Thèse de doctorat en Informatique
Sous la direction de Laurent Najman.
Soutenue le 28-03-2012
à Paris Est , dans le cadre de École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-2015) , en partenariat avec Laboratoire d'informatique de l'Institut Gaspard Monge (laboratoire) .
Le président du jury était Dominique Bernard.
Le jury était composé de Laurent Najman, David Tschumperlé, Hugues Talbot.
Les rapporteurs étaient Bernard Burgeth.
Segmentation d'images par l'algorithme des flot maximum continu
Ces dernières années avec les progrès matériels, les dimensions et le contenu des images acquises se sont complexifiés de manière notable. Egalement, le différentiel de performance entre les architectures classiques mono-processeur et parallèles est passé résolument en faveur de ces dernières. Pourtant, les manières de programmer sont restées largement les mêmes, instituant un manque criant de performance même sur ces architectures. Dans cette thèse, nous explorons en détails un algorithme particulier, les flots maximaux continus. Nous explicitons pourquoi cet algorithme est important et utile, et nous proposons plusieurs implémentations sur diverses architectures, du mono-processeur à l'architecture SMP et NUMA, ainsi que sur les architectures massivement parallèles des GPGPU. Nous explorons aussi des applications et nous évaluons ses performances sur des images de grande taille en science des matériaux et en biologie à l'échelle nano
In recent years, with the advance of computing equipment and image acquisition techniques, the sizes, dimensions and content of acquired images have increased considerably. Unfortunately as time passes there is a steadily increasing gap between the classical and parallel programming paradigms and their actual performance on modern computer hardware. In this thesis we consider in depth one particular algorithm, the continuous maximum flow computation. We review in detail why this algorithm is useful and interesting, and we propose efficient and portable implementations on various architectures. We also examine how it performs in the terms of segmentation quality on some recent problems of materials science and nano-scale biology
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.