Thèse soutenue

Cinétiques de précipitation de minéraux carbonatés magnésiens, influence de ligands organiques et conséquences pour la séquestration minérale du CO2
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Quentin Gautier
Direction : Jacques Schott
Type : Thèse de doctorat
Discipline(s) : Sciences de l'Univers et Environnement
Date : Soutenance le 05/12/2012
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Sciences, Ingénierie et Environnement (Champs-sur-Marne, Seine-et-Marne ; 2010-2015)
Partenaire(s) de recherche : Laboratoire : Laboratoire Navier (Paris-Est)
Jury : Président / Présidente : Éric Oelkers
Examinateurs / Examinatrices : Jacques Schott, Jean Sulem, Guntram Jordan
Rapporteurs / Rapporteuses : Susan Stipp, Laurent Charlet

Résumé

FR  |  
EN

La formation de minéraux carbonatés magnésiens par carbonatation de silicates de magnésium constitue une option pérenne et sûre de séquestration du dioxyde de carbone, dont les estimations les plus optimistes indiquent qu'elle pourrait participer significativement à l'effort global de réduction des émissions de CO2 d'origine anthropique. À ce jour cependant, ces réactions chimiques se heurtent à de fortes limitations cinétiques, dont l'origine réside dans la faible réactivité des phases minérales en présence. Alors que de nombreuses études se sont intéressées à la phase de dissolution des silicates magnésiens, souvent considérée comme l'étape limitante du processus, ce travail de thèse prend le parti d'étudier expérimentalement les mécanismes et les vitesses de formation des minéraux carbonatés magnésiens qui constituent le produit final des réactions de carbonatation. Dans une première partie, nous nous intéressons à l'influence sur la cinétique de précipitation de la magnésite (MgCO3) de ligands organiques connus pour accélérer la vitesse de dissolution des silicates magnésiens : oxalate, citrate et EDTA. Sur la base d'expériences menées en réacteur à circulation entre 100 et 150°C, nous montrons que ces ligands diminuent significativement la vitesse de précipitation de la magnésite en raison (1) de la complexation des cations Mg2+ en solution, estimée grâce à une base de données thermodynamiques établie à partir d'une revue critique de la littérature, et (2) de l'adsorption des ligands au niveau d'un nombre limité de sites à la surface du minéral, avec pour conséquence une diminution de la constante cinétique de précipitation. Cette inhibition de la cristallisation de la magnésite est maximale dans le cas du citrate. L'utilisation de la microscopie à force atomique en conditions hydrothermales nous a permis de sonder l'origine de l'inhibition observée. Elle nous indique en particulier que le citrate et l'oxalate agissent sur le processus de croissance cristalline à la surface de la magnésite, modifiant la forme des îlots de croissance ainsi que la fréquence de génération des marches cristallines par le processus de croissance en spirale. Nous montrons que ces deux ligands agissent au niveau de sites surfaciques différents, probablement fonction de leurs structures et de leurs propriétés chimiques. Nous proposons que l'inhibition plus forte exercée par le citrate sur le processus de croissance de la magnésite provienne d'une interaction préférentielle du ligand avec les marches cristallines aigües, qui limitent le processus de croissance en spirale de par leur faible vitesse d'avancement. La description de ces phénomènes à l'aide d'une loi cinétique empirique permet d'effectuer une modélisation numérique simple de la carbonatation de la forstérite (Mg2SiO4) en présence de ligands à 120°C, qui suggère que les ligands organiques étudiés ont une influence défavorable sur le processus global de carbonatation de ce minéral .La troisième et dernière partie de ce travail s'intéresse à la solubilité et à la cinétique de précipitation d'un carbonate de magnésium hydraté, l'hydromagnésite, entre 25 et 75°C. Les résultats obtenus indiquent que la vitesse de croissance de l'hydromagnésite excède largement celle de la magnésite à affinité chimique comparable, tandis que l'énergie d'activation du processus est beaucoup plus faible que celle de la magnésite. Ces données cinétiques originales confirment que la déshydratation des ions Mg2+ est l'étape limitante de la précipitation de la magnésite en solution aqueuse. Toutefois, du fait de sa solubilité plus forte, l'hydromagnésite n'est susceptible de se former plus rapidement que la magnésite qu'à pH alcalin et basse température. Elle ne peut à ce titre constituer un palliatif à la faible vitesse de précipitation de la magnésite lors de la carbonatation des silicates magnésiens