Thèse soutenue

Étude des interactions moléculaires dans les solvants d'intérêt pour le captage des gaz acides

FR  |  
EN
Auteur / Autrice : Mickaël Simond
Direction : Jean-Yves CoxamAgílio Pádua
Type : Thèse de doctorat
Discipline(s) : Chimie-Physique
Date : Soutenance le 27/11/2013
Etablissement(s) : Clermont-Ferrand 2
Ecole(s) doctorale(s) : École doctorale des sciences fondamentales (Clermont-Ferrand)
Partenaire(s) de recherche : Equipe de recherche : Institut de Chimie de Clermont-Ferrand (Aubière, Puy-de-Dôme ; 2012-....)
Jury : Président / Présidente : Patrice Malfreyt
Examinateurs / Examinatrices : Jean-Yves Coxam, Agílio Pádua, William R. Smith
Rapporteurs / Rapporteuses : Pierre Cézac, Carlos Nieto-Draghi

Résumé

FR  |  
EN

Cette thèse porte sur la problématique de réduction des émissions de gaz à effet de serre par captage et stockage du dioxyde de carbone (CO2) contenu dans les effluents industriels. Les procédés de captage concernés reposent sur l’absorption sélective du CO2 par des solutions aqueuses d’alcanolamines. Les mécanismes physico-chimiques d’absorption mis en jeu sont étudiés à l’aide de modèles thermodynamiques. Leur développement est complexe et la prédiction précise des données physico-chimiques, nécessaires à l’optimisation des procédés industriels de captage, reste difficile. Le développement d’outils permettant une représentation détaillée des structures microscopiques permettrait l’optimisation de ces modèles. Ces outils fourniraient également des informations pour l’établissement de relations structure-propriété nécessaires au design d’absorbants adaptés au captage en post-combustion. Les travaux de recherche ont porté sur l’évaluation du pouvoir prédictif des outils de simulation moléculaire et leur capacité à établir des relations entre la structure des absorbants, les interactions moléculaires et les propriétés physicochimiques macroscopiques. Les outils développés ont été construits afin de permettre leur transférabilité entre alcanolamines. L’étude repose sur des mesures calorimétriques et des travaux de simulation par dynamique moléculaire menés en parallèle. Elle porte sur des alcanolamines primaires, pures ou en solutions aqueuses, basées sur le squelette N-C-C-O, incluant la monoéthanolamine (MEA). La mise en évidence d’un effet d’ouverture des liaisons hydrogène intramoléculaires des alcanolamines en fonction de leur composition semble être à la base de la différenciation du comportement énergétique des systèmes binaires {alcanolamine + eau}. L’identification des différents types d’interactions engagés a permis de mettre en lumière un effet hydrophobe. L’ensemble des analyses explique certaines limites des modèles thermodynamiques classiques et constitue un guide pour leur amélioration, notamment par la prise en compte de l’effet de composition.