La méthode MOOD Multi-dimensional Optimal Order Detection : la première approche a posteriori aux méthodes volumes finis d'ordre très élevé

par Steven Diot

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Stéphane Clain et de Raphaël Loubère.

Soutenue en 2012

à Toulouse 3 .


  • Résumé

    Nous introduisons et développons dans cette thèse un nouveau type de méthodes Volumes Finis d'ordre très élevé pour les systèmes hyperboliques de lois de conservations. Appelée MOOD pour Multidimensional Optimal Order Detection, elle permet de réaliser des simulations très précises en dimensions deux et trois sur maillages non-structurés. La conception d'une telle méthode est rendue délicate par l'apparition de singularités dans la solution (chocs, discontinuités de contact) pour lesquelles des phenomènes parasites (oscillations, création de valeurs non physiques. . . ) sont générés par l'approximation d'ordre élevé. L'originalité de cette thèse réside dans le traitement de ces problèmes. A l'opposé des méthodes classiques qui essaient de contrôler ces phénomènes indésirables par une limitation a priori, nous proposons une approche de traitement a posteriori basée sur une décrémentation locale de l'ordre du schéma. Nous montrons en particulier que ce concept permet très simplement d'obtenir des propriétés qui sont habituellement difficiles à prouver dans le cadre multi-dimensionel non-structuré (préservation de la positité par exemple). La robustesse et la qualité de la méthode MOOD ont été prouvées sur de nombreux tests numériques en 2D et 3D. Une amélioration significative des ressources informatiques (CPU et stockage mémoire) nécessaires à l'obtention de résultats équivalents aux méthodes actuelles a été démontrée.

  • Titre traduit

    The mood method, multi-dimensional optimal older detection : afirts a posteriori approach to very high-order finite volume methods


  • Résumé

    We introduce and develop in this thesis a new type of very high-order Finite Volume methods for hyperbolic systems of conservation laws. This method, named MOOD for Multidimensional Optimal Order Detection, provides very accurate simulations for two- and three-dimensional unstructured meshes. The design of such a method is made delicate by the emergence of solution singularities (shocks, contact discontinuities) for which spurious phenomena (oscillations, non-physical values creation, etc. ) are generated by the high-order approximation. The originality of this work lies in a new treatment for theses problems. Contrary to classical methods which try to control such undesirable phenomena through an a priori limitation, we propose an a posteriori treatment approach based on a local scheme order decrementing. In particular, we show that this concept easily provides properties that are usually difficult to prove in a multidimensional unstructured framework (positivity-preserving for instance). The robustness and quality of the MOOD method have been numerically proved through numerous test cases in 2D and 3D, and a significant reduction of computational resources (CPU and memory storage) needed to get state-of-the-art results has been shown.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (182 p.)
  • Annexes : Bibliogr. p. 165-171

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2012 TOU3 0116

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2012TOU30116
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.