Thèse de doctorat en Biologie cellulaire et moléculaire
Sous la direction de Anas Cherqui et de Christine Rusterucci.
Soutenue en 2013
à Amiens , dans le cadre de École doctorale Sciences, technologie et santé (Amiens) , en partenariat avec Biologie des Plantes et Innovation (Amiens) (laboratoire) et de Écologie et dynamique des systèmes anthropisés (Amiens) (laboratoire) .
Le jury était composé de Anas Cherqui, Christine Rusterucci, Elisabeth Jamet, Yvan Rahbé, Christophe Clément, Jérôme Pelloux, Marie-Hélène Sauge.
Les rapporteurs étaient Elisabeth Jamet, Yvan Rahbé.
Les pucerons sont des insectes phloémophages qui insèrent leur pièce buccale (stylets) au sein des parois afin d'atteindre les tubes criblés et de se nourrir de sève élaborée. Durant la progression des stylets dans l'apoplasme, un sondage est effectué par de brèves piqûres dans la plupart des cellules rencontrées. Les réponses de la plante aux dommages engendrés par une infestation aphidienne apparaissent qualitativement et quantitativement différentes des réponses à d'autres stress biotiques. Le puceron accepte plus ou moins la plante selon le niveau de résistance mis en place et selon sa capacité à se nourrir sur une gamme de plante-hôtes plus ou moins large. L'étude de leur comportement trophique via la technique de l'électropénétrographie montre qu'un puceron polyphage (Myzus persicae) semble plus adapté à Arabidopsis thaliana (famille des Brassicaceae) qu'un oligophage spécialiste de cette famille (Brevicoryne brassicae), ce dernier étant capable de discriminer des variations entre écotypes naturels. Ces variations concernent notamment la teneur en métabolites secondaires pouvant être répulsifs voire toxiques, mais aussi la structure de la paroi végétale. Parmi les gènes associés à ces modifications structurales et aux réponses de défense de la plante à un stress aphidien, quelques pectines méthylestérases (PME, E. C. 3. 1. 1. 11) sont induites durant les interactions plante-puceron. Les PME appartiennent à une famille multigénique (66 isoformes chez Arabidopsis thaliana) et contrôlent le degré de méthylestérification (DM) du principal domaine pectique : l'homogalacturonane (HG), un homopolymère constitués d'un enchaînement linéaire d'acides galacturoniques liés en α-(1-4). Le contrôle du DM des HG détermine les propriétés rhéologiques de la paroi (élasticité) et régule l'accessibilité d'enzymes dégradant les HG (polygalacturonases PG, pectate lyases) pouvant changer la porosité pariétale et produire des oligogalacturonides, éliciteurs endogènes de défense. L'activité des PME est donc susceptible d'influencer à la fois les réponses de défense de la plante et le comportement trophique du puceron. En utilisant une approche multidisciplinaire, nous avons démontré qu'une infestation par le puceron du pêcher (M. Persicae) modifie différemment selon l'écotype sauvage d'A. Thaliana (WS ou Col) la structure et la composition en sucres de la paroi, l'activité d'enzymes modifiant les HG (PME, PG) mais aussi l'expression de certains gènes de défense. Le rôle de deux pectines méthylestérases (PME17 et PME3) et d'un inhibiteur de PME (PMEI4) dans l'interaction A. Thaliana / M. Persicae a été mis en évidence en utilisant cette diversité d'approches. Des lignées mutantes ou surexpresseur présentent des effets totalement opposés sur le comportement trophique du puceron (électropénétrographie pendant 8 h) mais n'affectent pas sa physiologie (paramètres démographiques pendant 3 semaines). Ces effets sont corrélés à d'importantes variations en terme de structure pariétale et d'expression de gènes de défense, démontrant un effet pléïotropique propre à chacune des PME, mais aussi du PMEI4. Ces travaux soulignent les rôles potentiels de la paroi végétale et des PMEs dans la résistance contre les pucerons et apportent un nouvel éclairage sur la compréhension des mécanismes de défense de la plante
Aphids and plant cell wall : direct or indirect involvement of pectin methylesterases in Arabidopsis thaliana resistance
Aphids are phloem-feeding insects that generally insert their mouthpart (stylets) through the plant cell wall layers to reach the sieve elements and uptake phloem sap. During stylets progression in the apoplasm, most cells are briefly punctured intracellularly for probing. Plant defense responses to an aphid infestation appear to be quantitatively and qualitatively different from responses to other biotic stresses. Plant acceptance by an aphid depends on the level of plant resistance established and on its ability to feed on a more or less restricted range of plants. The study of their feeding behavior, monitored using the electropenetrography technique, showed that a polyphagous aphid (Myzus persicae) might be more adapted to Arabidopsis thaliana (Brassicaceae family) than an oligophagous aphid specialist of this family (Brevicoryne brassicae), this latter being able to discriminate variations between natural ecotypes. These variations concern in particular the content of secondary metabolites that could be toxic or repellent, but also the structure of the plant cell wall. Among the genes associated with cell wall modifications, some encoding pectin methylesterases (PMEs, EC 3. 1. 1. 11) are induced during plant-aphid interactions. PMEs belong to a large multigenic family (66 isoforms in A. Thaliana) and control the degree of methylesterification (DM) of the main pectic domain: the homogalacturonan (HG), an unbranched polymer of α-(1-4) linked D-galacturonic acid residues. The control of the DM of HGs determines the rheological properties of the cell wall (elasticity) and controls the accessibility of HG-degrading enzymes (polygalacturonases PGs and pectate lyases) able to change cell wall porosity and produce oligogalacturonides, endogenous defense inducers. PME activity is therefore likely to influence both the plant defense responses and the aphid probing behavior. Using a multidisciplinary approach, we demonstrated that an aphid infestation (M. Persicae) differently modifies cell wall structure and sugars composition of A. Thaliana Col and WS ecotypes, activities of HG-modifying enzymes (PMEs and PGs), as well as the expression of some defense genes. The role of two pectin methylesterases (PME17 and PME3) and an inhibitor of PME (PMEI4) in A. Thaliana - Myzus persicae interactions has been demonstrated using this wide range of approaches. Mutant and overexpression lines inversely affect the aphid trophic behavior (electropenetrography during 8 h) but don't affect its physiology (demographic parameters during 21 days). These effects are correlated with significant changes in term of cell wall structure and defense gene expression, underlining a pleiotropic effect specific to each PME and also of PMEI4. This work highlights the potential roles of plant cell wall and PMEs in the plant resistance against aphids and sheds new light on understanding the mechanisms of plant defense