Thèse soutenue

Graphages à type d'isomorphisme prescrit
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Pierre-Adelin Mercier
Direction : Damien Gaboriau
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 24/09/2012
Etablissement(s) : Lyon, École normale supérieure
Ecole(s) doctorale(s) : École doctorale en Informatique et Mathématiques de Lyon
Partenaire(s) de recherche : Laboratoire : Unité de Mathématiques Pures et Appliquées (Lyon ; 1991-....)
Jury : Président / Présidente : Claire Anantharaman
Examinateurs / Examinatrices : Damien Gaboriau, Claire Anantharaman, Bachir Bekka, Julien Melleray, Aurélien Alvarez
Rapporteurs / Rapporteuses : Bachir Bekka

Résumé

FR  |  
EN

On considère R une relation d’équivalence borélienne standard de type I I1 sur un espace de probabilités (X, µ). On étudie une certaine propriété d’homogénéité pour un graphage fixé de la relation R : on suppose que les feuilles du graphage sont toutes isomorphes à un certain graphe transitif (connexe, infini, localement fini) Γ. Que peut-on dire sur la relation ? Dans ce cas, en considérant une action "à la Mackey", on montre qu’il existe (Z ,η) un revêtement standard probabilisé de (X, µ), une action libre (qui préserve η) sur Z du groupe G (localement compact, à base dénombrable d’ouverts) des automorphismes du graphe et un isomorphisme stable des groupoïdes mesurés associés. On fait le lien entre les propriétés du groupe G et celles de la relation de départ ; en particulier la propriété (T), (H) et la moyennabilité "passent" du graphe à la relation et réciproquement. On déduit aussi de la construction quelques couplages d’équivalence mesurée (ou plus généralement des "randembeddings") entre certains sous-groupes des automorphismes de Γ et tout groupe qui contient orbitalement la relation R. Dans un deuxième chapitre, on aborde le cas particulier de la propriété (T) relative pour les paires de groupes (ΓxZ^2, Z^2), où Γ est un sous-groupe non moyennable de SL(2,Z). Cette propriété a d’abord été prouvée par Marc Burger, puis "re-démontrée" plus "visuellement" quelques années plus tard dans le cas de SL(2,Z)xZ^2 par Y. Shalom, en utilisant des découpages du plan. On reprend cette technique dans le cas général du théorème de Burger afin d’obtenir par un algorithme des constantes de Kazhdan explicites pour toute paire (ΓxZ^2, Z^2).