Accélération matérielle pour l’imagerie sismique : modélisation, migration et interprétation

par Rached Abdelkhalek

Thèse de doctorat en Informatique

Sous la direction de François Bodin.


  • Résumé

    La donnée sismique depuis sa conception (modélisation d’acquisitions sismiques), dans sa phase de traitement (prétraitement et migration) et jusqu’à son exploitation pour en extraire les informations géologiques pertinentes nécessaires à l’identification et l’exploitation optimale des réservoirs d’hydrocarbures (interprétation), génère un volume important de calculs. Nous montrons dans ce travail de thèse qu’à chacune de ces étapes l’utilisation de technologies accélératrices de type GPGPU permet de réduire radicalement les temps de calcul tout en restant dans une enveloppe de consommation électrique raisonnable. Nous présentons et analysons les éléments sous-jacents à ces performances. L’importance de l’utilisation de motifs d’accès mémoire adéquats est particulièrement mise en exergue étant donné que l’accès à la mémoire représente le principal goulot d’étranglement pour les algorithmes abordés. Nous reportons des facteurs d’accélération de l’ordre de 40 pour la modélisation sismique par résolution de l’équation d’onde par différences finies (brique de base pour la modélisation et l’imagerie sismique) et entre 8 et 113 pour le calcul d’attributs sismiques. Nous démontrons que l’utilisation d’accélérateurs matériels élargit considérablement le champ du possible, aussi bien en imagerie sismique (modélisation de nouveaux types d’acquisitions à grande échelle) qu’en interprétation (calcul d’attributs complexes sur station de travail, paramétrage interactif des calculs, etc.).

  • Titre traduit

    Hardware acceleration for seismic imaging : modeling, migration and interpretation


  • Résumé

    During the seismic imaging workflow, from seismic modeling to interpretation, processingseismic data requires a massive amount of computation. We show in this work that, at eachstage of this workflow, hardware accelerators such as GPUs may help reducing the time requiredto process seismic data while staying at reasonable energy consumption levels.In this work, the key programming considerations needed to achieve good performance are describedand discussed. The importance of adapted in-memory data access patterns is particularlyemphasised since data access is the main bottleneck for the considered algorithms. When usingGPUs, speedup ratios of 40× are achieved for FDTD seismic modeling, and 8× up to 113× forseismic attribute computation compared to CPUs.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.