Détection et caractérisation de fissures dans des aubes de turbine monocristallines pour l’évaluation de leurs durées de vie résiduelles - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2013

Detection and characterization of cracks in monocrystalline turbine blades for the evaluation of the durations of residual life

Détection et caractérisation de fissures dans des aubes de turbine monocristallines pour l’évaluation de leurs durées de vie résiduelles

Résumé

High pressure turbine blades undergo heavy thermomechanical constraints which drive initiation and propagation of cracks. These cracks may propagate rapidly and become critical for safety. The inspection of blades is currently conducted with endoscopes or videoscopes in the visible range. However, this kind of control is not sufficient to distinguish a crack from a surface defect, and it can be difficult to assess the criticality of a crack. In these cases, the dismantling of the engine for an accurate inspection with a microscope is necessary but this operation is time consuming and costly.This study has two aims. The first aim consists in validating a new inspection system complementary to the observations in the visible range. The second aim consists in using the experimental results to simulate the propagation of a crack and evaluate the ability of the model to predict the trajectory of a crack in a blade.The proposed solution to improve the detection of cracks in situ was to use the flying spot active thermography process in the SWIR range (1-2μm – short wavelength infrared) through a classical endoscope. The first aim of the experimental work was to develop the flying spot process to work on an industrial endoscope, and to validate it with tests on a series of cracked blades. The second part of this study is focused on the numerical simulation of the cracks. First, this work consisted in integrating a fatigue crack propagation model which takes into account the effects of creep and oxidation, in the finite element software ZeBuLoN. Then, this model was used to simulate the propagation of a crack in blades undergoing a complex load and thermal cycle representative of a real aircraft mission. The last part of this work consisted in comparing the numerical results with the experimental observations on cracked blades, to check the ability of themodel to predict the direction and the velocity of a crack in a blade.
Les aubes TuHP équipant le M88 subissent des contraintes thermomécaniques extrêmes qui provoquent l’amorçage et la propagation de fissures. Ces fissures peuvent évoluer rapidement et devenir critiques pour la sécurité. Actuellement, ces aubes sont inspectées in-situ au moyen d’un endoscope ou d’un vidéoscope dans le domaine du visible. Cependant, ce mode d’inspection par voie visuelle laisse souvent planer un doute sur la présence ou non d’une fissure ou sur sa criticité. Le démontage du module pour une inspection approfondie au microscope est alors nécessaire,augmentant le coût et le délai de la maintenance.L’objectif de la thèse est double. Il s’agit d’une part de valider un nouveau moyen de détection, sans démontage, de la fissuration des aubes HP en complément de l’inspection visuelle classique in-situ, et d’autre part d’utiliser les données expérimentales pour simuler la propagation d’une fissure et évaluer le caractère prédictif du modèle utilisé (direction et vitesse de propagation). La solution proposée pour réduire, voire supprimer le démontage des aubes, consiste à détecter les fissures par thermographie active flying spot dans le très proche infrarouge, de 1 à 2 microns (bande SWIR) au travers d’un endoscope classique. Le premier volet de la thèse a consisté à mettre au point le dispositif flying spot dans une configuration représentative d’un endoscope, puis à valider ce procédé d’inspection par des essais sur des aubes TuHP en retour d’expérience.Le deuxième volet de la thèse est davantage tourné vers la simulation. Le travail a tout d’abord consisté à intégrer un modèle de propagation de fissures en régime de fatigue prenant en compte les effets du temps et de l’environnement, dans le code de calcul par éléments finis ZeBuLon. Ce modèle a ensuite été utilisé pour simuler la propagation de fissures dans des aubes TuHP soumises à des cycles de chargement et de température complexes et représentatifs d’une mission réelle. La dernière partie du travail a consisté à comparer les résultats des simulations numériques avec les observations réalisées sur des aubes TuHP en retour d’expérience, afin d’évaluer le caractère prédictif du modèle de propagation pour cette application (direction et vitesse).
Fichier principal
Vignette du fichier
MAFFREN__-_5_-_sept_-_2013.pdf (19.18 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01766554 , version 1 (13-04-2018)

Identifiants

  • HAL Id : tel-01766554 , version 1

Citer

Thierry Maffren. Détection et caractérisation de fissures dans des aubes de turbine monocristallines pour l’évaluation de leurs durées de vie résiduelles. Autre. Conservatoire national des arts et metiers - CNAM, 2013. Français. ⟨NNT : 2013CNAM0869⟩. ⟨tel-01766554⟩
500 Consultations
142 Téléchargements

Partager

Gmail Facebook X LinkedIn More