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Introduction détaillée (en français)

Depuis quelques années, les phénomènes dépendant du temps ont fait l’objet d’un nombre
croissant d’expériences, notamment dans le domaine de la physique quantique de la

matière condensée et des systèmes optiques. Dans le domaine de la physique de la matière
condensée les progrès expérimentaux ont permis d’étudier le comportement de transport
sur des systèmes à faible dimensions telles que les boites quantiques ou fils quantiques et
d’analyser la réponse de ces systèmes à des potentiels externes. Dans l’optique quantique
un exemple célèbre pour des phénomènes dépendant du temps est la réalisation expérimen-
tale de la transition de phase quantique de bosons ultrafroids placés sur un réseau optique
[GME+02]; en faisant varier la profondeur du réseau optique on peut faire passe les bosons
d’un régime superfluide à un régime isolant de Mott.

Récemment, de nouvelles études ont été menées sur le problème de la thermalisation
quantique, c’est-à-dire si un système quantique hors d’équilibre relaxe vers un état station-
naire, et si c’est le cas, comment caractériser ses propriétés physiques après un très long
temps. Par ailleurs, il serait intéressant de développer des instruments analytiques pour
décrire les propriétés thermiques des systèmes quantiques hors équilibre. Toutes ces ques-
tions relèvent de la thermodynamique quantique. Comme on le sait, la thermodynamique
est une théorie traitant des systèmes avec une infinité de degrés de liberté. La thermo-
dynamique quantique tente de combiner la thermodynamique et la mécanique quantique
dans un ensemble cohérent. Cette recherche est très importante car elle peut nous aider à
comprendre comment les lois de la thermodynamique classique dépendent du comportement
purement quantique des particules qui constituent la matière [GMM04].

Malgré des progrès expérimentaux récents, la description théorique des phénomènes hors
équilibre est encore insuffisante.
À la lumière des discussions précédentes, nous pouvons conclure que la compréhension

de la physique des systèmes quantiques hors équilibre représente l’un des problèmes ouverts
les plus intrigants de la physique de la matière condensée moderne. Dans cette perspective,
un des objectifs de la thèse est de répondre à certaines des questions soulevées dans ce
domaine en utilisant des méthodes analytiques et numériques capables de faire face à des
fortes corrélations et à des effets de non-équilibre.
Dans ce travail, nous concentrons notre attention sur la dynamique hors équilibre des

systèmes quantiques unidimensionnels. Après la préparation du système quantique dans
l’état fondamental d’un hamiltonien initiale (ou dans un état excité, ou dans un état canon-
ique à la température inverse β, etc.), une trempe brutale ou quasi-adiabatique conduit le
système hors équilibre, en générant des propriétés dynamiques très intéressantes. En effet,
les systèmes de faible dimension, malgré leur simplicité, montrent souvent un comportement
exotique. Par ailleurs, les caractéristiques unidimensionnelles des systèmes étudiés, comme
par example la chaîne XY quantique de spin 1/2, permetent souvent le développement de
méthodes analytiques et numérique puissantes [LSM61, BMD70, BM71a, BM71b, BMA71].
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Ces modèles sont largement utilisés comme laboratoire théorique standard pour les questions
liées aux phénomènes critiques quantiques, les processus de décohérence et la thermalisation
[Sac00].

Néanmoins, la grande partie des modèles quantiques unidimensionnels ne sont pas tou-
jours facilement traitables par des méthodes analytiques (voir par exemple le modèle de
Bose-Hubbard). C’est la raison pour laquelle, récemment, un grand effort a été consacré
à l’amélioration des algorithmes numériques utilisés pour la simulation des systèmes quan-
tiques unidimensionnels. Un de ces algorithmes, le groupe de renormalisation de la matrice
densité en fonction du temps (t-DMRG), se révèle être très bien adapté pour étudier des
phénomènes dépendants du temps dans les systèmes unidimensionnels fortement corrélés
[Vid03, Vid04, WF04].

Ce rapport est divisé en trois parties. La première partie de la thèse est consacrée à
la présentation du contexte dans lequel la partie centrale de notre travail (Partie II) peut
être inscrite. L’idée principale qui a guidé le développement d’une telle structure était de le
rendre “auto-consistent” dans le sens où le lecteur devrait trouver les instruments nécessaires
à la compréhension des nouveaux résultats présentés dans les chapitres suivants. Bien sûr, en
supposant que le lecteur soit un physicien, nous ne donnons que quelques détails techniques
sur les méthodes et les modèles que nous allons utiliser et les analyser après, sans entrer trop
dans les bases physiques. Dans un certain sens, avec cette partie, nous tenons à aborder de
façon brève, et malheureusement non exhaustive, le cadre théorique qui sera utilisé tout au
long du reste de la thèse.

Le Chapitre 1 est consacré à l’introduction de l’idée de base d’une transition de phase
quantique (QPT), en particulier en la comparant avec la transition de phase classique (CPT).
Une transition de phase quantique est une transition de phase entre deux phases quantiques
différentes (les phases de la matière à température zero). Par conséquent, elle est pilotée non
pas par la température, mais par un paramètre physique qui apparaît dans l’hamiltonien.
En conséquence de ce qui a été dit précédemment, le comportement du système doit dépen-
dre des propriétés de l’état fondamental. En particulier, en changeant les paramètres, le
système présente un comportement qui dépend fortement de la façon dont l’énergie et l’état
fondamental dépendent de ces paramètres. Lorsque l’énergie de l’état fondamental est une
fonction analytique du paramètre externe, les propriétés du système ne changent pas beau-
coup. Par contre, lorsque l’énergie montre quelques points non-analytiques (points critiques
quantiques), si le système croise un tel point, il modifie brutalement certaines propriétés,
comme les symétries ou d’autres quantités macroscopiques: c’est ce que nous appelons une
transition de phase quantique.

En particulier, proche d’un point critique, le système est caractérisé par la divergence de
la longueur de corrélation. En général, les valeurs moyennes de certaines observables présen-
tent un comportement de type “loi de puissance”, caractérisé par des exposants (appelés
exposants critiques) qui prennent des valeurs précises en fonction de la classe d’universalité
du système étudié. Les caractéristiques du système au voisinage d’une transition de phase
quantique vont aussi affecter son comportement dynamique. C’est ce qui arrive lorsqu’on
essaie de traverser de manière adiabatique un point critique. L’échelle de temps sur laquelle
un système est capable de répondre à une perturbation de son état est mesurée par l’inverse
du gap d’énergie instantané τ ∼ ∆−1.

Il s’avère que ce temps est extrêmement important. Le théorème adiabatique est en
fait limitée par cette échelle de temps. Il affirme, en effet, que nous pouvons faire évoluer
adiabatiquement un système quantique seulement si le temps caractéristique de variation de
l’hamiltonien est beaucoup plus grande que le temps de relaxation maximale que le système
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montre au cours de toute la dynamique [Mes62]. Par conséquent, au point critique quantique,
où l’écart se ferme, la condition adiabatique se casse: il y aura toujours une fenêtre temporelle
suffisamment proche du point critique où la dynamique n’est plus adiabatique. De ce point
de vue, il est certainement un enjeu très important de savoir comment bien choisir un correct
protocole temporelle pour guider le système par une transition de phase quantique. Car le
comportement diabatique ne se manifeste qu’à proximité du point critique, il est naturel
de se demander si la perte d’adiabaticité peut être décrite en termes de caractéristiques
statiques du point critique, par exemple à travers ses exposants critiques. Le mécanisme de
Kibble-Zurek [Kib76, Kib80, Zur85] aborde précisément cette question, en fournissant une
connexion élégante entre la statique et les propriétés hors équilibre.

Selon le mécanisme de Kibble-Zurek, l’échelle de temps au cours de laquelle le système
est capable de réagir à un changement externe diverge au point de transition du fait de
la manifestation du “critical slowing down”, observée aussi dans le cas classique [ZDZ05].
Tant que le système est suffisamment loin du point critique, son temps de relaxation carac-
téristique devrait être suffisamment petit pour permettre au système de réagir rapidement
à la variation de l’hamiltonien. On suppose que le système a été initialement préparé dans
l’état fondamental d’un hamiltonien initiale donnée. Puis, au début de l’évolution (régime
adiabatique) l’état du système évolue adiabatiquement, ce dernier étant donné à chaque
fois par l’état fondamental adiabatique instantané de l’hamiltonien dépendant du temps.
Cependant, comme le système s’approche du QCP son temps de relaxation commence à
augmenter dangereusement. Par conséquent, il y aura un instant (le “freeze-out time”) à
partir duquel le système ne sera plus en mesure de réagir aux changements extérieurs. A ce
moment, l’évolution passe du régime adiabatique au régime d’impulsion dans lequel l’état du
système est gelé. Selon ce mécanisme, l’adiabaticité est perdue lorsque le temps restant pour
attendre la transition est égal au temps de relaxation, donné par l’inverse du gap ∆. Une
fois que nous avons passé la zone critique, lorsque le système sera à nouveau assez loin du
point critique, la dynamique va retrouver son caractère adiabatique et l’état va redémarrer
son évolution adiabatique, mais à partir de l’état gelé.

Enfin, nous introduisons aussi la théorie quantique des perturbations dans la représen-
tation des états propres adiabatiques. L’idée essentielle est très simple. Nous utilisons les
états propres instantanés |k(t)〉 et les énergies propres instantanées Ek(t) de l’hamiltonien
dépendant du temps H(t):

H(t)|k(t)〉 = Ek(t)|k(t)〉. (1)

Si l’hamiltonien évolue assez lentement (limite adiabatique), il est utile d’écrire l’état du
système comme une série de puissance du nombre de sauts entrepris par le système d’un
état propre instantané à l’autre. Ces sauts sont reliés par une évolution adiabatique dans le
vecteur dans lequel le système se trouve entre les sauts. Le premier terme de la série donne
l’expression habituelle adiabatique pour l’état final, le second est la correction standard pour
l’évolution adiabatique. Donc, jusqu’à la contribution “à un seul saut”, on a

|Ψ(t)〉 ≈ e
−i

∫ t
t0

dsE0(s)

[
|0(t)〉+

∑

k 6=0

|k(t)〉
∫ t

t0

dt′〈k̇(t′)|0(t′)〉e−i
∫ t
t′

dsδωk0(s)

]
, (2)

avec les fréquences de Bohr∆ωk0(t) = Ek(t)−E0(t) et les amplitudes adiabatiques 〈k̇(t)|q(t)〉 =
〈k(t)|∂tH(t)|q(t)〉/(Ek(t)− Eq(t)). Enfin, en faisant des hypothèses d’échelle pour les éner-
gies et les amplitudes de transition, on retrouve, pour la densité de défauts, le même résultat
que celui donné par le mécanisme de Kibble-Zurek.

Dans le Chapitre 2 nous faison une brève introduction au modèle XY; l’hamiltonien du
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modèle est donné par

H = −1
2

L−1∑

n=1

(
Jxσ

x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1

)
− h

2

L∑

n=1

σz
n, (3)

où σα
n sont les matrices de Pauli, h est le champ magnétique dans la direction ẑ, Jx et Jy

sont les constantes de couplage

Jx =
1 + γ

2
, Jy =

1− γ
2

, γ ∈ [0, 1], (4)

avec γ le paramètre d’anisotropie. La valeur γ = 0 correspond au modèle XX avec une
symètrie U(1). Malgré l’absence d’une transition de phase ordonnée-désordonnée, nous
pouvons identifier deux régions différentes: une phase paramagnétique et une phase critique.
Dans la phase critique, le modèle présente une divergence de la longueur de corrélation
[KT73]. Par ailleurs, dans le modèle XX, l’aimantation totale M =

∑
n σ

z
n est conservée.

Dans le cas γ = 1 l’hamiltonien décrit le modèle d’Ising quantique qui correspond à la
limite anisotrope extrême du modèle d’Ising classiques à deux dimensions sur réseau carré
[FS78, Kog79]. Le modèle d’Ising quantique montre un point critique quantique séparant
une phase paramagnétique d’une phase ferromagnétique.

De plus, le modèle XY est intéressant pour différentes raisons: il est un modèle jouet
de référence pour la compréhension des modèles plus complexes; il a une loi de dispersion
non triviale; il montre un riche diagramme de phase; il est intéressant du point de vue
expérimental.

Nous présentons ensuite la diagonalisation canonique de l’hamiltonien. En utilisant la
transformation de Jordan-Wigner, en termes des opérateurs de Clifford

Γ1
n =

n−1∏

j=1

(−σz
j )σ

x
n, Γ2

n = −
n−1∏

j=1

(−σz
j )σ

y
n, (5)

on peut écrire l’hamiltonien sous la forme quadratique

H =
1

4
Γ
†
TΓ, (6)

avec

Γ
† = (Γ1†, Γ2†), Γ

µ† = (Γµ†
1 , · · · ,Γµ†

L ), (7)

où T est un matrice hermitienne 2L× 2L

T =

(
∅ C

C
† ∅

)
, (8)

avec des éléments de matrice Cmn = −i[hδmn + Jxδm−1n + Jyδmn−1].
Nous introduisons l’entropie d’intrication et, pour le modèle XX, nous donnons le lien

explicite avec la matrice de corrélation à deux points. En effet, si l’on divise une chaîne XX
en deux parties, A et B, on a pour l’entropie d’intrication du sous-systéme A

SA = −
∑

k

[ζk ln ζk + (1− ζk) ln(1− ζk)] , (9)

où ζk sont les valeurs propres de la matrice de corrélation 〈c†i cj〉 restreinte à la partie A.
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Puis, nous concentrons notre attention sur la dynamique du modèle en donnant la
représentation de Heisenberg des opérateurs de Clifford. On trouve que la matrice de cor-
rélation des opérateurs de Clifford évolue comme

〈ΓΓ†〉t = U(t)〈ΓΓ†〉0U†(t), (10)

avec U(t) = Ve−itΛ
V
†, où V est la matrice contentant les vecteurs propres de l’hamiltonien

apres la trempe etΛ la matrice diagonale contenant les valeurs propres de l’hamiltonien apres
la trempe. Enfin, nous considérons le cas où l’hamiltonien dépend explicitement du temps.

Le Chapitre 3 est consacré à la présentation brève du modèle de Bose-Hubbard. Ce
modèle donne une description approximative de la physique des bosons en interaction sur
un réseau. Il est étroitement lié au modèle de Hubbard qui provient de la physique du solide
comme une description approximative de systèmes supraconducteurs et du mouvement des
électrons entre les atomes d’un solide cristallin. Le nom “Bose” fait référence au fait que
les particules dans le système sont des bosons. Le modèle de Bose-Hubbard est une simple
description des atomes bosoniques sur un réseau optique avec hamiltonien en deuxième
quantization

HBH = −t
∑

〈i,j〉

(
b†i bj + h.c.

)
+
U

2

∑

i

ni (ni − 1)− µ
∑

i

ni, (11)

en termes des opérateurs bosonique de création et destrution sûr reseau b†i , bi et nombre

d’occupation ni = b†i bi. Le premier terme représente la contribution cinétiques en décrivant
les saut de bosons d’un site à l’autre. Dans le cas le plus simple, le saut est réservé aux plus
proches voisins 〈i, j〉 seulement. Le terme U vient de l’interaction paire et donne le coût
d’énergie lorsque les particules ni sont assis sur le site i. Enfin, le terme µ tient comptes pour
un potentiel local externe qui peut être interprétée comme un potentiel chimique essentiel
pour fixer le nombre de bosons dans le système.

L’hamiltonienHBH peut être déduit d’une description continue de bosons qui vivent dans
un potentiel périodique [JZ05]. A partir de la description continue, dans l’approximation
mono-bande et en assumant des fonctions de Wannier bien localisées, on peut remanier la
description originale dans la formulation seconde quantifiée (voir [LSA+07, Yuk09] pour plus
de détails).

Dans la limite des interactions locales faibles, où le tunnel est dominant t ≫ U , l’état
fondamental de l’hamiltonien est bien décrit par les fonctions d’onde à une particule de N
bosons entièrement répartis sur le réseau entier avec L sites. Dans ces conditions, l’état
fondamental à plusieurs corps dans un réseau homogène est donnée par

|ΦSF 〉U=0 ∼
(

L
∑

i

b†i

)N

|0〉, (12)

où |0〉 est l’état de vide, avec une cohérence de phase evidente des bosons. En d’autres
termes, tous les bosons occupent le même état fondamental à une particule, conduisant à la
superfluidité du système.

D’autre part, lorsque l’amplitude de saut t→ 0, l’hamiltonien de Bose-Hubbard se réduit
à une somme directe de Hamiltoniens locaux Hi = U

∑

i ni(ni − 1)/2− µ∑i ni. La densité
des particules sur chaque site est fixée à une valeur entière par la condition de minimisation
de l’énergie. Il n’y a plus de connexions entre les sites voisins et les bosons restent fixe dans
l’espace. Dans un tel cas, l’état fondamental à plusieurs corps est un isolant de Mott, et
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dans un système homogène, il est donné par le produit tensorielle suivant

|ΦMI〉t=0 =

L∏

i

(
b†i

)n

|0〉. (13)

où n représente le remplissage entier local. Cet état est caractérisé par une corrélation à
longue portée dans l’opérateur nombre de particules ni et, contrairement à la limite précé-
dente, la cohérence de phase a complètement disparu. Enfin, une propriété intéressante de
cet état, est la présence d’un gap énergétique de l’ordre de U dans le spectre d’énergie. La
présence d’un tel gap énergétique se reflète dans l’absence de compressibilité.

Après l’introduction du diagramme de phase du modèle en regardant particulièrement
certaines experiences qui ont montré la transition de phase Mott-Superfluide, nous concen-
trons notre attention sur une expérience étroitement liée à nos études [DPR+96]. Dans cette
expérience, les auteurs présentent des oscillations de Bloch d’atomes de césium ultrafroids
dans la bande fondamentale d’énergie d’un potentiel optique périodique. Ils mesurent di-
rectement la distribution d’impulsion évoluant dans le temps sous l’influence d’une force
d’inertie constante et ce pour diverses profondeurs du potentiel.

La deuxième partie de la thèse contient les principaux résultats de nos études. Toutes
les analyses effectuées peuvent être inscrites dans le même sujet général: la dynamique des
systèmes quantiques fermés. En effet, les dynamiques de trempe soudaine et adiabatique
sont toutes deux étudiées en détail pour différentes chaînes quantiques dans des configura-
tions différentes. En ce qui concerne le processus de croisement d’un point critique quan-
tique, il s’avère que les inhomogénéités, comme des potentiels de confinement, pourraient
vraiment affecter la production des défauts [DR10a, CK10, CK11]. De plus, les progrès
expérimentaux avec des atomes bosoniques ultra-froids placés dans des réseaux optiques,
a conduit la communauté des théoriciens à s’intéresser à la simulation des Hamiltoniens à
plusieurs particules type Hamiltonien de Bose-Hubbard avec paramètres ajustables. Des
expériences [DPR+96, WBM+96] ont montré des oscillations de Bloch et ont revitalisé la
recherche théorique sur la dynamique des modèles bosoniques unidimensionnels. Enfin nous
consacrerons une partie de notre étude à la compréhension du mécanisme dynamique de la
thermalisation, en particulier en regardant des propriétés locales sur un système quantique
étendu dans l’espace.

Avant d’introduire une sorte de résumé de chaque chapitre, nous aimerions dire quelques
mots sur les objectifs qui nous ont guidés au cours de l’élaboration des chapitres: dans la
pratique, l’idée était de faire chaque chapitre indépendant, en donnant, à chaque fois, une
introduction du sujet, bien placée dans la littérature existante, et en développant les outils
(éventuellement en se référant à ce qui a déjà été introduit dans la première partie de la
thèse) qui conduiront à des résultats nouveaux.

Dans le Chapitre 4 nous analysons l’évolution cohérente d’un système quantique à
plusieurs particules, après le changement lent d’un potentiel de confinement type loi de
puissance. L’amplitude du potentiel confinant est variée dans le temps avec une loi de puis-
sance telle que le système à plusieurs particules atteint ou franchit un point critique. Nous
supposons que suffisamment proche du point critique quantique, le paramètre de contrôle h
s’écarte de la valeur critique hc en suivant la loi

h(x, t)− hc ≃ g(t)|x|ω, (14)

avec un exposant ω > 0. L’amplitude g(t) de l’écart spatial à la valeur critique est dirigée
depuis une valeur initiale donnée vers une dernière suivant la rampe de temps non linéaire
g(t) = v|t|αsgn(t).
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Tout d’abord, nous analysons en détail la génération cohérente de défauts pendant cette
trempe adiabatique inhomogène qui conduit un système quantique unidimensionnel à travers
une transition de phase du second ordre. Il s’avére que l’effet des inhomogénéités influence
fortement les propriétés d’équilibre et dynamiques d’un système quantique près d’un point
critique. Une perturbation pertinente, générée par un potentiel de confinement, par exem-
ple un piège harmonique, change la classe d’universalité du système à proximité du point
critique. Plus généralement, le chargement ou la suppression d’un piège, type “loi de puis-
sance”, lentement dans le temps et à proximité d’un point critique conduira à un état final
avec une densité non triviale de défauts qui dépendra de la forme du piège et du protocole
temporel.

Un tel potentiel est relevant surtout dans le contexte des systèmes ultra-froids confinés,
où la dynamique est bien décrite par l’évolution unitaire des systèmes fermés. Ainsi, nous
développons une théorie d’échelle qui prédit le comportement adiabatique du système après
une telle trempe. Nous voyons que l’échelle de longueur typique ℓ diverge, à proximité du
point critique, avec un exposant effectif de la longueur de corrélation νg = ν/(1 + νω).
À partir de cette considération, nous trouvons que l’échelle de temp typique τ autour du
point critique se comporte comme τ ∼ v−z/yv où yv = zα + 1/νg est la dimension RG
de la perturbation. Dans notre approche d’échelle, nous analysons comment les propriétés
d’échelle sont influencées par une incertitude sur la localisation spatio-temporelle du point
critique. Par ailleurs, en utilisant des arguments type Kibble-Zurek, nous calculons les
propriétés d’échelle de la densité de défauts n ∼ vd/yv et de l’excès d’énergie ǫ ∼ v(d+z)/yv

générés pendant le chargement ou la suppression du piège. Toutes ces prédictions sont
vérifiées sur la chaîne d’Ising quantique. En effet, pour le modèle d’Ising quantique, nous
confirmons la prédiction d’échelle pour les niveaux d’énergie ainsi que pour les éléments de
matrice de la perturbation (le potentiel de confinement).

Nous trouvons, en utilisant l’approximation adiabatique, une formule analytique pour
une trempe d’un piège linéaire qui ne traverse pas le point critique. En branchant la solution
exacte dans les amplitudes adiabatiques, on obtient une expression fermée

|apq(t0, t)|2 =
∣∣∣∣
∆pq

2Ωpq
Aρpq

(|g0|, |g(t)|)
∣∣∣∣
2

(15)

avec

∆pq(g) =

√
p+ q

2
+
1 + sgn(g)

4
[δp q−1 − δp q+1] , (16)

Ωpq(g) = |g|−1/2(ǫp(g) + ǫq(g)) et ρpq = −2Ωpq
v−1/α

α+2 sgn(g).
La fonction

Aρ(x, y) =
2α

2 + α

[
E1

(
iρx

2+α
2α

)
− E1

(
iρy

2+α
2α

)]
(17)

est exprimé en termes d’exponentielle intégrale E1(z) =
∫∞
z
dt t−1e−t for |Arg(z)| < π.

Dans le cas général, nous effectuons une analyse d’échelle sur les tailles finies. Afin
d’extraire le comportement asymptotique, pour une observable générique f , nous supposons
le comportement d’échelle de taille finie suivant

f(v, L) = f0(v) + f1(v)L
−λc + f2(v)L

−2λc + . . . (18)

où λc est un exposant de correction d’échelle inconnu.
Nous confirmons cette prediction par la théorie d’échelle générale. Enfin, nous concen-

trons notre attention sur les propriétés spatiales de la densité de défauts locaux ainsi que
sur les effets d’un changement global du point critique. Une fois encore, les prédictions de
la théorie d’échelle générale sont confirmées dans le cas du modèle d’Ising quantique.
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Dans le Chapitre 5 nous analysons l’effet d’une variation soudaine d’un potentiel chim-
ique linéaire sur un gaz de Bose unidimensionnel confiné dans une région finie d’un réseau
optique.

Dans un premier temps, dans la limite impénétrable (modèle des bosons Hard-Core ),
nous dèveloppons une théorie hydrodynamique qui prédit le comportement du condensât
piégé ainsi que la densité de bosons éjectés. Deux idées sont sous-jacentes à cette théorie:
l’hypothèse d’équilibre local, c’est-à-dire que le système est localement à l’équilibre avec le
potentiel local; et le mouvement balistique de chaque point de l’espace de phase (x, q) avec
une vitesse qui dépend directement de la loi de dispersion ǫq = V (x) − cos q. Selon cette
théorie, l’équation du mouvement pour la densité dans l’espace de phase peut se résumer en

ρ±(x, q, t) =
1

2

∫∫
dq0dx0G±(x, q, t;x0, q0)ρ0(x0, q0), (19)

où la densité totale ρ(x, q, t) = ρ+(x, q, t)+ρ−(x, q, t) est la somme des densités des particules
gauches et droites. Les propagateurs à droite et à gauche G± sont tout simplement donnés
par G±(x, q, t;x0, q0) = δ(x−x±(x0, q0, t))δ(q−q±(x0, q0, t)), où x± et q± sont les équations
du mouvement pour une seule particule initialement située dans (x0, q0).

En utilisant cette théorie, nous reproduisons les oscillations de Bloch bosoniques macro-
scopiques observées sur la rampe linéaire. Par ailleurs, nous calculons le nombre total de
particules éjectées en fonction de la pente du potentiel p, et nous reproduisons exactement
l’évolution du profil de la densité et du courant des particules éjectées. On peut résumer
quelques résultats généraux que nous observons dans la dynamique d’un tel modèle:

• Pour une petite valeur du potentiel VA sur le site le plus à gauche (voir Figure 5.1),
presque toutes les particules quittent la rampe. En augmentant la pente p, nous ob-
servons qu’une partie des particules restent piégées. Ces particules piégées oscillent le
long de la rampe lorsque le système est initialement préparé dans une phase super-
fluide. Au contraire, pour ρ0 = 1, nous n’observons pas ces oscillations. Par ailleurs,
lorsque VA atteint une valeur critique V ∗A, un “plateau”, c’est-à-dire une zone avec une
densité constante de particules, apparaît au milieu de la rampe.

• La région du plateau au milieu de la rampe devient plus large en augmentant la valeur
de la pente du potentiel

Lplat ≃ A

(
1− 4

VA

)
, pour VA & 4. (20)

• La période de l’oscillation du profil de la densité est donnée par

T = 2π
A

VA
=
2π

p
. (21)

• Dans la région du plateau, le courant de particules est uniforme et montre un com-
portement parfaitement sinusoïdale dans le temps

j(x, t) ∝ sin(2πt/T ). (22)

Enfin, nous analysons la dynamique générée par une trempe soudaine de l’hamiltonien
de Bose-Hubbard. Dans ce cas nous utilisons la t-DMRG et l’algorithme de Lanczos. Ces
études numériques confirment la présence de deux fréquences principales, la première à la
valeur de l’interaction locale U , et la deuxième à la valeur de la rampe externe p du potentiel.
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Par ailleurs, lorsque le système est loin des points d’intégrabilité (U = 0 et U = ∞), nous
constatons une perte de cohérence dans l’évolution des bosons piégés.

Dans le Chapitre 6 nous analysons l’évolution temporelle d’un système quantique
étendu, initialement préparé dans un état hors équilibre. En introduisant la matrice densité
locale qui dépend du temps, nous définissons correctement un profil de température quan-
tique, par rapport à l’attente classique. En particulier, nous concentrons notre attention
sur le comportement d’échelle dynamique du mécanisme de stabilisation thermique pour
un système quantique fermé initialement divisé en deux sous-systèmes à des températures
différentes.

Ainsi, nous étudions la dynamique d’équilibre thermique après la mise en contact de
deux systèmes quantiques étendus d’abord préparés en deux ensembles de Gibbs différents.
Nous introduisons la notion de distance dn(x, t, β) = TrSx

|ρ(x, t) − ρx(β)|n, pour n = 1, 2,
où la trace est effectuée sur le sous-système locale Sx. Nous comparons cette notion avec
une définition globale de distance. On voit que l’equilibre thermique se produit lorsque
les variables locales sont prises en compte. De cette façon, nous pouvons introduire un
profil de température β(x, t) comme dans le cas classique. Après avoir développé cette
définition locale de la température pour le modèle unidimensionnel de bosons Hard-Core,
nous constatons que, dans la limite de hautes températures, le profil se comporte comme

β(x, t) =
1∑

q ǫ
2
q(x)

∑

q

ǫq(x) ln
1− λq(x, t)
λq(x, t)

, (23)

où λq(x, t) sont les valeurs propres de la matrice de corrélation locale. Nous étudions
numériquement les propriétés d’échelle de tels profils, et nous vérifions que la définition
de β(x, t) est stable sous différentes tailles des sous-intervalles utilisés pour extraire la tem-
pérature locale. Nous constatons que les observables locales deviennent plus robustes que
les globales, montrant, dans les premiers instants de l’évolution, des propriétés thermiques.
Enfin, on observe que le profil de température, dans un système quantique étendu, montre
le comportement d’échelle

β(x, t) =
β1 + β2

2

[
1 +

β1 − β2
β1 + β2

B(x/t, β1/β2)
]
≡ β̄ + δB(x/t, β1/β2), (24)

avec β̄ = (β1 + β2)/2 et δ = (β1 − β2)/2, similaire à la contrepartie classique.

Dans la dernière partie de la thèse nous compilons des renseignements supplémentaires
ne rentrant directement pas dans le corps de la thèse. Comme on l’a dit précédemment, les
deux premières annexes donnent des informations supplémentaires en soutenant les chapitres
précédents. Plus précisément:

Dans l’Appendice A nous donnons une “démonstration” brève et simple de l’expansion
perturbative adiabatique en combinant la théorie perturbative quantique indépendante du
temps dans la base tournante avec la décomposition de Trotter de l’opérateur d’évolution.

Dans l’Appendice B nous présentons, en prenant comme exemple le cas ω = 1, α = 2,
les détails du calcul de la prédiction d’échelle dans le cas d’un “changement global du point
critique” comme indiqué dans la Section 4.1.3.

Dans l’Appendice C nous présentons les algorithmes DMRG et t-DMRG utilisés pour
simuler les systèmes quantiques étudiés dans cette thèse.

Trois articles scientifiques ont été publiés directement en lien avec les travaux exposés
dans ce manuscrit et deux autres articles sont actuellement en préparation. Voici la liste
des publications:
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Introduction

From some decades to now time-dependent phenomena have been the focus of an increasing
number of experiments, especially in the area of condensed matter physics and quantum

optical systems. In the area of condensed matter physics the study of these phenomena have
made it possible to investigate the transport behavior through low dimensional systems such
as quantum dots or quantum wires and to analyze the response of such systems to external
potentials. In the quantum optic domains a famous example for time-dependent phenomena
is the experimental realization of the quantum phase transition of ultracold bosons loaded in
an optical lattice [GME+02]; by varying the optical lattice depth one can drive the bosons
from a superfluid to a Mott-insulating regime.

Recently, new attentions was focussed on the quantum thermalization problem, i.e.
whether a out-of-equilibrium quantum system relaxes to a stationary state and how to
eventually characterize its physical properties at late times. Moreover, it would be interest-
ing to develop analytical instruments for describing thermal properties of out-of-equilibrium
quantum systems. All these issues fall in the so-called quantum thermodynamics. Thermo-
dynamics describes systems of infinite degrees of freedom. An interesting question is what
will remain of thermodynamics if one goes to the extremely small quantum systems which
have only a few degrees of freedom. Quantum thermodynamics is what we need: it tries to
combine thermodynamics and quantum mechanics in a coherent way. Therefore, researches
in this direction are very important: for example, using quantum thermodynamics we can
attempt to understand the essential relation between thermodynamic entropy and entangle-
ment entropy of a quantum system. Moreover, it is very interesting to better understand
how the classical laws of thermodynamics depend on the purely quantum nature of the
particles that constitute matter [GMM04].

Despite the impressive achievements in the experimental domains, a good theoretical
description of most of the out-of-equilibrium phenomena is often incomplete.

In light of the previous discussions we can conclude that understanding the physics of
interacting quantum systems out of thermal equilibrium represents one of the most fascinat-
ing open problem in modern condensed matter physics. In this perspective, the aim of the
present thesis is to address some of these issues arising in this field by means of analytical
and numerical methods able to deal with strong correlations and non-equilibrium effects.

In this work we focus our attention on the non-equilibrium dynamics of one-dimensional
quantum systems. Indeed, after preparing the quantum system in the ground state of a given
initial Hamiltonian (or in a canonical state at β inverse temperature), a sudden or adiabatic
quench drives the system out-of-equilibrium, generating very interesting dynamical proper-
ties. Indeed, low-dimensional systems, despite there simplicity, often show exotic behavior.
Moreover, the one-dimensional characteristics of the systems under investigation often al-
lows the development of analytical methods useful for the simplification of the problem,
also from the numerical point of view; this is the case for the XY quantum 1/2-spin chains
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[LSM61, BMD70, BM71a, BM71b, BMA71]. These models are extensively used as a stan-
dard theoretical laboratory for issues related to quantum critical phenomena, decoherence
and thermalization processes [Sac00].

Nevertheless, the great part of one-dimensional quantum models are still not easily
tractable by analytical methods (see for example the Bose-Hubbard model). This is the
reason why, recently, a great effort was spent in the improvement of numerical algorithms
devoted to the simulation of one-dimensional quantum systems. One of these algorithms,
the adaptive time-dependent density-matrix renormalization-group (t-DMRG), is very well
suited for investigating time-dependent phenomena in one-dimensional strongly correlated
quantum systems [Vid03, Vid04, WF04].

The thesis is divided in three parts. In the first one we briefly introduce the models and
the mathematical tools that we will use through the manuscript. The second part of the
thesis is focused on the dynamics of closed quantum systems; especially with regards to the
one-dimensional XY chain and the Bose-Hubbard model. Finally in the third part we collect
all the appendices. For more details on the contents of each chapter, we refer the reader to
the introductory sections of each of the parts of the thesis.

Three scientific articles have been published directly related to the PhD studies. Two
other papers are currently in preparation. Here is the list of publications:

The quantum Galileo ramp: entangling many-body bound states with propagative modes
M. Collura, H. Aufderheide, G. Roux and D. Karevski
Submitted to Physical Review Letters on 23/12/2011.

Nonlinear quenches of power-law confining traps in quantum critical systems
M. Collura and D. Karevski
Physical Review A 83, 023603 (2011).

Critical Quench Dynamics in Confined Systems
M. Collura and D. Karevski
Physical Review Letters 104, 200601 (2010).

Gradient critical phenomena in the Ising quantum chain: surface behaviour
M. Collura, D. Karevski and L. Turban
Journal of Statistical Mechanics, P08007 (2009).



Part I

Context and Models





This first part of the thesis is devoted to introduce the background in which the central part
of our work (Part II) can be inscribed. The main idea that guided the development of such
manuscript was to make it “self-consistent” in the sense that the reader should find all the
tools useful to understand the novel results reported in the following chapters up to the end.
Of course, assuming the reader an “expert on physics”, we will only give some technical
details about the specific methods and models that we will use or analyze after, without
going too much inside the physical foundation. In some sense, with this part, we would like
to embrace in a brief, and unfortunately non-comprehensive way, the theoretical framework
which we will extensively refer to throughout the rest of the work.

Chapter 1 is dedicated to introduce the basic idea of a Quantum Phase Transition (QPT)
in particular with respect to the Classical Phase Transition (CPT). We will briefly review
the level crossing concept and explore the fundamental instruments useful for describing the
dynamical behavior of a quantum system adiabatically driven across a Quantum Critical
Point (QCP). In particular, we stress the usefulness of the Kibble-Zurek argument which
gives an elegant scaling connection between the properties of the critical point and the loss
of adiabaticity. Finally, we also introduce the quantum perturbation theory in the adiabatic
eigenstate representation.

In Chapter 2, after a brief introduction to the XY model, we give the canonical diagonal-
ization of the Hamiltonian: by using the Jordan-Wigner transformation it is possible to map
the XY model to a free-fermion model. We introduce the entanglement entropy and, for
the XX model, we give the explicit connection with the two-point correlation matrix. Then,
we focus our attention on the dynamics of the model giving the Heisenberg representation
of the Clifford operators. Finally, we consider the case in which the Hamiltonian depends
explicitly on time.

Finally Chapter 3 is devoted to briefly introduce the Bose-Hubbard model. This model
approximatively describes the behavior of interacting bosons on a lattice. It is related to
the electronic Hubbard model but, as guessed from the name "Bose", the particles in such a
system are bosons. The Bose-Hubbard model turns out to be very important for simulating the
dynamics of ultracold atoms on optical lattice lattice. After introducing the phase-diagram
of the model especially with regard to some experiments which showed the well-known Mott-
Insulating to superfluid phase transition, we focus our attention on an experiment closely
related to our studies [DPR+96].





Chapter 1

Quantum Phase Transition

«Water, water everywhere,

nor any drop to drink.»

S. T. Coleridge

A classical phase transition (CPT) is a dramatic physical phenomenon driven by thermal
fluctuations. Beside this well-studied concept of CPT, a similar phenomenon can oc-

cur at zero temperature which correspond to a quantum phase transition (QPT) between
two macroscopically different states of matter. The QPT is driven by quantum fluctua-
tions whose intensities are controlled by a physical parameter, like an internal interaction
coupling or an external field, entering into the Hamiltonian of system. While a classical
phase transition is characterized by singularities in the thermodynamic functions of the sys-
tem under consideration, on the other hand a quantum phase transition manifests itself by
singular signatures in the ground state of the many-body quantum system [Sac00], whose
macroscopic properties significantly differ on both sides of the transition. In this thesis
we will focus our attention only on systems that exhibit (at zero temperature) continuous
transitions occurring at a quantum critical point (QCP).

Of course, whenever the temperature is finite, but still sufficiently low, the quantum
fluctuations are competing with the thermal ones. As a consequence there would be a
certain influence of the quantum transition in a sufficiently small region of the phase space
(T, g) (where T is the temperature and g is the Hamiltonian parameter driving the quantum
transition) around the QCP located in (0, gc). Increasing the temperature the system will
show a crossover from a purely quantum critical behaviour to a purely classical one (if any,
which is not necessary the case as in low-dimensional systems with short range interactions).
In Figure 1.1 we show a typical phase diagram in the (T, g) plan, assuming that the system
may have a CPT. At high temperatures, the system is completely disordered. In the vicinity
of the classical phase transition (the red line in Figure 1.1) the system is governed by classical
thermal fluctuations. Decreasing the temperature this transition line converges towards the
QCP (the green small circle in Figure 1.1). Furthermore, we have also depicted the ‘quantum
critical’ crossover region (the light gray region in Figure 1.1) wherein quantum and thermal
fluctuations are of the same order. Finally, the orange thick line at T = 0 individuates the
pure quantum ordered phase.



6 Quantum Phase Transition

classical critical

QCP

T

0 ggc

ORDERED

DISORDERED

Figure 1.1: Sketch of a quantum phase diagram where transitions are driven by temperature
T and a physical parameter g. See the text for more details.

1.1 Level crossing

Let us go more into the details of a quantum phase transition. Whenever we have to study
the equilibrium properties of a quantum system at very low temperatures, we have to look at
the ground-state properties of the system and as we have already seen, a QPT is related to
the non-analytical properties showing up into the ground state of the system for a particular
coupling value (which may be an external field or an internal interaction coupling). If the
system Hamiltonian H(h) depends on an external parameter h, the ground state |Ψ0(h)〉,
will ‘adiabatically’ depend on h. The non-analytic behavior of the system ground state at the
QCP should drastically affect the analytical properties of the expectation value 〈O(h)〉 of an
observable O(h) (which may or may not depend on h). For example, in the paramagnetic-
ferromagnetic transition of the quantum Ising model, the total longitudinal magnetization
Mx =

∑
n σ

x
n will show non-analytic behavior at the transition point. Incidentally, notice

that O(h) could be the Hamiltonian operator itself and, in this case, its average will be
simply the adiabatic ground-state energy E0(h).

As long as the system will be far away from a QCP, the ground state |Ψ0(h)〉 will draw a
h-dependent simple curve in the Hilbert space; otherwise, approaching the QCP (hc in Figure
1.2), the path will be no more analytic, since the ground state may collapse with excited
states. The non-analyticity of that curve is connected to the non-analytical behavior of

∂hH(h)
Eq(h)−E0(h)

. Indeed, every time the ground-state energy E0(h) approaches one of the excited

energies, the system will exhibit a fundamental change in its own properties. To be more
concrete, suppose that the ground-state is approaching the first-excited state. If we look in
a neighborhood of hc, linearizing E0(h) and E1(h), then the level-crossing will show up as
a discontinuity in the first derivative of the adiabatic ground-state energy (see the inset of
Figure 1.2). Usually (if the perturbation field is not a conserved quantity) the level crossing
is forbidden in finite dimensional systems and one has to go to the thermodynamical limit to
get a true QPT. Indeed, as we show in Figure 1.3 for the Ising case, in the thermodynamical
limit, as the system size L becomes larger and larger, the energetic gap stays finite in the
non-critical region, but exactly at the critical point it closes as L−1.

As far as second order quantum phase transitions are concerned, it is natural to use the
energy gap ∆(h) = |E1(h) − E0(h)| as the natural energy scale characterizing the system
properties near the transition. It turns out that close to the critical value hc, one has the
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|Ψ0(h)〉

|Ψ1(h)〉

hhc

E0(h)
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Figure 1.2: Pictorial representation of the ground-state path in the Hilbert space. In such
example, the point where the curve is no more derivable represent a QCP. In the inset we
inspect some properties of the system near the QCP: in the left figure, the blue and the
dark red curves are respectively the energies of the ground state and the first-excitation
state for a gapped system. Dark and light red curves represent the energy behavior for a
gapless system; notice how level crossing in the energy (gapless system) corresponds to a
discontinuity on the first derivative (right part of the inset); nevertheless in a more general
setup, e.g. for a finite system, where level crossing is forbidden, the discontinuity is rounded
off.

scaling behaviour

∆(h) ∼ J |h− hc|zν , (1.1)

with J an energy scale set by a microscopic coupling, z the dynamical critical exponent and
ν the correlation length critical exponent. The correlation length diverges at the critical
point as

ξ ∼ a|h− hc|−ν , ξ ∼ ∆−1/z, (1.2)

where a is a characteristic length (set for example by a lattice spacing). The characteristic
time scale of a quantum system is given by the inverse of the minimum instantaneous gap
τ ∼ ∆−1, which is the quantum counterpart of the correlation time τc associated to a
classical transition. In light of what we will see in the next few paragraphs, it turns out
that this time is extremely important. The adiabatic theorem is in fact bounded by this
time scale. It states, indeed, that we can adiabatically drive a quantum system only if
the characteristic time of variation of the Hamiltonian is much larger than the maximum
relaxation time the system exhibits during the whole dynamics [Mes62]. Therefore, at the
quantum critical point, as the gap closes, the adiabatic condition breaks down: there will
be always a temporal window sufficiently close to the critical point where the dynamics is
no longer adiabatic. From this point of view, it is definitely a very important issue to know
how to properly choose a correct temporal protocol to guide the system through a quantum
phase transition.

In order to illustrate what has been said, following the didactical picture originally pro-
posed in [Sac00, Fag08], consider as an example the Ising Hamiltonian (we refer the reader
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Figure 1.3: Finite-size scaling of the gap ∆ for the Ising model. The system is gapped in
the paramagnetic phase. Otherwise, at the critical point, the gap closes as L−1.

to the following chapters for more details)

HI = −J
∑

n

σx
nσ

x
n+1 − h

∑

n

σz
n, (1.3)

where σα
n are the Pauli matrices, J > 0 is the characteristic energy scale of the microscopical

coupling and h is an external magnetic field applied in the ẑ direction. Whenever the Zeeman
term is dominating, i.e. when |h|/J ≫ 1, the spins tend to align in the direction of the field,
leading to the many-body ground state

|Ψ0〉
|h|≫J−→

⊗

n

| ↑〉n. (1.4)

In this state the σx
n operators show the totally uncorrelated behavior

〈Ψ0|σx
mσ

x
n|Ψ0〉

∣∣
|h|/J=∞

= δmn, (1.5)

where this short-length correlations should remain exponentially small for sufficiently small
J/|h|.
In the opposite case, when the longitudinal couplings are dominant, i.e. when |h|/J ≪ 1,

the spins should tend to align in the x̂ direction, leading for h = 0 to two degenrated ground
states: ⊗

n

| →〉n and
⊗

n

| ←〉n, (1.6)

where | →〉n and | ←〉n are the eigenvectors of σx
n. Of course, in the thermodynamical limit,

an infinitesimal magnetic field in the x-direction will bring the system to choose one of the
two previous ground states, leading to a spontaneous symmetry breaking. As a consequence,
in the thermodynamical limit, the correlation function of the σx

n operators will be long-range:

〈σx
mσ

x
n〉

∣∣
|h|/J=0

= 1. (1.7)

Naturally, there should be at least one intermediate value (|h|/J)c ∼ 1 of the coupling ratio
wherein a QPT occurs. We can take trace the transition by looking at the asymptotic
behavior of the σx

n correlations
lim

|m−n|→∞
〈σx

mσ
x
n〉. (1.8)

Longitudinal correlations will be different from zero only in the ferromagnetic phase, for
|h|/J < (|h|/J)c, and vanishe in the paramagnetic phase |h|/J > (|h|/J)c.
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1.2 Adiabatic dynamics through a QCP

Suppose we want to prepare a quantum many-body system in a state as close as possible

to the ground state |Ψ(1)
0 〉 of a given Hamiltonian H1 by driving the system at hand from

an initial (ground) state |Ψ(0)
0 〉 associated to the initial Hamiltonian H0 through a QCP. To

do that, we can introduce a time dependent Hamiltonian H(t) which connects along a given
path the initial and final Hamiltonians, such that

H(0) = H0, H(tend) = H1, (1.9)

where tend represents the duration of the whole evolution starting at t = 0. Given the
time-dependent Hamiltonian H(t), the time evolution of this closed quantum system can be
solved by introducing the evolution operator U(t) satisfying

i~
∂

∂t
U(t) = H(t)U(t), (1.10)

with initial condition U(0) = I. The formal solution is

U(t) = T̂ exp
{
− i

~

∫ t

0

H(t′)dt′
}
, (1.11)

where T̂ denotes time ordering. Now, starting at t = 0 from the initial ground state |Ψ(0)
0 〉,

the evolved state is given by

|Ψ(t)〉 = U(t)|Ψ(0)
0 〉. (1.12)

Whenever the adiabatic theorem holds, this evolved state |Ψ(t)〉, would be, at each time,
the instantaneous ground state of the time-dependent Hamiltonian H(t), but as soon as we
are getting closer and closer to the QCP, since the vanishing of the energy gap leads to a
breackdown of the adiabatic theorem, no matter how slow is the driving protocol, eventually

|Ψ(tend)〉 6= |Ψ(1)
0 〉 (1.13)

at the end of the whole evolution.

1.2.1 Loss of adiabaticity measures

As we have traced out in the previous section, that the presence of a QCP should completely
invalidate the adiabatic theorem and this is actually due to the closure of the gap at the
critical point. This implies that the closer the system is driven to the QCP the less its
evolved state is able to keep following the corresponding instantaneous ground state. All
these considerations appear in a clear and simple fact: during the evolution close to the
QCP a production of excitations (with respect to the instantaneous adiabatic ground state)
is unavoidable. In other words, the state at the end of the evolution protocol |Ψ(tend)〉 will

differ from the target state |Ψ(1)
0 〉. Obviously, the difference between these two states will

depend somehow on the choice of the driving protocol as well as on its duration tend.
The first crucial point is to identify appropriate observables suitable to measure the loss

of adiabaticity of the system. Obviously, depending on the model we are working with,
there may be observables more convenient than other ones. One of the quite natural way
to characterize the loss of adiabaticity is by looking at the “heating" of the system, that is
simply considering the residual energy

Eres = Eend − E(1)
0 (1.14)
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where E
(1)
0 is the ground state energy of the final Hamiltonian H1 and

Eend = 〈Ψ(tend)|H1|Ψ(tend)〉 (1.15)

is the expectation value of the final Hamiltonian in the evolved state |Ψ(tend)〉. It is clear
that Eres will depend on the evolution protocol and it is easy to guess that the slower is the
evolution the smaller the residual energy.

Actually, the introduction of the residual energy as an optimal observable for measuring
the loss of adiabaticity is useful from an experimental point of view, where it is often easier
to access to the heat pumped into the system during the evolution. However, at least from
a theoretical point of view, an obvious and natural way to quantify the deviation from the
adiabatic evolution is to compute the so-called fidelity:

F = |〈Ψ(1)
0 (tend)|Ψ(tend)〉|2. (1.16)

Obviously F ∈ [0, 1] and as long as the evolution is almost adiabatic one has F ∼ 1.
The quantities that we have just introduced are quite general and could be used in

whatever physical model we want. Nevertheless, we can often get information on the loss
of adiabaticity of the system by counting the number of excitations that the evolved state
carries with respect to the adiabatic ground state. This is the reason why we finally introduce
the so-called density of defects ρ.

In particular, the quantum Ising chain, which is considered in this thesis, is described by
a quadratic Hamiltonian which can be diagonalized, at each time, by introducing diagonal
quasi-particles excitations η†q(t) (ηq(t))

1. It turns out that, for any value of the driving
parameter, i.e. at each time, the adiabatic ground state of the system is the vacuum state
of such excitations. In this case the defect density will be simply given by counting the
excitations present on the final evolved state:

ρ =
1

L

L∑

q=1

〈Ψ(tend)|η†q(tend)ηq(tend)|Ψ(tend)〉 (1.17)

where L is the size of the chain. It is straightforward to show that for an homogeneous Ising
chain, when the ending point is deep in the ferromagnetic phase the defects are simply given
by the kinks separating up and down domains. The previous definition reduces to

ρ =
1

L

L∑

i=1

〈Ψ(tend)|
1− σx

i σ
x
i+1

2
|Ψ(tend)〉 (1.18)

where σx
i are the Pauli operators.

We want to stress here that, in the case we have considered in this thesis, since the
transverse magnetic field is no more homogeneous, the basic excitations over the ground
state are no longer kinks, nevertheless the number of defects is still given by summing over
the quasi-particle excitations (see Chapter 4).

1.2.2 Kibble-Zurek Mechanism

The Kibble-Zurek Mechanism (KZM) was originally introduced by Kibble and Zurek in order
to describe the defect generation across a classical phase transition [Kib76, Kib80, Zur85]. In

1Here the time dependence of the creation and annihilation operators is parametric.
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Figure 1.4: Relaxation time scale from KZ theory for a finite-size system; notice that the
gap still survives. t̂ represents the freeze-out time. Of course, for a gapless system, transition
probability diverges and there is no way to completely remove the impulse regime.

particular, it was used in cosmology to describe the generation of defects during the expan-
sion of the universe after the Big-Bang. A few decades after it was also applied to quantum
phase transitions [ZDZ05]. Such an argument basically takes its roots on simple scaling
considerations and turns out to be an appropriate tool for describing the non-equilibrium
properties of a quantum system in terms of its equilibrium scaling properties close to the
QCP.
According to KZM, as long as the system is sufficiently far away from the critical point,

its characteristic relaxation time should be small enough to allow the system to quickly
react to the variation of the Hamiltonian. As we have done in the previous paragraphs, we
always assume that the system is initially prepared in the ground state of a given initial
Hamiltonian. Then, in the early instants of the evolution (adiabatic regime) the system
state evolves adiabatically being given at each time by the instantaneous adiabatic ground
state of the time-dependent Hamiltonian. However as the system approaches the QCP its
relaxation time starts to dangerously increase critical slowing down. Therefore, there will
be an instant (the so-called freeze-out time, t̂ in Figure 1.4) after which the system will no
longer be able to react to the external changes. At that moment the evolution switches from
the adiabatic regime to an impulse regime in which the system state freeze out.
Once we have passed the critical region, when the system will be again far enough away

from the critical point, the dynamics will regain its adiabatic character and the state will
restart its adiabatic evolution, but from the early instant frozen state.
In other words, what KZM suggests is that the adiabatic condition breaks down when the

characteristic time of the variations of the Hamiltonian is of the same order of the relaxation
time, given by the inverse of the instantaneous gap ∆. Just for specializing what we said,
let’s suppose a continuum quantum phase transition driven by the dimensionless parameter
g. At the QCP (g = 0), separating the ordered from the disordered phase, the gap exhibits
the scaling behavior ∆ = |g|zν . Moreover, let’s also suppose that we can linearize the time
dependence in a neighborhood of the phase transition (g = 0):

g = vt (1.19)

where v represents the evolution rate. Then the freeze-out time is defined by

g(t̂)

ġ(t̂)
= t̂ ∼ ∆(t̂)−1 = |g(t̂)|−zν , (1.20)
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leading to
t̂ ∼ v−zν/(1+zν). (1.21)

We can estimate the defect density ρ by using the inverse of the typical volume at the
freezing time. One has then

ρ ∼ ξ(t̂)−d ∼ |g(t̂)|dν ∼ vdν/(1+zν) (1.22)

where d is the space dimension.
This last formula has been checked on various models, using both analytical and numer-

ical methods [ZDZ05, Pol05, Dzi05, CL06, Dam05, DZ06, DZ07] and has been also verified
experimentaly [SHL+06]. Furthermore, a great effort was also spent to generalize and check
the KZM in different contexts [DLZ99, DR10b, SSM08, GBP08, BP08]. Part of the work pre-
sented in this thesis is devoted to the extension of this formula to inhomogeneous quantum
phase transitions (see Chapter 4).

1.2.3 Perturbative approach

In this paragraph we briefly review an alternative scaling analysis of the loss of adiabaticity
based on the adiabatic perturbation theory. Such a picture was recently used in the context
of defect generation by Polkovnikov in [Pol05]. This approach uses the well-known adiabatic
perturbative approximation which was developed at the beginning of quantum mechanics
[Mes62]. The essential idea is that a time-dependent Hamiltonian can be diagonalized at
each time, obtaining the adiabatic eigenstates |k(t)〉 and eigenenergies Ek(t), which are
the solution of the time-independent Schrödinger equation with H(t) depending on t like a
parameter:

H(t)|k(t)〉 = Ek(t)|k(t)〉. (1.23)

Supposing that the system is initially prepared in the instantaneous ground state (the vac-
uum state in the Ising model) of the Hamiltonian H(t0), |Ψ(t0)〉 = |0(t0)〉, at time t > t0
the unitarily evolved state is then given by |Ψ(t)〉 = U(t, t0)|0(t0)〉, where the time evolution
operator is

U(t, t0) = T̂ exp−i
∫ t

t0

dsH(s), (1.24)

and T̂ denotes time ordering.
If the Hamiltonian evolves slowly enough (adiabatic limit), it is useful to develop the

evolved state |Ψ(t)〉 in a power series in the reference frame of the adiabatic eigenstates
of the Hamiltonian; the development is then characterized by the transition amplitudes
between different adiabatic eigenstates each of them connected by a true adiabatic evolution
in the instantaneous state wherein the system belongs before a transition occurs [MMP06].
Thus, up to the first order correction, one has

|Ψ(t)〉 ≈ e
−i

∫ t
t0

dsE0(s)

[
|0(t)〉+

∑

k 6=0

|k(t)〉
∫ t

t0

dt′〈k̇(t′)|0(t′)〉e−i
∫ t
t′

dsδωk0(s)

]
, (1.25)

with Bohr frequency δωk0(t) = Ek(t)− E0(t).
The first term is the usual adiabatic result: the state is the instantaneous ground-state

apart from a global dynamical phase factor. The second term contribution represents an
adiabatic evolution in the initial ground-state up to the transition |0〉 → |k〉 at time t′,
followed again by an adiabatic evolution in the state |k〉 up to the final time t. The result
is integrated over all the possible dynamical paths connecting the initial to the final time,
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by considering also all the possible final states. For a simple derivation of the adiabatic
perturbative expansion see Appendix A.

The amplitude 〈k̇(t)|q(t)〉 can be somehow rewritten in a different way. Indeed, taking
the time derivative of the complex conjugate of (1.23) we have 〈k̇(t)|H(t) + 〈k(t)|∂tH(t) =
〈k̇(t)|Ek(t) + 〈k(t)|Ėk(t), then projecting on the instantaneous basis vector |q(t)〉 and using
the orthogonality relation 〈k(t)|q(t)〉 = δkq, we have

〈k̇(t)|q(t)〉 = 〈k(t)|∂tH(t)|q(t)〉
Ek(t)− Eq(t)

, for k 6= q. (1.26)

From this relation we can argue that the validity of the adiabatic approximation is connected
to the scale on which the Hamiltonian varies compared to the instantaneous Bohr frequency.

Now we specialize the calculation to the simplest case of linearly driven quantum system
across the QCP (at t = 0). We suppose that the evolution goes from t = −∞ to t =∞ with
driving parameter g = vt, therefore ∂tH(t) = v∂gH(g), and after changing the integration
variables, in the limit of slow quench (v ≪ 1), we can keep only the first term in the
expansion. The density of defect is simply given by summing the transition probabilities
|〈k(g)|Ψ(g)〉|2 over all the adiabatic eigenstates |k(g)〉 different from the adiabatic ground
state; projecting (1.25) on 〈k(g)| and summing over k 6= 0 one has

ρ ≃
∑

k 6=0

∣∣∣∣
∫ ∞

−∞

dg
〈k(g)|∂gH(g)|0(g)〉

δωk0(g)
e

i
v

∫ g dg′δωk0(g
′)

∣∣∣∣
2

. (1.27)

Considering an uniform d-dimensional system, we can recast the previous sum as an integral
in the momentum space

ρ ≃
∫

ddk

(2π)d

∣∣∣∣
∫ ∞

−∞

dg
〈k(g)|∂gH(g)|0(g)〉

δωk0(g)
e

i
v

∫ g dg′δωk0(g
′)

∣∣∣∣
2

. (1.28)

Knowing that at the transition the energetic gap behaves as ∆ ∼ |g|zν , from general scaling
arguments one has [Sac00]

δωk0(g) = gzνΩ(gzν/kz) (1.29)

with

Ω(x) ∼
{
x−1 for x≪ 1
1 for x≫ 1

, (1.30)

which implies δωk0 ∼ ∆ for k → 0, and recasts for g ≪ 1, the homogeneous critical
dispersion relation δωk0 ∼ kz of the lower part of the spectrum [Sac00]. Then, using the
rescaled variable y = gzν/kz, one has

zν
dg

g
=
dy

y
=⇒ dg =

k1/ν

zνy1+1/zν
dy. (1.31)

Thus, we can recast the integral of the phase into

iτ

∫ g

dg′δωk0(g
′) =

i

v

∫ g

dg′g′zνΩ(g′zν/kz) (1.32)

=
i

v

∫ y

dy′kzy′Ω(y′)
k1/νy′−1−1/zν

zν

= v−1kz+1/νf(y).
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The matrix element, assuming [Sac00] 〈k(g)|∂gH(g)|0(g)〉 = gzν−1G(gzν/kz), is rewritten

〈k(g)|∂gH(g)|0(g)〉
δωk0(g)

dg =
G(y)

Ω(y)

dg

g
=
G(y)

Ω(y)

dy

zνy
≡ V (y)dy. (1.33)

To remove the dependence on v from the exponent one introduces the change of variable
q = kv−ν/(1+zν) with dk = vν/(1+zν)dq. Finally one obtains for the defect density

ρ ∼ Cvdν/(1+zν) (1.34)

where C is a non-universal constant and the scaling of (1.22) is recovered. Power-law
quenches was considered in [SSM08] as a generalization of such a perturbative approach.
Moreover, this analysis has been properly used to construct an optimal power-law passage
across the QCP of the homogeneous Ising model [BP08]. In this thesis we extend such anal-
ysis to non-linear adiabatic quenches in inhomogeneous quantum critical systems by using
trap-size scaling arguments (see Chapter 4)[PKT07, CV09, CV10, CKT09, CK10, CK11].

1.2.4 Landau-Zener approximation

Both the KZM and the perturbative approach are based on similar scaling assumptions in
the vicinity of the gap. The closure of the gap at the QCP is crucial for such arguments.
Nevertheless, as we have often repeated throughout this chapter, for a finite-size system
the critical gap stays finite. To take that into account, Zurek et al proposed in [ZDZ05] to
calculate the maximal size L̃ a system can have in order to remain free of defects. The basic
idea is then, once we have this maximal size as a function of the evolution rate v, the defect
probability should be given by the inverse of the volume L̃d.

The key point in that treatment is to describe the dynamics close to the avoided level-
crossing by means of the Landau-Zener (LZ) approach [Zen32, LL03]. Assuming that the
evolution starts at ti = −∞ and finishes at tf = ∞, the Landau-Zener formula gives the
excitation probability

P ≃ exp−π∆
2

2v
, (1.35)

where ∆ is the critical gap between the two levels. This probability can be connected to
the Fidelity F achieved during the adiabatic evolution: P ∼ 1 − F . For a fixed small
generation of defects, supposing, as shown for the Ising chain in Figure 1.3 the finite-size
scaling ∆ ∼ L−1, they obtained

exp−πL̃
−1

2v
∼ 1−F ⇒ L̃ ∼

√
π

2| ln(1−F)| v
−1/2, (1.36)

for the maximal length L̃. Using this result, the density of defects was deduced to be

ρ ∼ L̃−d ∼ vd/2, (1.37)

that is the same result obtained from the KZM for the homogeneous Ising model.
Notwithstanding the previous arguments, the use of the LZ approach for describing the

universal adiabatic dynamics near a QCP is a little bit subtler. Indeed, as extensively
analyzed in the review [Dzi10], the LZ method has to be handled with more care. The
first point is that the excitation probability strongly depends on the dynamical setting we
choose: in spite of the previous exponential decay of the excitation probability as a function
of the evolution rate, if the evolution starts (or finishes) exactly at the critical point, the
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probability shows the power-law asymptotic behavior P ≃ v2. Moreover, even assuming
that the exponential behavior is appropriate, whenever we are analyzing a homogeneous
system of non-interacting fermions (the homogeneous Ising model falls in this category) we
can map the dynamics to a set of independent LZ problems. Indeed, the Hamiltonian can
be rewritten as a direct sum of two-level Hamiltonians enumerated by the quasimomentum
k. Thus, for each k, the LZ formula gives

P (k) ≃ exp−π∆
2(k)

2v
. (1.38)

The density of defects is obtained by integrating the previous probability over the quasi-
momenta:

ρ ≃
∫

ddk

(2π)d
P (k). (1.39)

If the system crosses an isolated critical point separating two gaped phases, then at the
isotropic Fermi point kF one has

∆2(k) ∼ |k − kF |z∆ , (1.40)

leading, after integration, to
ρ ∼ vd/z∆ . (1.41)

Finally, one recovers from this LZ theory the KZM prediction if and only if z∆ = (1+νz)/ν,
which is actually the case for quenches crossing an isolated critical point [Dzi10].
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Chapter 2
The XY quantum model

The homogeneous quantum XY model is an integrable model that was originally treated
by Lieb et al. [LSM61] in the early 60s. In 1971 Barouch and McCoy, in the thermody-

namical limit, determined the behavior of the two-points correlation functions and analyzed
some non-equilibrium aspects [BMD70, BM71a, BM71b, BMA71].

Following the same guidelines, we start this chapter by introducing the homogeneous
one-dimensional quantum XY model, and by looking at some interesting properties of such
a model. The XY-model Hamiltonian for L interacting 1/2-spins, with open boundary
conditions, is

H = −1
2

L−1∑

n=1

(
Jxσ

x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1

)
− h

2

L∑

n=1

σz
n, (2.1)

where σα
n are the Pauli matrices, h is the magnetic field in the ẑ direction, Jx and Jy are

the coupling constants parametrized as

Jx =
1 + γ

2
, Jy =

1− γ
2

, γ ∈ [−1, 1], (2.2)

with the anisotropy parameter γ. The value γ = 0 corresponds to the XX-model with
continuum U(1) symmetry where the total magnetization M =

∑
n σ

z
n is a conserved quan-

tity. It do not show an ordered-disordered phase transition, nevertheless, we can identify
two different regions: a paramagnetic phase and a critical phase. In the critical phase the
model exhibits a divergency of the correlation length [KT73]. In the opposite case (γ = 1) the
Hamiltonian describes the quantum Ising model that corresponds to the extreme anisotropic
limit of the classical two-dimensional Ising model on the square lattice [FS78, Kog79]. The
quantum Ising model shows a quantum critical point separating a paramagnetic phase from
a ferromagnetic one.

2.1 Generalities

Now, we will briefly review some properties of the homogeneous XY-model summarized in
its phase diagram (see Figure 2.1). We will relate the peculiarities of the different regions
of the phase diagram to the one-particle dispersion law of the system.
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γ

h

1

0

−1

−1 0 1

I+

I−

C+C−

CXX

Ferromagnetic X

Ferromagnetic Y

Figure 2.1: Phase diagram for the XY-model: we show with straight lines the XX critical
regions (CXX) and |h| = 1 (C±). The dotted lines I± indicate the Ising region.

As we already said, the XY-model is analytically solvable and the positive branch of its
one-particle energy spectrum is given by [LSM61, Kar06, Pla08, Fag08]

ǫq =

√
(h+ cos q)2 + γ2 sin2 q, (2.3)

where the quasi-fermion momentum q is restricted in [0, π]. Indeed, as we will briefly see
in the next section, the ground state of the XY-model is the vacuum state of the diagonal
quasi-fermion annihilation operators, and the complete spectrum exhibits the symmetry
ǫq+π = −ǫq.

The XY-model is gapless if an excited many-body state appears with the same energy
as the ground state. This statement is equivalent to saying that there must be at least a
quasi-momentum q∗ for which ǫq∗ = 0. By exploiting the dispersion law we can reconstruct
the phase diagram as we have depicted in Figure 2.1.

The two dashed red lines I+ and I− correspond both to the Ising quantum model (γ =
±1). In the I+ the spin-spin couplings are in the x̂ direction, while in the I− spins are
coupled along the ŷ direction. Obviously, by varying the parameter γ, we can change the
global behavior of the system which could eventually show a preference for x̂ or ŷ direction.

More important, analyzing the excitation spectrum, we can identify two different critical
regions: the C± regions and the CXX region (full red lines on Figure 2.1). The regions C±,
corresponding to |h| = 1, are the one-dimensional quantum Ising critical regions. Indeed,
it is straightforward to show that, in this region, the gap closes. Moreover, in these regions
the absolute value of the velocity of the quasi-particle |v| = |∂ǫ/∂q| depends on h and shows
one maximum for γ ∈ [−1, 1]. The regions C± belong to the same universality class of free
massless fermions in 1+1 dimensions and are characterized by the correlation length critical
exponent ν = 1 and the dynamical critical exponent z = 11.

1Indeed, for γ = 1, at the critical quasi-momentum q∗ = π, one has ǫπ(h) = |h − 1| giving zν = 1;
then, exactly at the critical point h = 1 and developing the dispersion relation around q∗ = π one obtains
ǫq(h = 1) ≃ |q − π|, therefor z = 1, and consequently ν = 1.
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The two lines C± separate the paramagnetic region (|h| > 1) from the ferromagnetic one
(|h|<1). For distinguishing this two phases (wherein spins behave differently, preferring to
align along the magnetic field (|h| > 1), or along the direction of the microscopical couplings
(|h| < 1)) we can introduce the order parameter limn→∞〈σx

l σ
x
l+n+σ

y
l σ

y
l+n〉 which is different

from zero only when |h| < 1. If we want to distinguish the X-ferromagnetism from the Y-
ferromagnetism, we can introduce limn→∞〈σx

l σ
x
l+n〉 which is non vanishing only for γ > 0

(Ferromagnetic X region), and limn→∞〈σy
l σ

y
l+n〉 which is different from zero only for γ < 0

(Ferromagnetic Y region).
The CXX is a continuous transition line wherein the system exhibits a critical behavior.

Indeed, on this line the system is gapless. This region is the so-called XX quantum critical
region and belongs to the universality class of free bosons in 1+1 dimension. The critical
exponent characterizing the CXX line are ν = 1/2 and z = 22. Furthermore, unlike the
previous critical lines C±, here the absolute value of the velocity |v| does not depend on h.

In Figure 2.1 we have also depicted the region inside the circle |h|2 + |γ|2 = 1. The
peculiarity of this region sits in the particular representation of the many-body ground
state: it turns out that the ground state factorizes completely into the tensorial product
of local spin states. An example is the point h = 0, γ = 1 which we have yet considered
in the previous chapter: in this case the Hamiltonian reduces to H = −(1/4)∑n σ

x
nσ

x
n+1

leading to the two possible ground state
⊗

n | →〉n or
⊗

n | ←〉n. Another example could
be the point h = 1, γ = 0 wherein the Hamiltonian reduces to H ∝ −(1/4)∑n σ

x
nσ

x
n+1 +

σy
nσ

y
n+1− (1/2)

∑
n σ

z
n where the ground state is the perfect Mott-Insulating state

⊗
n | ↑〉n.

This special circle indicates a transition from an ordinary ferromagnetic phase (outside the
circle) to an oscillatory one (inside the circle) [BM71a, BM71b, Ovc07]. Exactly at the
boundary |h|2 + |γ|2 = 1 the correlation functions have been analytically calculated [FA05].

Experimental evidences — The XY-model is a simple good theoretical laboratory for
understanding more complex models as well as for giving explanations to some experimen-
tal realizations. For example, the insulators CsCoBr3 and CsCoCl3 have been extensively
studied as examples of one-dimensional Ising magnets. Indeed, in these systems the Co
atoms behave in such a way as to recreate an antiferromagnetic Ising spin chain [Sac00]. Al-
though the effective Hamiltonian of these systems is not exactly the Ising Hamiltonian, these
systems exhibit many properties quite identical to those exhibited by the Ising model. More
recently, experimental evidence of magnetic properties on CsCoCl4 materials [KCT+02]
have been understood by means of the XY-model.

2.2 Canonical diagonalization

Now we come back to the XY-model Hamiltonian and we briefly sketch the canonical diag-
onalization. Indeed, the Hamiltonian (2.1) can be exactly mapped on a free fermion model
[LSM61, Kar06, Pla08]. The first step consists in introducing the ladder operators

σ±n =
σx
n ± iσy

n

2
, (2.4)

that satisfy, at the same site, the anticommutation rules {σ+
n , σ

−
n } = 1, otherwise, by con-

struction, they commute at different sites. The second step consists in using the Jordan-

2In this case, for γ = 0, the dispersion relation reads ǫq(h) = |h + cos q| and it shows that for each
h ∈ [−1, 1] there is a critical quasi-momentum q∗ wherein h = h∗ ≡ − cos q∗. Once again, near a given h∗

the dispersion relation predicts zν = 1. Now, looking at the transition point h = 1 from the pamagnetic to
the CXX phase and developing the dispersion relation around q∗ = π one founds ǫq ≃ |q − π|2 giving z = 2
and therefore ν = 1/2.
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Wigner transformation [JW28] in oder to obtain a description in terms of true fermionic
operators. To do that, one can introduce the Clifford operators

Γ1
n =

n−1∏

j=1

(−σz
j )σ

x
n, (2.5)

Γ2
n = −

n−1∏

j=1

(−σz
j )σ

y
n,

generating a real ((Γµ
n)
† = Γµ

n) Clifford algebra:

{Γµ
n,Γ

ν
m} = 2δµνδnm, ∀ ν, µ = 1, 2; ∀n,m = 1, . . . , L. (2.6)

Notice that the Clifford operators are un-normalised Majorana fermions. The different terms
in the original Hamiltonian are re-expressed in terms of Clifford operators as

σz
n = iΓ1

nΓ
2
n, (2.7)

σx
nσ

x
n+1 = −iΓ2

nΓ
1
n+1,

σy
nσ

y
n+1 = iΓ1

nΓ
2
n+1.

The quadratic form of the Hamiltonian in terms of Clifford operators ensures the integrability
of the model. Actually this approach is not useful for handling more general quantum
spin chains. For example, in the Heisenberg model, interaction terms in the z direction
σz
nσ

z
n+1 ∝ Γ1

nΓ
2
nΓ

1
n+1Γ

2
n+1 lead to interacting fermions. Moreover, due to the non-locality of

the Jordan-Wigner transformations, longer range interactions, such as σx
nσ

x
n+p, or magnetic

fields in the x̂ or ŷ directions break the integrability of the model.
Now, introducing the 2L-components row vector operator

Γ
† =

(
Γ
1†

Γ
2†

)
, Γ

µ† = (Γµ†
1 · · ·Γµ†

L ) (2.8)

one can write the Hamiltonian in the form

H =
1

4
Γ
†
TΓ, (2.9)

which defines a 2L× 2L Hermitian matrix T:

T =

(
∅ C

C
† ∅

)
, (2.10)

with C given by

C = −i




h Jy
Jx h Jy

Jx
. . .

. . .

. . .
. . . Jy
Jx h



. (2.11)

Introducing the unitary matrix (V†V = I2L×2L)

V =
(
V1 · · · V2L

)
, (2.12)
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with the parametrization

Vq =
1√
2

(
φq
−iψq

)
(2.13)

we obtain from the eigenvalue equation TVq = ǫqVq the following coupled equations3:

− iCψq = ǫqφq, (2.14)

C
†φq = −iǫqψq.

We can notice here that these equations are invariant under the simultaneous change ǫq →
−ǫq and ψq → −ψq. So, to each positive eigenvalue, ǫq > 0, corresponds a negative eigen-
value ǫq′ = −ǫq with the associated eigenvector Vq′ = (σz⊗ IL×L)Vq. In practice, due to the
symmetry properties of the matrix T, its diagonal form is

Λ ≡ V†TV = σz ⊗E, (2.15)

where

σz =

(
1 0
0 −1

)
, and E =




ǫ1
. . .

ǫL


 . (2.16)

From the Majorana field one can go to the diagonal Fermi representation thanks to the
Bogoliubov transformation

1√
2

(
Γ
1

Γ
2

)
= V

(
η
η†T

)
, (2.17)

with

η =




η1
...
ηL


 , η† =

(
η†1 · · · η†L

)
, (2.18)

where the fermionic creation and annihilation operators η†q , ηq satisfy the canonical anti-

commutation rules {η†q , ηp} = δqp. More explicitly, one has

Γ1
n =

L∑

q=1

φq(n)
[
ηq + η†q

]
,

Γ2
n = −i

L∑

q=1

ψq(n)
[
ηq − η†q

]
, (2.19)

and the inverse relation

ηq =
1

2

L∑

n=1

{
φq(n)Γ

1
n + iψq(n)Γ

2
n

}
,

η†q =
1

2

L∑

n=1

{
φq(n)Γ

1
n − iψq(n)Γ

2
n

}
, (2.20)

3From these equations it is straightforward to obtain two decoupled eigenvalue equations CC†φq = ǫ2qφq ,

C†Cψq = ǫ2qψq ; since CC† and C†C are real symmetric matrices, their eigenvectors can be chosen real and
they satisfy completeness and orthogonality realtions.
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that explicitly recast the Hamiltonian (2.9) in diagonal form. Indeed, from (2.9), using
(2.17) one obtains

H =
1

2

(
η† ηT

)
V
†
TV

(
η
η†T

)
, (2.21)

and exploiting the diagonal form (2.15),

H =
1

2

(
η† ηT

)( E ∅
∅ −E

)(
η
η†T

)
=
1

2

[
η†E η − ηTE η†T

]
, (2.22)

which can be explicitly rewritten, due to the anti-commutation relations, as

H =

L∑

q=1

ǫq[η
†
qηq − 1/2] (2.23)

where ǫq are the positive eigenvalues of T. The ground state of H is consequently given by
the η’s vacuum state |0〉, with the usual properties ηq|0〉 = 0, 〈0|η†q = 0, q = 1 . . . L and

with energy E0 = − 1
2

∑L
q=1 ǫq.

2.3 Entanglement entropy

Before turning on the dynamical aspects of the XY model, we briefly introduce the concept
of entanglement entropy in a bipartite system. Then, we specialize this concept to the XX
spin chain, needed in Chapter 5.

Let us suppose a closed quantum system composed by two parts A and B with Hilbert
space HA and HB respectively. The total Hilbert space in which the whole system lives is
given by the tensorial product H = HA ⊗HB. The pure bipartite state is not entangled if
and only if it can be written as a tensor product of pure states of the parts

|ΨAB〉 = |ΨA〉 ⊗ |ΨB〉. (2.24)

Otherwise, for a generic pure state, one has the bipartite decomposition

|ΨAB〉 =
∑

α,β

ϕαβ |φAα 〉|φBβ 〉, (2.25)

where {|φAα 〉} and {|φBβ 〉} are two orthonormal basis of the Hilbert spaces HA and HB
respectively. The state (2.25) is generally entangled and the measure of this entanglement
can be extracted by introducing the von Neumann entropy SA of the part A

SA = −Tr{ρA ln ρA}, (2.26)

where ρA is the reduced density matrix of the system A

ρA = TrB{|ΨAB〉〈ΨAB |}. (2.27)

Notice that, whenever OA is a local observable acting only in A, the expectation value is
given by 〈OA〉 = Tr{OAρA}.

Now we specialize to the XX-model case. Instead of using the Majorana operators, the
XX-model Hamiltonian can be rewritten by means of the real lattice fermion operators

ci =

i−1∏

j=1

(−σz
j )σ

−
i , c†i =

i−1∏

j=1

(−σz
j )σ

+
i , (2.28)
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leading to

HXX =
∑

i,j

c†iTijcj . (2.29)

The eigenstates of this Hamiltonian are Slater determinants. Denoting |Ψ〉 one of such
states and Cnm = 〈c†ncm〉 the two-point correlation matrix in this state, since |Ψ〉 is a Slater
determinant, all the higher correlation functions can be expressed in terms of the two-point
correlation functions [Pes03]. For example

〈c†nc†mckcl〉 = 〈c†ncl〉〈c†mck〉 − 〈c†nck〉〈c†mcl〉. (2.30)

Now, if one considers a subsystem A with A sites, by definition the reduce density matrix
has to reproduce all the expectation values of local operators acting in the subsystem. Thus,
the two-point correlation matrix has to satisfy the equivalence

Cnm = Tr{c†ncmρA}, ∀n,m ∈ A, (2.31)

and the higher correlations must factorize as before. It is possible to show that, according
to Wick’s theorem, this property holds if ρA is the exponential of a free-fermion operator
[Pes03, CP01, LRV04, CH04], i.e.

ρA =
1

Z
exp

{
−

∑

i,j

c†iAijcj

}
, (2.32)

where Z is a normalization constant such that Tr{ρA} = 1. Introducing the eigenfunctions
φk(i) of Aij with eigenvalues λk, the transformations to diagonal fermion operators ξk read

ci =
∑

k

φk(i)ξk, (2.33)

and ρA becomes

ρA =
1

Z
exp

{
−

∑

k

λkξ
†
kξk

}
. (2.34)

Using (2.34) in (2.31) yields

Cnm =
∑

k,q

φ∗k(n)
δkq

1 + eλk
φq(m) =

∑

k

φ∗k(n)φk(m)

1 + eλk
. (2.35)

Therefore, the eigenvalues of the matrix Aij are related to the eigenvalues ζk of the correla-
tion matrix restricted to the part A by

ζk =
1

1 + eλk
. (2.36)

Once the exponential form of ρA is known, it is straightforward to calculate the entanglement
entropy. Indeed, one has

SA = −Tr{ρA ln ρA} = −Tr{ρA ln
1

Z
e−

∑
k λknk} (2.37)

=
∑

k

λkTr{nkρA}+ lnZ,
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where nk = ξ†kξk. Now, using Z = Tr{e−
∑

k λknk} = ∏
k(1 + e−λk) and Tr{nkρA} = 〈nk〉 =

1/(1 + eλk), one obtains

SA =
∑

k

[
λk

1 + eλk
+ ln(1 + e−λk)

]
, (2.38)

which, rewritten in terms of the eigenvalues of the restricted correlation matrix, reads

SA = −
∑

k

[ζk ln ζk + (1− ζk) ln(1− ζk)] , (2.39)

where ζk are interpreted as the diagonal occupation numbers. Finally, if we are interested
in the temporal evolution of the entanglement entropy, the only thing one needs to do is to
perform the evolution of the correlation matrix, as explained in the following sections. Then,
SA(t) will be still given by the previous formula, but now, with eigenvalues ζk(t) calculated
from the reduced correlation matrix at time t.

2.4 Dynamics

Now, we turn to the out-of-equilibrium dynamical behavior of the free fermionic chains.
It is well known that in quantum mechanics the temporal evolution of a closed system is
governed by the Schrödinger equation

i
d

dt
|Ψ(t)〉 = H|Ψ(t)〉, (2.40)

where H is the Hamiltonian of the system (henceforth we assume ~ = 1). In this represen-
tation the time dependence is explicitly carried out by the state vector |Ψ(t)〉. Moreover, if
the closed system is described by the density operator ρ(t), the Schrödinger equation leads
to

i∂tρ(t) = [H, ρ(t)]. (2.41)

Whenever the Hamiltonian is time independent, the evolution operator is given by

U(t) = exp(−iHt), U(t)U†(t) = U†(t)U(t) = I, (2.42)

and we can define, in the Scrhödinger representation, the time dependent density matrix

ρ(t) = U(t)ρ(0)U†(t), (2.43)

generated from an initial state ρ(0). Now, let us consider a time independent operator A.
By definition, the expectation value of such an operator at time t is given by

〈A(t)〉 ≡ Tr{ρ(t)A} = Tr{ρ(0)A(t)}, (2.44)

where the last equality comes from the cyclic property of the trace. In this way we have
defined the Heisenberg representation of the operator A:

A(t) ≡ U†(t)AU(t). (2.45)

In the following we will use the Heisenberg representation in order to calculate the time
evolution of the operators describing the XY-model.
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Dynamics of Clifford operators — The XY Hamiltonian is diagonal using the ηq (η†q)
operators and, in the Heisenberg representation, the time evolution of such operators is given
by

ηq(t) = U†q (t)ηqUq(t), (2.46)

with Uq(t) = exp(−iǫqη†qηqt), and leads to

ηq(t) = e−iǫqtηq, (2.47)

η†q(t) = eiǫqtη†q .

Since the Clifford operators Γµ
n are given by a linear combination of the fermionic operators

ηq (η
†
q), their temporal evolution is simply given through the transformation (2.17). At time

t one has:
1√
2

(
Γ
1(t)

Γ
2(t)

)
= V

(
η(t)
η†T (t)

)
. (2.48)

Using the matrix representation of (2.47) one obtains
(
Γ
1(t)

Γ
2(t)

)
= Ve−itΛ

V
†

(
Γ
1

Γ
2

)
= e−itT

(
Γ
1

Γ
2

)
, (2.49)

where T is given by (2.10). Explicitly, the components of (2.49) are given by the linear
decomposition [Kar06]

Γµ
n(t) =

∑

ν,m

〈Γν
m|Γµ

n〉Γν
m, (2.50)

with the time-dependent contractions

〈Γ1
m|Γ1

n〉t =
∑

q

φq(m)φq(n) cos(ǫqt), (2.51)

〈Γ1
m|Γ2

n〉t = −
∑

q

φq(m)ψq(n) sin(ǫqt),

〈Γ2
m|Γ1

n〉t =
∑

q

ψq(m, )φq(n) sin(ǫqt),

〈Γ2
m|Γ2

n〉t =
∑

q

ψq(m)ψq(n) cos(ǫqt).

2.4.1 Time-dependent Hamiltonian

In Chapter 4 we focus our attention on the Ising spin chain driven in time across the critical
point. In that case the Hamiltonian will explicitly depend on time. Thus, an interesting
question is how to calculate, at least numerically, the time evolution of an observable when
the Hamiltonian depends on time.

It turns out, of course, that also for time-dependent Hamiltonian we can numerically
solve the Schrödinger equation. Suppose we prepare the chain in the ground state of H(g(t))
at time t0, where the Hamiltonian depends on time through the parameter g(t). We can
extract many information (magnetization, energy profile, spin correlations) by using the
Clifford operator correlation matrix. The usefulness of this representation stands in the
independence of these operators from time (like a parameter). Then, assuming that the
system, at time t0, is in its ground state, we have

〈ΓΓ†〉t0 =
(
〈Γ1

mΓ
1
n〉t0 〈Γ1

mΓ
2
n〉t0

〈Γ2
mΓ

1
n〉t0 〈Γ2

mΓ
2
n〉t0

)
= I+ i

(
∅ G

−G† ∅

)
(2.52)
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where the matrix elements of G are

Gmn =
∑

q

φq(m, g(t0))ψq(n, g(t0)), (2.53)

with φq(g(t0)) and ψq(g(t0)) the Bogoliubov coefficients that diagonalize the Hamiltonian
H(g(t0)) at time t04. Splitting the continuum time evolution into N infinitesimal sudden
quenches, the expectation of the Clifford correlation matrix at time t is given by

〈ΓΓ†〉t =
0∏

i=N

RT (dt; ti) 〈ΓΓ†〉t0
N∏

i=0

R(dt; ti) (2.54)

where the infinitesimal evolution matrix for the time interval [ti, ti+1] is

R(dt; ti) =
(
〈Γ1

m|Γ1
n〉ti 〈Γ1

m|Γ2
n〉ti

〈Γ2
m|Γ1

n〉ti 〈Γ2
m|Γ2

n〉ti

)
, (2.55)

with the time-dependent contractions

〈Γ1
m|Γ1

n〉ti =
∑

q

φq(m, ti)φq(n, ti) cos[ǫq(ti)dt], (2.56)

〈Γ1
m|Γ2

n〉ti = −
∑

q

φq(m, ti)ψq(n, ti) sin[ǫq(ti)dt],

〈Γ2
m|Γ1

n〉ti =
∑

q

ψq(m, ti)φq(n, ti) sin[ǫq(ti)dt],

〈Γ2
m|Γ2

n〉ti =
∑

q

ψq(m, ti)ψq(n, ti) cos[ǫq(ti)dt].

Taking the limit N →∞, dt = ti − ti−1 → 0, we recover the continuous time evolution.
Using the time evolution equation (2.54) and the mapping for each value of g(t) be-

tween Clifford operators and free-fermion operators we can easily write the evolution of the
free-fermion correlation matrix. Indeed, as we will see in Chapter 4, whenever we are inter-
ested on the correlation matrix of the fermion operators η†q(g) (ηq(g)) which diagonalize the
Hamiltonian H(g), what we need is to calculate the expectation value of the free-fermion
correlation matrix in the final state |Ψ(t)〉:

〈Ψ(t)|
(

η(g)
η†T (g)

)
·
(
η†(g) ηT (g)

)
|Ψ(t)〉. (2.57)

Introducing the g-dependent Bogoliubov transformation (2.17), with the specific unitary
matrix V(g) diagonalizing H(g),

1√
2

(
Γ
1

Γ
2

)
= V(g)

(
η(g)
η†T (g)

)
, (2.58)

we can rewrite the evolution of the free-fermion correlation matrix as

〈Ψ(t)|
(

η(g)
η†T (g)

)
·
(
η†(g) ηT (g)

)
|Ψ(t)〉 = 1

2
V
†(g)〈Ψ(t)|ΓΓ†|Ψ(t)〉V(g), (2.59)

4Obviously we could have prepared the initial correlation matrix 〈ΓΓ†〉t0 in any other way, without
modifying the protocol of the temporal evolution.
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that is 〈(
ηη†(g) ηηT (g)
η†T η†(g) η†T ηT (g)

)〉

t

=
1

2
V
†(g)〈ΓΓ†〉tV(g), (2.60)

where 〈ΓΓ†〉t is given by (2.54). Notice that the real temporal evolution of the diagonal
fermion operators is encoded in (2.60) and it is due to the temporal evolution of the Clifford
correlation matrix and to the parametric dependence on time, through V(g), of the unitary
diagonalization procedure at parameter value g(t).
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Chapter 3
The Bose-Hubbard model

The first experimental realization of a Bose-Einstein Condensate (BEC) with atoms goes
back to the nineties. Indeed, at the University of Colorado, Eric Cornell and Carl Wieman,
using a gas of Rubidium atoms cooled at 170nK, produced for the first time a new exotic
state of matter predicted many years ago by Bose and Einstein [CW98, Bos24, Ein25].

In the following years, progress at the experimental level, the ability to reach lower and
lower temperatures, the introduction of efficient laser sources, have allowed to investigate
experimentally a countless number of quantum phenomena, some of which were predicted
in the early years of quantum mechanics. Among them, the experiment of Greiner et al
[GME+02] where they explored the Mott Insulator to superfluid quantum phase transition
in an experimental realization of a Bose-Hubbard model is a milestone. The Bose-Hubbard
model is a simple description of interacting bosons on a lattice [FWGF89, JBC+98] with
second quantized hamiltonian

HBH = −t
∑

〈i,j〉

(
b†i bj + h.c.

)
+
U

2

∑

i

ni (ni − 1)− µ
∑

i

ni, (3.1)

in terms of lattice bosonic creation and destruction operators b†i , bi and occupation number
operator ni = b†i bi. The first term represents a kinetical contribution describing the hopping
of bosons from one site to another. In the simplest case, the hopping is restricted to nearest
neighbours 〈i, j〉 only. The U -term comes from a pair interaction and gives the energy cost
when ni particles are sitting at site i. Finally, the µ term accounts for a local external
potential which may be interpreted as a chemical potential essentially fixing the number of
bosons in the system.
The HBH Hamiltonian can be deduced from a continuum quantum effective field descrip-

tion of bosons living in a periodic potential [JZ05]. Starting from the continuum description,
in the single-band approximation and assuming well-localized Wannier functions, one can
recast the original continuum description into the second quantized formulation (3.1) (see
[LSA+07, Yuk09] for details).

The HBH Hamiltonian is not analytically solvable, nevertheless we can extract useful
informations in both limiting cases t/U →∞ and t/U → 0. Indeed, in both cases, the Bose-
Hubbard Hamiltonian reduces to a quadratic form of creation and annihilation operators.
In the limit of vanishing boson-boson interactions, i.e. t ≫ U , the N boson many-body
ground state is given by a product of N identical single-particle wave functions each of them
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Figure 3.1: Pictorial representations of the superfluid (above) and Mott-Insulating (below)
phases of bosons on an optical lattice. (Figure taken from http://www.uibk.ac.at)

describing a boson completely delocalized over the whole lattice. Under these conditions,
one gets

|ΦSF 〉U=0 =

(

∑

i

b†i

)N

|0〉, (3.2)

where |0〉 is the vacuum state, with a manifest phase-coherence of the bosons. In other
words, all bosons occupy the same one-particle ground state of the limiting Hamiltonian,
leading to the system superfluidity.

On the other hand, when the hopping amplitude t→ 0, the Bose-Hubbard Hamiltonian
reduces to a direct sum of local Hamiltonians Hi = U

∑

i ni(ni−1)/2−µ
∑

i ni. The particle
density on each site is fixed to an integer value by the minimization condition. There is no
more connections between neighboring sites and the bosons stay fixed in space. In such a
case, the many-body ground state is a so-called Mott-Insulating state, and in a homogeneous
system, it is given by the following local tensorial product

|ΦMI〉t=0 =
∏

i

(

b†i

)n

|0〉, (3.3)

where n represent the local integer filling. This state is characterized by long range correla-
tion in the boson local number operator and, unlike the previous limit, the phase coherence
has completely disappeared. Finally, an interesting property of this state, is the presence of
an energy gap of order U in the energy spectrum. The presence of such an energy gap is
reflected in the absence of compressibility.

The Bose-Hubbard model has been extensively studied by Fischer et al in [FWGF89]
where they also considered the effect of disorder. In the following, referring to their analysis,
we will briefly sketch the main properties of the homogeneous Bose-Hubbard model phase-
diagram reported in Figure 3.2.

Let us suppose that we initially prepare the system in a perfect Mott-Insulating state
at vanishing hopping amplitude t = 0 and where, just to fix the idea, we chose the ratio
µ/U in such a way that the system is exactly at half integer local filling condition. Then,
we turn on a small probability for bosons to jump from one site to a neighboring site (small
finite t/U). Under such a condition, if a boson moves over the lattice, the extra kinetic
energy (proportional to t) has to compete with the extra potential energy. For a too small
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Figure 3.2: Schematic zero temperature phase diagram for the Bose-Hubbard Model (based
on [FWGF89]).

value of the hopping coupling t, when U and µ are fixed, it is not convinient to leave the
particles moving through the system. Indeed, the Bose-Insulating phase has to extend in the
phase-space toward finite hopping rates, creating a sort of lobes. Of course, by increasing
the value of the ratio t/U there will be finally, for each value of µ/U , a critical point (t/U)c
above which the particles start to move over the lattice. Those critical points separate the
Mott-Insulating lobes from the superfluid phase as depicted in figure 3.2.

Moreover, the analysis carried out in [FWGF89] continues by looking at the transition
occurring at fixed t/U and varying the chemical potential µ. Once again, whenever the
system belongs to a Mott-Insulating lobe, the extra cost one has to pay for adding an
extra particle is too high with respect to the gained extra kinetic energy. Nevertheless, by
increasing (or decreasing) µ, the system will finally reach a point in which the extra kinetic
energy is comparable to the potential energy cost. A that point, the system will exhibits a
transition to the superfluid regime.

Finally let us mention that the particular QCPs at the cusps of each Mott-Insulating
lobe are multi-critical points. At those points, varying t, the transition occurs with constant
local density n̄ [FWGF89].

3.1 Superfluid to Mott insulator in experiments

As we said in the introductory part of this chapter, the generation of the first BEC with
cold atoms was actually an important step to convince people to use optical lattices in order
to explore the condensed-matter domain. Indeed, at the very beginning optical lattices have
been essentially used to further cool down the atoms. Only from a few years, experimentalists
have started to use optical lattices to obtain complex many-body states, and therefore, they
began to simulate fundamental models of condensed-matter physics [Alv10]. This is exactly
what Greiner et al did in 2002 [GME+02] by exploring the Mott-Insulating to superfluid
transition of ultracold atoms loaded in optical lattice.

They initially cooled 87Rb atoms in order to prepare a BEC, which was then loaded onto
a three-dimensional optical lattice. The system was prepared with a very low atom density
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Figure 3.3: Absorption images of multiple matter wave interference patterns across the
superfluid to Mott-insulator transition. From a to h the strength of the lattice potential is
increased. The time of flight is fixed to τ = 15ms. (Figure taken from [GME+02])

per sites in order to well reproduce the Bose-Hubbard model. Changing the experimental
value of the lattice potential depth, it was possible to tune the value of the ratio t/U and,
therefore, to explore different points in the phase-space of the model. The properties of the
model were analyzed by looking at time-of-flight images. These images were reconstructed
after removing the lattice potential and having waited for the atom cloud expansion up to
a time τ = 15ms.

In Figure 3.3 we reproduce the images taken from the original paper[GME+02] showing
absorption images for different values of the ratio t/U . As we can see from those images, as
long as the value of the ratio t/U is larger than the critical value (t/U)c, the kinetic energy
is dominant in the system, the atoms are in a superfluid state and a coherent momentum
distribution appears during the expansion. Such a behavior is visible in Figure 3.3 as very
localized absorption spots. In the opposite limit, whenever the lattice potential becomes
sufficiently high to bring the system in the Mott-Insulating phase, the absorption images
show an almost uniform smooth pattern. Furthermore, during the experiment the excitation
spectrum was probed, confirming, as expected, that the transition from superfluid to Mott-
Insulating regime is characterized by the opening of an energetic gap. Finally, the most
surprising fact of this experimental study was the almost perfect overlap of the critical
value (t/U)c with the theoretical prediction [FWGF89, JBC+98]. More recently, a similar
behavior was reported in one- and two-dimensional systems [SMS+04, SPP07].

3.2 Bloch oscillations of atoms in an optical potential

We decided to close this chapter reporting the results of an experiment that was done some
years ago by Dahan et al. at the Laboratoire Kastler Brossel de l’Ecole Normale Supérieure
in Paris [DPR+96]. What has been observed in that experiment is closely related to the
subject of Chapter 5. In the following we describe as faithfully as possible what reported in
[DPR+96], nonetheless, for further details or references, we refer to the original work.

In that paper, they present Bloch oscillations of ultracold cesium atoms in the fun-
damental energy band of a periodic optical potential. They directly measure the atomic
momentum distribution evolving in time under the influence of a constant inertial force for
various potential depths.

They start their analysis by considering a pure one-dimensional quantum system, in the
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FIG. 1. Band structure (solid line) for a particle in
Figure 3.4: Band structure En(q) (solid line) for a particle in aperiodic potential U(z) =
U0 sin

2 πz/d and mean velocity 〈v〉0(q) in the fundamental band (dashed line): (a) free
particle case, (b) U0 = E0 = ~

2π2/2md2. A gap opens at q = ±π/d. Under the influence of
a weak uniform force, a particle prepared in the fundamental band remains in this band and
performs a motion periodic in time called a Bloch oscillation. (Figure and caption taken
from [DPR+96])

presence of a lattice potential with spacing d. This system shows a typical band structure
(see Figure 3.4) and therefore, the one-particle Bloch eigenstates |n, q〉 (and eigen-energies
En(q)) can be parametrized by means of the band index n ant the quasi-momentum q.
Due to the lattice potential, it is possible to show that |n, q〉, and consequently En(q), are
periodic functions of q, with period 2π/d where momenta are conventionally restricted to
the first Brillouin zone [−π/d, π/d]. Adding a constant force F , not too strong in order to
prevent inter-band transitions, the one-particle initial Bloch state |n, q0〉 evolves in time as

|n, q(t)〉, with q(t) = q0 + Ft/~, (3.4)

where the evolution is periodic, with period T = h/|F |d, with a mean velocity given by

〈v〉n =
1

~

dEn(q)

dq
. (3.5)

As a consequence of the previous arguments, if we prepare a wave packet in the lower band,
with a well-defined quasimomentum, it will oscillate in position with amplitude ∆0/2|F |,
where ∆0 is the energy width of the lower band.

In the experiment the periodic potential was generated by means of standing waves
generated by a laser source which was detuned far from any atomic resonances to avoid
spontaneous emission. The free atomic gas was initially prepared by using a one-dimensional
Raman laser cooling method, obtaining a momentum spread of the order of δp = ~k/4, with
~k the photon momentum. In this way, they obtained an atomic coherence length h/δp
that extended over several lattice periods. After that, they adiabatically switched on the
optical potential, transferring the initial distribution into a mixture of Bloch states in the
lower energy band. The external force F was produced by introducing a tunable frequency
difference δν(t) between the two counter-propagating waves. Indeed, for a linear variation of

δν(t) the atoms feel a constant inertial force F = −ma = −mddδν(t)
dt in the reference frame

of the optical potential. Again, the force has to be small enough to prevent inter-band
transitions. Finally, after having waited a time ta, they switched off the lattice potential
and measured the momentum distribution of the atoms.
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FIG. 2. Bloch oscillations of atoms: momentum distributionsFIG. 3. Mean atomic velocity as a function of the

Figure 3.5: (Left figure) Bloch oscillations of atoms: momentum distributions in the ac-
celerated frame for the equidistant values of the acceleration time ta between t0 = 0 and
ta = T = 8.2ms. The light potential depth is U0 = 2.3ER, where ER = h · 2.068kHz is
the recoil energy. The acceleration is a = −0.85m/s2. The small peak in the right wing of
the first five spectra is an artifact. (Right figure) Mean atomic velocity 〈v〉 as a function
of the acceleration time ta for three values of the potential depth: (a) U0 = 1.4ER, (b)
U0 = 2.3ER, (c) U0 = 4.4ER. The negative values of Fta were measured by changing the
sign of F . (Figure and caption taken from [DPR+96])

In the left side of the Figure 3.5 they plot the momentum distribution in the non-inertial
frame for different waiting times ta. The initial peak moves linearly in time while its weight
decreases. As time runs on, a second peak appears at a distance 2~k; its amplitude becomes
equal to the first peak amplitude when ta = T/2. Then it keeps growing until ta = T , the
end of a full Bloch oscillation, where the initial momentum distribution is recovered.

They have also deduced from the experimental data the mean atomic velocity as a func-
tion of the waiting time for different values of the potential depth U0 and for an acceleration
a = ±0.85m/s2. In the right side of Figure 3.5 one sees the results for the three values of U0

considered in the experiment. Moreover, after having numerically calculated the band struc-
ture for the experimental values of U0, they obtained the mean velocity of the Bloch states
from (3.5). The agreement with the experimental data is very good. Finally, integrating
〈v(ta)〉 they have also reconstructed the fundamental energy band.

The experiment realized by Dahan et al showed in a very clear way the appearance of
Bloch oscillations whenever a cloud of ultracold bosonic atoms is loaded in a lattice and
feels a constant force. Nevertheless, their analysis is based on the assumption of vanishing
boson-boson interactions. We will se in Chapter 5 how the Bloch oscillations behave with
increasing repulsive interactions, and eventually in the Hard-Core boson limit.



Part II

Quantum Quench Dynamics





The second part of the thesis contains the main results of our studies. All the performed
analysis can be inscribed under the same general subject: dynamics of closed quantum
systems. Indeed, both the sudden-quench dynamics and the adiabatic dynamics is inves-
tigated in details for different quantum chains in different setups. Especially with regard
to the annealing process across a QCP, it turns out that inhomogeneities, like confining
potentials, could really affect the defect production [DR10a, CK10, CK11]. Otherwise,
the experimental advances with ultracold bosonic atoms loaded into optical lattices, led the
theoretical community to be interested on simulating Bose-Hubbard type many-particles
Hamiltonians in tunable setting. Recent experiments [DPR+96, WBM+96] showed the
well-known Bloch Oscillations and have revitalized the theoretical research on the dynamics
of bosonic models in one dimension. For example, in recent high accuracy experiments,
atoms loaded in vertical lattices showed Bloch oscillations which can be used to measure
gravity [CGKS+05, FPST06, PWT+11]. Finally, after freeing from the condition of zero
temperature, we dedicate part of our study to understand the dynamical mechanism of
thermalization, especially looking at local properties of a spatially extended quantum system.

Before introducing a sort of synopsis of each chapter, we would like to spent some
word about the aims that guided us during the drawing of the chapters: in practice, the idea
was to make each chapter independent, giving, each time, an introductory overview of the
matter, well placed within the yet existing literature, and developing the tools (eventually
referring to what has already been introduced in the first part of the thesis) which will lead
to the new results.

In Chapter 4 we analyze the coherent quantum evolution of a many-particle system after
slowly sweeping a power-law confining potential. We varied in time, along a power-law
ramp, the amplitude of the confining potential in order to bring the system at the quantum
critical point. Under this scheme, and using general scaling arguments, we derive the
general behavior for the density of excitations and energy excess generated during the
non-adiabatic sweep of the confining potential. It is found that the mean excitation density
follows an algebraic law as a function of the sweeping rate with an exponent that depends on
the space-time properties of the potential. We confirm our scaling laws by first order adia-
batic calculation and exact results on the Ising quantum chain with a varying transverse field.

In Chapter 5 we analyze the effect of a sudden quench of a linear chemical potential
on a trapped one-dimensional Bose gas initially confined in a finite region of an optical
lattice. In the impenetrable limit, we develop an hydrodynamical theory which provides the
temporal evolution of the density profile. We found that a finite density of the particles
remain confined, and another is ejected outside the initial boundaries. We found analytic
expressions for the ‘plateau’ region and for the time-dependent shape of the ejected particles.
Furthermore, using adaptive time-dependent DMRG, we investigate the same dynamics
in the truly interacting Bose-Hubbard model. The resulting dynamics typically shows two
different regimes. For strong repulsion the system show a principal frequency in the temporal
evolution of the observables resembling the result in the impenetrable limit. Oppositely,
when decreasing the coupling and the system becomes more non-integrable, its time evolution
takes on a chaotic character. The features of this transition depend on the value of the
constant external force.



Finally in Chapter 6 we analyze the temporal evolution of an extended quantum system
initially prepared in an out-of-equilibrium state. By introducing the time-dependent local
density matrix we properly define a quantum temperature profile, and set a connection with
the classical counterpart. In particular, we focus our attention on the dynamical scaling
behaviour of the thermal equilibration mechanism for a closed quantum system initially di-
vided in two different extended subsystems at different temperatures. After introducing the
one-dimensional Hard-Core Bosons model, we perform a numerical study. We find that local
observables result more robust than global ones, showing, also in the early instants of the
evolution, thermal properties.



Chapter 4
Adiabatic dynamics in confined systems

An interesting question about the behavior of a quantum system near a quantum critical
point [Sac00] is how the presence of spatially varying external fields, or local modulation

of the internal couplings (which may be randomly or deterministically distributed [BC04,
GB97, IKR98b, IKR98a, KLR+01]), will influence the equilibrium and dynamical properties
of such a system. Depending on the relevance of the perturbation generated by the field or
coupling inhomogeneity, the universality class governing the behavior close to the critical
point may change [IPT93]. A relevant inhomogeneity may even suppress the very existence
of the critical point as, for instance, it is trivially the case on a finite-size system [Bin83].
The critical behavior will be modified locally at a boundary, as, for example, at a flat
surface, at a corner, or at the tip of a parabolic-shaped system [Car83, BPP84, Car84,
Pes85, AL95, KLT97, DP97, PTI91]. An extended inhomogeneity may be such that it is
to weak to modify the bulk critical behavior but strong enough to change the local critical
properties at a surface or at an interface [HvL81, KPT95]. One may also mention a series
of works on gradient percolation, where an inhomogeneous field was introduced as a tool
allowing for accurate estimates of the percolation threshold and the percolation exponents
[SRG85, RGS85, RGS86, ZS86, GRS88]. The main effect of such a spatially varying field
inhomogeneity is to smooth out the critical singularities. Indeed, the inhomogeneous field
leads to a departure from the critical point, which introduces a finite length scale in the
problem. More recently, based on the proper identification of the typical length scale, a
scaling theory for the equilibrium profiles of energy and particle densities has been developed
for quantum systems with power-law inhomogeneities [PKT07, ZD08, DZ09, CV09, CV10,
CKT09]. Such power-law fields are particularly relevant in the context of ultracold atoms,
where parabolic trapping potentials are used to confine atomic clouds.

Beautiful experiments from the ultracold-gases community have revived the theoretical
studies of the nonequilibrium behavior of strongly correlated quantum systems [GME+02,
LSA+07, SHL+06]. The main reason for that is that the dynamics of such atomic sys-
tems presents a very low dissipation rate and a good phase coherence over very long times
[GME+02, LSA+07, SHL+06]. Consequently, the real dynamics is very well modeled by the
usual quantum unitary evolution of closed systems. Among the various possible nonequi-
librium situations that one may think of, a case that has received much attention is where
the parameters of the quantum many-body system are varied in time such that the system
reaches or crosses a quantum critical point. In this case, close to the critical point, the
divergence of the intrinsic relaxation time leads to a nonadiabatic evolution of the system
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FIG. 1. (Color online) Sketch of the problem we consider in this

Figure 4.1: Sketch of the problem we consider in this chapter.

no matter how slow the Hamiltonian is changed. If the system is initially in its ground state,
nonadiabatic transitions toward excited states lead to the generation of topological defects
in the final state [ZDZ05, Dam05, DZ06, DZ07, CDDZ07, Dzi05, CL06, Pol05, GBP08,
SSM08, PG08, BP08]. For example, driving a quantum system from a paramagnetic to a
ferromagnetic phase through a critical point generates a final state given by a superposi-
tion over excited states carrying finite ferromagnetic domains separated by kinks or domain
walls. For a slow driving rate, the density of defects is a universal scaling function of the
driving rate, as in the classical Kibble-Zurek (KZ) mechanism [Kib76, Kib80, Zur85]. This
may be of importance in the context of adiabatic quantum computation [FGG+01], where
adiabatic evolution is proposed to transfer the system from an initial state to a computa-
tional nontrivial state. If one is forced to cross a critical point in order to generate the
nontrivial state, inevitably the crossing will result in the generation of excitations (defects).
The optimal time ramp needed to drive the system through the critical point has to balance
the unavoidable generation of defects and the time needed to cross the critical point [BP08].

Removing or loading a power-law trap smoothly in time and close to a critical point,
as sketched in Figure 4.1, will lead to a final state carrying a nontrivial density of defects,
which will depend on the shape of the trap [CK10, CK11]. The reason for this result is the
fact that the power-law perturbation is a relevant one and modifies the universality class of
the critical point, leading to an effective correlation length exponent which has to enter into
the Kibble-Zurek prediction instead of the original one. In this chapter we analyze in details
the coherent generation of defects during such an inhomogeneous quench [CK10, CK11]. A
general scaling argument is presented from which the scaling behavior of local (such as the
local energy density or order parameter) and global (such as the density of defects) quantities
are derived. The minimization of defect production for a given total sweeping time is also
discussed within the scaling approach. Aside from the scaling-argument approach, we also
present an analytical near-adiabatic analysis and an exact numerical study of the Ising
quantum chain with an inhomogeneous transverse field playing the role of the confining
potential.

The chapter is organized in the following way: the next Section 4.1 is devoted to the
scaling theory. The dynamical analyses is presented in Section 4.2 and the specific case of
the Ising model is treated in Section 4.3. Finally we summarize our results in Section 4.4.

4.1 Scaling theory

4.1.1 Scaling arguments

The d-dimensional quantum system we consider has a quantum critical point at zero tem-
perature governed by a scalar field h. The critical point separates a symmetric phase from
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a broken-symmetric one. The homogenous critical field value is hc. We assume that close
enough to the critical point the quantum control parameter h deviates in one direction from
the homogeneous critical value hc with a power law

δ(x, t) ≡ h(x, t)− hc ≃ g(t)|x|ω (4.1)

with a positive space exponent ω > 0. The amplitude g(t) of the spatial deviation to the
critical value (which is set fixed at x = 0 ∀t according to (4.1)) is driven externally from a
given initial value to a final one following the non-linear time ramp

g(t) = v|t|αsgn(t) (4.2)

with α a positive exponent, sgn(t) the sign function and where, without loss of generality,
the rate amplitude v is assumed to be positive and determines the velocity of the quench.
For small vs the quench is slow while it is faster at larger values. Notice that within the
following parametrization, the quench dynamics connects the two distinct phases by crossing
the homogeneous critical point (h(x) = hc ∀x) at time t = 0. Negative times correspond to
the δ < 0 phase while positive times to the δ > 0 phase.

The presence of the inhomogeneous field (4.1) introduces a crossover region in space-
time (x, t) around the critical locus (0, 0) with characteristic length-scale ℓ and time-scale
τ . To see that, let us start in the far past, at t = −T with T ≫ 1, from the ground state
|GS(g(−T ))〉 associated to the initial amplitude value g(−T ). Under the unitary dynamics
generated by the time-dependent hamiltonian, the system starts to evolve adiabatically,
following the instantaneous ground state |GS(g(t)〉 as far as it is protected from transitions
to excited states by a large energy gap ∆(t) between the ground state and the excited
states. At time t, in the instantaneous state |GS(g(t))〉, the spacial power-law deviation of
the control parameter δ from the critical point introduces a finite length scale ℓ(t) around
the spatial critical locus (here at x = 0) [PKT07, CV09, CV10, CKT09]. The typical length
can be obtained self-consistently by noting that, with this width, ℓ(t), is associated a given
deviation δ(ℓ) = gℓω from which a characteristic length δ(ℓ, t)−ν can be constructed from
the correlation length relation. From the identification ℓ(t) ∼ δ(ℓ, t)−ν one finally finds

ℓ(t) ∼ |g(t)|−ν/(1+νω) . (4.3)

The typical length scale ℓ(t) diverges for a vanishing deviation amplitude g, that is close to
the critical point, with an effective correlation length exponent given by

νg ≡
1

yg
=

ν

1 + νω
. (4.4)

As time runs toward zero, the energy gap ∆ of the system vanishes and correspondingly the
relaxation time ∝ 1/∆ gets larger and larger up to the point where the adiabatic evolution
breaks down completely due to the contributions of the transitions toward instantaneous
excited states. When sufficiently close to the homogeneous critical point, the response of
the system to the external driving is so slow that the dynamics switches to a sudden regime.
After the critical point has been crossed, for sufficiently large times, one recovers again
the nearly adiabatic regime. The typical time scale τ around the critical locus, separating
the nearly adiabatic dynamics from the sudden-quench regime, can be deduced from the
self-consistent relation τ ∼ ℓ(τ)z, where z is the dynamical exponent. This leads to

τ ∼ ℓz ∼ v−z/yv (4.5)
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where
1

νv
≡ yv = yg + zα =

1 + ν(ω + zα)

ν
(4.6)

is the Renormalization Group (RG) dimension of the perturbation field, such that, under
rescaling by a factor b, the amplitude v transforms as v′ = byvv. Since ω and α are positive,
the perturbation is always relevant (yv > 0). Notice that within the quench, the maximal
extension of the length scale ℓ scales with the rate amplitude v as ℓ ∼ v−νv where νv plays
the role of an effective correlation length exponent for the effective thermal field v. For
a given value of v the typical length scale never diverges, even exactly when we cross the
critical point since, before that, there is a critical slowing down which freezes completely the
dynamics and avoids then the further development of correlations.

The scaling of the profile of a local quantity φ(x, t, v), like the local order parameter or
the energy density, with scaling dimension xφ close to the critical locus, is determined under
the homogeneity hypothesis φ(x, t, v) = b−xφφ(xb−1, tb−z, vbyv ). Taking the rescaling factor
to be b = v−1/yv ∝ ℓ ∝ τ1/z, one obtains

φ(x, t, v) = vxφ/yvΦ(xv1/yv , tvz/yv ) (4.7)

where Φ is a scaling function. As discussed previously, the prefactor exhibits the trap-
size scaling φ ∼ ℓ−xϕ associated to the finite-size scale ℓ ∼ v−1/yv [PKT07, CV09, CV10,
CKT09]. Notice here that the scaling form (4.7) is not expected to be valid outside the
critical region, that is for |x| ≫ ℓ since, in those regions, the field values are very far from
the critical value.

In the same way, if we are interested only in the time evolution of the spatial-averaged
quantity, after integration in space over the critical domain ℓ of the preceding equation, one
obtains

φ(t, v) =
1

ℓ

∫

ℓ

dx φ(x, t, v) = vxφ/yvΦ
(
tvz/yv

)
∼ τ−xφ/zΦ

(
t

τ

)
. (4.8)

As an example, the averaged energy density should behave after the quench to the critical
point as e ∼ v(d+z)/yv since its scaling dimension is xe = d+ z [Her76].

4.1.2 Density of defects

The defect production generated during the quench by crossing the critical point is de-
duced through the identification of the typical Kibble-Zurek time-scale corresponding to
the freezing of the dynamics. Equating the relaxation time κ/∆(t) with the typical time-
scale ∆(t)/|∆̇(t)| at which the Hamiltonian is varied and assuming that the gap scales as
∆(t) ≃ Ω0|g(t)|z/yg one finds for the typical (Kibble-Zurek) time-scale

τKZ ∼
(
κ

Ω0

zα

yg

)yg/yv

v−z/yv . (4.9)

The defect density being proportional to the inverse of the correlation volume at the Kibble-
Zurek time, one obtains from the relation n ∼ [∆(τKZ)]

d/z the behavior

n ∼
(
κ

Ω0

zα

yg

)dα/yv

vd/yv = (zγδ)
dγ

1+zγ (4.10)

with δ = κ
Ω0
v1/α ∼ 1/T (with T defining the temporal window of the quench protocol)

and γ = ανg = α/yg. As one would expect, the density of defects n is smaller for larger
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values of the protocol time window T used to reach a final value gf from the initial g0
value. The obvious conclusion is that, if one wants to minimize the generation of defects,
the switching of the trap should be as slow as possible. However, this can lead to extremely
long protocol times T and be counterproductive as, for example, in quantum computational
issues where one looks for a compromise between the production of excited states and short
computational times. In order to achieve this compromise one may look for the optimal
power-law time-ramp protocol that minimizes the defect density n at a fixed duration T .
Optimizing (4.10) with respect to γ = α/yg for a given δ ∼ 1/T one finds

γopt =
1

z
W

(
1

eδ

)
, (4.11)

whereW(x) is the LambertW function defined through x = f(W) =WeW . For a given trap
shape (space exponent ω fixed) the optimum time exponent takes the value αopt = γopt/νg =
γopt(1+νω)/ν. Using the asymptotic expansion of the Lambert functionW(x) ≃ lnx−ln lnx
at large x, the result of [BP08] is recovered with ω = 0

αopt ≃ −
1

zν
ln

(
eδ ln

1

eδ

)
. (4.12)

Loading a power-law trap potential changes significantly the value of the optimal temporal
exponent α, increasing it by a factor (1 + νω). This means that, with a power-law trap and
close to the critical point, one has to drive the system slower than without a trap in order
to minimize the defect production.

In view of the scaling prediction (4.7) we expect the density of defects n(x, v) produced
locally within the critical region to scale as

n(x, v) = vd/yvN (xv1/yv ) = ℓ−dN
(x
ℓ

)
(4.13)

where we have set t = τKZ = v−z/yv . The unknown scaling function N (u) should go to a
constant as u→ 0.

4.1.3 Global shift to the critical point

A question that may naturally arise is about the validity of the present approach when the
critical locus is not exactly at the expected space-time location, as it would certainly be the
case in an experiment. If there is an incertitude in the locus of the critical point, following
[DR10a, DR10b, Dzi10], we can distinguish several situations. First of all, if the deviation
to the expected locus is due to a shift δg in the time ramp amplitude, such that the actual
perturbation is given by

δ(x, t) ≃ [g(t)− δg]|x|ω , (4.14)

where without loss of generality we assume δg > 0, then the critical point is crossed (for

g(t∗) = δg) at t∗ =
(

δg
v

)1/α

. Developing δ(x, t) near t∗ (and neglecting higher order contri-

butions) we obtain

δ(x, t) ≃ ∂δ(x, t)

∂t

∣∣∣∣
t∗
(t− t∗) = v̂g(t− t∗)|x|ω, (4.15)

where we have identified a new rate v̂g = αv1/αδ
1−1/α
g . The effect of a finite δg leads then to

an effective linear time ramp without changing the spatial behavior. Our scaling predictions
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hold then with the time exponent α replaced by the new time exponent α̂ = 1 and the rate
v by the effective rate v̂g.

If the deviation to the critical point is due to a global residual shift δh such that the
actual trap has the form δ(x, t) = g(t)|x|ω − δh, one has to distinguish between a small shift
and a relatively large one. Consider first the case of a small global shift δh, such that we
are still in a scaling regime. The scaling dimension associated to the global shift is that of
the unperturbed system 1/ν. Under rescaling by a factor b, the length scale and time scale
changes according to

b−1ℓ(v, δh) = ℓ(vbyv , δhb
1/ν), b−zτ = τ(vbyv , δhb

1/ν) (4.16)

which leads taking vbyv = 1 to

ℓ = v−1/yv ℓ̃(δhv
−1/νyv ), τ = v−z/yv τ̃(δhv

−1/νyv ) . (4.17)

The scaling functions ℓ̃(u) and τ̃(u) have to satisfy the limiting behavior ℓ̃(0) = ℓ0, τ̃(0) = τ0
and for u≫ 1

ℓ̃(u) ∼ u−ν , τ̃(u) ∼ u−zν

in order to match the usual scaling in absence of the trap. Physically, these assumptions
mean that the shortest length between ξh ∼ δ−ν

h and ℓv ∼ v−1/yv dominates the behavior
near the critical locus. The trap size scaling (4.7) is expected to hold when 1 ≪ ℓv ≪ ξh,
that is when the system is critical enough in the absence of the trapping potential. The
general scaling for a local field is given by

φ(x, t, v, δh) = b−xφΦ(xb−1, tb−z, vbyv , δhb
1/ν) , (4.18)

and again with vbyv = 1 we have the following trap-size scaling

φ(x, t, v, δh) = vxφ/yvΦ(xv1/yv , tvz/yv , δhv
−1/νyv ) , (4.19)

which is nothing but the scaling

φ(x, t, v, δh) = ℓ
−xφ
v Φ̃

(
x

ℓv
,
t

ℓzv
,
ξh
ℓv

)
. (4.20)

Under this new scaling assumption we have in particular for the energy gap

∆(v, δh) ≃ vz/yvΩ(δhv
−1/νyv ) . (4.21)

For δh ≪ 1 and v → 0 we have to recover the homogeneous behavior ∆ ∼ δzνh which imposes
Ω(u) ∼ uzν for u≫ 1. For δhv

−1/νyv → 0 developing the function Ω0 close to zero we obtain

∆(v) ≃ Ω0v
z/yv +Ω′0v

(zν−1)/νyvδh + o(δh) . (4.22)

For the defect density, from the Kibble-Zurek prediction n ∼ ∆d/z one obtains the behavior

n ∼ Ω0v
d/yv

(
1 +

Ω′0
Ω0
v−1/νyvδh + o(δh)

)d/z

≃ Ω0v
d/yv +

d

z
Ω′0v

d/yv−1/νyvδh + o(δh) . (4.23)

For the special case of the Ising quantum chain that we consider in the following, we have
d = 1, ν = 1 and z = 1, then to the first order in δh the corrections are independent on v:

nIsing ∼ Ω0v
1/(1+ω+α) +Ω′0δh + o(δh) , (4.24)
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generating a constant shift to the original behavior.
For a large constant shift δh taking the system out of the previous scaling regime, we

have to distinguish between negative and positive global shifts. In order to fix the ideas for
the discussion, let us set g(t) = −v|t|αsgn(t) and drive the system from an initial negative
time ti = −t0 to t = 0 where the coupling profile is completely flat: δ(x, 0) = −δh. If δh is
negative, then since δ(x, t) ≥ |δh| ∀x, the system stays in his disordered phase during the
full evolution. Its dynamics is always nearly adiabatic since at any time t ∈ [−t0, 0] the gap
keeps large values enough for |δh| = O(1). One expects in this case an exponentially small
defect generation. On the contrary, for a positive global shift δh, at each time, there is a
region around x = 0 which is already in the symmetry-broken phase (negative δ(x, t) values).
During the time evolution, from t = −t0 to t = 0, this area around the origin x = 0 will grow,
propagating the symmetry-broken phase into the symmetric one [DR10b, DR10a, Dzi10].
The temporal dependence of the critical front x∗(t), separating both phases, determined
from the critical locus condition δ(x∗, t) = 0 is given by

|x∗(t)| =
(
δh
v

)1/ω

(−t)−α/ω, with t ∈ [−t0, 0] . (4.25)

Since α and ω are both positive, the critical locus x∗(t) is expelled to infinity as we approach
t = 0. At the beginning of the quench the critical locus front propagates slowly enough such
that the ordered phase extends into the disordered one with a very low rate of defects
generation. However, as time runs toward zero, the velocity of the front becomes very large
such that there is no more causal connection with the already nucleated ordered phase and
the disordered one. This leads to an effective sudden quench regime for the part of the system
which is outside the causal region. In order to obtain the dependence of the threshold point
x0 after which the causality is lost, we develop δ(x, t) near, lets say, the positive critical
front x∗(t) > 0. One has close to x∗ a linear front

δ(x, t) ≃ ∂δ(x, t)

∂x

∣∣∣∣
x∗(t)

(x− x∗(t))

= v̂h(−t)α/ω(x− x∗(t)) (4.26)

with a local slope v̂h(−t)α/ω where the rate v̂h = ωv1/ωδ
1−1/ω
h . Notice here that the slope

of the linear front is decaying as t → 0 as |t|α/ω, that is as the trap is opening. This front
drives locally the system from one phase to the other with a time dependent velocity c∗(t) ≡
dx∗/dt ∼ x∗1+ω/α(v/δh)

1/α ∼ x∗(t)/t. As was pointed out in [DR10b, DR10a, Dzi10],
the propagation of the front turns out to suppress the Kibble-Zurek excitations in a region
around the origin and rejects the defects production outside this region. At the critical
locus x∗, the linearized perturbation introduces a local length scale ℓ∗(t) = ℓ(x∗(t)) ∼
(δh/x

∗(t))−ν/(1+ν) and time scale τ∗(t) ∼ ℓ∗(t)
z

according to the scaling argument (4.3)
developed in the introduction (see [PKT07, CKT09]). To get an idea of the extension of
that region, we compare the velocity c∗(t) of the front with the typical velocity, close to x∗,
ℓ∗(t)/τ∗(t) ∼ ℓ∗(t)1−z. From that, one may extract a time τ0, where both velocities become
of the same order, and then deduce the threshold locus x0 ≡ x∗(τ0). In the case of the
Ising chain treated below, since the critical exponents z = ν = 1, the system enters into the
sudden regime as soon as the front velocity c∗(t) is larger than the sound velocity (hereafter
set to one). One obtains from the equation c∗(τ0) = 1

x0 = x∗(τ0) ∼ τ0 ∼
(
δh
v

)1/(α+ω)

. (4.27)
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Around the point x0 one expects a critical region with typical fluctuations of order

(
x0
δh

)ν/(1+ν)

=

√
x0
δh

(4.28)

since for the Ising chain ν = 1 and ω = 1 in a linearized profile. For more details about the
calculation of the scaling of the front propagation in the example case of the Ising model
with ω = 1 and α = 2 see Appendix B.

4.2 Dynamical analysis

If the time-variation of the Hamiltonian is slow enough one can use a nearly adiabatic
approximation (see Chapter 1 and Appendix A) in order to describe the actual state |Ψ(t)〉 =
U(t, t0)|0(t0)〉 obtained from the initial ground state |GS〉 = |0(t0)〉 of the initial hamiltonian
H(t0). Introducing the instantaneous eigenbasis {|k(t)〉} (which is assumed to be discret for
simplicity) H(t)|k(t)〉 = Ek(t)|k(t)〉 one obtains from standard perturbation theory the “one-
jump” expansion

|Ψ(t)〉 ≈ e
−i

∫ t
t0

dsE0(s)

[
|0(t)〉+

∑

k 6=0

|k(t)〉
∫ t

t0

dt′〈k̇(t′)|0(t′)〉e−iϑk(t
′,t)

]
, (4.29)

where ϑk(t
′, t) =

∫ t

t′
dsδωk0(s) with Bohr frequency δωk0(t) ≡ Ek(t)−E0(t). Notice that this

expansion is valid only if the eigenvectors are changing continuously with time. The first term
in the right hand-side is the usual adiabatic result: the state is in the instantaneous eigenstate
|0(t)〉 (here the ground state) of the Hamiltonian H(t), multiplied by a dynamical phase
factor. It corresponds to no jump at all. The second term is the “one-jump” contribution. It
represents an adiabatic evolution from the initial state up to a time t′, a sudden transition
at t′ toward an excited state |k(t′)〉, followed by an adiabatic evolution from |k(t′)〉 to |k(t)〉.
The total contribution results from the integration over all times t′ ∈ [t0, t] at which the
transition could take place, and then summed over all transition states. Higher order terms
are build by taking into account more than one single jump between the instantaneous states
and are neglected here. Using the identity 〈k̇(t)|q(t)〉 = 〈k(t)|∂tH(t)|q(t)〉/δωkq for k 6= q,
the transition amplitudes ak(t0, t) = 〈k(t)|Ψ(t)〉 (up to a global phase factor) are given by

ak(t0, t) =

∫ g(t)

g(t0)

dg
〈k(g)|∂gH(g)|0(g)〉

δωk0(g)
e−iϑk(g,g(t)) (4.30)

where the phase factor is given by

ϑk(x, y) =
v−1/α

α

∫ y

x

dg |g|1/α−1δωk0(g) . (4.31)

In the scaling limit, following the same lines proposed in Chapter 1, the lowest energy
levels behave as δωk = gz/ygΩk with Ωk some not yet specified dispersion law. Then,

ϑk(x, y) =
v−1/α

α

∫ y

x

dg g1/α+z/yg−1Ωk

=
Ωkv

−1/α

yv/yg
gyv/αyg

∣∣∣∣
y

x

. (4.32)
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Notice the dependence of the phase factor ϑk(x, y) from the rate amplitude v. For v ≪ 1
the oscillations frequency of the exponential becomes higher and higher leading to vanishing
amplitudes. Otherwise, for v ≫ 1, exp(−iϑk) ∼ 1 and the evolution becomes a sudden
quench.

Using the result (4.32) in (4.30) and assuming the scaling relation 〈k(g)|∂gH(g)|0(g)〉 =
gx∂/ygGk, after changing to the integration variable l = v−1/αgyv/αyg , we have

ak(t0, t) = v
yg+x∂−z

yv e
−i

Ωk
yv/yg

u
yv
yg ∆k

Ωk

∫ u
yv
yg

u

yv
yg
0

dl F̃ (l) (4.33)

where F̃ (l) is some complicated function that does not depend on v and t (at least in the
scaling limit) and with the scaling variable u = tvz/yv (u0 = t0v

z/yv ) in agreement with
the general time-dependent scaling arguments in (4.7, 4.8). The prefactor show the scaling
relation between the RG dimension xa of the transition amplitude and the RG dimension
x∂ of the derivative of the Hamiltonian with respect to the coupling . In order to obtain
the expected scaling dimension of the amplitude (xa = 0) one should have x∂ = z − yg
that is the expected scaling dimension for ∂gH. Again, we want to stress that the argument
adopted before is correct up to the leading-order scaling corrections and it is useful for
showing the agreement between the adiabatic calculation and the time-dependent scaling
arguments near a critical point. Otherwise, if we want to calculate the excitation density
n =

∑
k 6=0 |ak(t → ∞)|2 ∼

∫
dk|a(k, t → ∞)|2 when the system, starting from t0 = −∞,

cross the critical point at t = 0, one should be careful about the momentum dependence
of Ωk and Gk due to the next-to-leading order scaling corrections, and to the possibility to
extend the momentum integral to infinity.

The density of defects generated with the nonlinear ramp g(t) is given by summing the
transition probabilities |ak|2 over all the excited states |k(g)〉:

n ≃
∫

ddk

(2π)d

∣∣∣∣
∫ ∞

−∞

dg
〈k(g)|∂gH(g)|0(g)〉

δωk0(g)
e−iϑk(g,vt

α)

∣∣∣∣
2

. (4.34)

Taking in mind the previous remarks, to analyze the behavior of the transition amplitude we
need to know the behavior of the energy spectrum δωk0(g) and of the perturbation matrix
elements 〈k(t)|∂tH(t)|q(t)〉 which will depend on the precise space- and time-dependence of
the perturbation field. On the basis of general scaling arguments one expects

δωk0(g) ∼ ℓ−zΩ(ℓ−z/kz),

〈k(g)|∂gH(g)|0(g)〉 = ℓ−z+ygG(ℓ−z/kz), (4.35)

with ℓ ∼ g−1/yg the typical length introduced by the spatial perturbation at time t. Ω and
G are some unspecified scaling functions satisfying the condition (1.30). Now, using the
scaling relations in the excitation density formula and performing the substitutions g = kyg l
we obtain

n ≃
∫

ddk

(2π)d

∣∣∣∣
∫ ∞

−∞

dl l−1F (l)e−i 1
α v−1/αkyg/α+z

∫ l dl′Ω̃(l′)

∣∣∣∣
2

, (4.36)

where F (l) = G(lz/yg )/Ω(lz/yg ) and Ω̃(l) = l1/α+z/yg−1Ω(lz/yg ). Now, changing the mo-
mentum integration variable to1 η = v−1/(yg+zα)k, we finally find

n ≃ Cvd/(zα+yg) = Cvd/yv (4.37)

1Notice that this substitution follows from the exponent in (4.36) by fixing v−1/αkyg/α+z = ηyg/α+z .
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where C is a non-universal constant independent of v but which depends on the details of
the transition.

For the integral (4.36) to converge at g = 0, that is for a quench crossing the critical
point, the scaling function F (u) = G(u)/Ω(u) has to decay to zero at least linearly at small
u , which is the case for the spatially homogeneous quench [Sac00, Pol05]. In the spatially
inhomogeneous situation the convergence close to the critical point is not guaranteed, see
below the analytical example of the Ising chain with ω = 1. Consequently one cannot use in
general the first order perturbation expansion (4.30) for a quench crossing the critical point.
Nevertheless, the adiabatic approximation can be used for quenches that take the system
close to the critical point without crossing it. Getting closer and closer to the critical point
the transition amplitudes will display a scaling signature.

4.3 Ising quantum chain

4.3.1 Diagonalization and nearly adiabatic dynamics

Let us consider the specific case of the Ising quantum hamiltonian in a time-dependent
inhomogeneous transverse field:

H(t) = −1
2

L−1∑

n=1

σx
nσ

x
n+1 −

1

2

L∑

n=1

hn(g)σ
z
n, (4.38)

where hn(g) = 1 + g(t)nω, with g(t) = v|t|αsgn(t). Because it is integrable, this model has
been used extensively as a standard theoretical laboratory for issues related to quantum
phase transitions [Sac00]. Let us recall that, in the unperturbed case (hn = h, ∀n) the
system present a critical point at h = 1 separating a disordered phase (for h > 1) from a
symmetry-broken ordered phase at h < 1. The dynamical exponent z = 1 and the (thermal)
correlation length exponent ν = 1. More recently, it became a favorite test model in various
out-of-equilibrium situations such as those generated by suddenly quenching its transverse
field from a given initial value to a new one [IR00, Kar02, ST99, DPK08, PK07, EKPP08].
In this study, the inhomogeneous time-dependent field plays a role similar to a trapping
potential. The spatial critical locus has been set at the left boundary of the chain (one
could have also considered the case of a centered critical locus without real differences from
what follows).

In order to diagonalize (4.38), one may perform a Jordan-Wigner transformation mapping
the Pauli matrices into fermionic operators. In term of Clifford’s operators (Majorana
fermions)

Γ1
n =

n−1∏

j=1

(−σz
j )σ

x
n, Γ2

n = −
n−1∏

j=1

(−σz
j )σ

y
n (4.39)

with Γi†
n = Γi

n satisfying the anti-commutation rules {Γi
n,Γ

j
m} = 2δijδnm, the Hamiltonian

(4.38) takes the quadratic form

H(t) = 1

4
Γ
†
T(g)Γ, (4.40)

where Γ† =
(
Γ
1†, Γ

2†
)
is the 2L-component row vector with Γi† =

(
Γi†
1 , · · · ,Γi†

L

)

for i = 1, 2. The 2L× 2L hermitian matrix T(g) is given by

T(g) =

(
∅ C(g)

C
†(g) ∅

)
(4.41)
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where C(g) is the interaction matrix with elements

Cmn(g) = −i [hn(g) δmn + δmn+1] . (4.42)

Introducing, at each value of g (i.e., at each time), the (instantaneous) eigenvectors

Vp(g) =
1√
2

(
φp(g)
−iψp(g)

)
(4.43)

of the eigenvalue problem T(g)Vp(g) = ǫp(g)Vp(g) one can map the Clifford operators onto
a set of diagonal Fermi operators:

ηp(g) =
1

2

L∑

n=1

{
φp(n, g)Γ

1
n + iψp(n, g)Γ

2
n

}
, (4.44)

η†p(g) =
1

2

L∑

n=1

{
φp(n, g)Γ

1
n − iψp(n, g)Γ

2
n

}
, (4.45)

where the fermionic creation and annihilation operators η†p(g), ηp(g) satisfy the canonical

Fermi-Dirac anticommutation rules {η†p(g), ηq(g)} = δpq for the same value of g. In terms of
this new set of operators, the Hamiltonian takes the diagonal form

H(t) =
L∑

p=1

ǫp(g)
[
η†p(g)ηp(g)− 1/2

]
(4.46)

where ǫp(g) are the positive eigenvalues of T(g). Consequently the instantaneous ground
state |GS(g(t))〉 is the instantaneous vacuum state |0(g)〉 destroyed by all the η(g)’s:

ηq(g)|0(g)〉 = 0 ∀q. (4.47)

As shown in [CKT09], in the scaling limit g → 0, L→∞ while keeping gLω constant2,
under the rescaling

x = |g|−1/ygu, ǫk = |g|1/ygΩk,

φk = |g|1/2yg φ̃k, ψk = |g|1/2yg ψ̃k, (4.48)

with 1/yg = 1/(1 + ω), one obtains from the eigenvalue problem the following differential
equations:

[
d2

du2
+Ω2

k − sign(g)ωuω−1 − u2ω
]
φ̃k(u) = 0,

[
d2

du2
+Ω2

k + sign(g)ωuω−1 − u2ω
]
ψ̃k(u) = 0, (4.49)

with boundary conditions ∂uφ̃|0 = 0, φ̃(∞) = 0 and ψ̃(0) = 0, ∂uψ̃|∞ = 0. When g changes
its sign the two equations are exchanged but the boundary conditions remain the same. The
scaling relations (4.48) with the normalization condition of the solution (φ̃k, ψ̃k) assure the
correct normalization of the eigenvectors (φk, ψk).

2The scaling prescription gLω = const. insures that we are describing the system in the vicinity of the
critical region only.
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In terms of the diagonal Fermi operators, the perturbation ∂gH(g) takes the form

∂gH(g) =
1

2

∑

p,q

Xω
pq(g)[η

†
p(g) + ηp(g)][η

†
q(g)− ηq(g)], (4.50)

with Xω
pq(g) =

∑
n φp(n, g)n

ωψq(n, g) expressed in terms of the Bogoliubov coefficients φ
and ψ. Consequently, the time-dependent part of the Ising Hamiltonian induces transitions
from the ground state to the two-particles states |pq(g)〉 = η†q(g)η

†
p(g)|0(g)〉 only. The non-

vanishing perturbation matrix elements are given by

〈pq(g)|∂gH(g)|0(g)〉 =
1

2
∆pq(g), (4.51)

with ∆pq(g) = Fqp(g) − Fpq(g). In the continuum limit, using the scaling variables (4.48),
we can write Fpq(g) as an integral over the u variable:

Fpq(g) = |g|−ω/(1+ω)

∫ ∞

0

du φ̃p(u)u
ωψ̃q(u). (4.52)

which exhibits a |g|−ω/(1+ω) scaling dependency. In Figure 4.2 we have plotted the one-
particle energy levels for ω = 1, 2, 3 showing the agreement with the scaling form (4.48).
In Figure 4.3 we present the scaling properties of the matrix elements (4.51), as deduced
from (4.52), for different values of the exponent ω. Again, the agreement with the expected
scaling is very good for large system sizes and small g values.

During the quench, the departure from the adiabatic ground state can be deduced from
the instantaneous occupation number nq(t) = 〈ϕ(t)|η†q(g(t))ηq(g(t))|ϕ(t)〉 of mode q. In-
serting the lowest-order expansion |ϕ(t)〉 ≃ |0(t)〉 +∑

p,q apq(t0, t)|pq(g(t))〉 one has for the
density of q excitations

nq(t) ≃ 4
∑

p

|apq(t0, t)|2 . (4.53)

The total defect density is given by summing up all the contributions coming from each q
level:

n(t) =
∑

q

nq(t) . (4.54)

To see this explicitly, let us recall that, at any time t, the Ising quantum chain is diagonalized
in terms of noninteracting fermionic particles. The adiabatic ground state is the vacuum
state with respect to these fermions (ηq(g)|0(g)〉 = 0 ∀q). Consequently, the number of
fermions on the top of the instantaneous vacuum gives the number of defects. For example,
if one quenches the Ising chain toward its deep ferromagnetic phase (hn ≃ 0, ∀n), then
the two ground states are the ferromagnetic states in the x-direction |... ↑↑↑↑↑↑↑ ...〉 and
|... ↓↓↓↓↓↓ ...〉. The final state of the chain after the quench is a superposition of states like
|... ↑↑↑↓↓↓↓↑↑↑↓ ...〉 with finite domains separated by kinks. The number of such kinks is
given by the operator N = 1/2

∑
n(1 − σx

nσ
x
n+1) and it is easy to show that it is given by∑

q η
+
q ηq where the ηs are the corresponding creation and annihilation operators diagonaliz-

ing the chain at hn ≃ 0, ∀n. This will remain true at all finite values of the transverse field,
the only difference being that the number of defects is still given by

∑
q η

+
q (h)ηq(h) but no

more by the kink number operator N = 1/2
∑

n(1 − σx
nσ

x
n+1), since, at h 6= 0, the basic

excitations over the ground state are no longer kinks (even if they will be close to kinks as
soon as we entered into the ferromagnetic regime).
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Figure 4.2: The first five Ising one-particle energy levels for different values of the exponent
ω, in the ordered phase (g < 0) and in the disordered phase (g > 0). The value of the gradient
g varies in order to keep gLω sufficiently small (we have used L = 256 (square) and L = 512
(diamonds) for the numerical diagonalization) and to fulfill the scaling hypothesis gLω ≪ 1.
The plateau region shows the range of validity of the scaling relation ǫk = |g|1/(1+ω)Ωk in
the sense that, in the scaling limit g → 0, L → ∞, all the dependence on the gradient g
is encoded in the power-law factor |g|1/(1+ω). In other words, in the range of validity of
the scaling hypothesis, ∂gΩk = 0. Otherwise, for different shape of the spatial potential
(different ω) we have, in the scaling limit, different differential equation and thus different
eigenvalues and eigenvectors. Summarizing, the dispersion law Ωk(ω) depends on ω. This is
the reason why the plateau are shifted for different values of ω. In particular, for ω = 1, the
straight lines show the analytical dispersion law in Eq. (4.62). The deviation for small values
of the gradient is a finite-size effect which is getting smaller and smaller as the system size
is increased. The dashed line indicates the zero energy, showing the existence of a vanishing
excitation in the ordered phase.

The density of defects at a given lattice site can be deduced from the total defect density
operator n̂(g) ≡ ∑

q η
†
q(g)ηq(g) ≡

∑
i n̂i(g), where the second sum runs over the space

variable. Using the representations (4.44) of the Fermi operators, one has

n̂(g) =
∑

q

∑

i,j

1

4

[
φq(i, g)Γ

1
j − iψq(i, g)Γ

2
j

] [
φq(j, g)Γ

1
j + iψq(j, g)Γ

2
j

]
. (4.55)

Using the ortonormalization relations
∑

q φq(i, g)φq(j, g) =
∑

q ψq(i, g)ψq(j, g) = δij one
obtains:

n̂(g) =
1

4

∑

i

(
Γ1
iΓ

1
i + Γ2

iΓ
2
i

)
+

+
i

4

∑

i,j

{(∑

q

φq(i, g)ψq(j, g)

)
Γ1
iΓ

2
j −

(∑

q

φq(j, g)ψq(i, g)

)
Γ2
iΓ

1
j

}
,

and exploiting the anticommutation relations {Γα
i ,Γ

β
j } = 2δαβδij one finally obtains

n̂(g) =
∑

i

1

2



1− i

∑

j,q

φq(i, g)ψq(j, g)Γ
2
jΓ

1
i



 , (4.56)
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Figure 4.3: Scaling property in the ordered phase (g < 0) and in the disordered phase
(g > 0) of the matrix elements (4.51) for different values of the exponent ω. Different
colors are used for distinguishing different sizes (blue squares for L = 256, red diamonds for
L = 512). Also in this case, the plateau region shows the range of validity of the scaling
relation (4.52). For ω = 2, 3 the dashed lines are guides for the eyes. For ω = 1, the straight
lines show the dependence on pq as in (4.64) and one can notice the vanishing amplitude for
p 6= q ± 1.

from which one can identify the local defect operator

n̂i(g) ≡
1

2



1− i

∑

j,q

φq(i, g)ψq(j, g)Γ
2
jΓ

1
i



 . (4.57)

The local density of defects generated at site i and at time t is then simply given by

ni(t) ≡ n(i, t) ≡ 〈ϕ(t)|n̂i(g(t))|ϕ(t)〉 . (4.58)

As we saw in the Chapter 1, another quantity much used in order to quantify the deviation
from adiabaticity is the so called fidelity, F(t) ≡ |〈0(t)|ϕ(t)〉|2. In our approximation it is
given by

F(t) ≃ 1−
∑

p,q

|apq(t)|2 = 1− 1

4

∑

q

nq(t) (4.59)

and then trivially deduced from the knowledge of the populations nq. One can also consider
the excess energy with respect to the instantaneous adiabatic ground state

e(t) = 〈H(t)〉t − E0(g) =
∑

q

ǫq(g)nq(t), (4.60)

which, in the first order adiabatic approximation, becomes

e(t) = 〈H(t)〉t − E0(g) ≈ 4
∑

p,q

ǫp(g)|apq(t)|2. (4.61)

4.3.2 Exact solution for the linear spatial perturbation

For a linear spatial modulation (i.e., at ω = 1), the differential equations (4.49) can be
explicitly solved in the thermodynamical limit L → ∞ since the problem reduces to a
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Figure 4.4: Evolution of the occupation number of the first (left figures) and the second
(right figures) adiabatic energy level for two different values of the quench parameter v and
for ω = 1, α = 1. We load the trapping potential by varying the gradient in a suitable
interval in order to assure, for the bigger size L = 256, the validity of the scaling limit. The
full lines are the analytical predictions valid in the adiabatic limit v → 0.

quantum one-dimensional harmonic oscillator. The Bogoliubov coefficients are given by the
wave functions χp (up to normalization) of the harmonic oscillator [CKT09]:

φp(x) = |g|1/4
√
2χ2p(u),

ψp(x) = sign(g)|g|1/4
√
2χ2p+sign(g)(u), (4.62)

ǫp = |g|1/2
√
4p+ 1 + sign(g),

The functions χn are normalizied in [−∞,∞], so that
√
2χn are correctly normalized in

[0,∞] and we have assumed χ−1(u) ≡ 0. The matrix elements 〈pq(g)|∂gH(g)|0(g)〉 in (4.30)
are then proportional to the position matrix elements of the harmonic oscillator (χp, uχq),
such that the only non vanishing transition amplitudes apq(t0, t) are those with p = q ± 1.
Plugging the exact solution into (4.30) one obtains a closed expression for the amplitudes

apq. However, contrary to the spatial homogeneous case (ω = 0) where the integral (4.30)
converges at the critical value g = 0, here the linear spatial inhomogeneity modifies the
dependence on g of the integrant to a g−1 behavior, leading to a logarithmic divergence at
g = 0. This divergence is caused by the square root dependence on |g| of the excitation
spectrum ǫp = |g|1/2

√
4p+ 1 + sign(g) with p = 0, 1, 2, ... [CKT09]. Consequently, the first
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order adiabatic expansion (4.29) breaks down at the critical point g = 0 (i. e., at time
t = 0). Nevertheless, for quenches that do not cross the critical point (the starting and the
ending point of g are on the same side of the critical locus), one can still use (4.30) and one
has explicitly [CK10, CK11]

|apq(t0, t)|2 =
∣∣∣∣
∆pq

2Ωpq
Aρpq

(|g0|, |g(t)|)
∣∣∣∣
2

(4.63)

with

∆pq(g) =

√
p+ q

2
+
1 + sgn(g)

4
[δp q−1 − δp q+1] , (4.64)

Ωpq(g) = |g|−1/2δωpq,0(g) = |g|−1/2(ǫp(g) + ǫq(g)) and ρpq = −2Ωpq
v−1/α

α+2 sgn(g). The func-
tion

Aρ(x, y) =
2α

2 + α

[
E1

(
iρx

2+α
2α

)
− E1

(
iρy

2+α
2α

)]
(4.65)

is expressed in terms of the exponential integral E1(z) =
∫∞
z
dt t−1e−t for |Arg(z)| < π.

Let us discuss this analytical result. Consider first the case where the quench starts far
away from the critical point, |g0| ≫ 1; that is, in an almost uncorrelated initial state. In

that case, since |g0| ≫ 1 we have E1

(
iρ|g0|

2+α
2α

)
≃ 0 and the function A(x, y) entering into

(4.63) is dominated by the contribution of its second argument:

Aρ(|g0|, |g(t)|) ≃ −
2α

2 + α
E1

(
iρ|g(t)| 2+α

2α

)
. (4.66)

Recalling that ρ ∝ v−1/α and |g(t)| = v|t|α one recovers precisely the expected scaling
behavior nq(g0; t, v) = f(v|t|2+α) with yv = 2+α, which corresponds to the prediction (4.8)
with ν = z = 1 for the critical Ising chain and ω = 1 for a spacial linear perturbation.

If the initial gradient g0 is not sufficiently large, one cannot anymore neglect the contri-
bution to Aρ(|g0|, |g(t)|) of its first argument. Consequently, after the quench one observes
the non-homogeneous behavior nq(g0; t, v) ∼ f0(g0) + f1(|t|v1/yv ). The expected scaling
behavior (4.8) is broken by the presence of the boundary term f0(g0), which accounts for
the high correlations in the initial ground state |0(g0)〉 (since g0 is not far from the critical
point). In Figure 4.4 we see that, for small enough values of v and sufficiently large systems,
the exact numerical derivation of n0(t) and n1(t) perfectly fits the analytical result obtained
from (4.63).
For a quench at or crossing the critical point the situation is more complicated since,

as stated before, the (un-normalized) perturbation formula (4.30) leads to a divergence at
t = 0. However, for a finite-size chain, the energy gap δωk0 stays finite at the critical point
which wash out the critical divergences, and one can perform a finite-size scaling study.

4.3.3 Finite size scaling analysis for general ω

For the general ω case, we have performed a numerical study with the following protocol:
we start far away in the disordered phase with a fixed initial value g = 1 and drive the
system to the critical point g = 0. The density of defects n =

∑
q nq and energy excess

e = 〈H(t)〉t − E0(g) are calculated from (4.54) and (4.60) respectively. The numerical
results are obtained by exact diagonalization of finite chains with up to 256 spins and the
finite-size data are then extrapolated to the infinite-size limit.
For a given set of ω and α values, we have done numerical diagonalization on systems

with sizes from L = 16 to L = 256 sites, by steps of ∆L = 16 obtaining 16 data sets. For
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Figure 4.5: Density of defects n (left) and Energy density e (right) versus the quench
parameter v for a critical quench. The amplitude changes from g = 1 to g = 0. Empty
symbols correspond to different system sizes (L = 96 to L = 256 from bottom to top). The
extrapolated data (filled circles) show, in the adiabatic limit v ≪ 1, a perfect agreement
with the scaling prediction: n ∼ v1/4, e ∼ v1/2 for ω = 1, α = 2; n ∼ v1/5, e ∼ v2/5 for
ω = 2, α = 2; n ∼ v1/6, e ∼ v1/3 for ω = 2, α = 3 (straight lines). The dashed lines give the
sudden-quench value nsq ≈ 0.179, esq ≈ 0.136 evaluated on a system with L = 1024 spins.

each system size we have varied the amplitude v from a very small value, v = 10−5, up to
the relatively large value v = 0.5. In order to extract the asymptotic infinite-size behavior
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we have assumed, for any v, the finite-size scaling of the defect density

n(v, L) = n(v) + f1(v)L
−λc + f2(v)L

−2λc + . . . (4.67)

where λc is an unknown correction to scaling exponent (the same procedure was used for
the energy density). The second-order correction to scaling was kept in order to describe
correctly the behavior at small v. The fit was done by looking for a global value of the scaling
exponent λc independently on v. Defining the fitting function F (v, x, λ) = A(v)+B(v)xλ+
C(v)x2λ, we have performed, for each values of v, a linear fit of the data varying the fit
exponent λ in a reasonable range [λmin, λmax]. For a given v and λ we have then obtained the
best parameters {A∗(v, λ), B∗(v, λ), C∗(v, λ)}. Looking for the minimum of the global least
square function χ2(λ) = 1

N−3

∑
v

∑
x[n(v, x)−F ∗(v, x, λ)]2, with F ∗ = A∗+B∗xλ+C∗x2λ,

we have obtained the best global correction to scaling exponent λ∗ and identified the infinite
size value n(v) with the coefficient A∗(v, λ∗). We have also checked the stability of the fit
under the variation of the number N of data sets used in the fitting procedure.
The results are reported in Figure 4.5 for the total defect density and for the energy

excess for different spatial and temporal exponents ω and α. First of all, we observe that the
finite-size values are always smaller than the extrapolated ones. Indeed, on the finite system
the gap does not vanish even close to the critical locus and, consequently, the generation
of defects is smaller than the expected one in the thermodynamical limit. At small v the
extrapolated data are in perfect agreement with the scaling predictions n ∼ vd/yv and
e ∼ v(d+z)/yv with d = z = 1, which are represented by the full lines. As the quench
amplitude v is getting larger, we observe a crossover from the inhomogeneous Kibble-Zurek
scaling scenario predictions toward a regime which is independent of the quench protocol
(α and ω values) at large v. The observed saturation at large v of the defects production
and of the energy excess is due to the fact that, for very fast quenches, the only relevant
parameters are the initial and final amplitudes g. Indeed, if the initial amplitude is very
high in modulus, the correlation length is very small (of the order of the lattice spacing)
and the initial state is very close to the completely disordered state. Consequently, there
is almost no differences for different values of ω. One expects the same defect production
(and same energy excess) as in the case of a sudden quench of a completely disordered
initial state toward the critical point. This is shown in Figure 4.5 by the horizontal dashed
lines which mach perfectly the actual extrapolated numerical datas. A similar behavior
is reported in [KV97, DLZ99, Zur09], where for sufficiently fast inhomogeneous quenches,
one recovers the homogeneous defect production (corresponding here to the homogeneous
sudden-quench saturation at large v), while for sufficiently slow inhomogeneous quenches
(here small v) the defect production is significantly lowered. The reason for this is that, when
the inhomogeneity is switched off sufficiently fast, there is no causal connection between
different space points and the new phase starts to grow independently from every space
point, which is exactly what happens in an homogeneous quench. On the contrary, if the
unloading of the inhomogeneous perturbation is slow enough, the new phase nucleates from
a single initial point (the critical locus) and communicates its phase through the whole
system. Consequently, the defect production is lowered. Another way of understanding
the crossover is by taking into account that, for a given v, the quench is done within a
time tq = g1/αv−1/α. The typical Kibble-Zurek time scale is given by τKZ = τ0v

−1/yv . If
the quench protocol time tq is smaller than the Kibble-Zurek time τKZ , which happens at
v > v∗ where v∗ is deduced from tq|∗v = τKZ |∗v, then the dynamics starts already from the
very beginning in the sudden quench regime and there is no near-adiabatic evolution and
one expects the same defect production as in a real sudden quench. On the other hand, for
a larger value of tq (i. e., a smaller value of v), the dynamics starts first in a near-adiabatic
regime, leading finally to a lower defect production.
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Figure 4.6: Rescaled local defect density as predicted by (4.13) for the Ising chain with
L = 256, ω = 1, α = 2 (left) and ω = 2, α = 2 (right). The quench is done from g = 1 to
the critical point g = 0. The different lines correspond to different rates v. The scaling is
expected to be valid for v1/4x(left) and v1/5x(right) small enough. The deviations on the
right side at large arguments are finite size effects. Inset: Same as main but zoomed close
to the origin.

4.3.4 Local density and global shift of the critical locus

In order to characterize the space dependence of the defects production we have also com-
puted the local defect density from the definition (4.57) and (4.58). The local density is
expected to scale according to (4.13) where the appropriate scaling variable is xv1/yv = x/ℓ.
In Figure 4.6 we have plotted the rescaled defect density v−1/yvn(x, v) versus the scaling
variable xv1/yv for a chain of size L = 256 and for a quench starting at g = 1 and ending
at g = 0 with space exponent ω = 1 (linear profile), ω = 2 (parabolic profile) and temporal
ramp exponent α = 2 for various values of v. The scaling is expected at small values of the
scaling argument (which is shown in the inset of (4.6)) and as seen in the figure it is obviously
satisfied. At large values of the scaling variable we observe a systematic finite-size deviation
which appears earlier for smaller values of v (larger values of the length scale ℓ = v−1/yv ).
We see clearly on this plot that the effect of the linear varying field is to reduce the defect
production in the vicinity of the critical region, expelling out of it the generation of defects.
Close to xv1/yv = 0, the non-monotonous behavior is probably generated by the presence
of the left boundary of the chain which effectively lowers the local spin-spin couplings, fa-
cilitating then the generation of defects. The competition between this facilitation and the
lowering of the defect production by the inhomogeneity close to the critical locus leads to
the appearance of a locus of minimum defect generation, which from the inset of Figure 4.6
is found around xv1/yv = 1.1.

When a small global shift δh is added to the system, one expects the modified scaling
(4.23) for the defect density, which reduces to the linear shift (4.24) in the Ising chain case,
since ν = z = d = 1. In Figure 4.7 we have plotted the total density of defect in order to check
the scaling prediction (4.24). The expected deviation to the zero shift case is supposed to be
linear but nevertheless we have represented the graph in a log-log scale in order to amplify
the scaling region. One sees clearly on the figure that there is a perfect agreement between
the numerical results and the scaling prediction over almost four decades. At large negative
shifts δh, the expected scenario developed in the preceding section is that of a complete
fall down of the excitations in a causal region around the origin, where the ordered phase
propagates through the disordered one coherently (without generating any defect), followed
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Figure 4.7: Rescaled defect density in the case of a finite global shift to the critical point
as predicted by (4.24) for the Ising chain with L = 256, ω = 1 and α = 2. The quench is
done from g = 1 to g = 0 at different rates v. The straight line represent the expected linear
deviation to the δh = 0 case.

at large distances with a sudden increase of the defect production. This increase is due to the
fact that the critical front propagates too fast through the disordered phase to permit a local
relaxation of the phase to the new field parameters. We illustrate that on Figure 4.8 where
we have plotted the local density of defects for different shift values δh and rates v obtained
numerically on a chain of size L = 256, with a linear perturbation (ω = 1) and time ramp
exponent α = 2. We observe that for large values of |δh|, there is indeed a drastic decay of
the defect density that extends from the origin up to a threshold locus x0(δh, v) after which
the density suddenly grows up. The pattern of the local density n(x, δh, v) at x > x0 is much
more complicated where secondary peaks appear and consequently it is hard to interpret
this behavior. Nevertheless, the abrupt increase of the excitation density after a threshold
locus validates the proposed scenario (see [DR10b, DR10a, Dzi10] where this scenario was
developed for a critical front moving at constant velocity). In the inset of figure (4.8) we
have drawn the dependence of the threshold locus x0, extracted from the maximum of the
space derivative of the density, versus the variable (δh/v)

1/3 which corresponds for ω = 1
and α = 2 to the prediction (4.27) derived from the local scaling assumptions developed
in section 4.1.3. The agreement with (4.27) seen from the inset of Figure 4.8 is very good.
One may have also extracted the (δh/v)

1/3 behavior from the maximum of the first peak.
However doing so is a bit less convincing since broad secondary peaks have an influence on
the position of the first maximum. Notice also that very close to the origin, there is a density
peak which falls off as e−x/q(δh) on a v-independent length scale q(δh). Somehow a small
finite density of excitations is trapped at the left boundary, while the remaining excitation
density is rejected on the right of x0.

4.4 Discussion and Summary

In summary, we have developed a scaling theory which predicts the behavior of the non-linear
quench of a power-law perturbation close to a critical point. Such a power-law potential
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Figure 4.8: Local defect density in the case of a finite global shift to the critical point for
the Ising chain with L = 256, ω = 1 and α = 2. The quench is done from g = 1 to g = 0.
The left figure gives the behavior at fixed rate v for different values of the shift δh. The
right figure shows the behavior at constant shift δh for different values of v. The inset gives
the locus x0 of the fast increase of the defect density, as a function of the expected leading
scaling behavior (δh/v)

1/3.

is relevant especially in the context of confined ultra-cold systems, where the dynamics is
well described by the unitary evolution of closed systems. Within our scaling approach,
we have derived the scaling properties of physical quantities like the density of defects or
the energy excess generated during the loading or unloading of the power-law trap. The
basic ingredient behind the scaling analysis is the identification of a so-called Kibble-Zurek
time scale, separating between a nearly-adiabatic regime and a sudden one. This (Kibble-
Zurek) time scale depends on the universal properties of the critical point as well as on the
exponents characterizing the temporal ramp and the shape of the spatial trap. One of the
main message of this study is in particular that the optimal nonlinear way of crossing the
critical point is strongly affected by the presence and the shape of the trapping potential.
As a theoretical test of the scaling theory we have used the exactly solvable Ising model
in a transverse field. The analyses revealed quite strong finite size corrections, as seen on
Figure 4.5, to the expected scaling predictions for the density of defects and the energy
excess. Nevertheless, the datas extrapolated to the infinite size limit fulfill very well the
scaling predictions.

One of the main limitation of the present study with respect to a real experiment is that
the dynamics driving the system is supposed to be unitary with no parasite interactions at
all with the environment, no extra dissipation and no loss of quantum coherence. This of
course is a serious limitation if one considers long protocol times. A relevant extension of
the present work would be to take into account such extra interactions. The influence of
temperature on the scaling predictions, as for example in [PSA+08, PA09], is also one of the
more relevant extensions of this work that have to be done.
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Chapter 5
Self-trapping bosons in tilted optical
lattice

Recently, the study of Bose-Hubbard type many-particle Hamiltonians has been revitalized
mainly thanks to the experimental advances in the domains of condensed-matter physics

and quantum optics. For example, major improvements have been made in the realization
of optical lattices [BDZ08, PSSV11]. New techniques allowed to control the boson-boson
interaction in a particularly fine way; similarly, it is possible to locally modify the chemical
potential by means of a fictitious magnetic field. All these advances have made it possible the
exploration of new phenomena [JBC+98, SMS+04, SPP07, DPR+96, WBM+96, CGKS+05,
FPST06, PWT+11]. The main peculiarities of the dynamics of such a systems are low
dissipation rate and phase coherence over very long times. Among the motivations for
investigating such a wide subject are the demonstration of purely quantum effects, the role
of integrability on the thermalization process, and the possibility to manipulate desired
states in a controlled way.

Two examples are particularly relevant for the topic of this chapter: Bloch oscillations
[Blo28, Zen32] and how atoms are released from a confined region. Bloch oscillations, a typ-
ical quantum phenomenon, emerge when a single-particle travels on a lattice experiencing
a constant external force F (potential ramp). Recent experiments showing Bloch oscilla-
tions of ultracold bosons in tilted optical lattice confirm the quantum mechanical prediction
easily explained for non-interacting one-dimensional models [DPR+96, GHM+08]. They
can survive to the many-body regime, with a damping possibly related to integrability and
chaoticity of the Hamiltonian [Kol03]. On the other side, the trap release of atoms is a
standard protocol with cold atoms, but keeping the optical lattice on during the expansion
could allow one to handle metastable states [HMMR+09] and study transport phenomena
such as the absence of diffusion in disordered potentials [BJZ+08, RDF+08].

In this chapter, we propose an experimentally “realistic” setup which ejects interacting
bosons leaving on an optical lattice using a linear ramp potential. This “Galileo ramp”
experiment displays remarkable features that are understood with analytical and numerical
calculations. Only part of the particles are ejected and form a wave-packet which shape
and number of particles are determined. Thanks to the initial preparation and correlations,
these traveling particles remain strongly entangled with the ones self-trapped in the confining
region, hence creating two spatially separated, entangled, many-body condensates. Lastly,
the self-trapped particles show a very rich dynamics reminiscent of Bloch oscillations, with
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a plateau in the density profile due to many-body interferences and damping related to the
integrability of the model.

In the Hard-Core boson limit, we develop an hydrodynamical theory that perfectly catch
the behavior of the boson density and current profile. Furthermore, using numerical technics,
we analyze how the local interaction strength U of the Bose-Hubbard Hamiltonian drives
the system from integrable to non-integrable regimes.

The chapter is organized in the following way: the next Section 5.1 gives a brief in-
troduction to the Bose-Hubbard model and its limiting cases. After setting the dynamical
protocol (Section 5.2) and showing some introductory results (Section 5.3), we formulate the
hydrodynamical theory in Section 5.4. There we specialize our analysis for the Hard-Core
bosons. Afterward we consider some properties of noninteracting bosons in Section 5.5. In
Section 5.6 we come back to the real boson dynamics showing the t-DMRG and Lanczos
simulations. Finally we summarize our results in Section 5.7.

5.1 Bose-Hubbard model redux

Considering a one dimensional lattice of length L where, for each site, we put some bosons
particles; we describe the model by using the Bose-Hubbard (BH) Hamiltonian with open
boundary conditions

HBH = −
L−1∑

i=1

ti

(
b†i bi+1 + h.c.

)
+
1

2

L∑

i=1

Uini (ni − 1) +

L∑

i=1

Vini − µ
L∑

i=1

ni, (5.1)

where, for each site, bi and b
†
i are the annihilation and creation bosons operators respectively

and ni = b†i bi is the number operator. In general the hopping term ti, the local boson
interaction Ui and the external potential Vi can be inhomogeneous over the lattice.1

The firs therm of the Hamiltonian describes the kinetic energy of the particles: a boson
may be destroyed (created) on the lattice site i and created (destroyed) on i + 1. The
coupling ti gives the measure of the energy cost of a particle-jump between two neighboring
sites. The second term takes into account the energy that one has to spent for putting a
boson in a specific lattice site. Despite the nature of bosons to condensate in space, this
term introduce a local pair repulsion (normally Ui ≥ 0) if the number of particles in a site
is greater than one. The third term introduces an inhomogeneous external potential that
allows to have a different particle density for each site over the lattice. By tuning this
parameter it is possible to localize the bosons wherever in the lattice. Finally the last term
is the usual chemical potential term.

Henceforth, we fix for all the lattice sites the homogeneous value of the hopping coupling
t = 1/2 and the homogeneous value of the chemical potential µ = 0, and we relax the
inhomogeneous condition of local boson interaction by choosing the same value U at all
lattice sites. Otherwise, the potential Vi is still inhomogeneous.

The phase diagram of the homogeneous Bose-Hubbard model shows two different phases
(see Chapter 3 and Figure 3.1): a Mott-Insulator phase (MI) when the kinetic energy is much
smaller than the potential energy and a Superfluid phase (SF) otherwise. The incompressible
MI phase has an excitation gap so that the bosons are localized: a slight change in the
chemical potential does not change the number of bosons. Particle density is quantized at
integer values n0(V/U) = 0, 1, 2, . . . . Otherwise, the compressible SF phase is gapless and
the bosons are delocalized over the entire lattice.

1Throughout this chapter we chose the sign plus for the external potential term in the Hamiltonian.
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Despite its simplicity, the Bose-Hubbard model is not exactly solvable even in one di-
mension. Therefore, it is necessary either to simplify the model in order to have a new
analytically solvable model which exhibits all the salient properties of the Bose-Hubbard
model, or to analyze the model by using numerical methods.

5.1.1 Hard-Core boson limit

When the particle density n = N/L =
∑

i ni/L is very small and the boson-boson local
interaction sufficiently strong, the system lives in the superfluid phase with 0 < n < 1. In
this case, we can send the local repulsion U to infinity only allowing 0 or 1 particle for each
site. From the viewpoint of the phase diagram shown in Figure 3.1, this approximation
corresponds to send the system into the origin of the axis. Such a model is named Hard-
Core bosons model and it is analytically solvable by performing a mapping to noninteracting
fermions. This mapping is established using the following transformation from the bosonic
creation and annihilation operators to the spin ladder operators:

b†i ≡ σ+
i =

σx
i + iσy

i

2
, (5.2)

bi ≡ σ−i =
σx
i − iσy

i

2
,

ni = b†i bi =
1 + σz

i

2
,

which, after inserting into the Hamiltonian (5.1) with t = 1/2, yields

HHC −
1

2

L∑

i=1

Vi = −
1

4

L−1∑

i=1

(
σx
i σ

x
i+1 + σy

i σ
y
i+1

)
+
1

2

L∑

i=1

Viσ
z
i . (5.3)

After the Jordan-Wigner transformation

ci =
∏

j<i

(−σz
j )σ

−
i , c†i = σ+

i

∏

j<i

(−σz
j ) (5.4)

the Hard-Core boson Hamiltonian is mapped into

HHC =
∑

i,j

c†iTijcj , Tij = Viδij −
1

2
[δi j−1 + δi−1 j ], (5.5)

where the nonlocal operators ci and c
†
i satisfy the Fermi algebra {c

†
i , cj} = δij . We can

diagonalize HHC by using a Bogoliubov transformation that maps the lattice fermionic
operators ci (c

†
i ) to diagonal ones ηi (η

†
i )

ηq =
∑

i

φq(i)ci, η†q =
∑

i

φq(i)c
†
i (5.6)

obtaining
HHC =

∑

q

ǫqη
†
qηq, (5.7)

where ǫq are the one-particle energy levels.
In the homogeneous case (at zero gradient) the one particle energies ǫq are given by

ǫq = V − cos q, (5.8)
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and the Bogoliubov coefficients are

φq(i) =

√
2

L+ 1
sin(qi) (5.9)

with qk = kπ/(L + 1) ∈ [0, π] and they build in the thermodynamical limit a single energy
band of width ∆ = 2. For V > 1, all excitation energies ǫq are positive and the ground state
|GS〉 is the bare vacuum |0〉. For |V | < 1,

|GS〉 =
∏

q≤qF

η†q |0〉, (5.10)

with qF = arccosV leading to a bosonic density

ρ0 = 〈GS|ni|GS〉 ≃
qF
π
, (5.11)

apart from small finite-size oscillations. For V ≤ −1, ρ0 = 1 corresponding to the n = 1
Mott phase.

5.1.2 Noninteracting bosons

In the opposite limit, when the local interaction term disappears (U = 0), the Bose-Hubbard
Hamiltonian is still exactly diagonalizable. Indeed, the Hamiltonian (5.1), with homogeneous
hopping term t = 1/2, becomes

HU=0 = −1
2

L−1∑

i=1

(
b†i bi+1 + h.c.

)
+

L∑

i=1

Vini (5.12)

=
∑

i,j

b†iTijbj ,

that is yet quadratic in the bosonic operators. The matrix elements Tij are the same as in
(5.5). The only difference betweenHU=0 andHHC stays in the different algebra [bi, b

†
j ] = δij .

Now, following the same lines, we can introduce the diagonal boson operators

ξq =
∑

i

φq(i)bi, ξ†q =
∑

i

φq(i)b
†
i (5.13)

obtaining the set of non-interacting bosonic oscillators:

HU=0 =
∑

q

ǫqξ
†
qξq. (5.14)

Therefore, in the homogeneous case, we obtain the same one-particle energies and Bogoliubov
coefficients as in the Hard-Core boson limit. For V > 1 the ground state is still the bare
vacuum. Otherwise, for V < 1 the lower energy level ǫ0 < 0 is fully occupied by all the
bosons we have put into the system, let’s say N , in such a way that one has

|GSN 〉 =
(
ξ†0

)N

|0〉. (5.15)

In other words, all particles condense in the one-particle state associated to the lower negative
one-particle energy. The bosonic density in that case is

ρ0 = 〈GSN |ni|GSN 〉 = N |φ0(i)|2. (5.16)
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Figure 5.1: Sketch of the the dynamical protocol. The light red region represents the
plateau region. Gray stripe indicates the trapped bosons, on the contrary, particles over the
orange region are ejected.

Finally, when we are working with a finite nonzero interaction, so that neither the Hard-
Core boson approximation nor the noninteracting approximation can be applied, a way
to analyze the static and dynamical properties of the Bose-Hubbard model is by perform-
ing numerical simulation using the time-dependent density-matrix renormalization-group
(t-DMRG). This numerical method allows us to simulate the time evolution of a one-
dimensional quantum system reducing the dimension of the Hilbert space in which the
system lives. For an introductory presentation of the method we remand to the Appendix
C.

5.2 Tilted optical lattice

In our protocol, to load N bosons in region A = [0, A] we prepare the initial state by selecting
the ground state of the Hamiltonian with a potential V0(x) = V0, ∀x ∈ [0, A] and V ≫ 1 for
x > A in such a way to have exactly N bosons. In particular, in the Hard-Core boson limit
it leads to V0 = cos(πN/A) ≡ cos(πρ0) where ρ0 is the initial density in region A.

The initial state is then approximately characterized by a non-vanishing density ρ(x) ≃
arccos(V0)/π for x ∈ [0, A] and zero density elsewhere. Starting from this state, the system is
evolving in time with the zero-temperature unitary dynamics generated by the Hamiltonian
with the new potential

V (x) =

{
VA − px for x ∈ [0, A]

0 for x > A
, (5.17)

where p = VA/A in order to have V (x) continuous in x = A. In Figure 5.1 we draw
the potential V (x) that governs the dynamics. For more detailed explanations about the
different regions plotted in the figure we remand to the following sections.

Of course, for the numerical simulation, both exact numerical diagonalization and t-
DMRG method, we have to work with a finite chain with length L. Moreover, it is also
possible to relax the condition over N and to work by fixing U and V0. Since the Bose-
Hubbard Hamiltonian conserves the total number of particles, N is left unchanged during
the temporal evolution.

For having more numerical data to compare between the Hard-Core limit results and
t-DMRG simulations, especially with respect to the period of the oscillations in density



66 Self-trapping bosons in tilted optical lattice

Figure 5.2: Maps of particle densities for the HC boson model in a system with A = 50.
Initial filling is ρ0 = 1/2. Starting from the top left figure and going clockwise, one has
VA = 1, 3, 5 and 8. Notice that trapped particles yet appear for VA = 3 without the
presence of a plateau. At VA = 5 plateau region appears and becomes larger for VA = 8.
Blue stripe represents particles leaving the ramp.

particle profile and particle density current (see next sections), we use also another quench
protocol by defining the Hamiltonian that control the evolution with the potential profile

V (x) = VA − px, x ∈ [0, L], p = VA/L, (5.18)

enlarging the ramp over the whole lattice. In this case, the initial state is characterize by N
bosons spread out over the whole chain.

Finally, we want to remark that our protocol is compatible with the one-band approxi-
mation of the Bose-Hubbard Hamiltonian whenever we can neglect inter-band transitions.
Indeed, lattices introduce a band structure and, in general, if these bands are close enough,
particles can jump from one band to another band. Thus, at the boundaries of the Brillouin
zone (see Figure 3.4), where the energetic gap gets the minimum value δ, particles filling
the constant force p could escape toward the upper band with a probability given by the
Landau-Zener formula exp−cδ2/p [DPR+96], where c is a constant. To avoid transitions
the condition p≪ cδ2 should be fulfilled.
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Figure 5.3: Maps of current densities for the HC boson model. System parameters are the
same as in Figure 5.2. Notice perfect oscillations for VA = 5, 8, i.e. when a plateau occurs
in the particle density. Yellow stripe is the current associated to the ejected particles.

5.3 Hard-Core boson dynamics: overview

Before introducing the hydrodynamical theory as a powerful method to explain the behavior
of the Hard-Core bosons, we just summarize the results we have observed in the dynamics
of such a model. From Figure 5.2 and Figure 5.3 one may extract some original results.
In these overview simulations we consider a system of total length L = 250 with N = 25
Hard-Core bosons loaded in the region A = [0, 50], i.e. with half filling initial condition.
After loading the ramp we observe, for different slopes (VA = 1, 3, 5, 8), the evolution of
particle density and current profiles. In Figure 5.5 we show the same quantities for different
initial filling ρ0 = 0.2, 1.

1. At small values of the potential at the leftmost site VA, almost all particles leave
the ramp. By increasing the slope p we observe that part of the original particles
are trapped. This trapped particles oscillate along the ramp whenever the system
is initially prepared in a superfluid phase, otherwise, for ρ0 = 1 we do not observe
any oscillation (See Figure 5.5). Moreover, when VA overcome a ‘critical’ value V ∗A, a
‘plateau’ zone Ω, i.e. a zone with a constant density of particles, appears in the middle
of the ramp.

2. The ‘plateau’ region in the middle of the ramp becomes larger and larger by increasing
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Figure 5.4: Maps of entropy densities for the HC boson model. System parameters are the
same as in Figure 5.2. Notice the entanglement growing between the ejected particles and
the trapped ones.

the value of the potential slope

Lplat ≃ A

(
1− 4

VA

)
, for VA & 4. (5.19)

3. The period of the density profile oscillations is given by

T = 2π
A

VA
=
2π

p
. (5.20)

4. In the plateau region, current of particles is uniform and shows a perfect sinusoidal
behavior in time

j(x, t) ∝ sin(2πt/T ), x ∈ Ω. (5.21)

As expected, in the ‘plateau’ region ∂xJ(x, t) = 0, implying a stationary density
through ∂tρ(x, t) = 0.

5. Finally, in Figure 5.4 we plot the entanglement entropy S(x, t) between the leftmost
x sites of the system and the rest. The entropy gives a signature of the entanglement
between the trapped particles and the ejected particles. In other words, the ramp
protocol comes out to be a good method to create an entangled pair made of two
macroscopic packets of bosons.
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Figure 5.5: Maps of the density of particles (left figures) and current (right figures) for the
HC boson model. Here we fixed the potential to VA = 5 and the slope length to A = 50.
We analyze the evolution for different initial occupancy. Top figures show the evolution for
a system initially prepared in the Mott phase (ρ0 = 1). In the bottom figures the system is
prepared with ρ0 = 0.2.

5.4 Hard-Core boson dynamics: hydrodynamical theory

The main features of the behavior that we observed in the Hard-Core boson simulations
can be simply understood in the hydrodynamical limit N ≫ 1, A ≫ 1 while keeping the
density ρ0 = N/A constant. The fundamental idea is that, for a sufficiently large size
(A→∞) and a sufficiently small gradient (p≪ 1) we can describe the system by supposing
a local equilibrium. In other words, inside each interval [x − dx/2, x + dx/2], we suppose
the infinitesimal system locally at equilibrium with potential V (x), thus having locally the
same properties like an homogeneous system.

Local equilibrium approximation We briefly sketch the demonstration of the local
equilibrium approximation in presence of an “arbitrary” potential.

i. Let us consider an infinite one-dimensional system in a lattice; only for this purpose we
introduce the lattice spacing a ∈ R

+ with a≪ 1. Let V (x) a continuous and smooth
potential (let us say V ∈ C1), defined in R. After introducing the spatial interval
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[x, x+∆x], we suppose that the condition

∀M ∈ N, δ > 0, ∃ a > 0,∆x > 0 :

∆x/a =M, |maxV (y)−minV (y)|/∆x < δ ∀y ∈ [x, x+∆x] (5.22)

is fulfilled. In other words, the condition (5.22) means that, for an infinite system and
a non-pathological function V (x), we can found a sufficiently small interval ∆x and
lattice spacing a in order to have a great number of sites M in ∆x with the supple-
mentary condition that the potential is almost constant over the interval. Roughly
speaking, for each lattice sites in the considered interval, the potential keeps the same
value

∀ j ∈ N : ja ∈ [x, x+∆x]⇒ V (ja) = V (x). (5.23)

ii. Let us consider the quadratic fermionic Hamiltonian

H = −1
2

∑

j

[c†jac(j−1)a + h.c.] +
∑

j

V (ja)c†jacja. (5.24)

Now, splitting the real axis in intervals [n∆x, (n+1)∆x] with n ∈ N, we can recast H
in the following form

H =
∑

n

{
H∆x[n] +Hint[n, n+ 1]

}
(5.25)

where the local Hamiltonian is

H∆x[n] = − 1

2

M−1∑

j=1

[c†n∆x+jacn∆x+(j−1)a + h.c.]

+

M∑

j=1

V (n∆x+ ja)c†n∆x+jacn∆x+ja , (5.26)

and

Hint[n, n+ 1] = −1
2

[
c†(n+1)∆xcn∆x + h.c.

]
(5.27)

takes into account the local coupling between neighboring intervals.

iii. Now, taking the continuum limit a → 0, ∆x → 0 by keeping ∆x/a = M ≫ 1 (and
eventually considering M →∞), we can introduce the continuous variables

x = n∆x, x ∈]−∞,+∞[

y = ja, y ∈ [0,∆x], (5.28)

and the continuous creation and annihilation field operators

cja → Ψ̂(y), c†ja → Ψ̂†(y). (5.29)

In the limit M →∞ we can discharge the Hint contribution in the Hamiltonian, since

〈Hint〉
〈H∆x〉

∼ 1

M
→ 0, (5.30)
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Figure 5.6: Density profile for the XX Hamiltonian with potential V (x) = 2x/L +
1.5 sin(8x/L) + sin(16x/L), with system size L = 400. In to the left, different symbols
represent the numerical diagonalization of the Hamiltonian for different filling N . The black
dashed lines are the local equilibrium prediction (5.36). In to the right, we focus our attention
on N = 200 filling. The gray stripe represents the allowed energy-band [V (x)− 1, V (x)+1].
The yellow region represents the occupied levels up to the Fermi energy (red dashed line).
Notice how the local density depends, through the (5.36), on the thickness of the occupied
bandwidth.

and the Hamiltonian takes the form

H =
1

∆x

∫ +∞

−∞

dxH[x], (5.31)

where

H[x] = 1

a

∫ ∆x

0

dy
{
− 1

2
Ψ̂†(x+y)Ψ̂(x+y−a)+h.c.+V (x)Ψ̂†(x+y)Ψ̂(x+y)

}
, (5.32)

since, by hypothesis, V (x + y) = V (x), ∀y ∈ [x, x + ∆x]. The local Hamiltonian
H[x] is simply the continuous XX Hamiltonian, translated by x with an homogeneous
potential V (x), and it can be easily diagonalized through the canonical mapping

Ψ̂(x+ y) =

∫ π

0

dq φq(x+ y)η(q, x), Ψ̂†(x+ y) =

∫ π

0

dq φ∗q(x+ y)η†(q, x), (5.33)

where the field η(q, x) (η†(q, x)) annihilates (constructs) a particle with momentum q
in the region [x, x + ∆x]. The exact form of the functions φq(u) essentially depends
on the boundary conditions. In particular, they are different from zero only in the
interval [0,∆x]2. These fields satisfy the anti-commutation rules {η(q, x), η†(p, y)} =
δ(x− y)δ(q − p). The delta function for different modes is a consequence of the local
diagonalization procedure that preserves the anti-commutation rules; otherwise, the
anti-commutation at different spatial points is essentially due to having dropped out
Hint in the total Hamiltonian. By using these new fields, the Hamiltonian takes the

2Notice that the functions φq(u) are the Bogolyubov coefficients which diagonalize H[0].
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diagonal form

H =

∫ +∞

−∞

dx

∫ π

0

dq [− cos q + V (x)]η†(q, x)η(q, x). (5.34)

Therefore, the N -particles ground state is constructed by adding to the vacuum state
each particle in the proper phase-space point (q, x) starting from the lower energy of
ǫ(x, q) = − cos q + V (x) up to the Fermi level ǫN :

|ΨN 〉 =
ǫN∏

q,x

η†(q, x)|0〉. (5.35)

For N ≫ 1, this implies for the ground-state density profile

ρ(x) =





0 V (x)− 1 > ǫN
arccos(V (x)− ǫN )/π |V (x)− ǫN | < 1
1 V (x) + 1 < ǫN

, (5.36)

where the Fermi energy is found by imposing the constraint on the total number of
particles ∫

ρ(x) dx = N. (5.37)

In Figure 5.6 we compare the exact numerical diagonalization with the local equilib-
rium prediction in a system with L = 400 and potential V (x) = 2x/L+1.5 sin(8x/L)+
sin(16x/L). Notice the good matching between the equation (5.36) and the numerical
data. The local equilibrium approximation breaks down whenever the local number
of particle is small and the potential varies sharply (∂xV (x) ≫ 1). In particular, in
the right figure, we graphically reproduce the occupied energy levels (yellow region)
for the N = 200 filling. In practice, since cos q ∈ [−1, 1], the energies ǫ(q, x) fall in
the gray strip which follows the shape of the potential. Finally, the Fermi energy ǫN
determines which levels are filled in order to have exactly a total of N particles.

Putting forward this considerations, we look at the phase-space of the system and, for
each point (x, q) we define an infinitesimal region ∆x∆q surrounding such a point. We can
introduce the coarse-grained particle density

ρ0(x, q) =
1

∆x∆q

∫ x+∆x/2

x−∆x/2

∫ q+∆q/2

q−∆q/2

|φp(y)|2dpdy, (5.38)

stating that the initial coarse-grained phase-space density is almost uniformly distributed
over the occupied region:

ρ0(x, q) =
1

π
θ(q)θ(qF − q)θ(x)θ(A− x), (5.39)

in such a way that, integrating over the momenta we recover the initial spatial density

ρ0(x) =

∫
ρ0(x, q)dq =

qF
π
θ(x)θ(A− x). (5.40)

Just after the sudden quench to the new potential, the kinetic energy is locally left
unchanged, therefore the distribution of bosons over the region A with a given momentum
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Figure 5.7: Particle density departing from the left zone as a function of the potential VA.
The different symbols represent simulations for different initial filling densities. We used
L = 500, A = 100. The straight lines are the theoretical predictions reported in Table 5.1.

q (kinetic energy − cos q) is shifted in energy by the additional potential energy V (x). One
has, for a given energy E, the space distribution

ρ0(E, x) =

∫
dqρ0(x, q)δ(E − V (x) + cos q) (5.41)

=

{
1
π

∫ qF
0

dqδ(E − V (x) + cos q) for x ∈ [0, A]
0 for x > A

The new energy band, with the same width ∆ = 2 as the initial one, is deformed in space,
following the potential V (x) as sketched on Figure 5.1. During the time evolution the
dynamics is unitary and, since the Fermi quasi-particles are noninteracting, the energy is
conserved for each of them. In region A only those initial particles with energy E within
the range [−1, 1] (we have chosen the new zero of energy to be 0) are connected to the
propagating states of the band at x > A. These particles will escape from the region A and
propagate to +∞ as time runs on.

5.4.1 Ejected particles

The total number of bosons Nesc leaving the region A is just given by integrating equation
(5.41) over the connected domain. Using energy variable, it corresponds to the range [−1, 1].
In particular, one obtains for VA = pA ≤ 1 + cos(πρ0), Nesc = N , that is all the particles
leave the initial region. On the contrary, for a given length A, if we increase the slope p, part
of the particles is trapped in region A. As an example, for VA ≥ 2, the number of bosons
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VA Nesc

[0, 1 + V0] N

[1 + V0, 2]
1
p

(
ρ0 +

sinπρ0

π

)
− g(VA)

[2,∞] 1
p

(
ρ0 +

sinπρ0

π

)

Table 5.1: . Ejected HC bosons for different value of the slope. See the text for the definition
of the function g(VA).

leaving A is

Nesc =
1

π

∫ A

x+
p

dx

∫ q̂(x)

0

dq (5.42)

=
1

πp

∫ 1

−1

dE

∫ q̂(E)

0

dq,

and using

q̂(E) =

{
qF for − cos qF ≤ E ≤ 1

arccos(−E) for −1 ≤ E ≤ − cos qF (5.43)

one obtains

Nesc =
1

π

{
qF (1 + cos qF )−

∫ cos qF

1

arccos(y)dy

}
(5.44)

=
1

p

(
ρ0 +

sinπρ0
π

)
, VA ≥ 2.

In Tables 5.1 we summarize the results for Nesc for different values of VA, where the
function g(VA) is given by

g(VA) =
1

pπ

[
(1− VA) arccos(VA − 1) +

√
VA(2− VA)

]
. (5.45)

Finally, in Figure 5.7 we compare the theoretical curves with the exact numerical diagonal-
ization.

Since there are no accessible states to the right of the tilded band edge, the particles
with energy E within [1, VA + 1] are trapped within the region [xmin(E), xmax(E)], where
the boundary values xmin(E) and xmax(E) are solutions respectively of

V (xmin)− 1 = E and V (xmax) + 1 = E, (5.46)

if we neglect small tunneling escapes at the band edges.
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5.4.2 Hydrodynamical equation of motion

The motion of the elementary particles is ballistic with velocities depending only on there
kinetic part E − V (x) = − cos q. At each initial position x and momentum q (or for a given
energy E), half of the local density in (5.41) is emitted to the right with velocity v+(q)
and half to the left with the opposite velocity v−(q). The modulus of the velocities is given
simply by considering the dispersion relation

v±(q) = ±
∣∣∣∣
∂E

∂q

∣∣∣∣ = ± sin q. (5.47)

At the band edges the particles are reflected and they start to travel on the opposite side.
Using the fact that the energy is conserved during the unitary dynamics, together with the
definition of the velocity, one obtains the equation of motion

dx

dt
= ± sin q, (5.48)

p
dx

dt
= sin q

dq

dt
,

which, for an initial particle located in (x0, q0), yields

{
E − V (x±(t)) = − cos(q0 ± pt)
E − V (x0) = − cos(q0) , (5.49)

x±(t) giving the evolution of the particles with the sign + standing for an initial right mover
and the sign − for a left mover.

Once we have the equation of motion of a single particle starting in (x0, q0), the right
and left densities at time t are given by

ρ±(x, q, t) =
1

2

∫∫
dq0dx0G±(x, q, t;x0, q0)ρ0(x0, q0), (5.50)

with total density ρ(x, q, t) = ρ+(x, q, t)+ ρ−(x, q, t). The right and left propagators G± are
simply given by

G±(x, q, t;x0, q0) = δ(x− x±(x0, q0, t))δ(q − q±(x0, q0, t)), (5.51)

where we have reported the explicit dependence of the solution x± and q± on the initial
conditions (x0, q0). The meaning of the equation (5.50) together with the equation (5.51)
is actually easy to understand: we are looking for the particles that at time t are exactly
in the infinitesimal region dxdq around (x, q); these particles are given by the subdomain
D(x,q) ⊂ D0 (where D0 represents the phase-space domain occupied by the initial phase-space
density ρ0) connected to the region dxdq through the delta functions δ(x − x±)δ(q − q±)
(See Figure 5.8).

Moreover, if we are only interested in the spatial density, we can integrate over the
momentum q and, using the normalization of the delta function and the initial uniform
phase-space density (5.39), one has

ρ±(x, t) =
1

2π

∫ qF

0

dq0

∫

D

dx0δ(x− x±(x0, q0, t)), (5.52)

where D is the specific spatial (or energetic) domain we are working with.
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Figure 5.8: Pictorial representation of the dynamics in the phase space. Each infinitesimal
volume dx0dq0 of the initial distribution moves along the propagator G± and, at time t, a
new distribution is produced.

-1

0

xp
+xp

-

1

x

q

VA-1

Figure 5.9: After connecting also the higher energy states to a propagating band, the only
particles that stay trapped are those on the gray stripe and they show a periodic motion.

5.4.3 Trapped particle dynamics

We begin our studies by looking at the temporal evolution of the density profile of particles
initially located in the energy band [1, VA − 1]. In this case, instead of (5.52), it is better to
change the integration variable x0 to the energy variable E. By using the equivalence

dx0δ(x− x±(x0, q0, t)) = dEδ(E − V (x) + cos(q0 ± pt)), (5.53)

we obtain

ρ±(x, t) =
1

2π

∫ qF

0

dq0

∫ VA−1

1

dEδ(E − V (x) + cos(q0 ± pt)). (5.54)

At higher energies, for E ∈ [VA−1, VA+1], the presence of the free boundary at x = 0 breaks
this very simple harmonic motion. Indeed, particles sharing initially the same momentum
q are not reflected at the left wall (x = 0) at the same time and a dephasing appears
between them. Consequently, the contribution of these particles to the total spatial density
is somehow incoherent. A simply way to avoid this incoherent contribution is to connect
the system on the left with a left propagating band, by taking V (x < 0) = VA, such that
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Figure 5.10: Trapped boson space density at different times. Black dashed curve is the
initial density profile at time t = 0. Red dashed curves represent the temporal evolution of
the profile as predicted by the hydrodynamical theory. In (a) the free boundary condition
in x = 0 is still present. In (b) we have left the higher energy modes to escape to the far
left. System parameters are ρ0 = 1/2, VA = 5, L = 1000, A = 200.

these high energy particles leave the region A to the far left as those low energy particles
have done to the far right (see Figure 5.9). Notice that VA has to be larger than the band
width ∆ = 2 in order to have self-trapped particles. In the following we pursue our analysis
with VA > ∆. The trapped bosons space density ρ(x, t) = ρ+(x, t) + ρ−(x, t) is obtained by
integrating (5.54) over the energy range. After the change of variables z = q0 ± pt one has

ρ±(x, t) =
1

2π

∫ qF±pt

±pt

dzθ(VA − 1− px− cos z)θ(px− 1 + cos z), (5.55)

thus, thanks to the symmetries of the integral,

ρ(x, t) =
1

2π

∫ pt+qF

pt−qF

dzθ(VA − 1− px− cos z)θ(px− 1 + cos z). (5.56)

The lower bound of the integrand is given by the locus of the point where the one-particle
energy V (x)− cos z reaches the upper trapping value VA − 1:

xinf (z) =
1− cos z

p
. (5.57)

The upper spatial bound is fixed by the lower self-trapping energy V (x) − cos z = 1 and
leads to

xsup(z) = xinf (z) +
VA − 2

p
. (5.58)

These left and right boundaries are 2π-periodic functions of z. At partial filling, for ρ0 < 1, it
implies a periodic motion of the self-trapped density (5.56) with oscillation period T = 2π/p.
On the contrary, at complete filling (Mott initial state with ρ0 = 1), qF = π and the
integration range in (5.56) is over a full period of the theta functions and leads to a static
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density profile (after the escaping particles have left the region A). The self-trapped density
oscillates in time only if the system has been prepared initially in the superfluid phase
ρ < 1. Another very interesting feature of the self-trapped density at large enough gradients,
p > 4/A, is the appearance of a stationary plateau with ρ(x, t) = ρ0 for x ∈ Ω = [x−p , x

+
p ]

with

x±p =
A

2
±

(
A

2
− 2

p

)
=
A

2

[
1±

(
1− 4

VA

)]
. (5.59)

As a function of time, the remaining bosonic density oscillates between a macroscopic left
state, where the density is enhanced in the region [0, x−p ], and a right state with enhanced
density in [x+p , A]. The explicit density profile is easily computed at any time t from (5.56).
For example, at integer multiplies n of the period T = 2π/p, the distribution of the trapped
bosons is shifted maximally to the left and it is given by

ρ(x, nT ) =





arccos[V (x)− VA + 1]/π 0 ≤ x ≤ xinf (qF )
ρ0 xinf (qF ) ≤ x ≤ x+p
ρ0 − arccos[V (x)− 1]/π x+p ≤ x ≤ xsup(qF )
0 xsup(qF ) ≤ x ≤ A

. (5.60)

Notice that the plateau extends to the left up to the value xinf (qF ). The distribution then
propagates from this macroscopic left state to the macroscopic right one (reached at odd
multiplies of the half period t = (2n+1)T/2). The spatial profile of the right state is simply
deduced from the left one by the transformation x → A − x, using the mirror symmetry
at A/2. In Figure 5.10 we have plotted the density profile at different times, both for high
energy states non-connected (a) and connected (b) with a left propagating band. Notice
how the incoherent contribution of the high energy modes in (a) increases both the average
value and the fluctuations of the particle density near the left boundary.

So far, we have seen the oscillation of a macroscopic state of particles from the left to
the right of the trapping-zone. Thus, we expect a current of particles that flows through the
plateau region. This current should be spatially constant within the plateau region and it
should be periodic with period T . Indeed, proceeding on the same lines, one can compute
the bosonic current density j(x, t). The local current across two neighboring sites l− 1 and
l is defined via the Heisenberg continuity equation

dnl

dt
= i[H,nl] ≡ −∇jl = jl−1 − jl, (5.61)

that leads to

jl = −Im(blb†l+1) =
i

2
(blb

†
l+1 − bl+1b

†
l ). (5.62)

In the hydrodynamical limit considered here, the current is simply j = ρv, and it leads to
the sum over all momenta of [ρ+(q)− ρ−(q)] sin q, which basically adds a sin z factor inside
the integral (5.56):

j(x, t) =
1

2π

∫ pt+qF

pt−qF

dz sin z θ(VA − 1− px− cos z)θ(px− 1 + cos z). (5.63)

It is easily shown that the current (5.63) and the density (5.56) verify the continuity equation
∂tρ(x, t) = −∂xj(x, t). Moreover, in the plateau region Ω = [2/p,A − 2/p] the conditions
imposed by the theta functions are always fulfilled and one has simply

j(x, t) =
1

π
sin(qF ) sin(pt), ∀x ∈ Ω. (5.64)
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Figure 5.11: (top) Time evolution of the current in the middle of the ramp x = A/2 for
different values of VA. The straight red lines are the hydrodynamical predictions as reported
in the text. The small colored circle indicate the temporal instants at which the spatial profile
of the current are plotted (bottom). Here, the dashed red lines are the hydrodynamical
predictions. The irregular fluctuations in the left part of the spatial profiles are essentially
due to the incoherent motion of the high energy particles. Indeed, numerical simulations are
done with free boundary condition in x = 0. System parameters are ρ0 = 1/2, L = 1000,
A = 200.

Notice that there is a maximum particles exchange at half filling (qF = π/2), while obviously
there is no more particle exchange in the Mott phase (complete filling qF = π) which reflects
the fact that the trapped density profile remains stationary in time.

We can also calculate the temporal evolution of the current at x = A/2 for 2 < VA < 4
(no plateau region but still trapped particles). Specializing the calculation for the parameters
in Figure 5.11, i.e. qF = π/2 and VA = 3, and changing the integration variable to y = cos z,
one has

j(A/2, t){VA=3,qF=π/2} =
1

2π

∫ sin(pt)

− sin(pt)

dy θ(1/2− y)θ(1/2 + y), (5.65)

that yields

j(A/2, t){VA=3,qF=π/2} =

{
sin(pt)/π | sin(pt)| ≤ 1/2
1/2π | sin(pt)| ≥ 1/2

. (5.66)

The cut for | sin(pt)| > 1/2 is essentially due to the escaping particles which initially are
located at x = A/2. Indeed, for VA < 4 the lower propagating zones extend over the middle
of the condensate, i.e. x+p < A/2 (see Figure 5.9), producing a lowering of the current
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intensity after the escaping particles are ejected. As a support of this, notice how during
the first half period, as all the particles are moving from the left to the right and have
not yet abandoned the condensate, the current shows a perfect sinusoidal signal. If we
generalize these arguments, it is possible to catch some properties of j(x, t) for every value
of VA > 2 and qF . Indeed, by comparing the length 2| sin(pt)|| sin(qF )| of the integration
interval [cos(pt− qF ), cos(pt+ qF )], with the length VA − 2 of the definition interval of the
theta functions, we argue that for

VA − 2 ≥ 2| sin(qF )|, (5.67)

there will be a spatial interval (the plateau region Ω ∈ A) in which the current will show
a complete sinusoidal behavior. Otherwise, whenever the condition (5.67) is violated, the
current will exhibit cuts in its temporal evolution ∀x ∈ A.

Furthermore, starting from equation (5.63), and still considering the high energy particles
connected to a propagating band which extends to the far left, we can straightforwardly
calculate the current profile in space for time multiple of T/4. Changing the integration
variables to y = cos z one has

j(x, T/4 + nT ) =
1

2π

∫ sin qF

− sin qF

dy θ(VA − 1− px− y)θ(px− 1 + y). (5.68)

Now we specialize the integral for the parameters in Figure 5.11: qF = π/2 and VA = 5 and
3. In the case with a plateau region (VA = 5), the theta functions impose the conditions
y > 1 − px ∈ [−4, 1] and y < 4 − px ∈ [−1, 4]. By comparing this boundary with the
extremes of integration [−1, 1] one has:

j(x, T/4 + nT ){VA=5,qF=π/2} =





px/2π 0 ≤ x ≤ 2/p
1/π 2/p ≤ x ≤ 3/p
VA/2π − px/2π 3/p ≤ x ≤ A

. (5.69)

In the other case, for VA = 3, we have the conditions y > 1− px ∈ [−2, 1] and y < 2− px ∈
[−1, 2]. Again, comparing with the extremes of integration, we get the result:

j(x, T/4 + nT ){VA=3,qF=π/2} =





px/2π 0 ≤ x ≤ 1/p
1/2π 1/p ≤ x ≤ 2/p
VA/2π − px/2π 2/p ≤ x ≤ A

. (5.70)

All these results are compared in Figure 5.11 with the numerical data we have obtained
on finite Hard-Core boson systems. For sufficiently high potential such that there are still
trapped particles but no more a plateau (for VA = 3 in Figure 5.11), the current is initially
coherent, then, due to the escaping particle dynamics, it loses the complete sinusoidal shape,
as explained before, nevertheless retaining its periodic behavior.

5.4.4 Escaping particle profile

One can use the same hydrodynamical description in order to predict also the time-evolution
of the profile of the escaping particles. With respect to the Figure 5.12, the particles leaving
the initial region A are those in the spatial interval [x+p , A] (i.e. with energies within [−1, 1]),
and with momenta up to the Fermi-level qF imposed by the initial condition. Considering a
local phase-space infinitesimal volume dx0dq0 around an allowed (x0, q0), it corresponds to
dEdq0/p around an allowed (E, q0). This local density evolves, under the influence of the
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Figure 5.12: Sketch of the area in the phase-space of the particles energetically connected
to the propagating band. Here the Fermi-level was fixed to qF = π/2, corresponding to
half-filling initial condition. See the text for more explanations.

linear potential, up to a time t± (respectively for right(+) and left(−) modes). After that
time, the evolution continues with constant velocity

√
1− E2 through the right band. By

imposing that particles arrive at t = t± at position A one has:

t± =
1

p
arccos(−E)∓ q0

p
. (5.71)

Notice that, at least in the worst case (Mott initial state), all particles leave the ramp for
t ≥ T . Thus, we have

x±(E, q0, t) =
√
1− E2(t− t±) +A. (5.72)

The evolution of the density profile of the ejected particles (x > A) is then given by the sum
of the evolved densities

ρ±esc(x, t) =
1

2πp

∫ 1

−1

dE

∫ q̂(E)

0

dq0 δ(x− x±(E, q0, t)), (5.73)

where q̂(E) is the same function introduced in (5.43). Now using the property of the delta
function δ(f(z)) = δ(z − z0)/|f ′(z0)| where f(z0) = 0, we can rearrange the integral as

ρ±esc(x, t) =
1

2π

∫ 1

−1

dE√
1− E2

∫ q̂(E)

0

dq0 δ(q0 − q±(E, x, t)) (5.74)

=
1

2π

∫ 1

−1

dE
θ(q±(E, x, t))θ(q̂(E)− q±(E, x, t))√

1− E2
,

where

q±(E, x, t) = ±
[
p(x−A)√
1− E2

+ arccos(−E)− pt
]
. (5.75)

Also for the ejected particles, exploiting the hydrodynamical relation ∂tρ(x, t) = −∂xj(x, t),
starting from equation (5.74), since, for t > t±, each mode propagates with constant velocity
v(E) =

√
1− E2, we basically obtain

j±esc(x, t) =
1

2π

∫ 1

−1

dE θ(q±(E, x, t))θ(q̂(E)− q±(E, x, t)), (5.76)



82 Self-trapping bosons in tilted optical lattice

200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t = 200

t = 400

t = 600

t = 800

x

ρ
(x

,t
)

L=1000, A=200, VA=5

200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t = 200

t = 400

t = 600

t = 800

x

j(
x
,t
)

L=1000, A=200, VA=5

Figure 5.13: Density (left) and current (right) profiles of the ejected particles at different
times for the HC boson model. The dashed black lines represent the hydrodynamical pre-
diction (5.74) and (5.76), perfectly in agreement with the numerical simulations (colored full
lines).

for the ejected current. In Figure 5.13 we see the very good agreement, up to small quantum
interference effects, between the actual data obtained numerically by exact diagonalization
and the hydrodynamical prediction.

5.5 Noninteracting boson dynamics

Before introducing the simulations for the real boson dynamics, it would be better to compare
the results we have got in the Hard-Core boson limit with the dynamics of noninteracting
bosons. As we previously said, the value U = 0 in the Bose-Hubbard Hamiltonian corre-
sponds to another integrable point in the parameter space. The dynamics is the same as in
the Hard-Core boson limit, but now, the initial particle density in space is given by

ρ0 ≃
2N

A
sin2

(πx
A

)
, (5.77)

where N is the total number of particles we have put into the system. In Figure 5.14 and
5.15 we plot the particle density profile and the current profile for noninteracting bosons.
In that case the dynamics does not depend on the initial particle density since particles
occupy the lower one-particle energy level and the dynamics is finally governed by the lower
momentum q0 associated to that state.

Ejected particles Also in this case we can use energetic considerations to describe how
the total number of ejected particles Nesc varies as a function of the gradient p = VA/A.
The initial density (5.77) describes N bosons in the lower energy level, i.e. with momentum
q0 ≃ π/A. After the sudden quench, referring to the Figure 5.1, all particles should stay in
the line corresponding to the lower boundary of the energy band, VA − px− 1. Also in this
case, the particles leaving the ramp are those with energy E ∈ [−1, 1], i.e. confined in the
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Figure 5.14: Maps of particle densities for noninteracting bosons in a system with A = 50
and N = 25. Starting from the top left figure and going clockwise, one has VA = 1, 3,
5 and 8. Notice that trapped particles appear for VA = 3, 5, 8 without the presence of
a plateau. Otherwise, particles still oscillate along the ramp. Diagonal stripe represents
particles leaving the ramp.

spatial interval [x+p , A]. Thus, one has

NU=0
esc =

2N

A

∫ A

x+
p

dx sin2
(πx
A

)
(5.78)

=

{
N for VA ∈ [0, 2]

N
[

2
VA
− 1

2π sin
(

4π
VA

)]
for VA ≥ 2

.

By comparing the formula (5.78) with the similar hydrodynamical result for the Hard-Core
boson reported in Table 5.1 one can notice that, for noninteracting bosons, NU=0

esc does not
depend on V0. This is obviously due to the properties of the bosons which, whatever the
initial number of particles is, condensate in the lower one-particle energy level E0. Notice
that a fraction of noninteracting bosons starts to be trapped when VA becomes greater
than 2, and this ‘transition’ is somehow more abrupt with respect to the Hard-Core boson
behavior. Indeed, in the high slope limit, we obtain

NHC
esc ∼ V −1

A , NU=0
esc ∼ V −3

A , VA →∞. (5.79)

In Figure 5.16 we compare the noninteracting boson with the Hard-Core boson. As we
expect, for sufficiently high gradient, the ejected noninteracting boson are less than the
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Figure 5.15: Maps of current densities for noninteracting bosons. System parameters
are the same as in Figure 5.14. Again, notice the oscillations of the trapped particles for
VA = 3, 5, 8. Yellow diagonal stripe is the current associated to the ejected particles.

Hard-Core ones. This is because there are less accessible sites in the region A for the HC
bosons with respect to the noninteracting bosons. The opposite behavior, for small gradient,
is essentially due to the uniform distribution of the initial density, up to the Fermi level qF ,
for the HC bosons. Indeed, starting with no gradient (VA = 0), Hard-Core bosons start to
be trapped in the ramp at VA = 1 + V0, earlier than noninteracting bosons do. Then, due
to the stronger decay of NU=0

esc with respect to NHC
esc , for sufficiently high value of VA we

obtain the condition NHC
esc > NU=0

esc . The gray region in the Figure 5.16 represents the area
where we expect to find the function describing the number of particles ejected in the case
of real bosons, i.e. when the dynamics is governed by the Bose-Hubbard Hamiltonian. In
other words, the behavior of real bosons should be confined by the two limiting cases.

What we said before is correct in the thermodynamical limit, that is when the system
size becomes infinite. Indeed, in such a case, we should have A → ∞, VA → ∞ with
p = VA/A < 1. Otherwise, if one considers small systems, whenever the value of the
potential VA overcomes the length of the region A, and thus the slope p becomes higher
then 1, each site of the chain will be energetically unconnected from its neighboring sites. It
means that only the rightmost site of the ramp will be connected to the propagative band,
therefore at most one particle may be ejected and the behavior of the Hard-Core bosons is
reduced to that of noninteracting bosons (see Figure 5.17).
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Figure 5.16: Log-Log plot of the total number of particles leaving the ramp as a function of
VA, for different initial filling. We compare the Hard-Core boson result (squares) with the
noninteracting boson case (diamonds). Black lines represent the hydrodynamical prediction
in both cases. Dashed lines are the power-law behavior in the high slope limit.

5.6 Bose-Hubbard dynamics

Now, we finally turn our attention to the real boson dynamics. As we said before, the Bose-
Hubbard Hamiltonian is not analytically tractable, thus we have to resolve the dynamics via
numerical approximative methods. Indeed, for simulating the Bose-Hubbard Hamiltonian
we have used both the t-DMRGmethod and the Lanczos diagonalization method. Regarding
the t-DMRG method, at the beginning we fix the Hamiltonian equal to H0, in order to load
N bosons in the region A of the chain, then we look for the ground state using the static
DMRG algorithm. In particular, we set the accuracy of the algorithm requiring a precision
of 10−6 on the ground state energy value. Otherwise, we do not fix limitations on the number
of statesM describing a block. We increase such a number at each sweep until a satisfactory
convergence is reached.

After we have prepared an approximate ground states |Ψ0〉, we suddenly change the
Hamiltonian introducing a linear potential as mentioned before and we start the simulation
with the t-DMRG algorithm. We perform the temporal evolution using a temporal step
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Figure 5.17: Log-Log plot of the total number of Hard-Core bosons leaving the ramp as a
function of VA, for small system sizes. Notice how the behavior follows the hydrodynamical
prediction V −1

A up to a ‘critical’ value V ∗A ∼ A. For VA > V ∗A, NHC
esc (VA) shows the same

scaling behavior of the noninteracting bosons.

dt = 0.05 from t = 0 to t = tend. For each temporal step we perform two t-DMRG sweeps
to properly evolve the system from t to t+ dt. Then, we use another sweep to better adjust
the Hilbert space, eventually enlarging the number of states M . This is done by looking
at the growing of the entanglement entropy. Finally, we use a sweep for measuring the
observables. This algorithm is repeated until the final time is reached. For details on the
tDMRG implementation see Appendix C.

5.6.1 Linear ramp and departing particles

According to the quench protocol, we perform t-DMRG simulations on a lattice with length
L. We use a local Hilbert space of dimension D = 3, i.e. 0, 1 or 2 particles for each site.
The evolution ends at time tend = L − A according to the fact that the maximum speed
of the quasi-particles in such a system is approximatively equal to 1 and then, we stop the
simulation before the faster particles reach the right boundary of the chain.

In Figure 5.18 we plot the temporal evolution of the boson density profile n(i, t), current
profile j(i, t) and entanglement entropy S(i, t) for a system with length L = 64. The initial
state is prepared by fixing A = 16 and U = 10, 5; V0 was fixed in order to have N = 8
particles. At t = 0 we modify the chemical potential as prescribed in the previous sections,
fixing VA = 8. As predicted by the local equilibrium theory, it is possible to observe a
‘plateau’ region in the density profile. Apart from a small fraction of ejected particles,
the bigger part of bosons rests trapped in region A. Also the current manifests a regular
behavior oscillating with main period T ∼ 2π/p. Nonetheless, the effect of a finite value of U
is evident: the amplitude of the oscillations become smaller and smaller with time; somehow,
due to the non-integrability of the model, a sort of decoherence appears. Finally, observing
the entanglement entropy profile, it is obvious that, despite the small part of ejected particles,
after connecting the left part of the system with the right part, the entanglement between
the first A sites and the last L−A sites increase in time, giving a signature of the propagation
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Figure 5.18: From top to bottom, density of particles, current and entropy profiles. The
t-DMRG simulations has been done in a system of dimension L = 64, with A = 16 and
VA = 8. Two different values of the local interaction are plotted: U = 10 (left) and U = 5
(right).

of the escaping particles. To have a better understanding of the effects of a small value of
the one-site boson-boson repulsion, we compare, in Figure 5.19, the evolution of systems
with length L = 32 and A = 8, for U = 10 and U = 1. Now, for U = 1, the ‘decoherence’
effect is definitely stronger than before: the non-integrability of the model results in a strong
growing of the entropy inside the region A. In this latter case, a ‘plateau’ region still survives
but the density oscillations are strongly damped while one still observes a small signature
on the current density profile.

Ejected particles for real bosons — As we said before, it should be interesting to
compare the number of ejected particles in the case of real boson dynamics with respect to
the results we already obtained for Hard-Core bosons and Noninteracting bosons. Indeed, for
a sufficiently small system, it is possible to simulate the dynamics of the Bose-Hubbard model
using the Lanczos algorithm to obtain the initial ground-state |Ψ(0)〉. Then, the evolution
is performed by reiterating the Schrödinger equation |Ψ(t + dt)〉 = exp(−iHdt)|Ψ(t)〉 with
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Figure 5.19: From top to bottom, density of particles, current and entropy profiles. The
t-DMRG simulations has been done in a system of dimension L = 32, with A = 8 and
VA = 8. Two different values of the local interaction are plotted: U = 10 (left) and U = 1
(right).

the approximation

exp(−iHdt) ∼
nmax∑

n=0

(−idt)n
n!

Hn. (5.80)

The method has basically two sources of errors: the Lanczos precision on the initial state, and
the truncation error due to nmax. In particular, the convergence criterion in the temporal
evolution is fixed by imposing the unitary condition 〈Ψ(t + dt)|Ψ(t + dt)〉 = 1 up to the
machine precision. Basically, the evolution in the interval [t, t+ dt] is reiterated for different
values of nmax up to convergence is achieved. Finally, we have to fix also the maximum
number of bosons Nmax for each site. If we are working with a system with a total number
of particles N < Nmax the evolution is exact. Otherwise, for N > Nmax, one introduces
another source of error which is smaller the larger the interaction U between the particles is.
Thus, we initially prepared a system of total length L = 32 with N = 4 bosons in the first
A = 8 leftmost sites. Then, for each value of VA, we have left the system to evolve up to
time t = 24. Here, we have chosen Nesc in two different way: the maximum value it acquired
during the whole temporal evolution, and the value at t = 24. In Figure 5.20 we show the
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Figure 5.20: Plot of the particles leaving the ramp as a function of VA. We compare the
Hard-Core boson result (black solid line) and the noninteracting boson case (red dashed
line) with the Lanczos simulations for real boson dynamics (symbols). In the left figure,
Nesc is given by the maximum number of ejected particles during the temporal evolution up
to the time t = 24. In the right figure we keep the values at t = 24. These data have been
obtained in collaboration with G. Roux (LPTMS, Paris).

results. As predicted before, the real boson data fall between the two limiting cases. The
deviation for smaller values of the potential VA is essentially due to Nmax = 3. Notice how
such a deviation is stronger for smaller value of U . Indeed, for small values of U the bosons
should behave similarly to noninteracting bosons, however, a finite Nmax introduces a cutoff
in the single-site repulsion in such a way that one has an effective interaction

Ueff =

{
U n ≤ Nmax

∞ n > Nmax
, (5.81)

where n is the average value of bosons per site. Finally, for VA close to zero, the lowering
of the values of Nesc(VA) is essentially a dynamical effect. In practice, data in Figure 5.20,
extrapolated from the time window t ∈ [0, 24], are quite far from its infinite limit.

Entanglement entropy for real bosons — After the quench, the condensate is split
into two entangled pieces moving apart: the escaping particles on one hand and the self-
trapped ones on the other hand. Moreover, the tDMRG comes out to be naturally well suited
for calculating the entanglement between particles on both sides of position x. Indeed, at
each step, the algorithm determines the reduced density matrices of the left [0, x] and right
[x, L] subsystems. From the eigenvalues of these matrices is straightforward to calculate the
von Neumann entropy S(x, t) = −Tr{ρ(x, t) ln ρ(x, t)}, with ρ(x, t) ≡ Tr>x{|Ψ(t)〉〈Ψ(t)|}.

The surface plots at bottom of Figure 5.19 represent the space-time behavior of the en-
tanglement entropy S(x, t) for the Bose-Hubbard model with L = 32 sites, initially prepared
with A = 8 and N = 4. In that case, the evolution is done with a linear potential in region
A with slope p = 1. As the particles are ejected in the empty region, the entropy grows,
indicating, for each x and t, the entanglement between the region [0, x] and the region [x, L].
In the self-trapping region, we observe a strong enhancement of the entanglement at U = 1
which has to be compared to the almost constant behavior close to the integarble point
U =∞.



90 Self-trapping bosons in tilted optical lattice

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S(A,800)

S(z(VA),0)

CFT Prediction

VA

S

Hard-Core Boson

N=100, A=200, L=1000

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

p = 1/8
p = 1/4
p = 1/2
p = 1
p = 2

t
S

(A
,t

)

L=32, A=8,N=4

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Figure 5.21: (Left) Asymptotic value of the entanglement entropy in the HC boson model
for different values of the potential VA. The evolved entropy S(A, t = 800) (black squares) is
compared with the initial entropy S0(z(VA)) (blue circles) between [0, z(VA)] and [z(VA), A],
where z(VA) ≡ x+p approximately separates the trapped density from the ejected one. The
full red line is the CFT prediction for S0(z(VA)). (Right) Evolution of the entanglement
entropy between regions [0, A] and [A,L] in the Bose-Hubbard model with U = 1 (full lines)
and U = 10 (dashed lines). We have used different colors for different slopes p = VA/A.

In particular, on the right of Figure 5.21, we show the behavior of S(A, t), i.e. the
entanglement entropy between the confined-boson packet and the escaping particles. We
make this analysis for different values of the slope p and for two different one-site interaction
strengths U = 1 and U = 10. As expected, the entropy grows as the time runs on, up to an
asymptotic value that essentially depends on N , U and p. The asymptotic value is reached
only if the escaping particles can move far away from the initial region. Of course, as we
are working with a finite system, for some values of the couplings, the asymptotic value
is not still reached. Notice how, at very low p (p = 1/8 in Figure 5.21), when all initial
particles are energetically connected to the propagative band, after an initial increase due
to the crossing of the position x = A by the particle wave-packet, we observe a fall down of
the entanglement related to the (almost-)complete escape of the initial cloud from region A.
This behavior is almost independent on the boson interaction value of U . Fixing the value
of U , by increasing the slope p, we see a growing of the S(A,∞). The asymptotic value of
the entropy essentially depends on the value of U as well as on the number of the ejected
particles: it reaches its maximum when approximately one half of the initial condensate is
emitted. The entanglement starts then to decrease at higher slopes since the number of
ejected particle fall down (see the case p = 2 in Figure 5.21). Moreover, when the system is
far away from the integrability points, e.g. for U = 1, its initial many-body wave function is
already quite entangled. As a consequence, we can see an enhancement of the entanglement
entropy. In other words, the asymptotic entanglement basically depends into two factors:
the “one-particle entangled” between an emitted particle and the original many-body wave
function, and the number of such emitted particles. The “one-particle entangled” essentially
depends on U : it is enhanced as the system moves far away from U = 0 or U = ∞.
Otherwise, the dominant behavior of the number of emitted particles depends on the value
of the slope p (with a residual weak dependence on U see Figure 5.20).
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Figure 5.22: The “defect of particles” ∆Nt (full lines) an the adapted Hilbert space dimension
M(t) (dashed lines) for the tDMRG simulations and for strong (on the left) and weak (on
the right) local interactions U . Different colors represent different potential slope p. Notice
how away from the integrability point (U = 1) the tDMRG needs much more states to give
almost the same accuracy as that obtained when the system is close to the integrability
(U = 10).

We give a numerical evidence of such an argument by confronting (see on the left of
Figure 5.21), in the Hard-Core boson limit, the asymptotic entanglement entropy S(A,∞)
as a function of VA with the initial bipartite entanglement entropy S0(x

+
p ) evaluated at the

point x+p = A − 2A/VA which approximately separates the trapped particles from those
connected to the propagative band. In particular, the initial bipartite entropy is predicted
by Conformal Field Theory (CFT) arguments to be

S0(x) =
1

6
ln

(
4A sinπρ0

π
sin

πx

A

)
+ c′, (5.82)

where c′ ≃ 0.25 is a non-universal constant [ABS11, CMV11, CMV]. We see that the
asymptotic value is nothing but the total initial entanglement between the density that will
remain trapped and the escaping one.

Finally, in the inset of Figure 5.21 we show the early instants evolution of S(A, t): the
initial growing of the entropy is strongly affected by the rate at which the particles are
emitted. This initial emitting rate depends on the one-site repulsion strength U as well as
on the slope p. The particles are initially emitted at a rate faster the higher is the slope and
the stronger is the one-site repulsion.

Adaptive t-DMRG: technical details and error analysis — To study the the
time-evolution of the Bose-Hubbard model we have implemented an adaptive t-DMRG
algorithm[Vid03, Vid04, DKSV04, WF04]. In all tDMRG simulations we have fixed J = 1/2
and the local Hilbert space dimension D = 3 (0,1 or 2 bosons per sites). With reference
to the previous entanglement entropy analysis, the system, with total site number L = 32,
has been initially prepared in the ground state of the initial Bose-Hubbard Hamiltonian H0

characterized by a given value of the repulsion strength U and an initial potential Vi. The
initial potential is fixed to Vi = V0 in the region [0, A = 8] and to a large value Vi = 10
outside (such that no particles are present for i > A). The value V0 (depending on U) is
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limit. Each black line represents the entanglement entropy error for different sizes of the
subsystem. The red curve is the random-walk error accumulation as predicted on the text.
The total error is essentially due to the Trotter decomposition. [On the right]: Deviation
of the total number of particles ∆Nt, of the escaping particles ∆Nesc(t) and of the entropy
∆SA(t). In this case we have simulated a larger system (L = 64) for a long time (T = 128).
We compare two types of algorithm: the tDMRG with varyingM (full lines) and the tDMRG
with fixed M = 8 (dashed lines). In the first case the “defect of particle” is vanishing, thus
it is not traced.

chosen such that the density ρ = N/A ≃ 1/2 in the region [0, A]. The ground state of
the initial Hamiltonian is obtained by a standard static DMRG simulation, by growing first
the system with an infinite-system algorithm followed then by a finite-system procedure
[Whi92, Whi93, Sch05, CRRM08]. The simulation is started with 4-sites and goes on up to
the desired 32 sites system with the infinite-system algorithm. During this infinite-system
part, the maximal dimension of the block Hilbert space is fixed to M = A = 8. Then the
finite-system procedure is implemented where at the end of each sweep the value of M is
upgraded looking for the energy convergence. It turned out that after ∼ 4 sweeps and with
a maximal number of states kept M ∈ [16, 24] the energy converges up to a precision of
∼ 10−8. Of course, the precise value of M and the number of sweeps depend on U .

Once the initial ground state has been obtained, we suddenly change the Hamiltonian to
H1 by quenching the potential to the new values Vi = VA − pi in the region [0, A] and zero
elsewhere. We perform adaptive t-DMRG simulations using a second order Suzuki-Trotter
decomposition of the evolution operator [WF04]. Explicitly, for a single time step, we have
used the approximation

U(t, t+ dt) = e−iH1dt ≈ e−iH1(1)dt/2 · · · e−iH1(L−1)dt/2e−iH1(L−1)dt/2 · · · e−iH1(1)dt/2, (5.83)

with time step dt = 0.05 up to the final time T = 24. Here, H1(ℓ) is the local Hamiltonian
acting on the two central free sites at the ℓth DMRG step. With this decomposition one
needs a complete left-to-right plus right-to-left sweep to evolve the system from t to t+ dt.
After that, we perform another half sweep without temporal evolution but just targeting
the already evolved state in order to improve the truncated Hilbert space description. Then
the following half sweep is used for measurement purposes. At this point, we take trace of
the maximal value of the block entanglement entropy and we upgrade the value of the block
number of states kept at time t+dt toM(t+dt) = int[M(t)×exp∆Smax(t)] in order to take
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into account the eventual growth of correlations. Starting the evolution withM(0) ∈ [16, 24]
we finish with M(T ) ∈ [24, 110] depending on the value of U and F .

The t-DMRG algorithm describes the system evolution using a truncated Hilbert space
and therefore introduces systematic errors in the dynamical description of the observables.
An estimate of the incertitude describing the evolved state can be obtained in the following
way: the exact dynamics has to conserve the total number of particles ([N̂ ,HBH ] = 0
where N̂ =

∑
i n̂i), while in the t-DMRG evolution one has a loss of particles due to the

Hilbert space truncation and this “defect of particles”, ∆Nt ≡ |N(t) − N(0)|, which is an
increasing function of time can be used as a measure of the error introduced by the Hilbert-
space truncation procedure during the evolution [DKSV04, GKSS05]. Depending on the
parameters of the simulation we obtained ∆NT ∈ [10−8, 10−4] (see Fig. 5.22). We want
to remark that the Trotter decomposition should not have effects on ∆Nt, indeed, even
approximating the evolution operator as in (5.83) the conservation of particles is locally
fulfilled [N̂ , e−iH1(ℓ)dt/2] at each step of the algorithm. In other words, to apply the local
evolution operator does not change the number of particles carried by the state, the only
change of N occurs at the renormalization step.

Truncation error on other observables can be deduced from this quantity. For example,
if we consider the entanglement entropy, assuming that S(t) ∼ lnNesc(t) [ABS11, CMV11,
CMV], and since the error on the escaping particles should be somehow proportional to the
“defect of particles” ∆Nesc(t) ∝ ∆Nt, the maximal error on the entropy should be of the
order of ∆S ∼ ∆NT /NT . We want to make clear that this error analysis is based on the
assumption that the approximations introduced by the truncation procedure have an effect
on a generic observable proportional to the effect on the dynamics of the total number of
particles. In principle the total number of particles should be conserved and ∆NT should
vanish. It does not mean that if ∆Nt = 0 then the related observables have no errors but
rather that whenever ∆Nt 6= 0 one may use it as a rough estimate of the algorithm precision.

The other source of error in the t-DMRG algorithm is linked to the Suzuki-Trotter
decomposition. Whenever one considers a non-conserved observable, for each time step dt,
the second-order approximation of the evolution operator introduces an error proportional
to dt3. For evolving the state up to time t we need t/dt steps. Supposing a random-walk
error accumulation we finally obtain a global Trotter error of the order of ∼ dt5/2

√
t.

To confirm what we said, we performed further analysis in the Hard-Core Boson limit.
Indeed, in such a limit we can check the t-DMRG dynamics by comparing with the exact
one. For this purpose on the left Figure in 5.23 we compare the t-DMRG calculation of the
entanglement entropy with the exact evolution in the case of a potential slope p = 1/2. One
can see that the error is essentially due to the time-step error introduced by the Suzuki-
Trotter decomposition ∼ 10−4

√
t (full red line). Moreover, in this case we found N(t) =

N(0) = 4 confirming the fact that the only source of error in such simulation is the Trotter
error.

A further analysis is presented on the right in Figure 5.23. In this case, in a larger system
(L = 64) and for a longer time evolution (T = 128) we explore the behavior of the “defect
of particles” ∆Nt, the escaping particle error ∆Nesc(t) and the entanglement entropy error
∆SA(t) in two different setup: M -fixed t-DMRG vs M -varying t-DMRG. The “defect of
particle” is vanishing in the M -varying case. One can clearly see that for times less than
∼ 20 (runaway time) the two protocol give almost the same results. After that time, in the
M -varying protocol the error is kept approximatively equal to the Trotter error ∼ 3 · 10−4,
otherwise in the M -fixed protocol, for times longer than the runaway time, the accumulated
truncation error becomes larger and larger breaking down the accuracy of the algorithm.
One final remark: whenever the truncation error is dominating, i.e. one may neglect the
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Figure 5.24: t-DMRG simulations of the current in the middle of a system of dimension
L = 32 with N = 16 particles. We initially prepare the system with a flat potential, then
we suddenly switch on a linear ramp with slope p. Different colors represent different values
of U . Times are rescaled with respect to the Bloch period T = 2π/p.

Trotter error, we have ∆SA(t) ∼ ∆Nesc(t) ∼ ∆Nt.
Finally, what has been said is restricted to a fixed dimension D of the local Hilbert space

and it does not give an estimate of how the observables change varying D. The convergence
of observables with D has been simply checked on smaller system sizes.

5.6.2 Quench in a box

To better understand how the properties of the ‘plateau’ region change when one considers
a non-integrable model, we performed simulation in a system initially prepared with N
particles spreaded over the whole lattice of length L. The evolution is performed switching
on a linear ramp over the whole lattice. In particular, for different values of the gradient
p and for different values of the boson-boson interaction U , keeping N = L/2 (half filling),
we have done t-DMRG simulations on a lattice with length L = 32, fixing the local Hilbert
space dimension to D = 3. Analyzing the current in the middle of the box (where the
‘plateau’ region appears) we confirm the theoretically predicted oscillations for sufficiently
large values of U . On the contrary, when U becomes smaller, the potential term on the Bose-
Hubbard Hamiltonian modifies the free-fermion behavior introducing an interaction between
the quasi-particles and modifying the shape of the current. In Figure 5.24 we compare the
t-DMRG simulations for the current in the middle of the box with the Hard-Core boson



5.6. Bose-Hubbard dynamics 95

0.1 1 10

HC
U=20
U=10
U=5

ω

J
L

/2
(ω

)

p=0.25

0.1 1 10

HC
U=20
U=10
U=5

ω

J
L

/2
(ω

)

p=0.5

0.1 1 10

HC
U=20
U=10
U=5

ω

J
L

/2
(ω

)

p=2

0.1 1 10

HC
U=20
U=10
U=5

ω

J
L

/2
(ω

)

p=4

Figure 5.25: Spectral analysis for the signals reported in Figure 5.24. For clarity data
are vertically shifted. Vertical lines indicate the frequencies ω∗ (black line) and ω̃ (colored
lines).

behavior for different values of U and p. The presence of different peaks in the spectrum is
perfectly showed in Figure 5.25. Indeed, we compare the Fast Fourier Transform of JL/2(t)
for U = 20, 10, 5 and p = 0.25, 0.5, 2, 4 with the spectrum we obtained for the Hard-Core
bosons. The spectrum has a bandwidth around ω∗ = 2π/T = p because we perform the
numerical spectral analysis in a finite temporal window t ∈ [0, 32]. Notice that for p = 4,
the main characteristics of the spectra corresponding to U = 20, 10 are quite similar, on the
contrary for U = 5 a new high peaks appear at a lower frequency than ω∗. Furthermore, in
the case of smaller gradient p = 0.25, 0.5, 2 a new small broad peak appears at frequencies
ω̃ ≃ U . For p = 4 this new broad peak is no more visible, nevertheless its effects are still
visible: indeed, the underlying presence of such broad peak amplifies the high-frequency
harmonics of the principal peak.

The analysis of these spectra is an hard task, specially because of the overlapping of many
different effects. Actually, the only effect that it is clear from the analysis of Figure 5.25 is
just the appearance of the peak at ω̃ ≃ U . Such a semicircular peak was already predicted
in the dynamic structure factor S(q, ω) of a boson gas in an optical lattice [GMG09].

From the equation of motion for the particle density ni, we have implicitly defined its
conjugate operator −∇Ji = Ji−1 − Ji. In particular, selecting the site in the middle of
the ‘plateau’, we plot in Figure 5.26 the trajectories of the site L/2 in the phase space. We
expect that for the Hard-Core bosons model, in the thermodynamical limit, the path reduces
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Figure 5.26: Phase space trajectories for the same systems as in Figure 5.24: p = 1 (left),
p = 4 (right).

to the point (0, 1/2). For a finite system there are always oscillations in the observables due
to the finite size. On the other hand, the shape of the path also depends on the value of the
couplings. In particular, for p = 4, by decreasing the value of U we observe an increasing
of the fluctuations on the value of the density and the current: paths for U = 20, 10 are
quite regular showing only one principal frequency, otherwise, for U = 5 a more complicated
trajectory appears. This completely different behavior is related to the complexity of the
frequency spectrum as shown in Figure 5.25. Moreover, analyzing the Figure for p = 1, it
seems that for smaller value of the slope, the variations in the value of the boson-boson local
interaction U have less influence on the shape of the phase-space trajectories. However, such
trajectories yet show a different shape with respect to the p = 4 cases: major fluctuations
are present in the particle density value, showing that a greater number of particles moves
along the ramp, in accord to the local equilibrium theory.

Lanczos method in a box We perform further numerical investigations by using the
Lanczos algorithm. In this case the lattice length is varied from L = 12 to L = 18. The
system is prepared in the ground-state of a box without the linear potential which is suddenly
turned on at t = 0. The simulation is performed by taking Nmax = N (half-filling initial
condition). It is interesting to investigate whether the non-integrable nature of the Bose-
Hubbard Hamiltonian has consequences on experimentally accessible observables. One of
them is the momentum distribution nk(t) = 〈n̂k〉(t), with

n̂k =
1

L

∑

n,m

eik(m−n)b†mbn, (5.84)

measured using time of flight techniques. Moreover, although it is not experimentally ob-
servable, the fidelity F (t) = |〈Ψ0|Ψ(t)〉| quantifies the distance from the initial state and is
as well sensitive to the chaotic features of the Hamiltonian.

The first interesting quantity to look at is the momentum distribution versus time. At
the single-particle level, the momenta should be shifted with time according to k(t) = k−pt
(see Chapter 3 ); thus, for U = 0, we observe in Figure 5.27 that the many-body momentum
distribution exhibits Bloch oscillations at velocity p. Increasing U does not change this
velocity (difficult to see in the numerics) but the main effect of the interactions is to destroy
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Figure 5.27: Lanczos simulations for the momentum distribution nk(t) at different time
t ∈ [0, 60] in a box with size L = 16 and N = 8 particles and slope p ≡ F = 2J = 1. We keep
Nmax = N for correctly describing the noninteracting limit (U = 0). In the left figure we
show the first two periods of the Bloch oscillations. Moreover, the high frequency oscillations
are finite size effects associated to the momentum-space discretization (∼ 2π/L). On the
right figure these finite size effects are removed by averaging over a short time windows.
Notice how the nk(t) distribution is coherent over a long time for the two limiting cases
(U/J = 0 and U/J = 40). Otherwise, for non-integrable system (U/J = 2) the signal
is damped, showing a loss of coherence. On the right maxnk(t) represents the evolution
of the peak and better shows the loss of coherence. All these data have been obtained in
collaboration with G. Roux (LPTMS, Paris)

the central peak. Indeed, for U = 1, we observe a strong damping of the coherence after
short times. Interestingly, increasing U brings us close to the Hard-Core Boson limit and the
damping time increases again. Finally, for very large U , the central peak shape is preserved
for very long times.

Another interesting point is that the zero-momentum evolution is related to the fidelity of
the system in the near-integrable regimes. Indeed, we know that the momentum distribution
gets back to its initial position in k-space after a period T = 2π/p. Even more, the whole
many-body wave-function actually comes back close to the initial state, yielding strong
revival of the fidelity. Figure 5.28 shows that the peaks in the fidelity and in the zero-
momentum distribution are nicely correlated. Consequently, the zero-momentum peaks
appear as a close measure of the fidelity in this setup (in the near integrable regimes).

A signature of non-integrability is also found looking at the condensate fraction f0(t), i.e.

the largest eigenvalue of the correlation matrix 〈b†i bj〉t (Figure 5.29). Again, for U = 0 no
damping is observed. When U = 1 a strong damping appears and f0(t) relaxes. Increasing
U close to the Hard-Core boson limit, the damping time increases significantly, a signature
of the integrable nature of the Hard-Core boson model.

A final remark can be done comparing f0(t) and maxnk(t) in the non-interacting regime
(U=0). Indeed, the constant value of the condensed fraction f0(t)/f0(0) = 1 states that
all atoms occupy the same many-body wave function for all times; nevertheless, the sudden
quench at t = 0 affects the many-body correlations of the initial condensate and this is
reflected in a non-trivial evolution of nk(t).
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Figure 5.29: Evolution of the condensate fraction with time, showing again the role of
integrability. All these data have been obtained in collaboration with G. Roux (LPTMS,
Paris)

5.7 Discussion and Summary

In summary, we have analyzed the dynamics of ultra-cold bosons in tilted optical lattices.
Starting from the Bose-Hubbard model, in the limit of Hard-Core bosons we developed a
hydrodynamical theory which predicts the behavior of the self-trapped condensate as well as
the ejected bosons. Within our hydrodynamical approach, we have derived the properties of
physical quantities like the density of particles or the current of particles generated after the



5.7. Discussion and Summary 99

loading of the linear ramp. The basic ingredients of the hydrodynamical theory are the local
equilibrium hypothesis, i.e. the system is locally at equilibrium with the local potential, and
the motion of each phase-space point (x, q) is balistic with velocity that depends directly on
the dispersion law. Using this theory we can perfectly reproduce the macroscopic bosonic
oscillations over the linear ramp. Moreover, we can easily explain the total number of ejected
particles as a function of the potential slope p, and we exactly reproduce the evolution of
the density and current profile of the ejected particles.

Finally, using the t-DMRG and Lanczos algorithms, we have numerically investigated the
dynamics generated by a sudden quench in the Bose-Hubbard model Hamiltonian. These
numerical studies confirm the presence of two main frequencies located at the local interac-
tion U and the external potential ramp p (the hopping term is fixed to t = 1/2). Moreover,
when the system is far away from the integrability points (U = 0 and U =∞), one can see
a loss of coherence in the evolution of the trapped bosons. We have seen that, in the near
integrable regime, the fidelity and the zero-momentum distribution show the same periodi-
cal revivals. In that sense, measuring the momentum distribution nk(t) turns out to be an
effective tool for analyzing the properties of integrability of the model.
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Chapter 6
Temperature landscape dynamics in
extended quantum systems

«Three quarks for Muster Mark.»

J. Joyce

Thermodynamics and statistical mechanics are powerful tools that consent to describe
in a fundamental way the classical mechanism of thermalization. The second law of

thermodynamics catches the essential idea of such a mechanism: a generic isolated system,
prepared in a non-equilibrium macroscopical state (in general corresponding to a set of
distinct microscopical configurations) relaxes toward an equilibrium macrostate character-
ized by stationary macroscopic quantities. Starting from the beginning of the last century,
quantum statistical mechanics has been developed to describe thermodynamics of quantum
systems. In spite of the unitary evolution of the all microscopical quantum mechanical par-
ticles composing the whole system, the process governed by the second law is essentially
irreversible. This irreversibility seems to be connected with two general hypothesis: (i) a
real system consists of a huge number of atoms and its thermal-equilibrium macrostate is
characterized by the largest number of different microscopical configurations with respect to
any other macroscopical state; (ii) reality is actually complex and generic interactions be-
tween particles should reduce the number of independent constants of motion (the number of
Casimir operators) imposing the Gibbs equilibrium ensemble. Nevertheless, also when we are
simply working with isolated integrable systems, numerical and analytical evidence suggests
that systems relax to an equilibrium characterized by a generalized Gibbs ensemble. In this
generalized ensemble, the Gibbs exponent may contain a more generic linear combination of
conserved quantities instead of only the energy [RDYO07, RDO08, Rig09, PDH11, KP09].
The derivation of thermodynamical phenomena from unitary quantum-mechanical dynamics
is yet one of the challenges of physics. So far, physicists devoted their attentions to try to
solve essentially two issues: on one side, the understanding of canonical thermalization by ex-
ploring the existence of a long-time equilibrium macrostate[Rei08, Tas98, GLTZ06, PSW06,
LPSW09, EG03, VZ10, IC09, CMDO09, BCH11], and on the other side, the possibility to
properly define observables suitable for out-of-equilibrium isolated quantum systems, with
a special focus to the entropy[SPR11]. Indeed, quantum systems seem to show two different
thermalization regimes: week thermalization occurs when, to justify the approach to a ther-
mal state, a long-time average has to be considered; otherwise, when thermalization occurs
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Figure 6.1: (Color online) Classical (a) versus quantum (b) temperature landscape after
putting in contact the ‘hot’ subsystem and the ‘cold’ subsystem.

without any time average, we refer at this phenomenon as strong thermalization [BCH11].
However, we are still far from having really understood what is the best mechanism to ex-
plain the process of thermalization in a quantum system. Surely if such a mechanism exists,
it must ensure thermalization independently of microscopic details of the Hamiltonian.

Moreover, beautiful experiments with ultra-cold atoms have attained a level of isolation
and control of parameters that gives us the opportunity to analyze also the out-of-equilibrium
properties of quantum systems relaxing toward equilibrium [KWW06, HLF+07].

In this chapter we try to merge these goals by focusing our attention on the temporal
evolution of a closed quantum system prepared in a off-equilibrium initial state. Indeed, one
of the open questions arising from thermodynamics is the microscopical justification of the
heat equation ∂tθ = κ∂2xθ. Such equation governs the temporal evolution of the temperature
field θ(x, t) in a continuous one dimensional classical medium, in the hypothesis of diffusive
heat conductance. Guided by some local assumptions [GMM04, CDEO08, CFM+08], we
build a similar quantum-mechanical theory and explore its scaling properties especially by
respect to the classical ones.

6.1 Classical thermalization dynamics

Before introducing the quantum thermalization scheme, we briefly remind the classical solu-
tion of the diffusive heat equation. For that reason, let us consider a one dimensional system
S of length L initially divided into two identical subsystems S1 and S2 of length L/2 with
temperatures respectively θ1 and θ2. At time t = 0+ we put S1 and S2 in contact and leave
the whole system to evolve isolated from the environment. The dynamics of thermalization,
in the classical diffusive hypothesis, is governed by the heat equation

∂tθ(x, t) = κ∂2xθ(x, t), (6.1)

with initial condition

θ(x, 0) = θ0(x), ∀x ∈ [0, L], (6.2)
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and free boundary conditions

∂xθ(0, t) = ∂xθ(L, t) = 0, ∀t > 0. (6.3)

The general solution is given by

θ(x, t) =
θ1 + θ2

2
+

∞∑

n=1

cn cos
nπx

L
exp−n

2π2κt

L2
(6.4)

where cn =
2
L

∫ L

0
dxθ0(x) cos

nπx
L . Imposing the step-like initial condition

θ0(x) = θ1Π(0, L/2) + θ2Π(L/2, L), (6.5)

where Π(a, b) = 1 for x ∈ [a, b] and zero otherwise, it is straightforward to obtain cn =
(θ1−θ2)An, with An = 2 sin(nπ/2)/nπ. The temporal evolution of the average temperature
of the subsystem S1 (S2) is given by integrating over the corresponding region [0, L/2]
([L/2, L]); one has

θ1(t) = (θ1 + θ2)/2 + (θ1 − θ2)
∞∑

n=1

A2
n exp−

n2π2κt

L2
≡ θ̄ + ϑ0f(t), (6.6)

θ2(t) = (θ1 + θ2)/2− (θ1 − θ2)
∞∑

n=1

A2
n exp−

n2π2κt

L2
≡ θ̄ − ϑ0f(t), (6.7)

with θ̄ = (θ1 + θ2)/2 and ϑ0 = θ1 − θ2. The initial condition is fulfilled thanks to the
normalization condition

∑∞
n=1A

2
n = 1/2.

These equations predict an exponential evolution for the temperature equilibration, with

a characteristic relaxation time τ defined by the condition
∑∞

n=1A
2
n exp−n2π2κτ

L2 ≃ 1/4 that
gives the upper bound

τ ≃ (L2/κπ2) ln 2. (6.8)

Finally, the scaling properties of the “equilibration temperature” ϑ(t) ≡ θ1(t) − θ2(t) are
simply given by

ϑ(t) = ϑ0Θ(t/τ), (6.9)

where Θ(z) is an universal scaling function with scaling behavior Θ(0) = 1 and Θ(z) → 0
for z →∞.

6.2 Quantum thermalization dynamics

Now we switch to the quantum counterpart of the thermalization mechanism. Let us consider
a one dimensional quantum system S described by a continuum set of fundamental field
operators φµ and suppose that initially the system splits into two spatially isolated non-
interacting subsystems S1 and S2, each of them governed by the Hamiltonian H1 and H2,
and living in the spatial domains D1 and D2 respectively. We prepare, at time t = 0, the
whole system in a tensorial product state ρ(0) = ρ1(0)⊗ ρ2(0), where the density matrix of
each subsystems has the canonical representation

ρα(0) = exp−β0
αHα/Zα, (6.10)
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with initial inverse temperature β0
α, and α = 1, 2. At time t = 0+ we put in contact the

two subsystems by switching on the interaction Hamiltonian HI . In terms of the funda-
mental fields φµ the total Hamiltonian is given by integrating a local Hamiltonian density
H(φµ, ∂xφµ) over the whole system:

H =

∫
H(φµ, ∂xφµ) dx. (6.11)

The evolution of the total density matrix is governed by the Heisenberg equation of motion

∂tρ(t) = −i[H, ρ(t)], (6.12)

where
ρ(t) = e−iHtρ(0)eiHt (6.13)

and we have fixed ~ = 1. Supposing now a really infinite system, we look at the properties of
a small subsystem Sx spatially located in the region [x−∆x/2, x+∆x/2]. The expectation
value of a generic local observable Ox acting in such subsystem is simply given by

〈Ox〉 = TrSx
{Oxρ(x, t)}, (6.14)

where we defined the local density matrix of the subsystem,

ρ(x, t) = TrS\Sx
{ρ(t)}, (6.15)

by means of the partial trace over the rest S\Sx. The hypothesis of local interactions, jointed
with a specific non-degenerate dispersion relation ǫk of the eigenvalues of the Hamiltonian
H make it possible to introduce a non-equilibrium local temperature [HMH04a, HMH04b].
Indeed, under such assumptions, the information propagates through the interval ∆x in a
time greater than the relaxation time of the local quantum system Sx but anyway much
more smaller than the time that the whole system needs to reach the equilibrium; this
holds especially in the limit ∆x ≫ 1 with ∆x/L ≪ 1, where L is the size of the whole
system. During the evolution the local system Sx reacts to the external modification of
the whole system and adjusts adiabatically its ‘temperature’. In some sense, looking at the
properties of the local quantum system Sx, the rest of the system S\Sx plays the role of the
environment: after preparing Sx in a specific initial state, its evolution is governed by an

effective time-dependent Hamiltonian H
(eff)
x (t) which encodes the dynamical interactions

with the environment variables we have traced out. From that point of view, the hypothesis
introduced above reduces into the adiabatic condition

|∂tH(eff)
x (t)| ≪ 1/τx, ∀x, t, (6.16)

where τx is the typical relaxation time of the subsystem Sx. In other words, guided by these
assumptions, after introducing the local Hamiltonian

Hx =

∫ x+∆x/2

x−∆x/2

H dx′, (6.17)

we can define the local inverse temperature β(x, t) as the function that minimizes the distance
between the real evolved reduced density matrix with respect to the canonical local density
matrix ρx(λ) = exp(−λHx)/Zx at inverse temperature λ.

To quantify the closeness of the states, we consider the distance

dn(x, t, λ) = ||ρ(x, t)− ρx(λ)||n, n = 1, 2 (6.18)



6.2. Quantum thermalization dynamics 105

where norm definitions are

||A|| = Tr{|A|}, (6.19)

||A||2 = Tr{A†A}, (6.20)

the last one being deduced directly from the Hilbert-Schimdt operator norm (on bounded op-
erators). Then, the effective local temperature at time t is defined through the minimization
of the distance dn(x, t, λ) over the one parameter canonical family ρx(λ):

∀x, t β(x, t) : dn(x, t, β(x, t)) ≡ inf
λ
dn(x, t, λ). (6.21)

Despite the existence of many possible ways to define such a distance, here we have chosen
to use the trace-distance because it characterizes how hard it is to distinguish two states
experimentally (even given perfect measurements). Indeed, when it is small, the two states
are effectively indistinguishable. More precisely, it is equal to the maximum difference in
probability for any outcome of any measurement performed on the two states [PSW06,
LPSW09]. Surely, we could introduce a more sophisticated trace-norm−n definition of
distance, where n is a generic integer exponent1; however, simply introducing (6.18) one
may analyze the stability of the different temperature definitions that we will propose later.

It turns out that, the natural Hilbert-Schimdt definition of norm is more stable with
respect to the trace-norm-1 (see Figure 6.2). In particular, using d2(x, t, λ), the definition
(6.21) leads to the implicit equation

〈Hx∆λρ(x, t)〉cλ|λ=β(x,t) = 0, (6.22)

where∆λρ(x, t) ≡ ρ(x, t)−ρx(λ) and where 〈AB〉c = 〈AB〉−〈A〉〈B〉 is the connected correla-
tion with the canonical expectation 〈A〉λ ≡ Tr{Aρx(λ)} associated to the local Hamiltonian
Hx.

Starting from this result, we can easily define the average temperature over the subsystem
Sα by integrating over the proper domain

〈β〉α(t) =
1

VDα

∫

Dα

β(x, t)dx. (6.23)

Such a definition should be compared with an alternative global definition of temperature
of system S1 (S2) arising from the minimization of the global functional

dnα(t, λ) ≡ TrSα |ρα(t)− exp(−λHα)/Zα|n for α = 1, 2, and n = 1, 2 (6.24)

where ρα(t) = TrS\Sα
{ρ(t)}. Noting that this last global definition exactly gives, at time t =

0, the initial subsystem temperature β0
α. Nevertheless, some problems arise from considering

a time-dependent temperature defined by looking at the evolution of an extended part of
the whole system: at a given time t > 0 it is not sure that an extended part of the system
is really described by a density matrix closes to a canonical distribution. Indeed, measuring
temperature always consists in putting a small system (a thermometer) in contact to a part
of the object under study. In other words, using a sufficiently reactive thermometer, we can
register the changes in time of a local area of the whole system. Thus, at each time, the
thermometer gives us the average temperature of the small subsystem.

1Notice that for n→∞ we fall into the maximum-norm definition.
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Figure 6.2: Global vs local thermal equilibration in the Hard-core boson chain initially
prepared at different temperature, β1 = 0.05, β2 = 0.1. In (a1)-(a2) temperature is de-
fined via the trace-norm−2; the corresponding evolution of the functional

√
d2α(t, βα) and∫

dx
√
d2(x, t, β(x, t)) calculated at the extrapolated temperatures is plotted. In (b1)-(b2)

the same as before but using the trace-norm-1 definition of distance. The local average tem-
perature (dashed lines) is obtained by integrating the local temperature profile over each
subsytems.

6.3 Hard-Core boson model

Due to the recent experiments with boson gases loaded in optical lattice, especially with
respect to the capability of experimental physicists to reproduce macroscopic inhomogeneous
conditions [KWW06, HLF+07, CBL+09], we decide to analyze the relaxation dynamics in
the one-dimensional Bose-Hubbard model, with Hamiltonian

H = −t
∑

i

(b†i bi+1 + b†i+1bi) +
U

2

∑

i

n̂i(n̂i − 1)− µ
∑

i

n̂i, (6.25)

where b†i (bi) are boson creation (annihilation) operators, with n̂i ≡ b†i bi and canonical

commutation relations [bi, b
†
j ] = δij . In particular, we can easily manage the Hard-Core

boson limit.
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Thus, in the limit of strongly repulsive bosons (U →∞), the Bose-Hubbard Hamiltonian,
after a Jordan-Wigner transformation, reduces in the quadratic fermion Hamiltonian

HHC =
∑

ij

c†iTijcj , (6.26)

with
Tij = −µδij − t[δij+1 + δij−1], (6.27)

where c†i (ci) are fermion creation (annihilation) operators, with canonical anticommutation

relations {ci, c†j} = δij . Introducing the free fermion operators ηq =
∑

i ϕq(i)ci (and η†q),
where

∑
j Tijϕq(j) = ǫqϕq(i), we straightforwardly cast the Hamiltonian in diagonal form

HHC =
∑

q ǫqη
†
qηq.

Now, considering a chain of L sites, due to the tensorial form of the initial density
operator ρ1(0)⊗ ρ2(0), the spatial correlation matrix at time t = 0 is

〈c†i cj〉0 =
∑

q

ϕα
q (i)ϕ

α
q (j)

1 + expβαǫαq
(6.28)

for i, j in the same spatially correlated domain, otherwise is zero. For α = 1, 2, ϕα
q (i) and ǫ

α
q

are the eigenvectors and eigenvalues of the initial Hamiltonian Hα of each subsystem, and
βα is the initial inverse temperature. The evolution is governed by the total Hamiltonian

H = H1 ⊗ I2 + I1 ⊗H2 − t[b†L/2bL/2+1 + h.c.] (6.29)

that gives
〈c†i cj〉t = R†(t)〈c†i cj〉0R(t), (6.30)

where the matrix elements of the unitary evolution operator are [PK07, PK05, Kar02]

Rij(t) =
∑

q

ϕq(i)ϕq(j)e
−iǫqt. (6.31)

Now, considering a generic subsystem of ∆x sites around x position, by definition, the
reduced density matrix ρ(x, t) have to reproduce all expectation values in the subsystem.
Therefore the one-particle function is

Cij(x, t) = Tr{c†i cjρ(x, t)} for i, j ∈ ∆x, (6.32)

and the higher functions must factorize. According to Wick’s theorem, this property holds
if ρ(x, t) is the exponential of a free-fermion operator

ρ(x, t) = exp
{
−

∑

i,j

c†iKij(x, t)cj

}
/ZK(x, t) ≡ exp

{
− β0(x)

∑

i,j

c†iTij(x, t)cj

}
/ZT (x, t),

(6.33)
where we introduced the evolved local energy matrix Tij(x, t) and the initial temperature
profile β0(x). It can be shown that matrices C(x, t) and K(x, t) are related by [Pes03, Pes04,
EP07, EKPP08]

KT (x, t) = β0(x)T
T (x, t) = ln[(I− C(x, t))/C(x, t)]. (6.34)

Using such properties, the corresponding entanglement entropy follows immediately from
the spectrum λq(x, t) of the local correlation matrix, S(x, t) = −∑

q λq(x, t) lnλq(x, t) +
[1− λq(x, t)] ln[1− λq(x, t)].
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Now, looking for the solution of the implicit equation (6.22), one needs to re-express the
time evolved “Hamiltonian” operator Hx(t) in the diagonal basis of the local Hamiltonian
Hx:

Hx =
∑

i,j

c†iTij(x, 0)cj =
∑

p,q

∑

i,j

c†iU(x)ipΛ(x, t)pqU
†(x)qjcj , (6.35)

which leads to

Hx =
∑

p,q

= η(x)†pΛ(x, 0)pqη(x)q =
∑

q

ǫq(x)η(x)
†
qη(x)q, (6.36)

with ηp(x) =
∑

i U
†(x)pici the diagonal Fermi operators and where U(x) is the unitary

matrix diagonalizing the one-particle Hamiltonian T (x, 0) = U(x)Λ(x, 0)U†(x) with diagonal
one-particle energy matrix Λ(x)pq = ǫq(x)δpq.

In the same way, the time evolved “Hamiltonian” operator

Hx(t) ≡
∑

i,j

c†iTij(x, t)cj , (6.37)

can be diagonalized in terms of an other set of diagonal Fermi operators

ξp(x, t) =
∑

j

W †(x, t)pjcj (6.38)

where W (x, t) is the unitary transformation diagonalizing T (x, t) with eigen-spectrum

Λ(x, t)pq = ǫq(x, t)δpq. (6.39)

In the Hx diagonal basis the time-evolved Hx(t) is given by

Hx(t) =
∑

q

[U†(x)T (x, t)U(x)]qqη
†(x)qη(x)q

+
∑

p 6=q

[U†(x)T (x, t)U(x)]pqη
†(x)pη(x)q, (6.40)

where we have split the diagonal part from the off diagonal one.
Assuming that, at large enough times t ≫ τx, where τx is the typical relaxation time,

the local system approaches a canonical state, we expand the unitary matrix W (x, t) =
U(x) + γZ(x, t) where γ is a real small expansion parameter and ||Z(x, t)|| = O(1). Since
W †(x, t)W (x, t) = I, on has U†(x)Z(x, t)+Z†(x, t)U(x) = −γZ†(x, t)Z(x, t). At the leading
order in γ, the time evolved operatore Hx(t) becomes

Hx(t) =
∑

q

ǫq(x, t)η
†(x)qη(x)q + γ

∑

p 6=q

ωpq(x, t)η
†(x)pη(x)q + o(λ). (6.41)

The second term allows for transition between the eigen-one-particle states of the system
Hamiltonian Hx =

∑
q ǫq(x)η

†(x)qη(x)q, while the first leads simply to a level shift. The
density matrix ρ(x, t) can therefore be expanded as

ρ(x, t) =
1

ZT (x, t)
e−β0(x)

∑
q ǫq(x,t)η

†(x)qη(x)q

×
{
1 + γ

(
O − 1

2
[D,O] +

1

6
[D, [D,O]]

)}
, (6.42)
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where D ≡∑
q ǫq(x, t)η

†(x)qη(x)q is the diagonal contribution and

O = β0(x)
∑

p 6=q

ωpq(x, t)η
†(x)pη(x)q (6.43)

is the off-diagonal one which does not contribute into the expectation value (6.22) defining
the effective local temperature. Accordingly, equation (6.22) becomes

〈Hx∆λρ
(c)(x, t)〉cλ

∣∣∣
λ=β(x,t)

= 0, (6.44)

with
∆λρ

(c)(x, t) = ρ(c)(Hx(t), β0(x))− ρ(c)(Hx, λ), (6.45)

where

ρ(c)(Hx(t), β0(x)) =
1

Z(Hx(t), β0(x))
exp−β0(x)

∑

q

ǫq(x, t)η
†(x)qη(x)q (6.46)

is the effective canonical matrix associated to the time evolved Hamiltonian Hx(t). Notice
that we have explicitly introduced the apex (c) to denote the canonical matrix. Thus, intro-
ducing the initial canonical population pq(x, λ) = 1/[1 + expλǫq(x)] the implicit equation
reduces to

∑

q

ǫq(x)〈[η†(x)qη(x)q − pq(x, λ)]∆λρ
(c)(x, t)〉λ

∣∣∣∣∣
λ=β(x,t)

= 0. (6.47)

Defining p̃(u) ≡ 1/(1 + expu), one obtains finally

Z(Hx, 2λ)

Z(Hx, λ)

∑

q

ǫq(x)[p̃(2λǫq(x))− p̃(λǫq(x))] =

Z(H̃x(t), 2λ)

Z(Hx(t), β0(x))

∑

q

ǫq(x)[p̃(λδq(x, t))− p̃(λǫq(x))], (6.48)

where
λδq(x, t) ≡ β0(x)ǫq(x, t) + λǫq(x) (6.49)

and

H̃x(t) ≡
1

2

∑

q

δq(x, t)η
†(x)qη(x)q. (6.50)

At high temperature, β(x, t) ∼ β0(x)≪ 1, equation (6.48) drastically simplify and leads to

β(x, t) = β0(x)

∑
q ǫq(x)ǫq(x, t)∑

q ǫ
2
q(x)

, (6.51)

or, in terms of the non-equilibrium populations λq(x, t) = Tr{η†(x)qη(x)qρ(x, t)},

β(x, t) =
1∑

q ǫ
2
q(x)

∑

q

ǫq(x) ln
1− λq(x, t)
λq(x, t)

, (6.52)

which are the Hard-Core boson counterpart of equation (6.4).
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Figure 6.3: Energy level population at the beginning and after “equilibration” for the global
subsystems (a) and for two symmetrical local subsystems (b). The blue and red dot-dashed
lines are the initial canonical distributions; the black straight line represents the canonical
distribution at the average temperature. In the local case we also plot the population of
the local subsystem x1 at the intermediate time t/L = 0.5 (yellow dashed line) and the
canonical distribution at the extrapolated temperature (gray dashed line).

6.3.1 Numerical simulations

In Figure 6.1 we compare the evolution of the temperature profile of the Hard-Core chain
with the diffusive classical behavior. For the numerical simulations we set γ = 1/2 and
µ = 0. The initial inverse temperatures are fixed at β1 = 1/10 and β2 = 1/20. For these
temperatures, formula (6.52) and the numerical minimization of the non-linear functional
F (2) are indistingushable. Notice that, in the Hard-Core boson chain, time scales linearly
with space. Of course, Figure 6.1 gives us simply a qualitative picture of the evolution
of the temperature profile. With respect to the previous sections, in order to confirm the
robustness of the local definition of temperature, we compare the two trace-norm in (6.18)
for the global and local cases. In particular, we start our analysis by looking at the long-time
equilibration behavior of the quantum system.

Thus, in Figure 6.2 we report the simulations we have done in a system with L = 800 sites.
The system is initially prepared into two subsystems of equal size and initial temperatures
β1 = 1/10 and β2 = 1/20. We extract the local temperature by fixing ∆x = 20 2. Certainly,
we expect that the thermal properties of the system still depend on the size of the subsystem
that we used for calculating the profile, but this dependence will disappear with increasing
the system size. Notice that the spatial average of the temperature profile (6.52) converges
to the value βe = (β1 + β2)/2. The convergence is quite robust since it is independent of
the type of functional that is minimized to obtain the equilibrium temperature. Otherwise,
this is not true for the temperature minimizing the global functional. Indeed, by minimizing
the global trace-norm one obtains an equilibrium temperature above βe or, using the global

2We checked the stability of the local properties by comparing different results obtained with ∆x =
10, 20, 40.
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Figure 6.4: Scaling of the temperature profile in the causal region for a Hard-Core boson
chain of length L = 800. Profiles are calculated via minimization of the local trace-norm2 dis-
tance with ∆x = 20. For each different initial temperature, curves at times t = 200, 300, 400
(respectively red, blue and black) show a perfect collapse. Different symbols correspond to
different ratios β1/β2 and red lines represent the scaling for the inverse temperature ratio
showing the expected symmetric property B(x/t, β2/β1) = −B(−x/t, β1/β2). The insets
represent the unrescaled profiles for β1 = 0, β2 = 1 and β1 = 0.05, β2 = 0.1.

trace-norm−2 one gets a temperature below βe. Moreover, the thermalization temperature
extracted via local functional shows really interesting features. In the early instants of the
evolution, global and local temperatures (respectively dashed and full line in Figure 6.2) show
a similar behavior; notice how the hot temperature (red lines) and the cold temperature (blue
lines) cross each other at the same point. After that point, the global temperatures oscillate
around that value, otherwise, the local temperatures deviate from that value converging to
the average βe. Furthermore, to go more inside the mechanism of thermal equilibration,
we analyze F [β(x, t)] versus Fg[βα(t)]. It seems evident that local thermalization better
describes the real state of the system. In other words, the spatial average of local observables
seems to be more robust than its global counterpart.

What we said seems to be evident also from the energy level populations. In Figure
6.3 we compare the occupation probability of the one-particle energy levels after thermal
equilibration with respect to the canonical distribution for the Hard-Core boson model

p
(can)
k =

1

1 + expβǫq
. (6.53)

Again, the system is the same as before. At the beginning the hot subsystem and the cold
subsystem are prepared in a canonical state with temperature respectively β1 = 0.1 and
β2 = 0.05 (blue and red dashed lines in Figure 6.3 (a)). After waiting a sufficiently long
time, t/L ≃ 100, we numerically extract the energy level population for the two subsystem.
Notice how the two global distributions, after equilibration, show almost the same profile.
However, the distributions are not canonical: the black line, representing the canonical
distribution at βe, does not fit the numerical data.
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Otherwise, looking at the local intervals located in the middle of the two large subsystems,
one obtains a completely different result. First of all, at the beginning of the evolution,
the two local subsystems show a canonical distribution for the energy level population.
After thermalization one observes a perfect collapse on the canonical distribution at βe.
Furthermore, the local subsystems seem to preserve the canonical distribution also during the
early time of the evolution. In Figure 6.3 (b) the yellow dashed line represents the population
at time t/L = 1/2 of the local subsystem located in x1. Notice the good agreement with the
canonical distribution at the expected temperature (dashed gray line). Again, the expected
temperature is defined via minimization of the local functional F (2)[β]. From this analysis
we can conclude that the local density matrices seems to show a quasi-Gibbs state also
during the early instants of the evolution. Otherwise, the global density matrix does not
show such a behavior.

Scaling of the temperature profile — For integrable systems, time evolution can cause
a dephasing effect, leading for finite subsystems to steady states[CDEO08, CFM+08, BS08].
In spite of that, the free modes of the global system evolve coherently up to the appearance
of a sort of “dephasing” due to the repeated reflections from the boundaries. Again, in some
sense, for an integrable model, the thermalization to the average temperature is a finite-size
effect. Indeed, if we imagine to put in contact at x = 0 two semi-infinite integrable systems at
different temperatures [PK07, PK05, Kar02], the coherent modification of the temperature
profile will start from the contact point to the infinity, and reaches equilibration at t → ∞
never hurting the boundaries. With respect to the finite counterpart (two subsystems of
length L/2), it means that the only time window that the system will explore is t ∈ [0, L/2],
and only local thermal equilibration can be considered. Even in this case, from Figure 6.2,
when t/L→ 1, global and local temperatures converge to a value slightly different from the
average value βe. In other words, the evolution of an infinite integrable system in general
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does not converge to a pure canonical state. Indeed, it is known that, for two semi-infinite
Hard-Core boson chains put in contact, the long-time stationary state is described by the
density operator [Pla08]

ρ ∝ e−βeHst , with βe = (β1 + β2)/2, (6.54)

with

Hst = HHC +
β1 − β2
β1 + β2

HJ , (6.55)

where HJ is a non-local interaction term with the form of a current.
Of course, looking for a temperature that minimizes the distance from a pure canonical

ensemble, we obtain a different result for the equilibration temperature. Coherently with
the previous formula, if we consider a finite-size subsystem, for t → ∞ one has 〈HJ〉 → 0
due to the repeated reflections of each mode at the boundaries: the only term that survives
in the exponent of the density operator is the energy.

Guided by these considerations we analyze the scaling behavior of the temperature profile
in the Hard-Core boson chain. In particular (see Figure 6.4 and Figure 6.5), considering
the space-time causal cone having center into the contact point, we propose, in the high-
temperature regime, the following scaling behavior

β(x, t) =
β1 + β2

2

[
1 +

β1 − β2
β1 + β2

B(x/t, β1/β2)
]
, (6.56)

really similar to the classical counterpart (6.4) except for a residual dependence from the
temperatures in the scaling function B(u, v). We checked this dominant behavior by ex-
ploring different settings in the interval βα ∈ [0, 1]. In Figure 6.4 we show the collapse of
different curves at different times as well as its symmetries. Indeed, for two identical and
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Figure 6.7: Scaling analysis of the thermalization of a thermometer put in contact with a
big system. The thermometer temperature converges toward the equilibration temperature
βe except for some oscillations. Notice how these oscillations become smaller increasing the
system size (inset).

symmetrical subsystems, if we exchange the two temperatures β1 ↔ β2 and we make a
reflection with respect to the contact point x ↔ −x, the profile should remain unchanged.
In Figure 6.5 we show the scaling behavior of B(u, v) for t = 400 and ratio β1/β2 = 1/2.

Finally, as we have often repeated over the course of this chapter, it is essential to analyze
how the temperature profile depends on the size of the local subsystem ∆x. In Figure 6.6 we
study the temperature profile for different local sizes dL = 4, 5, 10, 20, 40. Qualitatively, one
see a good collapse of the curves. In particular, a finite-size scaling analysis for the contact
point x/t = 0 is reported in the inset. Notice the convergence for dL ≥ 20.

Digression on a thermometer — After having analyzed the scaling properties of the
temperature profile in a quantum system during the thermalization process, we would like
to briefly address a question left open: it’s about understanding the terms in which the
thermal properties of the system under consideration depend on the choice of the size of the
subsystems that we use to obtain the local temperatures. To address this issue, we simplify
the problem. We will consider what for us is the definition of a “thermometer”: that is, a
probe, small enough not to alter the system that is brought into contact and capable to
quickly react to the external changes.

Let us consider a homogeneous system with dimension L and a thermometer with dimen-
sion dL, made with the same material of the system and having the same thermal properties.
In general one has dL≪ L. Now we suppose to probe the system at temperature β, with the
thermometer at temperature βdL. The expected average temperature of the whole system
plus thermometer should be

βe =
Lβ + dLβdL
L+ dL

. (6.57)

One expect that, during the evolution, the temperature of the thermometer, extracted by
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minimizing the local functional, should converge towards βe, except for some oscillations.
Convergence will be more precise, the larger the size of the system and the larger the size
of the thermometer, with the condition dL/L→ 0.

In Figure 6.7 we plot the simulations in a L = 200 Hard-Core boson chain put in contact
to a thermometer with different sizes. The temperature of the thermometer, starting from its
initial value βdL = 1, falls down (it tries to reach the system temperature β = 0.1) keeping a
minimum at time t/L ≃ 2. The energy lost by the thermometer propagates from the contact
point through the system, kicks the boundary and then comes back, causing a rising of the
temperature. Thus, the temperature evolution shows main oscillations with period T = 2L.
Other oscillations related to the size of the thermometer, with higher frequencies, are added
to the main behavior. Notice how the amplitude of the oscillations becomes smaller the
larger is the system size. In the inset of Figure 6.7 one see that for L = 800 and dL = 20
oscillations have practically disappeared. Moreover, a further message that one keeps from
Figure 6.7, is that, thermalization, for integrable systems, is actually a finite-size effect.

6.4 Discussion and Summary

In this chapter we focused our attention on the thermalization properties of an integrable
quantum system. In particular, we have explored both the long-time and the short-time
behavior of the temperature profile in the Hard-Core boson chain. The system is initially
prepared in an out-of-equilibrium state: it is divided into two equal subsystems at different
temperatures; than, the two subsystems are put in contact and left to evolve toward thermal
equilibrium. We analyzed the equilibration temperature by looking at the function β(x, t)
that minimizes the distance between the evolved density operator and the canonical Gibbs
distribution. We found that a local definition of distance is mandatory to ensure that the
system reaches thermal equilibrium at the expected average temperature. Moreover, the
local definition of temperature is stable even in the early moments of the thermalization
process. Through this local definition it was possible to define the temporal evolution of the
temperature profile. In particular, we made sure that this profile is sufficiently independent
of the size of the subintervals in which the chain is divided. After analyzing the numerical
simulations, we proposed a scaling form for that profile. It was found that the scaling
properties in a thermalizing quantum system preserve large similarities with the behavior
of a classical system, except for the fact that the scaling function has a residual dependence
on the initial temperatures.

Finally, we should remember that the work done in this chapter is a preliminary study
on the mechanisms of thermalization and on the possibility of defining an out-of-equilibrium
temperature profile in a extended quantum system. Currently we are still conducting further
analysis and simulations.
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Chapter 7
Conclusions

In the present thesis we have investigated the dynamics of closed one-dimensional quantum
systems. In particular, we have discussed different issues relating to this dynamics: the
problem of adiabatically driving a system through a quantum phase transition; the dynamics
of ultra-cold bosons in a tilted optical lattice; finally, the thermalization properties of an
integrable quantum system.

We have addressed these issues by means of both analytical and numerical methods able
to deal with strong correlated systems and non-equilibrium effects. It is well known that low-
dimensional quantum systems show interesting behavior and often allows the development
of analytical methods useful for simplifying the calculations; this is the reason why a good
part of the models we have used fall into the category of one-dimensional integrable systems:
e.g. the Ising model and the Hard-Core boson model. Nonetheless, the great part of one-
dimensional quantum models are still not easily tractable by analytical methods (see for
example the Bose-Hubbard model). Thus, to investigate time-dependent phenomena in
one-dimensional strongly correlated systems, we developed the adaptive time-dependent
density-matrix renormalization-group algorithm (t-DMRG).

After having introduced, in the first part of this manuscript, the general informations
and the instruments related to our studies, we proceeded, in the second part, with our
investigation on the non-equilibrium quantum dynamics.

First of all, we have analyzed in details the coherent generation of defects during an
inhomogeneous adiabatic quench that drives a one-dimensional quantum system across a
second order phase transition. It turned out that inhomogeneities strongly affect the equi-
librium and the dynamical properties of a quantum system near a critical point. A relevant
perturbation generated by a confining potential, such as a harmonic trap, changes the uni-
versality class close to the critical point. More generally, removing or loading a power-law
trap smoothly in time and close to a critical point will lead to a final state carrying a
nontrivial density of defects which will depend on the shape of the trap and on the tem-
poral protocol. Such a power-law potential is relevant especially in the context of confined
ultra-cold systems, where the dynamics is well described by the unitary evolution of closed
systems. Thus, we have developed a scaling theory which predicts the behavior of such a
quench. We have seen that the typical length scale ℓ diverges, close to the critical point, with
an effective correlation length exponent νg = ν/(1 + νω). From this consideration, we have
found that the typical time scale τ around the critical locus behaves as τ ∼ v−z/yv , where
yv = zα+1/νg is the RG dimension of the perturbation field. Within our scaling approach,
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we have also analyzed how the scaling properties are affected by a deviation of the space-time
location of the critical locus. Moreover, using Kibble-Zurek arguments, we have derived the
scaling properties of the density of defects n ∼ vd/yv or the energy excess ǫ ∼ v(d+z)/yv

generated during the loading or unloading of the power-law trap. All these predictions have
been checked on the Ising quantum chain. Indeed, for the Ising quantum model, we have
confirmed the scaling prediction for the energy levels as well as for the perturbation matrix
elements. We have found, using the adiabatic approximation, an analytical formula for a
quench of a linear trap that do not cross the critical point. Otherwise, in the general case,
we have performed a finite-size scaling analysis, confirming what has been predicted by the
general scaling theory. Finally we have focused our attention on the spatial properties of
the local defect density as well as on the effects of a global shift of the critical point. Once
again, the predictions of the general scaling theory have been confirmed within the quantum
Ising model.

After that we switched our attention on the dynamics of ultra-cold bosons loaded in a
tilted optical lattice. The model is described by the Bose-Hubbard Hamiltonian. At the
beginning, in the impenetrable limit (Hard-Core boson model), we have developed an hy-
drodynamical theory which predicts the behavior of the self-trapped condensate as well as
the ejected bosons. The ideas supporting this theory are essentially: the local equilibrium
hypothesis, i.e. the system is locally at equilibrium with the local potential; and the bal-
listic motion of each phase-space point (x, q) with velocity that depends directly on the
dispersion law. Under this theory, the equation of motion for the phase-space density can
be summarized in

ρ±(x, q, t) =
1

2

∫∫
dq0dx0G±(x, q, t;x0, q0)ρ0(x0, q0), (7.1)

with total density ρ(x, q, t) = ρ+(x, q, t)+ ρ−(x, q, t). The right and left propagators G± are
simply given by G±(x, q, t;x0, q0) = δ(x−x±(x0, q0, t))δ(q− q±(x0, q0, t)), where x± and q±

are the equations of motion for a single particle starting in (x0, q0).

Using this theory we have reproduced the macroscopic bosonic oscillations over the linear
ramp. Moreover, we have calculated the total number of ejected particles as a function of the
potential slope p, and we have exactly reproduced the evolution of the density and current
profile of the ejected particles.

Finally we have analyzed the dynamics generated by a sudden quench in the Bose-
Hubbard Hamiltonian. In this case we used the t-DMRG and the Lanczos algorithms.
These numerical studies have confirmed the presence of two main frequencies located at the
values of the local interaction U and of the external potential slope p. Moreover, when the
system is far away from the integrability points (U = 0 and U =∞), we have seen a loss of
coherence in the evolution of the trapped bosons.

The last subject treated in this thesis is about the thermalization process in the one-
dimensional Hard-Core boson model. As we said before, this problem is still under in-
vestigation. However we have summarized the preliminary results that have already been
achieved. Thus, we have studied the thermal equilibration dynamics after putting in contact
two extended quantum system initially prepared in two different Gibbs ensembles. We have
introduced the local trace-norm-n definition of distance dn(x, t, β) = TrSx |ρ(x, t)− ρx(β)|n,
for n = 1, 2, and we have compared them with a global definition. We have seen that
thermalization occurs when local variables are taken into account. In this way, we could
introduce a temperature profile β(x, t) as in the classical case. After having developed this
local definition of temperature, we have found that, in the high temperature limit, the profile
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behaves as

β(x, t) =
1∑

q ǫ
2
q(x)

∑

q

ǫq(x) ln
1− λq(x, t)
λq(x, t)

, (7.2)

where λq(x, t) are the eigenvalues of the local correlation matrix. We have numerically
investigated the scaling properties of such a profile and we have checked that the definition
of β(x, t) was stable under varying the sizes of the subintervals used to extract the local
temperature. Finally we have observed that the temperature profile, in a extended quantum
system, shows the scaling behavior

β(x, t) =
β1 + β2

2

[
1 +

β1 − β2
β1 + β2

B(x/t, β1/β2)
]
, (7.3)

similar to the classical counterpart, except for a residual dependence on the initial temper-
atures in the scaling function B(u, v).
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Part III

Appendix





In this last part of the thesis we collect any additional information that did not fit place in
the body of the thesis. As we said before, it is certainly true for the first two Appendices
that give some extra information supporting the previous chapters. More precisely:

In Appendix A we give a brief and simple derivation of the adiabatic perturbative
expansion by combining the quantum time-independent perturbative theory in the rotating
frame with Trotter decomposition of the evolution operator.

In Appendix B we present, taking as an example the case ω = 1, α = 2, the details of the
calculation of the scaling prediction in the case of a “global shift to the critical point” as
reported in Section 4.1.3.

Otherwise we would like to spend some additional words about the Appendix C. It turned
out that the PhD studies have been really precious also for improving computational skills,
especially with regards to the re-implementation of well know algorithms for simulating
one-dimensional quantum systems; and this is the case for the DMRG and t-DMRG codes.
Thus, in the last appendix we decided to summarize the theoretical framework and the
technical instruments we learned during the development of such a code. In some sense, this
last appendix will be more structured than the others and could be promoted as a “Chapter”
of the thesis. The reader should look at this appendix in the same way he already did before
for any of the central chapters of this thesis.





Appendix A
Adiabatic perturbative expansion

We sketch briefly the demonstration of the nearly adiabatic approach used in this study.
First, we discretize the time t so that we have t0, t1, . . . tn, . . . tN = t with dt =

tn − tn−1; ultimately we will take the limit N →∞, dt→ 0 with t fixed. The unitary time
evolution operator is written as an expansion product

U(t, t0) = U(tN , tN−1) · · · U(t2, t1)U(t1, t0), (A.1)

where, in the limit dt→ 0, we have essentially

U(tn+1, tn) = e−iH(tn)dt. (A.2)

Now, let us find an expression for the state after each time interval.

a. t0 → t1
The evolution starts from the initial ground state |ϕ(t0)〉 = |0(t0)〉 at the time t0. The

state at time t1 is generated by the action of U(t1, t0) = e−iH(t0)dt, which leads to the
appearance of a phase factor:

|ϕ(t1)〉 = e−iE0(t0)dt|0(t0)〉. (A.3)

b. t1 → t2
At the next step we have

|ϕ(t2)〉 = U(t2, t1)|ϕ(t1)〉 = e−iH(t1)dt|ϕ(t1)〉. (A.4)

Writing

H(t0) = H(t1)−
H(t1)−H(t0)

dt
dt ≡ H(t1)−W(t1, t0)dt, (A.5)

we can expand the eigenvectors of H(t0) in the basis of the eigenvectors of H(t1) to first
order in W(t1, t0)dt:

|0(t0)〉 = |0(t1)〉+ dt
∑

n6=0

〈n(t1)|W(t1, t0)|0(t1)〉
En(t1)− E0(t1)

|n(t1)〉. (A.6)
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leading to

|ϕ(t2)〉 = e−i[E0(t0)+E0(t1)]dt|0(t1)〉

+
∑

n6=0

|n(t1)〉dte−iEn(t1)dt
〈n(t1)|W(t1, t0)|0(t1)〉

En(t1)− E0(t1)
e−iE0(t0)dt. (A.7)

c. t2 → t3
We can proceed in the same way as before. By using the development of the Hamiltonian

H(t1) = H(t2)−W(t2, t1)dt, we expand the eigenvectors

|0(t1)〉 = |0(t2)〉+ dt
∑

n6=0

〈n(t2)|W(t2, t1)|0(t2)〉
En(t2)− E0(t2)

|n(t2)〉

|n(t1)〉 = |n(t2)〉+ dt
∑

m 6=n

〈m(t2)|W(t2, t1)|n(t2)〉
Em(t2)− En(t2)

|m(t2)〉. (A.8)

Using this expansion and taking only the first term in the development in powers of dt we
obtain the evolution |ϕ(t3)〉 = U(t3, t2)|ϕ(t2)〉:

|ϕ(t3)〉 = e−i[E0(t0)+E0(t1)+E0(t2)]dt|0(t2)〉

+
∑

n6=0

e−iEn(t2)dt|n(t2)〉dt
{
e−iEn(t1)dt

〈n(t1)|W(t1, t0)|0(t1)〉
En(t1)− E0(t1)

e−iE0(t0)dt

+
〈n(t2)|W(t2, t1)|0(t2)〉

En(t2)− E0(t2)
e−i[E0(t0)+E0(t1)]dt

}
. (A.9)

Now we cast the expression of |ϕ(t3)〉 as a development on the basis of the eigenvectors at
the same time t3. Thus one obtains

|ϕ(t3)〉 = e−i[E0(t0)+E0(t1)+E0(t2)]dt|0(t3)〉

+
∑

n6=0

|n(t3)〉dt
{
e−i[En(t1)+En(t2)]dt

〈n(t1)|W(t1, t0)|0(t1)〉
En(t1)− E0(t1)

e−iE0(t0)dt

+ e−iEn(t2)dt
〈n(t2)|W(t2, t1)|0(t2)〉

En(t2)− E0(t2)
e−i[E0(t0)+E0(t1)]dt

+
〈n(t3)|W(t3, t2)|0(t3)〉

En(t3)− E0(t3)
e−i[E0(t0)+E0(t1)+E0(t2)]dt

}
. (A.10)

Continuing along these lines, it is straightforward to prove by induction that, at tk, we
have

|ϕ(tk)〉 = e−i
∑k−1

j=0
dtE0(tj)|0(tk)〉 (A.11)

+
∑

n6=0

|n(tk)〉
k∑

i=1

dte−i
∑k−1

j=i dtEn(tj) 〈 n(ti)|W(ti, ti−1)|0(ti)〉
En(ti)− E0(ti)

e−i
∑i−1

j=0
dtE0(tj).

Taking the limit dt→ 0 we have W(tn+1, tn)→ ∂tH(t)|tn , and one obtains finally

|ϕ(t)〉 = e
−i

∫ t
t0

dsE0(s)|0(t)〉 (A.12)

+
∑

n6=0

|n(t)〉
∫ t

t0

dt′e−i
∫ t
t′

dsEn(s)
〈 n(t′)|∂t′H(t′)|0(t′)〉
En(t′)− E0(t′)

e
−i

∫ t′

t0
dsE0(s).



Appendix B
Scaling of the propagating front:
example for ω = 1, α = 2

We consider a quantum critical system with space-time deviation of the couplings with
respect to its homogeneous scalar critical field hc:

h(x, t)− hc = δ(x, t) = v|t|αxω − δh. (B.1)

In other words, we suppose to add an additional homogeneous negative deviation to the
original trapping potential v|t|αxω, in order to have a shift of the critical locus:

h(0, t)− hc = δ(0, t) = −δc, with δh > 0. (B.2)

During the evolution we open the trap: initially the system is almost totally in the disordered
phase, then, a front propagates from the center of the trap toward the boundary (for fixing
ideas we imagine to study an half-trap by considering the left boundary field fixed at the
value −δc). The rapidity of the adiabatic evolution is tuned by the parameter v, thus for v
sufficiently small, starting at time tin = −T and lefting the system evolve closer and closer
to “criticality”, we expect that adiabatic evolution is broken when the relaxation time is too
big for assuring the reaction of the system to the variation of the Hamiltonian. In other
words, the typical KZ-time τ∗ is found by equating the relative variation of the Hamiltonian:

∂tH(t)
H(t) ∝ ∂tδ(x, t)

δ(x, t)
=

αv|t|α−1xω

v|t|αxω − δh
, (B.3)

with the inverse of the relaxation time of the system.
In such a case, for a linear spatial profile ω = 1, during the opening of the trap, the front

(the crossing point x(t) = δh/v|t|α that define the spatial position of the critical region)
propagates but also the gradient evaluated at x(t) is evolving. The critical region is located
around x(t) and its length is linked to the value of the gradient g(t) by trap-size scaling
arguments (that we suppose are locally valid because the system up to τ∗ is adiabatically
evolved):

ξ(t) = |g(t)|−1/yg , yg = (1 + νω)/ν. (B.4)

The critical relaxation time (for a linear trap ω = 1) is given by:

[ξ(t)]z = v−z/yg |t|−αz/yg . (B.5)
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Equating (B.3) and the inverse of (B.5), and taking ν = 1, ω = 1 (then yg = 2), x(τ∗) =

ℓ∗ = τ
1/z
∗ and |t| = τ∗ we obtain

αvτ
α−1+1/z
∗

vτ
α+1/z
∗ − δh

= vz/2τ
αz/2
∗ . (B.6)

Specializing this equation for z = 1(1d-Ising quantum chain) and α = 2, and discarding the
α factor one has

vτ∗
vτ3∗ − δh

= v1/2 ⇒ τ3∗ − v−1/2τ∗ − δh/v = 0. (B.7)

Notice that for δh = 0 one has the original scaling τKZ ∼ v−1/4. Now, supposing δh 6= 0,
we want to find the solution of that equation for v → 0. In the scaling limit, we obtain the
dominant behavior by posing the linear term equal to zero (for v → 0 one has v−1 ≫ v−1/2):

τ
(0)
∗ (v, δh) =

(
v

δh

)−1/3

, (B.8)

then, if we look for a solution of the form τ∗(v, δh) = τ
(0)
∗ (v, δh)·T (v, δh) we find the equation

for T (v, δh) ≡ T (δ
−2/3
h v1/6):

T 3 − xT − 1 = 0, x = δ
−2/3
h v1/6 (B.9)

That equation does not present divergence for x→ 0 thus we expect T (x) analytical for
x→ 0, with Taylor expansion:

T (x) = 1 + a1x+ a2x
2 + . . . (B.10)

Substituting the expansion in the equation and keeping only the leading terms we have

1 + 3a1x− x− 1 = 0⇒ a1 =
1

3
, (B.11)

then finally

τ∗(v, δh) =

(
v

δh

)−1/3 (
1 +

1

3
δ
−2/3
h v1/6 +O(δ

2/3
h v1/3)

)
. (B.12)

Now, only using the dominant behavior of the previous solution, we can verify that the
position of the critical front, exactly when the adiabatic evolution break-down (remember
that we are analyzing the 1d-Ising quantum chain with ω = 1 and α = 2), is:

ℓ∗ ≡ x∗(τ∗) =
δh
vτ2∗

=
δh
v

(
v

δh

)2/3

=

(
v

δh

)−1/3

= τ∗. (B.13)

In the same way we can determine the length of the critical zone around the critical front:

ξ∗ ≡ ξ(τ∗) = v−1/2τ−1
∗ = δ

−1/3
h v−1/6 =

(
ℓ∗
δh

)1/2

(B.14)

Finally, we want to study the behaviour of the spin-spin correlations in the critical zone.
For accomplishing that goal, we fix the reference spin at ℓ∗ and then the correlation function
calculated at the distance x takes the form:

C(x) ∼ exp

[
−|x− ℓ∗|

ξ′(x)

]
, (B.15)
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where now ξ′(x) is the local correlation length at x. In particular, ξ′(x) is connected to the
local deviation of the couplings from the critical value:

ξ′(x) ∝ [vτ2∗ |x− ℓ∗|]−ν = v−1

(
v

δh

)2/3

|x− ℓ∗|−1 =
ξ2∗

|x− ℓ∗|
, (B.16)

then finally we have

C(x) ∼ exp

[
− (x− ℓ∗)

2

ξ2∗

]
, ξ∗ =

(
ℓ∗
δh

)1/2

. (B.17)

An interesting question is to analyze the behaviour of the maximum of the derivative of the
correlation function.

∂2xC(x) = −
2

ξ2∗
∂x(x− ℓ∗)C(x) = −

2

ξ2∗

(
1− 2(x− ℓ∗)2

ξ2∗

)
C(x) = 0, (B.18)

thus

1− 2δh
(x0 − ℓ∗)2

ℓ∗
= 0, (B.19)

and then

x0 = ℓ∗ +
1√
2

(
ℓ∗
δh

)1/2

= ℓ∗

(
1 +

1√
2
(δhℓ∗)

−1/2

)
=

(
v

δh

)−1/3 (
1 +

1√
2
δ
−2/3
h v1/6

)
.

(B.20)
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Appendix C
Density-Matrix Renormalization Group

«Prediction is very difficult,

especially about the future.»

N. Bohr

If we consider an object on a human scale it is impossible to obtain all dynamical infor-
mation exactly. Indeed, also when we use the simplest Hamiltonians for modeling the

complex behavior of quantum many-body systems, the numerical simulations are very of-
ten cumbersome and inefficient. Just for fixing the ideas, if we consider a quantum system
consisting in N interacting local subsystems, each of them living in a Hilbert space of di-
mension D, then total Hilbert space dimension will be DN . This number will soon exceed
the available resources on a computer, already for a small value of N . In other words, the
exponential growing of the Hilbert space dimension imposes a limit for the exact numerical
simulation of a many-body quantum system. Although there are models whose numerical
complexity can be reduced from DN to N (see for example the XY-model), in most cases
this is not possible and therefore a direct simulation is beyond question.

In order to overcame this limitation, S. R. White proposed in 1992 the Density-Matrix
Renormalization Group (DMRG) method [Whi92, Whi93]. This method is essentially based
on the same idea that underlies the Real Space Renormalization Group (RSRG) method.
In practice, we start by considering a sufficiently small quantum system and a numerical
representation of its Hamiltonian, then we add step by step other degrees of freedom, for
example by enlarging the system. The key point, at each step, is to “renormalize” the
original Hamiltonian by integrating out, in a proper way, the “less important” degrees of
freedom. In this way, at a given step, the Hamiltonian should exhibit modified couplings
with respect to those it showed previously. At the end of the process we should obtain an
effective Hamiltonian which should describe the essential physics of the original system. In a
sense, at the end of the algorithm, we have traced out from the original Hamiltonian all the
superfluous degrees of freedom. The original White’s idea, which distinguishes the DMRG
from the RSRG, was actually to find “the right way” for eliminating the superfluous degrees
of freedom.

In the years following the introduction of the DMRG, many efforts have been spent, from
different physics research field, to improve the algorithm: quantum information theory for
example has allowed to understand what are the limit of applicability of this new numerical
technique. Indeed, the information theory has revealed a strong connections between the
efficiency on the simulations and the entanglement behavior [Vid03, Vid04]. Among the
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A B

Figure C.1: Sketch of a system which is split into two subsystems. If region A et B are not
correlated, e.g. by removing the yellow stripe, the wave function factorizes |ψA〉|ψB〉 and
the entanglement entropy vanishes (Figure taken from [AFOV08]).

various measures, the so-called entanglement entropy is the best suited for our purposes,
especially because it is easy to measure during the DMRG simulation. By considering an
extended quantum system, after splitting the system into two blocks, the entanglement
entropy is defined through the von Neumann entropy of the reduced density matrix ρA of
one of the two blocks (Figure C.1) [AFOV08]. In one-dimensional critical ground states,
conformal field theory (CFT) predicts, for a block A of length ℓ embedded in an infinite
system, a logarithmic growing of the entanglement entropy:

SA ≡ −TrρA ln ρA =
c

3
ln ℓ+ c′ (C.1)

where c is the central charge of the corresponding CFT and c′ a non-universal constant
[CC04, VLRK03, LRV04]. Away from criticality, where the system has a finite correlation
length ξ, the asymptotic behavior of the entanglement entropy is bounded

SA ∼
c

3
ln ξ for ℓ≫ ξ. (C.2)

It is easy to understand the reason why the DMRG algorithm does not work very well
growing the entanglement of a subsystem: indeed, for simulating strongly correlated quan-
tum systems (at or close to a quantum critical point) it is necessary to take into account a
great number of states, but otherwise, if we want to obtain some results in reasonable time,
the renormalization protocol tell us to keep a moderate numbers of states looking for higher
eigenvalues of the reduced density matrix. However Eq. (C.1) and (C.2) tell us that, for the
ground state of one-dimensional systems, in the worst case the entanglement of a subsystem
grows logarithmically with its size, so an efficient simulation with DMRG is still possible.
On the other hand, different considerations must be made with regard to the simulation

of the temporal evolution of quantum systems. It has been shown that, for critical systems,
the block entanglement can grow linearly with time and block size[OL04]. Therefore, the
simulation of the time evolution of such systems could be definitively no more efficient.
To better understand this point, let us suppose to prepare a quantum system in an

uncorrelated ground-state |ψ0
g0〉 of an Hamiltonian Hg0 , where g0 is a tunable parameter.

At time t = 0 this parameter is suddenly changed to a different value g, and the system
thus starts to evolve according to a different Hamiltonian Hg. The time evolution is simply
obtained by rewriting the initial state |ψ0

g0〉 in terms of the eigenstates |ψk
g 〉 (with energies



C.1. From RSRG to DMRG 133

ωk
g ) of the Hamiltonian Hg. This leads to the evolved state

|ψ(t)〉 =
∑

k

e−iωk
g t〈ψk

g |ψ0
g0〉|ψ

k
g 〉. (C.3)

Then, also from an uncorrelated initial wave function one could obtain a strongly correlated
state |ψ(t)〉 at some particular time.

For a complete review on the different DMRG methods, its theoretical foundations and
its applications we remand to Schollwöck (2005)[Sch05] and its references.

C.1 From RSRG to DMRG

The idea underlying the DMRG method comes from some considerations about the RSRG
method. This latter method, in fact, did not predict the correct results for the ground-state
properties of quantum many-body systems.

What S. R. White understood was that whenever one extracts a subsystem from the
whole original system, the ground-state properties should not be described by the low-
energy properties of the subsystem’s Hamiltonian but rather by the properties of the reduced
density matrix. Indeed, the subsystem is inevitably conditioned by the environment, and
the reduced density matrix takes trace in somehow of the environment properties.

For better understanding the reason that RSRG approach does not optimally work we
will analyze the elementary steps of this algorithm.

As reported in [Sch05], following White’s toy model of a single particle hopping on a
one-dimensional lattice, we consider a box of size L. We associate at each site i the vector
|i〉. The Hamiltonian is a diagonal band matrix with element 〈i|H|i〉 = 2, 〈i|H|i± 1〉 = −1.
The RSRG recipe is the following:

1. One starts with the initial block B of length ℓ with Hamiltonian HB. The system lives
in a Hilbert space of dimension M .

2. Taking a symmetric copy of the initial block, we construct a super-block BB of length
2ℓ with total Hamiltonian HBB = IB ⊗ HB + HB ⊗ IB + HI , i.e. the two block
Hamiltonian plus the inter-block interaction. The Hilbert space of the super-block has
dimension M2.

3. Find the M lowest-lying eigenstate of HBB
4. Project HBB onto the subspace spanned by the previous M eigenstate. In this way,

one obtains the truncated Hamiltonian HBB → Htr
BB.

5. After replacing 2ℓ → ℓ, BB → B, Htr
BB → HB, repeat the procedure from step (2),

until the desired size.

The fundamental steps in the previous RSRG recipe are the steps (3-4): reducing the
Hilbert space dimension by taking the lower-energy eigenstates of HBB. That means that,
whenever we have to reconstruct a bigger block, we can use only the low-lying eigenstates of
the previous smaller blocks. We can immediately see the failure of this method by looking at
the Figure C.2. Indeed, supposing the dimension of the system sufficiently large to permit a
continuous description, all the eigenfunctions of B should have nodes at the edges. Therefore,
all the tensor products constructed from these eigenfunctions will be zero in the center of
the super-block BB. On the other hand the ground state of the super-block is different from
zero right there. In practice, there is no way to reconstruct the BB ground state by using a
limited number of eigenfunctions of the blocks B.
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Block B Block B

Super-Block BB

Figure C.2: The White’s toy model showing how the lowest-lying eigenstates of HB (red
dashed lines) are not sufficient to reproduce the ground state of the super-block (full red
line). (Figure based on [Sch05])

C.1.1 Density matrices and DMRG truncation

The original aim of the DMRG was to found the best approximation of the ground state
(or a given excited state) of a quantum many-body system. As we yet said, this part can
be done by looking at the best block states which can be used to reconstruct a given global
target state. In a sense, if we look at a part of a whole system, this should be described
by the own reduced density matrix. Therefore, if our intention is to reduce the Hilbert
space dimension of such a system, we should keep the most probable states in which the
subsystem could be found. Before going inside the optimization protocol proposed by White
in the 1998, we briefly review some elementary properties of the reduced density matrix.

We begin by considering an extended quantum system (from now on we refer to it as a
super-block) which splits into two part: the system block S and environment block E (see
Figure C.3). Let us suppose |ψ0〉 the ground state of the whole system. Normally, this state
carries informations about the entanglement between the block and the environment. After
having introduced a basis of the system {|σi〉} and of the environment {|εi〉}, we can write
the global ground state as

|ψ0〉 =
∑

i,j

ψij |σi〉 ⊗ |εj〉 (C.4)

Whenever one considers an operator OS acting on the system block variables only, one has

〈OS〉 =
∑

i,j,i′,j′

ψ∗ijψi′j′〈εj | ⊗ 〈σi|OS |σi′〉 ⊗ |εj′〉 (C.5)

that, using the normalization condition 〈εi|εj〉 = δij , leads to

〈OS〉 =
∑

i,i′,j

ψ∗ijψi′j〈σi|OS |σi′〉. (C.6)

In this way, we can define the reduced density operator of the system block through its
matrix elements

〈σi′ |ρS |σi〉 =
∑

j

ψ∗i,jψi′,j (C.7)
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System S Environment E

Figure C.3: Sketch of the super-block split into the system block S and the environment
block E .

By using this definition the expectation values can be rewritten as

〈OS〉 = Tr (ρSOS) . (C.8)

The reduced density operator ρS is an hermitian operator with positive spectrum and sat-
isfying the normalization condition TrρS = 1.

Hilbert-space decimation — After having selected a super-block target state, e.g. the
ground-state of a many-body quantum system, the goal of the DMRG procedure is to in-
dividuate the best representative states of both the system S and the environment E for
reconstructing the original target state. Obviously, whenever one retains the entire Hilbert
space for describing each part, the description of the whole system will be exact. Neverthe-
less, for overcoming the exponential growth of the Hilbert space dimension, it is necessary
to drop out some degrees of freedom. We can do that by looking at the reduced density
matrix of the system S (environment E) and selecting a fixed number of states starting
from the most probable ones, i.e. the states corresponding to the highest eigenvalues of
the reduced density matrix ρS (ρE). The formalization of such an idea is actually simple
[Sch05, PHWK99].

Indeed, if we consider a bounded operator O acting on the system block, ‖O‖ ≡ cO, its
expectation value, using the density matrix eigen-basis ρB|wα〉 = wα|wα〉, is

〈O〉 =
Dℓ∑

α=1

wα〈wα|O|wα〉, (C.9)

where, D is the dimension of the Hilbert space of single lattice site and ℓ is the number of
the sites on the system block S. Let us assume that the eigenstates of the density matrix
are enumerated in descending order w1 > w2 > . . . > wDℓ . If we reduce the Hilbert space
dimension of the system block to the first M eigenvectors |wα〉 with the largest eigenvalues,
the average value of O becomes

〈O〉tr =
M∑

α=1

wα〈wα|O|wα〉, (C.10)

with an error

|〈O〉tr − 〈O〉| 6 cO

Dℓ∑

α=M+1

wα ≡ cOǫρO . (C.11)

In the previous equation we have introduced the so-called truncated weight

ǫρS = 1−
M∑

α=1

wα, (C.12)
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which gives an estimation of the error that we have introduced with the Hilbert-space dec-
imation procedure. We want to stress here that this error is a really good estimate of the
accuracy of the procedure whenever we look at some local bounded observables (like local
energy, magnetization, density etc.). Moreover, the equation (C.11) does not take into ac-
count the contribution from the environment truncation procedure. We will see in the next
sections that the DMRG algorithm makes use of such a Hilbert-space decimation procedure
for the approximative description of both the system and the environment [PHWK99].

Now we could enter into the algorithm. Basically, we can split the algorithm into two
part: the “Infinite-system DMRG” wherein the system and the environment are iteratively
enlarged up to the desired super-block dimension; the “Finite-system DMRG" which per-
forms a set of iterations until the desired precision on the super-block description is achieved.

C.1.2 Infinite-system DMRG

Let us suppose that we are looking for the ground-state properties of a chain (with open
boundary conditions) with short-range interactions. Henceforth we suppose each site living
in a D-dimensional local Hilbert space. The idea is to start with a sufficiently small system
and environment and enlarge them until the desired super-block dimension is reached. The
infinite-system DMRG recipe is the following [Sch05, PHWK99, CRRM08]:

1. Consider a system block S(ℓ,Mℓ), where ℓ is the real number of sites into the system
and Mℓ represents the number of states we use to describe the system. The Hamilto-
nianHSℓ and the operators living on the system block are known. In the same way, form
an environment block E(ℓ,Mℓ). Notice that the number of sites in the environment
block is the same as the system block one; in the infinite procedure this is necessary
in order to enlarge the chain step by step. On the contrary, it is not necessary to keep
the same number of states. [At the beginning, we usually start with a block S(1, D)
composed of one site and described by an exact basis (the same for the environment).]

2. In the next step we construct the so-called left enlarged block S(ℓ,Mℓ)• by adding
a site • to the right of the system block. The Hilbert space dimension of the new
enlarged system S• is MℓD, with a basis of product states. The Hamiltonian HS•ℓ is
constructed form the local Hamiltonians of the system block and the free site, plus the
interaction

HS•ℓ = HSℓ ⊗ I• + ISℓ ⊗H• +HS•i ℓ , (C.13)

where I ··· stand for the identity matrices of the correspondent Hilbert spaces. Simi-
larly, we build the right enlarged block •E(ℓ,Mℓ) by adding a site to the left of the
environment block, with Hamiltonian

H•Eℓ = I• ⊗HEℓ +H• ⊗ IEℓ +H•Ei ℓ . (C.14)

3. Using the two enlarged block and adding the site-site interaction, a superblock S • •E
of lenght 2ℓ + 2 is then built. The total Hilbert space dimension is D2M2

ℓ , and the
Hamiltonian look as

HS••E = HS•ℓ ⊗ I•Eℓ + IS•ℓ ⊗H•Eℓ + ISℓ ⊗H••i ⊗ IEℓ . (C.15)

In theory we can explicitly construct the Hamiltonian HS••E , nevertheless, we will
see that it is not necessary. What we actually need is to know how to apply this
Hamiltonian to a generic state vector.
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4. Find the ground state |ψ〉 of HS••E ; this should be made by using Lanczos or Davidson
algorithm.

5. From |ψ〉 one integrates out the right enlarged block variables obtaining the reduced
density matrix ρS• of the left enlarged block:

ρS• = Tr•E |ψ〉〈ψ|. (C.16)

After, we determine its eigenvectors {|wα〉} with descending-ordered eigenvalues wα.
In other words, we search for a unitary matrix US that performs a change of basis in
S• Hilbert space,

ρS• = US ρS•diag (U
S)†, (C.17)

whose columns are the eigenvectors of ρS•. Now, the central point of the DMRG algo-
rithm is the Hilbert-space decimation procedure: we retain at most the first M eigen-
vectors. This correspond to a truncation of the US matrix sinceMℓ+1 = min(MℓD,M)
number of columns (i.e.: the firstMℓ+1 eigenstates with the largest weights). Therefore
we obtain the MℓD×Mℓ+1 renormalization matrix RSℓ→ℓ+1 for the left enlarged block.

In the same way, we evaluate the reduced density matrix ρ•E of the right enlarged
block, diagonalize it and we obtain the matrix REℓ→ℓ+1.

6. We carry out the full renormalization procedure in order to obtain a truncated enlarged
block S(ℓ + 1,Mℓ+1). In this way, the renormalized Hamiltonian of the new system
block is

HSℓ+1 = (RSℓ→ℓ+1)
† HS•ℓ RSℓ→ℓ+1, (C.18)

and the renormalized local rightmost operator

OSℓ+1 = (RSℓ→ℓ+1)
† (ISℓ ⊗O•) RSℓ→ℓ+1. (C.19)

Notice that the renormalization of the rightmost local operator is necessary whenever
we need to construct a local interaction between the rightmost system-block site and
the free site (see step 2.). We proceed in the same way for the environment in order
to obtain E(ℓ+ 1,Mℓ+1).

The steps 1-6 are iterated until some desired final length is reached. Then, it is possible to
calculate some ground-state properties from |ψ〉.

At the end of an infinite-system DMRG cycle the length of the chain has been increased
by two sites. Otherwise, the Hilbert space dimension of a block is bounded by M . In other
words, M and D set the complexity of the problem. The features of the system impose the
value of D (in general, in a mixed-spin chain for example, D varies from one site to another
site, so we have to use a site-dependent local Hilbert space dimension Di for each site i),
while M is normally set up by the user for obtaining a given precision (we will see that it
is also possible to automatically adjust the value of M while the algorithm is running for
adapting the Hilbert space dimension until the desired convergence is achieved).

C.1.3 Finite-system DMRG

In general, the accuracy on the results that one obtains after the infinite-system DMRG
algorithm strongly depends on the final dimension at which we stop the algorithm. Indeed, at
the end of each infinite-system DMRG step, after diagonalizing the super-block Hamiltonian,
we get an approximation of the ground state of a chain with 2ℓ+2 sites. During the first steps
of the infinite-system DMRG algorithm, the accuracy in the ground-state approximation is
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Figure C.4: Sketch of the DMRG algorithm. On the left, we show one iteration of the
infinite-system DMRG. On the right, we represent one sweep of the finite-system DMRG
(Figure taken from [CRRM08]).

really poor and if we stop the procedure for a fairly small super-block size, we should not
obtain a good description at all. Indeed, as we have often repeated in the previous sections,
the DMRG is based on the possibility that the system block has to choose its own best
representation whenever it is brought into contact with different environments.

To overcame this limitation, the finite-system procedure was developed. The idea is very
simple: we stop the infinite-system procedure at a given length L, then, we perform the same
steps as in the infinite-system algorithm but now by keeping fixed the super-block length
L. In other words, whenever the system block is growing in size the environment block is
decreasing, and vice versa. At each step, the renormalization procedure is performed only
on the growing block. Here in the following the recipe of the finite-system DMRG sweeps
[CRRM08]:

1. We have the system block S(L/2,ML/2) and the environment block E(L/2,ML/2). In
order to perform the sweep procedure, system and environment blocks (Hamiltonians,
local operators, etc.) must have been stored previously.

2. Build the superblock of lenght L,

S(L/2,ML/2) • •E(L/2− 2,ML/2−2), (C.20)

and its Hamiltonian necessary for finding the ground state.

3. Operate as well as steps 4-5 of the infinite-system algorithm, but now only looking for
left enlarged block renormalization matrix.

4. Use RSL/2→L/2+1 to obtain a truncated enlarged block S(L/2+1,ML/2+1); then taking
from memory the environment block, build the new superblock

S(L/2 + 1,ML/2+1) • •E(L/2− 3,ML/2−3), (C.21)

in order to keep costant the lenght of the chain. Now restart with step 3. Make this
procedure until the enviroment block reaches its minimum size and becomes exact.
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5. At the end of the left-to-right sweep the system configuration is

S(L− 3,ML−3) • •E(1, D). (C.22)

Then we start to make growing the environment block by moving the free site from
right to left.

6. The right-to-left sweep is accomplished when the system configuration look like

S(1, D) • •E(L− 3,ML−3). (C.23)

A this point, for making sure that the ground state converges to the exact ground
state of the chain, it is possible to increas the value of the maximum number of
states M . In this way, when the next left-to-right sweep will start, we shall obtain a
further improvement of the block description due to the increasing of the Hilbert space
dimension.

7. At each DMRG sweep, we check for energy convergence. In other words, we take note
of the energy difference between last ground state and previous ones.

During these sweeps we improve the ground-state approximation without changing the super-
block length.

C.1.4 Measures

Using the DMRG we can extract many different features of the target state, for instance
we can easily measure the expectation value of a generic observable A. We can extract
these informations by using the super-block wave function |ψ〉 at any point of the algorithm;
indeed, after a suitable convergence in energy output has been obtained, all the following
system configurations are only different representations of the same ground state wave func-
tion. Then, the procedure is to use the most appropriate representation of the target state
in order to evaluate expectation values. For the notations adopted we remand to Section
C.1.5.

One-point correlators — The easier observable we can measure is obviously a local
observable Ai, living on one single site i. In this case, for evaluating Ai, is convenient to
use the representation of |ψ〉 in which i is one of the two free sites. The average is given by

〈Ai〉 = ψ∗g(s,α,β,e)Ai
αα′ψg(s,α′,β,e), (C.24)

where i is the first free site.

Two-point correlators — Whenever we consider a non-local operator, e.g. the corre-
lation AiBj , the evaluation strongly depends on where i and j belongs. Also in this case,
the most convenient way to perform such a measure is to use the representation of |ψ〉 in
which one of the two free sites is either i or j. If we consider a correlation between two
neighboring sites AiBi+1, we can easily measure it when both i and i + 1 are free sites. It
is straightforward to obtain:

〈AiBi+1〉 = ψ∗g(s,α,β,e)Ai
αα′Bi+1

ββ′ψg(s,α′,β′,e). (C.25)

In general, when i and j are not nearest neighbor sites, the measure can be performed
by firstly applying the renormalization matrices to one observable and then by performing
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the measure when the other one lives in a free site. For making clear the method, let us
consider the case in which j is the leftmost free site and i belongs to the left block (so i < j).
At first, starting with the system block with i− 1 sites, we have to renormalize Ai in order
to obtain:

Âi = (RSi−1→i)
† (ISi−1 ⊗Ai) RSi−1→i, (C.26)

then, at each step up to the system size will be j − 1, we add a D ×D identity matrix I•
on the right (in DMRG sense we simply add a free site) and carry out a renormalization;
the protocol then reads:

(RSi→i+1)
† (Âi ⊗ I•) RSi→i+1 → Âi,

(RSi+1→i+2)
† (Âi ⊗ I•) RSi+1→i+2 → Âi,

... (C.27)

(RSj−2→j−1)
† (Âi ⊗ I•) RSj−2→j−1 → Âi.

At the end of this routine, Âi will live in the Hilbert space of the system block S(j−1,Mj−1),
and then we shall be able to perform the measure by taking the average:

〈AiBj〉 = ψ∗g(s,α,β,e)Âi
ss′Bj

αα′ψg(s′,α′,β,e). (C.28)

In the same way, it is possible to perform a measure for an observable Bj that belongs to
the environment block (the right one). We want to remark that it is also possible to evaluate
measures in the case when i and j belong to the same block, but now the previous operator
product representation is not correct. Indeed, such an operator should be renormalized at
each DMRG step as a compound object [Sch05].

Entanglement entropy — DMRG algorithm provides an optimal representation of the
super-block Hilbert space for easily measuring the von Neumann entropy, despite its non
local properties. Indeed, at each DMRG step, for proceeding to the renormalization, we have
to diagonalize the reduced density matrix of both enlarged system and enlarged environment.
Therefore, when the system block is S(ℓ−1,Mℓ−1), the reduced density matrix after a DMRG
step is just the density matrix of the leftmost ℓ-sites subchain:

ρℓ ≡ ρS•. (C.29)

After diagonalize it, we have:

S(ℓ) = −
DMℓ−1∑

n=1

wn lnwn, (C.30)

where wn are the eigenvalues of the reduced density matrix.

C.1.5 Technical details

Now we will analyze some technicals tricks about the implementation of DMRG algorithm.
Furthermore we will give some interesting results which catch the key features of such a
numerical method.
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Lanczos-Davidson diagonalization — The Hamiltonian of the super-block is a matrix
of dimension D2M2 × D2M2. It is a very expensive procedure to diagonalize it. As we
yet said, we want to know only the ground-state properties of the Hamiltonian. Thus, we
can reduce the computational time by using Lanczos or Davidson methods[Dav75]. In this
way, we can obtain the the ground state in much less time with respect to the time needs
for accomplishing a full diagonalization routine. Moreover, it is not necessary to store the
full Hamiltonian. What we need is the the way in which the Hamiltonian acts on a generic
vector |ψ〉 living in a Hilbert space of dimension D2M2. At each DMRG step it is possible
to write a generic state as:

|ψ〉 = ψg(s,α,β,e)|s, α, β, e〉, (C.31)

where Latin indexes s and e refer respectively to system and environment blocks, while Greek
indexes α and β indicate free sites; in addition, the function g(s, α, β, e) is useful for storing
the |ψ〉 components in a one-dimensional array whose index runs from 1 to MsMeD

2 (see
at the end of this Subsection for the definition). Henceforth implicit summation convention
is assumed.

With this notation, if we take a generic component AS•⊗B•E of the superblock Hamilto-
nian in Eq. (C.15) acting on the left and on the right enlarged block, we have to implement
only this matrix multiplication:

ψout
g(s,α,β,e) = AS•g(s,α)g(s′,α′)B•Eg(β,e)g(β′,e′)ψin

g(s′,α′,β′,e′). (C.32)

In order to make the procedure more clear we apply the matrix multiplication to the free
spin interaction term appearing into the superblock Hamiltonian; in this case we have to do
only the multiplication between the free sites, then the output looks like

ψout
g(s,α,β,e) = H••i g(α,β)g(α′,β′)ψin

g(s,α′,β′,e); (C.33)

note that the system and environment indeces of the input and the output state are the
same.

Using this prescription we can save a lot of memory and number of operations, since
the dimensions of a matrix that acts on a generic enlarged block are DM × DM , versus
D2M2 ×D2M2 dimensions of a super-block matrix. Finally, let us remark that this matrix
multiplication used for Davidson diagonalization is quite general and we shall use it for all
matrices or vectors multiplications that we should perform.

Wave function prediction — Even by using Lanczos or Davidson routine, the hardest
task is still the diagonalization step. Briefly, the algorithm uses a initial vector and, after
applying iteratively the matrix HS••E , it generates a Krylov subspace in which the Hamilto-
nian is diagonalized; after that, it returns an approximate ground state up to some tolerance
value, fixed from the user. It is obvious that if a good guess as initial state is available, the
number of iterations required to converge to the solution can be reduced. In other words,
with a starting state that have overlap ≈ 1 with the final state, one can substantially reduce
the diagonalization time. During the infinite-system DMRG, the system changes at each
step (its length grows of two site), then it is not easy to give a optimal guess as input for the
diagonalization routine. Otherwise, in the case of finite-system DMRG, only the structure
of the Hilbert space changes from step to step, while the physical system is left unchanged.
Therefore, we can use the White’s prescription to predict the ground state re-expressed in
the truncated basis of the next DMRG step[Whi96]. The idea is to change the ground state
representation from one basis to the next although the transformation is incomplete (one
should not forget that the renormalization matrices are not square unitary matrices). In Fig-
ure C.5 we represent a system block of length ℓ and an environment block of length L−ℓ−2.
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Figure C.5: Graphical representation of DMRG basis transformation in order to obtain the
initial guess for the wave function.

After a Davidson diagonalization, the array elements of the target state are ψg(s,α,β,e). Now,
let us assume that we are performing a left-to-right sweep in such a way that the system
block is growing and the environment block is shrinking, thence we want to predict the new
representation ψ′g(s′,α′,β′,e′), where in both DMRG steps |ψ〉 is describing the same physical

system. All what we need is to apply the matrix RSℓ→ℓ+1 which we know from the current

DMRG iteration, and the matrix REL−ℓ−3→L−ℓ−2 from some previous DMRG iteration. In
matrix notation, the renormalization operators act as a incomplete change of basis:

|s′〉 = (RSℓ→ℓ+1)g(s,α)s′ |s, α〉, (C.34)

|e 〉 = (REL−ℓ−3→L−ℓ−2)g(β′,e′)e |β′, e′〉. (C.35)

Using Eq. (C.35) and the conjugate of Eq. (C.34) the transformed wave function then reads:

ψ′g(s′,α′,β′,e′) = (RSℓ→ℓ+1)
∗
g(s,α)s′(REL−ℓ−3→L−ℓ−2)g(β′,e′)eψg(s,α,α′,e). (C.36)

Notice that the left free site is now the same as the right one just before the change of basis
was carried out (see Figure C.5).

During the DMRG algorithm, we have to decide the tolerance value that we shall use
for the diagonalization routine. Normally, in the infinite-system algorithm it is necessary
to keep a quite small tolerance in order to avoid a wrong output target state; otherwise, in
finite-system algorithm, using the White’s prescription for initial wave function, it is also
possible to increase the tolerance of some order of magnitude. In fact, at each step the input
vector has yet a great overlap with the final state, therefore, also for a poor tolerance, there
is not risk that the Davidson routine gave something wrong.

On the suitable dimension of the Hilbert space — After selecting a system where
to apply the DMRG algorithm, normally the user has to tune some parameters which define
the accuracy level of the simulation. Basically there are three parameters that we can set
up: the tolerance of the Davidson routine, the tolerance ǫ of the energy output and the
maximum value M of the Hilbert space dimension. About the diagonalization routine we
have seen in the previous paragraph that, in order to obtain a good output state, it does
not matter what value of tolerance has been chosen. Now, we turn our attention to the last
two parameters.

The energy tolerance ǫ defines the minimum value of the energy difference between two
successives DMRG sweeps. In other words, while finite-system DMRG is running, we take
note of the energy value at the end of a sweep and we calculate the difference with the
previous value; if this number is smaller then ǫ, we just go to stop the algorithm. A this
point, it would be natural to take ǫ as error of the energy, but generally, this is not correct.
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Figure C.6: Difference between DMRG and exact ground-state energy for a critical trans-
verse Ising chain with L = 32 sites (a), and for a factorized XY chain (γ2 + h2 = 1) with
L = 64 (b). We plot two different kind of algorithm: (red and green) - we perform the
warmup and the sweeps with a fixed value of M that correspond to the starting value (red
ones) and finishing value (green ones) used by M self-adapting algorithm; (blue) - now the
M value grow until the same error on the energy is achieved. Only in (a), the black dot line
is the exact ground energy at each warmup step refered to E0; the inset shows the difference
during the warmup steps.

In fact, we would take care to provide for a good M value. If M is too small for taking
correctly into account all the system correlations, the energy usually converges to a value
which differs from the exact ones by an amount much larger then the tolerance ǫ. It is
clear that, by increasing M , the output becomes closer and closer to the exact solution,
which is eventually reached in the limit of M ∼ DL. Normally the energy tolerance and
the maximum dimension of the Hilbert space are strictly connected and it would be good
to know an initial guess for M . In fact, if we use a good enough M value, ǫ give us the
correct uncertainty of the energy; otherwise, it is not useful to ask for a small tolerance with
a non so good M value. In answer to this request we should use the information theory.
If we consider a system block which lives in a M dimensional Hilbert space, the entropy is
maximum when the density matrix ρS has a uniform eigenvalues distribution. One has:

SS 6 −
M∑

i=1

(1/M) ln(1/M) = lnM, (C.37)

that gives the lower limit M > exp(SS). Now, close to a quantum critical point, the CFT
predicts the scaling law

S(ℓ) ∼ ln

(
2L

π
sin

(
πℓ

L

))
, (C.38)

for the entropy of a subsystem of length ℓ embedded in a finite chain of length L. Using the
maximum value S(L/2) we finally obtain

M & 2L/π. (C.39)

Otherwise, for a system away enough from its critical points the entropy is bounded by
a maximum value S∗S , then independently of the system size, M is lower-bounded by ∼
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Figure C.7: Block entropy for a transverse Ising chain with L = 32 sites at critical point.
The data are referred to the block entropy obtained by exact numerical diagonalization. The
convention is the same as in Figure C.6.

exp(S∗S). These values are only indicative and often, on depending the system we are
working with, they could be very different. Moreover, it is not useful to have a great precision
while finite-system DMRG is running: a better precision is recovered by using finite-system
DMRG. In order to avoid this problem we perform the infinite-system algorithm with a small
M , then we increase its value at each finite-system sweep looking for a energy convergence.
In this way we take into account the effects of a bad starting value of M and save a lot of
CPU-time. Basically, we adopt the following prescription for optimizing the energy output
as well as the CPU-time:

• Perform infinite-system DMRG with a small enough M =M0 . L/8.

• Run the first left to right sweep with the same value of M , then upgrade it to the L/8
value.

• From now on, after each DMRG sweep, increase M by M0 for not critical systems, by
L/8 for critical ones.

For making the discussion more clear we show in Figure C.6 the results for different
solutions applied on a transverse Ising chain in a critical and not-critical regime. We perform
a DMRG simulation using our prescription, then we confront the result with two other
simulation accomplished with M kept fix to the starting and finishing value used by M -
updating simulation. In all cases we have set the energy tolerance equale to 10−12. The
main plot shows the difference in the energy for a critical and a non critical system. Although
the not-critical chain is much larger than the critical one, it needs for a smallerM compared
to the critical one. Furthermore, in the not-critical case the algorithm is much faster and
converges with higher precision; otherwise, the powerful of our prescription is better showed
by the critical simulation. In fact, in this case is manifest the further improvement caused
by the growth of the M value. Only for the critical case, we take note also of the warmup
energy referred to the exact size-depending energy E0(L) = − sin2(π2 L

2L+1 )/ sin(
π
2

1
2L+1 );

despite the difference in the value of M , the energy error rests almost unchanged, especially
compared with the improvement dues to the finite-system algorithm. For the critical case,
we show in Figure C.7 the block entropy behavior. We compare, as in the energy case,
different algorithms and plot the result referred to the exact one. Notice that the error in
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Figure C.8: Ground state correlation function 〈σx
i σ

x
j 〉 for an Ising chain with size L = 64

in the critical regime h = 1 (top) and non critical regime h = 2 (bottom).

the entropy is much larger than the energy one, but again it rest quite small (on depending
the energy tolerance we have set up before). Finally, as an example of two-point observable,
we compare in Figure C.8 the behavior of the order parameter correlation function 〈σx

i σ
x
j 〉

in the ground state of the Ising model both for a critical and non critical chain.

Useful storing functions — We give the storing functions used for allocate vectors and
matrices during the algorithm. We have used the convention that the tensorial indexes of
a vector or a matrix run from the right to the left. The first index which change is the
environment, then the right free site and so on. In this way for a generic state we have

ψsαβe → ψg(s,αβ,e), (C.40)

with
g(s, α, β, e) = e+ME(β +D(α+D(s− 1)− 1)− 1). (C.41)

The index e runs from 1 to the environment dimensionME , s from 1 to the system dimension
MS and indeces α and β run from 1 toD. It is straightforward to introduce analogs functions
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|Ψ(t)〉 |Ψ(t)〉 |Ψ(t)〉

|Ψ0〉 |Ψ0〉 |Ψ0〉

Fixed Space Enlarged Space Adapted Space

Figure C.9: In the figure different time-dependent approach are presented. In each case, the
total Hilbert space (big light red squares) is truncated to a local sub-space (small light blue
ellipses). From left to right we show: the fixed space approach, in which the evolution is
performed taking fixed the initial truncated basis; the enlarged space approach, in which
the approximative basis is enlarged in time but the target state is always the initial one;
the adapted space approach, in which one adapts in time the truncated Hilbert space in
order to better describe the evolved vector (black full lines). In the text, we describe this
latter method.

for S•, •E and •• subspaces

g(s, α) = α+D(s− 1), (C.42)

g(β, e) = e+ME(β − 1), (C.43)

g(α, β) = β +D(α− 1), (C.44)

and also for S • • and • • E

g(s, α, β) = β +D(α+D(s− 1)− 1), (C.45)

g(α, β, e) = e+ME(β +D(α− 1)− 1). (C.46)

C.2 Time-dependent DMRG

In the last decade a multitude of numerical methods for implementing the time evolution
in quantum systems was proposed [CM02, LXW03, CM03, Vid03, Vid04, WF04, DKSV04,
FW05] but, once again, a decisive contribution came from the quantum information domain.
Indeed, in 2003 G. Vidal developed the Time-Evolving Block Decimation (TEBD) algorithm
which is an efficient algorithm to simulate the time-evolution of one-dimensional quantum
systems. The underlying idea of such an algorithm is closely related to the DMRG method,
therefore it can be easily implemented with the same DMRG language. The numerical
method that comes out from the union of the TEBD with the DMRG is called “adaptive”
time-dependent DMRG (t-DMRG): in practice, during the algorithm one adapts in time the
reduced Hilbert space to the time-evolving target state. In this section, following [WF04,



C.2. Time-dependent DMRG 147

e
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−iĤ1(3,4)dt

e
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Figure C.10: Sketch of the t-DMRG algorithm. In this case the local evolution operator is
implemented using the first order Trotter expansion (Figure taken from [CRRM08]).

DKSV04, SW06, CRRM08], we will describe how to implement the real time evolution into
the DMRG algorithm.

Let us suppose to have found, using the static DMRG algorithm, the approximate ground
state |Ψ0〉 of some initial Hamiltonian H0. Then, the aim is to simulate the time-evolution
of the system according to a different Hamiltonian H1. This goal is accomplished by in-
troducing the Suzuki-Trotter decomposition of the evolution operator U = e−iH1t. From
previous sections we know that the DMRG algorithm gives an approximate truncated ba-
sis of the Hilbert space of the system. However, the evolved state |Ψ(t)〉 changes in time,
exploring different regions of the total Hilbert space, and, therefore, the initial truncated
basis should be no more the better approximation to represent the actual state. As we yet
said, this problem can be solved by updating such a basis during the evolution. This can
be easily done in the DMRG framework: we can simply follow the DMRG renormalization
procedure but now targeting the evolved state instead of the ground state of the super-block
Hamiltonian.

Indeed, we can use the finite-system algorithm to perform step by step a local time
evolution, then we construct a new block basis which well describes the state |Ψ(t)〉 at
any time of the evolution. For accomplishing such a local evolution we needs to rewrite,
at each step, the wave function |Ψ(t)〉 in the correct blocks-sites configuration in order to
be able to apply the next local evolution operator on the two free sites. In other words,
we have to transform the state representation between different configurations. We yet
know how to do that: we need just the same White’s prescription as for the static DMRG
diagonalization routine [Whi96] (see paragraph “Wave function prediction”). In this case,
the White’s prescription is used as simple truncated-basis transformation.

As we said before, we approximately evaluate the evolution operator U = e−iH1t using
the Suzuki-Trotter decomposition. For example, the first order expansion is:

e−iH1t ≈
[

L−1
∏

ℓ=1

e−iH1(ℓ)dt

]N

, (C.47)

where we have introduced the small time interval dt and the number of time steps N = t/dt.
H1(ℓ) is the local interaction Hamiltonian between site ℓ and ℓ + 1, in such a way that
H1 =

∑

ℓH1(ℓ) and L is the size of the system. Of coarse, we can introduce higher-order
approximations: for example, if we split the total Hamiltonian as H1 = He + Ho, where
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Figure C.11: Temporal evolution of the entanglement entropy S(ℓ, t) of a L = 20 critical
Ising chain after switching on the interaction term in the middle. Here we used dt = 0.05.

He =
∑

ℓ evenH1(ℓ) contains only even bonds and Ho =
∑

ℓ oddH1(ℓ) only odd bonds, since
[He,H0] = 0 one obtains the second-order expansion:

e−iH1t ≈
[
e−iHedt/2e−iHodte−iHedt/2

]N
. (C.48)

Notice that the second order Trotter decomposition corresponds to apply, for a single time-
step, the operator

e−iH1dt ≈ e−iH1(1)dt/2 · · · e−iH1(L−1)dt/2e−iH1(L−1)dt/2 · · · e−iH1(1)dt/2, (C.49)

giving reversible (in the sense left/right) time evolution. The idea is to apply e−iH1(1)dt/2

at DMRG step 1, then e−iH1(2)dt/2 at step 2, etc., up to the end of the usual left-to-right
sweep, then to repeat the same procedure but in the inverse order following the right-to-left
sweep.

In theory it is possible to improve the algorithm by using successive order expansions.
Nevertheless, the main source of errors also in the t-DMRG algorithm is still the truncation
error. Indeed, it is not useful to have a perfect time evolution if we have a poor approximation
of the wave function. What we need is a good compromise between the maximum number
of states kept M , the order of the Trotter decomposition and the number of Trotter steps
N . For more details on the t-DMRG errors see [GKSS05, SW06].

In the following paragraph we summarize the adaptive time-dependent DMRG algorithm
which incorporates the TEBD.

C.2.1 Adaptive t-DMRG recipe

1. Find the ground state |Ψ0〉 of H0 by using the static DMRG algorithm.

2. Follow the same finite-system procedure, but now, at each step ℓ, apply the operator
e−iH1(ℓ)dt/2 (second order Trotter expansion) to the system state. For first, from left
to right, then from right to left using the inverse sequence.
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Figure C.12: Entropy difference between DMRG and exact dynamics, ∆S ≡ SDMRG(ℓ, t)−
Sex(ℓ, t). Each curve represents different subsystem size ℓ.

3. Renormalize the system block and the environment block storing the matrices RS and
RE for the following steps.

4. Use the White’s prediction to change the state representation.

5. Repeat points 3 to 4, until a complete sweep (left-to-right plus right-to-left) is accom-
plished.

As we yet said, the White’s prescription is already included in the static DMRG recipe,
then implementing the TEBD method in the DMRG code is straightforward: at each DMRG
step ℓ, we need to apply the local evolution operator e−iH1(ℓ)dt/2 to the super-block state
vector. To be more clear, we explicitly give an example of the procedure using the Trotter
expansion (C.49). In this case, for accomplishing the evolution from t to t + dt one needs
one entire sweep: we perform the usual left-to-right half sweep applying at each step the
local representation of the operator e−iH1(ℓ)dt/2 to the two free site ℓ and ℓ+1. Notice that
this operator, in the representation in which the sites ℓ and ℓ + 1 are the two free sites, is
described by an exact D2 × D2 matrix. Once the left-to-right half sweep is accomplished,
we apply the same operators in the reversed order following the right-to-left half sweep. At
the end of this procedure we obtain the vector |Ψ(t + dt)〉. Just one remark: whenever we
arrive to the border, e.g. the configuration S(L− 3,ML−3) • •E(1, D) at the end of the left-
to-right half sweep, we have to use the same representation of the wave function to perform
the evolution of both the two free sites and the block. Finally, we want to stress again that
during the whole procedure we have to renormalize the corresponding growing block using as
a target state the partially evolved super-block state. In this way, we take into account the
modification of the truncated Hilbert space. In addition, we can also change the maximum
size M of the block Hilbert space during the time evolution. By doing that, it is possible
to take into account any growth in the system correlations (see next paragraph). In Figure
C.10 we give a sketch of such a procedure for one half sweep.

Now, we give a simple example of a simulation performed with the t-DMRG. We consider
a quantum critical Ising chain HTI [L] = −

∑L−1
i=1 σ

x
i σ

x
i+1 −

∑L
i=1 σ

z
i , where L is the system

size. We first run the finite-system DMRG algorithm to obtain the ground state |Ψ0〉 of
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H0 = HTI [10] +HTI [10], that is two unconnected Ising chain with size L = 10. Then we
switch on the central site interaction, performing the t-DMRG algorithm withH1 = HTI [20].
In Figure C.11 we plot the entanglement entropy profile S(ℓ, t) for the leftmost subsystem
of size ℓ embedded in the whole chain. By comparing t-DMRG evolution with the exact
numerical diagonalization one can see that, during the evolution, |SDMRG(ℓ, t)−Sex(ℓ, t)| .
dt2 (see Figure C.12).

Enlarging the Hilbert space in time — To conclude this section, we give some tech-
nical details about the adaptive calculation of the maximal Hilbert space dimension. Once
again, we use the information theory to link the dimension of the Hilbert space to the en-
tanglement entropy. The idea is to state, also for time evolved system: S(t) ∼ lnM(t);
where S(t) is the time-dependent entropy, and M(t) represents the maximal Hilbert space
dimension at time step t. In practice, after a complete evolution from t− dt to t, we know
the entanglement entropy profile S(ℓ, t). Using the entropy difference calculated at the
maximum value

dS(t) = SMAX(t)− SMAX(t− dt), (C.50)

we perform the upgrading for the next step

M(t+ dt) = int
[
M(t)edS(t)

]
. (C.51)
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Résumé
Dans cette thèse, nous avons répondu à certaines questions ouverts dans le domaine de

la dynamique hors équilibre des systèmes quantiques unidimensionnels fermés. Durant ces
dernières années, les avancées dans les techniques expérimentales ont revitalisé la recherche
théorique en physique de la matière condensée et dans l’optique quantique. Nous avons
traité trois sujets différents et en utilisant des techniques à la fois numériques et analy-
tiques. Dans le cadre des techniques numériques, nous avons utilisé des méthodes de di-
agonalisation exacte, l’algorithme du groupe de renormalisation de la matrice densité en
fonction du temps (t-DMRG) et l’algorithme de Lanczos. Au début, nous avons étudié la
dynamique quantique adiabatique d’un système quantique près d’un point critique. Nous
avons démontré que la présence d’un potentiel de confinement modifie fortement les pro-
priétés d’échelle de la dynamique des observables en proximité du point critique quantique.
La densité d’excitations moyenne et l’excès d’énergie, après le croisement du point critique,
suivent une loi algébrique en fonction de la vitesse de la trempe avec un exposant qui dépend
des propriétés spatio-temporelles du potentiel. Ensuite, nous avons étudié le comportement
de bosons ultra-froids dans un réseau optique incliné. En commençant par l’hamiltonien
de Bose-Hubbard, dans la limite de Hard-Core bosons, nous avons développé une théorie
hydrodynamique qui reproduit exactement l’évolution temporelle d’une partie des observ-
ables du système. En particulier, nous avons observé qu’une partie de bosons reste piégée,
et oscille avec une fréquence qui dépend de la pente du potentiel, au contraire, une autre
partie est expulsée hors de la rampe. Nous avons également analysé la dynamique du modèle
de Bose-Hubbard en utilisant l’algorithme t-DMRG et l’algorithme de Lanczos. De cette
façon, nous avons mis en évidence le rôle de la non-intégrabilité du modèle dans son com-
portement dynamique. Enfin, nous avons abordé le problème de la thermalisation dans un
système quantique étendu. À partir de considérations générales, nous avons introduit la
notion de profil de température hors équilibre dans une chaîne des bosons à cœr dure. Nous
avons analysé la dynamique du profil de temperature et, notamment, ses propriétés d’échelle.

mots clés: Mécanique quantique, phénomènes critiques quantiques, transitions de
phase quantiques, théorie d’échelle, dynamique adiabatique, mécanisme de Kibble-Zurek,
densité de défauts, modèle XY quantique, modèle de Bose-Hubbard, intrication quantique,
entropie, bosons ultra-froids, oscillations de Bloch , auto-piégeage, thermalisation quantique,
profil de température quantique.
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