Thèse soutenue

Modélisation de l'écoulement atmosphérique à l'échelle hectométrique
FR
Accès à la thèse
Auteur / Autrice : Radi Sadek
Direction : Richard Perkins
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance le 30/05/2013
Etablissement(s) : Ecully, Ecole centrale de Lyon
Ecole(s) doctorale(s) : Ecole Doctorale Mecanique, Energetique, Genie Civil, Acoustique (MEGA) (Villeurbanne)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Mecanique des Fluides et d'Acoustique / LMFA
Jury : Président / Présidente : Jean-François Sini
Examinateurs / Examinatrices : Lionel Soulhac, Fabien Brocheton
Rapporteurs / Rapporteuses : Bertrand Carissimo, Omduth Coceal

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

De nombreuses applications pratiques ou industrielles, telles que l’étude de la dispersion atmosphérique de polluants, la qualité de l’air, la micro-météorologie en terrain complexe et l’évaluation du potentiel éolien, nécessitent la prédiction précise de l’écoulement atmosphérique à une échelle dite locale (environ 10 km horizontalement). Le travail de recherche dans le cadre de cette thèse s’inscrit donc dans la proposition d’une chaine de méthodologies et de modélisations permettant de simuler l’écoulement atmosphérique à cette échelle, avec une résolution spatiale horizontale hectométrique. Tout d’abord, nous nous sommes intéressés à la modélisation de la turbulence dans la couche limite atmosphérique (CLA). Pour cela, nous avons choisi le modèle RANS k− ε (déjà largement utilisé dans la littérature), ainsi que le modèle RANS Ri j − ε afin de simuler l’anisotropie de la turbulence. Nous avons ainsi pu vérifier la nécessité d’utiliser les constantes de Duynkerke (1988) pour l’atteinte des niveaux de turbulence atmosphérique avec le modèle k− ε. Dans cette optique, nous avons également développé un nouveau jeu de constantes atmosphériques pour le modèle Ri j − ε. Finalement, nous avons proposé un modèle théorique capable de reproduire les caractéristiques turbulentes de l’écoulement pour n’importe quel temps d’intégration, permettant ainsi de trouver une continuité entre les constantes « standards » et les constantes « atmosphériques » des modèles de turbulence. D’autre part, nous avons développé l’approche de modélisation « CFD 1D-3D », qui consiste en l’utilisation d’un modèle CFD 1D afin de fournir les profils verticaux nécessaires pour forcer le code CFD 3D en données météorologiques (utilisé en topographie complexe). Le modèle 1D a été développé au cours de cette thèse avec les modèles de turbulence k− ε et Ri j− ε. Il a été validé grâce à une comparaison avec des résultats empiriques et théoriques issus de la littérature. Cette comparaison a montré des résultats très encourageants de ce modèle dans la simulation de la CLA en sol plat. De plus, la méthodologie « CFD 1D-3D » a été évaluée grâce à une comparaison avec des mesures en soufflerie en présence d’un relief complexe : les résultats sont globalement très satisfaisants. Ces comparaisons ont permis enfin de valider le nouveau jeu de constantes pour le modèle Ri j− ε. Finalement, nous nous sommes intéressés à l’utilisation de calculs CFD partiellement convergés comme moyen de réduction du temps CPU des codes CFD, dans des contextes d’utilisation opérationnelle. Dans cette optique, nous avons montré que l’on arrive à une solution dont l’erreur est faible par rapport à la solution convergée (< 10% d’erreur), avec un temps CPU de l’ordre de 5%−10% du temps nécessaire pour atteindre la convergence. C’est un résultat très intéressant car il permet de réduire considérablement le temps de calcul, tout en gardant une erreur faible devant l’incertitude générale de l’approche CFD.