Thèse soutenue

Contribution à la méthode des moments et sommes de carrés en optimisation globale

FR  |  
EN
Auteur / Autrice : Thanh Tung Phan
Direction : Jean-Bernard Lasserre
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance en 2012
Etablissement(s) : Toulouse 3

Résumé

FR  |  
EN

L''Optimisation Polynomiale' s'intéresse aux problèmes d'optimisation P de la forme min {f(x): x dans K} où f est un polynôme et K est un ensemble semi-algébrique de base, c'est-à-dire défini par un nombre fini de contraintes inégalité polynomiales, K={x dans Rn : gj(x) <= 0}. Cette sous discipline de l'optimisation a émergé dans la dernière décennie grâce à la combinaison de deux facteurs: l'existence de certains résultats puissants de géométrie algébrique réelle et la puissance de l'optimisation semidéfinie (qui permet d'exploiter les premiers). Il en a résulté une méthodologie générale (que nous appelons ``moments-SOS') qui permet d'approcher aussi près que l'on veut l'optimum global de P en résolvant une hiérarchie de relaxations convexes. Cependant, chaque relaxation étant un programme semi-défini dont la taille augmente avec le rang dans la hiérarchie, malheureusement, au vu de l'état de l'art actuel des progiciels de programmation semidéfinie, cette méthodologie est pour l'instant limitée à des problèmes P de taille modeste sauf si des symétries ou de la parcimonie sont présentes dans la définition de P. Cette thèse essaie donc de répondre à la question: Peux-t-on quand même utiliser la méthodologie moments-SOS pour aider à résoudre P même si on ne peut résoudre que quelques (voire une seule) relaxations de la hiérarchie? Et si oui, comment? Nous apportons deux contributions: I. Dans une première contribution nous considérons les problèmes non convexes en variables mixtes (MINLP) pour lesquelles dans les contraintes polynomiales {g(x) <=0} où le polynôme g n'est pas concave, g est concerné par peu de variables. Pour résoudre de tels problèmes (de taille est relativement importante) on utilise en général des méthodes de type ``Branch-and-Bound'. En particulier, pour des raisons d'efficacité évidentes, à chaque nœud de l'arbre de recherche on doit calculer rapidement une borne inférieure sur l'optimum global. Pour ce faire on utilise des relaxations convexes du problème obtenues grâce à l'utilisation de sous estimateurs convexes du critère f (et des polynômes g pour les contraintes g(x)<= 0 non convexes). Notre contribution est de fournir une méthodologie générale d'obtention de tels sous estimateurs polynomiaux convexes pour tout polynôme g, sur une boite. La nouveauté de notre contribution (grâce à la méthodologie moment-SOS) est de pouvoir minimiser directement le critère d'erreur naturel qui mesure la norme L_1 de la différence f-f' entre f et son sous estimateur convexe polynomial f'. Les résultats expérimentaux confirment que le sous estimateur convexe polynomial que nous obtenons est nettement meilleur que ceux obtenus par des méthodes classiques de type ``alpha-BB' et leurs variantes, tant du point de vue du critère L_1 que du point de vue de la qualité des bornes inférieures obtenus quand on minimise f' (au lieu de f) sur la boite. II: Dans une deuxième contribution on considère des problèmes P pour lesquels seules quelques relaxations de la hiérarchie moments-SOS peuvent être implantées, par exemple celle de rang k dans la hiérarchie, et on utilise la solution de cette relaxation pour construire une solution admissible de P. Cette idée a déjà été exploitée pour certains problèmes combinatoire en variables 0/1, parfois avec des garanties de performance remarquables (par exemple pour le problème MAXCUT). Nous utilisons des résultats récents de l'approche moment-SOS en programmation polynomiale paramétrique pour définir un algorithme qui calcule une solution admissible pour P à partir d'une modification mineure de la relaxation convexe d'ordre k. L'idée de base est de considérer la variable x_1 comme un paramètre dans un intervalle Y_1 de R et on approxime la fonction ``valeur optimale' J(y) du problème d'optimisation paramétrique P(y)= min {f(x): x dans K; x_1=y} par un polynôme univarié de degré d fixé. Cette étape se ramène à la résolution d'un problème d'optimisation convexe (programme semidéfini). On calcule un minimiseur global y de J sur l'intervalle Y (un problème d'optimisation convexe ``facile') et on fixe la variable x_1=y. On itère ensuite sur les variables restantes x_2,. . . ,x_n en prenant x_2 comme paramètre dans un intervalle Y_2, etc. Jusqu'à obtenir une solution complète x de R^n qui est faisable si K est convexe ou dans certains problèmes en variables 0/1 où la faisabilité est facile à vérifier (e. G. , MAXCUT, k-CLUSTTER, Knapsack). Sinon on utilise le point obtenu x comme initialisation dans un procédure d'optimisation locale pour obtenir une solution admissible. Les résultats expérimentaux obtenus sur de nombreux exemples sont très encourageants et prometteurs.