considered to be inviscid, we will apply the interface

condition (5.2) for the numerical simulation of fluid-structure interaction. As presented

in Chapter 2 by (2.42), the stress tensor in the fluid sub-domain can be rewritten as

σ
f
= −p

f
I. Because of the slipping condition, we can similarly write the solid stress

tensor at the interface as σ
s
= −p

s
I with p

s
being the pressure applied on the solid.

Hence the condition at the interface ΓI becomes

{
n

f
· v

f
= −n

s
· v

s

p
f
= p

s

(5.3)

where −p
s
= n

s
· tb with tb being the surface force in traction boundary condition (4.3)

for the solid structure.

5.2 Energy conservation method

In 1997, Farhat et al. [23] show that if we use a hybrid formulation, such as the Schur’s

dual formulation, to connect the sub-domains and if the link energy is zero, the nu-
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Solid

Fluid

Figure 5.1: The normal vectors for each sub-domain at the fluid structure interface.

merical stability and the accuracy of the Newmark scheme in each sub-domain are not

affected by the interfaces.

In 2002, Combescure et al. [12] proposed to use an energy formulation [37] to prove

that the numerical stability of the global problem depends on the continuity conditions

prescribed at the interface. They show that a continuity constraint on velocities at the

interface is the best choice to couple sub-domains with different time-steps and different

Newmark time integrators.

Based on the work of Combescure, Mahjoubi et al. [48, 49] proposed a monolithic

energy conserving method to couple heterogeneous time integrators with incompatible

time steps in structural dynamics. The key point of this proposed method is to ensure

the interface conditions, velocity continuity and dynamic equilibrium, in a weak sense

in time. This means that instead of verifying the interface conditions at each instant in

time, the interface or link energy is ensured to be zero during a time step, and thusly for

the whole period of the numerical simulation.

5.2.1 Time lag for staggered methods

As presented in the chapter of introduction, in a monolithic procedure, the interaction of

the fluid and the structure at the mutual interface is treated synchronously, which means

that at the interface the states of fluid and structure are obtained at the same time. This

leads to the need of resolving the equations of different sub-domains in one simulation

software, or modifying sweepingly the two existing calculation codes. However, the ad-

vantage of monolithic approach is the preservation of numerical stability and accuracy.

Partitioned procedure can overcome this limit, because the fluid and structure equa-

tions are alternatively integrated in time and the interface conditions are enforced asyn-
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chronously [57]. A general survey of partitioned procedures is given in [26] by Felippa

et al. In 1995, Piperno et al. [71] presented several partitioned schemes for fluid-

structure interaction with Arbitrary-Lagrangian-Eulerian (ALE) formulation.

Assume that the time domain is discretized into time steps, and at the instant tn all

the physical variables of the fluid and the structure are already known, the objective is

to calculate the status of variables at the next instant tn+1. In such case, the most typical

and basic partitioned procedure is carried out on the following sequential process [69]:

① Step one: the fluid gives the pressure at the instant tn to the structure;

② Step two: the structural system advances in time to the instant tn+1 under the

given fluid pressure load;

③ Step three: the fluid uses this new position of the interface to update the fluid

mesh to the instant tn+1;

④ Step four: the fluid system advances in time to tn+1 and obtains a new pressure

load for the next step.

This procedure is shown in the Figure 5.2.

1

2

3

4

1

Figure 5.2: The procedure of basic partitioned coupling method. Fn and Sn denote the

status of the fluid and the structure at the instant tn; Fn+1 and Sn+1 are the status at the

instant tn+1.

As we can observe that in such a partitioned procedure there always exists a time

lag between the time integration of fluid and structure. Sometimes this sort of coupling

approach is also called the staggered method. Due to this time lag of staggered method,

the interface conditions (5.1) or (5.2) can not be enforced, hence such a partitioned

procedure is described as a loosely coupled solution algorithm. From the point of view
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of energy [12], in the basic partitioned method we inject or dissipate numerically energy

at the interface, which lead to degradation of numerical stability property and order

of accuracy of the used schemes. Although the stability and accuracy of partitioned

methods can be improved by means of prediction techniques, their error remains larger

than for a monolithic solution procedure [57]. The approach presented subsequently is

classified as a monolithic method which follows a strongly coupled procedure for the

numerical simulation of fluid-structure interaction problems.

5.2.2 Zero interface energy condition

As presented in [12], when coupling two physical domains with two different time inte-

grators, one can preserve the numerical stability as well as the minimal order of accuracy

in time for the coupled system, as long as the interface energy is ensured to be zero dur-

ing the numerical simulation. For example, when one wants to couple two different time

integrators which are both second order accurate in time, the coupled system will keep

the second order of accuracy, if neither energy injection nor energy dissipation occurs

at the interface. In contrast, if the zero interface energy condition cannot be ensured,

the coupled system will sometimes possess a first order of accuracy or a zero order of

accuracy in time, or even a numerically unstable result.

Now let’s define the increment of interface energy or simply interface energy over

the time interval t ∈ [tn, tn+1] as

∆WI =

∫ tn+1

tn

∫

ΓI

[
n

s
· (−p

s
I) · v

s
+ n

f
· (−p

f
I) · v

f

]
dΓ dt (5.4)

where n
s
· (−p

s
I) and n

f
· (−p

f
I) represent the external forces exerted to the solid and

fluid sub-domains in the normal direction, respectively. The product with the velocity

gives the power of this external force. Considering the solid and fluid sub-domains as a

whole system, we have the total external power occurring at the interface

PI = n
s
· (−p

s
I) · v

s
+ n

f
· (−p

f
I) · v

f
(5.5)

then integrating this power along the interface and over the time interval, we obtain

∆WI denoting the external work at the interface. In fact, theoretically this interface
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energy should be zero, i.e. ∆WI ≡ 0. However, when the numerical methods are used

to discretize the space and time, and if the interface conditions are not wisely treated,

there will be production or dissipation of algorithmic energy at the interface. Concretely,

if ∆WI > 0, we inject energy into the system; if ∆WI < 0, we dissipate energy from

the system.

Remark: In this interface energy, only the work due to the normal force has been

considered, which corresponds to the slipping condition at the interface with an inviscid

fluid.

Consider that the interface ΓI is discretized into Nk elements, i.e. ΓI =

Nk∑

k

Γk.

In 3-D cases, each element Γk is assumed to be a planar surface, as shown in Figure

5.3; in 2-D cases, Γk is described by a section of line; in 1-D cases, it is just a point.

With such an approximation, the normal vector nk is constant inside each element Γk.

Furthermore, for the sake of simplicity, let’s assume that the pressure and the velocity

fields at the interface are also piece-wise uniform.

Figure 5.3: Spatial discretization of the interface ΓI into several elemental surfaces Γk.

Now we give the first interface condition used in this work, the equilibrium condition

p
f
(xk) = p

s
(xk) = pk (5.6)

where xk denotes the position of the interface element Γk, which may be the geometric

center of the element. During the numerical simulation, we will ensure this equilibrium

condition in a strong sense, which means that this equation is verified at each instant,

i.e. p
f
(xn

k) = p
s
(xn

k) = pnk , p
f
(xn+1

k ) = p
s
(xn+1

k ) = pn+1
k and so on.
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Then, the spatially discretized interface energy is calculated as

∆W
d
I =

∫ tn+1

tn

Nk∑

k

pknk ·
[
v
s
(xk)− v

f
(xk)

]
sk dt (5.7)

where nk = n
f
(xk) = −n

s
(xk) denoting the normal vector of the interface element,

and sk is the surface area.

Notice that the interface pressure pk, the normal vector nk, the surface area sk and

the velocities are all time-depending variables, which makes the calculation of time

integration (5.7) quite difficult to be carried out. To simplify this time integration, some

approximation or assumption may be used. For instance, firstly, let’s assume that the

interface pressure pk is piece-wise constant in time and equals the mean value pk over

the time interval t ∈ [tn, tn+1], with

pk =
1

∆t

∫ tn+1

tn
pk(t) dt (5.8)

With this assumption, the discretized interface energy (5.7) becomes

∆W
d
I =

Nk∑

k

pk

∫ tn+1

tn
nk ·

[
v
s
(xk)− v

f
(xk)

]
sk dt (5.9)

Similarly, we can define the mean value of nk ·
[
v
s
(xk)− v

f
(xk)

]
sk as

nk ·
[
v
s
(xk)− v

f
(xk)

]
sk =

1

∆t

∫ tn+1

tn
nk ·

[
v
s
(xk)− v

f
(xk)

]
sk dt (5.10)

with which we can rewrite the discretized interface energy as

∆W
d
I =

Nk∑

k

pk∆t
{
nk ·

[
v
s
(xk)− v

f
(xk)

]
sk

}
(5.11)

Hence, if we want to ensure the zero interface energy condition, it is sufficient to

impose at each surface element that

nk ·
[
v
s
(xk)− v

f
(xk)

]
sk = 0 (5.12)
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which is the key point of the coupling method presented in the PhD work.

Now we show the different treatments to this condition (5.12) in different cases:

• In geometrically linear cases, the configuration of the structure will not change,

hence it is allowed to suppose that the normal vector nk and the surface area sk

keep constant as time varies. In such linear cases, (5.12) becomes

nk ·
[
v
s
(xk)− v

f
(xk)

]
sk = 0 (5.13)

hence, we can ensure ∆Wd
I = 0 by imposing the equality of the mean velocity in

the normal direction

nk · vs
(xk)− nk · vf

(xk) = 0 (5.14)

which may be written as

nk ·
[
v
s
(xn+1

k ) + v
s
(xn

k)

2

]
− nk ·

[
v
f
(xn+1

k ) + v
f
(xn

k)

2

]
= 0 (5.15)

• In geometrically non-linear cases, the shape of the structure will change in time.

So the constant geometry assumption is no more valid. As nk and sk are time-

varying, the zero interface energy condition ∆Wd
I = 0 can be ensured by impos-

ing

nk · vs
(xk)sk − nk · vf

(xk)sk = 0 (5.16)

which may be approximated by

1

2

[
nn+1
k · v

s
(xn+1

k )sn+1
k + nn

k · vs
(xn

k)s
n
k

]
−

1

2

[
nn+1
k · v

f
(xn+1

k )sn+1
k + nn

k · vf
(xn

k)s
n
k

]
= 0

(5.17)

Finally, we obtain the second interface condition for the continuity of velocity in a

weak sense, in geometrically linear cases (5.15) as well as in geometrically non-linear

cases (5.17). If the two interface conditions are satisfied at the same time, the interface

energy can be rigorously ensured to be zero during the numerical simulation, thus the
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numerical stability property and the order of accuracy in time can be then retained.

5.3 The coupled equations to solve

This proposed coupling method is classified as monolithic procedure, because the status

of variables in one sub-domain cannot be updated to next time step without considering

the interaction effect from the other sub-domain. This feature may retain the numerical

stability as well as the order of accuracy in time of used schemes, however in such a

monolithic method we have to modify the solution procedures for the solid and the fluid

to a certain extent.

5.3.1 Consequence for the fluid

In Chapter 3, we have seen that the semi-discrete system of fluid equations (3.94) will

be resolved in time by means of the explicit Runge-Kutta numerical scheme. In a pure

fluid problems, at the solid wall boundaries, the velocity of solid wall is often given as

an already known condition. By using the method based on resolving a partial Riemann

problem at the solid boundary, we can update the state of the volume ωi and the momen-

tum ρiωivi for the fluid particle i, with the help the imposed solid boundary velocity vk.

But in a fluid-structure interaction problem, the velocity of the solid boundary cannot

be given explicitly for the fluid to advance in time, because the value of the velocity is

not imposed but is the solution of the coupled problem.

The partial Riemann problem at the solid boundary offers a relation between the

fluid pressure at the solid wall and the velocity of this solid elemental surface. With

(3.79) and (3.87), we obtain

pk =
∑

i∈Dk

ωiWik2[pi − ρici(vk − vi) · nk] (5.18)

where vk = v
f
(xk) representing the fluid velocity at the surface element xk.

Now let’s note v
fB,k

≡ vk · nk, then (5.18) can be rewritten as

(
∑

i∈Dk

2ωiρiciWik

)
v
fB,k

+ pk =
∑

i∈Dk

2ωi(pi + ρicivi · nk)Wik (5.19)
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which describes a relation between pk and v
fB,k

for any instant.

Because the second-order explicit Runge-Kutta scheme (mid-point version) contains

two stages, the solid boundary conditions should be considered at two instant: tn+1/2

and tn+1. (Assuming that at the instant tn, all the variables are already known.)

Then writing (5.19) in matrix form for all the interface elements at the two instant,

we obtain the system of equations for the state of fluid variables at the interface:

(I-F) System of equations at tn+1/2 for fluid

Kc
f
vn+1/2
fB

+Λn+1/2 = gn
f

(5.20)

with,

Kc
f
(l, k) =





∑

i∈Dk

2ω
n+1/2
i ρ

n+1/2
i c

n+1/2
i W

n+1/2
ik if l = k

0 if l 6= k

(5.21)

, and





vn+1/2
fB

(k) = vn+1/2
fB,k

Λn+1/2(k) = p
n+1/2
k

gn
f
(k) =

∑

i∈Dk

2ω
n+1/2
i (p

n+1/2
i + ρ

n+1/2
i c

n+1/2
i v

n+1/2
i · nn+1/2

k )W
n+1/2
ik

(5.22)

(II-F) System of equations at tn+1 for fluid

Kc
f
vn+1

fB
+Λn+1 = gn

f
(5.23)

with,

Kc
f
(l, k) =





∑

i∈Dk

2ωn+1
i ρn+1

i cn+1
i W n+1

ik if l = k

0 if l 6= k

(5.24)
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, and





vn+1

fB
(k) = vn+1

fB,k

Λn+1(k) = pn+1
k

gn
f
(k) =

∑

i∈Dk

2ωn+1
i (pn+1

i + ρn+1
i cn+1

i vn+1
i · nn+1

k )W n+1
ik

(5.25)

These two system of equations (5.20) and (5.23) can only give a relation between

the interface pressure and the normal fluid velocity at the interface. Hence the equations

of the solid sub-domain as well as the interface are needed to resolve completely the

FSI problem.

5.3.2 Consequence for the solid

As presented previously, the second-order mid-point version of Runge-Kutta scheme

requires two stages, hence let’s write the momentum equation (4.31) for the solid sub-

domain at two instant, tn+1/2 and tn+1:

{
M

s
an+1/2

s
= f

n+1/2
ext − f

n+1/2
int

M
s
an+1

s
= fn+1

ext − fn+1
int

(5.26)

Then let’s define Xn+1/2 ≃ X = (Xn+1+Xn)/2, where X may be the displacement

u
s
, the velocity v

s
, or the acceleration a

s
. Combining the Newmark scheme (4.60) with

each of the two equations in (5.26), we can obtain two systems of equations for the solid

sub-domain, for example, in linear geometry cases [43, 49]:

(I-S) System of equations at tn+1/2 for linear structure

Kc
s
vn+1/2
s

+ Ln+1/2
p Λn+1/2 = gn

s
(5.27)
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with,





Kc
s
=

1

∆tγ
M

s
+

∆tβ

γ
K

s

gn
s
= M

s
(

1

∆tγ
vn
s
+

1− 2γ

2γ
an

s
)−

K
s

[
un

s
+∆t(

1

2
− β

γ
)vn

s
+∆t2(

1

4
− β

2γ
)an

s

]
+ f

n+1/2
ext,s

(5.28)

(II-S) System of equations at tn+1 for linear structure

Kc
s
vn+1
s

+ Ln+1
p Λn+1 = gn

s
(5.29)

with,





Kc
s
=

1

∆tγ
M

s
+

∆tβ

γ
K

s

gn
s
= M

s
(

1

∆tγ
vn
s
+

1− γ

γ
an

s
)−

K
s

[
un

s
+∆t(1− β

γ
)vn

s
+∆t2(

1

2
− β

γ
)an

s

]
+ fn+1

ext,s

(5.30)

Once vn+1
s

is obtained, we can update the displacement and acceleration vectors

for the next time step by using





un+1
s

=
∆tβ

γ
vn+1
s

+ un
s
+∆t(1− β

γ
)vn

s
+∆t2(

1

2
− β

γ
)an

s

an+1
s

=
1

∆tγ
vn+1
s

− 1

∆tγ
vn
s
− 1− γ

γ
an

s

(5.31)

In (5.27) and (5.29), the matrix Lp is a geometry operator which relates the interface

pressure field Λ with the fluid-inducing external nodal forces fext,f . In linear geometry

cases, this matrix can be considered to be constant, since the geometry of the structure

will not change too much. Usually this geometric non-linearity requires a iterative solu-

tion procedure, which makes the FSI problem numerically more difficult to resolve. In

this PhD work, for not iterating at each time-step, or even each sub-time-step, we choose

to use the explicit Newmark scheme (β = 0 and γ = 0.5) when the deformation of the

82



structure is too large to be neglected. With such an explicit scheme, the displacement

field can be calculated exactly by





un+1/2
s

= un
s
+

∆t

2
vn
s
+

∆t2

4
an

s

un+1
s

= un
s
+∆tvn

s
+

∆t2

2
an

s

(5.32)

with which the geometry of the structure can be predicted independently of the FSI

effects, hence we can obtain the geometry operator L
n+1/2
p and Ln+1

p .

Furthermore, if the structural material property is non-linear, the internal nodal

forces can no more be calculated by fint = K
s
u

s
. In such a non-linear case, the same

explicit Newmark scheme will be applied to obtain firstly the displacement fields un+1/2
s

and un+1
s

, which is used to calculate the strain field and finally the internal nodal forces

f
n+1/2
int and fn+1

int with the according constitutive modes.

Hence, in non-linear cases, the system of equations for the solid sub-domain can be

written in the similar form as the linear one, except that (5.28) changes to

(NL)





Kc
s
=

1

∆tγ
M

s

gn
s
= M

s
(

1

∆tγ
vn
s
+

1− 2γ

2γ
an

s
)− f

n+1/2
int + f

n+1/2
ext,s

(5.33)

and (5.30) is replaced by

(NL)





Kc
s
=

1

∆tγ
M

s

gn
s
= M

s
(

1

∆tγ
vn
s
+

1− γ

γ
an

s
)− fn+1

int + fn+1
ext,s

(5.34)

5.3.3 The coupled system of equations

In the coupling strategy presented in this work, there are two sub-steps for one time step.

For each sub-step, we will solve a system of equations in order to obtain the interface

status at the corresponding instant.
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• For the instant t = tn+1/2

(I)





(I-S): Kc
s
vn+1/2
s

+ Ln+1/2
p Λn+1/2 = gn

s

(I-F): Kc
f
vn+1/2
fB

+Λn+1/2 = gn
f

(I-C): Ln+1/2
s

vn+1/2
s

+ vn+1/2
fB

= 0

(5.35)

• For the instant t = tn+1

(II)





(II-S): Kc
s
vn+1
s

+ Ln+1
p Λn+1 = gn

s

(II-F): Kc
f
vn+1

fB
+Λn+1 = gn

f

(II-C): Ln+1
s

vn+1
s

+ vn+1

fB
= −Ln

s
vn
s
− vn

fB

(5.36)

where (I-C) and (II-C) represent the velocity condition (5.14) or (5.16) at the interface,

which can ensure the zero interface energy condition. L
s

denotes another geometry op-

erator that links the normal solid velocity at each interface elements to the solid velocity

vector v
s
. In linear geometry cases, L

s
is constant in time, whereas in non-linear geom-

etry cases, Ln+1/2
s

and Ln+1
s

are calculated with un+1/2
s

and un+1
s

, respectively, obtained

by using the explicit Newmark scheme at the begin of each sub-step.

As for the solution procedure of this coupled system of equations, we will apply

the method used in [49] which is based on the Schur’s dual formulation. In (5.35) and

(5.36), the unknowns to be calculated are v
s
, v

fB
and Λ. Hence, in general the system

of equations can be written as





Kc
s
v
s
+ LpΛ = gn

s

Kc
f
v
fB

+Λ = gn
f

L
s
v
s
+ v

fB
= Wn

(5.37)

where Wn = 0 for the instant tn+1/2, and Wn = −Ln
s
vn
s
− vn

fB
for the instant tn+1.

To resolve such a system of equations, five stages are needed:
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• Stage 1: Calculate the free velocity

{
vfree
s

= [Kc
s
]−1gn

s

vfree
fB

= [Kc
f
]−1gn

f

(5.38)

• Stage 2: Calculate the condensed matrix H

H = L
s
[Kc

s
]−1Lp + [Kc

f
]−1 (5.39)

• Stage 3: Calculate the interface pressure field Λ

Λ = [H]−1{L
s
vfree
s

+ vfree
fB

−Wn} (5.40)

• Stage 4: Calculate the link velocity

{
vlink
s

= [Kc
s
]−1(−L

s
Λ)

vlink
fB

= [Kc
f
]−1(−Λ)

(5.41)

• Stage 5: Calculate the complete velocity

{
v
s
= vfree

s
+ vlink

s

v
fB

= vfree
fB

+ vlink
fB

(5.42)

5.4 The coupling algorithm

To offer a survey of the proposed coupling method, we give the coupling procedure in

Figure 5.4, and the coupling algorithm is presented as follows:

I-1: The fluid solver receives the already known interface status Un
I , and then calcu-

lates the fluid status Un+1/2
f

;

I-2: The coupler uses Un+1/2
f

and the solid status Un
s

to solve the system of equations

(5.35) in order to obtain the interface status U
n+1/2
I ;

II-1: The fluid solver gets U
n+1/2
I and finishes the Runge-Kutta scheme to calculate

Un+1
f

;
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II-2: The coupler solves the system of equations (5.36) with Un
s

and Un+1
f

to calculate

the interface status Un+1
I ;

II-3: The solid solver receives Un+1
I and uses it as the imposed boundary condition to

update to Un+1
s

.

status solver

Fluid:

Structure:

Coupling Tool:

I-1

I-1

I-1

I-
2

I-2

I-2

II-1

II
-1

II-1

II
-2

II-2

II
-2

II-3

II
-3

II-3

Figure 5.4: The coupling procedure for fluid-structure interaction.
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Chapter 6

Numerical examples

We have proposed one method for the interface conditions to ensure the zero interface

energy condition in order to preserve the numerical stability property and the optimal

order of accuracy in time of the used numerical schemes in all the sub-domains. So far

this energy-conserving coupling method is not yet verified or validated. For verifying a

numerical method, we can compare the obtained numerical solution with the according

analytical or exact solution, if it exists, or we can also compare with other numerical

solutions etc. The verification process is aim at verifying whether the tested numerical

method resolves the governing equations right, whereas the validation of a numerical

method consists in validating whether the numerical method solves the right problem

[76]. Usually we need to compare the numerical solution with the experimental results

in the validation tests. In this work, we did not carry out any experimental validation,

but only the comparison with analytical solution and other numerical results. Hence the

words verification and validation have no difference in this chapter.

This chapter starts with the validation of the energy-conserving coupling method in

time integration aspects, with the numerical methods using computational meshes for

both structure and fluid sub-domains. Then the numerical method in fluid sub-domain

is replaced by the SPH-ALE method, and some 1-D numerical examples are given. Two

2-D numerical test cases are then shown with the presence of free surface flows and

large structural deformation. Finally, the result of a 3-D example is given and compared

with other coupling methods.
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6.1 1-D validation test cases

For validating the proposed coupling method, beginning with a simple test case seems

to be a wise choice, because the numerical simulation is easy to carry out and usually

we can compare the numerical results with the exact solution of this relatively simple

test problem. Hence in this section, we will give the results of some 1-D numerical

examples as well as the comparison with the analytical solution.

6.1.1 Time integration aspects

Before entering the part of validation of the proposed method for coupling of the SPH-

ALE method and the FE method, let’s see some numerical examples which are used

to validate the idea of conserving the interface energy, by means of numerical methods

using computational mesh in both the structure and the fluid sub-domains. In this sub-

section, we only show some important results and some key points, more attention is

given on the analysis of the obtained results. More details can be found in the work of

Z. Li [43].

x

Figure 6.1: Mass-spring system coupled with column of acoustic fluid.

The first example is about the mass-spring system coupled with an acoustic fluid as

shown in Figure 6.1. The fluid sub-domain is discretized by the Finite Difference (FD)

method with a node-centered mesh (Figure 6.2). The linearized Euler equations are used

as the governing equations for the fluid sub-domain in linear gas dynamics problems.

The zero interface energy condition is ensured by imposing

v
s
= v

f
(6.1)
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x
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Figure 6.2: Node-centered mesh for the fluid.

or,

vn+1
s

+ vn
s

2
=

vn+1
f

+ vn
f

2
(6.2)

where v
s

denotes the velocity of the mass point, and v
f

is the fluid velocity at the moving

solid boundary.

Remark: In such an energy-conserving coupling method, we impose the velocity con-

tinuity condition in a weak sense which ensures rigorously that neither energy injection

nor energy dissipation will occur at the fluid structure interface. It is one of the at-

tractive points of the proposed method, since the velocity condition at the interface may

be imposed more flexibly, which allows the use of incompatible time steps in different

sub-domains [43, 49].

As for the time integrators in each sub-domain, the second-order Newmark scheme

(β = 0.25 and γ = 0.5) is used for the solid system, and two different numerical

schemes are used: the Lax-Wendroff (L-W) scheme [34] which is second-order accurate

in time and in space; the 4th order Runge-Kutta explicit time integrator combining with

central difference scheme for the space, which is noted as RK4-CD in the following

parts.

Given an initial status of the coupled system

Fluid





ρ
f
(x, 0) = ρref

f

v
f
(x, 0) = sin[

ω1

cref
f

(L
f
− x)] + sin[

ω2

cref
f

(L
f
− x)]

(6.3)

Solid





u
s
(0) = 0

v
s
(0) = v

f
(0, 0)

a
s
(0) = 0

(6.4)
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where ρref
f

= 1.3 kg/m3 and cref
f

= 328.2 m/s, and ω1 = 341.6 rad/s and ω2 =

1172 rad/s. The mass m
s
= 0.8 kg and the spring stiffness k

s
= 8000 N/m. The

length of tube L
f
= 1 m.

Figure 6.3 shows the evolution in time of the displacement u
s
(t), the velocity v

s
(t)

and the acceleration a
s
(t) of the mass point, which are calculated with two different

numerical schemes for the fluid sub-domain. The numerical results are also compared

with the analytical solution of this coupled problem. The procedure for obtaining the

analytical solution is given in Appendix A. We can observe that the numerical results

are in very good agreement with the analytical solution.
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Figure 6.3: Numerical results with different schemes and analytical solution for the

mass-spring system coupled with an acoustic fluid.

Moreover, to verify if the proposed coupling strategy can preserve the order of ac-

curacy, a study of convergence rate is carried out and shown in Figure 6.4 . The error is

defined as

ERROR =
‖Xnum −Xana‖∞

‖Xana‖∞
(6.5)

where X = us, vs or as and ‖ ‖∞ denotes the maximum norm.

Since the CFL number plays a very important role on dispersion and dissipation

errors, we will fix the CFL number while changing the time step. The different time
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Table 6.1: Different time steps used for the analysis of convergence rate.

Computation No1 No2 No3 No4

∆t (s) 0.5× 10−5 1× 10−5 2× 10−5 4× 10−5

∆x (m) 0.25× 10−2 0.5× 10−2 1× 10−2 2× 10−2

CFL 0.6564 0.6564 0.6564 0.6564

steps and the corresponding meshes are shown in Table 6.1. The total period of the

calculation is 0.02s for the four cases.

−12.5 −12 −11.5 −11 −10.5 −10 −9.5

−11

−10

−9

−8

−7

−6

−5

ln(∆t)

ln
(E

R
R

O
R

)

 

 
u

s

v
s

a
s

1

2

(a)

−12.5 −12 −11.5 −11 −10.5 −10 −9.5

−11

−10

−9

−8

−7

−6

−5

ln(∆t)

ln
(E

R
R

O
R

)

 

 
u

s

v
s

a
s

2

1

(b)

Figure 6.4: Convergence rates of the solid displacement, velocity and acceleration using

different schemes for the fluid: (a) L-W; (b) RK4-CD.

In Figure 6.4, we can observe that when coupling the 2nd order Newmark time in-

tegrator with 2nd order Lax-Wendroff scheme or the 4th order Runge-Kutta method,

the numerical results of the coupled system possess a 2nd order accuracy in time. This

can prove that coupling of different time integrators with zero interface energy can pre-

serve the minimal order of accuracy in time of the used numerical schemes in all the

sub-domains.

Furthermore, this energy-conserving coupling method can also be used for coupling

of finite volume method in ALE settings for fluid and finite element method for struc-

ture. Since it is not the main objective of this PhD work, we will not show the results in

this chapter. More information can be found in [43].
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6.1.2 1-D mass-spring system coupled with a column of fluid

So far, we have validated the proposed energy-conserving coupling method by means

of some numerical tests using computational mesh for fluid. Now, let’s replace the

numerical method for the fluid by the SPH-ALE method. The configuration of the first

test case is presented in Figure 6.5.

Figure 6.5: Linear test case – mass-spring system coupled with a column of water.

The mass-spring system is coupled to the fluid at the left hand side of the tube

(x = 0). At the right hand side of this tube (x = L
f
), we impose the movement of the

solid wall: xB(t) = A
m
[1− cos(ωt)], with A

m
= 2.5 × 10−4 m and ω = 2000 rad/s.

The length of the tube L
f
= 1 m, which is discretized into 200 fluid particles. The

section area of the tube S
f
= 0.01 m2. The mass Ms = 8 kg, the spring stiffness Ks =

80000 N/m. The reference parameters for the fluid are chosen to ρref
f

= 1000 kg/m3

and cref
f

= 1500 m/s. Initially, the whole system is at rest, and the result is shown in

Figure 6.6.

The mass-spring system is resolved in time with the Newmark time integrator (β =

0.25 and γ = 0.5). The fluid sub-domain is discretized with the SPH-ALE method in

Lagrangian mode, the semi-discrete system of equations is integrated with the 2nd order

Runge-Kutta numerical scheme.

The objective of this linear test case is to verify if the coupling strategy can preserve

the order of accuracy in time. For that purpose, a parametric study of the case was

performed with a varying time step. The time step was chosen as ∆t = τ, 2τ and 4τ ,

with τ = 0.25 × 10−6 s, and the rate of convergence of the numerical solution of the

coupled problem was analyzed. Since the used time integrators for the solid and fluid

domains are both second order accurate in time, hence if one ensures the zero interface

energy condition, one should obtain a second order accuracy in time for the coupled

system.
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Figure 6.6: Coupling result of the linear test case – evolution in time of the displacement

us, the velocity vs and the acceleration as of the mass point (∆t = 10−6 s).

To verify numerically the order of accuracy in time, we choose to apply the method

used in [57], which determines the observed order of accuracy by calculating

θ = ln

(‖Xnum
4τ −Xnum

2τ ‖
‖Xnum

2τ −Xnum
τ ‖

)
/ ln(2) (6.6)

where θ denotes the observed order of accuracy in time, X a certain variable calculated

by using different time steps (τ , 2τ and 4τ ) and ‖ ‖ means “L2-norm” or “∞-norm”.

Table 6.2 shows the result of the convergence rate analysis for the displacement of the

structure, the density and velocity of the fluid particle which is initially located at x =

0.25L
f
. One observes that the coupled system possesses a second order of accuracy in

time.
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Table 6.2: The observed order of accuracy in time of the coupling result.

Variables (X) θ
∞

θ
L2

us 2.0483 2.0405

ρ
f
(25%) 1.9920 1.9989

v
f
(25%) 1.9939 1.9999

6.1.3 1-D propagation of shock wave – linear structure

In the second test case, we replace the mass-spring system by a 1D linear beam shown

in Figure 6.7. The initial length L0
s
= 1 m, the initial solid density ρ0

s
= 2700 kg/m3,

and the initial section area A0
s
= 0.01 m2. The Young’s modulus E

s
= 67.5 GPa. The

solid beam is discretized into 200 linear truss finite elements, and ∆t = 10−6 s.

x

Figure 6.7: 1D linear beam coupled with a column of water – propagation of shock

wave across the fluid-structure interface.

A uniform pressure step of 20 MPa is imposed at the time t = 0 s in the fluid

cavity, as shown in Figure 6.8. The initial discontinuity is located at the fluid-structure

interface. The total period of calculation T = 100∆t. In Figure 6.9 and Figure 6.10, the

numerical results obtained with the implicit Newmark scheme (β = 0.25 and γ = 0.5)

and the explicit Newmark scheme (β = 0 and γ = 0.5), respectively, are compared

with the analytical solution obtained by applying the method used in [44], which is also

given in Appendix B.

One can observe that the comparison is quite good. In both of the two results,

the level of the pressure and velocity, and the continuity of these values are correctly

calculated, comparing with the analytical solution. With the implicit Newmark scheme

for the structure, we got some numerical oscillation, but the simulation is stable. Let us
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also quote that with the chosen time step and a constant element length the explicit time

integrator gives the exact solution in the solid. The induced numerical dissipation is due

to the numerical schemes used in the fluid sub-domain, i.e. the use of Riemann solver

for the SPH method combined with the Runge-Kutta time integrator.
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Figure 6.8: 1st initial configuration for the test case with 1D linear beam – (a) initial

profile of fluid pressure (p
f
) and solid stress (−σ

s
); (b) initial profile of fluid and solid

velocities.

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5
x 10

7

x (m)

p
f ,

 −
σ

s
 (

P
a

)

 

 

p
f
ana

−σ
s
ana

p
f
num

−σ
s
num

(a)

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

x (m)

V
 (

m
/s

)

 

 

V
f
ana

V
f
ana

V
f
num

V
f
num

(b)

Figure 6.9: Comparison between the analytical solution and the numerical results using

the 1st initial configuration with the implicit Newmark scheme.

Next, we consider another initial configuration which is shown in Figure 6.11-(a).

The initial pressure jump is given within the fluid for x > 0.2L
f
. The numerical result

is also compared with the analytical solution, and a good agreement can be observed.

As shown in Figure 6.11, at the beginning the pressure discontinuity created a shock

wave propagating to the left and a rarefaction wave propagating to the right; the sub-

figure (c) represents the theoretical instant for the front of the shock wave to impact on

the interface, we observe that due to the numerical dissipation error of the SPH-ALE
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Figure 6.10: Comparison between the analytical solution and the numerical results using

the 1st initial configuration with the explicit Newmark scheme.

method, the profile of pressure and velocity are not very sharp at the interface; then this

shock wave is divided into an incident wave entering in the structure, and a reflection

wave which comes back to the fluid sub-domain, as shown in the sub-figure (d).

Even though some numerical error appear in the results, with the coupling strategy

presented in this work, one can correctly calculate the interface status when a shock

wave impacts on the fluid structure interface. And it is shown that the coupling method

does not influence too much the speeds of the incident and the reflection waves.
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Figure 6.11: Comparison between the numerical result and the analytical solution (2nd

initial configuration, Implicit Newmark scheme) – (a) t = 0 s; (b) t = 5 × 10−5 s; (c)

t = 1.35× 10−4 s; (d) t = 2.35× 10−4 s.
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6.1.4 1-D propagation of shock wave – non-linear structure

Now, we replace the linear beam by a non-linear behavior beam. The elasto-plastic

material property is shown in Figure 6.12 with the Young’s modulus Ele
s
= 67.5 GPa,

the tangent modulus Elp
s
= 0.1× Ele

s
and the yield stress σ

0
= 0.0001× Ele

s
. In Figure

6.13, we compare the numerical results with the ones obtained by using the linear beam.

One can observe that the incident shock wave divides into two waves: a elastic wave

and a plastic wave, the former moves faster than the latter Whereas, in the linear beam

case, there is only one elastic wave in the structure.

Figure 6.12: Elasto-plastic material property.
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Figure 6.13: Coupling results of the 1D beam test case (2nd initial configuration, t =
2.35× 10−4 s) – (a) non-linear beam; (b) linear beam.
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6.2 2-D examples

One of the advantages of using the SPH method in FSI problems is that we can eas-

ily track the movement of the fluid-structure interface or the geometric outline of the

structure. As such, in this section, we will present two 2-D examples of numerical sim-

ulation with the presence of free surface flows interacting with a solid structure under

large displacement or deformation.

Notice that in such non-linear cases, the geometry of the structure will vary signifi-

cantly over time. Hence, the coupling strategy and equations, see (5.33) and (5.34), will

be applied for treating the considerable change of structural geometry.

6.2.1 Dam-break flow through an elastic gate

The initial configuration of this test case is shown in Figure 6.14. At the moment t = 0 s,

the water is contained in a rigid wall tank which has an elastic rubber gate clamped on

its top. The whole system is initially at rest and the water is in hydrostatic equilibrium.

The background pressure is 0 Pa, which implies the zero pressure condition at the free

surface of the fluid.

A
H

L

e
la

s
ti

c
 g

a
te

water

rigid wall

g

s

Figure 6.14: Initial configuration of the test case “dam-break flow through an elastic

gate”.

As for the material property of the elastic gate, the Mooney-Rivlin model is used

to describe the non-linear strain-stress relationship of a hyperelastic material, such as
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rubber. The coefficients of the Mooney-Rivlin model are determined by fitting with the

experimental data of a tensile test carried out by Antoci [1], as shown in Figure 6.15
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Figure 6.15: The used Mooney-Rivlin material model for non-linear elasticity rubber.

In addition, the plane stress hypothesis is applied to this 2-D calculation. The initial

solid density ρ0
s
= 1100 kg/m3, the Young modulus E

s
= 1.2 × 107 Pa, the Poisson

coefficient ν = 0.4. The fluid reference density ρref
f

= 1000 kg/m3 for water. An

artificial speed of sound is used for the liquid, cref
f

= 50 m/s, which allows us to use a

larger time-step for the explicit 2nd order Runge-Kutta scheme.

The geometric dimensions of the system and the discretization parameters are shown

in Table 6.3. The elastic gate is discretized into 395 quadrangular elements, with each

element possessing 4 nodes, and we use 14000 particles to simulate the fluid domain.

Table 6.3: Dimensions of the system and discretization parameters.

Water width (A) 0.1 m
Water depth (H) 0.14 m
Gate width (s) 0.005 m
Gate height (L) 0.079 m
Fluid particle size 0.001 m
Rigid wall spacing 0.001 m
Elastic gate mesh spacing 0.001 m
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As shown in Figure 6.14, a pressure gradient is present in the water along the vertical

direction due to the gravity (g = −9.81ez m/s2). This pressure gradient makes the fluid

tend to flow out of the water tank by pushing away the elastic gate.

We have carried out a numerical simulation of this FSI problem for a period of 0.4

second. The fluid and solid solvers used the same time-step ∆t = 5×10−6 second. The

results of the simulation are shown in Figure 6.16 for every 0.04 second from t = 0 s.

Two CPUs of 3.0 GHz are used for this numerical simulation, one CPU for the solid

solver, one for the fluid solver. The numerical computation costed 17 h for 80000 time-

steps.

(a) (b)

(c) (d)

Figure 6.16: Numerical simulation results of the test case “dam-break flow through an

elastic gate” – fluid pressure field Pf and the stress component σzz in the structure for

every 0.04 second.

This test case has been investigated by several authors using different methods. An-
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(e) (f)

(g) (h)

(i) (j)

Figure 6.16: Numerical simulation results of the test case “dam-break flow through an

elastic gate” – fluid pressure field Pf and the stress component σzz in the structure for

every 0.04 second.
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Figure 6.17: Comparison of the displacement of the free end of the elastic plate – (a)

horizontal displacement; (b) vertical displacement.

toci et al. [2] and Rafiee et al. [73] have proposed the numerical simulation methods

for this sort of FSI problems by using the SPH method for both the fluid and the solid

domain. Antoci et al. [2] also compared the numerical solution with the experimental

result. Yang et al. [83] and Fourey et al. [29] have carried out the numerical simulations

by coupling the SPH method for the fluid with the FE method for the structure, which

is quite similar with the proposed method in this thesis, however, the main differences

may be found in two aspects: (1) we use the different methods for calculating fluid

pressure at solid wall; (2) their methods are both classified as partitioned coupling pro-

cedures which have sometimes the numerical instability problems, because such type of

coupling strategy can not ensure the zero interface energy condition.

A comparison of the numerical results is shown in Figure 6.17. As one can observe

that the horizontal and vertical displacement of this free end of the elastic gate is well

calculated with the proposed coupling method, compared with the experimental results.

However, it can be also seen that in our numerical result, this elastic gate has been

opened a little bit earlier. The reason could be various, since it is a Fluid-Structure

Interaction problem, in which any inaccuracy inside any subdomain may cause such

disagreement. Nevertheless, we found that the key factor is the material model used

for the elastic gate, which means that, the better the numerical material model fits the

experimental data in the tensile test, the better numerical result we can obtain in this

2-D numerical test.
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6.2.2 Breaking dam on an elastic wall

Next, we investigate a second 2-D test case of fluid-structure interaction problem, of

which the initial configuration is shown in Figure 6.18. As one can observe, in a rigid

wall container a column of water is initially located at the left side, which is in hydro-

static equilibrium. An elastic wall is clamped in the middle of the bottom of the rigid

container wall. The geometric and discretization parameters are given in Table 6.4. The

geometry of the system is the same with the one used by Walhorn et al. [81]. They have

studied numerically this FSI problem by means of the Level-Set method combined with

moving mesh technique. In this thesis, we have taken the same geometric dimensions

for the system. Meanwhile, we have chosen the same material property for the elastic

wall. The initial solid density ρ0
s
= 2500 kg/m3, the Young’s modulus E

s
= 106 Pa

and the Poisson’s ratio ν = 0. As Walhorn et al. [81] did, we applied a linear elastic-

ity model which gives a linear relationship between the Green strain tensor E and the

second Piola-Kirchhoff stress tensor S

S = C :E (6.7)

where C is a fourth-order tensor of elastic moduli which is invariant over time. Such

a material is called a Saint Venant-Kirchhoff material, or Kirchhoff material for brevity

[6]. Subsequently, we will compare our numerical result with the one obtained by other

authors.

Table 6.4: Geometric and discretization parameters.

Water width (L) 0.146 m
Water height 2L
Initial distance L
Width of rigid container 4L
Elastic wall width (b) 0.012 m
Elastic wall height (a) 20b/3
Fluid particle size 0.002 m
Rigid wall spacing 0.002 m
Elastic wall mesh spacing 0.002 m

In this test case, we also used the same time-step ∆t = 2× 10−5 s for the fluid and
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Figure 6.18: Initial configuration of the test case “breaking dam on an elastic wall”.

solid solvers. 50000 time-steps have been carried out for a 1 second physical period.

Just as we did in the previous test case, two CPUs were used for the coupling simulation

(one for the fluid solver, one for the solid solver). The computation time is 13 h.

In Figure 6.19 one can find the time-history of the horizontal displacement of the

upper left corner of the elastic wall, which is compared with the results of Walhorn

et al. [81], Idelsohn et al. [38] and Rafiee et al. [73]. Figure 6.20 shows the fluid

pressure field Pf and the structural stress component σxx of this FSI problem for every

0.05 second.

As the proposed coupling method is supposed to conserve the energy at the fluid-

structure interface, i.e. the coupling procedure should not introduce numerically energy

dissipation or energy injection at the interface, we verify such feature by giving the

mechanical energy balance for each sub-domain in Figure 6.21 and Figure 6.22 as well

as an energy balance analysis for the whole coupled system in Figure 6.23.

As one can observe in the energy balance analysis for the structure part (Figure

6.21), the kinetic energy Ekin and the deformation potential energy Edef start to increase

around t = 0.2 s due to the impact from the breaking dam flow. Whereas, from this

moment, the gravitational potential energy has slightly decreased, because the fluid flow

makes the elastic wall to bend towards to the x direction, which induces a lower position
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Figure 6.19: Comparison of the upper left corner displacement of the elastic wall be-

tween numerical results for the test case “breaking dam on an elastic wall”.

of the wall. Additionally, one can also find a second peak which appears at t = 0.6 s,

corresponding to the sub-figure (k) in Figure 6.20. It is the moment that the backflow

impacts on the right side of the elastic wall.

In Figure 6.22 one observes that the fluid kinetic energy stopped to increase at the

moment t ≃ 0.2 s because of blocking effect of the elastic wall. And then, as time

goes on, the fluid energy is dissipated numerically due to the use of Runge-Kutta time

integrator combined with approximate Riemann solver for each pair of fluid particles.

Since no physical dissipation model is introduced in this coupled system, the energy

dissipation may be only induced from three aspects: (1) numerical scheme for fluid sub-

domain; (2) numerical scheme for solid sub-domain; (3) the used coupling procedure.

For the first aspect, as we discussed previously, the fluid sub-domain is simulated by an

energy-dissipating scheme. Whereas, in Finite Element method, the explicit Newmark

time integrator (β = 0, γ = 0.5) for the structure is well known as an energy-conserving

numerical scheme. To know if the coupling method dissipate or inject energy at the

interface, we calculate the interface energy (5.7) by (6.8).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.20: Numerical simulation results of the test case “breaking dam on an elastic

wall” – fluid pressure field Pf and the stress component σxx in the structure.
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(i) (j)
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Figure 6.20: Numerical simulation results of the test case “breaking dam on an elastic

wall” – fluid pressure field Pf and the stress component σxx in the structure.
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Figure 6.21: Mechanical energy balance for the solid sub-domain.
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Figure 6.22: Mechanical energy balance for the fluid sub-domain.
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Figure 6.23: Mechanical energy balance for the whole coupled system.

∆W
d
I =

∑

n

∫ tn+1

tn

Nk∑

k

pknk ·
[
v
s
(xk)− v

f
(xk)

]
sk dt

=
∑

n

∆t

Nk∑

k

pknk ·
[
v
s
(xk)− v

f
(xk)

]
sk

≃
∑

n

Nk∑

k

∆t

2

{
pn+1
k nn+1

k ·
[
v
s
(xn+1

k )− v
f
(xn+1

k )
]
sn+1
k

+ pnkn
n
k ·
[
v
s
(xn

k)− v
f
(xn

k)
]
snk
}

(6.8)

where ∆Wd
I represents the interface energy EI shown in Figure 6.23. It is obvious that

the interface energy is rigorously zero during the numerical simulation, which means

that the proposed coupling procedure induces neither energy injection nor energy dissi-

pation at the fluid-structure interface. Therefore, we can conclude that the dissipation

of the total energy (ET in Figure 6.23) is purely numerical and entirely introduced by

the numerical scheme used in the fluid sub-domain. And more importantly, it turns out

that the proposed coupling method is energy-conserving.
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Remark: When large displacement or deformation appears for structure, as shown in

Figure 6.24, the resolution of equations is a non-linear procedure, since the internal

nodal force fn+1
int can no longer be linearly related with the displacement field un+1

s
, in

addition, the external nodal force fn+1
ext depends on the new structural geometry. Hence,

we linearize this procedure by using the explicit Newmark time integrator. With such

an explicit scheme, we can calculate the new displacement field un+1
s

with the physical

quantities we have already obtained at the previous time-step. Then this new displace-

ment field will be given to the solid solver as an imposed-displacement condition. The

solid solver can give the internal nodal force fn+1
int depending on un+1

s
. Meanwhile, with

the new displacement field, we can update the structural geometry for the new moment.

Figure 6.24: Fluid-structure interaction problem with large displacement or deformation

for the structure.
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6.3 3-D example – linear structural response

A 3D example is given to show the feasibility for multi-dimensional problems of the

proposed coupling approach. Figure 6.25 shows a water filled tank which is made of

five rigid walls and one deformable square plate clamped at the four sides. The thickness

of the plate is d = 0.01 m, the side of the square is a = 0.1 m, the Young’s modulus

E
s
= 100 GPa, the density ρ

s
= 2500 kg/m3, and the Poisson’s ratio ν = 0.3. A

structural mesh is used to discretize the plate into 20(a)× 20(a)× 10(d) 8 nodes brick

finite elements. The length of the tank L
f
= 0.2 m, and there are 20 × 20 × 40 fluid

particles. Initially, the system is at rest, with the initial fluid pressure equaling the refer-

ence pressure, p
f
(x, t = 0) = pref

f
= 0 Pa. Here, notice that in our calculation, negative

pressure is permitted, since we only want to check the quality of the coupling strategy

for a linear problem. This may be physically meaningless, but the main objective of this

work is to propose and validate numerically a coupling method, rather than to realize

the numerical simulation of some test cases which are more realistic.

aa

a

Figure 6.25: Configuration of the 3D test case with linear structural response.

Figure 6.26: The finite element mesh and the fluid particles.
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We impose a uniform pulse pressure loading P (t) on the external surface of the

deformable plate, which varies in time as presented in Figure 6.27 with p
0
= 0 Pa being

equal to the initial pressure of fluid, and p
1
= 107 Pa, τ = 0.04 ms.

Figure 6.27: Time varing pressure loading on the external surface of the structure.

The central point of the plate will have the maximum displacement amplitude in

X direction. Figure 6.28 compares the time history of this displacement obtained with

the proposed coupling method and the same result obtained with the Europlexus soft-

ware. Europlexus [20] is a research finite element explicit code developed by JRC

ISPRA and CEA (French Atomic Commission), which uses the usual ALE method for

fluid-structure interaction. The total simulation time is 1 ms with 1000 time steps of

1 microsecond. As time evolves, numerical dissipation can be observed for both sim-

ulations, but it is higher for the presented method. One will now concentrate on the

explanation of this dissipation. Is it due to the presented coupling scheme or to the nu-

merical scheme used for the time integration in each sub-domain? It is known that the

mean acceleration Newmark scheme chosen for the solid sub-domain is not dissipative.

We have then computed the energies evolution in the whole system and separated the

solid, fluid and interface ones. The following equations give the incremental energy
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variations for the fluid-structure system





ES =
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2
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s
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s
v
s
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1

2
u⊤

s
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s
u

s

EF =
∑

i

1

2
mi|vf

(xi)|2 +
∑

i

miei

EI =
∑

n

∑

k

sk∆t
pn+1
k + pnk

2
nk ·

[
v
s
(xn+1

k ) + v
s
(xn

k)

2
−

v
f
(xn+1

k ) + v
f
(xn

k)

2

]

ET = ES + EF + EI

(6.9)

where ES and EF denote the total energy of solid and fluid sub-domain, respectively.

They are both the sum of kinetic energy and internal energy. ei is the internal energy

per unit mass for the fluid particle i, and calculated by the equation [28]: ei = [pi +

(cref
f

)2(ρref
f

−ρi)]/[ρi(ζ−1)]. EI is the interface energy and ET is the total energy of the

whole coupled system.
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Figure 6.28: Evolution in time of the central point’s displacement in X .

The energy balance is presented in Figure 6.29. One can observe that the interface

energy is strictly zero during the numerical simulation. The total energy of coupled

system increases at first because of the external work of the imposed pressure loading.

Then, a decrease of the total energy can be observed clearly, as well as the exchange of

114



energy between the structure and the fluid. It is clear from this analysis that the observed

dissipation is due to the used Runge-Kutta time integrator combined with the MUSCL

scheme in the fluid.
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Figure 6.29: Energy balance of the whole coupled system (“ES”: total energy of struc-

ture, “EF”: total energy of fluid, “EI”: interface energy, “ET”: total energy of the whole

coupled system).

Table 6.5: Comparison of the eigenfrequencies of the coupled system between using the

present coupling method and Cast3M.

Feig (kHz) f1 f2 f3 f4 f5 f6 f7

present method 3.364 6.718 × × × × 8.847

Cast3M 3.461 6.627 7.328 7.328 8.132 8.132 8.992

Difference 2.8 % 1.4 % × × × × 1.6 %

At last, we continue the calculation until 0.004 s with 4000 time steps in order to

carry out a spectral analysis of the numerical result of displacement of the center of the

plate, obtained by the proposed coupling method. The resulting frequency spectrum is

presented in Figure 6.30 At the mean time, we also carry out a modal analysis by using
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the Cast3M software [10] on the same problem: analysis of vibro-acoustic modes for

coupled fluid-structure system. The whole fluid-structure domain is modeled with 3D 8

nodes brick finite elements (with solid material for the plate and acoustic model for the

fluid part). The method used in this formulation is described in [13]. Table 6.5 compares

the first 8 eigenfrequencies of the coupled system to the first 3 eigenfrequencies “mea-

sured” with the computed time history of displacement of the center of the plate. Let us

also quote that all the low frequency modes which are not present in the spectral analy-

sis of the mid point of the plate correspond to the modes for which the displacement of

this node is zero. One observes a very good comparison of the two approaches.
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Figure 6.30: Frequency spectrum of the displacement obtained by using the presented

coupling method.
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Chapter 7

Conclusions and perspectives

7.1 Conclusions

In this PhD thesis, an energy-conserving coupling strategy has been proposed for tran-

sient fluid-structure interaction. This coupling method is validated by several 1-D test

cases and a 3-D example is also given to show the feasibility for multi-dimensional

cases. Through these numerical experiments, we observe that the proposed method can

ensure the numerical stability of the coupling simulation, and it can preserve the mini-

mal order of temporal accuracy of the time integrators used in all the sub-domains.

Different numerical methods are used for the two physical domains: the structure is

simulated by the finite element method and the fluid sub-domain is discretized into a set

of particles by the SPH-ALE method, hence it is easy to track the interface. A velocity

constraint condition is imposed in a weak sense at the interface in the normal direction,

which can ensure the zero interface condition.

Being different with a staggered coupling procedure, the proposed coupling method

is classified as a monolithic approach, in which there is no time lag between the time

integration of the two sub-domains. Numerically, neither energy injection nor energy

dissipation will occur at the fluid-structure interface.

However, like every monolithic approach, an inconvenient of the proposed coupling

method is that some necessary modification of the existing simulation codes will be

required. Secondly, the coupling method is applicable for the specific time integrators.
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7.2 Perspectives

This work includes the theoretical demonstration of the coupling method as well as some

important validation test cases. In the future, it will be of great interest to consider the

physical viscosity of the fluid. In this thesis, the fluid is assumed to be inviscid, which

is described by the Euler equations. Considering the viscous effect, one will resolve the

Navier-Stokes equations instead of the Euler equations for the fluid sub-domain. At the

interface, the equilibrium and the velocity continuity should be considered not only in

the normal direction but also in the tangential direction. As for the numerical simulation

aspect, one will resolve some extra coupling equations at the interface in order to take

into account the tangential velocity constraint condition.

Secondly, since the velocity constraint condition is imposed in a weak sense, it will

be also be interesting to use incompatible time steps to make the numerical simulation

more efficient. For example, in rapid dynamic problems, when an explicit time integra-

tor is applied, a small time step is often used for the reason of numerical stability. In

such cases, the time step for the solid may be smaller than the one used for the fluid.

Hence, one can use different time steps in the numerical simulation of fluid-structure

interaction.
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Appendix A

Analytical solution of the 1-D piston problem

The 1-D problem of mass-spring system coupled with a column of acoustic fluid is

rebuilt in such a coordinates system

Figure A.1: Coordinates system for the problem of mass-spring system coupled with a

column of acoustic fluid.

An acoustic fluid in the 1-D tube can be governed by the wave equation

∂2u
f

∂t2
− (cref

f
)2
∂2u

f

∂x2
= 0 (0 6 x 6 L

f
, t > 0) (A.1)

where u
f
(x, t) denotes the fluid displacement, cref

f
= 328.2 m/s is the referential speed

of sound.

The fluid pressure p
f

is calculated by the constitutive equation

p
f
− p

b
= −ρref

f
(cref

f
)2
∂u

f

∂x
(A.2)

where p
b

denotes the background pressure, ρref
f

= 1.3 kg/m3 is the referential fluid
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density.

The boundary conditions write

BC





u
f
(0, t) = 0

m
s

∂2u
f

∂t2

∣∣∣∣
x=L

f

+ k
s
u
f
(L

f
, t) + ρref

f
(cref

f
)2A

s

∂u
f

∂x

∣∣∣∣
x=L

f

= 0
(A.3)

where A
s

is the section area of the tube. And the initial conditions may be given as

IC





u
f
(x, 0) = ϕ(x)

∂u
f

∂t

∣∣∣∣
t=0

= φ(x)
(A.4)

We will apply the method of separation of variables to resolve this 2nd order partial

differential equations (A.1), with two boundary conditions (A.3) and two initial condi-

tions (A.4).

Assume that the trial solution u
f
(x, t) can be rewritten as the product of two func-

tions

u
f
(x, t) = X(x)T (t) (A.5)

Substituting (A.5) in the partial differential equation (A.1) gives

X(x)T ′′(t) = (cref
f

)2X ′′(x)T (t) (A.6)

where T ′′(t) denotes the second-order derivative of the time function T (t), and X ′′(x)

the second-order derivative of the space function X(x).

If X(x) 6= 0 and T (t) 6= 0, (A.6) can be written as

(cref
f

)2
X ′′(x)

X(x)
=

T ′′(t)

T (t)
= −λ λ > 0 (A.7)

where λ is a constant which is independent of x or t.
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Hence we have 



X ′′(x)

X(x)
= −

(√
λ

cref
f

)2

T ′′(t)

T (t)
= −λ

(A.8)

Let’s now consider the differential equation of X(x)

−X ′′(x) =

(√
λ

cref
f

)2

X(x) (A.9)

which possesses a general solution

X(x) = C1 cos(

√
λ

cref
f

x) + C2 sin(

√
λ

cref
f

x) (A.10)

where C1 and C2 are two coefficients to be determined.

With the boundary condition at x = 0, we have

X(0) = C1 = 0 (A.11)

hence the general solution becomes

X(x) = C2 sin(

√
λ

cref
f

x) (A.12)

Substituting (A.5) in the boundary condition at x = L
f

m
s
X(L

f
)T ′′(t) + k

s
X(L

f
)T (t) + ρref

f
(cref

f
)2A

s
X ′(L

f
)T (t) = 0 (A.13)
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since we have T ′′(t) = −λT (t), hence

− λm
s
X(L

f
)T (t) + k

s
X(L

f
)T (t) + ρref

f
(cref

f
)2A

s
X ′(L

f
)T (t) = 0 (A.14)

Dividing (A.14) by T (t) gives

− λm
s
X(L

f
) + k

s
X(L

f
) + ρref

f
(cref

f
)2A

s
X ′(L

f
) = 0 (A.15)

or,

X ′(L
f
) =

m
s
λ− k

s

ρref
f

(cref
f

)2A
s

X(L
f
) (A.16)

Using the general solution (A.12) in (A.16) gives

C2

√
λ

cref
f

cos(

√
λ

cref
f

L
f
) =

m
s
λ− k

s

ρref
f

(cref
f

)2A
s

C2 sin(

√
λ

cref
f

L
f
) (A.17)

hence,

tan(

√
λ

cref
f

L
f
) =

√
λρref

f
cref
f

A
s

m
s
λ− k

s

(A.18)

By resolving numerically this equation, we can obtain the eigenfrequencies of the

coupled system

ωn =
√
λn (A.19)

where n denotes the number of the mode. The according eigenfunction write

Xn(x) = Cn
2 sin(

√
λn

cref
f

x) (A.20)

Notice that the boundary condition at x = L
f

is not homogeneous, hence the eigen-

functions are not orthogonal, which means that the inner product of two eigenfunctions
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Xm and Xn is not zero when m 6= n

< Xm, Xn > =

∫ L
f

0

Xm(x)Xn(x) dx 6= 0 (m 6= n) (A.21)

Therefore, as did in [14], we will define a novel inner product under this non-

homogeneous boundary condition. Taking two eigenfunctions Xm and Xn with two

according eigenfrequencies ωm =
√
λm and ωn =

√
λn





−X ′′

m(x) =
λm

(cref
f

)2
Xm(x)

−X ′′

n(x) =
λn

(cref
f

)2
Xn(x)

(A.22)

and we have the identity

−X ′′

m(x)Xn(x) +Xm(x)X
′′

n(x) = [−X ′

m(x)Xn(x) +Xm(x)X
′

n(x)]
′ (A.23)

Then integrating this relation (A.23) over the domain x ∈ [0, L
f
]

∫ L
f

0

[−X ′′

m(x)Xn(x) +Xm(x)X
′′

n(x)] dx = [−X ′

m(x)Xn(x) +Xm(x)X
′

n(x)]
L
f

0

(A.24)

With (A.22) and the boundary condition at x = 0 we have

λm − λn

(cref
f

)2

∫ L
f

0

Xm(x)Xn(x) dx = −X ′

m(Lf
)Xn(Lf

) +Xm(Lf
)X ′

n(Lf
) (A.25)

Substituting (A.16) in (A.25) gives

λm − λn

(cref
f

)2

∫ L
f

0

Xm(x)Xn(x) dx = −m
s
(λm − λn)

ρref
f

(cref
f

)2A
s

Xm(Lf
)Xn(Lf

) (A.26)
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where Xm(Lf
)Xn(Lf

) can be expressed by

Xm(Lf
)Xn(Lf

) =

∫ L
f

0

δ(x− L
f
)Xm(x)Xn(x) dx (A.27)

with δ(x) being the Delta function.

Then (A.26) becomes

λm − λn

(cref
f

)2

∫ L
f

0

Xm(x)Xn(x) dx = −λm − λn

(cref
f

)2

∫ L
f

0

m
s

ρref
f

A
s

δ(x− L
f
)Xm(x)Xn(x) dx

(A.28)

or,

λm − λn

(cref
f

)2

∫ L
f

0

[
1 +

m
s

ρref
f

A
s

δ(x− L
f
)

]
Xm(x)Xn(x) dx = 0 (A.29)

which implies that when m 6= n

∫ L
f

0

[
1 +

m
s

ρref
f

A
s

δ(x− L
f
)

]
Xm(x)Xn(x) dx = 0 (A.30)

Hence we will define the novel inner product of eigenfunctions as (A.30).

With the used initial conditions (6.3), we can obtain that





u
f
(x, 0) = 0

u̇
f
(x, 0) = sin(

ω1

cref
f

x) + sin(
ω2

cref
f

x) = φ(x)
(A.31)

Consider the time function T (t) in (A.8). The general solution writes

T (t) = A1 cos(
√
λt) + A2 sin(

√
λt) (A.32)

where A1 and A2 are two coefficients to be determined.
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With the first initial condition in (A.31), we obtain

T (0) = A1 = 0 (A.33)

hence,

T (t) = A2 sin(
√
λt) (A.34)

and,

T ′(t) = A2

√
λ cos(

√
λt) (A.35)

Through the superposition theory, we have

u
f
(x, t) =

∞∑

n=1

Xn(x)Tn(t) (A.36)

hence,

u̇
f
(x, t) =

∞∑

n=1

Xn(x)T
′

n(t) (A.37)

when t = 0,

u̇
f
(x, 0) =

∞∑

n=1

Cn
2 sin(

√
λn

cref
f

x)An
2

√
λn

=
∞∑

n=1

Bn sin(

√
λn

cref
f

x) = φ(x)

(A.38)

with Bn = Cn
2A

n
2

√
λn. Hence if we can determine the coefficient Bn, we can obtain the

solution of the fluid velocity

u̇
f
(x, t) =

∞∑

n=1

Bn sin(

√
λn

cref
f

x) cos(
√

λnt) (A.39)
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Since we have
∞∑

n=1

Bn sin(

√
λn

cref
f

x) = φ(x) (A.40)

hence,

∫ L
f

0

[
1 +

m
s

ρref
f

A
s

δ(x− L
f
)

]
sin(

√
λm

cref
f

x)
∞∑

n=1

Bn sin(

√
λn

cref
f

x) dx =

∫ L
f

0

[
1 +

m
s

ρref
f

A
s

δ(x− L
f
)

]
sin(

√
λm

cref
f

x)φ(x) dx

(A.41)

As presented previously, the inner product between two eigenfunctions equals zero

when m 6= n, hence

Bm

∫ L
f

0

[
1 +

m
s

ρref
f

A
s

δ(x− L
f
)

]
sin2(

√
λm

cref
f

x) dx =

∫ L
f

0

[
1 +

m
s

ρref
f

A
s

δ(x− L
f
)

]
sin(

√
λm

cref
f

x)φ(x) dx

(A.42)

Finally the coefficient Bm can be calculated by

Bm =

∫ L
f

0

[
1 +

m
s

ρref
f

A
s

δ(x− L
f
)

]
sin(

√
λm

cref
f

x)φ(x) dx

∫ L
f

0

[
1 +

m
s

ρref
f

A
s

δ(x− L
f
)

]
sin2(

√
λm

cref
f

x) dx

(A.43)
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Appendix B

Analytical solution of the 1-D shock wave propagation problem

In this case, we consider a 1-D elastic solid bar connected with a column of water. The

behavior of the elastic bar is assumed to be linear, which implies that the deformation

of structure is small. Hence, the solid equation writes

ρ
s

∂2u
s

∂t2
− E

s

∂2u
s

∂x2
= 0 (B.1)

where u
s
= u

s
(x, t) denotes the displacement field in the solid sub-domain. ρ

s
and E

s

are two constants representing the solid density and the Young’s modulus, respectively.

The speed of sound is defined as c2
s
= E

s
/ρ

s
. If we note





v
s
=

∂u
s

∂t

σ
s
= E

s

∂u
s

∂x

(B.2)

with v
s
(x, t) being the velocity field, and σ

s
(x, t) the stress, (B.1) may be rewritten as

∂v
s

∂t
− 1

ρ
s

∂σ
s

∂x
= 0 (B.3)
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Furthermore, from (B.2) we can also obtain





∂v
s

∂x
=

∂2u
s

∂t∂x
1

E
s

∂σ
s

∂t
=

∂2u
s

∂x∂t

(B.4)

where the equality between the right terms yields

∂σ
s

∂t
− E

s

∂v
s

∂x
= 0 (B.5)

Regrouping (B.3) and (B.5), we obtain the system of equation for the solid sub-

domain 



∂v
s

∂t
− 1

ρ
s

∂σ
s

∂x
= 0

∂σ
s

∂t
− E

s

∂v
s

∂x
= 0

(B.6)

which is equivalent with (B.1).

Now let’s write (B.6) in matrix form

∂V
s

∂t
+A

s

∂V
s

∂x
= 0 (B.7)

with,

V
s
=

[
v
s

σ
s

]
and A

s
=


 0 − 1

ρ
s

−E
s

0


 (B.8)

The system of equations (B.7) possesses two eigenvalues

{
λ1

s
= +c

s

λ2
s
= −c

s

(B.9)

which are two real values, hence, (B.7) is an hyperbolic equation, and can be resolved by

using the characteristic method. The two corresponding characteristic lines are shown

in Figure B.1.
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Figure B.1: Two characteristic lines in the x− t plane for the solid problem.

Remark: Notice that we are going to resolve a linear wave propagation problem, since

the eigenvalues are constant. The values of λ1
s

and λ2
s

represent the speed of waves

propagating to the right and the left, respectively.

According to the Generalized Riemann Invariants condition [78], we obtain the two

relations across the corresponding waves

{
dσ

s
+ ρ

s
c
s
dv

s
= 0 across the wave associated with λ1

s
= +c

s

dσ
s
− ρ

s
c
s
dv

s
= 0 across the wave associated with λ2

s
= −c

s

(B.10)

one of which will be used subsequently to find the interface status in the fluid-structure

interaction problem.

As for the fluid part, we have already discussed previously in Section 3. The fluid

governing equation writes

∂V
f

∂t
+A

f

∂V
f

∂x
= 0 (B.11)

with,

V
f
=

[
ρ

f

v
f

]
and A

f
=

[
v
f

ρ
f

c2
f
/ρ

f
v
f

]
(B.12)
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which possesses two eigenvalues





λ1

f
= v

f
+ c

f

λ2

f
= v

f
− c

f

(B.13)

corresponding to the two non-linear waves shown in Figure B.2.

Figure B.2: Two non-linear waves in the x− t plane for the fluid problem.

Remark: The two waves are non-linear because the eigenvalues are not constant.

Hence, the values of λ1
f

and λ2
f

do not represent the speed of wave. One has to firstly use

the entropy condition to determine the investigated wave is a shock wave or a rarefac-

tion wave. If it is a shock wave, we will apply the Rankine-Hugoniot relation, whereas

if it is a rarefaction wave, we should use the Generalized Riemann Invariants condition.

The Generalized Riemann Invariants condition gives





dρ
f
−

ρ
f

c
f

dv
f
= 0 across the wave associated with λ1

f
= v

f
+ c

f

dρ
f
+

ρ
f

c
f

dv
f
= 0 across the wave associated with λ2

f
= v

f
− c

f

(B.14)

between which we will chose the appropriate one for the fluid-structure interaction prob-

lem.
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Let’s now consider a wave propagation problem across the fluid-structure interface.

Suppose that the discontinuity is initially located at the interface. One should resolve a

Riemann problem presented in Figure B.3.

Figure B.3: Two waves in the x − t plane for fluid-structure interaction problem with

the initial discontinuity at the interface.

As shown in Figure B.3, we have chosen the wave associated with the eigenvalue λ2
s

for the part of structure, which corresponds to the relation dσ
s
−ρ

s
c
s
dv

s
= 0. Since this

is a linear elastic wave, we can easily relate the status in the star region with the one in

the left region

(σ∗

s
− σL

s
)− ρ

s
c
s
(v∗

s
− vL

s
) = 0 (B.15)

However, for the fluid part, it is more complicate, because there exists two possibil-

ities for the type of wave:

• If the wave associated with λ1
f
= v

f
+ c

f
is a shock wave

The Rankine-Hugoniot condition gives





SR
f
(ρR

f
− ρ∗

f
) = ρR

f
vR
f
− ρ∗

f
v∗
f

SR
f
(ρR

f
vR
f
− ρ∗

f
v∗
f
) =

[
ρR

f
(vR

f
)2 + pR

f

]
−
[
ρ∗

f
(v∗

f
)2 + p∗

f

] (B.16)

where SR
f

denotes the speed of wave associated with λ1
f
= v

f
+ c

f
. And we can

obtain

v∗
f
− vR

f
=

[
(p∗

f
− pR

f
)(

1

ρR
f

− 1

ρ∗
f

)

]1/2
(B.17)
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• If the wave associated with λ1
f
= v

f
+ c

f
is a rarefaction wave

We carry out an integration of the corresponding Generalized Riemann Invariants

condition across this wave

∫ ρ∗
f

ρR
f

c
f

ρ
f

dρ
f
=

∫ v∗
f

vR
f

dv
f

(B.18)

With the Tait equation (2.44), the speed of sound c
f

can be expressed as

c
f
=

(
∂p

f

∂ρ
f

)1/2

=

[
Bζ

(ρref
f
)ζ
ρζ−1

f

]1/2
(B.19)

with which (B.18) can be rewritten as

[
Bζ

(ρref
f
)ζ

]1/2 ∫ ρ∗
f

ρR
f

ρ
ζ−3

2
f

dρ
f
= v∗

f
− vR

f
(B.20)

Finally, we obtain the relation across the rarefaction wave

v∗
f
− vR

f
=

[
Bζ

(ρref
f
)ζ

]1/2
2(ρR

f
)
ζ−1

2

ζ − 1



(
p∗
f
+B

pR
f
+B

) ζ−1

2ζ

− 1


 (B.21)

As one can observe that no matter which type of wave, the relation (B.17) and (B.21)

are both complicate, and it is hard to resolve the status in the star region with them. For

the sake of simplicity for the resolution, we use the method presented by Liu et al. [44].

We carry out the Taylor development of the right term in (B.17) and (B.21) with respect

to p∗
f
, and we only keep the first order term which turn out to be the same for the kinds

of wave

v∗
f
− vR

f
≃ 1

ρR
f
cR
f

(p∗
f
− pR

f
) (B.22)

Gathering (B.15) and (B.22) as well as the continuity condition at the interface, we
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obtain 



(σ∗

s
− σL

s
) = ρ

s
c
s
(v∗

s
− vL

s
)

v∗
f
− vR

f
≃ 1

ρR
f
cR
f

(p∗
f
− pR

f
)

v∗
s
= v∗

f

σ∗

s
= −p∗

f

(B.23)

Resolving this system of equations, we can obtain the status of variables in the star

region. Then we can determine the type of wave moving into the fluid sub-domain. The

subsequent procedures are the same for a classic Riemann problem, and reader might

find more details in the book of E.F. TORO [78].
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