Phronesis, a diagnosis and recovery tool for system administrators

par Christophe Haen

Thèse de doctorat en Informatique

Sous la direction de Vincent Barra.

Le président du jury était David R. C. Hill.

Le jury était composé de Philippe Preux, Abdel-Illah Mouaddib, Niko Neufeld.

Les rapporteurs étaient Philippe Preux, Abdel-Illah Mouaddib.

  • Titre traduit

    Phronesis, un outil de diagnostic et de résolution pour les administrateurs systèmes


  • Résumé

    Le système online de l'expérience LHCb repose sur une large infrastructure informatique hétérogène, composée de milliers de serveurs sur lesquels de nombreuses applications différentes sont exécutées. Certaines applications sont critiques (prise de données, contrôle du détecteur), d'autres secondaires (serveurs web). Administrer un tel système et s'assurer de son bon fonctionnement représente une lourde charge de travail pour une petite équipe d'experts. Des recherches ont été menées afin d'automatiser certaines tâches d'administration système. En 2001, IBM définit les « self-objectives » sensés conduire à l' «autonomic computing» (informatique autonome). Dans ce contexte, nous présentons un framework basé sur l'intelligence artificielle et l'apprentissage par renforcement pour surveiller et diagnostiquer de manière non intrusive les systèmes et logiciels basés sur Linux. De plus, notre approche d’expérience partagée ainsi que notre architecture suivant le paradigme Objet permettent d'augmenter considérablement la vitesse d'apprentissage et de corréler les problèmes.


  • Résumé

    The LHCb online system relies on a large and heterogeneous IT infrastructure made from thousands of servers on which many different applications are running. They run a great variety of tasks : critical ones such as data taking and secondary ones like web servers. The administration of such a system and making sure it is working properly represents a very important workload for the small expert-operator team. Research has been performed to try to automatize (some) system administration tasks, starting in 2001 when IBM defined the so-called “self objectives” supposed to lead to “autonomic computing”. In this context, we present a framework that makes use of artificial intelligence and machine learning to monitor and diagnose at a low level and in a non intrusive way Linux-based systems and their interaction with software. Moreover, the shared experience approach we use, coupled with an "object oriented paradigm" architecture increases a lot our learning speed, and highlight relations between problems.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Clermont Auvergne. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.