Thèse soutenue

Récupération d'Energie Vibratoire pour Systèmes de Contrôle Santé Intégré de Structures Aéronautiques

FR
Auteur / Autrice : Thomas Sainthuile
Direction : Christophe DelebarreSébastien Grondel
Type : Thèse de doctorat
Discipline(s) : Electronique. Micro et nano technologie
Date : Soutenance le 12/12/2012
Etablissement(s) : Valenciennes
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie
Pôle de recherche et d'enseignement supérieur (PRES) : Communauté d'universités et d'établissements Lille Nord de France (2009-2013)
Jury : Président / Présidente : Guy Feuillard
Examinateurs / Examinatrices : Christophe Delebarre, Sébastien Grondel, Elie Lefeuvre, Daniel Royer, Skandar Basrour, Sylvain Chatillon, Christophe Paget
Rapporteurs / Rapporteuses : Elie Lefeuvre, Daniel Royer

Résumé

FR  |  
EN

L’objectif de cette thèse est de réaliser un système de Contrôle Santé Intégré des structures aéronautiques (CSI ou SHM) autonome et à double-fonctionnalité. Ce système doit être en mesure d’assurer son autonomie énergétique tout en réalisant les tâches de détection et de localisation des endommagements. Latechnique retenue pour alimenter ce système est basée sur la récupération d’énergie vibratoire par transducteurs piézoélectriques SHM collés. Durant ces travaux, un modèle analytique complet de la chaîne de récupération d’énergie vibratoire a d’abord été créé. Ce modèle, validé par la Méthode des ÉlémentsFinis (MEF), permet d’améliorer le rendement du système en déterminant les dimensions, les locali-sations et le type de matériau piézoélectrique idéals des transducteurs. Ce modèle a ensuite été étendu à une configuration plus représentative des conditions de vibrations d’une structure en vol. Une bonne corrélation entre les résultats provenant du modèle prédictif et les essais sur un banc de mesures a étémise en évidence. Une puissance de 1.67mW a été récupérée et la capacité large bande des transducteurs a été vérifiée. L’application de la récupération d’énergie au contrôle de structures composites en cours d’assemblage sur les lignes de production a également été étudiée. Dans ce cas, un transducteur stratégiquement localisé et alimenté par une source de tension disponible génère des ondes de Lambdans la structure afin de pallier l’absence de vibrations naturelles. Un réseau de transducteurs secondaires disséminés sur cette structure récupère et convertit cette énergie vibratoire en énergie électrique. Une puissance de 7.36 mW a été récoltée et ce système a été en mesure de détecter une chute d’outil sur le composite et d’éclairer de façon autonome une diode électroluminescente (DEL) simulant ici la consommation de la transmission sans fil de l’information.