
Aix-Marseille University
École Doctorale en Mathématiques et

Informatique de Marseille E.D 184

Faculté des Sciences
CNRS, Laboratory LSIS, UMR 7296

163, Avenue de Luminy 13288 Marseille cedex 9, France

PhD THESIS
in Computer Science

3D Modeling of elevation surfaces from voxel
structured point clouds extracted from seismic cubes

Presented by
NGUYEN Van Sinh

To obtain the Degree of Doctor of Aix-Marseille University

Defended on October 25, 2013 in front of the committee composed of:

Samir Akkouche Lyon 1 University Professor, Reviewer
Gudrun Albrecht Valenciennes University Professor, Committee Member
Alexandra Bac Aix-Marseille University Assoc.Professor, Co-Supervisor
Luc Biard Grenoble 1 University Assoc.Professor, HDR, Committee Member
Marc Daniel Aix-Marseille University Professor, Supervisor
Marc Neveu Dijon University Professor, Reviewer

Number assigned by the library

Acknowledgements

It is said that: “No guide, No realization”. Indeed, that is entirely true on the path of my

scientific research. During the time of my PhD research at Aix-Marseille University, I was

having a lucky opportunity to work with Professor Marc DANIEL and Associate Profes-

sor Alexandra BAC, my thesis advisors. First of all, I would like to express my utmost

gratitude to my supervisor Prof. Marc Daniel and co-supervisor Assoc. Prof. Alexandra

Bac, for their continuous support and enthusiastic guidance over the pass more than three

years. Their assistance throughout my years of study here has been invaluable. They have

made their great support available from the critical thinking to the analysis of a scientific

paper. They were willingly subjected to several early, very rough, versions of the papers,

this dissertation, and their many comments and suggestions have undoubtedly improve

things. I really learned from my advisors the way to study in science.

I would also like to thank and extend my appreciation to members of my reviewers and

thesis examination committees: Prof. Gudrun ALBRECHT, University Valenciennes; As-

soc.Prof.HDR Luc BIARD, University Grenoble 1; Prof. Marc NEVEU, University Dijon;

and Prof. Samir AKKOUCHE, University Lyon 1 for their serious evaluations, valuable

contributions and constructive suggestions.

This is also a great chance to show my appreciation and gratitude to all members, PhD

students of G-Mod research group in CRNS Laboratory LSIS 7296, who have supported

me during my study at Aix-Marseille University. I also thank Dr. TRAN Nam-Van and

Dr. Philippe Verney for their clear explanation of the previous work that they have done;

without their help, it is difficult for me to have finished this thesis.

The important issue to do this thesis is the finance. I am very honored and thankful to have

received a full scholarship which supported by a cooperation between Vietnam’s Govern-

ment (MOET) and France’s Government (Campus France) throughout the past few years.

I was incredibly grateful for my scholarships; without them, I would not be able to go to

France and study abroad. Besides, I have also supported the time by the International

University, Vietnam National University of Ho Chi Minh City. I would like to thank all

their valuable helps.

Finally, I deeply appreciate the encouragement and support from my family in Vietnam.

They always encourage, interest and motivate me in my work; they are also proud of me

and my work. Especially, my wife DO Thanh and my lovely son Bao-Khang always give

me limitless love and spiritual encouragement. She has been a source of constant support

throughout the many long days of mine spent working on this dissertation. For this, and

many other things, I am profoundly grateful.

NGUYEN Van Sinh

Résumé

L’Infographie est un domaine important de l’informatique largement utilisé dans le monde
réel. L’arrivée des cartes graphiques grand public rapides et peu coûteuses a conduit à un
important besoin de programmation des différentes tâches géométriques pour les applica-
tions, y compris les modèles informatiques, la visualisation scientifique, l’analyse d’images
médicales, la simulation et les mondes virtuels. Les types d’applications évoluent pour
profiter des avancées en modélisation géométrique (basée sur des modèles mathématiques).
Reconstruire des surfaces avec des données provenant d’une technique d’acquisition au-
tomatique entraîne toujours le problème de la masse des données acquises. Cela implique
que les procédés habituels ne peuvent pas être appliqués directement. Par conséquent,
un processus de réduction des données est indispensable. Un algorithme efficace pour un
traitement rapide préservant le modèle original est un outil précieux pour la construction
d’une surface optimale et la gestion des données complexes.
Dans cette thèse, nous présentons des méthodes pour construire une surface géologique op-
timale à partir d’une quantité énorme de points 3D extraits de cubes sismiques. Appliquer
le processus à l’ensemble des points induit un risque important de contraction de la surface
de sorte que l’extraction de la frontière initiale est une étape importante permettant une
simplification à l’intérieur de la surface. La forme globale de la surface sera alors mieux
respectée pour la reconstruction de la surface triangulaire finale. Nos propositions sont
basées sur la régularité des données qui permet, même si des données sont manquantes,
d’obtenir facilement les informations de voisinage.
Tout d’abord, nous présentons une nouvelle méthode pour extraire et simplifier la frontière
d’une surface d’élévation définie par un ensemble de voxels dans un grand volume 3D où
des données sont manquantes. Deuxièmement, une méthode pour simplifier la surface à
l’intérieur de sa frontière est présentée. Elle comprend une étape de simplification grossière
optionnelle suivie par une étape plus fine basée sur l’étude des courbures. Nous tenons
également compte du fait que la densité de données doit changer graduellement afin de
recevoir à la dernière étape d’une surface triangulée avec de meilleurs triangles. Troisième-
ment, nous avons proposé une nouvelle méthode rapide pour trianguler la surface après
simplification.
Mots-clés: Nuages de Points, Extraction de la Frontière, Simplification de la Frontière,
Simplification de surfaces, Triangulation.

Abstract

Computer graphics is an important field of computer science widely used in the real world.

The advent of fast and inexpensive consumer graphics hardware has led to an essential

demand for knowledge of how to program various geometric tasks for applications includ-

ing computational models, scientific visualization, medical image analysis, simulation, and

virtual worlds. The types of applications are themselves evolving to take advantage of the

advance in geometric modeling (based on mathematical models).

Reconstructing surfaces with data coming from an automatic acquisition technique always

entails the problem of mass of data. This implies that the usual processes cannot be applied

directly. Therefore, it leads to a mandatory data reduction process. An effective algorithm

for a rapid processing while keeping the original model is a valuable tool for constructing

an optimal surface and managing the complex data.

In this dissertation, we present methods for building an optimal geological surface from a

huge amount of 3D points extracted from seismic cubes. Applying the process to the whole

set of points induces an important risk of surface shrinking so that the initial boundary

extraction is an important step permitting a simplification inside the surface. The global

surface shape will then be better kept for the reconstruction of the final triangular surface.

Our proposals are based on the regularity of data which permits, even if data are missing,

to easily obtain the neighboring information.

Firstly, we present a new method to extract and simplify the boundary of an elevation

surface given as voxels in a large 3D volume having the characteristics to be sparse. Sec-

ondly, a method for simplifying the surface inside its boundary is presented with a rough

optional simplification step followed by a finer one based on curvatures. We also keep into

consideration that the density of data must gradually change in order to receive in the last

step a triangulated surface with better triangles. Thirdly, we have proposed a new and

fast method for triangulating the surface after simplification.

Keywords: Points Clouds, Boundary Extraction, Boundary Simplification, Surface Sim-

plification, Triangulation.

Contents

Acknowledgements . i
Résumé . iii
Abstract . iv
Table of Contents . v
List of Figures . viii
List of Tables . xiii
List of Algorithms . xiv
Nomenclature . xv

1 Introduction 1
1.1 Background and motivation . 1
1.2 Problem statement . 2
1.3 Objects and scopes . 3

1.3.1 Methodology . 3
1.3.2 Geological data model . 3

1.4 Thesis structure . 5

2 Previous Works on 3D Elevation Surface Modeling 7
2.1 Tran Nam-Van’s work . 8

2.1.1 Proposed methods . 8
2.1.2 Obtained results and existed problems 8

2.2 Philippe Verney’s work . 10
2.2.1 Images processing . 10
2.2.2 Structure of a sparse matrix . 11
2.2.3 From a sparse matrix to a 3D volume 13

2.2.3.1 Data analysis . 14
2.2.3.2 Proposed algorithm . 14
2.2.3.3 Results . 15

2.3 Conclusion . 16

3 Boundary Extraction and Simplification 17
3.1 Introduction . 17
3.2 Related work . 18

3.2.1 Boundary detection . 18
3.2.2 Boundary simplification . 21

v

3.3 Methods for boundary extraction . 22
3.3.1 Overview . 22
3.3.2 Definitions . 23

3.3.2.1 Definition of a square neighborhood 23
3.3.2.2 Definition of different types of boundary 24

3.3.3 Algorithms . 25
3.3.3.1 Extracting boundary by distance growing 26
3.3.3.2 Extracting boundary by clockwise scanning 28

3.3.4 Implementation . 29
3.4 Methods for boundary simplification . 30

3.4.1 Background and Definitions . 30
3.4.1.1 Line segment extraction 30
3.4.1.2 3D polyline simplification 31

3.4.2 Algorithm . 31
3.5 Results . 32

3.5.1 Boundary Extraction . 32
3.5.2 Boundary simplification . 32

3.6 Discussion and evaluation . 33
3.7 Conclusion . 38

4 Surface Simplification 39
4.1 Introduction . 39
4.2 Related work . 40

4.2.1 Simplification of triangular meshes 40
4.2.2 Simplification of point clouds . 41

4.3 Method for simplifying the inside of a surface 44
4.3.1 Rough simplification . 44

4.3.1.1 Overview . 44
4.3.1.2 Algorithm . 45

4.3.2 Elaborate simplification . 45
4.3.2.1 Overview . 45
4.3.2.2 Analysis . 46
4.3.2.3 Subdivision according to the boundary density 46

4.3.2.3.1 Notation and formula construction
. 47

4.3.2.3.2 Boundary density criteria
. 47

4.3.2.4 Subdivision according to the curvature 48
4.3.2.4.1 PCA flatness criteria

. 49
4.3.2.5 Algorithms . 50

4.4 Results . 52
4.5 Discussion and evaluation . 62

4.6 Conclusion . 62

5 Surface Triangulation 63
5.1 Introduction . 63
5.2 Related work . 65

5.2.1 The methods in 2D . 65
5.2.2 The methods in 3D . 67

5.3 Methods for triangulating the surface . 70
5.3.1 Overview . 70
5.3.2 Concepts, notation and definition 71
5.3.3 Building a seed triangle . 73
5.3.4 Searching conditions in one side of an edge 75
5.3.5 Delaunay Criterion . 75
5.3.6 Neighboring points search based on the voxel tracing 77

5.3.6.1 Computing the discrete mediatrix L 78
5.3.6.2 Computing the successive dilatations L′ 79
5.3.6.3 Algorithm based on the voxel traversal search 80

5.3.7 Triangulating a surface . 82
5.3.8 Processing the outside triangles on the boundary 83

5.4 Implement . 84
5.5 Results . 86
5.6 Discussion and evaluation . 89
5.7 Conclusion . 90

6 Conclusion and Future Work 93
6.1 Conclusion and contributions . 93

6.1.1 Boundary extraction . 94
6.1.2 Boundary simplification . 95
6.1.3 Rough simplification . 95
6.1.4 Elaborate simplification . 96
6.1.5 Surface triangulation . 97

6.2 Future work . 97

Bibliography 97

Appendix 105
Résumé . 105

List of Figures

1.1 3-D oblique view of a portion of the Black Warrior Basin (data from [Jr.06]).
Thin vertical lines are wells; semi-transparent surfaces outlined in black are
faults . 3

1.2 A geological model used in the oil exploration [Mas10] 4
1.3 Collection of geological data: a) by a marine seismic acquisition; b) by

processing seismic images . 4
1.4 General model of building an optimal geological triangulated surface 5

2.1 A geological surface simplified with method [BTD07]: a) initial model, 112kb
vertices; b) output model, 3kb vertices . 9

2.2 Before and after filling the holes of a geological surface [BTD08] 9
2.3 Before and after processing the fault of a geological surface [Tra08] 9
2.4 Extracting the information from geological images. [Ver09] 10
2.5 Filtering the information of seismic images. [Ver09] 11
2.6 Thinning of the reflections. [Ver09] . 12
2.7 Determining the surface and computing its thickness. [Ver09] 12
2.8 Sparse Matrix. [Ver09] . 13
2.9 3D points are extracted from the sparse matrix and insert into a 3D volume. 14
2.10 An elevation surface (346796 points) defined by a sparse 3D volume. 15
2.11 (a) An elevation surface of 257629 points; (b) An elevation surface of 886639

points. 16

3.1 A method to extract a boundary in [SS07] (e.g. ∠XpA: a smallest angle) . 19
3.2 Method to extract a boundary of Shen Wei [Wei08] 19
3.3 Method to extract a boundary of Xianfeng [XXFJ08] 20
3.4 Method to extract the boundary points of Kalogerakis [KNSS09] 21
3.5 Method to extract a boundary of Sait [SKM11] 21
3.6 Method to simplify the boundary of Douglas [DP73] 22
3.7 Method to simplify the boundary of Garrido and Meijers [GBGS98, Mei11] 22
3.8 The k_ring neighborhood with k = 3. 23
3.9 Topological boundaries of 8-connectivity 24
3.10 An exterior boundary with k = 1 . 25
3.11 2 cases to extract the exterior boundary 26
3.12 The growth algorithm based on distance. 27
3.13 The results of two cases with k = 2 . 28

viii

3.14 The growth algorithm based on clock-wise. 29
3.15 Compute the cartesian coordinates of q. 29
3.16 Simplify the 3D boundary . 31
3.17 Comparison of computing strategies between the methods: Sampath (a),

ShenWei (b) and Our method (c). 33
3.18 The processing time of boundary extraction usually depends on the param-

eter k, although sometimes it may be affected by the shape of the surface. 34
3.19 Rate of boundary simplification with different values of threshold t. 34
3.20 Extracting an exterior boundary of the surface with k = 1 and k = 3. The

shape of the boundary does not change on the convex parts of the surface
but created a hole. 35

3.21 The resolution of the exterior boundary of a geological surface is highest
with k = 1. 35

3.22 Extract an exterior boundary of the surface with different values of k. The
shape of the boundary has changed on the concave parts of the surface. . . 35

3.23 Exterior boundary in the case of a geological surface: (a) the original 15626
surface points and the extracted boundary 1025 points with k = 1; process-
ing time: 18 ms. (b) Simplified boundary with threshold t < 0.4; number
of boundary points: 660; rate of reduction: 35%; the red color points are
boundary points; the white color points (on the boundary) are simplified . 36

3.24 Before (a) and after (b) simplification; the boundary points reduce from 118
to 24; rate: 80%, while preserving the initial shape of this boundary (i.e.
the characteristic points are preserved). 36

3.25 An exterior boundary of a geological surface after extracting with many
values of k (if k = 1, the resolution of the boundary is high (highest);
otherwise, the resolution of the boundary is low and some small holes H are
created). 37

3.26 An exterior boundary of a geological surface after simplifying with many
values of t: a) the original boundary (boundary points: 1024); b) after
simplifying with t = 0.3 (boundary points: 381, simplification rate: 63%);
c) after simplifying with t = 0.5 (boundary points: 106, simplification rate:
90%). 37

3.27 The shape of the boundary has been changed on the concave parts after
extracting the boundary using many values of k. The resolution of the
boundary is inversely proportional to the value of k: the smaller the value
of k, the higher the resolution of the boundary; and in contrast, the more
increasing values of k, the more rough boundaries we obtain. 38

4.1 Simplification of a triangular mesh by edge-collapse [Gar99] 41
4.2 Non-edge pair (vi, vj) is contracted, joining previous unconnected area [Gar99] 41
4.3 Simplification of a 3D point cloud by using cluster [PGK02] 42
4.4 Determining of neighboring points [ZG10] 43
4.5 Clustering by passing messages between data points [FD07] 43

4.6 Decimation of 3D point clouds by using RBF, K-NN kernel [MWZ10] . . . 44
4.7 a) The size of a cell. b) The barycenter of the points (red color) in the cell. 45
4.8 2D illustration of the octree subdivision, we actually handle in the 3D struc-

ture. 46
4.9 The level of subdivision in a cell. 47
4.10 Computing the average subdivision level of neighboring cells (cell a is com-

puted based on cells b, c and d). 48
4.11 Estimation of the curvature in a cell: (a) Computing the orientation of

points; (b) The points are approximately on a plane within a cell (λ0 is
very small, λ1 and λ2 are large); (c) λ0 is large or (λ0 ' λ1 ' λ2 ' 1) or
(∂ ' 1/3) ⇒ this cell is subdivided. 50

4.12 Illustration of the elaborate algorithm. 51
4.13 Rough simplification: the shape of the initial surface is not preserved and

received results are not accurate using a large cell size. a) a geological sur-
face; b) after simplifying with cell size: s = 3 (∆max: 0.006, ∆avg: 0.0002);
c) after simplifying with cell size: s = 6 (∆max: 0.017, ∆avg: 0.0003). . . . 54

4.14 Shape comparison by computing the approximation error of the surface after
simplifying with the same size of neighboring distance: b) using the rough
method (∆max: 0.0142, ∆avg: 0.0004); c) using the cluster method (∆max:
0.0296, ∆avg: 0.0009). 55

4.15 Comparison of the shape of the surface between the two methods by using
the same size of neighboring distance: a) an input surface of 23559 points; b)
after using the elaborate method, remaining points: 2305, the approximation
error between (a) and (b) is ∆max: 0.007, ∆avg: 0.0007; c) after using the
cluster method, remaining points: 801, the approximation error between (a)
and (c) is ∆max: 0.015, ∆avg: 0.003. 57

4.16 a) Input surface with 66049 points; b) After simplifying by using the elab-
orate method (s=8, ∂ ≤ 0.09, remaining points: 1840), the points are con-
strained from the boundary to the inside; c) A good triangular surface can
be obtained in a further meshing step (the approximation error between (a)
and (c) is ∆max: 0.018; ∆avg: 0.002) . 57

4.17 Comparison of the shape of a geological surface: a) input surface of 664582
points; b) after simplifying by using the elaborate method (s=8, ∂ ≤ 0.15),
the simplification rate: 89%; the approximation error between (a) and (b)
∆max: 0.0248; ∆avg: 0.0004. 58

4.18 Comparison of the approximation errors: a) input surface with 2136 kb; b)
after simplifying by using the elaborate method, s=8, ∂ ≤ 0.12, the remain
data: 309 kb; the approximation errors between (a) and (b) are ∆max: 0.015;
∆avg: 0.0005; c) after simplifying by using the cluster method, cluster size
= 8, the remain data: 46 kb; the approximation errors between (a) and (c)
are ∆max: 0.034; ∆avg: 0.0014. 58

4.19 Determining of neighboring points. 62

5.1 2D Delaunay triangulation by using a uniform grid [FP93]. 66
5.2 Sweep-line DT triangulation by using an advancing front [DZ08]. 67
5.3 Intuitive illustration of Poisson reconstruction in 2D [KBH06]. 68
5.4 A 2D illustration of BPA algorithm [BMR+99]: a) a reconstructed curve

connects the points using a circle of radius ρ pivots; b) the sampling density
is too low to create the edges with the user-specified radius ρ; c) the user-
specified radius ρ is too large to reconstruct some high curvature regions. . 69

5.5 Reconstructing a triangular mesh based on IPD [LTW04]. 69
5.6 Triangulation of a 3D point cloud by projecting it onto the 2D grid. 71
5.7 Some concepts and notations used in the surface triangulation 71
5.8 A case of CDBE . 72
5.9 The general diagram of our method . 73
5.10 Determination of the first Delaunay edge. 74
5.11 Condition of non-intersection for generated triangles. 75
5.12 The voxels traversal search . 77
5.13 Iteration of Woo algorithm . 80
5.14 Computing the successive dilatations of the discrete mediatrix of ei. 81
5.15 a) The convex hull of a triangular surface; b) The outside triangles of the

boundary. 84
5.16 Determination of an outward triangle on the boundary. 84
5.17 Searching a neighboring point: a) computing the compactness; b) voxel

traversal search. 86
5.18 Comparison of the processing times between the methods: Computing the

compactness (CTC); Voxel traversal search (VTS) and Ball pivoting (BP).
On this graph, we do not plot the last example with 886639 points because
it is too far from other examples and therefore spoils the graph. 87

5.19 Processing the triangular faces on the boundary; (a) an input surface of
3D point clouds with boundary points (red color); (b) a triangular surface;
(c) after removing the outside triangles; similarity, (d) before and (e) after
deleting the outward triangles on the boundary. 88

5.20 a) A geological surface of 3D point clouds (232 kb). b) After simplifying by
using the elaborate method (cell size = 8, ∂ ≤ 0.12) and triangulating, the
size of surface: 18 kb; the approximation error between (a) and (b) is ∆max:
0.020; ∆avg: 0.0006; the triangular faces vary in density from the boundary
to the inside of the surface. 89

5.21 a) The input surface of 3D point clouds with 2629 kb. b) After simplifying
by using the elaborate method (cell size = 8, ∂ ≤ 0.09) and triangulating,
the size of surface: 68 kb; the approximation error between (a) and (b) is
∆max: 0.018; ∆avg: 0.002; the characteristics of the surface are well preserved. 90

6.1 Description of our methods for constructing an optimal geological surface. . 94
6.2 Boundary extraction of the geological surface. 95
6.3 Boundary simplification of the geological surface. 95

6.4 Rough simplification of the geological surface. 96
6.5 Elaborate simplification of the geological surface. 96
6.6 Triangulation of the geological surface. 97

List of Tables

4.1 Comparison between the rough method and the cluster method. We use the
same size of a neighboring distance between the points (cell size: s = cluster
size = 6), and run them on the same a computer. (p.output: output points;
s.rate: simplification rate) . 53

4.2 Comparison of the rough method: we use the different cell-sizes and run
them on the same a computer (s.rate: simplification rate). The results with
cell size (s=3) can be found in table 4.3 . 53

4.3 Comparison between the rough method (cell size s = 3) and the elaborate
method. Time1: the computing time by using only step2 (initial cell size
s = 8); Time2: the total computing time by using both steps (rough first:
cell size s = 3; then elaborate: initial cell size s = 8); p.output: output
points, s.rate: simplification rate. 56

4.4 Comparison of the best results between the cluster method (cluster size s=8)
and the global method (cell size: rough s=3; elaborate s=10). We run on
the same a computer. p.output: output points; s.rate: simplification rate. . 59

4.5 Comparison between the rough method (cell size s = 6) and the global
method. In the global method, we use both steps to simplify the surface
(rough first: cell size s = 6; then elaborate: initial cell size s = 10); p.output:
output points, s.rate: simplification rate. 60

4.6 Comparison between the rough method (cell size s = 8) and the global
method. In the global method, we use both steps to simplify the surface
(rough first: cell size s = 8; then elaborate: initial cell size s = 10); p.output:
output points, s.rate: simplification rate. 61

5.1 Comparison of the processing times between the methods. We use the same
input data points and run on the same a computer (Intel 2CoreDue, 2GB
of Ram). 87

xiii

List of Algorithms

2.1 ExtractCoordinates(file f) . 15
3.1 GrowthDistance(p) . 27
3.2 GrowthClockWise(p) . 28
3.3 SimplifyBoundary() . 31
4.1 RoughSimplification(s) . 45
4.2 SimplifyBoundaryCells(s) . 51
4.3 SimplifyInnerCells(s) . 52
5.1 Circumcircle(pi2, pi1, pi3) . 77
5.2 WooLine(ei, k, rl) . 79
5.3 SearchNeighbors(ei, pi3) . 82
5.4 MeshGenerating(S) . 83

xiv

Nomenclature

The list below contains the mathematical symbols and notations that are used most fre-

quently throughout the thesis:

G = the 2D grid (bounding box of the projection of the 3D point

clouds on the x, y plane)

S = the subset of cells containing projected points (S ⊆ G)

C = the regular grid of size s built over G

Np = the number of points in S

pi = a point ith in S

pb = a boundary point of surface S

k = the distance between points for determining a neighboring point

pn of pi (1 ≤ k (integer) ≤ threshold)

Sq = a cell on the 2D grid belonging to S

Nsq = the number of points in Sq
pq = barycenter of the points included in Sq
Cq = a cell (size s) on the 3D grid

Ncq = the number of points in each Cq
Nbp = the number of boundary points in Cq
Cv = covariance matrix

Tfirst = the first triangle face of triangular surface S

Tnext = the next triangle face which adjacent to Tfirst
4(p1, p2, p3)= a triangle formed by three points: p1, p2, p3

∠(p1, p2, p3)= an angle at p2

ei = an edge ith of a triangle face

eb = a boundary edge of a triangle face

kb = Kilobyte

ms = Millisecond

Chapter 1

Introduction

Contents
1.1 Background and motivation . 1

1.2 Problem statement . 2

1.3 Objects and scopes . 3

1.3.1 Methodology . 3

1.3.2 Geological data model . 3

1.4 Thesis structure . 5

1.1 Background and motivation
In recent years, the research cooperation between scientists in geology, computer science
and geometric modeling have been developed. From 2004, a scientific cooperation pro-
gram between the universities: Ecole des Mines de Paris, Poitiers University, Strasbourg
University, Laboratory LSIS (Aix-Marseille University) and the IFP (French Institute of
Petroleum) [Gui06, Tra08, Ver09] has started. The goal is to improve an innovative solu-
tion for simplification of the 3D model production of oil reservoirs. Thereafter, the software
productions have been developed as a tool for simulating and modeling the oil reservoir.
Among many tools, RML (Reservoir Modeling Line) is developed by IFP to construct a
structure model using parametric surfaces.
In 2006, an exhaustive study of the necessary functions for the development of geometrical
modeling conducted at the IFP has raised a set of issues. They decided to work on a new
version of this soft based on the project “Geological Evolution Scheme” and “Modeling
Guided by Geology” which can process the whole model. At present, one drawback of the
current tools is that they cannot handle a mass of data.
One associated research is the subject of this thesis: It concerns the creation of a geological
triangulated surface built from a huge amount of 3D points extracted from seismic cubes.

1

2 CHAPTER 1. INTRODUCTION

This is to be able to manipulate the resulting surfaces of geological interfaces in an inter-
active environment. The aim of this thesis is to combine geometry, topology and physics
to develop methods more efficient, robust and reliable than currently available tools in the
IFP.

1.2 Problem statement
The acquisition techniques allow obtaining the different data of oil reservoirs through seis-
mic acquisition. During many years, the data of oil reservoirs have been changed on both
quantity and structure. At present, our problem is to obtain a high quality definition of
oil reservoirs in order to get the best estimation of the potential petrol they may contain.
Promising results have already been obtained [Tra08, BDRT09, BTD08, BTD07] starting
from 3D scattered points. The main issue is the huge number of data points on these
surfaces.
The difficulty now is to be able to process a very large point clouds (a mass of data). The
input data are clouds of huge amount of uncertain 3D points, containing a lot of noise, rep-
resenting geological formation boundaries (horizons) and geological formation deformation
area (faults) on one side. In addition, 3D point clouds correspond to the intersection of
these geological events and well path trajectories. These clouds of points are characterized
by an important difference on the scale between the x, y plane (some kilometers) and the
z variation (some decimeters). In fact, a basin model can be reached from 10 to 100 km.
The quantity of information can be very large, up to several tens of millions of points.
So the memory, processing time and methods to process these surfaces should be studied
because the existing ways cannot handle them. Even if we can use more memory alloca-
tion (extension RAM, HDD), the time required to process these surfaces is currently not
acceptable.
In this research, the most important difference from the previous works comes from the
data. The received data were before a set of 3D points defined by x, y, z coordinates.
These data were in fact extracted from seismic information and a fine analysis shows us
that many data are missing. This leads to the methods developed in Van’s thesis [Tra08]
and there is a lock due to the mass of data.
These data were obtained from the treatment of seismic data organized in the 3D volume
as defined by Philippe Verney [Ver09]; and a fine study showed us that important infor-
mation exist in the 3D volume and were actually lost when compiled to obtain the x,y,z
file. Therefore, in this thesis, we decided to proceed data directly in this seismic cube. The
new data have been analyzed, simplified and organized in a matrix. Different information
of points are missing because the seismic acquisition does not permit to measure all the
points in the 3D volume. Therefore, this matrix is a sparse matrix. The fundamental point
is that data are known on a 3D regular grid. The neighborhood relationships are a great
advantage for 3D points processing. We can easily determine a neighboring point of a point
based on the distance between them. Having such neighborhood provides an opportunity
to have a completely different approach of the first processing yielding an acceptable tri-

1.3. OBJECTS AND SCOPES 3

angulation. Nevertheless, in this thesis, the problem of fault on the surface is not handled
because if two points exist with the same coordinates x, y but different z coordinates, this
has been discarded before our work.

1.3 Objects and scopes

1.3.1 Methodology
The objects and scopes of our work are focused on the methods and algorithms for surface
simplification, surface reconstruction and surface triangulation of 3D point clouds. We
introduce previous works on 3D elevation surface modeling in chapter 2. Thereafter, the
existing methods and our methods will be presented in detail in the next chapters.

1.3.2 Geological data model
In order to understand an overview of a geological data model, we introduce in this section
the existing methods for constructing a geological model and data automatic acquisition
technique. The 3D simulation techniques are applied in the field of geology. Richard et
al [Jr.06] provided an overview of the full techniques and methods for constructing a 3D
geological model (see figure 1.1).

Figure 1.1: 3-D oblique view of a portion of the Black Warrior Basin (data from [Jr.06]).
Thin vertical lines are wells; semi-transparent surfaces outlined in black are faults

The existing researches [BSP+04, Gui06, Tra08, Ver09, Mas10] in the oil exploration in-
dustry have shown that the computation, building and simulation of oil reservoir on the
computer are based on geometric modeling (see figure 1.2). In order to get the data of oil
reservoir, the scientists have used a special device to get the information of oil by using

4 CHAPTER 1. INTRODUCTION

an automatic acquisition technique or processing the seismic images (see figure 1.3). After
obtaining the data, they are processed and structured as 3D point clouds into a sparse
3D volume for the next surface processing. The description of data processing will be
completed in chapter 2.

Figure 1.2: A geological model used in the oil exploration [Mas10]

Figure 1.3: Collection of geological data: a) by a marine seismic acquisition; b) by pro-
cessing seismic images

1.4. THESIS STRUCTURE 5

1.4 Thesis structure
The general model of our work is described in figure 1.4. Starting from the input surface
of 3D point clouds, we first make an extraction and simplification of the boundary of the
surface. The surface inside its boundary is then simplified. The last work is triangulating
the surface after simplification.

Figure 1.4: General model of building an optimal geological triangulated surface

We present previous works for constructing a geological surface and seismic data processing
in chapter 2. Chapter 3 introduces the methods for boundary extraction and simplification
of a surface of 3D point clouds. In the first part, we present the definitions of an exterior
boundary of the surface. The second part, the methods for extracting this boundary are
presented in detail. In the third part, we present a method to simplify this 3D boundary.
In chapter 4, we propose the methods for simplifying the surface inside its boundary. This
method based on the subdivision following the boundary density of a surface, and according
to the curvature of the surface. Chapter 5 addresses a method for triangulating a surface
defined by a sparse 3D volume. The last chapter (Chapter 6) presents our conclusions,
discussions, evaluations, contributions and strategical directions for the future researches.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Previous Works on 3D Elevation
Surface Modeling

Contents
2.1 Tran Nam-Van’s work . 8

2.1.1 Proposed methods . 8

2.1.2 Obtained results and existed problems 8

2.2 Philippe Verney’s work . 10

2.2.1 Images processing . 10

2.2.2 Structure of a sparse matrix . 11

2.2.3 From a sparse matrix to a 3D volume 13

2.3 Conclusion . 16

Our works in this thesis are studied and developed based on the previous works of 3D
elevation surface modeling. In this section, we first review the methods for processing the
surfaces of 3D point clouds as it was done before. These methods such as simplification,
hole-filing and reconstruction a triangular mesh which have been proposed and presented
by Dr.Tran Nam Van [Tra08] in his PhD thesis in 2008. This presentation will allow the
reader to understand the important difference of approach we introduce in this thesis.
Then, we present in detail the processing of geological data, which leads to the data struc-
ture in a sparse 3D volume, starting point of the new approach. This work have been
studied and finished in the PhD thesis in 2009 by Dr.Philippe Verney [Ver09].
In order to understand this section, the reader only needs to know what is a planar trian-
gulation. A planar triangulation of a convex point set S is a set of triangles which entirely
cover S and where triangles intersect only in one point or one edge (no overlap). We will
propose more results on triangulation on chapter 5.

7

8 CHAPTER 2. PREVIOUS WORKS ON 3D ELEVATION SURFACE MODELING

2.1 Tran Nam-Van’s work
The work of Van’s thesis is a part of collaboration with the IFP - French Institute of
Petroleum. The starting data is a set of triangles obtained by a triangulation method
of the TTL library. The points which were triangulated were actually extracted from the
seismic 3D volume presented in the next section. All the neighboring information implicitly
existing in this volume was in fact lost.

2.1.1 Proposed methods
In the first work, he proposed a method for simplifying the triangular mesh surface where
vertices are clustered, followed by an iterative edge collapse step. More precisely, vertices
are first clustered into surface patches through an adaptive segmentation process (using
both absolute discrete curvature and principal component analysis); the edge collapse pro-
cess is based on quadratic error metrics [BTD07].
According to the characteristics of the geological surfaces and the data acquisition technol-
ogy (e.g. geo-seismic or geo-magnetic), data can miss in some regions of the surfaces, holes
exist on these surfaces. Such holes are not acceptable either for geologists or computer sci-
entists and can induce unexpected results when reconstructing the 3D models. For these
reasons, in the next step, he studied a method for filling the holes of a triangular surface.
The method consists in a multistep approach: first, holes areas are identified; second, fill
the holes; and the last, the surface is refined in order to preserve the initial shapes of the
surface [BTD08].
One of the specific characteristic in geological surfaces is the fault. This is a fracture of
geological layers (horizons) generated by landslides or volcano moving in the earth. In or-
der to improve the geological models, after the two above steps, he suggested a method for
detecting and reconstructing the faults of the surfaces. The method includes pre-processing
meshes, detection of faults, reconstruction and extrapolation of faults. The obtained results
of Van’s work are presented in the next section.

2.1.2 Obtained results and existed problems
The hybrid simplification method allowed Van to solve his initial problems, namely, to
simplify voluminous data while preserving strongly bend areas and curvatures. After sim-
plifying a triangular mesh, a large number of triangles are simplified while preserving the
original geometric shapes of the surfaces (see figure 2.1). This method can also be applied
to simplify any types of surface triangulation.
The next results obtained in this thesis are the methods for filling and fairing the holes
of the triangular meshes. Hole fairing is performed by minimizing a discretization of the
thin-plate energy, which avoids the estimation of normals, tangents and curvatures on the
hole neighborhood. This method produces meshes of good quality; the reconstructed sur-
faces are smooth and very close to the initial model. This method can be also applied for
the reconstruction of fault surfaces with ridge and ravine curves (see figure 2.2).

2.1. TRAN NAM-VAN’S WORK 9

Figure 2.1: A geological surface simplified with method [BTD07]: a) initial model, 112kb
vertices; b) output model, 3kb vertices

Figure 2.2: Before and after filling the holes of a geological surface [BTD08]

The last results but not least important is detecting, reconstructing and optimizing the
detected faults of the surfaces. Figure 2.3 is an illustration of this processing:

Figure 2.3: Before and after processing the fault of a geological surface [Tra08]

However, there exists a drawback in data processing. The computing of Delaunay Triangu-
lation for a geological triangular surface can be slow with a very large point cloud. Thus,
the geological data need to be pre-processed in order to reduce a number of data points

10 CHAPTER 2. PREVIOUS WORKS ON 3D ELEVATION SURFACE MODELING

before modeling the surfaces. The next section, we will describe a method for processing
the geological data of Philippe Verney in his PhD thesis.

2.2 Philippe Verney’s work
In Philippe Verney’s work [Ver09], the input data are seismic images. He suggested a
method to process these images in order to get the information of geological surfaces in a
seismic block. One of the output result is a sparse matrix, which stores the information,
attributes of geological model by voxels.

2.2.1 Images processing
In order to save the memory of the computer and reduce the size of a seismic block for
a further processing step, only the areas containing strong reflections (by analyzing the
geological images) are interesting. Then, this data are put into a table (see figure 2.4),
column by column with the following attributes:

- A seismic image is a lateral succession of traces (columns).

- Each trace (column) is composed by a vertical succession of positive and negative
ranges of values (values are called amplitudes and range of positive or negative values
are called reflections).

- Commonly, the highest absolute values of a range are located at the middle of a
range.

Figure 2.4: Extracting the information from geological images. [Ver09]

2.2. PHILIPPE VERNEY’S WORK 11

In a next step, he proposed a method for filtering these data to reduce the number of pixels
in the table. Figure 2.5 is an illustration, which presents a table with five traces (column),
related to a seismic section. Only the highest amplitude values are stored in the memory,
all blank cells are ignored. For example, the first reflection at the top left of the table has a
thickness of four pixels. After threshold, this thickness is reduced to two pixels. Therefore,
it can reduce a half of the required memory to store the table.

Figure 2.5: Filtering the information of seismic images. [Ver09]

However, the reflector associated with this reflection is only a surface passing through the
maximum of this reflection. So it is a surface that passes through a trace to a single point
and therefore has a thickness of one pixel. For this reason, he chose to thin any thickness of
each reflection to a single pixel. This pixel is arbitrarily fixed in the middle of the reflection
to provide a better lateral continuity. After two operations, it is possible to transform the
representation of a seismic image initially formed by a 3D matrix-full amplitude values into
a coarser form of a 3D matrix hollow. The last results are shown in figure 2.6.
The next step is detecting the surface; then, adding the attribute to the surface. As
presented in figure 2.7: on the left, the label is assigned by means of a surface ID of
connected voxels; on the right: the thickness computing.

2.2.2 Structure of a sparse matrix
The obtained results of geological images processing are stored in a sparse matrix (see
figure 2.8). It can be defined as follow:

- Sparse matrix is a partial information of a seismic block in 3D Grid.

- A sparse matrix contains a set of layers.

- A layer is a volume which is delimited by two or more horizons.

12 CHAPTER 2. PREVIOUS WORKS ON 3D ELEVATION SURFACE MODELING

Figure 2.6: Thinning of the reflections. [Ver09]

Figure 2.7: Determining the surface and computing its thickness. [Ver09]

- A horizon is a surface composed of two or more patches.

- A patch is a part of a surface containing a lot of voxels.

- A voxel is equivalent to one point in a 3D point cloud.

We can see on the left of figure 2.8 that there are a lot of empty voxels. Each non-empty
voxel in the sparse matrix has five attributes (one of them is the mathematical attribute
and four other are geological attributes) as below:

- Z index of a voxel (mathematical attribute) is the discrete index of the voxel in the
vertical dimension of the seismic cube.

2.2. PHILIPPE VERNEY’S WORK 13

Figure 2.8: Sparse Matrix. [Ver09]

- ID of the surface (horizon), the voxel is part of. (The ID of a surface is also the ID
of an horizon because an horizon is a surface composed of two or more patches; the
patches (belong to a surface) have the same ID of their surface).

- Thickness (width) of the surface (i.e. of the value range) at this location.

- Mean amplitude of the surface (i.e. of the value range) at this location.

- real Z position is the result transformed from Z index. (real Z is used in other
application and is not described in this presentation).

In the end, the structure of a sparse matrix looks like the right hand side of figure 2.8. The
sparse matrix is then stored into a dedicated structure where the number of colums are
the same but not the number of lines. For example, look at the right hand side of figure
2.8: number “2” (from the top-left conner) is an attribute belong to row two and column
one of figure on the left hand side; similarly, number “6” is row six and column one, etc.
Each voxel is identified by its column and its Z index in the original matrix.

2.2.3 From a sparse matrix to a 3D volume
In order to process the geologic surfaces in the sparse matrix, we first extract the 3D
coordinates (xyz) of each voxel from its five attributes in the sparse matrix. Then, insert
these voxels into a 3D volume. Thereafter, each voxel is considered as a 3D point, and
has three real coordinates xyz in this 3D volume (see figure 2.9). Finally, the 3D volume
contains a set of horizons (i.e. surfaces, because an horizon is a surface). There are some
data that have been discarded, but implicitly the 3D volume contains the neighborhood
information for each point. The method for extracting 3D points in the sparse matrix is
presented in the next section.

14 CHAPTER 2. PREVIOUS WORKS ON 3D ELEVATION SURFACE MODELING

Figure 2.9: 3D points are extracted from the sparse matrix and insert into a 3D volume.

2.2.3.1 Data analysis

As we described above, each voxel in the sparse matrix contains five attributes. They
are organized in a file, line by line. Each line corresponds to one column of the sparse
matrix (the same column of the original seismic matrix). One line can have more than 5
values; they are equivalent to the five attributes of voxel (Z index, ID of surface, width,
amplitude, and real Z). Each line can have (5×n) values where n is the number of voxels
of that column. For example: if a line contains 10 values, it means that the corresponding
column has two voxels; 15 values, means three voxels; etc. The sequence is always in the
same order: (Z index of voxel 1, ID surface (horizon), the voxel 1 belongs to, width of
voxel 1, amplitude of voxel 1, real Z of voxel 1); (Z index of voxel 2, ID surface of voxel
2, width of voxel 2, amplitude of voxel 2, real Z of voxel 2); etc.
This file includes thousands of lines (rows). The first line always contains three numbers,
representing three dimensions of the volume of this matrix (nX,nY ,nZ):

- nX: the number of cells we can find for one constant Y and one constant Z;

- nY : the number of cells we can find for one constant X and one constant Z;

- nZ: the number of cells we can find for one constant X and one constant Y ;

Actually, a voxel is a cell of a 3D grid. We have a 3D volume containing (nX × nY × nZ)
number of voxels/cells, but inside there are a lot of empty cells; and an empty cell is not
written on the file.

2.2.3.2 Proposed algorithm

From the above analysis, we did not see the values of coordinates x and y in every voxels.
There is only the Z index (first attribute of voxel in the sparse matrix) and also the

2.2. PHILIPPE VERNEY’S WORK 15

coordinate values z of voxels. The algorithm below (Algorithm 2.1) is used to extract the
coordinates (xyz) for each voxel.

Algorithm 2.1 ExtractCoordinates(file f)
1: read f ;
2: x = 0; y = 0;
3: readOneLine;
4: while not end of file do
5: print x, y, z (z from Z index of every voxels in line); //write to an output file
6: x+ +;
7: if x == nX then //nX is the first number of the first line of the file
8: assign the value of x back to 0;
9: y + +;
10: if y == nY then //nY is the second number of the first line of the file
11: exit;
12: end if
13: end if
14: readOneLine;
15: end while

2.2.3.3 Results

After implementing algorithm 2.1, the obtained results are a set of surfaces (horizons) of
3D point clouds defined by a sparse 3D volume. Each surface is composed of two or more
patches. An example is proposed in figure 2.10 and 2.11.

Figure 2.10: An elevation surface (346796 points) defined by a sparse 3D volume.

16 CHAPTER 2. PREVIOUS WORKS ON 3D ELEVATION SURFACE MODELING

Figure 2.11: (a) An elevation surface of 257629 points; (b) An elevation surface of 886639
points.

2.3 Conclusion
In this chapter, we have studied the methods proposed in the previous works for processing
the geological surfaces. From this study, we have discovered the disadvantage in Van’s work,
with which it can be difficult to handle huge 3D point clouds. We have reviewed a method
for processing the geological data in the PhD thesis of Philippe. The obtained results are
information of a seismic block structured in a sparse matrix. Based on this sparse matrix,
we propose in this thesis a method to directly obtain the simplified triangulation obtained
by Van.
The next chapter will present the extraction and simplification of the surface boundary.

Chapter 3

Boundary Extraction and
Simplification

Contents
3.1 Introduction . 17
3.2 Related work . 18

3.2.1 Boundary detection . 18
3.2.2 Boundary simplification . 21

3.3 Methods for boundary extraction . 22
3.3.1 Overview . 22
3.3.2 Definitions . 23
3.3.3 Algorithms . 25
3.3.4 Implementation . 29

3.4 Methods for boundary simplification . 30
3.4.1 Background and Definitions . 30
3.4.2 Algorithm . 31

3.5 Results . 32
3.5.1 Boundary Extraction . 32
3.5.2 Boundary simplification . 32

3.6 Discussion and evaluation . 33
3.7 Conclusion . 38

3.1 Introduction
Geometric modeling and surface processing often handle surfaces defined by data in 3D
volumes corresponding to a cube of voxels and which are a direct extension in 3D of pixels

17

18 CHAPTER 3. BOUNDARY EXTRACTION AND SIMPLIFICATION

and images in 2D. As a matter of fact, acquisition techniques often produce such data
structures. The most popularly encountered applications are in medicine with scanner and
MRI devices. Reconstructing surfaces with data coming from an automatic acquisition
technique always entails the problem of mass of data. It leads to a mandatory data reduc-
tion process. Applying the process to the whole set of points induces an important risk of
surface shrinking so that the initial boundary extraction is an important step permitting a
simplification inside it. The global surface shape will then be better kept. It is nevertheless
required to simplify the boundary, which can be done on the extracted boundary.
As we mentioned in chapter two, promising results have already been obtained [BDM05,
BTD07, BTD08, Tra08, BDRT09] starting from 3D scattered points. The main issue is the
huge number of data points these surfaces contain. Even with an important simplification
step, memory requirements are too high. We thus decided to start our processes directly
in the seismic cube (defined by Philippe Verney [Ver09] as presented in chapter two). One
of the main advantage of 3D volumes is the fact that they provide evident neighboring
relationships between voxels (contrary to scattered data which require an initial triangu-
lation). 3D volumes offer a valuable opportunity to directly simplify the data onto the
volume taking advantage of this natural connectivity. But applying the simplification to
the whole set of points will necessarily modify and shrink the boundary, which must be
avoided in order to keep the global shape of the surface. A particularity of seismic data is
their poor accuracy and the fact that many data are missing so that we have to handle a
sparse 3D volume, leading to specific problems justifying our current study.
We present in this chapter a new method to extract and simplify the boundary of an ele-
vation surface given as voxels in a large 3D volume having the characteristics to be sparse
since many data are missing. We first present our boundary definition based on math-
ematical relations between a point and its square neighborhoods. Second, we introduce
algorithms to extract such a boundary. Third, we simplify this boundary. In the next
section, we present works related to boundary detection for point clouds sampled from a
3D surface, and simplification algorithms for such boundaries.

3.2 Related work

3.2.1 Boundary detection
Determining the boundary of a surface is an important issue in the field of geometric
modeling. Traditionally, approaches computing the boundary of a surface either use the
convex hull or convex envelope of a set of 3D points. Other approaches are based on the
calculation of an angle or of the distance between points and theirs neighbors. Different
methods have been developed to extract the boundary [SS07, XXFJ08, Wei08, KNSS09,
SKM11], although, in some cases, the computation seems too slow.
Sampath et al (2007) [SS07] suggested a method by modifying the convex hull approach to
trace the boundary from airborne Lidar point clouds. Beginning with the left-most point
p, the next point pN on the boundary is defined as the one holding the minimal clockwise

3.2. RELATED WORK 19

angle with respect to p within a neighborhood. This process is repeated from the point
pN until the boundary is determined (see figure 3.1). This is a sound solution to trace the
regular boundary line of the surface. However, measuring the angles in order to identify
the smallest one around each point is a highly time-consuming computation.

Figure 3.1: A method to extract a boundary in [SS07] (e.g. ∠XpA: a smallest angle)

Shen Wei (2008) [Wei08] designed an algorithm (based on the well-known “Alpha Shapes
algorithm” of Edelsbrunner(1983) [EKS83]) to extract the boundary. Starting from any
point p1 within the point-set S, choose a point p2 with d(p1, p2) < 2α (if such point exist),
and draw a circle going through p1 and p2 with radius α (see figure 3.2a). The point p2
is chosen if there are no other points inside the circle, and then p1 and p2 are defined
as boundary points. They will thus be connected by a segment to obtain a boundary
line. Subsequently, the process is repeated from p2 (p2 now becomes p1 for the next point
pair) until all points within S are checked. This method allows extracting both inner
and outer boundaries of convex and concave polygon shapes, and leads to good results
(see figure 3.2b). Nevertheless, the computations between each pair of points (p1, p2)
and its neighboring points within S is repeated to find the boundary points and proves
computationally costly.

Figure 3.2: Method to extract a boundary of Shen Wei [Wei08]

20 CHAPTER 3. BOUNDARY EXTRACTION AND SIMPLIFICATION

A method is proposed by Xianfeng et al (2008) [XXFJ08] to trace the boundary from a
point cloud Sp based on an edge ratio constrain. The main idea of the algorithm is to use
the topological relationship between points, edges, triangles and other geometric features:
length, angle, etc to analyze and determine the boundary of Sp. The convex hull S of
Sp is computed by using a triangulation by an insertion algorithm. S allows defining an
initial boundary (see figure 3.3a). S is then optimized by using one or two short edges to
substitute the longer edge of each outer triangle based on an edge ratio constrain (see figure
3.3b). The process is iterated and is stopped when no line segment is longer than a given
threshold. This algorithm produces a non-convex boundary. However, the calculation is
repeated iteratively, to compare each edge of the triangle with a threshold line, leading to
an important computing time.

Figure 3.3: Method to extract a boundary of Xianfeng [XXFJ08]

Kalogerakis et al (2009) [KNSS09] presented an approach to determine the boundary points
in 3D. At first, the minimum neighborhood for each point pi in the initial data of point
clouds is determined by finding the points closest to it, after projecting a 3D point cloud
onto the local estimated tangent plane of pi. Then, the closest points for each of six 60o
slices around pi on this plane is taken into consideration. If there are no nearest points
in two or more continuous slices around pi, the point is recognized as a boundary point
(see figure 3.4). The process is then repeated for each point of the point set, in order to
find all the boundary points. This approach can be applied easily if the point clouds are
distributed in the sparse areas or they are located on the side of a convex surface. However,
in the case of dense data located on one side of a concave surface, such a method may fail:
as any neighborhood of pi may contain interior points, the empty slices criterion may fail
and hence space has to be split with angles lesser than 60o.
Boundary detection methods are also widely used in medical image processing. Sait et
al (2011) [SKM11] described a method to detect the boundary of a set of points based
on clustering. Beginning with the first point (called core point), a cluster is created as a
sphere of a radius α. Next, the convex hull of this cluster is computed. The cluster is then
iteratively expanded by repeating this process taking as core points those of the convex
hull. Afterward, each of the convex hulls of core points is combined with the main body
of the cluster. In principle, this operation corresponds to the union of two polyhedra. The

3.2. RELATED WORK 21

Figure 3.4: Method to extract the boundary points of Kalogerakis [KNSS09]

expansion and the combination of clusters will be stopped until no more point is found
and the last boundary comprises all the outer points (see figure 3.5).

Figure 3.5: Method to extract a boundary of Sait [SKM11]

The above methods are suitable for scattered data but are time consuming. As we use
voxels and their neighborhood information we can adapt these methods, to obtain faster
computation.

3.2.2 Boundary simplification
Boundary simplification is an important step in surface simplification. Indeed, most surface
simplification algorithms removing points or replacing clusters by representative vertices,
have a shrinking effect on the surface. Therefore, detecting, simplifying, while at the same
time preserving the boundary, can be considered as an essential advance over them. The
different points of the boundary are considered as successive points of a polyline.
Different existing methods are available for the simplification of polylines. Let us mention
the algorithm proposed by Douglas et al (1973) [DP73]. To process such polylines in 2D,
the author initially connects the first point to the last point of the polyline L(first, last).
All the remaining points are then checked. If the perpendicular distance from each point to
the line L is greater than a threshold, the farthest point F is chosen to add to simplification.

22 CHAPTER 3. BOUNDARY EXTRACTION AND SIMPLIFICATION

The next step consists in creating two new lines L1(firstpoint,F) and L2(F , lastpoint).
The operation is then repeated recursively on these two lines until the number of lines
remains stable (see figure 3.6).

Figure 3.6: Method to simplify the boundary of Douglas [DP73]

In another algorithm, introduced by A.Garrido et al (1998) [GBGS98], the dominant point
detection is based on a multiscale vision of boundaries. This algorithm has the same idea
with the algorithm proposed by Meijers (2011) [Mei11]. Given three consecutive points
which form a triangle 4(pi−1, pi, pi+1), the weight w is the perpendicular distance from pi
to the line pi−1 and pi+1. For each triangle T , if w < threshold value, then T collapses and
transforms from pi−1, pi, pi+1 to pi−1, pi+1 (see figure 3.7).

Figure 3.7: Method to simplify the boundary of Garrido and Meijers [GBGS98, Mei11]

These algorithms are implemented efficiently in regard to computing time and generally
produce good results in application. However, if the number of consecutive points greater
than three, are on the same line segments of the boundary, they are not completely sim-
plified because the algorithm only process on each three points which form a triangle.

3.3 Methods for boundary extraction

3.3.1 Overview
As we mentioned in the introduction, the data are organized in a 3D volume, which allows
determining easily the neighborhood of a point. In order to simplify such a surface without

3.3. METHODS FOR BOUNDARY EXTRACTION 23

any shrinking, it proves necessary to find, extract and simplify the boundary. Because the
3D point sets are sampled and originated from an elevation surface, the 3D cloud of points
is first projected onto a natural 2D grid in x, y plane.

3.3.2 Definitions
3.3.2.1 Definition of a square neighborhood

Definition 3.1. Let p be a cell of a 2D grid G, we define the k_square neighborhood of p
as:

SNk(p) = {p′ ∈ G; ‖p− p′‖∞ ≤ k} (3.1)

where ‖p− p′‖∞ denotes the discrete infinite distance of R2

Remark. Given a point p ∈ G, we call k_ring neighborhood of p denoted by RNk(p) the
set of p′ such that ‖p− p′‖∞ = k. k_square neighborhood of p contains (2k + 1)2 points
and its k_ring neighborhood contains 8k points. (see figure 3.8)

Figure 3.8: The k_ring neighborhood with k = 3.

Proof. As the side of the square SNk(p) is 2k+ 1, we obviously have |SNk(p)| = (2k+ 1)2.
Then, as RNk(p) = SNk(p)− SNk−1(p), we get |RNk(p)| = (2k + 1)2 − (2(k − 1) + 1)2 =
8k.

We use the notations below to denote the elements in SNk(p):

- Ek(p): the subset of empty cells in SNk(p).

- NEk(p): the subset of non-empty cells in SNk(p).

- SNk(p) = Ek(p) ∪NEk(p)

Different notions of boundary have been studied and precisely defined in fields of research
such as differential geometry (for continuous surface studies) and topology [CM91]. The
topological definition has also been extended to discrete surface (such as meshes) and
has been widely used in this setting. Most boundary notions coincide with topological

24 CHAPTER 3. BOUNDARY EXTRACTION AND SIMPLIFICATION

definitions: a point belongs to a boundary if none of its neighborhoods are included inside
the surface. In such a setting, boundary points therefore correspond either to the peripheral
points of an open surface, or to the boundary of holes. In our case, as we are interested in
identifying the periphery of an elevation surface in order to avoid a shrinking phenomena
during simplification, we will define the concept of “exterior boundary”, which will be
computed according to the k_square neighborhood connectivity. It is important to recall
that some points are missing, which requires specific processing.

3.3.2.2 Definition of different types of boundary

Depending on the computations we want to apply to the surface, we will use either the
classical topological boundaries or our exterior boundary (see below for definition). Both
contain boundary points belonging to S. Whereas the topological boundary can be used to
compute and determine the boundary of holes in a surface, processing an exterior boundary
line allows to avoid shrinking during the simplification of the surface. Let us first recall
the classical notion of topological boundary.

Definition 3.2. Topological boundary: A point p belongs to the topological boundary if its
neighborhood (classically for 4 or 8-connectivity) contains at least one point outside S. (see
figure 3.9)

Figure 3.9: Topological boundaries of 8-connectivity

Let us now define the notion of exterior boundary.
Note: as in our case there is a one to one correspondence between points and pixels/voxels,
in the sequel, we will freely speak about points or pixels/voxels. For instance, the definition
of SNk − connexion of points is also valid for pixels (and conversely).

Definition 3.3. Closed discrete SNk − curve:

- Two points p1 and p2 are called SNk−connected if p2 ∈ SNk(p1), or what is equivalent
p1 ∈ SNk(p2).

- A closed discrete SNk − curve is a sequence of pixels where each pixel is SNk −
connected with the previous and the next of the sequence.

3.3. METHODS FOR BOUNDARY EXTRACTION 25

- Let £ be a closed discrete SNk − curve. The interior and exterior of £ can be
defined by the classical approaches: either by means of solid angle or by the number
of intersection with half-lines drawn from the various points.

Definition 3.4. Exterior boundary: An exterior boundary of S is a closed discrete SNk −
curve £ of points of S such that S is in the interior of £. We will denote this boundary
by EBLk(S). (see figure 3.10)

Remark. Such an exterior boundary line is a compromise between the topological boundary
(or boundary of the connected component) and the convex hull envelope, and is suitable
when data are missing, as in our case. Let us also mention that such a boundary is not
unique in general. Hence, different strategies can be defined in order to compute such a
line.

Figure 3.10: An exterior boundary with k = 1

3.3.3 Algorithms
Our algorithm is related to Sampath et al (2007) [SS07], but as our data are organized
as pixels in a regular grid, we took an advantage of this structure: instead of computing
angles, which is computationally costly, we use the pixels neighborhood information to save
processing time. Moreover, our notion of exterior boundary provides a tool for extracting
a simplified boundary. Therefore, we developed a method to extract such an exterior
boundary starting from an initial boundary point of the surface. Our main objective
was to develop an efficient algorithm and control time and space complexity as much as
possible. In case the surface contains more than one SNk connected component (called
patch in the sequel), this algorithm can extract all exterior boundaries of these different
connected components.
Our algorithm starts from a point located on the exterior boundary. This initial point,
denoted by pF irst in the sequel, is computed by taking the point of minimum x and y
coordinate located on this boundary. Then, an exterior boundary is built point by point
by iteratively computing next point via growth function. We introduced two different such

26 CHAPTER 3. BOUNDARY EXTRACTION AND SIMPLIFICATION

growth functions (based on so called “distance” or “clockwise” criteria).
Thus, a central issue in our algorithm is the definition of this growth functions. Many
questions need to be carefully analyzed and answered in order to define it and determine
next point on the exterior boundary: following which direction, under which conditions,
following which rule? In this chapter, we suggest two alternate strategies. One of them
takes the distance between two points into consideration; the other consists in attempting
to reach the next point clock-wise in the shortest possible time. Both of them are computing
an external boundary for SNk (the border is followed in the clockwise direction, see figure
3.11).

Figure 3.11: 2 cases to extract the exterior boundary

We used the notations below in our algorithm iteratively, and at any step:

- p: the current point.

- q: the point in RNi(p).

- pPrev: the point previously computed on the boundary.

- In the sequel, we will call half-line: a discrete half-line for 8-connectivity.

- pPrevk: the intersection between RNk(p) and the half-line (p, pPrev)

- pF irst: the first boundary point used to extracting the boundary (explained previ-
ously).

3.3.3.1 Extracting boundary by distance growing

We define the first growth strategy, called distance criterion, which means that the priority
is always given to the nearest point. The corresponding algorithm (Algorithm 3.1) is as
follow:

3.3. METHODS FOR BOUNDARY EXTRACTION 27

Algorithm 3.1 GrowthDistance(p)
1: stop ← false, p = pF irst;
2: while !stop do
3: find ← false; i=1;
4: while i ≤ k and !find do
5: //we enumerate RNi(p) as depicted in figure 3.12.
6: for any q ∈ RNi(p) enumerated clockwise starting from pPrevk do
7: if one of the 4-neighborhood of q is empty then
8: pPrev ← p;
9: p← q;
10: find ← true;
11: end if
12: end for
13: end while
14: if p = pF irst then
15: stop ← true;
16: end if
17: end while

Remark. At the beginning, we start from the pixel p = pF irst. Then an exterior boundary
is built by iteratively computing next point p on the boundary. This pixel is the closest
point of S encountered when cycling clockwise from pPrev. Therefore, this first version of
our algorithm enumerates the successive ring-neighborhoods of SNk(p) starting from their
intersection with the half-line (p, pPrev). Therefore, this exterior boundary will be the one
whose pixels are the closest one from the other. This process ends when p hits pF irst (that
is p = pF irst), which means that the exterior boundary of one connected component has
been found. We apply the same method on each of them.

Figure 3.12: The growth algorithm based on distance.

The result of applying this algorithm is displayed on figure 3.13a. In this case, the boundary
cannot connect to the outside point of the surface although the distance between the
boundary points is less than or equal to k, because the priority is connecting to the first
nearest distance. However, the resolution of the boundary is high.

28 CHAPTER 3. BOUNDARY EXTRACTION AND SIMPLIFICATION

Figure 3.13: The results of two cases with k = 2

3.3.3.2 Extracting boundary by clockwise scanning

Our second strategy is called clockwise criterion. In this case, next point is chosen as the
most clockwise point of S encountered when cycling around p starting from the direction
(p, pPrev). Intuitively, this point can be imagined as echo response in a radar scan. The
corresponding algorithm (Algorithm 3.2) is as follow:

Algorithm 3.2 GrowthClockWise(p)
1: //We describe SNk(p) by enumerating the half-lines issued from p in a clockwise order

starting from the direction p, pPrev (see figure 3.14).
2: //At each step, pPrevk is the intersection between RNk(p).
3: stop ← false, p = pF irst;
4: while !stop do
5: compute pPrevk, the intersection between the half-line (p, pPrev) and SNk(p);
6: find ← false;
7: for any q ∈ RNk(p) enumerated starting from pPrevk and !find do
8: for i=1 to k do
9: qi ← intersection between RNi(p) and discrete segment (p, q).
10: if one of the 4-neighborhood of qi is empty then
11: pPrev ← p;
12: p← qi;
13: find ← true;
14: end if
15: end for
16: end for
17: if p = pF irst then
18: stop ← true;
19: end if
20: end while

Remark. In this case, the same as case 3.3.3.1, we also start from the pixel p = pF irst.
Then, the next step to find next point differently: we compute the first point of S, starting
from pPrev in a clockwise order; then the next point is found starting from the direction

3.3. METHODS FOR BOUNDARY EXTRACTION 29

from p to pPrev (see figure 3.14) following a clockwise order. Then RNk(p) is enumer-
ated circularly starting from pPrevk, the intersection between the half-line (p, pPrev) and
SNk(p) (we denote by q the successive points of RNk(p)). We determine the position of
q on RNk(p) based on a conversion between two coordinate systems for RNk(p) (see 3.4
Implementation). Therefore, the next point is the first point met on the successive (p, q)
half-line.

Figure 3.14: The growth algorithm based on clock-wise.

This algorithm computes an hybrid boundary: connected components of the surface nor-
mally separated in the classical 4 or 8-connectivity, can be simultaneously outlined if the
gap between them is less than k. And hence, our boundary is intrinsically a simplified
contour of the surface adapted to sparse data and possible (small) holes (see figure 3.13b).

3.3.4 Implementation
Let us give some hints on the implementation of the proposed algorithms. We have to
enumerate the ring-neighborhoods RNk(p) starting from a point pPrevk in a clockwise
order. We build a formula to compute the cartesian coordinates of q based on figure 3.15
as below:

Figure 3.15: Compute the cartesian coordinates of q.

We handled this problem by a double coordinate system: cartesian on the one hand, and a
cyclic numbering of RNk(p) together with the appropriate conversion functions. Besides,

30 CHAPTER 3. BOUNDARY EXTRACTION AND SIMPLIFICATION

the cartesian coordinates of q denoted by (xq, yq) are also calculated based on the cartesian
coordinates of pPrev, denoted by (xpPrev, ypPrev) and the parameter k following the formula
below:

(xq, yq) =
⌊
(xpPrev, ypPrev)×

k

‖(xpPrev, ypPrev)‖∞

⌋
(3.2)

And similarly:
(xqi

, yqi
) =

⌊
(xq, yq)×

m

k

⌋
;withm ∈ {1..k} (3.3)

3.4 Methods for boundary simplification

3.4.1 Background and Definitions
In this section, we introduce our method for simplifying the boundary. The exterior bound-
ary is a closed contour (p = pF irst). Therefore, we cannot apply the method introduced
in [DP73] to simplify a polyline directly. However, starting from the ideas of line and the
polyline simplification, together with the methods presented in [GBGS98, SC06, Mei11],
we combined them with our case to simplify the 3D boundary.
In general, we have a closed contour boundary extracted from a 2D set of points (xi, yi).
As our surfaces are elevation surfaces, actually, each such point corresponds to a single 3D
point (xi, yi, zi). Hence, there is a one to one correspondence between the 2D boundary
previously computed and the 3D boundary obtained by restoring z coordinates. We build
an algorithm to simplify the 3D boundary as below:
At first, we detect the line segments in the boundary by computing the coordinates of
points and the slope between points in the boundary. Then we apply the polyline simpli-
fication method on each line segment. Actually, we combine two steps: a trivial approach
of line segment in 2D, and a polyline simplification method on 3D boundary.

3.4.1.1 Line segment extraction

This step is a rough approach based on 2D in order to determine the line segments in the
boundary line for the next 3D polyline simplification step. Let {p1, .., pn} be the set of
boundary points (with p1 = pn); we denote by (xi, yi) the coordinates of pi. For each line
segment, we have Nps representing a number of points in this segment; in the sequel, we
will consider pairs of points at a distance of the line segment. For any i ∈ {1,..,n}, let SLi
be the slope of the sub segment [pi, pi+1] in the line segment, that is:

SLi = (yi+1 − yi)/(xi+1 − xi) (3.4)

Sequentially, for any point pi in the boundary, if they have a common coordinate, they are
added to the same line segment. If not, we will check the slope SLi of each pair of points in
a sequence. If they have the same value, then they are also added to the same line segment.
In fact, it is very easy to see that if points are aligned in 2D (see figure 3.16a), but they

3.4. METHODS FOR BOUNDARY SIMPLIFICATION 31

are not necessarily in 3D (there can even be strong slopes, see figure 3.16b). Therefore, we
based on these line segments (in 2D) to simplify them (in 3D) in the next step.

3.4.1.2 3D polyline simplification

Our boundary simplification (3D) is described as follows. For each line segment in the
boundary, we compute the perpendicular distance H from each point pi to the line L
pi−1, pi+1, which form a triangle 4(pi−1,pi,pi+1). If H is less than a threshold value t, then
pi will be removed. The next triangle is made up from 4(pi+1, pi+2, pi+3) (see figure 3.16);
Else, the next triangle starts from 4(pi, pi+1, pi+2), etc. We compute H, L and A(the area
of triangle) according to the formula of the distance between the 2D and the 3D points.

Figure 3.16: Simplify the 3D boundary

3.4.2 Algorithm
We defined an algorithm to simplify on each 3D line segment of the 3D boundary. The
corresponding algorithm (Algorithm 3.3) is as follow:

Algorithm 3.3 SimplifyBoundary()
1: Let Nps: the number of pi in each line segment.
2: for each line segment do
3: //we keep the first and the last point.
4: for any pi from 1 to Nps − 1 do
5: compute the perpendicular H;
6: if H < threshold value then
7: delete pi;
8: end if
9: end for
10: end for

Remark. The processing to simplify the 3D boundary is iteratively repeated on each line
segment of these boundary as we introduced in the 3.4.1.2. During the computing and the
removing of pi, the first and the last point of each line segment are kept. Therefore, after
simplification, the shape of the boundary is preserved.

32 CHAPTER 3. BOUNDARY EXTRACTION AND SIMPLIFICATION

3.5 Results

3.5.1 Boundary Extraction
In this section, we present a number of results to illustrate the algorithm to extract an
exterior boundary. Figure 3.20a shows the result of capturing an exterior boundary with
k = 1 (case 3.3.3.1). We use the same data file and apply Algorithm 3.2 to get an exterior
boundary with k = 3 (see figure 3.20b). In this case, a hole is created and the resolution
of the boundary is lower than when k = 1. We used the same data file and applied this
algorithm to get an exterior boundary with different values of k (see figure 3.22 and 3.25).
Figure 3.22a: an exterior boundary with k = 1; Figure 3.22b: an exterior boundary with
k = 2; Figure 3.22c: an exterior boundary with k = 3. Figure 21 is an exterior boundary
(k = 1) of a geological surface. Figure 3.23(a) shown an exterior boundary with k = 1,
extracted from the surface of 15626 points; processing time in 18 ms.
In our method, the shape of the boundary on the convex parts is not affected by the
values of k, but it has affected on the concave parts of the boundary. During the boundary
extracting process, the next point (on the boundary) is always scanned in a distance k from
the current point p starting from the previous point pPrev and following the clockwise
direction. Therefore, the resolution of the boundary on a convex part is very high with any
values of k (see figures 3.25 and 3.27). On the contrary, the resolution of the boundary is
higher if k close to 1 (highest if k = 1, see figures 3.21 and 3.23a) and lower if k far from
1 (especially on the concave parts, see figure 3.27: a, b, c, d). If we choose k greater than
1, some holes could be created on the surface (the higher values of k, the bigger holes are
created, see figures: 3.20b and 3.25). For this reason, our method allows to obtain different
results of the boundary depending on k.
The computing time for extracting the boundary is mostly depending on the value of k.
However, in some cases it also depends on the shape of the surfaces (see figure 3.18 for an
illustration). As we mentioned above, the shape of the boundary does not change on the
convex part of the surface. Therefore, the number of boundary points has reduced a little
if we increase k (i.e. on the concave parts of the boundary). The simplification rate of
the boundary points is mostly depending on the value of t (threshold). This point will be
detailed in the next section.

3.5.2 Boundary simplification
The results are presented on figures 3.23, 3.24 and 3.26. They depend on the choice of
the threshold value used in the Algorithm 3.3: if we chose a high value, a lot of points are
removed and the resolution of the boundary after simplification will be low. Otherwise,
the resolution of the boundary will be higher. Besides, the rate of reduction of points also
depends on the value of threshold t. On figure 3.23(b), the number of boundary points has
been reduced from 1025 to 660 points, approximate 35%; almost in the same proportion
as in figure 3.24(b).
In this method, the boundary shape of the surface and the simplification rate of the bound-

3.6. DISCUSSION AND EVALUATION 33

ary mostly depends on the value of t. The threshold t is high or low depending on the
choice of the user. For example, in figure 3.23 the initial curvature of boundary is low, so
we chose t ≤ 0.4; in figure 3.24, the initial curvature of boundary is higher and therefore we
chose t with a higher value. If we increase t, the simplification rate of the boundary is high
and a large number of boundary points is simplified. Figure 3.26 is an illustration: we first
chose t ≤ 0.3, the simplification rate is 63%; we then increased t ≤ 0.5, the simplification
rate rises 90% and the number of boundary points decreased from 1024 to 106 points. We
have tested on many surfaces by using the different values of t, the obtained results of
simplification rate are detailed in figure 3.19. However, the most important aspect of our
solution is that the original shape of the boundary did not change (see figure 3.24).

3.6 Discussion and evaluation
Let us give some elements on the efficiency of our boundary extraction approach compared
to existing algorithms (we will first study their respective complexities).
In the method of Sampath [SS07]: given a boundary point p, next point y on the boundary
is computed as the neighbor of p of minimal angle ∠xpy. Therefore, each step of this
method involves the computation of the neighbors of p (located within a sphere centered
at p) together with their angular slope with respect to the (px) line. Hence, the total
complexity of this approach for a N points boundary is N × k angle computations, where
k is the average number of neighbors (see figure 3.17a).

Figure 3.17: Comparison of computing strategies between the methods: Sampath (a),
ShenWei (b) and Our method (c).

In the case of ShenWei method [Wei08] (based on alpha-shapes), the method tests in the
worst case, M × (M −1) pairs of points, where M is the number of points of the surface S,
that is M = O(N2) with the previous notations (see section 3.2: Related works for more
details). For all of these pairs (p1, p2), the center p3 of the circle of radius α (see figure
3.17b) and leaning on (p1, p2) must be computed and all points belonging to this circle must
be detected, which leads to costly computations. In our method: for each boundary point
p, next point (pNext) is computed by enumerating the k square neighborhood clockwise
starting from the direction (p, pPrev), see figure 3.17c (see figure 3.14 more detail). Hence,
the complexity of this step is at most O(k2); but as we stop the enumeration as soon as a
neighbor is encountered, the average case is far lower. As a consequence, the complexity
of our method is only O(N × k2) where N is the number of boundary points. Therefore,

34 CHAPTER 3. BOUNDARY EXTRACTION AND SIMPLIFICATION

with respect to both previous methods, our approach proves more efficient. Figure 3.18
illustrates the computing time required by our method for numeric results. Figure 3.19
shows the boundary simplification rate of the surfaces.

Figure 3.18: The processing time of boundary extraction usually depends on the parameter
k, although sometimes it may be affected by the shape of the surface.

Figure 3.19: Rate of boundary simplification with different values of threshold t.

3.6. DISCUSSION AND EVALUATION 35

Figure 3.20: Extracting an exterior boundary of the surface with k = 1 and k = 3. The
shape of the boundary does not change on the convex parts of the surface but created a
hole.

Figure 3.21: The resolution of the exterior boundary of a geological surface is highest with
k = 1.

Figure 3.22: Extract an exterior boundary of the surface with different values of k. The
shape of the boundary has changed on the concave parts of the surface.

36 CHAPTER 3. BOUNDARY EXTRACTION AND SIMPLIFICATION

Figure 3.23: Exterior boundary in the case of a geological surface: (a) the original 15626
surface points and the extracted boundary 1025 points with k = 1; processing time: 18
ms. (b) Simplified boundary with threshold t < 0.4; number of boundary points: 660; rate
of reduction: 35%; the red color points are boundary points; the white color points (on the
boundary) are simplified

Figure 3.24: Before (a) and after (b) simplification; the boundary points reduce from 118
to 24; rate: 80%, while preserving the initial shape of this boundary (i.e. the characteristic
points are preserved).

3.6. DISCUSSION AND EVALUATION 37

Figure 3.25: An exterior boundary of a geological surface after extracting with many values
of k (if k = 1, the resolution of the boundary is high (highest); otherwise, the resolution
of the boundary is low and some small holes H are created).

Figure 3.26: An exterior boundary of a geological surface after simplifying with many
values of t: a) the original boundary (boundary points: 1024); b) after simplifying with
t = 0.3 (boundary points: 381, simplification rate: 63%); c) after simplifying with t = 0.5
(boundary points: 106, simplification rate: 90%).

38 CHAPTER 3. BOUNDARY EXTRACTION AND SIMPLIFICATION

Figure 3.27: The shape of the boundary has been changed on the concave parts after
extracting the boundary using many values of k. The resolution of the boundary is inversely
proportional to the value of k: the smaller the value of k, the higher the resolution of the
boundary; and in contrast, the more increasing values of k, the more rough boundaries we
obtain.

3.7 Conclusion
In this chapter, we presented a new method to extract and simplify the boundary of an
elevation surface defined into a 3D volume. This work was initially related to geological
surface modeling, which leads to handling (and hence simplifying) mass of data where
many information are missing, leading to a sparse 3D volume. Nevertheless, our approach
is generic and only depends on the particular structure of data, which allows us to propose
efficient algorithms to extract and simplify the boundary, and also to generalize the classical
boundary notions. By means of the SNk-connections we introduced, we are able to define
a notion of contour (exterior boundary) outling the surface continuously despite possible
small holes (that often occur in sparse or noisy data). Our method and obtained results
have been published in [NBD12, Ngu12].
In the next chapter (chapter four), we continue to simplify the surface of data points inside
the boundary, process which can be done without shrinking.

Chapter 4

Surface Simplification

Contents
4.1 Introduction . 39
4.2 Related work . 40

4.2.1 Simplification of triangular meshes 40
4.2.2 Simplification of point clouds 41

4.3 Method for simplifying the inside of a surface 44
4.3.1 Rough simplification . 44
4.3.2 Elaborate simplification . 45

4.4 Results . 52
4.5 Discussion and evaluation . 62
4.6 Conclusion . 62

4.1 Introduction
Simplification of a 3D point cloud belonging to a surface is an important step in geometric
modeling and surface processing. The purpose of surface simplification of a 3D point cloud
is to reduce the number of points, save the memory, improve the effect of computation and
optimize the processing of the geometric model. During simplification, the original shape
of the surface must be kept, without shrinking or deformations.
Nowadays, the modern 3D acquisition and modeling technology allow producing a large
amount of point samples from real-world objects. Different existing researches (and espe-
cially for meshes) are available for processing of the continuous surfaces, but the case of
3D point clouds simplification remains a challenging issue.
As we mentioned in the previous chapters, our problem originates in the questions of pro-
cessing large 3D point clouds issued from a seismic data (themselves extracted from a 3D

39

40 CHAPTER 4. SURFACE SIMPLIFICATION

sparse volume [Ver09]). The seismic acquisition does not permit to measure all the points
in the 3D volume that explain the fact that the 3D volume is sparse. The 3D points are
actually stored in a voxel structure in this volume (each voxel is considered as a 3D point,
and has three real coordinates xyz), hence implicitly the 3D volume contains neighboring
information even in a sparse context.
Most existing approaches have a common drawback: in the case of open surfaces (that
is surfaces with boundaries), simplification induces a shrinking of the surface. Hence, in
order to preserve the initial shape, our approach starts by an extraction and simplification
step of the boundary. In chapter three, we have proposed a method for extracting and
simplifying the boundary of a surface [NBD12, Ngu12]. In this chapter, we continue to
process the surface by introducing a new method for simplifying the inside of this surface.
To handle potentially huge clouds, our method consists of two steps: an optional initial
rough simplification (basically designed to adjust the sampling rate) followed by a more
elaborated simplification step. The point clouds are first projected onto a 2D grid in x, y
plane to process with the first step, while the second step is directly processed in the 3D
grid.
The contents in this chapter are organized as follows: firstly, we present the work related
to the surface simplification of a 3D point cloud as well as a triangular mesh. Secondly, we
detail our method which includes problem analysis, building the criteria and implementing
the algorithms. Thirdly, the results and evaluation of our method are presented in the
next sections.

4.2 Related work
The different existing methods for simplifying the surfaces which have been studied and
developed are not only applied to simplify the surface of 3D point clouds, but also applied
to simplify the surface of triangular mesh. Most of them (simplification methods) are
dedicated to simplification of meshes [Hop94, GH97, CG09, OVBP11] and more recently
(with the emergence of scanning devices), new algorithm appeared to directly simplify point
clouds [PGK02, SLK05, FD07, LT07, LJ08, SF09, MWZ10, ZG10]. Among them, PCA
(Principle Components Analysis) is a popular tool, a well known method [Jol02] that can
be used to simplify the surface of 3D point clouds [MVF04, Tra08, YsW06, BTD07, Bel08].

4.2.1 Simplification of triangular meshes
A well known method for simplifying a mesh model is presented by Garland (1999) [Gar99].
The algorithm uses iterative contractions of vertex pairs to simplify models and maintains
surface error approximations using quadric matrices. Starting from the initial model M1, a
sequence of pair contraction (v1, v2) is applied by computing the optimal contraction target
v̄. The edge ev1,v2 will be contracted to a new position v̄ if the quadratic error metric is
lesser than a threshold. The process is repeated until the simplification goals are satisfying.
The last model M2 approximates M1.

4.2. RELATED WORK 41

Figure 4.1: Simplification of a triangular mesh by edge-collapse [Gar99]

Figure 4.1 is an illustration (one vertex and two faces are removed from the model). In
contrast (see figure 4.2), contracting of a non-edge pair will remove one vertex and join
previously unconnected regions of the surface. By contracting arbitrary vertex pairs (not
just edges), this is also an advantage to support non-manifold surfaces.

Figure 4.2: Non-edge pair (vi, vj) is contracted, joining previous unconnected area [Gar99]

In order to preserve the shape of the surface and optimize the placement of vertices after
contraction, the quadric error matrices are also used to track the approximate error of
the model. This method is time and memory demanding, but it avoids distortion of the
original shape. However, evaluation of the quadratic error metric is closely related to the
mesh structure (and to the face neighborhoods). Hence, it cannot easily be adapted in our
setting.

4.2.2 Simplification of point clouds
In order to simplify a surface of 3D point clouds, many existing approaches are based on
a preliminary clustering of points, then each cluster will be replaced by one representative
point. Pauly et al (2002) [PGK02] introduced, analyzed, compared and implemented a
number of methods to simplify the surface of 3D point clouds. One of these methods is
called “Clustering" (see figure 4.3). The surface of 3D point clouds is clustered by split-
ting it into a subset of points; then, replace all points in each cluster by one representative
point. This region-growing is terminated when the size of the cluster reaches the maximum
bound. This method leads to simplifying the surface effectively. However, each cluster is
a sphere with a radius α on the surface. Therefore, the points outside these clusters are
not simplified completely after the iterative processing.

42 CHAPTER 4. SURFACE SIMPLIFICATION

Figure 4.3: Simplification of a 3D point cloud by using cluster [PGK02]

Boris et al (2004) [MVF04] proposed a method to reconstruct and smooth a surface from
noisy point clouds. At first, the authors smoothed the original point clouds to reduce the
noisy points by using a robust projection procedure, while keeping the shape of the surface.
During the next step, data of 3D point clouds are clustered by partitioning into a subset
of clusters based on BSP (Binary Spacing Partition) tree. Then, they applied PCA to
analyze, reduce the size of the original points, and determine a representative point for
each cluster. In the next step, a triangular surface is obtained from the representative
points of each cluster to obtain a rough surface which approximates the original surface.
This rough surface is finally refined to get an optimal one. This is a complete method for
surface reconstruction of a point cloud. However, the computing is complex during project-
ing, clustering, reducing, meshing and refining the point clouds, leading to a computation
heavy and costly.
Normally, to simplify the surface of 3D point clouds, we need to compute the neighbor-
ing points for each point. The problem is how to determine the neighboring points in a
local region of the surface to remove. Y.J Zhang et al (2010) [ZG10] proposed a way to
define the nearest neighbouring points by using a cylinder. The points are dropped into
a bounding cylinder based on the specified threshold (the radius of the cylinder); then,
they are projected on the line as its center axis to simplify the points inside (see figure
4.4). This idea is used in [PGK02]. For each iterative step, there are still points outside
of the cylinder; they are located between these cylinders; therefore, they are not simplified
completely.
Brendan J. Frey et al (2007) [FD07] presented a method (the “affinity propagation") to
cluster by passing messages between data points. This method measures the similarity of
each point-pair of the input data points. Each point in a point set is assigned as a node
of a network, the real-valued messages are exchanged between data points (nodes) along
the edge of the network until a high-quality set of exemplars corresponds to the cluster
which gradually emerge (see figure 4.5). During sending messages between the points, the
messages can be combined at any state to decide which points are exemplar, and which
exemplar the point belongs to. The clustering process will be terminated when all points

4.2. RELATED WORK 43

Figure 4.4: Determining of neighboring points [ZG10]

are considered and belong to their clusters. However, the cost of computing in this method
is expensive because the transmission process between the points is computed recursively.

Figure 4.5: Clustering by passing messages between data points [FD07]

Jae-Young et al (2005) [SLK05] and Tamal K.Dey et al (2011) [DDW11] introduced a
method by using an octree partitioning to divide the point clouds into a small subset, then
process on each subset as a node of an octree on 3D space and quadtree on the 2D grid.
At first, a rood node of a point cloud is divided into four in 2D or eight in 3D. Then, the
child nodes are recursively divided until satisfying the condition of the threshold. After
that, each node can be considered as a point during the simplification.
Rixio Morales et al (2010) [MWZ10] suggested a method to smooth and decimate the
points from an unstructured point cloud based on the radial based function RBF . The
method computed the distance between a central point and the nearest neighboring points
in each local point set of the surface by using kd-tree nearest neighbor method. Starting
from a seed point pi, the neighboring points pn are calculated by an Euclidean distance
‖pi − pn‖ to determine the radius r. All points within r are mapped from a 3D point set
to the 2D space; the point set components are mapped into each axis plane on each square
matrix MxMx3 in domain Nix,Niy,Niz. The next step is using a convolution Gaussian
Kernels function C = M ⊗G

(
µ,σd(k)

)
for each axis Nij to smooth and estimate the new

44 CHAPTER 4. SURFACE SIMPLIFICATION

center point in each component p′x,y,z. At the end, the 3D point sets are smoothed and
simplified according to the local surface features (see figure 4.6).

Figure 4.6: Decimation of 3D point clouds by using RBF, K-NN kernel [MWZ10]

As we have described and analyzed, the above methods are suitable for dispersive data
or unorganized point clouds but lead to an expensive computation. In our work, we take
advantage on the structure of voxels and their neighborhood information. We can adapt
these methods to simplify the surface efficiently; preserve the shape and point distribution
of the surface.

4.3 Method for simplifying the inside of a surface
Our method for simplifying the surface of 3D point clouds is based on clustering. Instead
of using a sphere, a cylinder or merging of 3D points by sending messages as presented in
[PGK02, FD07, ZG10], we use adaptive square cells to simplify the surface. The method
is described based on both steps presented in the following section.

4.3.1 Rough simplification
4.3.1.1 Overview

Rough simplification is a preliminary step designed to handle large point clouds: points
are imported in a fine regular grid and each non empty voxel is replaced by a single
representative vertex. Hence, the goal of this step is merely to adjust sampling density. In
this algorithm, 3D point clouds (organized in a sparse 3D regular grid) are first projected
onto the 2D grid in the x, y plane. This 2D point cloud (set of non empty voxels) is
subdivided according to a regular grid of size s (this size is defined by the user according
to the desired final sampling rate) (see figure 4.7). Then, each non-empty cell is replaced
by a single representative point: the barycenter of contained points. This step, even if

4.3. METHOD FOR SIMPLIFYING THE INSIDE OF A SURFACE 45

rough, can be justified in terms of resolution: it is merely a resolution adaptation (in case
the resolution of the data is too high compared to the expected results). The important
point in this step is that we will not simplify boundary points (as they have already been
handled in the previous work, chapter three); and this step should be applied using a small
cell size in order to avoid distorting the surface.

Figure 4.7: a) The size of a cell. b) The barycenter of the points (red color) in the cell.

4.3.1.2 Algorithm

As the size of the cells is small and as we want to preserve boundary points, if a cell contains
boundary points, no further representative vertex will be inserted, only included boundary
points are kept. Otherwise, if a cell does not contain boundary points, we compute the
barycenter of the points in this cell. Based on the description above, we propose a very
simple algorithm (Algorithm 4.1) with a linear complexity to roughly simplify the surface:

Algorithm 4.1 RoughSimplification(s)
1: for each cell Sq ∈ S do
2: if Sq contains boundary points then
3: keep only boundary points;
4: else
5: replace all points by pq;
6: end if
7: end for

4.3.2 Elaborate simplification
4.3.2.1 Overview

In this step, we focus on two main points to process the surface: curvature of the surface
and point density. We process the surface directly in the 3D grid. As previously, the sparse
3D grid (equivalent to the point cloud) is divided according to a regular 3D grid C. The
initial size of the cells of C is large (defined by the user) and elaborate simplification will

46 CHAPTER 4. SURFACE SIMPLIFICATION

further subdivide cells of C according to density and curvature criteria. If cells contains
boundary points, they are processed based on the combination between boundary density
and local curvature in these cells. Otherwise, subdivision is based on local curvature within
each cell and adapted to the size of neighboring cells. After simplification, the distribution
of points has to vary continuously; it must be constrained regularly from the exterior
boundary to the inside of the surface. This constraint is introduced to avoid creating bad
triangles (in the sense of Delaunay triangulation) in a further meshing step, detailed in
chapter five.

4.3.2.2 Analysis

Obviously, our rough preliminary simplification is too basic to reach high simplification
rates. It is useful only to adjust the resolution or as a first decimation for huge point
clouds (for which a more elaborate simplification cannot be applied directly because of
time and space complexity issues). Hence, this preliminary step is optional.
In the case of complex surfaces with a high curvature, simplification must be based both
on density and curvature criteria. For this reason, we develop an advanced algorithm to
simplify the surface more elaborately. This algorithm is based on an octree subdivision (see
figure 4.8) of the surface adapted to its curvature, point density and to the border density.
We will combine two subdivision criteria to simplify the surface: subdivision according to
the boundary density and subdivision according to the curvature.

Figure 4.8: 2D illustration of the octree subdivision, we actually handle in the 3D structure.

4.3.2.3 Subdivision according to the boundary density

An important issue is that point density should vary smoothly (in order to preserve the
shape of triangles in a further meshing step of the next chapter, chapter five). It must be
constrained continuously on the surface and propagate regularly from the boundary to the

4.3. METHOD FOR SIMPLIFYING THE INSIDE OF A SURFACE 47

inside of the surface. In order to subdivide cells according to the boundary density, we
have to build a subdivision criterion. At first, we analyze the density of boundary points
(number of boundary points in a cell) and their distribution. Our criterion is based on the
size of a cell, the number of boundary points and the distance between them.

4.3.2.3.1 Notation and formula construction
In order to construct the formula for our computations, we introduce the following

notations:
- dmax: the maximum distance between two boundary points in Cq,
- Ls: the level of subdivision of a cell (see figure 4.9),
- s′: the size of the smaller cells after each subdivision of Cq: s′ = s

2Ls .

Figure 4.9: The level of subdivision in a cell.

In our context, data points are organized based on a 3D grid structure, each point in a
cell has three real xyz coordinates and in the sequel, we will use the Euclidean distance
to compute the distance between points. Hence the maximum distance between boundary
points in a cell is given by:

dmax = max
i, j∈(1..Nbp); i 6=j

(‖pi − pj‖) (4.1)

4.3.2.3.2 Boundary density criteria
Subdivision according to boundary density is performed from cells containing bound-

ary points (called first ring) towards the surface interior (ring by ring, starting from
the boundary). In the sequel, we will denote by ri the ith ring of cells based on the 8-
connectivity (hence, r1 is the set of boundary cells). There is a relationship between the
density of points and the distance between them in a cell. Obviously, as the density of
boundary points in a cell increase, the distance between them will decrease. The formula:
D(density) = Np(number of points)/V (volume) can be applied to compute the density of
points on a volume. In our case, we focused on the number of boundary points Nbp in a
cell and its size s to calculate point density PD of that cell (PD = Nbp/s). Hence our
criterion is based on PD and dmax:

(PD > thresholdpd) and (dmax > thresholdd) (4.2)

48 CHAPTER 4. SURFACE SIMPLIFICATION

In order to preserve the shape of the surface for a further triangular meshing step, the size
of cells must vary smoothly. Therefore, for boundary cells (also called first ring cells), we
state a specific subdivision criterion: if a cell Cq (containing boundary points) satisfies the
first condition (4.2), then we check the size of Cq. If the size is less than or equal than a
threshold, we keep only boundary points; else, we keep boundary points and the barycenter
of inner points in that cell. Otherwise, Cq is subdivided (as an octree).
Starting from the second ring (which contains inner points of the surface), we subdivide
cells both according to the local curvature and previous ring cell sizes. Cells are processed
ring by ring from the outside to the inside of the surface. The cell size in ring ri is
subdivided according to the sizes of neighboring cells of ring ri−1 (the outside adjacent
ring of ri). It means that, if an inner cell satisfies the curvature criterion, we subdivide it
according to the average subdivision level of all nearest neighboring cells (see figure 4.10).
Let Cq ∈ ri and let {Ci−1

1 , . . . ,Ci−1
m } be the set of neighboring cells in ri−1, the subdivision

level of Cq is computed as:

size(Cq) = 1
m

m∑
j=1

size(Ci−1
j) (4.3)

In the end, the cell size varies smoothly; and if the curvature inside a cell is low, all points
in this cell are replaced by one representative point. In next section, we build a flatness
criteria in order to subdivide cells according to their curvature.

Figure 4.10: Computing the average subdivision level of neighboring cells (cell a is com-
puted based on cells b, c and d).

4.3.2.4 Subdivision according to the curvature

Our goal is to preserve the shape of the surface after simplification. In this section we
process the cells containing inner points, from the second ring to the inside of surface.
For each cell we apply a principal component analysis (PCA) to estimate the average local
curvature of the surface. We thus define a flatness criterion and subdivide cells accordingly.

4.3. METHOD FOR SIMPLIFYING THE INSIDE OF A SURFACE 49

4.3.2.4.1 PCA flatness criteria
PCA can be used as a useful statistical method to analyze data. This is a technique

that can be applied to simplify a surface of 3D point clouds (see [PGK02, MVF04, BTD07,
LT07, ZAMZ11]). In order to estimate the curvature or the flatness of a cell, we compute
the PCA of the vertices of the cell. The eigenvalues of the corresponding covariance matrix
provide a curvature information and we define accordingly a flatness criterion. Cells that
do not meet this flatness criterion are subdivided until either their size is lesser than a
threshold or they satisfy the criterion.
We use the formula below to compute the covariance matrix (Cv) for each cell:

Cv = 1
Ncq

Ncq∑
i=1

(pi − p̄) (pi − p̄)t ; (4.4)

Where:

- p̄: barycenter of points in Cq,
- λi, vi: the ith eigenvalue and ith eigenvector of Cv.

The eigenvectors of Cv provide information about the principal directions of a point set.
More precisely, the eigenvectors provide main axes of the cloud, while eigenvalues provide
its stretching along the corresponding axes. Hence, the eigenvector associated to the small-
est eigenvalue provides an average normal vector while both other eigenvalues are related
to principal curvatures.
Following the above analysis and applying the ideas introduced in [PGK02, MVF04, Bel08,
ZAMZ11], let us sort eigenvalues: λ0 ≤ λ1 ≤ λ2. If the value of λ0 is very small or even
equal 0, that means all the points in a cell are approximately on a plane (it satisfied the
flatness criteria). In such a case, the average normal vector on a local surface within a
cell can be determined based on the direction of v0. The flatness criterion “∂” below is
considered as a condition to further subdivide cells (and hence to control the simplification
of the surface):

∂ = λ0

λ0 + λ1 + λ2
(4.5)

For each point on the local surface, if their normal vectors are distributed isotropically,
these points will lie on the same plane. This solution is given by Hugues Hoppe [HDD+92]
to compute the orientation of the tangent plane (see figure 4.11a): for each data point pi, a
tangent plane is computed by least-squares approximation based on PCA of the k nearest
neighbor of pi.
In our case, we use the flatness criteria (4.5) to estimate the local curvature in a cell. The
minimum value of ∂ equal 0, while its maximum value equal 1/3, and our flatness criteria
are based on the range of these values. (see figure 4.11)

The curvature in a cell is first determined by computing ∂. Then, ∂ is compared with
a threshold value from the user. If ∂ ≤ threshold∂, we replace all points in this cell

50 CHAPTER 4. SURFACE SIMPLIFICATION

Figure 4.11: Estimation of the curvature in a cell: (a) Computing the orientation of points;
(b) The points are approximately on a plane within a cell (λ0 is very small, λ1 and λ2 are
large); (c) λ0 is large or (λ0 ' λ1 ' λ2 ' 1) or (∂ ' 1/3) ⇒ this cell is subdivided.

by one representative point. This way can simplify the surface efficiently and the ratio
of simplification is very high (if the points in that cell are approximately on a plane).
However, the density of points could vary irregularly after a large number of points have
been removed. For this reason, we have to combine with the computation of point density
and size of cells to constrain the distribution of points on the surface to be as regular as
possible.

4.3.2.5 Algorithms

According to the previous analysis, we now define our simplification algorithm. Our algo-
rithm covers cells ring by ring (starting from boundary cells to the inside of the surface),
each ring is processed clockwise direction (see figure 4.12).

We start from the first ring, blue color (i.e. the ring of boundary points). In this ring,
we begin with the left-most cell (1) and follow the clockwise direction to compute, subdi-
vide and simplify each cell. From the second ring (yellow color), we also begin with the
left-most cell (2) and so forth for following rings (third - green, fourth - pink, etc). The
algorithms below are used to simplify the surface: Algorithm 4.2 is used to process the
cells containing boundary points in the first ring. Algorithm 4.3 is used to process the cells
containing inner points from the second ring to the inside of surface.

4.3. METHOD FOR SIMPLIFYING THE INSIDE OF A SURFACE 51

Figure 4.12: Illustration of the elaborate algorithm.

Algorithm 4.2 SimplifyBoundaryCells(s)
1: Nbp = 0, Ls = 0; //start from the left-most cell, follow the clockwise direcrion.
2: for each boundary cell Cq(size s) ∈ S do
3: compute Nbp, dmax;
4: if Cq satisfy the density criteria(4.2) then
5: if size s ≤ thresholds then
6: keep only boundary points;
7: else
8: replace all points by boundary points and the barycenter of inner points;
9: end if
10: else //subdivide Cq by Ls.
11: Ls = Ls + 1;
12: s′ = s/(pow(2,Ls));
13: for each Cq(s′) ∈ Cq(s) do
14: if Cq(s′) contains boundary points then
15: SimplifyBoundaryCells(s′);
16: else
17: SimplifyInnerCells(s′);
18: end if
19: end for
20: end if
21: end for

52 CHAPTER 4. SURFACE SIMPLIFICATION

For each inner cell, we compute the curvature criterion (4.5). If it satisfies the threshold,
we first subdivide this cell based on formula (4.3); then, replace all points in each sub-cell
by their barycenter. Otherwise, we subdivide this cell and repeat the process until all
conditions of the criterion are satisfied.

Algorithm 4.3 SimplifyInnerCells(s)
1: Ls = 0; //start from the left-most cell, follow the clockwise direcrion.
2: for each inner cell Cq (size s) ∈ S do
3: compute the covariance matrix of points in Cq;
4: if Cq satisfy the flatness criteria(4.5) then
5: subdivide Cq based on (4.3);
6: replace all points by the barycenter in each sub-cell;
7: else //subdivide Cq by Ls.
8: Ls = Ls + 1;
9: s′ = s/(pow(2,Ls));
10: SimplifyInnerCells(s′);
11: end if
12: end for

In this step, our computing experiences have seen that the processing time mostly depends
on values of ∂; before and after combining with step one (rough simplification) (see table
4.3), and less depends on s (size of a cell). Normally, the number of points in a cluster (using
PCA) is around from 30 points [MD04, WCZ+08, MWZ10]. In our case, the curvature
within a cell of a geologic surface is low and the 3D points are sparse. Therefore, we
choose s ≤ 10 (that is initial cells containing at most 100 voxels) and many values of ∂ to
implement. As a result, the time is affected if the number of points in a cell greater than 36
or ∂ close to 0 and before combining with step one. We keep the boundary and combine two
steps (rough and elaborate) to simplify a surface; thus, the surface is simplified completely,
the initial shape of the surface is preserved, and the time is controlled.

4.4 Results
In this section, we present some of our results. In order to evaluate the quality of the sur-
faces generated by our methods, we used the Metro tool [CRS98] implemented in Meshlab
[Cou13] to compute the approximation error of the surfaces before and after simplification.
We compare the quality between S1 (the input surface of 3D point clouds) and S2 (the
output surface after simplifying S1) by computing approximation errors between them.
We measure both the maximum error ∆max(S1,S2), i.e. the two-sided Hausdorff distance,
and the mean error ∆avg(S1,S2), i.e. the area-weighted integral of the distance from point
to surface. This method and tool are also detailed and used in Pauly [PGK02].
For step one (rough simplification), the computations are very fast. The algorithm has been
tested on many surfaces with different numbers of points to compare the running time, the

4.4. RESULTS 53

simplification rate and the approximation error with the cluster method [PGK02] imple-
mented in Meshlab [Cou13] and named “Merge Close Vertices” inside the “filter clean”.
The cluster method and our rough simplification are not equivalent because in the rough
method, the boundary points are kept (after the boundary simplification detailed in chapter
3), which is not the case in the cluster method. The results are presented in table 4.1: the
computing time of our method is faster than the cluster method, while the simplification
rate is slightly lower (depending on the initial shape of the input surface) because we keep
the boundary points. For this reason, the approximation errors between the input surfaces
and the output surfaces of our method are lower than those with the cluster method (see
table 4.1).

Input Size of Rough method Cluster method
points bounding box p.output Time ∆max ∆avg p.output Time ∆max ∆avg

(x,y,z) (s.rate%) (ms) (s.rate%) (ms)
15626 303,110,28.5 1194(92.3) 26 0.017 0.0003 475(97) 163 0.019 0.0005
32402 382,161,73.3 1881(94) 36 0.029 0.0013 1297(96) 317 0.032 0.0015
60511 435,294,105.3 2942(95) 47 0.020 0.0005 1909(97) 609 0.032 0.0007
68956 586,411,88.9 3695(95) 53 0.023 0.0009 2758(96) 698 0.039 0.0018
148317 862,405,83.6 6368(96) 98 0.016 0.0006 4675(97) 1496 0.017 0.0006
346796 1162,652,132.7 13030(96) 206 0.032 0.0004 11068(97) 3556 0.037 0.0007
664582 1162,847,144.7 26583(96) 377 0.025 0.0003 19872(97) 7116 0.060 0.0004

Table 4.1: Comparison between the rough method and the cluster method. We use the
same size of a neighboring distance between the points (cell size: s = cluster size = 6), and
run them on the same a computer. (p.output: output points; s.rate: simplification rate)

Input Rough method: s = 6 Rough method: s = 8
points Output points Time ∆max ∆avg Output points Time ∆max ∆avg

(s.rate%) (ms) (s.rate%) (ms)
15626 1194(92.3) 26 0.017 0.0003 1103(93.5) 18 0.020 0.0007
32402 1881(94) 36 0.029 0.0013 1491(95) 26 0.045 0.0014
60511 2942(95) 47 0.020 0.0005 2299(96) 37 0.043 0.0011
68956 3695(95) 53 0.023 0.0009 3086(95.5) 49 0.028 0.0012
148317 6368(96) 98 0.016 0.0006 5100(96.5) 88 0.023 0.0010
346796 13030(96) 206 0.032 0.0004 12125(96.5) 191 0.034 0.0006
664582 26583(96) 377 0.025 0.0003 22595(96.6) 325 0.046 0.0005

Table 4.2: Comparison of the rough method: we use the different cell-sizes and run them
on the same a computer (s.rate: simplification rate). The results with cell size (s=3) can
be found in table 4.3

54 CHAPTER 4. SURFACE SIMPLIFICATION

In this rough simplification, the simplification rate is controlled by the cell size. In our
method, although the boundary points are kept to preserve the shape of the surface, this
approach does not take into account the curvature of the surface and hence is too rough
to be applied for receiving accurate simplified surfaces. If we use a larger cell size to
simplify, the received results are not accurate (see figure 4.13 and table 4.2), even if they
remain comparable with the cluster method. In parallel, the larger the cell size, the lower
the computing time. According to us, this step can only be applied to simplify a simple
surface of 3D points or to adjust the resolution of a 3D point cloud by using a small cell
size. In the cluster method, all points of the surface (boundary points and inner points)
are simplified, i.e. each cluster is replaced by one representative point. Therefore, the
simplification rate is higher, but the shape of the output surface is not well preserved (as
compared in figure 4.14). We now analyze our obtained results before and after combining
our two steps (rough and elaborate) to simplify completely the surface.

Figure 4.13: Rough simplification: the shape of the initial surface is not preserved and
received results are not accurate using a large cell size. a) a geological surface; b) after
simplifying with cell size: s = 3 (∆max: 0.006, ∆avg: 0.0002); c) after simplifying with cell
size: s = 6 (∆max: 0.017, ∆avg: 0.0003).

4.4. RESULTS 55

Figure 4.14: Shape comparison by computing the approximation error of the surface after
simplifying with the same size of neighboring distance: b) using the rough method (∆max:
0.0142, ∆avg: 0.0004); c) using the cluster method (∆max: 0.0296, ∆avg: 0.0009).

In step two (elaborate simplification), we have tested our approach on different surfaces
used in table 4.1 (with the same input points) to compare the results of the rough method
and the elaborate method with the different parameters. The results are detailed in table
4.3. In the elaborate method, we provide the different values of ∂ in order to show that: if
the value of ∂ is close to 0 (a lot of cells are subdivided), the obtained surface is smooth,
close to the initial surface (small simplification rate) and the processing time is low; oth-
erwise, if the value of ∂ is close to 1/3, the obtained surface is far from the original one
(higher simplification rate) and the running time is higher.

The second step of our procedure permits to receive surfaces close to the initial surfaces
(small errors). The final result does not depends on the rough simplification, but the
associated computing time is closely related with this initial simplification. In Table 4.3,
Time1 is the time required to simplify the surface without applying the rough simplification
since Time2 corresponds to the time required when combining both steps. The time is also
affected by the initial shape of the surface. If the curvature of the surface is high or the
initial shape of the surface is complex, it leads to a higher processing time for that surface.
One can also notice that most of the computing time is required to obtain the last percents
of simplification while preserving satisfactory errors. Preserving a regular distribution
of points evidently constraints the simplification rates compared to the cluster method.
Moreover, we have obtained output surfaces preserving the initial geometry of the surface
(as compared in figures 4.15, 4.17, 4.18). Figure 4.16 shows the result of point distribution
constrained from the boundary to the inside of the surface. As a result, a good triangular
surface can be obtained in a further meshing step.

56 CHAPTER 4. SURFACE SIMPLIFICATION

Input Rough Method Elaborate method
points p.output time ∆max ∆avg Values Time1 Time2 p.output ∆max ∆avg

(s.rate%) (ms) of ∂ (ms) (ms) (s.rate%)
∂ ≤ 0.03 856 574 1571(90) 0.013 0.0004

15626 2344(85) 33 0.006 0.0002 ∂ ≤ 0.12 851 568 1123(92.8) 0.020 0.0006
∂ ≤ 0.20 842 567 1071(93.2) 0.022 0.0007
∂ ≤ 0.03 1384 1186 5818(82) 0.009 0.0004

32402 7285(77.5) 37 0.005 0.0003 ∂ ≤ 0.12 1380 1179 5509(83) 0.010 0.0005
∂ ≤ 0.20 1371 1178 5185(84) 0.013 0.0005
∂ ≤ 0.03 5271 3231 9879(84) 0.007 0.0004

60511 12668(79) 57 0.005 0.0003 ∂ ≤ 0.12 5026 2958 9377(84.5) 0.010 0.0004
∂ ≤ 0.20 3776 2910 6786(89) 0.031 0.0009
∂ ≤ 0.03 5940 4031 15858(77) 0.007 0.0003

68956 18681(73) 70 0.006 0.0003 ∂ ≤ 0.12 5883 3993 14481(79) 0.009 0.0003
∂ ≤ 0.20 5764 3898 12413(82) 0.010 0.0004
∂ ≤ 0.03 22106 14194 21122(86) 0.004 0.0003

148317 28137(81) 128 0.003 0.0001 ∂ ≤ 0.12 21167 13825 20820(86) 0.005 0.0003
∂ ≤ 0.20 15896 12079 18916(87) 0.024 0.0004
∂ ≤ 0.03 114795 111362 56448(84) 0.004 0.0002

346796 72089(79) 264 0.003 0.0001 ∂ ≤ 0.12 111289 107309 52187(85) 0.005 0.0003
∂ ≤ 0.20 110623 101544 50112(86) 0.032 0.0005
∂ ≤ 0.03 910160 170636 75112(88.7) 0.020 0.0003

664582 76702(88.5) 387 0.019 0.0002 ∂ ≤ 0.12 909040 170553 73105(89) 0.022 0.0004
∂ ≤ 0.20 909002 170550 63136(90.5) 0.040 0.0006

Table 4.3: Comparison between the rough method (cell size s = 3) and the elaborate
method. Time1: the computing time by using only step2 (initial cell size s = 8); Time2:
the total computing time by using both steps (rough first: cell size s = 3; then elaborate:
initial cell size s = 8); p.output: output points, s.rate: simplification rate.

4.4. RESULTS 57

Figure 4.15: Comparison of the shape of the surface between the two methods by using
the same size of neighboring distance: a) an input surface of 23559 points; b) after using
the elaborate method, remaining points: 2305, the approximation error between (a) and
(b) is ∆max: 0.007, ∆avg: 0.0007; c) after using the cluster method, remaining points: 801,
the approximation error between (a) and (c) is ∆max: 0.015, ∆avg: 0.003.

Figure 4.16: a) Input surface with 66049 points; b) After simplifying by using the elaborate
method (s=8, ∂ ≤ 0.09, remaining points: 1840), the points are constrained from the
boundary to the inside; c) A good triangular surface can be obtained in a further meshing
step (the approximation error between (a) and (c) is ∆max: 0.018; ∆avg: 0.002)

58 CHAPTER 4. SURFACE SIMPLIFICATION

Figure 4.17: Comparison of the shape of a geological surface: a) input surface of 664582
points; b) after simplifying by using the elaborate method (s=8, ∂ ≤ 0.15), the simplifica-
tion rate: 89%; the approximation error between (a) and (b) ∆max: 0.0248; ∆avg: 0.0004.

Figure 4.18: Comparison of the approximation errors: a) input surface with 2136 kb; b)
after simplifying by using the elaborate method, s=8, ∂ ≤ 0.12, the remain data: 309
kb; the approximation errors between (a) and (b) are ∆max: 0.015; ∆avg: 0.0005; c) after
simplifying by using the cluster method, cluster size = 8, the remain data: 46 kb; the
approximation errors between (a) and (c) are ∆max: 0.034; ∆avg: 0.0014.

4.4. RESULTS 59

Input Cluster method Global method
points p.output Time ∆max ∆avg Value p.output Time ∆max ∆avg

(s.rate%) (ms) of ∂ (s.rate%) (ms)
∂ ≤ 0.03 1250(92) 415 0.014 0.0005

15626 438(97.2) 133 0.025 0.0007 ∂ ≤ 0.12 1093(93) 312 0.021 0.0006
∂ ≤ 0.20 1077(93.1) 305 0.022 0.0007
∂ ≤ 0.03 5369(83.4) 994 0.011 0.0005

32402 1135(96.5) 303 0.098 0.0024 ∂ ≤ 0.12 5221(83.8) 883 0.012 0.0005
∂ ≤ 0.20 5100(84.3) 847 0.014 0.0006
∂ ≤ 0.03 9246(85) 2500 0.011 0.0005

60511 1634(97.3) 477 0.043 0.0014 ∂ ≤ 0.12 8747(85.5) 2216 0.013 0.0006
∂ ≤ 0.20 5786(90) 2001 0.032 0.0010
∂ ≤ 0.03 15567(77.5) 4318 0.008 0.0003

68956 2414(96.5) 544 0.057 0.0013 ∂ ≤ 0.12 14558(79) 4049 0.009 0.0003
∂ ≤ 0.20 12531(82) 3715 0.010 0.0004
∂ ≤ 0.03 20290(86.3) 14194 0.006 0.0003

148317 4153(97.2) 1149 0.024 0.0007 ∂ ≤ 0.12 19022(87) 13825 0.007 0.0003
∂ ≤ 0.20 17196(88.4) 12079 0.025 0.0004
∂ ≤ 0.03 54073(84.4) 97309 0.005 0.0003

346796 9364(97.3) 2766 0.084 0.0015 ∂ ≤ 0.12 51157(85.3) 87138 0.006 0.0004
∂ ≤ 0.20 49073(86) 82538 0.033 0.0005
∂ ≤ 0.03 73104(89) 170636 0.022 0.0004

664582 17280(97.4) 5793 0.099 0.0014 ∂ ≤ 0.12 69781(89.5) 170553 0.024 0.0005
∂ ≤ 0.20 59812(91) 170550 0.042 0.0007

Table 4.4: Comparison of the best results between the cluster method (cluster size s=8)
and the global method (cell size: rough s=3; elaborate s=10). We run on the same a
computer. p.output: output points; s.rate: simplification rate.

In table 4.4, we also use the same input surfaces implemented in table 4.1 of the cluster
method in order to compare with our global method (combination of the two steps), en-
tering for both what we consider as the best input parameters. In the cluster method, we
use a cluster size = 8. In the global method, we first use a cell size: s = 3 with the rough
method; we then use a cell size: s = 10 with the elaborate method and different values of ∂
(as presented in table 4.3). The results show that the processing time of the global method
is higher, the simplification rate is lower, but the approximation errors are largely better.
Table 4.4 emphasizes that the two methods are difficult to compare. It is the reason why
we try to decrease the quality of our results in order to be able to make a comparison with
the cluster method. We use the rough simplifications studied in Table 4.2 and then apply
our elaborate simplification. The results are gathered in Table 4.5 and 4.6 and have to be
compare with the left side of Table 4.4. The results evidently depends on each surface but
the tendency is clear. We can obtain higher simplification rate, computing times closer to
the cluster method while receiving better errors.

60 CHAPTER 4. SURFACE SIMPLIFICATION

Input Rough Method Global method
points p.output Time ∆max ∆avg Values Time p.output ∆max ∆avg

(s.rate%) (ms) of ∂ (ms) (s.rate%)
∂ ≤ 0.03 159 1089(93) 0.018 0.0004

15626 1194(92.3) 26 0.017 0.0003 ∂ ≤ 0.12 142 1015(93.5) 0.020 0.0005
∂ ≤ 0.20 138 938(94) 0.026 0.0007
∂ ≤ 0.03 489 1879(94.2) 0.029 0.0013

32402 1881(94) 36 0.029 0.0013 ∂ ≤ 0.12 425 1717(94.7) 0.031 0.0014
∂ ≤ 0.20 399 1620(95) 0.032 0.0014
∂ ≤ 0.03 1844 2723(95.5) 0.022 0.0006

60511 2942(95) 47 0.020 0.0005 ∂ ≤ 0.12 1721 2601(95.7) 0.023 0.0006
∂ ≤ 0.20 1685 2360(96.1) 0.033 0.0010
∂ ≤ 0.03 3518 3103(95.5) 0.024 0.0009

68956 3695(95) 53 0.023 0.0009 ∂ ≤ 0.12 3429 2758(96) 0.026 0.0010
∂ ≤ 0.20 3231 2552(96.3) 0.029 0.0011
∂ ≤ 0.03 12692 6132(96) 0.017 0.0006

148317 6368(96) 98 0.016 0.0006 ∂ ≤ 0.12 11587 5636(96.2) 0.020 0.0007
∂ ≤ 0.20 10852 5191(96.5) 0.026 0.0008
∂ ≤ 0.03 70019 12831(96.3) 0.033 0.0004

346796 13030(96) 206 0.032 0.0004 ∂ ≤ 0.12 62453 12131(96.5) 0.034 0.0004
∂ ≤ 0.20 58931 11444(96.7) 0.036 0.0005
∂ ≤ 0.03 108811 25254(96.2) 0.027 0.0004

664582 26583(96) 377 0.025 0.0003 ∂ ≤ 0.12 95671 23924(96.4) 0.028 0.0005
∂ ≤ 0.20 89367 21931(96.7) 0.043 0.0007

Table 4.5: Comparison between the rough method (cell size s = 6) and the global method.
In the global method, we use both steps to simplify the surface (rough first: cell size s = 6;
then elaborate: initial cell size s = 10); p.output: output points, s.rate: simplification rate.

4.4. RESULTS 61

Input Rough Method Global method
points p.output Time ∆max ∆avg Values Time p.output ∆max ∆avg

(s.rate%) (ms) of ∂ (ms) (s.rate%)
∂ ≤ 0.03 145 1012(93.5) 0.020 0.0005

15626 1103(93.2) 18 0.020 0.0007 ∂ ≤ 0.12 138 985(93.7) 0.023 0.0006
∂ ≤ 0.20 135 938(94) 0.027 0.0007
∂ ≤ 0.03 420 1482(95.2) 0.046 0.0014

32402 1491(95) 26 0.045 0.0014 ∂ ≤ 0.12 379 1471(95.3) 0.046 0.0014
∂ ≤ 0.20 333 1325(95.6) 0.048 0.0015
∂ ≤ 0.03 1796 2231(96.2) 0.044 0.0011

60511 2289(96) 37 0.043 0.0011 ∂ ≤ 0.12 1678 2210(96.3) 0.045 0.0011
∂ ≤ 0.20 1586 2117(96.5) 0.051 0.0012
∂ ≤ 0.03 3452 3034(95.6) 0.028 0.0012

68956 3086(95.5) 49 0.028 0.0012 ∂ ≤ 0.12 3371 2869(96.1) 0.029 0.0013
∂ ≤ 0.20 3120 2413(96.5) 0.033 0.0014
∂ ≤ 0.03 11987 5042(96.6) 0.023 0.0010

148317 5100(96.5) 88 0.023 0.0010 ∂ ≤ 0.12 11218 4746(96.8) 0.024 0.0011
∂ ≤ 0.20 10452 4449(97) 0.028 0.0012
∂ ≤ 0.03 63120 12120(96.5) 0.034 0.0006

346796 12125(96.5) 191 0.034 0.0006 ∂ ≤ 0.12 59921 11791(96.6) 0.036 0.0007
∂ ≤ 0.20 57821 10403(97) 0.038 0.0008
∂ ≤ 0.03 9756 21266(96.8) 0.047 0.0005

664582 22595(96.6) 325 0.046 0.0005 ∂ ≤ 0.12 8891 20602(96.9) 0.047 0.0006
∂ ≤ 0.20 8895 19937(97) 0.049 0.0008

Table 4.6: Comparison between the rough method (cell size s = 8) and the global method.
In the global method, we use both steps to simplify the surface (rough first: cell size s = 8;
then elaborate: initial cell size s = 10); p.output: output points, s.rate: simplification rate.

In conclusion, the advantages of the rough and the cluster methods are the running times
and the simplification rates which can be reached, but the approximation errors are im-
portant. In the rough simplification, we have a better control of the global shape. In our
elaborate method, the most important point is to preserve the characteristics of the origi-
nal surface while reaching low approximations errors. The counterpart is higher computing
times but experiments show that a compromise can be received, if required, in order to
quickly simplify surfaces with good accuracies.

62 CHAPTER 4. SURFACE SIMPLIFICATION

4.5 Discussion and evaluation
Our method has two advantages compared to existing methods. First, we use a cell to
gather and compute the points in a local neighborhood to simplify the surface. By using
a cell, there are no outside points between the cells; only one loop is used to consider all
points of the surface. On the contrary, the other methods [PGK02, ZG10] use a sphere
or a cylinder (both are the same) to compute the neighboring points within a threshold
value of a radius r (see figure 4.19). Therefore, after each iterative operation, they have to
process the points outside of these sphere/cylinder. The second advantage is that searching
to compute a neighboring point within a cell is faster than within a sphere [Smi90, DE96].
Our approach also takes advantage of the fact that our data are already organized in a
sparse numeric volume, and hence we don’t need to lose time and memory space to build
accelerating data structure for k_neighbors computation (such as kd-trees or octrees).

Figure 4.19: Determining of neighboring points.

4.6 Conclusion
In this chapter, we have presented a method to simplify an elevation surface defined by a 3D
point cloud. The work is connected from the previous work in chapter three. The surface
simplification of 3D point clouds using PCA can normally yield an expensive computation.
In our case, the input data are stored in the 3D grid volume, implicitely containing the
neighborhood information for each point. We have taken this advantage; combined two
steps for rough and elaborate simplification; and two ways of subdivision by using a cell
to grow and simplify the surface. The output surface preserves the initial shape of the
input surface; the point density and the point distribution are kept regularly, constrained
from the boundary to the inside of surface; and the running time is controlled. A good
distribution of points is an advantage to obtain a good triangulation of the point clouds.
Our method and obtained results in this chapter have been published in [VSAM13].
The obtention of a good triangulation will be presented in the next chapter.

Chapter 5

Surface Triangulation

Contents
5.1 Introduction . 63
5.2 Related work . 65

5.2.1 The methods in 2D . 65
5.2.2 The methods in 3D . 67

5.3 Methods for triangulating the surface 70
5.3.1 Overview . 70
5.3.2 Concepts, notation and definition 71
5.3.3 Building a seed triangle . 73
5.3.4 Searching conditions in one side of an edge 75
5.3.5 Delaunay Criterion . 75
5.3.6 Neighboring points search based on the voxel tracing 77
5.3.7 Triangulating a surface . 82
5.3.8 Processing the outside triangles on the boundary 83

5.4 Implement . 84
5.5 Results . 86
5.6 Discussion and evaluation . 89
5.7 Conclusion . 90

5.1 Introduction
The last step of our modeling process consists in reconstructing a surface (actually, in our
case, a triangular mesh) from the 3D point cloud. Reconstructing the surface of 3D point
clouds is a reconstruction from a cloud of 3D points to a triangular mesh. This process

63

64 CHAPTER 5. SURFACE TRIANGULATION

approximates a discrete point cloud by a continuous/smooth surface (depending on the
input data and the applications of users). Surface triangulation of a 3D object is a fast
and efficient way to reconstruct such an approximating surface in the 3D space. There-
fore, meshing a 3D point cloud has been studied widely in the field of geometric modeling
and has become a necessary ingredient in many researches of computer graphics and their
application [BPK+07].
The goal is to reconstruct a surface of triangular mesh from a given 3D point cloud, such
that the triangular mesh must approximate the original shape of the input surface. In
other words, the surface reconstruction can be defined and solved explicitly as follows: the
point cloud in sampled from an initial surface S, we reconstruct a surface S ′ from S and
compare S ′ to the initial surface S, such that the points belong to S lie on or close to S ′;
the topological shape of S ′ approximates the geometric model of S.
Various methods are available for generating a triangular mesh from a 3D point cloud
[Hop94, Ede01, DG03, KL06, Ma11], they can be applied on both open and close sur-
faces. There are mainly two kinds of approaches: the first one focuses on geometri-
cal considerations [BMR+99, ACK01, OBS05]; the second makes use of implicit surfaces
[Hop94, ZG04, KBH06]. The computing time of algorithms and the quality of generated
triangular meshes are two essential objectives that the researchers are facing. The effec-
tiveness of the method for meshing a triangular surface of a 3D point cloud depends not
only on the types of the surface, the input data structure, but also on the characteristics
of this data.
Our purpose is to build an optimal geological triangulated surface in order to get the best
simulation of the oil reservoir. As we presented in the previous chapters, the problem comes
from the seismic data, with a very large number of 3D points (can reach several millions
of points). Therefore, the time necessary to triangulate these data points with “classical”
methods can be very high (and hence unacceptable in terms of time and memory). The
proposed method for simplifying the surface in chapter four is an important step for the
further meshing step, indeed, simplification produces smaller data sets whose density varies
regularly over the surface. In this chapter, we propose a method to triangulate this surface
by using a fast search algorithm based on the 2D Delaunay triangulation.
We start from the first Delaunay triangle created by the first Delaunay boundary edge and
its neighboring points in a local region. The next adjacent triangle T ′ is then created be-
tween an edge ei of the first triangle T and a neighboring point based on the voxel traversal
search within a square box, on one side of ei. At each step, the new edges of the created
triangle T ′ are inserted in a pool and the process is iterated starting from this triangle T ′
by removing edge ei from this pool, until empty the pool. In the implement, we add an
introduction and execution of a method for searching a neighboring point based on com-
puting the compactness of a triangle in order to compare with our method. The obtained
results show that the our method is very fast, due to the efficiency of our voxel traversal
algorithm within a local neighborhood [AW87]. Our method preserves the characteristics
of the output surface which approximate the initial shape of the input surface.
The following sections in this chapter are organized as follows: we first present the existing
methods for triangulating a surface of 2D and 3D point clouds. Then, our method is pre-

5.2. RELATED WORK 65

sented in detail in the next section (including an overview analysis, methods for searching
a neighboring point, triangulating a surface and processing the outside triangles on the
boundary). The last section is our results, discussion and evaluation.

5.2 Related work
In this section, we summarize the techniques for triangulating a surface of point clouds
on both 2D and 3D. Various methods for meshing a triangular surface of a 3D point set
have been proposed in [Hop94, BMR+99, Ede01, LTW04, YLL+07, BTD08, Ma11]. Other
existing approaches for building a triangular mesh of 2D points have been suggested in
[FP93, Slo93, Kle97, YZY+06, DZ08]. Most of these methods are classified into three
following categories:
Contour tracing approach (or called implicit surface approach) is a method which produces
approximating rather than interpolating surface. Most contour tracing algorithms divides
space into cubes or tetrahedrons, evaluate the scalar function at the vertices of these volume
elements; and for each element, from the values at its vertices, infer a linear approximation
to the surface [DWLT90, Hop94]. For surface reconstruction, implicit surface provides
a compact representation of a surface that can allow smooth approximation to the data
points [FXC07, Cha07]. The main advantage is the ability to test if a point is inside or
outside of the surface based on a scalar function as the zero set of a function for defining
an implicit surface.
Region growing approach always starts from a seed triangle in a local region of a point
set; then considers a new point in the existing region boundary to connect and create
a new triangle. The process will stop until all points have been touched. Unlike the
implicit surface method, the region growing approach takes every point of a point cloud
as the reconstructed triangle mesh vertex (interpolating all points in the point cloud).
Therefore, they will keep the most details of the original surface of physical objects and
the reconstructed surfaces are expected to be more accurate [Ma11].
Sculpting-based approach is also called Delaunay-based approach. In other words, the
Delaunay-based approaches sculpt the Delaunay triangulation of the sample points; and
Delaunay triangulation is used in sculpting based methods.
In the next section, we review some existing methods for meshing a surface with 2D and
3D triangulations. Each algorithm intends to build a mesh from a point cloud with some
given properties.

5.2.1 The methods in 2D
2D triangulation is known as a method designed to handle planar triangulations. It is
based on a triangulation data structure in 2D and embedded in a plane. The plane of the
triangulation may also be embedded in a higher dimensional space. In order to preserve
the initial geometry of the surface as well as the topology of a triangular mesh, the existing
methods aim to preserve the important properties of a triangular mesh (i.e. the triangles

66 CHAPTER 5. SURFACE TRIANGULATION

are “as equilateral as possible”). They are studied to find the best triangulation, where
“best” is evaluated according to some specific quality measures and criteria such as Delau-
nay triangle, maximum angle, minimum angle, maximum edge length, or total edge length
of a triangle on the surface [BP00].
Fang et al (1993) [FP93] proposed a method for triangulating the 2D data points based
on a uniform grid structure. At first, 2D data points are structured in a 2D uniform grid
G; then, the authors built an algorithm for a planar triangulation consist of three steps.
In the first step, they find the first point p1 in the middle of grid G; then, a closest point
p2 to p1 is chosen and the first edge e(p1, p2) is then created. In the second step, they find
a point p3 such that the angle ∠(p1p3p2) is a maximum one and the triangle 4(p1, p2, p3)
satisfies the Delaunay criterion. After creating the first triangle T1, they insert all edges of
T1 into the edge-list. In the last step, the process is started from each edge of T1 to create
T2 and repeated the second step until empty the edge-list. This method triangulates the
convex hull of the surface (see figure 5.1).

Figure 5.1: 2D Delaunay triangulation by using a uniform grid [FP93].

As we known, Delaunay triangulation DT is an elementary method applied to build a
triangular surface [BP00, Ede01, Mau02]. We based on the properties of the DT as a
criterion for triangulating the surface in order to preserve the shape of a triangular mesh.
However, in some cases, we cannot apply absolutely the properties of conforming DT ; even
we may violate some these properties, but it is not affected to the global triangulation of
the surface. At that time, the method that can be applied is called CDT (Constrained
Delaunay Triangulation) [Slo93, Kle97, YZY+06]. The CDT involves a set of edges and
points while still maintaining most of the favorable properties of DT .
Domiter et al (2008) [DZ08] introduced a method for 2D constrained Delaunay triangu-
lation built upon sets of points and constraining edges. The method uses a sweep-line
paradigm combined with a Lawson’s legalization (see figure 5.2). The sweep-line moves
following the vertical axis. The hitting point pi (p11) is projected on the advancing front
of a line segment ei (p8, p9). A new triangle between pi and two endpoints of ei is formed
(p9, p11, p8) if it satisfied the criterion of an empty circle passed through these three points;
otherwise, swap an edge in order to preserve the Delaunay triangle’s properties (see figure
5.2d). After that the advancing front is updated and the process is repeated until finishing

5.2. RELATED WORK 67

the surface triangulation. This algorithm simultaneously triangulates points and constrain-
ing edges. Thus avoid consuming location of those triangles containing constraining edges,
and improving the processing time. However, during the triangulation of a surface, the
method has to check the Delaunay criterion for flipping an edge in order to obtain an
optimal triangular surface.

Figure 5.2: Sweep-line DT triangulation by using an advancing front [DZ08].

5.2.2 The methods in 3D
In 3D, many methods based on the computation of an approximate Delaunay mesh. At
first, a tetrahedral volume is computed from the data point set. Then, it removes the
convex hull parts to extract the original shape. Other approaches computes an implicit
surface or based on the region growing technique.
Kazhdan et al (2006) [KBH06] suggested a method for surface reconstruction from the
oriented points of 3D point clouds based on the Poisson formulation. The method falls
into the category of contour tracing approach using an implicit function. The goal is to
reconstruct a watertight triangulated approximation to the surface by computing approx-
imately of an indicator function from the samples. The authors compute a 3D indicator
function χ (defined as 1 at points inside the model, and 0 at points outside: see figure 5.3),
and then obtain the reconstructed surface by extracting an appropriate isosurface. The
method considers all points at once, without restoring the heuristic spatial partitioning or
blending. Therefore, this is a global solution for the Poisson reconstruction and viewed
as an advantage of this method. Besides, it can create a very smooth, robust surface,
and adapt to the noisy data. Nevertheless, in some cases the limitation of this method is
connecting the regions without data points.

68 CHAPTER 5. SURFACE TRIANGULATION

Figure 5.3: Intuitive illustration of Poisson reconstruction in 2D [KBH06].

The proposed method of Bernardini et al [BMR+99] (called Ball Pivoting Algorithm: BPA)
is considered as an example of the region growing technique. In this method, an essential
point with ball pivoting is that it is an approximation of the alpha shapes of the point
cloud (see figure 5.4). For each three points in a 3D point set, they will form a triangle if a
ball of a user (with a specified radius ρ) touches them without containing any other points.
Starting from a seed triangle, the ball pivots around an edge while keeping in contact with
the edge’s endpoints until it touches another point, and forms a new triangle. The process
continues by rolling the ball over a set of points until all reachable edges have been tried.
For each forming a new triangle, this new triangle becomes a seed triangle for the next
operating until all points have been processed. This method can process a large number
of a 3D point cloud, while using a small amount of required memory, and the processing
time is efficient. The mesh generating can fill the small holes that are smaller than the ball
radius. This method provides topologically correct mesh, model’s scenes of any geometric
type and size. However, one of the disadvantages is that the ball radius ρ does not adapt
to local point density; many holes may be generated during the meshing; and the quality
of the mesh depends on the radius ρ defined by user.

Hong-Wei et al (2004) [LTW04] proposed a method to generate a triangular mesh based
on an intrinsic property of a 3D point cloud. The algorithm is called IPD (intrinsic prop-
erty driven) and fall into the category of region growing approaches. Starting from a seed
triangle; a new triangle is created from each edge (called active edges: eij in a queue) of
the seed triangle, by selecting a new point k in the influence region of eij to form a new
triangle (i, j, k). In each iterative operating, the newly reconstructed edges are added to
the queue of eij, and k is selected from the weight of minimal length criterion. Besides, the
normal vector of each triangle is also checked to determine and adjust its direction. The
process is repeated until the queue of eij is empty. The advantage of this method is that
using the weight of the minimal length criterion adapted to the local sampling density for
choosing point k. Therefore, this way overcomes the user’s specified ball-radius in the BPA
method [BMR+99]. This method guarantees the constructed surface approximated the ini-

5.2. RELATED WORK 69

Figure 5.4: A 2D illustration of BPA algorithm [BMR+99]: a) a reconstructed curve
connects the points using a circle of radius ρ pivots; b) the sampling density is too low to
create the edges with the user-specified radius ρ; c) the user-specified radius ρ is too large
to reconstruct some high curvature regions.

tial surface, with small topological errors. However, each time to create a new triangle,
the computation is complex. For each active-edge eij, all boundary faces in 3D (surround
eij) are first computed to determine the influence region. Then, all neighboring points of
eij are checked based on the harmonic map function [EDD+95] to select a new point and
minimize distortion of the surface (see figure 5.5). Therefore, the method leads to a costly
computation.

Figure 5.5: Reconstructing a triangular mesh based on IPD [LTW04].

Zoltan et al (2009) [MRB09] presented a method for a fast surface reconstruction of a large
noisy point cloud. The method based on the category of surface growing used a robust
triangulation algorithm to recreate the underlying surface’s geometric properties. Starting
from the first triangle FT , the next triangle NT is created by connecting from each edge
of FT to a neighboring point. After that, the process is repeated from NT until all points
are checked and no more valid triangles can be created. This method works directly on a

70 CHAPTER 5. SURFACE TRIANGULATION

3D point cloud and uses the nearest neighbor search based kd-tree. The search for a neigh-
boring point of each point p is selected in a sphere with radius r = µ.d0 that adapts to the
local point density (d0 is the distance of p to its closest neighbor, and µ is a user-specified
constant). Therefore, the lookup of edges is optimized. For each point, the triangulation
always grows to the front; thus, it can save the memory because no need to store all the
triangles in the entire data set. However, to process the noisy point, a principal compo-
nent analysis is used to estimate the triangle normal vectors. The covariance matrix is
computed by adding a weight of the Gaussian function: ξi = exp−(d2

i /µ
2) for point pi of the

neighborhood. As a result, the extra step is more expensive in computation.
The above methods can be applied to triangulate a 2D or 3D point cloud, with or without
organization. They lead to a very good triangular mesh, which approximates and closes to
the original model of the input data. As we mentioned in the previous chapters, our data
are organized in the 3D grid in voxels. Therefore, we took this advantage for building a
method to obtain a faster computation. We detail our method in the next section.

5.3 Methods for triangulating the surface

5.3.1 Overview

In this section, we describe our method for triangulating an elevation surface structured
in a 3D grid, based on the 2D Delaunay triangulation of the projected point cloud. As
presented in chapter four, we have simplified this surface. After simplification, the point
distribution is constrained (with respect to its density) from the boundary to the inside
of the surface. Moreover, a large number of points has been removed while keeping the
initial shape of the surface. This is one of the important steps for further triangular surface
processing, because part of computation in the algorithm depends on the number of input
data points. Starting from the properties of 2D Delaunay triangle, we applied a fast voxel
traversal search [AW87] to develop our method. At first, the 3D cloud of points is projected
onto a natural 2D grid in the x, y plane (see figure 5.6). Then, we triangulate the surface
(actually, we compute a Delaunay triangulation of the 2D point cloud taking advantage of
its regular structure). The main novelty of our approach is that the neighboring points are
searched in a square box supported by the edge ei under consideration.

Therefore, our method consists of three steps. In the first step, we create a first Delau-
nay triangle. Starting from the first Delaunay boundary edge, we find and connect to a
neighboring point to create a first triangle. In the second step, we create the next triangle,
adjacent to the first triangle based on a criterion of the Delaunay triangle. In the third
step, we triangulate the surface by repeating the process from the next triangle. After
creating the next triangle, this triangle will become a first triangle for the next iteration.

5.3. METHODS FOR TRIANGULATING THE SURFACE 71

Figure 5.6: Triangulation of a 3D point cloud by projecting it onto the 2D grid.

5.3.2 Concepts, notation and definition
In order to clarify the context, let us introduce some concepts and notations used in the
sequel. In chapter three, we have determined the boundary of the surface. It is a polyline
connecting the boundary edges e(vi, vi+1) with the numbering of the polyline. As we also
mentioned in our context, each point belongs to exactly one pixel. Therefore, we will freely
use either the continuous or discrete notations: (see figure 5.7)

Figure 5.7: Some concepts and notations used in the surface triangulation

- Given an edge e = (p1, p2), there exist exactly two pixels v1, v2 such that pi ∈ vi
(i = 1, 2).

- pb: a boundary point.

- eb: a boundary edge, eb = (pb1, pb2).

- The continuous size of e is, as usual given by ‖p2 − p1‖, we will denote it by ‖e‖.

72 CHAPTER 5. SURFACE TRIANGULATION

- The discrete size of e (denoted by |e|) as the discrete distance between v1 and v2
(‖v2 − v1‖∞ in chapter 3).

- Given a triangle (pi2, pi1, pi3) and the edge ei = (pi1, pi2), a point pi4 is called opposite to
pi3 with respect to ei if it belong to a vertex of a triangle 4(pi1, pi2, pi4) and opposite
to a neighboring point pi3 by edge ei (see figure 5.7).

- k = |ei|: the discrete size of ei.

- SB(ei): a square box, supported by ei.

As we mentioned in the related work, in the special case of the surface: if we cannot apply
the properties of a Delaunay triangle to triangulate the surface, we can apply the case
of constrained Delaunay triangulation CDT . Let us introduce the definition of a visible
vertex [LL86] and thereafter we apply to define the CDT in our case:
Given a set of point together with a set of edges E, a CDT is the triangulation of the point
set closest from the Delaunay triangulation but containing the edges of E.

Definition 5.1. Constrained Delaunay boundary edge CDBE:

- Visible vertex: Two points (p, p′) are Delaunay visible from each other if the segment
between the two points intersects no edges (see figure 5.8a, where p and p′ are not
visible together).

- Constrained Delaunay Criterion: The circumcircle C of a given three points of a
4(p1, p2, p3) does not contain any points visible from p1, p3 or p2 (see figure 5.8b).
This definition has to be compared with the Delaunay criterion: the circumcircle C
of any triangle 4(p1, p2, p3) is empty.

- Constrained Delaunay boundary edge (CDBE): A boundary edge eb(pb1, pb2) is a
CDBE if and only if both pb1, pb2 are boundary points, and there exist an inner point
p such that the circumcircle of 4(pb1, pb2, p) does not contain any inner points but
may contain the outer points that are not visible from p. (see figure 5.8c)

Figure 5.8: A case of CDBE

5.3. METHODS FOR TRIANGULATING THE SURFACE 73

Our exterior boundary is defined in chapter three, each point is obtained as the first
and closest clockwise neighbor of the previous one. Therefore, all boundary edges on
the boundary of the convex hull of the surface are Delaunay edges (as proved in [LS80]).
However, there are some boundary edges on the boundary in the concave parts of the
surface which can be non Delaunay. An illustration is described in figure 5.8c, whereas
pb1, pb2, pb3 are boundary points, but the boundary edge eb(pb1, pb2) is a non Delaunay (it
is a case of CDBE). In the section “Building a seed triangle”, we will detail how to find
the first edge to triangulate the surface. An overview of our method is presented in figure
5.9.

Figure 5.9: The general diagram of our method

5.3.3 Building a seed triangle
In this section, we describe our method for building a first triangle. The existing meth-
ods for creating a first (seed) triangle are introduced in [FP93, LTW04, Kle97, BMR+99].
Normally, most of these methods always start from the first point pi (it can be a random
choice, a middle point or a point with a special value of its coordinates in a point cloud);

74 CHAPTER 5. SURFACE TRIANGULATION

then a point pj close to pi is chosen in order to create the first edge eij. The next step
consists in finding a neighboring point pk such that pk satisfies the condition of a minimum
distance to eij or an empty circle which passed through three points pi, pj, pk. This triangle
4(pi, pj, pk) is then considered as a seed triangle.
In the algorithm of Boris et al (2004) [MVF04] for triangulating a surface, they proposed
a method to create a seed triangle as follows: they first select a point p ∈ < (<: set of 3D
points) and determine its nearest neighbor q ∈ < (these two points defined the first border
edge, pq). Then, they find the point r ∈ K(p) (where K(p): k-nearest neighbors of p) that
maximizes the angle ∠prq. If the triangle 4(p, q, r) satisfies the condition of a Delaunay
triangle, it is considered as a seed triangle.
In our case, we start from the left-most boundary point pb1; next, we find a closest neigh-
boring boundary point pb2 on the boundary. If the boundary edge eb(pb1, pb2) is not a
Delaunay edge, it is a case of CDBE. Then, this boundary edge eb(pb1, pb2) is determined
as a first edge. The next step, we find a neighboring point pi3 of eb such that pi3 must satisfy
the Delaunay criterion. Therefore, the triangle 4(pb1, pb2, pi3) is our seed triangle Tfirst. In
the next section, we give a proof that a Delaunay edge has always been existed in our data:

Property: Let p1 is a point belonging to a set of vertices V (p1 ∈ V). Let p2 be the
closest neighbor of p1. The edge p1p2 is a Delaunay edge.

Proof. We orient edge p1p2 from p1 to p2 (see figure 5.10a); H is a half space on the right side
of p1p2. The vertices in H are sorted by an increasing order of angles (vi → αi). We choose
vi with the largest angle p̂1αip2 at p3 such that the intersection between circum(p1p2p3)
and H is empty. As p2 is closest from p1, ‖p1p3‖ ≥ ‖p1p2‖; and the arc(p1, p2, p3) is larger
than the half circle⇔ p̂1p2p3 < 90o. If there is a point p4 belong to circum(p1p2p3), on the
left of p1p2 (see figure 5.10b); then, ‖p1p4‖ < ‖p1p2‖. This is impossible because p2 is the
closest point to p1. Hence, there is no such point p4; and p1p2 is a Delaunay edge.

Figure 5.10: Determination of the first Delaunay edge.

After building the seed triangle Tfirst, we insert its three edges into the EdgePool for the
next iteration step. The next section, we describe the condition of non-intersection for
generated triangles in the triangular mesh.

5.3. METHODS FOR TRIANGULATING THE SURFACE 75

5.3.4 Searching conditions in one side of an edge
For each edge ei of the previous triangle (e.g. 4(pi1, pi2, pi4)), we need to find a neighboring
point pi3 to form a new adjacent triangle 4(pi2, pi1, pi3) (see figure 5.11). In order to avoid
creating intersecting triangles, we require the following conditions for pi3. The first condition
is that the three points (pi1, pi2, pi3) are not aligned. The second condition is that pi3 and pi4
must be on either side of ei. More precisely, we require that pi3 and pi4 satisfy the following
relation: [

(pi4 − pi2)×N
]

.
[
(pi3 − pi1)×N

]
< 0 (5.1)

Where:

- N = Oz: normal to the triangles4(pi1, pi2, pi4) and4(pi2, pi1, pi3) (actually our triangles
are 2D, but we map them to the Oxy plane of R3 for further computations).

- ×: the cross product operation.

Figure 5.11: Condition of non-intersection for generated triangles.

5.3.5 Delaunay Criterion
In this section, we describe a fast way to compute the Delaunay criterion (testing the
emptiness of a circumcircle). For each ei, we find an optimal neighboring point pi3 in one
side of ei = (pi1, pi2) to form a triangle T (pi1, pi2, pi3). Then, we check the emptiness of the
circumcircle C going through pi1, pi2, pi3. If C is empty, then T satisfies the criterion of the
Delaunay triangle. In order to check the criterion for T , we compute the following steps:

- Compute the length of the three sides: a, b, c of the triangle T ;

- Compute the radius r of the circumcircle of T : r = (a ∗ b ∗ c)/4 ∗ area(T);

- Compute pc, the circumcenter of the triangle T based on the equation of the perpen-
dicular bisectors between a pair of edges of T ;

76 CHAPTER 5. SURFACE TRIANGULATION

- Based on r and pc, we loop over the points in the bounding box of C to check if one
of them (let’s call it p) belongs to C.

We call Circumcircle(pi1, pi2, pi3, p) the function testing wether p ∈ Circum(pi1, pi2, pi3) or not.
This predicate function is computed by evaluating a test on the determinant of following
4x4 matrix:

Circumcircle(pi1, pi2, pi3, p) =

Det

xpi

1
ypi

1
x2
pi

1
+ y2

pi
1

1
xpi

2
ypi

2
x2
pi

2
+ y2

pi
2

1
xpi

3
ypi

3
x2
pi

3
+ y2

pi
3

1
xp yp x2

p + y2
p 1

 > 0

 (5.2)

The repeated computation of a determinant of 4× 4 matrix in a huge amount of 3D point
clouds is very slow (expensive). Therefore, observing that the previous determinant can
be decomposed into constant terms (depending only on pi1, pi2, pi3) and combined according
to the point p, we pre-compute the following four sub-determinants:

SubDet1 =

ypi

1
x2
pi

1
+ y2

pi
1

1
ypi

2
x2
pi

2
+ y2

pi
2

1
ypi

3
x2
pi

3
+ y2

pi
3

1

 (5.3)

SubDet2 =

xpi

1
x2
pi

1
+ y2

pi
1

1
xpi

2
x2
pi

2
+ y2

pi
2

1
xpi

3
x2
pi

3
+ y2

pi
3

1

 (5.4)

SubDet3 =

xpi

1
ypi

1
1

xpi
2
ypi

2
1

xpi
3
ypi

3
1

 (5.5)

SubDet4 =

xpi

1
ypi

1
x2
pi

1
+ y2

pi
1

xpi
2
ypi

2
x2
pi

2
+ y2

pi
2

xpi
3
ypi

3
x2
pi

3
+ y2

pi
3

 (5.6)

The 4× 4 determinant and associate test are then computed as follows:

Circumcircle(pi1, pi2, pi3, p) = [xp×SubDet1−yp×SubDet2+(x2
p+y2

p)×SubDet3−SubDet4] > 0
(5.7)

Therefore, we use the algorithm (Algorithm 5.1) to check a points p belong to C or not:

5.3. METHODS FOR TRIANGULATING THE SURFACE 77

Algorithm 5.1 Circumcircle(pi2, pi1, pi3)
1: compute: a, b and c, three sides of 4(pi2, pi1, pi3)
2: compute: r, radius of circumcirle;
3: compute: pc, the circumcenter;
4: compute: SubDet1,SubDet2,SubDet3,SubDet4 extending from equation (5.2);
5: for each point p in bounding box of C of 4(pi2, pi1, pi3) do
6: if satisfies equation (5.7) then
7: p ∈ Circumcircle(pi2, pi1, pi3);
8: else
9: p /∈ Circumcircle(pi2, pi1, pi3);
10: end if
11: end for

5.3.6 Neighboring points search based on the voxel tracing

Our goal is to triangulate a surface such that all its triangles are as equilateral as possible.
Therefore, the neighboring point pi3 will be searched as close as possible to the position
of the third vertex of the equilateral triangle lying on ei. We apply the voxel traversal
algorithm of Woo introduced in [AW87] to search a neighboring point pi3 of ei within a
square box SB(ei), size k (we denote by k the discrete size of ei (that is, as explained
previously, the discrete distance between the pixels containing the extremities of ei): see
figure 5.12).

Figure 5.12: The voxels traversal search

We use the following notations (illustrated on figure 5.12) to denote and compute in our
algorithms:

78 CHAPTER 5. SURFACE TRIANGULATION

- Woo algorithm will be described in a very generic way (with indices i ranging in
{1..n} n being the dimension). In our case, n = 2.

- X[i] with i ∈ {1..n}: coordinates of the current voxel.

- L: the discrete mediatrix of ei up to a distance k of Xmid (the voxel in the middle
position of edge ei).

- L′: the successive dilatations of L.

- Step[i] with i ∈ {1..n}: for each coordinate, direction of L (+1 if the positive direction
along the ith axis, -1 otherwise) will indicate the coordinates of next point along each
axis.

- tMax[i] with i ∈ {1..n}: time at which the ray crosses the output plane along the
ith axis.

- tDelta[i] with i ∈ {1..n}: time to cross a voxel along the ith axis.

For each edge ei, we use the Woo algorithm [AW87] to determine L under the form:

U + t.V (t ∈ R+) (5.8)

where:

- U : the initial point of L; in our case, Xmid(xmid, ymid);

- V : the direction of L (orthogonal to ei and oriented opposite to (pi2, pi4).

- t: the time.

The next section, we will compute the discrete mediatrix L and the successive dilatations
L′ in order to find an optimal neighboring point pi3 of ei.

5.3.6.1 Computing the discrete mediatrix L

We execute Woo algorithm to compute the discrete mediatrix up to a distance k of Xmid

(and starting from this point). At each step, given the current voxel X(x, y), we decide
whether to increase the coordinates of x or y or both x, y to find the next voxel. This set
of voxels is stored in a list.
Initialization. We compute:

- Xmid: the initial voxel of L.

- V : we have ei = pi1 − pi2 = (x, y), let us set v = (−y,x) the orthogonal direction and
v′ = pi4 − pi2 and edge of the previous triangle. If v × v′ > 0, then we set V = −v
otherwise, V = v (that is V is the direction of the half-line orthogonal to ei and
opposite with respect to the previous triangle (pi1, pi2, pi4)).

5.3. METHODS FOR TRIANGULATING THE SURFACE 79

- For this voxel, we compute tMax[i]; tDelta[i] and Step[i] (which are static and will
be constant along the algorithm).

Iterations. At each step:

- Let i be the axis such that tMax[i] is minimal

- Update X (by adding Step[i] to its ith coordinate)

- Update tMax

We use the algorithm (Algorithm 5.2) to compute the discrete mediatrix L as follow:

Algorithm 5.2 WooLine(ei, k, rl)
1: //pointL: the endvoxel of L (size k from Xmid)
2: compute: Xmid, V ;
3: compute: pointL;
4: compute: tMax[i], tDelta[i], Step[i];
5: repeat //start at X = Xmid

6: rl.insert(X); //save current voxel
7: for each dimension i do
8: tMax[i]+ = tDelta[i];
9: X[i]+ = Step[i];
10: end for //X is next crossed voxel, that is our new voxel
11: until X = pointL
12: rl.insert(pointL);

Remark. We start from the first current voxel X = Xmid. For each dimension (here
i = 1, 2), we update tMax[i] by adding the value of tDelta[i]. Therefore, the current voxel
X is updated by adding Step[i] to become the next voxel; then the next voxel is the new
current voxel for the next iteration and inserted into the list rl. The iteration stop when
the current voxel X hits the endvoxel pointL; and the last voxel pointL is inserted into rl.

For example, the iteration of Woo algorithm is described in figure 5.13. In this case,
we can see in ray1: tMax[2] < tMax[1], that mean the next voxel will be computed by
increasing the y coordinate of the current voxel X(x, y+ 1). Similarly, in ray2: tMax[2] >
tMax[1], we increase the coordinate x, so the next voxel will be X(x + 1, y). In the case
of ray0: tMax[1] = tMax[2], it mean that the ray L crosses the output plane at the same
intersection point of x and y coordinates; hence, the next voxel will be X(x+ 1, y + 1).

5.3.6.2 Computing the successive dilatations L′

All points lying on the discrete mediatrix of ei are tested with the algorithm determined
in section 5.3.5 in order to determine if they satisfy the Delaunay criterion. If none of

80 CHAPTER 5. SURFACE TRIANGULATION

Figure 5.13: Iteration of Woo algorithm

them coincides, we compute the successive dilatations L′ of the discrete line L and test
the vertices they may contain. This dilatation is constituted of two discrete lines (called
L1 and L2). The vertices on L1 and L2 are determined based on the neighboring vertices
of each current vertex with its x, y coordinates X(x, y) on L as follows: (see figure 5.14)

- In line L1, the neighboring vertices N1(X(x, y)) for each current vertex X(x, y) ∈ L
are determined:
N1(X(x, y)) = {X(x+ 1, y),X(x+ 1, y + 1),X(x, y + 1)}

- In line L2, the neighboring vertices N2(X(x, y)) for each current vertex X(x, y) ∈ L
are determined:
N2(X(x, y)) = {X(x− 1, y),X(x− 1, y − 1),X(x, y − 1)}

The successive dilatations (L1 ∪ L2) are explored until SB(ei) has been fully explored. In
this case, if there is no point in SB(ei), we will explore the successive neighborhoods of
SB(ei) (in one side of ei, start from voxel pointL+1) until finding an appropriate point. In
the next section, we will present our algorithm for searching a point based Woo algorithm.

5.3.6.3 Algorithm based on the voxel traversal search

In this section, we describe our algorithm based on the voxel traversal search. We note
l, the list containing voxels crossed with the ray line L; similarly l1, l2 for L1 and L2
respectively. The algorithm includes the following two steps:

- First step: we compute the discrete mediatrix of ei by calling the functionWooLine(ei, k, rl)
which return the list of voxels stored in rl; then, the list rl is assigned to l. For each

5.3. METHODS FOR TRIANGULATING THE SURFACE 81

Figure 5.14: Computing the successive dilatations of the discrete mediatrix of ei.

non-empty voxel v ∈ l (i.e. a neighboring point: pi3), if it satisfies the Delaunay
criterion (Circumcircle(pi2, pi1, pi3)), we stop searching. Otherwise, we go to step 2.

- Second step: we repeat the process on the neighboring voxels of l on l1 and l2 succes-
sively. If there is no point pi3 on the square box of edge ei, we enlarge the searching
by iterative dilatations of SB(ei). The process will stop when a neighboring point pi3
satisfying the Delaunay criterion is found.

The algorithm below (Algorithm 5.3) is used to find this neighboring point pi3 based on the
voxel traversal search. In this algorithm, each non-empty voxel v ∈ SB(ei) is considered
as a neighboring point pi3.

82 CHAPTER 5. SURFACE TRIANGULATION

Algorithm 5.3 SearchNeighbors(ei, pi3)
1: find ← false, k=1;
2: while !find do
3: WooLine(ei, k, rl); //Step1: compute L.
4: l1 = l2 = l ← rl;
5: for each voxel v ∈ l do
6: if v != empty and Circumcircle(ei, v) == true then
7: find ← true;
8: else
9: mark_v = true;
10: end if
11: end for
12: while inside the SB(ei) do //Step2: compute L′
13: compute l′1, the neighbor voxels of l1
14: for each voxel v ∈ l′1 do
15: if v != empty and Circumcircle(ei, v) == true then
16: find ← true;
17: else
18: mark_v = true;
19: end if
20: end for
21: compute l′2, the neighbor voxels of l2
22: for each voxel v ∈ l′2 do
23: if v != empty and Circumcircle(ei, v) == true then
24: find ← true;
25: else
26: mark_v = true;
27: end if
28: end for
29: l1 ← l

′
1; l2 ← l

′
2;

30: end while
31: dilatation from SB(ei);
32: end while

5.3.7 Triangulating a surface

Following the previous analysis, we present in this section our algorithm for constructing
a triangular mesh of an elevation surface defined by a sparse 3D grid. The corresponding
algorithm (Algorithm 5.4) is used to triangulate a surface S as follow:

5.3. METHODS FOR TRIANGULATING THE SURFACE 83

Algorithm 5.4 MeshGenerating(S)
1: start from the first Delaunay boundary edge;
2: create the first Delaunay triangle Tfirst;
3: insert all edges of Tfirst into a list EdgePool;
4: while EdgePool != empty do
5: for each edge ei(endpoints: pi1, pi2) do
6: if ei != visited then
7: SearchNeighbors(ei, pi3);
8: Tnext = 4(pi1, pi2, pi3);
9: update the new edges of Tnext into the EdgePool;
10: ei = visited;
11: Tfirst ← Tnext;
12: end if
13: end for
14: end while

Remark. We start form the first boundary Delaunay edge to create the first Delaunay
triangle Tfirst. Then, put all edges of Tfirst into a list EdgePool. Then, for each edge in the
EdgePool, we choose a neighboring point pi3 by calling the function SearchNeighbors(ei, pi3)
to create a new adjacent triangle Tnext. Then, we update the EdgePool by inserting the
new edges of Tnext. After that, the triangulating process is repeated from Tnext by assigning
(Tfirst ← Tnext) for the next iteration, until finishing the triangulating process (i.e. the
EdgePool is empty).

5.3.8 Processing the outside triangles on the boundary
The Delaunay triangulation previously presented produces a meshing of the convex hull of
the initial set of points [FP93] (see figure 5.15a). Many triangles lie outside the boundary
computed in chapter three. Hence, after triangulating the surface, it generates many
undesired triangles which are outside the exterior boundary (see figure 5.15b). For this
reason, we propose a method to delete the outside triangles on the boundary.

In order to determine the triangles outside the boundary computed at chapter three, we
apply the ideas of [Kle97, DZ08], based on computing the angle α between each pair of
consecutive edges on the boundary (e.g. two boundary edges: eb1(pb1, pb2) and eb2(pb2, pb3);
angle α at pb2). If α < π, the triangle 4(pb1, pb2, pb3) is considered as an outside triangle.
This method of course requires computing before meshing, the boundary of the point set.
In our case, the boundary has already been determined in chapter three. Therefore, in
order to remove outer triangles, we just need to follow the boundary in the clockwise
direction and delete outer triangles accordingly. Our method is described as follows:
We first determine the boundary triangles according to their vertices. For each triangle, if
its three vertices are boundary points, it is considered as a boundary triangle. Following

84 CHAPTER 5. SURFACE TRIANGULATION

Figure 5.15: a) The convex hull of a triangular surface; b) The outside triangles of the
boundary.

the boundary clockwise, we then check and delete the outward boundary triangles. A
boundary triangle is an outward boundary triangle if the dot product between two vectors
of this triangle (an inward normal vector of an edge and a vector of an outside edge) is
negative (see figure 5.16).

Figure 5.16: Determination of an outward triangle on the boundary.

Figure 5.16 is an illustration. The red line is a boundary line of surface S; pb1, pb2, pb3, pb4 are
boundary points. We check if ((pb3−pb1).dot(N1) < 0) then the triangle4(pb1, pb2, pb3) is an
outward triangle of S; similarly, if ((pb4−pb1).dot(N2) < 0) then the triangle4(pb1, pb3, pb4)
is also an outward triangle of S.

5.4 Implement
In this section, we implement our proposed method for triangulating an elevation surface
of 3D point clouds based on the voxel traversal search. Our algorithms are programmed
and integrated in Meshlab [Cou13] as a plug-in. Therefore, we can test the running time

5.4. IMPLEMENT 85

between our method and the existing method in the Meshlab (ball pivoting). However,
it is difficult to evaluate exactly the comparison of the time between the methods (that
depends on the similarity of algorithms and data structure between these methods). For
this reason, we introduce and execute our adding method for finding a neighboring point pi3
of ei which can be applied in our context to compare exactly the processing time with the
voxel traversal search. This method is based on computing the compactness of a triangle
introduced in [Gue97, FB99, Tra08].
With the same idea (as we presented in the method voxel traversal search) in order to
find the best neighboring point for creating a triangle as equilateral as possible, we used
the formula of Guéziec [Gue97] for measuring the quality of triangles. We compute the
compactness of a triangle in among triangles 4(pi1, pi2, pl) where (l = 1..vi) with vi is the
number of neighboring points in one side of ei(pi1, pi2) (see figure 5.17a). The formula is as
follows:

C = 4
√

3A
l20 + l21 + l22

(5.9)

Where C is denoted the compactness of triangle T ; A is area of T ; l0, l1 and l2 are
respectively the three lengths of each edge of T . Similarly, Pascal J .Frey [FB99] has also
used a formula below to prove the shape quality of a planar triangle:

QK = α
SK

hmaxPK
(5.10)

Where:

- QK : the quality of a triangle K.

- α = 2
√

3: a normalization coefficient; QK = 1 for an equilateral triangle [GB97].

- SK : area of triangle K.

- hmax: the length of the longest edge of triangle K.

- PK : the half-perimeter of triangle K.

Instead of computing the discrete mediatrix L, its successive dilatations L′ and if necessary
the successive dilatations of SB(ei) to find the best neighboring point pi3 (as we computed
in the voxel traversal search); we now compute all triangles between ei(pi2, pi1) and its neigh-
boring points pl (l = 1..vi, with vi, the number of neighboring points: see figure 5.17a)
based on equation 5.9 to find a point pl of a compactness triangle within SB(ei). If this
point is found, we then check the Delaunay criterion of triangle 4(pi2, pi1, pl); thereafter,
we follow exactly the successive steps as presented in our voxel traversal search for trian-
gulating the surface.
We implemented both methods (our voxel traversal search and computing the compact-
ness) to test and compare the processing time between them. The obtained results are
detailed in the next section.

86 CHAPTER 5. SURFACE TRIANGULATION

Figure 5.17: Searching a neighboring point: a) computing the compactness; b) voxel traver-
sal search.

5.5 Results

In this section, we present some results of our method for triangulating an elevation surface.
We compare the processing times between our method: “Voxel Traversal Search” (VTS),
“Computing The Compactness” (CTC) and the existing method in Meshlab [Cou13]: “Ball
Pivoting” (BP). We also compare the shape of the triangulated surfaces after previous sim-
plifying step with our elaborate method (as presented in chapter 4). The processing time
of our method is faster and as we will see, the initial shape of the surface is well preserved.

After triangulating the surfaces and processing their boundaries with our method, the
total processing times are presented in table 5.1. In this table, we used the same input
surfaces to test with the three methods. Both our neighboring searched methods (VTS
and CTC) are integrated and tested (one by one) in the same algorithm for 2D Delaunay
triangulation, on the same a computer. They are only different from their ways to find
a neighboring point. The processing time is a bit different between them (see table 5.1).
We will explain the reason why in the section 5.6 (Discussion and evaluation). The BP
method generated a very good mesh, but the processing time is higher than our methods.
If the number of input points increases, the running time to triangulate the surface is far
from our method (see figure 5.18).

5.5. RESULTS 87

Input CTC VTS BP
points Output Time Output Time Output Time

faces (ms) faces (ms) faces (ms)
15626 29871 14631 29871 13360 29990 18984
32402 61073 30911 61073 28984 58030 67871
60511 115828 68797 115828 63223 110982 225037
68956 125463 112117 125463 93246 118273 268276
98231 181851 194682 181851 162451 174582 859341
148317 266187 246435 266187 218713 267842 2017632
886639 1618624 1473188 1618624 1307466 1601158 11951403

Table 5.1: Comparison of the processing times between the methods. We use the same
input data points and run on the same a computer (Intel 2CoreDue, 2GB of Ram).

Figure 5.18: Comparison of the processing times between the methods: Computing the
compactness (CTC); Voxel traversal search (VTS) and Ball pivoting (BP). On this graph,
we do not plot the last example with 886639 points because it is too far from other examples
and therefore spoils the graph.

88 CHAPTER 5. SURFACE TRIANGULATION

We have processed the triangles on the concave parts of the boundary by removing some
outward triangular faces of surface S (see figure 5.19). The exterior boundary of S and sur-
face S have been processed in the previous chapters (chapter 3 and chapter 4). Therefore,
the number of boundary points and the density of them depend on the previous processing
and initial shape of the surface. For these reasons, the number of triangular faces is a bit
different from the classical triangulation algorithms (in 2D Delaunay triangulation: the
number of triangular faces is at most 2n−2−b triangles; where n is the number of vertices
and b is the number of vertices on the convex hull [Wik13]).

Figure 5.19: Processing the triangular faces on the boundary; (a) an input surface of 3D
point clouds with boundary points (red color); (b) a triangular surface; (c) after removing
the outside triangles; similarity, (d) before and (e) after deleting the outward triangles on
the boundary.

In order to evaluate the quality of our triangulated surface (generated by our method)
with respect to the initial shape of that surface, we compute the distance between two
sampled-points surfaces (S1: the input surface of 3D point clouds; and S2: the output
surface after simplifying and triangulating S1, as described in the section 4.4 of chapter
4). After triangulating the surfaces, the initial shape (e.g. curvature, bend, ridge, valley,
groove) of these surfaces is well preserved (see figure 5.20 and 5.21).
In conclusion, the initial shape of the BP method is well preserved after triangulating while
consuming the running time for the surface triangulation. Our method VTS obtained the
good results on both processing time and approximation errors.

5.6. DISCUSSION AND EVALUATION 89

Figure 5.20: a) A geological surface of 3D point clouds (232 kb). b) After simplifying by
using the elaborate method (cell size = 8, ∂ ≤ 0.12) and triangulating, the size of surface:
18 kb; the approximation error between (a) and (b) is ∆max: 0.020; ∆avg: 0.0006; the
triangular faces vary in density from the boundary to the inside of the surface.

5.6 Discussion and evaluation
In this section, let us give some discussions and evaluations about the processing time of
our method. We triangulate the surface based on the 2D Delaunay triangulation following
the category of region-growing. Our method has two advantages compared to existing
methods. The first and most important point is that we designed the square box and our
particular search in order to speed up the Delaunay triangulation. The neighboring point
pi3 is always searched in one side of an edge ei with two endpoints (pi1, pi2) within a square
box SB(ei). In the method of computing the compactness (CTC), for each edge ei, we
have to compute all neighboring points qi (with i, the number of neighboring points of ei)
to find the best point for creating the compactness triangle. Therefore, the complexity of
this computation is always at most N × i (where N is the number of points of the surface)
for iteration. In our method: voxel traversal search (VTS), we based on the Woo algorithm
[AW87] in order to save the searched time for a neighboring point pi3. We aim to find the
point that is close to the position of the third point of an equilateral triangle created by
ei. This point is always located on the non-empty voxel crossed on the ray L (if it existed)
because the direction of L orthogonal to ei, at the middle of ei. If there is no point on L,
we dilate from L until finding an appropriate point. For this reason, we do not need to
check all neighboring points as computed in the method CTC. Comparing to the method
CTC, the processing time of our method is faster (as presented in the table 5.1), but no
guarantee exists for the worst case if an important dilatation is required.
The second advantage is that our surface is triangulated after a simplification step (in

90 CHAPTER 5. SURFACE TRIANGULATION

Figure 5.21: a) The input surface of 3D point clouds with 2629 kb. b) After simplifying
by using the elaborate method (cell size = 8, ∂ ≤ 0.09) and triangulating, the size of
surface: 68 kb; the approximation error between (a) and (b) is ∆max: 0.018; ∆avg: 0.002;
the characteristics of the surface are well preserved.

chapter four). After simplifying, a large number of points of the surface has been simplified.
Therefore, for each edge ei, there is only a few neighboring points pi3 in one side of ei within
SB(ei). For these advantages, the processing time of our method is very fast, as well as
the initial shape of the surfaces is well preserved.

5.7 Conclusion
In this chapter, we presented our method for constructing a triangular mesh of the surface
of 3D point clouds defined in the 3D grid. We applied the ideas of the methods introduced
in [AW87, FP93] to build our method. The main idea of our method based on the 2D
Delaunay triangulation is to use the voxel traversal search. The advantages of our method
are presented in the evaluation and discussion. The obtained results have shown that the

5.7. CONCLUSION 91

processing times are very fast. In fact, after simplifying the surface, a large number of
points of the surface have been suppressed. So, the processing time for both methods
using two ways of neighboring search are nearly the same (see table 5.1). However, the
neighboring search based on the voxel traversal search is more efficient. After simplifying
and triangulating a surface, the triangular faces of this surface have varied automatically
from the boundary to the inside of the surface. The quality of the triangular mesh is
checked by using a tool Metro in [CRS98, PGK02]. Therefore, the obtained results are
“optimal” geological triangulated surfaces adapted to our goal.

92 CHAPTER 5. SURFACE TRIANGULATION

Chapter 6

Conclusion and Future Work

Contents
6.1 Conclusion and contributions . 93

6.1.1 Boundary extraction . 94

6.1.2 Boundary simplification . 95

6.1.3 Rough simplification . 95

6.1.4 Elaborate simplification . 96

6.1.5 Surface triangulation . 97

6.2 Future work . 97

6.1 Conclusion and contributions

As we mentioned in chapter one, our goal is to obtain a high quality definition of oil
reservoirs in order to get the best estimation of the potential petrol they may contain.
In this thesis, we have introduced our methods for reconstructing an optimal geological
surface from a huge amount of 3D point clouds structured in the 3D grid. The seismic
data come from an automatic acquisition; they are processed and exported into a sparse
3D volume as defined by Philippe Verney [Ver09]. We first focused on data processing to
simplify the surfaces of 3D point clouds. Then, we have proposed a method for triangulating
this surface while preserving the initial shape of the surface. Our works are achieved the
following order: the first work is the boundary extraction and simplification (presented in
chapter three); the second work is simplifying the surface inside (indicated in chapter four);
and the third work is triangulating this surface (performed in chapter five). An overview
of our methods is described in figure 6.1:

93

94 CHAPTER 6. CONCLUSION AND FUTURE WORK

Figure 6.1: Description of our methods for constructing an optimal geological surface.

6.1.1 Boundary extraction

The most important issue of surface simplification of a 3D point cloud is to preserve the
original shape of the surface. For this reason, we proposed a method for extracting the
boundary of the surface before simplifying it. At first, the 3D point sets (sampled from an
elevation surface and structured in a sparse 3D volume) are projected onto a natural 2D grid
in x, y plane. Then, we defined an exterior boundary of 2D surface in our context through
the definition of the square neighborhood SNk(p) based on the relationship between a point
and its neighbors in a given distance k. The next topological boundary is defined with
the classical connectivity (8-connectivity) between the points. Then, we defined a closed
discrete SNk − curve. At the end, we had an exterior boundary that was suitable when
data are missing.
After defining an exterior boundary of a surface, we proposed a method for extracting this

6.1. CONCLUSION AND CONTRIBUTIONS 95

boundary. This method can be applied to determine all exterior boundaries in the case
of dispersive data points distributed in the different regions of the surface. Our method
proved more efficient than existing methods.

Figure 6.2: Boundary extraction of the geological surface.

6.1.2 Boundary simplification
Our goal aims at simplifying the surface completely. Therefore, after extracting the bound-
ary of a surface, we built a method to simplify it. In fact, this boundary was a 3D exterior
boundary of an elevation surface. So we first detected the 2D line segments on the bound-
ary based on a study of the alignment of points by computing the coordinates and the
slope between them. Then, we simplified the 3D line segments based on the variation of
elevation.
The obtained results of our first work (boundary extraction and simplification) shown that
the complexity of algorithms is more efficient than existing methods. Moreover, the initial
shape of the surface is also preserved for the next simplification step since the boundaries
are kept.

Figure 6.3: Boundary simplification of the geological surface.

6.1.3 Rough simplification
Normally, the running time and memory space of a computer program mostly depends on
the data structure, algorithms and the quantity of input data. Our input data points are
very large (millions of points). Therefore, we designed a rough simplification in order to
reduce the number of input data points (for which a more elaborate simplification cannot

96 CHAPTER 6. CONCLUSION AND FUTURE WORK

be applied directly because of time and space complexity issues). This step is simple (each
cell is replaced by one representative point, except the boundary points), but very useful.
It can be justified to adapt the resolution, in case the resolution of the data is too high
compared to the expected results. Based on our computing experience, if the cell size less
than or equal to three s ≤ 3 (that is initial cells containing at most 9 voxels), it does not
affect the shape of the surface. For this reason, rough simplification can help to reduce the
processing time for the next elaborate simplification step.

Figure 6.4: Rough simplification of the geological surface.

6.1.4 Elaborate simplification
This step can be applied to simplify completely a surface. We focused on two main points
to process the surface directly in a 3D grid. Each cell is subdivided depending on the
curvature within that cell; boundary density (if the cell contains boundary points); and
subdivision level of its neighboring cells. In order to subdivide a cell according to the
boundary density, we have created a boundary density criterion. If a cell (containing
boundary points) satisfies the criterion, we based on its size to subdivide and simplify. For
inner cells (containing inner points), we based on the flatness criterion. This criterion is
created by estimating the curvature in a cell (based on PCA) and taking into account the
size of neighboring cells.
We provided the values of ∂ (flatness criterion) in order to adapt the application of users.
The running time is affected by choosing these values. If ∂ is small or close to 0, a lot of
cells are subdivided and the running time is high; otherwise (∂ is higher or close to 1/3),
the running time is faster but the initial shape of the surface can be affected.

Figure 6.5: Elaborate simplification of the geological surface.

6.2. FUTURE WORK 97

6.1.5 Surface triangulation
After simplifying a surface, a large number of points have been removed while preserving
the shape of the surface. In order to triangulate this surface, we have proposed a method
based on the 2D Delaunay triangulation. After projecting a surface S onto the 2D grid of
x, y plane, we triangulated S by using a fast voxel traversal search. Normally, for each edge
ei (endpoints: pi1, pi2), we have to check all neighboring points in one side of ei to find an
optimal one pi3 to define a triangle 4(pi1, pi2, pi3). This leads to an expensive computation.
In our proposed method, we chose the first neighboring point which close to the best point.
Therefore, the complexity of our algorithm is linear. We used a 2D Delaunay triangle as a
criterion for triangulating a surface and controlling the quality of a triangulated surface.

Figure 6.6: Triangulation of the geological surface.

6.2 Future work
The obtained results in this thesis can help us to extend our work in the future. Although
the methods for filling the holes of a triangular mesh already existed; but for a 3D point
cloud it still seems a challenge and may be a new direction of research. Boundary extrac-
tion can be applied to detect the boundary of the holes inside the surface first. Thereafter,
a method for filling the holes should be studied in order to obtain a good and smooth
surface of 3D point clouds.
At present, the results of our method for surface simplification have adapted the require-
ments as our expectations. However, each step relies on some thresholds (e.g. cell size,
point density, distance between the points or ∂) defined by the users. Therefore, an au-
tomatic computing of these thresholds for a good value may be an optional work in the
future. This calculation will be a bit slower because of an iterative computation for each
step, but it may be adapted to every cases.
We pay attention to the complexity of our algorithm. Nevertheless we did not have the
opportunity to test them on very huge data sets and we hope to have soon the opportunity
to obtain such sets.

Bibliography

[ACK01] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust. Proceedings
of the sixth ACM Symposium on Solid modeling and application, pages 249–266, 2001.
ISBN: 1-58113-366-9.

[AW87] John Amanatides and Andrew Woo. A fast voxel traversal algorithm for ray tracing.
In Eurographics 1987, 87:3–10, 1987.

[BDM05] Alexandra Bac, Marc Daniel, and Jean-Louis Maltret. 3d modeling and segmentation
with discrete curvatures. Medical Informatics and Technology, 9:13–24, 2005. ISBN:
1642-6037.

[BDRT09] A. Bac, M. Daniel, J.-F. Rainaud, and N.-V. Tran. Surface improvement for reservoir
modelling. MAMERN09: 3rd International Conference on Approximation Methods
and Numerical Modelling in Environment and Natural Resources Pau, pages 163–
167, June 2009.

[Bel08] David Belton. Improving and extending the information on principal component
analysis for local neighborhoods in 3D point clouds. The International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37:477–484,
2008.

[BMR+99] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The ball-
pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization
and Computer Graphics, 5(4):349–359, Oct-Dec 1999.

[BP00] Marshall Bern and Paul Plassmann. Mesh generation. Handbook of Computational
Geometry. Elsevier Science, pages 291–322, 2000.

[BPK+07] M. Botsch, M. Pauly, L. Kobbelt, P. Alliez, B. Lévy, S. Bischoff, and C. Rossl. Ge-
ometric modeling based on polygonal meshes. In ACM SIGGRAPH Course Notes,
pages 11–159, 2007. Award: Best course notes for a revised course.

[BSP+04] S. Brandel, S. Schneider, M. Perrin, N. Guiard, J.-F. Rainaud, P. Lienhardt, and
Y. Bertrand. Automatic building of structured geological models. Proceedings of the
ninth ACM symposium on Solid modeling and applications, pages 59–69, 2004. ISBN:
3-905673-55-X.

98

BIBLIOGRAPHY 99

[BTD07] Alexandra Bac, Nam-Van Tran, and Marc Daniel. A hybrid simplification algorithm
for triangular mesh. GraphiCon’2007. International Conference on Computer Graph-
ics and Vision, pages 17–24, 2007.

[BTD08] Alexandra Bac, Nam-Van Tran, and Marc Daniel. A multistep approach to restoration
of locally undersampled mesh. GMP’08 Proceedings of the 5th international conference
on Advances in geometric modeling and processing, 4975:272–289, 2008. ISBN: 978-
3-540-79245-1.

[CG09] C. Chuon and S. Guha. Volume cost based mesh simplification. Computer Graphics,
Imaging and Visualization, CGIV’09. Sixth International Conference on IEEE, pages
164–169, 2009.

[Cha07] William Y. Chang. Surface reconstruction from points. Technical report, For the
Research Exam, February 2007. UCSD CSE CS2008-0922.

[CM91] Jean-Marc Chassery and Annick Montanvert. Géométrie discrète en analyse d’images.
Editions Hermès, Paris, 1991. ISBN: 2-86601-271-2.

[Cou13] ISTI Italian National Research Council. Meshlab. http://meshlab.
sourceforge.net/, 2013. [Online; accessed 21-July-2013].

[CRS98] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring error on simplified
surfaces. The Eurographics Association 1998, 17(2):167–174, 1998.

[DDW11] Tamal K. Dey, Ramsay Dyer, and Lei Wang. Localized cocone surface reconstruction.
Computers Graphics Shape Modeling International (SMI), 35:483–491, 2011.

[DE96] Matthew T. Dickerson and David Eppstein. Algorithms for proximity problems
in higher dimensions. Journal Computational Geometry, Theory and Applications,
5(5):277–291, May 1996.

[DG03] T. K. Dey and S. Goswami. Tight cocone: A water-tight surface reconstructor. in
Proceedings of the 8th ACM Symposium on Solid Modeling and Applications, pages
127–134, 2003. ISBN: 1-58113-706-0.

[DP73] D. H. Douglas and T. K. Peucker. Algorithms for the reductions of the number
of points required to represent a digitized line or its caricature. The International
Journal for Geographic Information and Geovisualization, 10(2):112–122, 1973.

[DWLT90] David P. Dobkin, Allan R. Wilks, Silvio V. F. Levy, andWilliam P. Thurston. Contour
tracing by piecewise linear approximations. ACM Transactions on Graphics, 9(4):389–
423, 1990.

[DZ08] V. Domiter and B. Zalik. Sweep-line algorithm for constrained Delaunay triangula-
tion. International journal of Geographical Information Science, 22(4):449–462, 2008.

http://meshlab.sourceforge.net/
http://meshlab.sourceforge.net/

100 BIBLIOGRAPHY

[EDD+95] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M.Lounsbery, and W. Stuetzle. Mul-
tiresolution analysis of arbitrary meshes. SIGGRAPH ’95 Proceedings of the 22nd
annual conference on Computer graphics and interactive techniques, 173-182, 1995.
ISBN: 0-89791-701-4.

[Ede01] Herbert Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge
monographs on applied and computational mathematics, Cambridge University Press,
USA, 2001. ISBN: 0-521-79309-2.

[EKS83] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the shape of a set of points
in the plane. IEEE Transactions on Information Theory, 29(4):551–559, 1983.

[FB99] Pascal J. Frey and Houman Borouchaki. Surface mesh quality evaluation. Interna-
tional Journal for Numerical Method in Engineering, 44(45):101–118, 1999.

[FD07] B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science,
315(5814):972–976, 2007.

[FP93] T.-P. Fang and L. A. Piegl. Delaunay triangulation using a uniform grid. IEEE
Computer Graphics and Applications, 13(3):36–47, 1993.

[FXC07] LEVET Florian, GRANIER Xavier, and SCHLICK Christophe. Triangulation of
uniform particle systems: its application to the implicit surface texturing. In 15th
International Conference in Central Europe on Computer Graphics, Visualization and
Computer Vision WSCG 2007, pages 271–278, 2007. ISBN: 978-80-86943-98-5.

[Gar99] Michael Garland. Quadric-Based Polygonal Surface Simplification. Phd thesis,
Carnegie Mellon University, 1999.

[GB97] P. L. George and H. Borouchaki. Triangulation de Delaunay et Maillage. Hermès
Science Publications, Paris, 1997. ISBN: 9782746233607.

[GBGS98] A. Garrido, N. Perez De La Blanca, and M. Garcia-Silvente. Boundary simplifi-
cation using a multiscale dominant-point detection algorithm. Pattern Recognition,
31(6):791–804, 1998.

[GH97] Michael Garland and Paul S. Heckbert. Surface simplification using quadric error
metrics. SIGGRAPH ’97 Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pages 209–216, 1997. ISBN: 0-89791-896-7.

[Gue97] Andre Gueziec. Surface simplification inside a tolerance volume. Technical report,
IBM Research Report, May 1997. RC 20440, NY 10598.

[Gui06] Nicolas Guiard. Construction de modèles géologiques 3D par co-raffinement de sur-
faces. Phd thesis, Ecole des Mines de Paris, 2006.

[HDD+92] Hugues Hoppe, Tony DeRose, Tom Duchampy, John McDonaldz, and Werner Stuet-
zlez. Surface reconstruction from unorganized points. Proceeding SIGGRAPH ’92
Proceedings of the 19th annual conference on Computer graphics and interactive tech-
niques, 26:71–78, 1992.

BIBLIOGRAPHY 101

[Hop94] Hugues Hoppe. Surface Reconstruction from Unorganized Points. Phd thesis, Uni-
versity of Washington, 1994.

[Jol02] I. T. Jolliffe. Principal Component Analysis. Springer, USA, 2002. ISBN: 0-387-
95442-2.

[Jr.06] Richard H. Groshong Jr. 3-D Structural Geology, A Practical Guide to Quantitative
Surface and Subsurface Map Interpretation. Springer, Second Edition, USA, 2006.
ISBN: 3-540-31054-1.

[KBH06] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruc-
tion. SGP ’06 Proceedings of the fourth Eurographics symposium on Geometry pro-
cessing, pages 61–70, 2006. ISBN: 3-905673-36-3.

[KL06] Seok-Il Kim and Rixie Li. Complete 3D surface reconstruction from unstructured
point cloud. Journal of Mechanical Science and Technology, 20(12):2034–2042, 2006.

[Kle97] Reinhard Klein. Construction of the constrained Delaunay triangulation of a polyg-
onal domain. In CAD Systems Development. Springer Berlin Heidelberg, pages 313–
326, 1997. ISBN: 978-3-642-60718-9.

[KNSS09] Evangelos Kalogerakis, Derek Nowrouzezahrai, Patricio Simari, and Karan Singh.
Extracting lines of curvature from noisy point clouds. Journal Computer-Aided Design
archive, 41(4):282–292, January 2009.

[LJ08] Pai-Feng Lee and Bin-Shyan Jong. Point-based simplification algorithm. WSEAS
Transactions on Computer Research, 3(1):61–66, January 2008.

[LL86] D. T. Lee and A. K. Lin. Generalized Delaunay triangulation for planar graphs.
Discrete and Computational Geometry, 1(1):201–217, 1986.

[LS80] D. T. Lee and B. J. Schachter. Two algorithms for constructing a Delaunay triangu-
lation. International Journal of Computer and Information Sciences, 9(3):219–242,
1980.

[LT07] Ying-Zhe Lue and Yi-Hsing Tseng. Surface reconstruction from LiDAR point cloud
data with a surface growing algorithm. Proceedings of the 28th Asia Conference on
Remote Sensing, pages 1944–1949, 2007. ISBN: 978-1-61567-365-0.

[LTW04] HongWei Lin, Chiew Lan Tai, and Guo Jin Wang. A mesh reconstruction algorithm
driven by an intrinsic property of a point cloud. Computer-Aided Design, 36(1):1–9,
January 2004.

[Ma11] Ji Ma. Surface reconstruction from unorganized point cloud data via progressive lo-
cal mesh matching. Phd thesis, School of Graduate and Postdoctoral Studies, The
Univerity of Western Ontario, 2011.

[Mas10] Laura Silveira Mastella. Semantic exploitation of engineering models: application to
petroleum reservoir models. Phd thesis, l’École nationale supérieure des mines de
Paris, 2010.

102 BIBLIOGRAPHY

[Mau02] Pavvel Maur. Delaunay Triangulation in 3D. Phd thesis, University of West Bohemia
in Pilsen, Czech Republic, 2002.

[MD04] Carsten Moenning and Neil A. Dodgson. Intrinsic point cloud simplification. Inter-
national Conference 14th GraphiCon 2004, 2004.

[Mei11] Martijn Meijers. Simultaneous and topologically-safe line simplification for a variable-
scale planar partition. The 14th AGILE International Conference on Geographic In-
formation Science, 1:337–358, 2011.

[MRB09] Zoltan Csaba Marton, Radu Bogdan Rusu, and Michael Beetz. On fast surface re-
construction methods for large and noisy point clouds. ICRA’09 Proceedings of the
2009 IEEE international conference on Robotics and Automation, pages 3218–3223,
2009. ISBN: 978-1-4244-2788-8.

[MVF04] B. Mederos, L. Velho, and L. H. Figueiredo. Smooth surface reconstruction from
noisy clouds. Journal of the Brazilian Computer Society, 9(3):52–66, April 2004.

[MWZ10] R. Morales, Y. Wang, and Z. Zhang. Unstructured point cloud surface denoising and
decimation using distance RBF K-rearest neighbor kernel. Proceedings of the Advances
in multimedia information processing, 6298:214–225, 2010. ISBN: 978-3-642-15695-3.

[NBD12] Van-Sinh Nguyen, Alexandra Bac, and Marc Daniel. Boundary extraction and sim-
plification of a surface defined by a sparse 3D volume. Proceeding of the third interna-
tional symposium on information and communication technology SoICT 2012, pages
115–124, August 2012. ACM-ISBN: 978-1-4503-1232-5.

[Ngu12] Van-Sinh Nguyen. Shape of a voxel elevation surface, boundary extraction and sim-
plification. In 9 èmes Journées des doctorants du LSIS, pages 222–234, June 2012.

[OBS05] Y. Ohtake, A. Belyaev, and H. P. Seidel. An integrating approach to meshing scattered
point data. Proceedings of the 2005 ACM symposium on Solid and physical modeling,
pages 61–69, 2005. ISBN: 1-59593-015-9.

[OVBP11] E. Ovreiu, S. Valette, V. Buzuloiu, and R. Prost. Mesh simplification using an ac-
curate measured quadratic error. Signals, Circuits and Systems (ISSCS), 2011 10th
International Symposium on IEEE, pages 1–4, 2011. ISBN: 978-1-61284-944-7.

[PGK02] Mark Pauly, Markus Gross, and Leif P. Kobbelt. Efficient simplification of point-
sampled surfaces. Visualization VIS IEEE 2002, pages 163–170, 2002. ISBN: 0-7803-
7498-3.

[SC06] Whenzhong Shi and Chui Kwan Cheung. Performance evaluation of line simplification
algorithms of vector generalization. The Cartographic Journal, 43(1):27–44, 2006.

[SF09] Hao Song and Hsi-Yung Feng. A progressive point cloud simplification algorithm with
preserved sharp edge data. The International Journal of Advanced Manufacturing
Technology, 45(5):583–592, 2009.

BIBLIOGRAPHY 103

[SKM11] Sait Suer, Sinan Kockara, and Mutlu Mete. An improved boundary detection in
dermoscopy images for density based clustering. Proceedings of the Eighth Annual
MCBIOS Conference. Computational Biology and Bioinformatics for a New Decade,
12(10):S12, 2011.

[SLK05] Jae-Young Sim, Sang-Uk Lee, and Chang-Su Kim. Construction of regular 3D point
clouds using octree partitioning and resampling. Circuits and Systems. ISCAS 2005.
IEEE International Symposium, 2:956–959, May 2005.

[Slo93] S. W. Sloan. A fast algorithm for generating constrained Delaunay triangulation.
Computers and Structures, 47(3):441–450, 1993.

[Smi90] Michiel Smid. Maintaining the minimal distance of a point set in less than linear
time. ESPRIT II Basic Research Actions Program, under contract No.3075, Project
ALCOM, pages 33–44, June 1990.

[SS07] Aparajithan Sampath and Jie Shan. Building boundary tracing and regularization
from airborne lidar point clouds. Photogrammetric engineering and remote sensing,
73(7):805–812, 2007.

[Tra08] Nam-Van Tran. Traitement de surfaces triangulées pour la construction des modèles
geologique structuraux. Phd thesis, Université de la Méditerranée, 2008.

[Ver09] Philippe Verney. Interprétation géologique de données sismiques par une méthode
supervisée basée sur la vision cognitive. Phd thesis, École Nationale Supérieure des
Mines de Paris, 2009.

[VSAM13] Nguyen Van-Sinh, Bac Alexandra, and Daniel Marc. Simplification of 3D point clouds
sampled from elevation surfaces. 21st International Conference on Computer Graph-
ics, Visualization and Computer Vision WSCG 2013, pages 60–69, June 2013. ISBN:
978-80-86943-75-6.

[WCZ+08] R.-F. Wang, W.-Z. Chen, S.-Y. Zhang, Y. Zhang, and X.-Z. Ye. Similarity-based
denoising of point-sampled surfaces. Journal of Zhejiang University SCIENCE A,
9(6):807–815, June 2008.

[Wei08] Shen Wei. Building boundary extraction based on LiDAR point clouds data. Pro-
ceedings of the International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, 37:157–161, 2008.

[Wik13] Wikipedia. Delaunay Triangulations. http://en.wikipedia.org/wiki/
Delaunay_triangulation, 2013. [Online; accessed 07-March-2013].

[XXFJ08] Huang Xianfeng, Cheng Xiaoguang, Zhang Fan, and Gong Jianya. Side ratio constrain
based precise boundary tracing algorithm for discrete point clouds. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
37:349–354, 2008.

http://en.wikipedia.org/wiki/Delaunay_triangulation
http://en.wikipedia.org/wiki/Delaunay_triangulation

104 BIBLIOGRAPHY

[YLL+07] M. Yoon, Y. Lee, S. Lee, I. Ivrissimtzis, and H. P. Seidel. Surface and normal en-
sembles for surface reconstruction. Journal Computer Aided Design, 39(5):408–420,
2007.

[YsW06] Zhiwen Yu and Hau san Wong. An efficient local clustering approach for simplification
of 3D point-based computer graphics models. IEEE International Conference on
Multimedia and Expo, pages 2065–2068, 2006. ISBN: 1-4244-0367-7.

[YZY+06] Y.-J. Yang, H. Zhang, J. H. Yong, W. Zeng, J.-C. Paul, and J. Sun. Contrained
Delaunay triangulation using Delaunay visibility. ISVC 2006, LNCS 4291, 4291:682–
691, 2006. ISBN: 978-3-540-48628-2.

[ZAMZ11] M. Zhang, N. Anwer, L. Mathieu, and H. B. Zhao. A discrete geometry framework for
geometrical product specifications. CIRP Design Conference, pages 142–148, March
2011.

[ZG04] M. Zwicker and C. Gotsman. Meshing point clouds using spherical parameterization.
Eurographics Symposium on Point-Based Graphics, pages 173–180, 2004. ISBN: 3-
905673-09-6.

[ZG10] Y. J. Zhang and L. L. Ge. A robust and efficient method for direct projection on point
sampled surface. International Journal of Precision Engineering and Manufacturing,
11(1):145–155, 2010.

BIBLIOGRAPHY 105

Résumé

L’Infographie est un domaine important de l’informatique largement utilisé dans le monde
réel. L’arrivée des cartes graphiques grand public rapides et peu coûteuses a conduit à un
important besoin de programmation des différentes tâches géométriques pour les applica-
tions, y compris les modèles informatiques, la visualisation scientifique, l’analyse d’images
médicales, la simulation et les mondes virtuels. Les types d’applications évoluent pour
profiter des avancées en modélisation géométrique (basée sur des modèles mathématiques).
Reconstruire des surfaces avec des données provenant d’une technique d’acquisition au-
tomatique entraîne toujours le problème de la masse des données acquises. Cela implique
que les procédés habituels ne peuvent pas être appliqués directement. Par conséquent,
un processus de réduction des données est indispensable. Un algorithme efficace pour un
traitement rapide préservant le modèle original est un outil précieux pour la construction
d’une surface optimale et la gestion des données complexes.
Dans cette thèse, nous présentons des méthodes pour construire une surface géologique op-
timale à partir d’une quantité énorme de points 3D extraits de cubes sismiques. Appliquer
le processus à l’ensemble des points induit un risque important de contraction de la surface
de sorte que l’extraction de la frontière initiale est une étape importante permettant une
simplification à l’intérieur de la surface. La forme globale de la surface sera alors mieux
respectée pour la reconstruction de la surface triangulaire finale. Nos propositions sont
basées sur la régularité des données qui permet, même si des données sont manquantes,
d’obtenir facilement les informations de voisinage.
Tout d’abord, nous présentons une nouvelle méthode pour extraire et simplifier la frontière
d’une surface d’élévation définie par un ensemble de voxels dans un grand volume 3D où
des données sont manquantes. Deuxièmement, une méthode pour simplifier la surface à
l’intérieur de sa frontière est présentée. Elle comprend une étape de simplification grossière
optionnelle suivie par une étape plus fine basée sur l’étude des courbures. Nous tenons
également compte du fait que la densité de données doit changer graduellement afin de
recevoir à la dernière étape d’une surface triangulée avec de meilleurs triangles. Troisième-
ment, nous avons proposé une nouvelle méthode rapide pour trianguler la surface après
simplification.
Mots-clés: Nuages de Points, Extraction de la Frontière, Simplification de la Frontière,
Simplification de surfaces, Triangulation.

	Acknowledgements
	Résumé
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Nomenclature
	Introduction
	Background and motivation
	Problem statement
	Objects and scopes
	Methodology
	Geological data model

	Thesis structure

	Previous Works on 3D Elevation Surface Modeling
	Tran Nam-Van's work
	Proposed methods
	Obtained results and existed problems

	Philippe Verney's work
	Images processing
	Structure of a sparse matrix
	From a sparse matrix to a 3D volume
	Data analysis
	Proposed algorithm
	Results

	Conclusion

	Boundary Extraction and Simplification
	Introduction
	Related work
	Boundary detection
	Boundary simplification

	Methods for boundary extraction
	Overview
	Definitions
	Definition of a square neighborhood
	Definition of different types of boundary

	Algorithms
	Extracting boundary by distance growing
	Extracting boundary by clockwise scanning

	Implementation

	Methods for boundary simplification
	Background and Definitions
	Line segment extraction
	3D polyline simplification

	Algorithm

	Results
	Boundary Extraction
	Boundary simplification

	Discussion and evaluation
	Conclusion

	Surface Simplification
	Introduction
	Related work
	Simplification of triangular meshes
	Simplification of point clouds

	Method for simplifying the inside of a surface
	Rough simplification
	Overview
	Algorithm

	Elaborate simplification
	Overview
	Analysis
	Subdivision according to the boundary density
	Notation and formula construction
	Boundary density criteria

	Subdivision according to the curvature
	PCA flatness criteria

	Algorithms

	Results
	Discussion and evaluation
	Conclusion

	Surface Triangulation
	Introduction
	Related work
	The methods in 2D
	The methods in 3D

	Methods for triangulating the surface
	Overview
	Concepts, notation and definition
	Building a seed triangle
	Searching conditions in one side of an edge
	Delaunay Criterion
	Neighboring points search based on the voxel tracing
	Computing the discrete mediatrix L
	Computing the successive dilatations L'
	Algorithm based on the voxel traversal search

	Triangulating a surface
	Processing the outside triangles on the boundary

	Implement
	Results
	Discussion and evaluation
	Conclusion

	Conclusion and Future Work
	Conclusion and contributions
	Boundary extraction
	Boundary simplification
	Rough simplification
	Elaborate simplification
	Surface triangulation

	Future work

	Bibliography
	Appendix
	Résumé

