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Résumé

Les enquêtes par sondage sont utiles pour estimer des caractéristiques d’une pop-

ulation telles que le total ou la moyenne. Cette thèse s’intéresse à l’étude de

techniques permettant de prendre en compte un grand nombre de variables aux-

iliaires pour l’estimation d’un total.

Le premier chapitre rappelle quelques définitions et propriétés utiles pour la

suite du manuscrit : l’estimateur de Horvitz-Thompson, qui est présenté comme

un estimateur n’utilisant pas l’information auxiliaire ainsi que les techniques de

calage qui permettent de modifier les poids de sondage de facon à prendre en

compte l’information auxiliaire en restituant exactement dans l’échantillon leurs

totaux sur la population.

Le deuxième chapitre, qui est une partie d’un article de synthèse accepté pour

publication, présente les méthodes de régression ridge comme un remède possible

au problème de colinéarité des variables auxiliaires, et donc de mauvais condition-

nement. Nous étudions les points de vue ”model-based” et ”model-assisted” de

la ridge régression. Cette technique qui fournit de meilleurs résultats en terme

d’erreur quadratique en comparaison avec les moindres carrés ordinaires peut

également s’interpréter comme un calage pénalisé. Des simulations permettent

d’illustrer l’intérêt de cette technique par comparison avec l’estimateur de Horvitz-

Thompson.

Le chapitre trois présente une autre manière de traiter les problèmes de colinéarité

via une réduction de la dimension basée sur les composantes principales. Nous

étudions la régression sur composantes principales dans le contexte des sondages.

Nous explorons également le calage sur les moments d’ordre deux des composantes

principales ainsi que le calage partiel et le calage sur les composantes principales

estimées. Une illustration sur des données de l’entreprise Médiamétrie permet de

confirmer l’intérêt des ces techniques basées sur la réduction de la dimension pour

l’estimation d’un total en présence d’un grand nombre de variables auxiliaires.

Mots clés : sondage, colinéarité, régression ridge, calage pénalisé, estimateur
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assisté par un modèle, estimateur basé sur un modèle, estimateur de Horvitz-

Thompson, calage sur composantes principales.
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Abstract

Survey sampling techniques are quite useful in a way to estimate population pa-

rameters such as the population total when the large dimensional auxiliary data set

is available. This thesis deals with the estimation of population total in presence

of ill-conditioned large data set.

In the first chapter, we give some basic definitions that will be used in the

later chapters. The Horvitz-Thompson estimator is defined as an estimator which

does not use auxiliary variables. Along with, calibration technique is defined to

incorporate the auxiliary variables for sake of improvement in the estimation of

population totals for a fixed sample size.

The second chapter is a part of a review article about ridge regression es-

timation as a remedy for the multicollinearity. We give a detailed review of

the model-based, design-based and model-assisted scenarios for ridge estimation.

These estimates give improved results in terms of MSE compared to the least

squared estimates. Penalized calibration is also defined under survey sampling as

an equivalent estimation technique to the ridge regression in the classical statis-

tics case. Simulation results confirm the improved estimation compared to the

Horvitz-Thompson estimator.

Another solution to the ill-conditioned large auxiliary data is given in terms of

principal components analysis in chapter three. Principal component regression is

defined and its use in survey sampling is explored. Some new types of principal

component calibration techniques are proposed such as calibration on the second

moment of principal component variables, partial principal component calibration

and estimated principal component calibration to estimate a population total. Ap-

plication of these techniques on real data advocates the use of these data reduction

techniques for the improved estimation of population totals.

Keywords: Survey sampling, Multicollinearity, Ridge regression, Penalized

calibration, Model-based estimator, Model-assisted estimator, Horvitz-Thompson

estimator, Principal component calibration.
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Introduction

Estimation of the statistical parameters such as population mean or popula-

tion total is generally supposed to be made efficient by employing survey sampling

techniques that are using extensively large auxiliary variables. However, the large

data sets import some data problems and hence make the estimation rather fault-

ier. In this thesis, the problems inherent in the dimension of data in the structure

of data are solved by two different ways namely ridge regression and principal

component regression.

The first chapter includes some basic definitions and the introduction to the

regression and calibration estimators which serve equally in the estimation proce-

dure.

The data problems such as multicollinearity and ill-conditioning in large data

sets cause singular regression coefficient and potentially result in inefficient esti-

mators and in calibration technique, resulting inappropriate weights, may be the

worst circumstances faced by a survey statistician.

This thesis is an effort to establish those methods which can negotiate the above

mentioned problems in the best possible way using large dimensional auxiliary

variables. The ultimate goal of the whole exercise is to get improved estimators

of the population total.

Among the reasons for the data problems, may be the non-response or record-

ing errors which can be minimized but not totally eliminated. So, if the utilization

of large amount of auxiliary information is quite attractive due to the improved

estimators, the problems related to these extensive amount of data are also over-
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whelming.

The objective is to achieve a compromise between the cost paid through these

irresistible data problems and the gain attained via the use of the auxiliary vari-

ables.

The second chapter contains an article (Goga and Shehzad, 2011 (under re-

view)), which in fact is a detailed overview of the ridge type of estimation both in

model-based and model-assisted cases as a solution to the ill-conditioned data.

Although, the selection of a unique value for the ridge parameter remains an

open problem, very popular and easy to calculate method is ridge trace (Hoerl

and Kennard, 1970). Theobald (1974) gave a condition on the choice of ridge

parameter for having means squared error of ridge estimator less than that of the

least squared estimator. Several mathematical situations where ridge regression

estimator can serve as a solution to the ill-conditioned data, are considered in

chapter 2.

We discussed the ridge regression estimator as an estimator producing the

smallest residual sum of squares compared to the ordinary least squares estimator.

so, using the work of Hoerl and Kennard (1970), Marquardt and Snee (1975) and

Izenman (2008), we can see the ridge estimator as a solution of a constrained

minimization problem. Also, ridge regression coefficient estimator can be taken as

the posterior mean of the unknown regression coefficient and search for its prior

distribution. For a suitable prior and finding a posterior distribution of regression

coefficient is searched with th mean as the ridge regression estimator.

The case of different error variances is is also discussed namely the problem of

heteroscedasticity in case of ridge estimators.

Certain cases of ridge regression estimator in classical regression are gathered

and results showing improved mean squared error of ridge estimator compared to

the ordinary least square estimator is established.

Model-based and model-assisted estimators for the regression coefficient in

ridge case presented in terms of the optimization problems and the relevant model-
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based and model-assisted (GREG) estimators for the population total are calcu-

lated. Certain conditions on the ridge parameter are explored. The case of pe-

nalized calibration ( or ridge calibration) is presented and the ridge calibration

weights are calculated and a GREG-type estimator is obtained.

Another case of partial penalized calibration is stated and equivalence of two-

type of partially penalized calibration estimators is shown. Deville (1999) however

gave an estimator without need of any penalty but some sort of external source of

information is pre-requisite for this method to hold. His method gets inspiration

from the Bayesian estimator to estimated the regression coefficient. Statistical

properties such as bias, variance, asymptotic variance and mean squared error

under model-based and model-assisted cases are given. A small simulation study

is done and superiority of ridge estimator over Horvitz-Thompson estimator is

shown.

Chapter 3 comprises of the description of principal component analysis and

its use in regression analysis namely principal component regression (PCR). The

choice of number of principal components to be included in the estimation pro-

cedure depends upon the statisticians. However, Jolliffe (2002) gave a detailed

overview of possible methods for the choice of principal components. Section 3.1.2

mentions the theorem by Gunst and Mason (1977) showing the mean squared

error of principal component estimator inferior to that of the least squared esti-

mator. In Section 3.2, we study the principal component regression in survey sam-

pling and we formulate model-based and model-assisted properties of the principal

component estimator. The convergence of Horvitz-Thompson type expression for

asymptotic variance is developed and its estimator is also given. In section 3.2.4,

we propose some new calibration techniques using principal components such as

calibration on the second moment of the principal component variables, calibration

using estimated principal components and partial principal component calibration

for the estimation of population totals. These biased methods serve as an alter-

native to the ridge calibration for tackling the ill-conditioning present in the data.
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Compared to the ridge estimators which are penalizing methods, the estimators

based on principal components are the dimension reduction methods.

The principal component estimators have a certain advantage in the fact that

each principal component is a linear combination of all original variables, so max-

imum information is in-hand while the reduction in dimension is also achieved.

This however may not be possible to compute when the original variables are not

known for whole population. We estimated principal components and used them

in place of population principal components and simulation on the Mediametrie

showed that both methods have similar performances. Finally, The comparison

between other proposed methods is also made by using figures and tables. Finally,

chapter 3 comprise of discussion about the results attained in this Phd work and

some future perspectives are noted.
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Chapter 1

Total estimation techniques in

survey sampling

1.1 Introduction

Large dimensional data sets in survey sampling are often encountered in the

estimation procedures. Several techniques have been found in literature both in

model-based and design-based environments to deal with the complications such

as multicollinearity and ill-conditioning related to the large dimensional data in

survey sampling. The total estimation in survey sampling in different scenarios are

discussed and several methods are designed both to cope with the above mentioned

data problems and the largeness of the data dimensions. The proposed techniques

are illustrated with some real data application.

After giving some basic notations in section 1, we present the unbiased estima-

tor of population total Horvitz-Thompson (1952) estimator in section 2. General

type of variance and estimator of variance expressions of the Horvitz-Thompson es-

timator are provided which will be used throughout this thesis work. We present

the simple random sampling without replacement which is the sampling design

used for the sample selection in chapter 2 and chapter 3 in the practical applica-

tion of the proposed methods. Later, in the same section, we define the auxiliary

13



data sets to be used at the design and estimation stages. Section 3 contains

the definition of the generalized difference and generalized regression (GREG)

estimators (Cassel et al, 1976) which incorporate the auxiliary information for

the improvement of the estimation procedure in terms of the smaller errors than

Horvitz-Thompson estimator (Särndal et al, 1992). The expressions for the vari-

ance and its estimator are given for GREG estimator of the population total which

will be used for the variance construction in chapter 2 and chapter 3 for ridge and

PC type estimators. The section 4 describes the calibration estimation technique

(Deville and Särndal ,1992) which does not depend on the superpopulation model

and generates weights which are ultimately used for the estimation of population

total ty. This method serves as a back-up for the estimation procedure in case of

model failure.

1.1.1 Notations

We consider a finite population U containing N elements such that

U = {a1, . . . , ak, . . . , aN} = {1, . . . , k, . . . , N}

with the supposition that the population units are identifiable uniquely by their

label k (Cassel et al, 1977). Let Y be a variable of interest and yk denotes the

value of Y for the kth individual. The finite population parameter of the unknown

variable of interest may be denoted as a vector, Y = (y1, . . . , yN ) and any real

function of it is called parametric function. Making inferences about a para-

metric function like total or the mean for example, is the objective of the survey

sampling. Any other complicated functions such as the mode, the various popu-

lation quantiles and the population variances may also be the subject of interest

in survey sampling.

A small part of population U named as sample s is used to make inference

about a parametric function. The sample s is obtained from the population by

a probabilistic selection method. Let S be the set of all possible subsets s of U ,

14



s ∈ P(U). The number of possible subsets is 2N including φ and U ; a sample is

an element of S.

Let p(s) be the probability of selecting s ∈ S given U . Saying otherwise, the

function p(s) is called the sampling design satisfying the following conditions:

(a) p(s) ≥ 0 ∀s ∈ S

(b)
∑

s∈S p(s) = 1

Cassel et al (1977) refers a sampling design p(s) which is not a function of Y as

a non-informative design. The sample size noted by n, denotes the number of

elements in s, may be fixed or not for the samples s ∈ S. The sample membership

indicator (Deville and Särndal ,1992) is denoted by

Ik = 1(k∈s) ∀k ∈ U

where the random variable Ik is a Bernoulli variable indicating if the kth unit

belongs to the sample or not. Assuming that the sampling design has been fixed,

the probabilities of inclusion may be defined as follows:

(I). πk: is the probability that the kth element is included in a sample. That

is, πk =
∑

s3k p(s), for k ∈ U , and πk is called the first order probability of

inclusion

(II). πkl: is the second order inclusion probability defined as the probability

that the elements k and l will be included in a sample. That is, πkl =∑
s3{k,l} p(s), for k ∈ U and l ∈ U .

Result 1 (Properties of the indicator function Ik). For a sampling design p(.),

the indicator function Ik satisfies the following properties:

(i). E(Ik) = πk

(ii). V (Ik) = πk(1− πk)

(iii). Cov(Ik, Il) = πkl − πkπl, k 6= l, ∀ k, l ∈ U

15



Proof. The proof comes from the reality that Ik is a Bernoulli variable.

(i). E(Ik) = P (Ik = 1) = πk since πk = P (k ∈ s) =
∑

k∈s p(s).

(ii). Also since πkl = P (k, l ∈ s) = P (IkIl = 1) =
∑

k,l∈s p(s) and πkl = πlk for

k, l. This implies that when k = l,

πkl = P (I2
k = 1) = P (Ik = 1) = πk

Hence,

E(I2
k) = πk = E(Ik)

It follows,

V (Ik) = E(I2
k)− (E(Ik))

2 = πk − (πk)
2 = πk(1− πk)

(iii). Moreover, P (IkIl = 1) = πkl if and only if both k and l are members of s.

Thus

E(IkIl) = P (IkIl = 1) = πkl

which leads us to the quantity,

Cov(IkIl) = E(IkIl)− E(Ik)E(Il) = πkl − πkπl = ∆kl, k 6= l ∀k, l ∈ U

Note that for all k = l

Cov(IkIl) = V (Ik).

For sake of simplicity in notations, we define the ∆-quantities as:

∆kl = πkl − πkπl

∆̌kl =
∆kl

kl
∀k, l ∈ U .

We suppose from here onwards that πk > 0 for all k ∈ U , namely each unit in

the population has a chance to be in the sample.
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1.2 Estimation of population total

Let us consider the finite population total,

ty =
∑
U
yk.

For the section below we shall restrict our study in the context of the fixed pop-

ulation approach so the only randomness is due to the sampling design, p(.).

Consequently, definitions of expectation, variance, and mean square error of an

estimator T of ty can be formulated for a given design p(s). For example, the

expectation of T is

E(T ) =
∑
s∈S

p(s)T (s)

1.2.1 The Horvitz-Thompson Estimator

Among the class of linear estimators, we consider the one proposed by Horvitz

and Thompson (1952). It is called Horvitz-Thompson estimator or π estimator

for the total ty because of the first order inclusion probabilities appearing in its

formula,

t̂yπ = t̂HT =
∑
s

yk
πk
.

The equivalent expression of the π estimator for the total tx can be written as,

t̂xπ =
∑
s

xk
πk
.

Properties of the Horvitz-Thompson Estimator

Result 2. The π estimator t̂yπ of the population total ty has the following prop-

erties:

i. t̂yπ is design unbiased for ty =
∑

U yk.

ii. The variance of tyπ can be written as,

V (t̂yπ) =
∑
U

∑
U

∆kl
yk
πk

yl
πl
.

17



iii. If πkl > 0 for all k, l ∈ U , an unbiased estimator for V (tyπ) is,

V̂ (t̂yπ) =
∑
s

∑
s

∆̌kl
yk
πk

yl
πl
.

Proof. The proof is entirely based on the use of the indicator variable Ik:

i. We have

t̂yπ =
∑
s

yk
πk

=
∑
U

yk
πk
Ik,

so

E(t̂yπ) =
∑
U

yk
πk
E(Ik)

=
∑
U

yk

so t̂yπ is unbiased for ty.

ii. The variance has the expression,

V (t̂yπ) = V

(∑
U

yk
πk
Ik

)

=
∑
U

y2
k

π2
k

V (Ik) +
∑
k∈U

∑
l∈U,l 6=k

yk
πk

yl
πl
Cov(IkIl),

recalling the properties of Ik, V (Ik) = πk(1− πk) and Cov(IkIl) = πkl− πkπl,

we get,

V (t̂yπ) =
∑
U

y2
k

π2
k

(πk(1− πk)) +
∑
k∈U

∑
l∈U,l 6=k

yk
πk

yl
πl

(πkl − πkπl),

=
∑
U

∑
U

∆kl
yk
πk

yl
πl
.

iii. Since the estimator of variance has the expression,

V̂ (t̂yπ) =
∑
s

∑
s

∆̌kl
yk
πk

yl
πl

=
∑
U

∑
U

∆̌kl
yk
πk

yl
πl
IkIl.
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We apply expectation on both sides,

E(V̂ (t̂yπ)) =
∑
U

∑
U

∆̌kl
yk
πk

yl
πl
E(IkIl)

=
∑
U

∑
U

∆̌kl
yk
πk

yl
πl
πkl

=
∑
U

∑
U

∆kl
yk
πk

yl
πl

= V (t̂yπ).

So, V̂ (t̂yπ) is unbiased estimator of the t̂yπ

Yates and Grundy (1953) and Sen (1953) argued that equivalent formulas can

be obtained for the variance and variance estimator of t̂yπ for a sampling design

of fixed size, ns = n.

Remark 1. (Yates and Grundy (1953) and Sen (1953) )

If p(s) > 0 is of fixed sample size, then V (t̂yπ) and V̂ (t̂yπ) have the following

expression,

i.

V (t̂yπ) = −1

2

∑
U

∑
U

∆kl

(
yk
πk
− yl
πl

)2

ii. If πkl > 0 for all k, l ∈ U , then

V̂ (t̂yπ) = −1

2

∑
s

∑
s

∆̌kl

(
yk
πk
− yl
πl

)2

These results can be proved using the properties of indicator function and inclusion

probabilities.
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1.2.2 Simple Random Sampling Without Replacement (SRSWOR)

In this scheme of sampling, we select the first element of the sample with equal

probability 1
N from the population and the selected element is kept away during

the following selections. Again, we select another unit with equal probability from

the remaining N − 1 entities of the population and we repeat the procedure again

and again until the required sample of size n is acquired. The design has the

probability function expression as follows,

p(s) =
1(
N
n

) .

For SRSWOR, πk = n
N and πkl = n(n−1)

N(N−1) are the expressions for the first and

second order inclusion probabilities respectively. Lohr (1999) describes that for

large populations it is the size of sample taken instead of the percentage of the

population sampled, which determines the precision of the estimator: a sample of

size 100 from a population of 100,000 units has almost the same precision compared

to a sample of size 100 from a population of 100 million units.

Result 3. Under the simple random sampling without replacement we have,

1. t̂yπ,SRSWOR = Nȳs = 1
f

∑
s yk where f = n

N is called the sampling rate.

2. The variance of t̂yπ,SRSWOR is,

V arSRSWOR(t̂y,π) = N2 1− f
n

S2
yU

where S2
yU = 1

N−1

∑
U (yk − ȳU )2 and ȳu = 1

N

∑
U yk.

3. An unbiased estimator of V arSRSWOR(t̂y,π) is,

ˆV arSRSWOR(t̂y,π) = N2 1− f
n

S2
ys

where S2
ys = 1

n−1

∑
s(yk − ȳs)2 and ȳs = 1

N

∑
s yk.
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1.2.3 Use of Auxiliary Information

A desirable characteristic of the survey sampling is the use of the auxiliary infor-

mation for improving the precision of the estimators. Design and estimation in

the sampling survey coordinate each other to make use of the information about

the study population to construct the efficient procedures. The estimation goal

can be to combine the in-hand information about the population with sample

data to generate good representations of characteristics of interest. The in-hand

information may be regarded as the auxiliary information.

Sometimes, the sampling frames contain one or more auxiliary variables, or

any information that simply can be transferred into auxiliary variables. That is,

the frame provides identification characteristics of the units with the each unit

attached with the value of one or more auxiliary variables.

Three distinct situations are identified by Fuller (2002) with respect to the

nature of the availability of the auxiliary information.

1. The values of the auxiliary vector that are known for each element in the

population at the time of sample selection. That is, the value of the variable,

say X1 , is known for each of the N population elements so that the values

X11, . . . , XN1 are at our disposal prior to sampling. An auxiliary variable

assists in designing the sample selection procedure and can be used in the

estimation of the study variable. The goal is to obtain an estimator with

increased accuracy.

2. All values of the vector are known, but a particular value cannot be asso-

ciated with a particular element until the sample is observed. In this case,

auxiliary information cannot be used in design, but a wide range of estima-

tion options are available once the observations are available.

3. Only the population mean of X is known, or known for a large sample. In this

case, the auxiliary information cannot be used in design and the estimation

options are limited.
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Two estimation situations can also be confronted.

a. A single variable and a parameter, or a very small number of parameters, is un-

der consideration. The analyst has a well formulated population model, and is

prepared to support the estimation procedure on the basis of the reasonableness

of the model.

b. A large number of analyses of a large number of variables is anticipated. No

single model is judged adequate for all variables.

We now assume that one or more auxiliary variables are present. The auxiliary

information can be used at the design stage of a survey to create a sampling

design that increases the precision of the Horvitz-Thompson estimator or at the

estimation stage.

One approach is πps sampling, that is, to make the inclusion probabilities

π1, ..., πN of the design proportional to known, positive values x1, ..., xN of an

auxiliary variable. The π estimator will then have a small variance if x is more or

less proportional to y , the study variable. However, πps sampling is sometimes

found difficult to be carried out. Another approach is to use auxiliary information

to construct the strata such that the π estimator for a stratified simple random

sampling design,

t̂yπ =
H∑
h=1

Nhȳsh

obtains a small variance. However, the stratification that is efficient for one study

may be inefficient for another. One of the important procedures that use popu-

lation information from a large sample is regression estimation. The regression

estimators are classified as linear estimators. We shall use the auxiliary infor-

mation explicitly at the estimation stage i-e into the estimator formula, for the

given πk. That is, for a given sampling design, we construct estimators that uti-

lize information from auxiliary variables and bring considerable variance reduction

compared to the π-estimator. The basic assumption behind the use of auxiliary

variables is that they covary with the study variable and thus carry information
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about the study variable. Such covariation is used advantageously in the regression

estimator.

1.2.4 Model Definition

A model ξ defines a class of distributions of Y = (y1, . . . , yN ). In other words by

a superpopulation model or simply a model we mean specified set of conditions

that define a class of distributions of Y = (y1, . . . , yN ) (Cassel et al, 1977). This

class of distribution may perform a crude formulation and may also prescribe

some certain features including means, variances and the covariances of ξ. There

may also be a situation when ξ assumes a highly detailed specification. In this

case, we shall treat Y = (y1, . . . , yN ) as a random quantity in addition to the

randomness of the sampling design p(.). This new randomness is subject to the

uncertainty introduced by the probabilistic model. Cochran (1939, 1946), Deming

and Stephan (1947) and Madow and Madow (1944) are few from the long listed

history of initial users of the superpopulation model. A superpopulation model

may also be defined as a mathematical device which is used to make theoretical

derivations. Cassel et al (1977) however classify the superpopulation inference into

being the non-Bayesian (ξ is assumed to contain unknown parameters which are

necessary to be estimated first) and the Bayesian (a prior distribution is assigned

to the unknown model parameters) inference tools.

Let X = (X1, . . . ,Xp) be an N×p matrix of regressors. Let we have a super-

population model as,

ξ : y = Xβ + ε, (1.1)

where, y is the N×1 vector of observations random variable; X = (x′k)k∈U :N×p

matrix of regressors and ε is N×1 vector of random residuals. We take into

account some common assumptions. These assumptions include that X is non-

stochastic matrix of regressors, X′X is a full rank matrix (i.e rank of X is p), with

V (εk) = σ2v2
k, ∀k = 1, . . . , N , and the independence between different residual

terms, i.e. Cov(εk, εl) = 0, ∀k 6= l = 1, ..., N .
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1.3 Generalized difference estimator and generalized

regression estimator

For the above defined model (1.1), the generalized difference estimator as suggested

by Cassel et al (1976) can be defined as,

t̂DIFF =
∑
s

yk
πk
−

(∑
s

x′k
πk
−
∑
U

x′k

)
β. (1.2)

This estimator contains unknown regression coefficients β which makes it difficult

to compute. The Horvitz-Thompson estimator t̂yπ is model biased with its bias

given as

Biasξ(t̂yπ) = Eξ(t̂yπ − ty) =

(∑
s

x′k
πk
−
∑
U

x′k

)
β.

So, we can see that the generalized difference estimator t̂DIFF is clearly t̂yπ minus

its ξ-bias, that is,

t̂DIFF = t̂yπ −Biasξ(t̂yπ). (1.3)

So, the t̂DIFF can be taken as an attempt to improve the basic Horvitz-Thompson

estimator t̂yπ. The unknown β is estimated by a two-step procedure

1. at the population level:

β̂GLS = (X′V−1X)−1X′V−1y (1.4)

where V = diag(v2
j ), j = 1, . . . , p and

2. at the sample level:

β̂π =
(
X′sV

−1
s Π−1

s Xs

)−1
X′sV

−1
s Π−1

s ys (1.5)

assuming that X′sV
−1
s Π−1

s Xs is invertible.
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If the unknown β are replaced by the estimated β̂π in t̂DIFF , we obtain a new

estimator called generalized regression (GREG) estimator given as,

t̂GREG =
∑
s

yk
πk
−

(∑
s

x′k
πk
−
∑
U

x′k

)
β̂π, (1.6)

where β̂π is given by (1.5). Like the generalized difference estimator t̂DIFF , the

GREG estimator t̂GREG is also the addition of the Horvitz-Thompson estimator

t̂yπ and adjustment term. For the large sample and the strong linear relationship

between Y and X, t̂GREG produces smaller error than t̂yπ (Särndal et al, 1992).

The regression estimator has been extensively used in previous few decades since

it came into existence by Jessen (1942) and Cochran (1942). The use of regression

in survey was given by Cochran (1942) and he showed that it works well even

when the model fails. A substantial amount of work on the regression estimator in

survey samples was done in the 1970′s 1980′s to improve the compatibility of model

prediction in the design environment (Fuller, 2002) . Large sample properties of a

regression coefficient vector obtained via a sample survey are given by Fuller (1973,

1975). Both model and design principals in the construction of an estimator were

used by Cassel et al (1976) and named generalised regression estimator (GREG)

for the consistent estimators of the form given in 1.6.

1. The variance of t̂GREG can be approximated as follows,

V (t̂GREG) '
∑
U

∑
U

∆kl
yk − x′kβ̂GLS

πk

yl − x′lβ̂GLS
πl

.

2. If πkl > 0 for all k, l ∈ U , an unbiased estimator for V (t̂GREG) is,

V̂ (t̂GREG) =
∑
s

∑
s

∆̌kl
yk − x′kβ̂π

πk

yl − x′lβ̂π
πl

.

1.4 Calibration Technique

The calibration technique derived by Deville and Särndal (1992) with the motive of

obtaining an estimator of the population total using some sample weights called
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calibrated weights. These weights are obtained by minimizing the distance to

the Horvitz-Thompson weights (dk = 1
πk

) with the additional condition on the

calibration equations to be satisfied. The resulting sample weights will be function

of the auxiliary variables. If the weights exactly satisfy the calibration equations,

it would mean the exact estimation of the auxiliary variables. Särndal (2007)

precises the scope of the calibration technique by saying that it takes into account

the following points.

1. Finding a new set of weights wk which minimize the distance between wk

and dk using the auxiliary information in terms of the calibration equations.

The additional condition on finding these weights is that the calibration

equations ∑
s

wkxk = tx

are satisfied.

2. The weights are then used to compute different types of linear weighted

estimators of the parameter including totals.

3. The computation of nearly design unbiased estimates in the absence of non-

response and other non-sampling errors.

The similar type of desirable properties of the calibration technique are described

by Singh and Mohl (1996, p. 107).

Deville and Särndal (1992) considered a nonnegative distance functionGk(w, d),

such that the weights wk are chosen by the minimization of this distance function

from the basic design weights.

i. Gk(w, d) is nonnegative, its derivative with respect to w exists, strictly convex,

defined on an interval Dk(d) which contains d;

ii. Gk(d, d) = 0, i.e. the distance function between the same design weights is

zero.
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iii. The derivative gk(w, d) = ∂Gk(w,d)
∂w is continuous and the interval Dk(d) is

mapped onto an interval Ik(d) by a one-to-one function.

The minimization of the average distance Ep [
∑

kGk(w, d)] in fact offers the close-

ness between the requested weights wk and the design weights dk. The method

of Lagrange multipliers is used by Deville and Särndal (1992) to find the unique

solution of weights wk called calibration weights if exists, given as,

wk = dkFk(x
′
kλ)

where λ = (λ1, . . . , λj , . . . , λp) is the vector of Lagrange multipliers, dkFk is the

reciprocal mapping of gk(., dk) and Fk(0) = 1, with qk = Fk(0) > 0. We have

t̂xw =
∑
s

wkxk =
∑
s

dkFk(x
′
kλ)xk =

∑
U

xk. (1.7)

Certain conditions are given by Deville and Särndal (1992) to ensure that 1.7

yields a unique solution belonging to a convex domain C =
⋂
k∈U [λ : x′kλ ∈ Imk

(dk)].

Once λ determined,the calibration estimator of ty can be written as,

tyw =
∑
s

wkyk =
∑
s

dkFk(x
′
kλ)yk. (1.8)

Deville and Särndal (1992) gave the discussion on how the difference in the choice

of distance function leads to different estimators. The case when Fk(u) = 1 + qku

where u = x′kλ and λ = (
∑

U xk −
∑

s dkxk)
′ (
∑

s dkqkxkx
′
k)
−1 (Särndal, 2007)

yields the generalized regression estimator,

t̂yreg =
∑
s

wkyk = t̂yπ +
(
tx − t̂xπ

)′
β̂π (1.9)

where t̂yπ and t̂xπ are the π-estimators for the population total of yk and xk respec-

tively, and β̂π = (
∑

s dkqkxkx
′
k)
−1∑

s dkqkxkyk. So, for qk = 1
v2k

, this calibration

method and the regression technique (Särndal, 1980) lead to the same estima-

tor. For some other distance function, Deville and Särndal (1992) prove that the

calibration estimator t̂yw is asymptotically equivalent to t̂yreg.
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For some values of k, it is possible that Fk(u) is negative which is undesirable

(Singh and Mohl, 1996). Some optimal/desirable properties about the sample

weights in estimation are given by Lohr (2007). The minimization of MSE is one

of the core property of weighted estimators. The negative or more precisely unde-

sirable weights can hammer the optimality of the calibrated estimators. Changes

in the choice of right distance function can guaranty that the weights are neither

too large nor too small. This change in the distance function will however have

a little influence on the variance of the calibration estimator despite of the small

sample size (Särndal, 2007).

28



Chapter 2

Ridge regression in survey

sampling

Regression techniques are widely used in practice due to their large and easy ap-

plicability. They are often based on ordinary least squares method. Nevertheless,

in presence of multicollinearity of data, the ordinary least squares estimator of

the regression estimator can have extremely large variance even if it has the de-

sirable property of being the minimum variance estimator in the class of linear

unbiased estimators (the Gauss-Markov theorem). Biased estimators have been

suggested to cope with that problem and the class of ridge estimators is one of

them. Hoerl and Kennard (1970) suggest in a seminal paper the ridge estimator

of the regression coefficient which depends on a penalty parameter that controls

the trade-off between the bias and the variance. They show that for suitable val-

ues of the penalty parameter, the ridge estimator has smaller mean squared error

than that of the ordinary least squares estimator. The method has been applied

in many fields such as agriculture, engineering (Marquardt and Snee, 1975) and

astrophysics (Matthews and Newman, 2012) among others. The book of Vinod

This chapter contains the article, Camelia Goga and Muhammad Ahmed Shehzad (2011),

Overview of ridge regression estimators in survey sampling. Mathematical population studies

(under review).
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and Ullah (1981) gives a comprehensive description on this topic as well as many

examples.

In a survey sampling setting, weighted estimators using auxiliary information are

built in order to give precise estimations about parameters of interest such as to-

tals, means, ratios and so on. Usually, these weighted estimators are equivalent

to regression estimators but it happens that, in the presence of a large amount

of information, the weights are very unstable, negative or very large (Deville and

Särndal, 1992, page 378). Moreover, data may contain many zeros or, the sam-

ple sizes may be smaller than the number of auxiliary variables (for example, in

the case of estimation for small domains), which may entail in certain situations

problems of matrix invertibility.

In Section 2 we recall the construction of the ridge estimator for the regression

coefficient as introduced by Hoerl and Kennard (1970) in a classical regression

setting. At this occasion, we give the equivalent interpretations of this estimator

such as the constrained minimization problem and the Bayesian point of view. We

recall briefly the ridge trace as a method to find the penalty parameter. Section

3 gives a detailed presentation of the application of the ridge principle in survey

sampling. This presentation includes the derivation of penalized estimators under

the model-based approach given in section 2.3.1 as well as under the calibration

approach, section 2.3.2. The geometry of penalized weights is given in section

2.3.2. Section 2.3.3 exhibits the partial calibration or balancing. When we at-

tribute a prior on previous estimations, we may use the Bayesian interpretation

to construct ridge regression type estimators. Deville (1999, page 208) considered

it as a calibration on an uncertain source. We describe the method in section

2.3.4. Finally, section 2.3.5 gives the statistical properties of the class of penalized

estimators and we finish with concluding remarks and some further work.
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2.1 Ridge Regression in an i.i.d setting

Let X = (X1, . . . ,Xp) be a n × p matrix of standardized known regressors i. e.

Xj = (Xkj)
n
k=1 for all j = 1, . . . , p. Consider the following linear model,

y = 1nβ0 + Xβ + ε, (2.1)

where y = (yk)
n
k=1 is the n× 1 vector of observations and ε = (εk)

n
k=1 is the n× 1

vector of errors. We assume that X is a non-stochastic matrix of regressors with

X′X of full rank matrix (i.e the rank of X is p). We suppose also that the errors

εk are independent with zero mean and variance Var(εk) = σ2 for all k = 1, . . . , n.

The ordinary least squares (OLS) estimator of β minimizes the error sum of

squares (ESS),

ESS = (y −Xβ)′(y −Xβ)

yielding the following estimator,

β̂OLS = (X′X)−1X′y.

The OLS estimator β̂OLS is unbiased under the model ξ, i.e.

E(β̂OLS) = β

with the variance of β̂OLS given by,

V ar(β̂OLS) = E(β̂OLS − β)(β̂OLS − β)′ = σ2(X′X)−1

However, the calculation of the OLS estimator β̂OLS solely depends upon the

existence of the inverse (X′X)−1 which may not be possible if the data matrix X

is ill-conditioned.

2.1.1 Multicollinearity, ill-conditioning and consequences on the

OLS estimator

Zero or no dependence among the explanatory variables is one of the assumptions

of classical linear regression model. The subject of multicollinearity is widely
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referred to the situation where there is either exact or approximately exact linear

relationship among the explanatory variables (Gujarati, 2003).

Gunst and Mason (1977) discriminate between the existence and the degree of

the multicollinearity found in the auxiliary variables. They state that “the closer

the linear combinations between the columns of X are to zero, the stronger are

the multicolinearities and the more damaging are their effects on the least squares

estimator”. It should be kept in mind while detecting the multicollinearity that

the question should be of the degree/intensity of multicollinearity and not of kind

of the multicollinearity. Small eigenvalues and their corresponding eigenvectors

help to identify the multicollinearities. Let λ1, . . . , λp be the eigenvalues of X′X

in decreasing order,

λmax = λ1 ≥ λ2 ≥ . . . ≥ λp = λmin > 0

and their corresponding eigenvectors a1, . . . ,ap. If we write (Gunst and Mason,

1977),

λj = a′jX
′Xaj = (Xaj)

′(Xaj), j = 1, ..., p

we obtain that for small eigenvalues λj of X′X,

(Xaj)
′(Xaj) ≈ 0 ⇒ Xaj ≈ 0

which means that there is an approximately linear relationship between the columns

of X. The elements of the corresponding eigenvector aj allow to identify the coef-

ficients used in the linear dependency.

The multicollinearity is one form of ill-conditioning. More general, a measure of

ill-conditioning is the conditioning number K given by K =
√
λmax/λmin. For

λmin → 0, we have K → ∞, and so, a large K implies an ill-conditioned matrix

X.

The multicollinearity or the ill-conditioning of X have serious consequences on the

OLS estimator. The mean square error (MSE) of any estimator β̂ of β is given by

MSE(β̂) = E((β̂ − β)′(β̂ − β)).
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Then, the MSE of the OLS estimator β̂OLS becomes

MSE(β̂OLS) = σ2Trace(X′X)−1 = σ2
p∑
j=1

1

λj
. (2.2)

The above expression implies that the smaller the eigenvalues are, the greater are

the variance of β̂OLS and the average value of the squared distance from β̂OLS to

β. This results in wider confidence intervals and therefore leads to accept more

often the Null Hypothesis (i.e. the true population coefficient is zero). Moreover,

in case of ill-conditioning, the OLS solution is unstable meaning that the regres-

sion coefficients are sensitive to small changes in the y or X data (see Marquardt

and Snee, 1975 and Vinod and Ullah, 1981). Round-off errors tend to occur into

least square calculations while the inverse (X′X)−1 is computed and they may be

important in presence of non-orthogonal data. Hoerl and Kennard (1970) discuss

the case when the least square coefficients can be both too large in absolute value

and incorrect with respect to sign.

Methods dealing with such data consist in (1) using a priori information (Bayesian

approach), (2) omitting highly collinear variables, (3) obtaining additional or new

data and (4) using biased regression methods. These methods can be used indi-

vidually or together depending upon the encountered situation. Our discussion

however remains limited towards the fourth case and ridge regression which is an

important tool to deal with multicollinearity.

2.1.2 Definition of the ridge estimator

Ridge regression was first used by Hoerl (1962) and then by Hoerl and Kennard

(1970) as a solution to the biased estimation for nonorthogonal data problems. As

a purpose to control instability linked to the least squares estimates, Hoerl (1962)

and Hoerl and Kennard (1968) suggested an alternative estimate of the regression

coefficient as obtained by adding a positive constant κ to the diagonal elements of

the least square estimator β̂OLS ,

β̂κ = (X′X + κIp)
−1X′y, (2.3)
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where Ip is the p-dimensional identity matrix. Since the constant κ is arbitrary,

we obtain a class of estimators β̂κ for the regression coefficient β rather than a

unique estimator. For κ = 0, we obtain the OLS estimator and as κ→∞, β̂κ → 0,

we obtain the null vector.

The relationship between the ridge estimator and the OLS estimator is given by

(Hoerl and Kennard, 1970),

β̂κ = (Ip + κ(X′X)−1)−1β̂OLS .

Let us consider again the latent roots of (X′X), λ1, . . . , λp with the corresponding

eigenvectors a1, . . . ,ap. Hence, the OLS estimator may be written as

β̂OLS =

p∑
j=1

a′jX
′y

λj
aj . (2.4)

The fact of adding a small constant to the diagonal of X′X will have as consequence

the increase of its eigenvalues with the same quantity and dramatically decrease

in this way the conditioning number K. So, the matrix X′X + κI has eigenvalues

λ1 + κ, . . . , λp + κ with the same eigenvectors a1, . . . ,ap and the ridge estimator

may be written as follows

β̂κ =

p∑
j=1

a′jX
′y

λj + κ
aj . (2.5)

The effect of the smallest eigenvalues may not be entirely eliminated by this esti-

mator β̂κ but their effect on the parameter estimates are significantly lessened. By

this construction, the ridge estimator β̂κ is more stable than the OLS estimator to

perturbations of data (Vinod and Ullah, 1981). Hoerl and Kennard (1970) show

also that for κ 6= 0, the length of the ridge estimator β̂κ is shorter than that of

β̂OLS , namely β̂
′
κβ̂κ < β̂

′
OLSβ̂OLS .

Let recall briefly the statistical properties of the ridge estimator. It is important

to note that the ridge estimator β̂κ is a biased estimator of β unless κ = 0.
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The bias of β can be obtained as,

β̂κ − β

= (X′X + κI)−1X′y − β

= (X′X + κI)−1X′(Xβ + ε)− β

= (X′X + κI)−1X′Xβ + (X′X + κI)−1X′ε− β

= (X′X + κI)−1((X′X + κI)− κI)β + (X′X + κI)−1X′ε− β

= (X′X + κI)−1(X′X + κI)β − κ(X′X + κI)−1β + (X′X + κI)−1X′ε− β

β̂κ − β = −κ(X′X + κI)−1β + (X′X + κI)−1X′ε,

and applying expectation on both sides,

E(β̂κ)− β = −κ(X′X + κI)−1β + (X′X + κI)−1X′E(ε).

Because E(ε) = 0. So, the bias is given by

E(β̂κ)− β = −κ(X′X + κI)−1β (2.6)

= −κ
p∑
j=1

(a′jβ)aj

λj + κ
. (2.7)

We can see from the above that the bias depends on the unknown β and on κ.

Consider again the equation (2.5). We can write

β̂κ =

p∑
j=1

a′jX
′y

λj + κ
aj

=

p∑
j=1

a′jX
′(Xβ + ε)

λj + κ
aj

=

p∑
j=1

a′j(X
′Xβ + X′ε)

λj + κ
aj ,

To calculate the variance of β̂κ in matrix form, consider,

β̂κ − E(β̂κ) = (X′X + κI)−1X′(Xβ + ε) + κ(X′X + κI)−1β − β

= (X′X + κI)−1X′Xβ + (X′X + κI)−1X′ε+ κ(X′X + κI)−1β − β

= (X′X + κI)−1((X′X + κI)− κI)β + (X′X + κI)−1X′ε+ κ(X′X + κI)−1β − β

β̂κ − E(β̂κ) = (X′X + κI)−1X′ε,
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and therefore the V ar(β̂κ) is given by,

E(β̂κ − E(β̂κ))(β̂κ − E(β̂κ))′ = (X′X + κI)−1X′E(εε′)X(X′X + κI)−1,

with E(εε′) = σ2I, we get,

V ar(β̂κ) = E(β̂κ − E(β̂κ))(β̂κ − E(β̂κ))′

= σ2(X′X + κI)−1X′X(X′X + κI)−1. (2.8)

It appears that β̂κ can be used to improve the mean square error of the OLS

estimator, and the magnitude of this improvement increases with an increase in

spread of the eigenvalue spectrum. The ridge regression comes up with the ob-

jective of developing stable set of coefficient estimators which will do a reasonable

job for predicting future observations. Conniffe and Stone (1973) however criti-

cized the β̂κ since its properties depend on the non-stochastic choice of κ. Hoerl

and Kennard (1970) and Hoerl, Kennard and Baldwin (1975) show that an im-

provement of the MSE can be obtained using β̂κ. Consider for that the MSE of

β̂κ,

MSE(β̂κ) = σ2
p∑
j=1

λj
(λj + κ)2

+ κ2
p∑
j=1

(a′jβ)2

(λj + κ)2

= Trace(Var(β̂κ)) + (Bias(β̂κ))′(Bias(β̂κ))

= A(κ) + B(κ). (2.9)

Hoerl and Kennard (1970) gave an existence theorem to show that such value of

κ > 0 when added into the diagonal of the ill-conditioned matrix X′X, significant

reductions in variance are found with a little charge of bias and an admirable

improvement in the MSE of the estimation of the regression coefficient β.

Theorem 1. (existence theorem, Hoerl and Kennard, 1970) There always exists

κ > 0 such that

MSE(β̂κ) < MSE(β̂) = σ2
p∑
j=1

1

λj
.

Moreover, the above inequality is valid for all 0 < κ < κmax = σ2

α2
max

where αmax

is the largest value of (a1, . . . ,ap)β.

36



The proof is based on the fact that the variance term A(κ) from relation (2.9) is

a continuous, monotonically decreasing function of κ and the squared bias term

B(κ) is a continuous, monotonically increasing function of κ. Their first deriva-

tives are always non-positive and non-negative, respectively. Moreover, the first

derivative of A(κ) is negative as κ → 0+ and the first derivative of B(κ) is equal

to zero as κ→ 0+. Thus, there exists a positive κ in a neighborhood of the origin,

such that the first derivative of MSE(β̂κ) is non-positive. In fact, this happens for

all 0 < κ < σ2/α2
max.

It is important to notice that the features of A(κ) and B(κ) lead to the fact that

moving from the origin to a positive κ, we introduce a little bias but we drasti-

cally reduce the variance and thereby, we improve the mean square error of the

estimator.

However, Theobald (1974) criticized the MSE criteria used by Hoerl and Ken-

nard (1970) and suggested a more general criteria. Theobald (1974) suggested

minimizing the weighted mean square error (WMSE) defined by

WMSE(β̂) = E
(

(β̂ − β)′W(β̂ − β)
)
,

for any non-negative definite matrix W. For W = Ip the identity matrix, we

obtain the MSE criteria. He showed that minimizing the WMSE, for all non-

negative definite matrix W is equivalent to minimizing the mean square error

matrix (MMSE) defined by

MMSE(β̂) = E
(

(β̂ − β)(β̂ − β)′
)

and he obtained a range for the ridge parameter κ which guarantees that β̂κ is

better than β̂OSL from the WMSE point of view.

Theorem 2. (Theobald, 1974) The ridge estimator β̂κ is better than β̂OSL in the

sense that MMSE(β̂OSL)−MMSE(β̂κ) is a positive-definite matrix for

0 < κ < κ̃max =
2σ2

β′β
.
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Proof. Since by expressions 2.6 and 2.8 we have,

MMSE(β̂κ) = σ2(X′X + κI)−1X′X(X′X + κI)−1 +Bias(β̂κ)Bias(β̂′κ)

and,

MMSE(β̂OLS) = V ar(β̂OLS) = σ2(X′X)−1,

hence,

MMSE(β̂OLS)−MMSE(β̂κ)

= σ2(X′X)−1 − σ2(X′X + κI)−1X′X(X′X + κI)−1 − κ2(X′X + κI)−1ββ′(X′X + κI)−1

= σ2[(X
′
X)−1 − (X′X + κI)−1X′X(X′X + κI)−1]− κ2(X′X + κI)−1ββ′(X′X + κI)−1

= (X′X + κI)−1(σ2[(X′X + κI)(X′X)−1(X′X + κI)− (X′X)]− κ2ββ′)(X′X + κI)−1

= (X′X + κI)−1(σ2[(X′X)−1((X′X)2 + 2κ(X′X) + κ2I)− (X′X)]− κ2ββ′)(X′X + κI)−1

= (X′X + κI)−1(σ2[2κI + κ2(X′X)−1]− κ2ββ′)(X′X + κI)−1

So, we finally get

MMSE(β̂OLS)−MMSE(β̂κ)

= κ(X′X + κI)−1(σ2[2I + κ(X′X)−1]− κββ′)(X′X + κI)−1

for κ > 0, this is positive definite.

⇔ 2I + κ[(X′X)−1 − ββ
′

σ2
] is a positive definite matrix.

If λmin((X′X)−1 − ββ
′

σ2
) ≥ 0 this is true for all κ > 0.

If λmin((X′X)−1 − ββ
′

σ2
) < 0 this is true if and only if 0 < κ < − 2

λmin
.

This is also true if

2σ2I− κββ′ is positive definite.

Since the latent roots of κββ′ are zero (with multiplicity p-1) and κβ′β, it follows

that the roots of 2σ2I−κββ′ are 2σ2 and 2σ2−κβ′β. Thus a sufficient condition

is,

κ <
2σ2

β′β
. (2.10)
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Vinod and Ullah (1981) give a different proof for the Theobald’s result. Note that

this condition is sufficient for the superiority of β̂κ but not necessary. A necessary

and sufficient condition is given by the following theorem.

Theorem 3. (Swindel and Chapman, 1973). A necessary and sufficient condition

for MMSE(β̂OSL)−MMSE(β̂κ) to be a positive-definite matrix is κ > 0 if η ≥ 0

and

0 < κ < −2

η
, if η < 0,

where η is the minimum eigenvalue of (X′X)−1 − (ββ′/σ2).

2.1.3 The ridge trace

We can remark that the β̂κ depends upon the unknown parameter κ which makes

it impossible to calculate. Hoerl and Kennard (1970) suggested the ridge trace

method to acquire the suitable value for the ridge parameter κ providing β̂κ with

smaller MSE than that of the least squares solution β̂OLS . The ridge trace is a

graphical tool that plots the components of the ridge regression coefficient β̂κ

versus κ. This plot will have one curve per coefficient and it can help to see which

coefficients are sensitive to the data. High correlations among regressors imply

that the components of β̂κ will change rapidly for small values of κ and will

gradually stabilize at larger values of κ. A suitable value for κ may be chosen such

that all the coefficients are stabilized. Marquardt and Snee (1975) consider the

ridge trace as one of the major advantages of the ridge regression. It is clear that

this method do not yield a single automatic solution to the estimation problem,

but rather, a family of solutions. However, Conniffe and Stone (1973) doubt the

lack of improvement of the least squares estimator via any particular choice of κ.

Instead of it, they recommend direct examination of eigenvalues. Some other rules

have been suggested in the literature for choosing κ (see Vinod and Ullah, 1981).
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2.2 Other interpretations of the ridge regression esti-

mator

2.2.1 The ridge regression estimator as a solution of a constrained

minimization problem

The ridge estimator can also be seen as a solution of a constrained optimization

problem. Hoerl and Kennard (1970) consider the error sum of squares due to any

estimate β̃ of β,

ESS(β̃) = (y −Xβ̃)′(y −Xβ̃)

= ESS(β̂OLS) + (β̃ − β̂OLS)′X′X(β̃ − β̂OLS)

which achieves its minimum only when β̃ = β̂OLS . Relation (2.2) proves that the

average of the distance between β and β̂OLS increases greatly in the presence

of ill-conditioning in X′X but without an appreciable increase in the error sum

of squares. Hoerl and Kennard (1970) therefore, require finding the estimator

β̃ of minimum length that belongs to the hyperellipsoid centered at the OLS

estimator and defined by the equation
(
β̃ − β̂OLS

)′
X′X

(
β̃ − β̂OLS

)
= Φ =

constant. Figure 2.1 illustrate the geometry of the ridge regression when β =

(β1, β2)′ is a two-dimensional parameter (Marquart and Snee, 1975). We can

remark that β̂κ is the shortest vector that gives a residual sum of squares as small

as the Φ value anywhere on the small ellipse.

In an equivalent way, we may minimize ESS(β̃) for a fixed length of β̃ say r.

This is equivalent to finding the ellipse contour that is as close as possible to the

circle centered in zero of ray equal to r. Using the Lagrangian principle (Izenman,

2008), the optimization problem may be presented as

minβ̃(y −Xβ̃)′(y −Xβ̃) + κ(β̃
′
β̃ − r2),

or equivalently,

minβ̃:||β̃||2≤r2(y −Xβ̃)′(y −Xβ̃), (2.11)
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β̂OLS

β̂k

β2

β10

Figure 2.1: Geometry of ridge regression

where || · || is the Euclidean norm. In order to attribute the same influence of

the constraint from (2.11), it is advisable to standardize the regressors. With no-

standardized variables, one may use some other norm (Kapat and Goel, 2010) or

the generalized ridge regression when each diagonal element of X′X is modified

differently (Hoerl and Kennard, 1970).

2.2.2 Bayesian or Mixed Regression Interpretation of Ridge Co-

efficients

The Bayesian approach treats the parameter β as a random variable with a prior

probability density which may be based on some subjective prior information about

β. The goal is to determine the posterior probability density of β which is done

by combining the prior probability density with the sample information given by

the likelihood function. A ridge estimator can be seen also as a Bayes estimator

when β takes a suitable normal prior distribution with mean β0 and variance

covariance matrix σ2
βΩ (Vinod and Ullah, 1981, Izenman, 2008). Vinod and Ullah

(1981) advocate that the Bayesian interpretation of the ridge regression coefficient

β̂κ implies deriving the prior distribution of β for which β̂κ is the posterior mean.
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They also state that the Bayesian methods imply that the posterior mean is the

optimal estimator when using the MSE as expected loss. We consider the model

given in (2.1) with the following supplementary assumptions: the errors ε are

normally distributed with mean zero and variance covariance matrix σ2Ip with σ2

a known constant and Ip is the p dimensional identity matrix. In other words, y is

normally distributed N(Xβ, σ2Ip). We suppose that the prior normal distribution

of β is also normal with known mean β0 and known variance σ2
βΩ. The posterior

density of β is therefore normal with mean β∗ given by

β∗ = (X′X + αΩ−1)−1(X′Xβ̂OLS + αΩ−1β0) (2.12)

= β0 + (X′X + αΩ−1)−1X′X(β̂OLS − β0) (2.13)

where α = σ2/σ2
β. The variance-covariance matrix of β is given by σ2Ω∗ =

σ2(X′X +α2Ω−1)−1. Relations (2.12) or (2.13) show that if the prior information

is useless, i.e. σ2
β → ∞, then α → 0 and β∗ = β̂OLS . On the other hand, for

σ2
β → 0, we have β∗ = β0. Vinod and Ullah (1981) remark that the estimator β∗

given by formula (2.12) may be written as a weighted matrix combination of the

OLS or the maximum likelihood estimator β̂OLS and the prior mean β0,

β∗ = Hβ̂OLS + (Ip −A)β0, (2.14)

where H is given by

H =
(

Var(β̂OLS)−1 + αVar(β0)−1
)−1

Var(β̂OLS)−1 (2.15)

= Ip −Var(β̂OLS)
(

Var(β̂OLS) + α−1Var(β0)
)−1

(2.16)

So, the normalized weights of β̂OLS and β0 are their precision matrix. The same

result is obtained if one desires to compute the best estimator from the minimum

variance point of view of β being a matrix combination of β̂OLS and β0 namely,

H = argminÃVar
(
H̃β̂OLS + (Ip − H̃)β0

)
.

One can remark from (2.12), that for αΩ−1 = kIp and β0 = 0, we get the ordinary
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ridge estimator β̂κ given by (2.3). As Vinod and Ullah (1981) remarked, some

Bayesians feel that this prior is unrealistic and a non null prior mean should

be used, but in absence of prior knowledge on β0, one may shrink towards the

zero vector. When a prior knowledge about β0 exists, then one shrinks the ridge

estimator toward this known prior. Nevertheless, the drawback is that different

choices of the prior lead to different ridge estimators.

It is worth mentioning that the Bayes estimator of β given by (2.13) corre-

sponds to the estimator of the regression coefficient for the mixed regression model

(Vinod and Ullah, 1981),

yi = Xβi + ε,

βi = β0 + ηi,

with E(η) = 0 and Var(η) = σβΩ. Conditionally on β0, the value of β∗ given by

(2.12) is then obtained by minimization with respect to β of

1

σ2
(y −Xβ)′(y −Xβ) +

1

σ2
β

(β − β0)′Ω(β − β0).

Even if the two approaches lead to the same solution, the goals are different. In

the Bayesian model, β is a random variable, whereas in the mixed effect models

associated to a prior information the randomness of β allows to consider models

that vary from one unit to another.

2.2.3 Ridge regression for heteroscedastic regression errors

For a linear regression model such that

y = Xβ + ε

with E(ε) = 0 and V ar(ε) = σ2V where V is the known sample positive definite

covariance matrix and describes the pattern of heteroscedasticity.

The assumption of homoscedasticity claims that the regression errors have

a constant variance i.e. V ar(ε) = σ2I. The violation of this assumption means
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heteroscedasticity in the data when the regression errors ε̂j , j = 1, ..., p do not have

a common variance, i.e. Var(ε) = σ2V , where V = diag(v2
1, v

2
2, . . . , v

2
n) that is, the

variance changes with the change of variable in model (Gujarati, 2002). Trenkler

(1984) discusses the performance of biased estimators in the linear regression model

in the violation of homoscedasticity assumption. Let G be a non-singular matrix

such that G′G = V −1. If we premultiply the above model by G, we get

Gy = GXβ + Gε

y∗ = X∗β + ε∗

where, y∗ = Gy, X∗ = GX and ε∗ = Gε; Now E(ε∗) = 0 and V ar(ε∗) = σ2I.

The generalized least square (GLS ) estimator β̂GLS is obtained by applying OLS

on the new transformed model y∗ and get,

β̂GLS = (X′V−1X)−1X′V−1y (2.17)

where V = diag(v2
j ), j = 1, . . . , p and X′∗X∗ = X′V −1X. If X′V −1X is ill-

conditioned, then ridge estimator may be one of the solution to the ill-conditioned

X′V −1X as,

β̂∗κ = (X′∗X∗ + κI)−1X′∗y∗

β̂∗κ = (X′V −1X + κI)−1X′V−1y

and the variance expression for β̂GLS estimator is given by,

V ar
(
β̂GLS

)
= σ2(X′V −1X)−1

similarly for

V ar(β̂OLS) = (X′X)−1X′VX(XX)−1

Until here we discussed the case where the V is known. But if V is unknown then

β̂GLS and V ar(β̂GLS) are not feasible. A way for the estimation of V is given by

Vinod and Ullah (1981). For this purpose let

ε̂ = Dε
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be the OLS residual estimator vector where D = I −X(X′X)−1X′ = D2 be the

T − p matrix. Then E(ε̂) = 0, V ar(ε̂) = DVD. Let us write,

E(¯̂ε) = D̄ω,

where ¯̂ε = ε̂′ε̂, D̄ = D′D and ω = [σ1, σ2, . . . , σp] be the vector estimating

Diag(V). We can also write, γ = ¯̂ε− E(¯̂ε) which implies,

¯̂ε = D̄ω + γ

which is regression of squared errors on the matrix D̄ and

ω̂OLS = (D̄′D̄)−1 ¯̂ε

ω̂OLS = D̄−1 ¯̂ε

For a singular D, the ridge estimator of ω can be written as,

ω̂κ = (D̄′D̄ + κI)−1 ¯̂ε

Finally, we have the general estimate of β is constructed by replacing the estimated

V̂ of V,

β̃ = (X′V̂−1X)−1X′V̂−1y

and

V ar(β̃) = (X′X)−1X′V̂X(XX)−1,

where we get β̃OLS by using ω̂OLS and β̃κ by using ω̂κ.

In what concerns the standardization of the regressors, the problem is more deli-

cate and it is not always very obvious when one should standardize the X-variables.

The standardization is not necessary for most theoretical results (Vinod and Ullah,

1981). However, it is advisable to standardize data before computing the ridge

estimator specially when there are large variations between regressors and they

are measured in different scales. An additional advantage of the standardization

is that it makes the numerical magnitude of the components of β comparable with

each other. As Kapat and Goel (2010) remarked, different solutions for the ridge
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estimator β̂k may be obtained depending on the nature of the regressors, stan-

dardized or not, and on the constrained norm. Thus, it is important to distinguish

between the solutions of these problems in order to avoid confusion.

2.3 Use of the ridge principle in surveys

In this section, we address the use of the ridge principle in a survey sampling

setting. Under this setting, the main goal is not to make inference on the vector

y, but on either a function of y or the regression coefficient β. We consider the

simplest case of estimating the finite population total

ty =
∑
k∈U

yk

of the variable of interest Y of values yk. Here, U denotes a finite population

containing N elements,

U = {a1, . . . , ak, . . . , aN} = {1, . . . , k, . . . , N}

with the assumption that a population unit is uniquely identifiable by its label

k. Furthermore, a sample s of size n is selected from U according to a sampling

design and the vector y is known only on the sample individuals. Usually, the

finite population total ty is estimated by a weighted estimator t̂w,

t̂w =
∑
s

wkyk (2.18)

where the weights wk are derived usually using auxiliary information by means of

a superpopulation model (model-based or model-assisted approach) or by calibra-

tion. Usually, with multipurpose surveys, weights should not depend on the study

variable in order to estimate means or totals of a very large number of variables.

They should also be positive and depend only on the auxiliary information. The

weights necessarily should produce internally consistent estimators and if they are

suitably chosen, these weights will produce estimators with smaller variance than

the estimators without using the weights.
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The idea of ridge estimation was used for the first time in a survey sampling

framework in order to eliminate negative or extremely large weights obtained when

a too restrictive condition of unbiasedness was imposed. Latter situations may

cause inefficient results rather than improving the estimators. So, weights are

crucial in survey sampling theory. From (2.18), the weights vector ws = (wk)k∈s

is the unknown parameter to be found. The role of β is taken now by ws. In

sections 2.3.1 and 2.3.2 we give in detail the derivation of ridge weights in survey

sampling as solutions of constrained optimization problems as described in section

2.2. The same estimators may be obtained by using a superpopulation linear

model depending on a parameter estimated using ridge regression and the class

of model-based or model-assisted estimators for the finite population totals. This

way of computing ridge estimators in survey sampling is the direct application

of ridge principle from the classical regression described in section 2.1.2 and we

present it below. When we attribute a prior on previous estimations, we may use

the Bayesian interpretation to construct ridge regression type estimators. Deville

(1999) considered it as a calibration on an uncertain source. We describe the

method in section 2.3.4.

Suppose that the relationship between the variable of interest Y and the aux-

iliary variables X1, . . . ,Xp is given by a superpopulation model denoted by ξ in

the survey literature:

ξ : y = Xβ + ε. (2.19)

The explicative variables are not standardized now. In order to distinguish the

population from the sample, let y = (y1, . . . , yN )′ be a N × 1 vector of and let

X = (X1, . . . ,Xp) be the N × p matrix with x′k = (Xk1, . . . , Xkp) as rows. The

errors εk, for all k ∈ U are independent one of each other, of mean zero and

variance Var(εk) = σ2v2
k. Let Varξ(ε) = σ2V with V = diag(v2

k)k∈U and vk are

positive known constants.

Some further notations are needed. Let Xs = (x′k)k∈s, respectively ys = (yk)k∈s,

be the restriction of X, respectively of y, on the sample s. Let also Varξ(εs) = σ2Vs
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be the variance of εs, the restriction of ε on the sample s, and Varξ(εs̄) = σ2Vs̄

be the variance of εs̄, the restriction of ε on s̄ = U − s. The population variance

V may be written as

V =

 Vs 0n×(N−n)

0(N−n)×n Vs̄

 .

Without auxiliary information, ty is estimated by the Horvitz and Thompson

(1952) (see also Narain, 1951) estimator given by

t̂y,d =
∑
s

dkyk =
∑
s

yk
πk
, (2.20)

where πk = P (k ∈ s) is the first order inclusion probability of the individual

k ∈ U. The auxiliary information given by X1, . . . ,Xp may be used to improve the

estimation of t̂y,d.

Using the model ξ, one estimate the regression parameter β and after, plugs-in a

model based estimator, abbreviated as MB below,

t̂MB =
∑
s

yk +
∑
U−s

x′kβ, (2.21)

or in a generalized difference estimator, abbreviated as DIFF below,

t̂DIFF =
∑
s

yk
πk
−

(∑
s

x′k
πk
−
∑
U

x′k

)
β. (2.22)

This means that t̂MB and t̂DIFF rely on the estimation of the regression coef-

ficient β : best linear unbiased estimator of β for the MB estimator (Royall, 1976)

and the best design-based estimator of β for the DIFF estimator (Särndal, 1980).

In a model-based setting and using the generalized least squares (GLS) esti-

mation under the model ξ, the estimator of the regression coefficient β is obtained

as solution of the optimization problem

(P1) : β̂GLS = argminβ(ys −Xsβ)′V−1
s (ys −Xsβ), (2.23)

yielding the estimator β̂GLS = (X′sV
−1
s Xs)

−1X′sV
−1
s ys assuming that (X′sV

−1
s Xs)

−1

exists. Plugging β̂GLS in (2.21), yields the best linear unbiased estimator (BLUE)
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of ty from the ξ-variance point of view (Royall, 1976),

t̂BLUE =
∑
s

yk +
∑
U−s

x′kβ̂GLS . (2.24)

If the matrix X′sV
−1
s Xs has eigenvalues close to zero, then it is advisable to perturb

its diagonal before inverting it. We obtain the ridge estimator of β as follows

β̂MBR = argminβ(ys −Xsβ)′V−1
s (ys −Xsβ) + β′C−1β

=
(
X′sV

−1
s Xs + C−1

)−1
X′sV

−1
s ys,

where C is a p× p diagonal matrix with positive quantities on the diagonal. The

ridge MB estimator is obtained by replacing β with β̂MBR in (2.21),

t̂MBR =
∑
s

yk +

(∑
U−s

x′k

)
β̂MBR. (2.25)

A similar reasoning may be used in a design-based approach. The design-based

estimator β̂π of the regression coefficient β is the solution of the following opti-

mization problem (Särndal, 1980),

(P2) : β̂π = argminβ(ys −Xsβ)′V−1
s Π−1

s (ys −Xsβ)

where Πs = diag(πk)k∈s. This optimization problem yields the following estimator

for β,

β̂π =
(
X′sV

−1
s Π−1

s Xs

)−1
X′sV

−1
s Π−1

s ys (2.26)

assuming that X′sV
−1
s Π−1

s Xs is invertible. The total ty is then estimated by

the well known GREG estimator (also known as model-assisted (MA) estimator)

obtained by replacing β with β̂π in (1.3),

t̂GREG =
∑
s

yk
πk
−

(∑
s

x′k
πk
−
∑
U

x′k

)
β̂π. (2.27)

The ridge estimator of β is obtained as solution of the following penalized opti-

mization problem,

β̂π,R = argminβ(ys −Xsβ)′V−1
s Π−1

s (ys −Xsβ) + β′C̃−1β

=
(
X′sV

−1
s Π−1

s Xs + C̃−1
)−1

X′sV
−1
s Π−1

s ys (2.28)
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for some positive diagonal matrix C̃. Plugging-in (1.3), we obtain the ridge GREG

estimator,

t̂GREG,R =
∑
s

yk
πk
−

(∑
s

x′k
πk
−
∑
U

x′k

)
β̂π,R. (2.29)

The ridge estimators of βMBR and βπ,R are ξ-biased and taking into account the

discussion given in the previous section, we may affirm that they are more stable

in presence of multicollinearity.

2.3.1 Ridge regression under the model-based approach

Bardsley and Chambers (1984) explored the relationship between the unbalanced

samples and multicollinearity. A balanced sample is a sample for which the fol-

lowing relation is satisfied ∑
s

wkxk =
∑
U

xk.

On the opposite situation, we have an unbalanced sample. As Bardsley and Cham-

bers (1984) stated, in multipurpose sample surveys for which a large number of

finite population totals or means are to be estimated, it is very difficult or even

impossible to have a fully specified model underlying each study variable. In such

situations, balanced sampling may protect from model misspecification (Royall

and Herson, 1973).

In the model-based setting for unbalanced sampling, exclusion of variables may

increase the bias and inclusion of too many variables may result in a overspecified

model and the estimates will be unstable and inefficient even if they are unbiased.

Also these variables can linearly be related with each other, and hence can cause

multicollinearity. The strategy suggested by Bardsley and Chambers (1984) is to

consider as many variables as they exist but to relax the balancing condition which

is in fact the unbiasedness condition of the estimator under the model. This is

equivalent to deriving a biased estimator but with a smaller prediction error and

this is why, it leads naturally to a ridge type estimator.
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Bardsley and Chambers (1984) suggest finding the weights ws = (wk)k∈s such

that the prediction error t̂w−ty =
∑

swkyk−
∑

U yk has minimum ξ-mean squared

error among the class of bounded biased estimators,

(P3) : wMB,R = argminws
(ws − 1s)

′Vs(ws − 1s) + B′CB, (2.30)

where B =
∑

swkxk −
∑

U xk, C is some diagonal cost matrix and 1s is the n-

dimensional vector of ones. The optimization problem (P3) results from the fact

that the ξ-variance of t̂w − ty is equal to σ2(ws− 1s)
′Vs(ws− 1s) plus a term not

depending on ws and respectively, the ξ-bias is equal to B′β. The equality B = 0

means that the estimator t̂w is ξ-unbiased or that the design is exactly balanced.

In the latter case, the solution of (P3) yields the BLUE estimator given by (2.24).

The weights obtained by solving (P3) may be seen as the weights that explain

the best the vector 1s according to a specific metric and such that the weighted

estimator is not very far away from the true total. The metric employed here uses

the sample variance Vs as we are in the case of a model-based approach.

The minimization problem from above can also be written as a constrained opti-

mization problem

(P3’) : wMB,R = argminws,||B||2C≤r2
(ws − 1s)

′Vs(ws − 1s)

for the norm ||B||2C = B′CB which means that we penalize large values of B.

Solving (P3) or (P3’), we obtain (see proof of Proposition 2)

wMB,R = 1s −V−1
s Xs

(
X′sV

−1
s Xs + C−1

)−1
(1′sXs − 1′UX)′ (2.31)

leading to the ridge MB estimator t̂MBR given by (2.55),

t̂MBR = w′MB,Rys =
∑
s

yk +

(∑
U−s

x′k

)
β̂MBR (2.32)

with β̂MBR =
(
X′sV

−1
s Xs + C−1

)−1
X′sV

−1
s ys. We have mentioned earlier that

the vector of weights ws performs the similar role to the regression coefficient β.We

have seen in section 2.1.2 that adding a constant to the diagonal of β̂OLS , reduced

51



its length. The same result is true for the weight vector wMB,R (Bardsley and

Chambers, 1984). Consider for that, the particular case Vs = In and C−1 = κIp,

w′MB,RwMB,R ' 1′UX(X′sXs + κIp)
−1X′sXs(X

′
sXs + κIp)

−1X′1U

=

p∑
i=1

η2
i

λi
(λi + κ)2

,

where λi, i = 1, . . . , p are the eigenvalues of X′sXs, η = (ηi)
p
i=1 = AX′1U and A

is the matrix of eigenvectors associated to the eigenvalues of X′sXs. Let wMB be

the weights giving the BLUE estimator t̂BLUE exhibited in relation (2.24). More

exactly, wMB = 1s−V−1
s Xs

(
X′sV

−1
s Xs

)−1
X′sV

−1
s ys and they are obtained from

wMB,R for κ = 0. Following the same arguments as above, we obtain that

w′MBwMB ' 1′UX(X′sXs)
−1X′1U =

p∑
i=1

η2
i

1

λi
.

Since for any κ > 0, we always have 1
λi
> λi

(λi+κ)2
, we get that w′MB,RwMB,R <

w′MBwMB. This proves that the scatter of ridge weights is smaller and more stable

under perturbation of Xs than that of BLUE weights. This is in concordance with

the ridge principle. If λmin = minpi=1λi is close to zero results in a large condition-

ing number K =
√
λmax/λmin. This fact may entail negative or extremely large

calibration weights.

It is worth mentioning two extreme values of t̂MBR. As C → ∞ (i.e. infinite

cost associated with the bias B), we obtain that the ridge weights become the

BLUE weights, wMB,R = wMB and t̂MBR is the minimum variance unbiased

linear estimator t̂BLUE (Royall, 1970). This means that the constraint B = 0

is exactly satisfied. On the opposite case, as C → 0, we obtain that wMB,R =

1s and t̂MBR =
∑

s yk which is equivalent to removing the constraint from the

optimization problem.

The derivation of the model-based ridge estimator depends on the cost matrix

C. Considering that C = κ−1C∗, Bardsley and Chambers (1984) and Chambers

(1996) use the ridge trace to determine the appropriate κ. C∗ is a fixed cost matrix

providing a correct relative weighting of the components of the relative bias vector
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(diag(X′1U ))−1B. This transformation is needed because of the large differences

in scale between the predictors in X and it is a kind of standardization of variables.

2.3.2 Ridge under the calibration approach or penalized calibra-

tion

Without assuming a superpopulation model, one can use the calibration method

(Deville and Särndal, 1992) which consists in deriving a weighted estimator

t̂yw =
∑
s

wkyk,

with weights minimizing a pseudo-distance, subject to calibration constraints (i.e.

all the auxiliary variable totals are exactly estimated). Usually a chi-square dis-

tance is used,
∑

s (wk − dk)2/dkqk, yielding the calibration weights wc
s = (wck)k∈s

(P4) : wc
s = argminws

(ws − ds)
′Π̃s(ws − ds)

subject to (ws)
′Xs = 1′UX,

where Π̃s = diag(q−1
k d−1

k )k∈s and qk are positive constants. Most of the times, we

consider qk = 1 for all k. The calibration weights thus get the following shape,

wc
s = ds − Π̃

−1

s Xs(X
′
sΠ̃
−1

s Xs)
−1(d′sXs − 1′UX)′.

For qk = 1/(σ2v2
k), the calibrated estimator t̂yw = (wc

s)
′ys is equal to the GREG

estimator given by (1.6). Moreover, note that in this case we have Π̃s = VsΠs,

which means that the optimization problem (P2) uses the inverse of the weight

matrix employed in the objective function from (P4). For a more general distance

function, Deville and Särndal (1992) show that under certain conditions the cali-

brated estimator is asymptotically equivalent to the model-assisted or GREG esti-

mator t̂GREG. This equivalence is in the sense that N−1(t̂yw− t̂GREG) = Op(n
−1).

This fact will consequently lead to the asymptotic equivalence of the variances of

both estimators.

From a geometrical point of view, we search the weights wk which explain the

best the Horvitz-Thompson weights dk = 1/πk and that lie in the constraint space
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given by the kernel of the matrix Xs. The constraint space is of dimension n− p,

so increasing the number of auxiliary variables will decrease the number of degrees

of freedom for wk (Guggemos and Tillé, 2010). A similar reasoning given by Silva

and Skinner (1997) proved that increasing the number of calibration variables

after a certain number may increase the variance up to a harmful level. Guggemos

and Tillé (2010) called it over-calibration and suggested not calibrating on those

variables which are less correlated with the variables of interest.

Another issue with the calibration weights is the fact that they may not satisfy

range restrictions (i.e. pre-specified lower and upper bounds) especially when the

number of calibration or benchmark constraints is large. Satisfying such condition

is desirable especially for avoiding the inflation of the sampling error of estimates in

small to moderate domains (Beaumont and Bocci, 2008). Moreover, as Deville and

Särndal (1992) stated, negative weights may occur when the chi-squared distance

is employed. For the other distances used in their paper, the positiveness of weights

is guaranteed but unrealistic or extreme weights may also occur. To cope with

this issue, several modifications have been suggested in the literature. However,

all these methods are iterative and may not yield a solution even if the range

restriction is mild (Rao and Singh, 1997 and Beaumont and Bocci, 2008).

So, how to avoid negative or extremely large weights? Chambers (1996) and

Rao and Singh (1997) answer this question by suggesting to relax the calibration

constraints. Suppose we have non-negative constants Cj , j = 1, ..., p, representing

the cost associated to the j-th calibration equation not to be satisfied and let

C = diag(Cj)
p
j=1. Relaxing the calibration constraints may be obtained by using

a quadratic constraint function instead of the linear constraint function used in

(P4). With the chi-square distance, we want to find weights that verify

(P5) : wc
R,s = argminws

(ws − ds)
′Π̃s(ws − ds)

+
1

λ
(w′sXs − 1′UX)C(w′sXs − 1′UX)′. (2.33)

Rao and Singh (1997) consider the objective function without the constant λ.

Writing the problem (P5) as a constrained optimization problem, puts into ev-
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idence that we lessen the calibration equation corresponding to those variables

which are somehow unable to satisfy the calibration constraints but not too much

since we penalize the large values of w′sXs − 1′UX. The absolute value of con-

straints w′sXs − 1′UX may be controlled by a tolerance matrix ∆ = diag(δi)
p
i=1

with δi ≥ 0 as described by Rao and Singh (1997),

|w′sXs − 1′UX| ≤ (1′UX)∆.

The link between the tolerance matrix ∆ and the cost matrix C (Rao and Singh,

1997 and Beaumont and Bocci, 2008) may be used to find C that meets fixed

tolerances δi for all i = 1, . . . , p. In this way we eliminate the possibility of having

very large or negative weights. Simply, we can say that the ridge estimator per-

forms as a variable selection tool.

The weights verifying the optimization problem (P5) are given by

wc
R,s = ds − Π̃

−1

s Xs(X
′
sΠ̃
−1

s Xs + λC−1)−1(X′sds −X′1U ), (2.34)

which yield the ridge calibration estimator or the penalized calibration of the

population total ty,

t̂y,Rw = (wc
R,s)

′ys = d′sys − (X′sds −X′1U )′β̂λ

= t̂y,d −
(
t̂x,d − tx

)′
β̂λ, (2.35)

where β̂λ = (X′sΠ̃
−1

s Xs + λC−1)−1X′sΠ̃
−1

s ys and t̂x,d is the Horvitz-Thompson

estimator for the total tx. This approach is equivalent to construct a GREG es-

timator of population total with the regression coefficient estimated by a ridge

estimator (Hoerl and Kennard, 1970). More precisely, β̂λ is in fact β̂π,R from

(2.28) for λC−1 = C̃−1 and Π̃
−1

s = V−1
s Π−1

s .

The ridge estimator given by (2.35) can be written as a linear combination of the

Horvitz-Thompson estimator and the GREG estimator (Rao and Singh, 1997) as

follows,

t̂y,Rw = (1− α)t̂y,d + αt̂GREG,
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where t̂GREG = t̂y,d −
(
t̂x,d − tx

)′
β̂π is the GREG estimator given by (1.6) and α

is given by,

α = y′sΠ̃
−1

s Xs

(
X′sΠ̃

−1

s Xs + λC−1
)−1

(tx − t̂x,d)[
y′sΠ̃

−1

s Xs

(
X′sΠ̃

−1

s Xs

)−1
(tx − t̂x,d)

]−1

.

As for the model-based approach, the Horvitz-Thompson as well as the GREG

estimator are two limit values of t̂y,Rw. More exactly, consider relation (2.35) for

a fixed cost matrix C and let λ vary from 0 to ∞. The ridge calibration estimator

is a continuous function of λ. For λ = 0, then α = 1 and an infinite cost is

attributed to all constraints meaning that they are all exactly satisfied. It implies

that t̂y,Rw is the GREG estimator which is ξ-unbiased for the population total ty.

Ridge weights with strictly positive biasing parameter λ means that the weights

do not satisfy exactly the calibration equations. In this case, the estimator t̂y,Rw

is ξ-biased but the weights wc
R,s are more stable (Chambers, 1996) and implied a

reduction in MSE (Bardsley and Chambers, 1984). Values of λ producing weights

larger or equal to 1 are accepted by Chambers (1996).

As λ → ∞, α → 0 and the ridge calibrated estimator t̂y,Rw goes to the Horvitz-

Thompson estimator. In this case, we do not use any of the auxiliary variables for

the estimation of the finite population total of the variable of interest.

It is of interest to see how t̂y,Rw changes when a specific cost Cj varies from 0 to

∞. The zero cost Cj = 0 means that the constraint corresponding to the total

tXj is discarded and the large or infinite cost Cj = ∞, that the corresponding

calibration constraint is exactly satisfied. In the latter situation, the weights are

computed using (2.34) with the cost matrix C−1 having 0 on the j-th diagonal

element. Using matrix algebra, one can show the following result which is the

equivalent of the constrained optimization problem (2.11) in a survey setting.

Proposition 1. The weights wc
R,s satisfying the optimization problem (P5) satisfy
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also the following optimization problem,

(P6) : wc
R,s = argminws

(w′sXs − 1′UX)C(w′sXs − 1′UX)′

+λ(ws − ds)
′Π̃s(ws − ds)

= argminws,||ws−ds||2
Π̃s
≤r2(w′sXs − 1′UX)C(w′sXs − 1′UX)′.

This results means that we want to find weights minimizing the distance be-

tween the weighted estimator w′sXs and the total 1′UX while lying at a given

distance from the sampling weights. Figure 2.2 gives the geometric representation

of the penalized weights for the two-dimensional case ws = (w1, w2)′. The inter-

pretations are similar to those given by Hoerl and Kennard, (1970) in the case of

classical regression ( see section 2.2). More exactly, consider for simplicity that the

auxiliary variables are centered, namely 1′UX = 0. Then, the optimization prob-

lem (P6) reduces to finding the minimum of w′sXsCX′sws under the constraint

that ||ws−ds||2Π̃s
≤ r2. Weights satisfying w′sXsCX′sws = Φ = constant lie on an

ellipse centered in the origin. For the calibration weights wc
s, we get the minimum

value of Φ, Φmin = 0 but the range restrictions are not necessarily satisfied. For

the sampling weights ds, we get the maximum value of Φ, Φmax = d′sXsCX′sds.

The penalized calibration weights are found in the following way. We start by

fixing the constraint contour at r2, namely (ws − ds)
′Π̃s(ws − ds) = r2. This

means that ws lies on the ellipse centered in ds (see figure 2.2). Next, we find

the ellipse contour centered in the origin that is as close as possible to the ellipse

centered in ds. The penalized calibration weights wc
R,s is the vector at the first

point where the ellipse contour hits the constraint region (see figure 2.2). A value

r may be chosen such that all range restrictions as L ≤ wk/dk ≤ U for all k ∈ U

are satisfied.

Knowing Φmin and Φmax, Beaumont and Bocci (2008) suggest the bisection algo-

rithm to find λ that leads to the penalized calibration weights. Nevertheless, this

algorithm may be time-consuming.
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Figure 2.2: Geometry of penalized weights

2.3.3 Partially ridge regression or partially penalized calibration

In a model based approach, Bardsley and Chambers (1984) suggested to divide

the p variables in the data matrix X into two sets of variables X̃1 and X̃2 based

on the fact that variables in X̃1 contain much more importance than the variables

in X̃2 in the sense that they can contribute more influentially in the estimation

process. We may consider that the matrix X has the following expression after

re-ordering the variables X1, . . . ,Xp,

X =
(
X̃1, X̃2

)
,

where X̃1 = [X1, . . . ,Xq] and X̃2 = [Xq+1, . . . ,Xp]. The variables contained in X̃1

may be related for example to socio-demographic criteria. Bardsley and Chambers

(1984) attach the importance to the variables in terms of cost which are in fact

penalties associated to the variables. Let C be the diagonal matrix of nonnegative

costs which can measure the acceptable level of error while estimating the totals

of variable from the X matrix,

C =

 C1 0(q,p−q)

0(p−q,p) C2

 ,
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where C1, respectively C2, is the relative diagonal cost matrix of size q × q asso-

ciated to X̃1, respectively of size (p− q)× (p− q) associated to X̃2.

As discussed in the above section, allowing an infinite cost Cj means that the

associated constraint is exactly satisfied. Bardsley and Chambers (1984) consider

the case when constraints corresponding to X1, . . . ,Xq are all exactly satisfied.

This means C1 = ∞ and hence, weights may be derived using relation (2.31)

with C−1
1 = 0(q×q). The weights using this partially penalized ridge regression and

abbreviated as wppr below can be written as,

wppr = 1s −
(
V−1
s X̃1s, V−1

s X̃2s

) X̃′1sV
−1
s X̃1s X̃′1sV

−1
s X̃2s

X̃′2sV
−1
s X̃1s X̃′2sV

−1
s X̃2s + C−1

2

−1

 X̃′1s1s − X̃′11U

X̃′2s1s − X̃′21U

 ,

(2.36)

where X̃1s, respectively X̃2s, is the sample restriction of X̃1, respectively of X̃2. In

particular, we have w′pprX̃1s = 1′UX̃1. Using a calibration approach, the weights

are derived using the above formula with Vs replaced by Π̃s and 1s by ds.

Now, if the cost matrix C2 also goes to infinity, then the constraints corresponding

to variables in X̃2 are also exactly satisfied. Hence, wppr = wMB and the estimator

using the weights so derived is again nothing else than the best linear unbiased

estimator t̂BLUE given by (2.24) and derived under the model ξ that uses the

whole matrix X. Moreover, in the case C2 → 0(p−q,p−q) the variables included in

X̃2 are discarded from the constraints and thus the model will include only the

calibration variables from X̃1,

wppr → w(1)
ppr = h−V−1

s X̃1s

(
X̃′1sV

−1
s X̃1s

)−1
(1′sX̃1s − 1′UX̃1)′.

The penalized estimator becomes the best unbiased estimator computed under the

restricted model that uses only the matrix X̃1. Since t̂BLUE based on the whole

model ξ as well as on the restricted model with X̃1 are two extreme estimators

as C2 varies from ∞ to 0, Bardsley and Chambers (1984) called the estimator
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that uses weights wppr an interpolated estimator between the two extremes. So,

the penalized ridge estimator may be considered as a trade-off between an over-

specified model and an under-specified model.

Using matrix algebra, one can show the following result which shows that the par-

tially penalized weights may be obtained as solution of two different optimization

problems.

Proposition 2. The ridge weights wppr verifying the optimization problem (P3)

with the inverse matrix cost

C−1 =

 0(q,q) 0(q,p−q)

0(p−q,p) C−1
2

 , (2.37)

may be obtained also as a solution of the following optimization problem

(P7) : wppr = argminw(ws − 1s)
′Vs(ws − 1s)

+(w′sX̃2s − 1′UX̃2)C2(w′sX̃2s − 1′UX̃2)′

subject to w′sX̃1s = 1′UX̃1.

The partial penalized estimator for the total ty becomes

t̂ppr = w′pprys = 1′sys − (1′sX̃1s − 1′UX̃1)b̂ + (1′sX̃2s − 1′UX̃2)û

where b̂ =
(
X̃′1sΩ

−1
ss X̃1s

)−1
X̃′1sΩ

−1
ss ys, Ωss = Vs+X̃2sC2X̃

′
2s and û = C2X̃

′
2sΩ

−1
s (ys−

X̃1sb̂).

It may be written in a simple form as

tppr = 1′sys +

(∑
U−s

x′k

)
β̂MBR,

where β̂MBR =

X′sV
−1
s Xs +

 0 0

0 C−1
2

−1

X′sV
−1
s ys.

Proof. Let w
(1)
ppc be solution of the optimization problem P3 is,

w(1)
ppc = argminw

[
(w − 1s)

′V−1
s (w − 1s) + (w′Xs − 1′UX)C(w′Xs − 1′UX)′

]
.
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The loss function is

L(w) = (w − 1s)
′V−1

s (w − 1s) + (w′Xs − 1′UX)C(w′Xs − 1′UX)′.

We derive L(w) with respect to w and we solve ∂L(w)
∂w = 0 to obtain w

(1)
ppc. We

get,

w(1)
ppc = 1s − (Vs + XsCX′s)

−1XsC(X′s1s −X′1U )

and by the property of inverse of the sum of the matrices (Henderson and Searle,

1981),

(Vs + XsCX′s)
−1XsC = V−1

s Xs(C
−1 + X′sV

−1
s Xs)

−1

so our expression for the partially penalized calibration weights in this case be-

comes,

w(1)
ppr = 1s −V−1

s Xs(C
−1 + X′sV

−1
s Xs)

−1(X′s1s −X′1U )

= 1s −V−1
s XsR

−1(X′s1s −X′1U ) (2.38)

where

R−1 = (C−1 + X′sV
−1
s Xs)

−1.

Now if the cost for the calibration variables X1 is infinity, then the inverse of cost

matrix C will be

C−1 =

 0 0

0 C−1
2

 .

Hence,

R−1 =

 0 0

0 C−1
2

+ X′sV
−1
s Xs

−1

=

 X̃′1sV
−1
s X̃1s X̃′1sV

−1
s X̃2s

X̃′2sV
−1
s X1s C−1

2 + X̃′2sV
−1
s X̃2s

−1

=

 A B

B′ L

−1

(2.39)
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with A = X̃′1sV
−1
s X̃1s, B = X̃′1sV

−1
s X̃2s and L = C−1

2 + X̃′2sV
−1
s X̃2s. We have

(Rao, 1969),

R−1 =

 H−1 −FE−1

−E−1F′ E−1

 (2.40)

where H−1 = (X̃′1sΩ
−1
ss X̃1s)

−1 with Ωss = Vs + X̃2sC2X̃
′
2s and its inverse as,

Ω−1
ss = (Vs + X̃2sC2X̃

′
2s)
−1

= V−1
s −V−1

s X̃2s(C
−1
2 + X̃2sV

−1
s X̃′2s)

−1X̃′2sV
−1
s , (2.41)

E = L −B′A−1B and F = A−1B where A, B and L are already defined above.

For the above value of R−1, the partially penalized calibrated weights given in

expression (2.38) become,

w(1)
ppr = 1s −V−1

s Xs(C
−1 + X′sV

−1
s Xs)

−1(X′s1s −X′1U )

= 1s −V−1
s (X̃1s, X̃2s)

 H−1 −FE−1

−E−1F′ E−1

 X̃′1s1s − X̃′11U

X̃′2s1s − X̃′21U


where Ωss = Vs + X̃2sC2X̃

′
2s. So the weights w

(1)
ppr can be written as,

w(1)
ppr = 1s −V−1

s

[(
X̃1sH

−1 − X̃2sL
−1B′H−1

)(
X̃′1s1s − X̃′11U

)
+ (2.42)(

−X̃1sH
−1BL−1 + X̃2s

(
L−1 + L−1B′H−1BL−1

))(
X̃′2s1s − X̃′21U

)]
,

since −E−1F′ = −L−1B′H−1 and E−1 = L−1 + L−1B′H−1BL−1. Consider now

the optimization problem P7. Using the same idea as before we get,

w(2)
ppr = Ω−1

ss

X̃1sH
−1

X̃′11U − X̃1sΩ
−1
ss (Vs1s + X̃2sC2X̃

′
21U )︸ ︷︷ ︸

∗

+

Vs1s + X̃2sC2X̃
′
21U︸ ︷︷ ︸

∗∗

 (2.43)

Consider the above terms (*) and we use the fact that Vs = Ωss − X̃2sC2X̃
′
2s

X̃1sΩ
−1
ss (Vs1s + X̃2sC2X̃

′
21U ) = X̃1sΩ

−1
ss ((Ωss − X̃2sC2X̃

′
2s)1s + X̃2sC2X̃

′
21U )

= X̃′1s1s + X̃′1sΩ
−1
ss X̃2sC2

(
X̃′21U − X̃′2s1s

)
.

(2.44)
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Also consider (**),

Vs1s + X̃2sC2X̃
′
21U = (Ωss − X̃2sC2X̃

′
2s)1s + X̃2sC2X̃

′
21U

= Ωss1s − X̃2sC2X̃
′
2s1s + X̃2sC2X̃

′
21U

= Ωss1s + X̃2sC2(X̃′21U − X̃′2s1s). (2.45)

Using above equations (2.44 and 2.45), we get,

w(2)
ppr = Ω−1

ss X̃1sH
−1
[
(X̃′11U )− X̃′1sΩ

−1
ss X̃2sC2(X̃′21U − X̃′2s1s)

]
+ Ω−1

ss Ωss1s

+Ω−1
ss X̃2sC2(X̃′21U − X̃′2s1s)

= 1s + Ω−1
ss X̃1sH

−1
(
X̃′11U − X̃′1s1s

)
−Ω−1

ss X̃1sH
−1X̃′1sΩ

−1
ss X̃′2sC2

(
X̃′21U − X̃′2s1s

)
+Ω−1

ss X̃2sC2

(
X̃′21U − X̃′2s1s

)
= 1s + Ω−1

ss X̃1sH
−1
(
X̃′11U − X̃′1s1s

)
+ (Ω−1

ss X̃2sC2 −Ω−1
ss X̃1sH

−1X̃′1sΩ
−1
ss X̃′2sC2)(

X̃′21U − X̃′2s1s

)
. (2.46)

Consider again 2.41, we get

Ω−1
ss X̃1sH

−1 = V−1
s (X̃1sH

−1 − X̃2sL
−1B′H−1) (2.47)

and also,

Ω−1
ss X̃′2sC2 = (Vs + X̃2sC2X̃

′
2s)
−1X̃2sC2

= V−1
s X̃′2s(C

−1
2 + X̃2sC2X̃

′
2s)
−1

= V−1
s X̃′2sL

−1. (2.48)

Thus using 2.47 we get,

Ω−1
ss X̃1sH

−1X̃′1sΩ
−1
ss X̃′2sC2

= Ω−1
ss X̃1sH

−1X̃′1sV
−1
s X̃′2sL

−1

= Ω−1
ss X̃1sH

−1BL−1

= V−1
s (X̃1sH

−1BL−1 − X̃2sL
−1B′H−1BL−1) (2.49)
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Hence using 2.47, 2.48 and 2.49, the weights in equation 2.46 become,

w(2)
ppr = 1s −V−1

s

[(
X̃1sH

−1 − X̃2sL
−1B′H−1

)(
X̃′1s1s − X̃′11U

)
+(

−X̃1sH
−1BL−1 + X̃2s

(
L−1 + L−1B′H−1BL−1

))(
X̃′2s1s − X̃′21U

)]
(2.50)

which are identical to the weights w
(1)
ppc given by 2.43.

This optimization problem (P7) is used by Park and Yang (2008) and Gugge-

mos and Tillé (2010). Using the model ξ given by (2.19) with intercept, Park and

Yang (2008) aim at estimating the mean ȳU =
∑

U yk/N of the variable of interest

Y using a Hájek-type estimator. This means that they use a weighted estimator

with weights that sum up to unity and being as close as possible to the Hájek

(1971) weights,

αi =
π−1
i∑
s

1
πi

.

This means that the optimization problem (P7) is used with 1s replaced by αs =

(αi)i∈s. They build two partially penalized estimators. In the first case, X̃1 = 1U

and in the second case, X̃1 = (1U ,X2, . . . ,Xq). Weights may be derived using

relation (2.36). Slightly simplified formulas are obtained since 1′sαs−1′U1U/N = 0.

In a linear regression context, it is not very common to consider the penalty or

the cost matrix C−1 given by (3.1.1). This is more likely to happen with a mixed

model. Using a calibration approach, Guggemos and Tillé (2010) consider the

following mixed model

ξ′ : y = X̃1b + X̃2u + η,

where u is a random effect vector. We replace the matrix Vs by Π̃s, and the

vector 1s by ds in the objective function (P7) from (2). Guggemos and Tillé

(2010) consider also that the second term of the objective function (P7) depends

on a penalty parameter and they suggest the Fisher scoring algorithm to compute

it. The value of the penalty parameter is obtained at the convergence of the
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Fisher scoring algorithm. They give also the application of the partially penalized

calibration for the estimation of finite population totals in a small area context.

2.3.4 Calibration on uncertain auxiliary information

In presence of several external estimations which may be considered as uncertain,

Deville (1999) suggested another construction which uses in fact the Bayesian

interpretation of the ridge estimator given in section 2.2. Consider that another

estimation t̂x∗,d = d′sX
∗ based on the auxiliary information X∗ is available from

external sources such as previous surveys. We have also the current estimation

based on X. We suppose that the variances of t̂x∗,d and t̂x,d are known and the

covariance between the two sources is zero. We suppose also that the covariance

between t̂x∗,d and t̂y,d is also zero. Deville looks for linear weighted estimators for

ty of the form

t̂w = d′sys + (d′sX
∗
s − d′sXs)β = t̂y,d + (t̂x∗,d − t̂x,d)′β. (2.51)

The optimal value of the unknown parameter β is the one that minimizes the

sampling variance of t̂w. We find

βopt =
(
Var(t̂x∗,d) + Var(t̂x,d)

)−1
Cov(t̂y,d, t̂x,d),

and the same value may be derived by using a variance minimization criteria as

in Montanari (1987) plus a penalty term, namely

(P8) : βopt = argminβ(ys −Xsβ)′∆(ys −Xsβ) + β′X′∗s ∆X∗sβ, (2.52)

where ∆ = (πkl−πkπlπkl
)k,l∈U . We remark that the penalty is now on the variance of

t̂x∗,d.

The estimation of ty given by (2.51) computed for β = βopt may be improved

by replacing t̂x∗,d with the best unbiased linear estimator of t̂x∗,d and t̂x,d. This is

equivalent to determine the posterior estimation knowing that the priori estimation

given by the auxiliary information is t̂x∗,d and the actual estimation is t̂x,d. One
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may use relation (2.14) to find the posterior estimation as

t̂optx,x∗ = (Ip −A) t̂x∗,d + At̂x,d,

where A is a squared p-dimensional matrix given by

A = Ip −Var(t̂x,d)
(
Var(t̂x,d) + Var(t̂x∗,d)

)−1
.

Then, one can derive the estimator t̂opty of ty from relation (2.51) with t̂x∗,d replaced

with t̂optx,x∗ ,

t̂opty = t̂y,d + (t̂optx,x∗ − t̂x,d)
′(Var(t̂x,d))

−1Cov(t̂y,d, t̂x,d).

One can easily obtain that if yk = xk for all k ∈ U, we obtain t̂optx,x∗ or equivalently,

the estimator is calibrated on t̂optx,x∗ . If the variance covariance Cov(t̂y,d, t̂x,d) is

estimated by the usual Horvitz-Thompson estimator, t̂opty is a linear estimator in

yk with weights wk given by

wk = dk + (t̂x∗,d − t̂x,d)′(Var(t̂x,d))
−1zkdk,

where zk =
∑

l∈s
∆kl
πkl

xl
πl
. The main advantage of Deville’s construction is that it

does not need to determine a penalty parameter as it was the case before. All

we need is the variance of the external estimation. Deville (1999) also gives a

practical implementation and generalization to the several external estimations.

2.3.5 Statistical properties of ridge estimators with survey data

Ridge-type estimators are biased estimators suggested in classical regression in

order to diminish the model mean squared error. Both model-based and design-

based penalized estimators given by (2.32) and (2.35) are biased under the model

ξ. As for the partial penalized estimator, it is biased under the model ξ but it is

unbiased under the model ξ′ (Guggemos and Tillé, 2010). Bardsley and Chambers

(1984) affirm that the model-based ridge estimator t̂MBR has smaller prediction

variance than the best linear unbiased estimator t̂BLUE but they do not give a
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rigorous proof. Bellhouse (1987) shows that a predictor Ŷ (1) =
∑

s yk+(N−n)µ̂
(1)
s

of the finite population total ty is better than another predictor Ŷ (2) =
∑

s yk +

(N − n)µ̂
(2)
s with respect to the mean square error under the model ξ and the

sampling design p if, for every sample s of fixed size n, µ̂
(1)
s is better than µ̂

(2)
s in

the sense that

Eξ(µ̂
(1)
s − µns)2 ≤ Eξ(µ̂(2)

s − µns)2,

where µns is the unknown prediction of the non sampled mean of Y. Using this

result and the same arguments as in Vinod and Ullah (1981), one can get that for

any penalty constant κ satisfying 0 < κ < 2σ2/β′β,

EξEp(t̂MBR − ty)2 < EξEp(t̂BLUE − ty)2,

where t̂MBR is the ridge model based estimator given by (2.32) for C−1 = κIp

and t̂BLUE is the best linear unbiased estimator given by (2.24). A necessary and

sufficient condition for the ridge estimator t̂MBR to be more efficient than the

BLUE estimator t̂BLUE is given in theorem 3.

Dunstan and Chambers (1986) derived confidence intervals for finite population

totals estimated using the ridge model-based procedure and robust model-based

variance estimators.

In a design-based setting, Park and Yang (2008) determine also the optimal values

of the penalty matrix C2 from optimization problem (P7). Nevertheless, in a

design-based framework, the concern was about asymptotic properties of t̂y,Rw

given by (2.35) with respect to the sampling design p. As Rao and Singh (1997)

stated, “an important requirement while relaxing benchmark constraints is that

for given tolerance levels, the calibration method should ensure design consistency

like the generalized regression method.” The asymptotic design unbiasedness and

consistency of t̂y,Rw are derived using the equivalence with GREG estimators even

if t̂y,Rw has been obtained as a solution of penalized calibration problems. Under

broad assumptions (Fuller, 2002), the design-based ridge estimator β̂λ of β tends

in probability to βλ = (X′X + λC−1)−1X′y and the ridge estimator t̂y,Rw is
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asymptotically equivalent to

t̂y,Rw ' d′sys − (X′sds −X′1U )′βλ = d′s(ys −Xsβλ) + 1′UXβλ,

which implies that t̂y,Rw is asymptotically design unbiased and consistent under

broad assumptions that provide the design unbiasedness and consistency of the

Horvitz-Thompson estimators d′sys and d′sXs (Rao and Singh, 1997 and Théberge,

2000). The asymptotic variance under the sampling design may thus be deduced

as being the Horvitz-Thompson variance applied to residuals yk − x′kβλ.

Statistical properties of model-based and model-assisted ridge estima-

tors

Some of the results depicting the properties of model-based t̂MBR ( given by 2.32)

and model-assisted t̂GREG,R (given by 2.29) ridge estimator are given in form of

results in the following.

We recall that

t̂MBR = w′MBRys =
∑
s

yk +

(∑
U−s

x′k

)
β̂MBR

with β̂MBR =
(
X′sV

−1
s Xs + κI

)−1
X′sV

−1
s ys.

Consider the eigenvalues λ1,s ≥ . . . ≥ λp,s of X′sV
−1
s Xs with the corresponding

eigenvectors a1, . . . ,ap and A = (a1, . . . ,ap) be the p × p matrix of eigenvectors

which satisfies X′sV
−1
s Xs = Adiag(λi,s)

p
i=1A

′ = AΛsA
′ and AA′ = I where Λs

is the diagonal matrix of eigenvalues λ1,s ≥ . . . ≥ λp,s of X′sV
−1
s Xs.

Result 4. 1. The ξ-bias of t̂MBR is given by,

Biasξ
(
t̂MBR

)
= −κ

(∑
U−s

x′k

)
Adiag

(
1

λi,s + κ

)p
i=1

A′β (2.53)

2. β̂MBR in function of β̂GLS can be written as,

β̂MBR = A∆A′β̂GLS

= A(diag(δi))
p
i=1A

′β̂GLS (2.54)
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Proof. We have that

t̂MBR =
∑
s

yk +

(∑
U−s

x′k

)
β̂MBR , so

t̂MBR − ty =
∑
s

yk +

(∑
U−s

x′k

)
β̂MB,R −

∑
U

yk

=
∑
s

(x′kβ + εk) +

(∑
U−s

x′k

)
β̂MBR −

∑
U

(x′kβ + εk)

=
∑
s

(x′kβ) +
∑
s

εk +

(∑
U−s

x′k

)
β̂MBR −

∑
U

x′kβ −
∑
U

εk

=

(∑
s

x′k −
∑
U

x′k

)
β +

(∑
U−s

x′k

)
β̂MBR −

∑
U−s

εk

=

(∑
U−s

x′k

)
β̂MBR −

(∑
U−s

x′k

)
β −

∑
U−s

εk

So,

Eξ(t̂MBR − ty) =

(∑
U−s

x′k

)(
β̂MBR − β

)
−
∑
U−s

εk

=

(∑
U−s

x′k

)
Eξ

(
β̂MBR − β

)
=

(∑
U−s

x′k

)
Biasξ

(
β̂MBR

)
(2.55)

Here we use a transformation, X′sV
−1
s Xs = A(diagλi)

p
i=1A

′ = AΛsA
′ with Xs =

V
1
2
s OΛ

1
2
s A′ where O is an n×p matrix of coordinates of the observations along the

principal axes of Xs, standardized in the sense, O′O = I and Vs is the variance

of εs as defined earlier. Then, β̂GLS given in 2.17 can be written as,

β̂GLS = (X′sV
−1
s Xs)

−1X′sV
−1
s ys

= (AΛsA
′)−1AΛ

1
2
s O′V

1
2
s V−1

s ys

= AΛ−1
s A′AΛ

1
2
s O′V

− 1
2

s ys

= AΛ−1
s Λ

1
2
s O′V

− 1
2

s ys

= AΛ
− 1

2
s O′V

− 1
2

s ys (2.56)
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We can therefore write β̂MBR in function of β̂GLS as follows,

β̂MBR =
(
X′sV

−1
s Xs + κI

)−1
X′sV

−1
s ys

=
(
AΛsA

′ + κAA′
)−1

AΛ
1
2
s O′V

− 1
2

s ys

= A (Λs + κI)−1 ΛsA
′AΛ−1

s Λ
1
2
s O′V

− 1
2

s ys

= A (Λs + κI)−1 ΛsA
′AΛ

− 1
2

s O′V
− 1

2
s ys.

Using equation(2.56), we get

β̂MBR = A∆A′β̂GLS

= A(diag(δi))
p
i=1A

′β̂GLS (2.57)

where ∆ = diag (δi)
p
i=1 with δi =

λi,s
λi,s+κ is a diagonal matrix of shrinkage fac-

tors.We have declining deltas for strictly positive κ and strictly declining eigenval-

ues which means that the so-called shrinkage factor shrinks the coefficient matrix

for the declining eigenvalues given the fact that κ ∈ (0,∞).

For the bias of β̂MBR consider again,

β̂MBR =
(
X′sV

−1
s Xs + κI

)−1
X′sV

−1
s ys

=
(
X′sV

−1
s Xs + κI

)−1
X′sV

−1
s (Xsβ + εs)

=
(
X′sV

−1
s Xs + κI

)−1
X′sV

−1
s Xsβ + (X′sV

−1
s Xs + κI)−1X′sV

−1
s εs

=
(
X′sV

−1
s Xs + κI

)−1 [
(X′sV

−1
s Xs + κI)− κI

]
β + (X′sV

−1
s Xs + κI)−1X′sV

−1
s εs

β̂MBR = β − κ
(
X′sV

−1
s Xs + κI

)−1
β +

(
X′sV

−1
s Xs + κI

)−1
X′sV

−1
s εs,

applying ξ-expectation on both sides with E(εs) = 0, we get the bias of β̂MBR as,

Biasξ(β̂MBR) = Eξ(β̂MBR)− β = −κ
(
X′sV

−1
s Xs + κI

)−1
β (2.58)

Referring to the equations (2.57 and 2.58), with β is the model parameter, we can
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write the ξ-bias of t̂MBR as,

Eξ(t̂MB,R)− ty =

(∑
U−s

x′k

)
Biasξ

(
β̂MBR

)
= −κ

(∑
U−s

x′k

)(
X′sV

−1
s X′s + κI

)−1
β,

which leads to

Biasξ
(
t̂MBR

)
= −κ

(∑
U−s

x′k

)
Adiag

(
1

λi + k

)
A′β

Result 5. The ξ-mean squared error of t̂MBR is given by,

Eξ(t̂MBR − ty)2 = σ2

(∑
U−s

x′k

)(
Adiag

(
λi

(λi + κ)2

)p
i=1

A′
)(∑

U−s
x′k

)′
+ σ2

∑
s̄

vk

+κ2

(∑
U−s

x′k

)
Adiag

(
1

λi + κ

)p
i=1

A′ββ′Adiag

(
1

λi + κ

)p
i=1

A′

(∑
U−s

x′k

)′

Proof. We have that

Eξ(t̂MBR − ty)2 = Varξ(t̂MB,R − ty) + (Eξ(t̂MB,R − ty))2

where

Varξ(t̂MBR − ty) = Varξ

(∑
s

(x′kβ + εk) +

(∑
U−s

x′k

)
β̂MBR −

∑
U

(x′kβ + εk)

)

= Varξ

((∑
U−s

x′k

)
β̂MBR −

∑
U−s

(x′kβ + εk)

)

= Varξ

((∑
U−s

x′k

)
β̂MBR −

∑
U−s

x′kβ −
∑
U−s

εk

)

=

(∑
U−s

x′k

)
Varξ(β̂MBR)

(∑
U−s

x′k

)′
+ σ2

∑
U−s

vk.
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Now, again consider the relation given earlier in (2.57),

β̂MBR = A(diag(δi))
p
i=1A

′β̂GLS .

It gives

Varξ(β̂MBR) = A(diag(δi))
p
i=1A

′Varξ(β̂GLS)A(diag(δi))
p
i=1A

′

with,

Varξ(β̂GLS) = σ2(X′sV
−1
s Xs)

−1 = σ2(A(diagλi)A
′)−1

= σ2

(
Adiag

(
1

λi

)p
i=1

A′
)

so,

Varξ(β̂MBR) = σ2Adiag(δi)
p
i=1A

′(Adiag(λi)
p
i=1A

′)−1A(diag(δi))
p
i=1A

′

= σ2Adiag

(
δi

2

λi,s

)p
i=1

A′

= σ2Adiag

(
λi,s

(λi,s + κ)2

)p
i=1

A′

thus, Varξ(t̂MBR − ty) becomes,

Varξ(t̂MBR − ty) = σ2

(∑
U−s

x′k

)(
Adiag

(
λi,s

(λi,s + κ)2

)p
i=1

A′
)(∑

U−s
x′k

)′
+ σ2

∑
s̄

vk

Hence, the ξ-MSE is given by,

Eξ(t̂MBR − ty)2 = σ2

(∑
U−s

x′k

)(
Adiag

(
λi,s

(λi,s + κ)2

)p
i=1

A′
)(∑

U−s
x′k

)′

+σ2
∑
s̄

vk + κ2

(∑
U−s

x′k

)
Adiag

(
1

λi,s + κ

)p
i=1

A′ββ′A

diag

(
1

λi,s + κ

)p
i=1

A′

(∑
U−s

x′k

)′
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Model-assisted

Let us describe some of the properties of the model-assisted estimator t̂GREG,R

given in the relation (2.29) for the particular case C−1 = κIp.

Result 6. The p-bias of t̂GREG,R is

Biasp(t̂GREG,R) = −Trace

(
Covp

(∑
s

xk
πk
, β̂π,R

))

Proof.

Biasp(t̂GREG,R) = Ep(t̂GREG,R − ty) where

t̂GREG,R − ty =
∑
s

yk
πk
−

(∑
s

x′k
πk
−
∑
U

x′k

)
β̂π,R −

∑
U

yk

Recalling the design properties of the Horvitz-Thompson estimator, we know that

the Horvitz-Thompson estimator of the population total
∑

U yk is design unbiased.

i.e. Ep(
∑

s
yk
πk

) =
∑

U yk. Hence,

Ep(t̂GREG,R − ty) = −Ep

((∑
s

x′k
πk
−
∑
U

x′k

)
β̂π,R

)

= −Trace

(
Covp

(∑
s

xk
πk
, β̂π,R

))

Result 7. The ξ-bias of t̂GREG,R is given by,

Biasξ(t̂GREG,R) = −κ

(∑
U

x′k −
∑
s

x′k
πk

)(
X′sV

−1
s Π−1

s Xs + κIp
)−1

β
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Proof.

t̂GREG,R − ty =
∑
s

yk
πk
−

(∑
s

x′k
πk
−
∑
U

x′k

)
β̂π,R −

∑
U

yk

t̂GREG,R − ty =

(∑
s

yk
πk
−
∑
s

x′k
πk
β̂π,R

)
+

(∑
U

x′kβ̂π,R −
∑
U

yk

)

Eξ(t̂GREG,R − ty) = Eξ

(∑
s

x′kβ + εk − x′kβ̂π,R
πk

)
+ Eξ

(∑
U

x′kβ̂π,R −
∑
U

(x′kβ + εk)

)

Eξ(t̂GREG,R − ty) = Eξ

(∑
U

x′kβ̂π,R −
∑
U

x′kβ

)
− Eξ

(∑
s

x′kβ̂π,R − x′kβ

πk

)

so the bias of t̂GREG,R takes the shape,

Biasξ(t̂GREG,R) =

(∑
U

x′k

)
Eξ(β̂π,R − β)−

(∑
s

x′k
πk

)
Eξ(β̂π,R − β)

=

(∑
U

x′k

)
Biasξ(β̂π,R)−

(∑
s

x′k
πk

)
Biasξ(β̂π,R)

=

(∑
U

x′k −
∑
s

x′k
πk

)
Biasξ(β̂π,R)

where

Biasξ(β̂π,R) = −κ
(
X′sV

−1
s Π−1

s Xs + κIp
)−1

β.

So we have finally,

Biasξ(t̂GREG,R) = −κ

(∑
U

x′k −
∑
s

x′k
πk

)(
X′sV

−1
s Π−1

s Xs + κIp
)−1

β.

Result 8. Suppose that β̂π,R−β̂κ = op(1) where β̂κ =
(
X′V−1X + κIp

)−1
X′V−1y.

The asymptotic variance of t̂GREG,R,

AVp(t̂MA,R) = Varp

(∑
s

yk − x′kβ̂π
κ

)

=
∑
s

∑
s

∆kl

(
yk − x′kβ̂κ

πk

)(
yl − x′lβ̂κ

πl

)
,
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Proof. The proof of this result is inspired by the variance of Horvitz-Thompson

estimator for the population total ty. Since, the asymptotic variance is,

Ep(t̂GREG,R − ty)2 = V arp(t̂GREG,R − ty) + (Biasp(t̂GREG,R))2

Since 1
N (t̂xπ − tx) = Op(

1√
n

) = op(1) (i.e. this converges in probability towards

zero). Similarly, β̂π,R − β = op(1). Hence, we have,

1

N
(t̂GREG,R − ty) =

1

N
(t̂yπ − ty)−

Op

(
1√
n

)︷ ︸︸ ︷
1

N
(t̂xπ − tx)

op(1)︷ ︸︸ ︷
(β̂π,R − β̂κ)−

Op

(
1√
n

)︷ ︸︸ ︷
1

N
(t̂xπ − tx) β̂κ

1

N
(t̂GREG,R − ty) =

1

N
(t̂yπ − t̂xπβ̂κ)− 1

N
(ty − txβ̂κ) + op

(
1√
n

)

1

N
(t̂GREG,R − ty) =

1

N
(t̂yπ − ty)−

1

N
(t̂xπ − tx)(β̂κ) + op

(
1√
n

)

and the asymptotic p-bias for the β̂MA,R becomes as follows,

Biasp(t̂GREG,R) ' 0

So, the asymptotic variance becomes,

Ep(t̂GREG,R − ty)2 = V arp(t̂GREG,R − ty)

AVp(t̂GREG,R) =
∑
U

∑
U

∆kl

(
yk − x′kβ̂κ

πk

)(
yl − x′lβ̂κ

πl

)
.
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2.4 Application to the Mediametrie Data

We verify in this section the suggested estimators on Médiamétrie data. The ap-

plication here is about panel Mediamat data of 6 to 13 September 2010. The

population consists of 9750 individuals aged of more than four year old watch-

ing a channel during this time period. The available information on sample and

population are at two levels:

1. The variable describing the INSEE Region and Household: the agglomera-

tion size of residence, age and socio-professional category of the Household

Head, age and activity of the housekeeper/resident, number of persons per

household, presence of children of less than 15 year old, number of televisions,

mode/source of reception (satellite, ADSL cable, TNT, Analogical hertzien),

contracted to CanalSat, contracted to Canal+, possession of mini-computer,

access to Internet.

2. The variables describing the individuals: sex, age, socio-professional status,

type of Employement.

The variables of interest are the Listening Duration of individuals by channel and

by day.

We have performed a small simulation study to verify the performance of the prin-

cipal component regression estimator and ridge estimator. We have considered the

sample of 6-13 September 2010 as our study population from which we selected

1000 random samples without replacement of size 500. The considered variable of

interest is the Listening Duration on a certain channel on Monday 13 of Septem-

ber considering as auxiliary variables the age, the socio-professional category, the

geographic region, the sex and the Listening Duration of the same channel during

the previous Monday. The X matrix is built of 19 columns and is ill-conditioned.

The GREG estimator does not always work because the X′sΠsXs matrix has the

minimum eigen-value λmin equal to zero for many samples.

We have therefore calculated ridge estimators on 1000 samples through the relative-
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Figure 2.3: Minimum Eigenvalues of X′sΠsXs, 1000 simulations

bias and the relation between the MSE of the proposed estimators and that of

the Horvitz-Thompson estimator which does not take into account the auxiliary

information. We trace in figure 2.4, the ratio between the MSE of t̂ridge and the

MSE of t̂HT for many values of κ and for 10 repetitions of the simulation study.

We can remark that for small values of k the gain is important (65%), while for

large κ, the t̂ridge estimator approaches to t̂HT .

2.5 Conclusion and extensions

In this section, we have undertaken an overview of the applications of ridge-type

estimators in survey sampling theory. The paper of Bardsley and Chambers (1984)

did not receive much attention at the beginning but during the last years, we

remark an increasing interest on this subject. This is mostly due to the fact that

nowadays, we face bulk of information. This kind of issue is now more often

encountered in practice than before.

Broadly speaking, the ridge technique means solving an optimization problem

under a quadratic constraint. We have presented in this section the application of
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Figure 2.4: Ratio of the mean square errors between the ridge and the Horvitz-

Thompson estimators

this principle in a model-based framework as well as in a design-based or calibra-

tion framework. It is established that in both approaches, weights are derived as

solution of optimization problems under the constraints given by w′sXs = 1′UXU .

These constraints prove to be too restrictive if their number is too large leading

to instability of weights. Using a quadratic constraint function leads to ridge-type

weights that are more stable than those obtained under a linear constraint. The

weighted estimators obtained in this way do not estimate exactly the finite pop-

ulation totals tXj of the calibration variables, but they are as close as possible to

tXj while satisfying fixed weight range restrictions.

To use this class of estimators, two practical issues should be treated carefully.

The first one is the computation of the penalty parameter. Several algorithms have

been suggested in the literature such as the ridge trace (Bardsley and Chambers,

1984), the Fischer scoring algorithm (Guggemos and Tillé, 2010) or the bisection

algorithm (Beaumont and Bocci, 2008) used before by Chen et al. (2002) for com-

puting range restricted weights for a given tolerance matrix. Beaumont and Bocci

(2008) show that it is better to fix the cost matrix C and to determine next the
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ridge estimator than to fix first the tolerance matrix (Chen et al., 2002). Never-

theless, it would be interesting to have a comparison between all these algorithms.

There is another important point that we would like to stress. All the papers

dealing with ridge-type estimators in survey sampling give few details about the

standardization of the auxiliary variables if any has been done. Or, as mentioned

at the end of section 2.2, it is important to know what kind of standardization is

used since different methods lead to different ridge estimators. The cost matrix

used in the objective functions from the optimization problems (P3) and (P5)

may be interpreted as a standardization matrix.

Finally, some other alternative methods for dealing with huge data sets must

be investigated. We mention here the lasso methods which consist in considering

a constraint with the absolute value instead of the euclidean norm. We are not

aware of the existence of such application in survey sampling. The regression

on principal component analysis is another interesting alternative. This method

consists in considering the principal components of X′X which reduce the number

of auxiliary variables while keeping maximum of information. For huge survey

data, in the next chapter we suggest calibration on the set of these new variables

which is in general of much smaller dimension than the initial one.
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Chapter 3

Dimension Reduction of Survey

Data using Principal

Components Analysis

The chapter 3 is divided into three main parts. In section 3.1, we give some gen-

eral overview of the PCA technique as given by Pearson (1901), Hotelling (1933)

and Dunteman (1989). The construction of principal components is described in

section 3.1.1 and some general methods (Jolliffe, 2002) for selecting the number of

principal components are also discussed. In section 3.1.2, the different uses of prin-

cipal components in regression analysis is mentioned (Dunteman, 1989) and some

underlying risks concerning the use of PCA in regression analysis are also given

(Izenman, 2008). In section 3.2, we discussed in detail the use of principal com-

ponents in survey sampling. Model-based and model-assisted estimators (section

3.2.1 and section 3.2.2) are given and the calibration using principal components

is also discussed. Different type of calibrated estimators using principal compo-

nents are proposed such as calibration on second moment (section 3.2.4), partially

calibrated principal component estimator (section 3.2.5) and the estimated prin-

cipal component estimator (section 3.2.6). Finally, a detailed simulation study is
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conducted on Mediametrie data and the results are presented in the tabular and

graphical form in the end.

3.1 General Background on PCA

Principal components analysis (PCA) is arguably one of the best multivariate

technique in which we can systematically reduce a large number of dependent

variables to a relatively more consistent or coherent smaller set of variables (Dun-

teman, 1989). Pearson (1901) introduced principal components analysis which was

further explored and extended by Hotelling (1933). The basic idea behind PCA

generally remains the reduction in the dimension of the data set. The method had

restricted use until the modern age computers came into existence which made

the computation easier to a great extent.

Certain reasons can be given to defend the use of PCA in the large data sets but

most frequent and possibly the healthiest one is that we can save bulk of the cost

and time if the given data set has large number of intercorrelated variables. PCA

also guaranty the retention of the maximum possible variation of the initial data

set into the new data set of reduced dimension. This is due to the fact that each of

the new variable called principal component is in fact the linear combination of all

original variables. Aftermath of this process results into a new set of variables, the

principal components which are uncorrelated among them and ordered such that

the first few principal components retain most of the information in terms of the

variation available in the original variables. Johnson and Wichern (2002) describe

data reduction and interpretation as the general objectives of PCA. They also

declared that the direct concern of a PCA is to explain the variance-covariance

structure via a few linear combination of the original variables. Talking in the

same way, we can say that most of the statistical goals and objectives are subject

to finding the relationship among the different individual points in a particular

data set.

The property of uncorrelated principal components is important in a way that
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it eliminates the interdependence available in the original data set. Certain type

of relationships are not detected by any ordinary analysis (means, analysis of

variance etc) and their interpretations are revealed only by the analysis of principal

components.

An example also discussed by Johnson and Wichern (2002) advocating the

use of PCA, is a study in which investigating the reaction of cancer patients to

radiotherapy was investigated: 6 reaction variables for 98 patients were measured.

All of the 6 reaction variables are difficult to interpret for the observations at the

same time, so a rather easier and simpler measure of patients’ response was of

interest. PCA seems to be the suitable technique for the construction of a simple

measure of patient response to radiotherapy, and still containing maximum of the

available sample information.

3.1.1 Construction of Principal Components

The method for constructing the principal components is very simple. Alge-

braically speaking, principal components are linear combinations of the all p vari-

ables X1, ...,Xp. If the covariance or correlation structure between the p variables

and their variances are of interest then for large p, it will often not be sufficient

to examine just the p variances or the p(p−1)
2 correlations or covariances. Another

problem can be that if p is large, then it is difficult to construct covariance struc-

ture. An alternative way to examine the information contained by the p variables

is to search for a less than p variables such that most of the information in the

variances and correlations or covariances are preserved. Despite of the fact that

PCA reduces dimension of the variables, it does not ignore the covariances or

correlation but it concentrate the variances in a rather fewer number of variables

which are the principal components. Geometrically speaking, the principal com-

ponents are representing the selection of the new coordinate system obtained via

rotation of the original system with X1, ...,Xp as the coordinate axes (Johnson

and Wichern (2002)). The new system of axes shows the directions with maximum
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variability and demonstrates a rather simple and easily interpretable description

of the covariance structure. That is to say that dimension reduction via PCA does

not endanger the potential information due to the fact that each of the principal

component is the linear combination of all p auxiliary random variables. Qian et al

(1994) stress on the importance of the measurement units or a particular coordi-

nate system and say that the only case when principal components are meaningful

is when all the variables are measured in the same units. If it is not the case, one

should perform principal component analysis on the standardized observations of

the variables. The principal components obtained from covariance matrix and

correlation matrix differ from each other as illustrated by Johnson and Wichern

(2002). The variables should be standardized if they are measured in different

units. This thing helps in the construction of the principal components as the

covariance and correlation matrices of the standardized variables are equal.

Suppose the correlation matrix Σ for the vector X = (X1, ...,Xp) with the

variances on the diagonal and covariances between two different variables on the

off-diagonal of the matrix. We consider the eigenvectors a1, . . . ,ar corresponding

to the largest eigenvalues λ1 ≥ . . . ≥ λr > 0 of the matrix 1
NX′X. Now the first

principal component can be defined as,

z1 = Xa1 = a11X1 + a21X2 + ...+ ap1Xp

where a1 is the eigenvector corresponding to the largest eigenvalue λ1 of Σ. Sim-

ilarly the second principal component is given as,

z2 = Xa2

where A2 is the eigenvector corresponding to the second largest eigenvalue λ2 of

Σ. More generally the ith principal component can be written as,

zi = Xai, i = 1, . . . , p

The eigenvalues are in fact the variances of the principal components. That is,

var(zi) = λi. Since var(zi) = a′iΣai and cov(zi, zj) = a′iΣaj , i 6= j where
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i, j = 1, ..., p, so the objective is to find those uncorrelated linear combination

z1, ..., zp who maximize the relevant variances. Thus the first principal component

PC1 maximizes var(z1) = a′1Σa1 hence PC1 has maximum variability. This

fact of maximizing the variation may easily be exploited by just multiplying any

constant to the var(z1) and therefore increasing the variance. So to eliminate this

risk, we, for the sake of convenience, restrict the attention to coefficient vectors vi

of unit length. That is, we impose an additional condition that coefficient vectors

are of unit length. Our objective function for the construction of the principal

components therefore becomes,

PC1 = z1 = Linear combination Xa1 that maximizes var(z1)

such that a′1a1 = 1

PC2 = z2 = Linear combination Xa2 that maximizes var(z2)

such that a′2a2 = 1 and cov(z1, z2) = 0

.

.

.

PCi = zi = Linear combination Xai that maximizes var(zi)

such that a′iai = 1 and cov(zi, zj) = 0, for j < i

Johnson and Wichern (2002) also consider a special case of the covariance matrix

such that it is equal to,

Σ =


σ1 . . . 0

. . . σi . . .

0 . . . σp

 ,

As apparent from its structure, the off-diagonal elements are zero, so the vari-

ables are already uncorrelated from each other. Thus, it would be a useless exercise

to construct principal components which are the uncorrelated linear combinations

of the auxiliary variables. Even the standardized variables will not change the

situation as we will have ρ = 1 for the variables meaning that eigenvalues are
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1 and thus the principal components will be equal to the original standardized

variables and we gain nothing. So, in order to construct the principal components

for a covariance matrix of standardized variables, they must be correlated among

themselves.

Another geometrical implication of first PC given by Dunteman (1989) is that

it is the line of closest fit to the N observations in the p dimensional variable

space. Saying otherwise, sum of the squared distances of the N observations from

the line in the variable space representing the first PC is minimized by this fit.

A plane of closest fit to the cluster of points in the p dimensional variable space

is defined by the first two principal components. The second PC, equivalently is

a line of closest fit to the residuals from the first PC. A three dimensional plane,

called a hyperplane, of closest fit is defined by the first three principal components

and so on. The total number of principal components for p random variable can

be less than p if there exist any dependencies between the variables and maximum

number of principal components remains equal to p.

There are many methods regarding the decision of what number of the principal

components should be selected. This number is usually denoted by r and is much

smaller than the total number of variables p. A most frequent method used for

this purpose is to choose those first r variables which comprise the maximum

percentage of variation. Normally, this percentage ranges from 80% or 90%. That

is, we select those first r which cover at least 80% or 90% of the total variation.

This threshold is set up depending upon the sensibility of the problem encountered.

If we have a very large p and many of the first principal components represent

very few variation then setting a lower percentage for the selection of the r will

be appropriate say < 80%. On the other hand if first few (on or two) principal

components assume bulk of the variation say more than 90%, then a suitable

percentage for chosing r should be well more than 90% so that we can get maximum

variation intact (for more discussion Jolliffe (2002)). We shall use this typical

method for selection of principal components. This method serves equally well
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for both situations whether the principal components are constructed using a

covariance or correlation matrix.

3.1.2 Principal Component Regression

We can see the traces of using principal components in regression analysis back into

Kendall (1957) and Hotelling (1957). The idea was to orthogonalize the regression

problem by replacing the initial regressors variables by their principal components.

By doing this, computation was made more stable and rather easier.

Dunteman (1989) suggested that there may exist several ways of using princi-

pal components in regression analysis. The variables with high correlation among

them can be replaced by their independent uncorrelated principal components in

the regression analysis. Detection of multicollinearity among the auxiliary vari-

ables and selection of a subset of auxiliary variables for the regression analysis can

be the other potential uses of principal component analysis. The idea of using prin-

cipal component regression emerges from the classical problem of multicollinearity

with the usual least squares estimators. Since the principal components are un-

correlated with no multicollinearities, their use in the regression in place of the

original auxiliary variables will make the regression calculation simple. The use

of all principal components in the regression will result in the model equivalent

to the least squares, so the variance inflation due to the multicollinearities is not

removed. Jolliffe (1982) points out about a misconception about the rule of de-

ciding the particular principal components into the analysis. The method initially

developed by judging the principal components in the similar fashion as original

predictor variables to decide whether they should be included into the regression

analysis or not. However, the attention certainly shifted to the rule of inclusion

of principal components based on the large variance and rejecting the principal

components with small variances. The regression estimators using principal com-

ponents are biased, but they can prove useful in large reduction of variances due

to the multicollinearity in the regression coefficient estimators.
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An example of using PCR is in the field of chemometrics where the interest

may be the calibration of the fat concentration when the number of variables p

may be much greater than the number of individuals N . Reduction of regression

dimension can be done using PCR by deleting those variables that contribute to

the collinearity (Martens and Naes, 1989).

The common practice pre-assumes that if the selection of the principal com-

ponents is based on the variance (i.e. those principal components with smaller

variances are deleted) then we loose marginal estimation power in regression anal-

ysis. This however, is not necessarily true every time as there may be the cases

when the inclusion of the principal components should also depend on the rela-

tionship between the dependent variable. Also examination is important as any

component with smaller variance may belong to the auxiliary variable (Jeffers

(1967) and Hawkins (1973)). Certain examples advocating the inclusion of low-

variance principal components can be found in the literature (Smith and Campbell

(1980), Kung and Sharif (1980)). The deletion of the small variance PC’s should

be avoided until the negligible correlation of these PC’s with the study variable

Y are confirmed (Jolliffe, 2002). Izenman (2008) states that there are certain

risks of PCR to collapse heavily. The first r PC’s z1, . . . , zr used in the regression

procedure have no apparent reason to be strongly correlated with the variable of

interest Y. On the contrary, the last few PC’s (Jolliffe, 1982) or some times only

the last PC (Hadi and Ling, 1998) may be strongly correlated with Y but are

normally dropped from the analysis. So, the use of PCR should be with some

caution and the contribution of each PC in the regression sum of squares should

also be considered in addition to the consideration of the variance decomposition.

In ridge regression the trade-off between the bias and variance is handled by

the optimal choice of the ridge parameter whereas, the compromise between bias

and variance in principal component regression is achieved by selection of the right

number of principal components to be used in the regression procedure (Jolliffe,
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2002).

ξ : y = Xβ + ε = Zη̃ + ε (3.1)

where Z = z1, . . . , zp = X ·A with A = a1, . . . ,ap. The PCR consists in reducing

the space spanned by the columns of X and consider the regression model ξ′ over

the reduced space. Let the first r principal components denoted by

Zr = (z1, . . . , zr). (3.2)

The new model consists in regressing y on Zr

ξ′ : y = Zrη + εr, (3.3)

where εr is the restriction of ε The estimation of η is done by least squares,

η̂ = (Z′rZr)
−1Z′ry (3.4)

and the estimator of β is given by β̂PC = (a1, . . . ,ar)η̂. Let Ar = a1, . . . ,ar, then

β̂PC = Arη̂ and (3.5)

η̂ = A′rβ̂PC . (3.6)

Gunst and Mason (1977) expressed the PC estimator β̂PC in function of the

eigenvalues λi, i = 1, . . . , r as,

β̂PC =
1

N

r∑
i=1

a′iX
′yai
λi

or equivalently,

β̂PC = β̂OLS −
1

N

p∑
i=r+1

a′iX
′yai
λi

. (3.7)

The expected value of β̂PC under the model ξ is given by,

Eξ(β̂PC) = Eξ(β̂OLS)− 1

N

p∑
i=r+1

a′iX
′Eξ(y)ai
λi

= β − 1

N

p∑
i=r+1

a′iX
′Xβai
λi

= β − 1

N

p∑
i=r+1

a′iβai.
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The bias is given by,

Eξ(β̂PC)− β = − 1

N

p∑
i=r+1

a′iβai.

The bias of β̂PC involves unknown parameter β. Substantial reduction in vari-

ance and mean square error is gained in presence of serious multicollinearity and

the introduction of the small bias (Gunst and Mason (1977) and Jolliffe (2002)).

Notably, β̂PC is the realization of β̂OLS (equation 2.4) over r terms. The ξ-mean

squared error (MSE) of β̂PC is given by,

MSE(β̂PC) = Eξ

[
(β̂PC − β)′(β̂PC − β)

]
and is the trace of the variance-covariance matrix

MMSE(β̂PC) = Eξ

[
(β̂PC − β)(β̂PC − β)′

]
.

MSE(β̂PC) becomes,

MSE(β̂PC) = σ2
r∑
i=1

1

λi
+

p∑
i=r+1

(
a′iβ
)2

= Trace
(
V arξ(β̂PC)

)
+ (Biasξ(β̂PC))′(Biasξ(β̂PC))

= C(r) +D(r) (3.8)

Jolliffe (2002) provides criteria for choosing the number of principal components.

Result 9. (Gunst and Mason, 1977)

The MMSE of β̂PC under model ξ is smaller than that of β̂OLS, that is,

MMSE(β̂OLS)−MMSE(β̂PC)

is a positive-definite matrix if

p∑
i=r+1

(
λi
σ2

(
a′iβ
)2) ≤ 1.
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3.2 Principal Components Regression in Survey Sam-

pling

We suppose without loss of generality that the auxiliary variables are standardized,

namely 1′UXi = 0 and X′iXi = 1 for all i = 1, . . . , p and 1′U is the N -dimensional

vector of ones. We suggest a new class of GREG type estimators using principal

component regression (PCR).

3.2.1 Model-assisted approach

Let zi = Xai = (zki)k∈U for i = 1, . . . , p with z̃′k = (zk1, . . . , zkr) be the vector

containing the values of the first r principal components for the i-th individual

and Zr = (z1, . . . , zr) = (z̃′k)
N
k=1 given by (3.2). The estimator η̂ given by (3.4)

can not be calculated since it contains the unknown population vector y. The

design-based estimator of η̂ is given by

η̂π = (Z′r,sΠ
−1
s Zr,s)

−1Z′r,sΠ
−1
s ys (3.9)

where Zr,s is the restriction of Zr on the sample s, namely Zr,s = (z̃′k)k∈s and

Πs = diag(πk)k∈s .We suggest to estimate the total ty by

t̂PC = t̂y,π −
(
t̂z,π − tz

)′
η̂π (3.10)

where t̂z,π =
∑
s

z̃k
πk

is the Horvitz-Thompson estimator of tz =
∑

U z̃k. For stan-

dardized variables Xi, i = 1, . . . , p we have that the principal components are of

zero mean and this fact implies that tz = 0. As a consequence, the estimator given

by (3.10) becomes

t̂PC = t̂y,π − t̂′z,πη̂π =
∑
s

yk − z̃′kη̂π
πk

(3.11)

which is the Horvitz-Thompson estimator for the sample fit residuals yk − z̃′kη̂π.

We can remark that t̂PC is a GREG type estimator for the vector of the first

r principal components Zr of X. By its construction, we achieve a reduction in

dimension of X by retaining maximum information. Nevertheless, this method
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demands knowing X over the whole population in order to derive the eigenvalues

and eigenvectors.

We have that Zr = XAr which implies that the restriction on the sample s is

Zr,s = XsAr where Ar = (a1, . . . ,ar). The design-based estimator of β̂PC is

β̂PC,π = Arη̂π,

implying that,

η̂π = Arβ̂PC,π.

So, the estimator t̂PC given by (3.10) can be written in function of X as,

t̂PC = t̂y,π −
(
t̂x,π − tx

)′
β̂PC,π. (3.12)

3.2.2 Properties of t̂PC under the model and the sampling design

We study in this section, statistical properties of t̂PC under the model ξ and the

sampling design p(.).

Result 10. 1. The bias under the model of the principal component estimator

t̂PC is given by,

Eξ(t̂PC − ty) = (A′r −A′)β

where A = (a1, . . . ,ap).

2. The principal component estimator t̂PC of ty is unbiased under (ξ, p), namely

EpEξ(t̂PC − ty) = 0
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Proof. 1. Since, t̂PC = t̂y,π − t̂′z,πη̂π, we get,

t̂PC − ty = t̂y,π − t̂′z,πη̂π − ty

=
∑
s

yk
πk
−
∑
s

z̃′kη̂π
πk
−
∑
U

yk

=
∑
s

z̃′kη + εk
πk

−
∑
s

z̃′kη̂π
πk
−
∑
U

(z̃′kη + εk)

= −
∑
s

z̃′k
πk

(η̂π − η)−
∑
U

z̃′kη︸ ︷︷ ︸
0

−
∑
U

εk +
∑
s

εk
πk

t̂PC − ty = −
∑
s

z̃′k
πk

(η̂π − η)−
∑
U

εk +
∑
s

εk
πk
, (3.13)

and applying ξ-expectation, we get,

Eξ(t̂PC − ty) = −

(∑
s

z̃′k
πk

)
Eξ(η̂π − η). (3.14)

Let us compute now the bias of η̂π under ξ. We know that η̃ = A′β and

η = A′rβ. Consider,

Eξ(η̂π) = (Z′r,sΠ
−1
s Zr,s)

−1Z′r,sΠ
−1
s Eξ(ys)

= (Z′r,sΠ
−1
s Zr,s)

−1Z′r,sΠ
−1
s Xsβ

= (Z′r,sΠ
−1
s Zr,s)

−1Z′r,sΠ
−1
s Zr,s︸ ︷︷ ︸

I

A′rβ

= A′rβ

Since Xr = Z′r,sA
′
r. So finally,

Eξ(η̂π)− η = A′rβ − η

= A′rβ −A′β

= (A′r −A′)β
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so the bias of η̂π under the model ξ does not depend on the sample and it is

the same ξ−bias as in a non-sampling framework (Gunst and Mason, 1977).

Hence from (3.14) the bias of t̂PC becomes,

Eξ(t̂PC − ty) = −

(∑
s

z̃′k
πk

)
(A′r −A′)β. (3.15)

2. Applying the design expectation on 3.15, we get,

EpEξ(t̂PC − ty) = −Ep

(∑
s

z̃′k
πk

)
(A′r −A′)β.

We know that the Horvitz Thompson estimator is design unbiased, i.e.,

Ep

(∑
s
z̃′k
πk

)
=
∑

U z̃
′
k = 0. So we get,

EpEξ(t̂PC − ty) = 0 = Biasξ,p(tPC).

3.2.3 Design-based properties

The estimator t̂PC is no longer unbiased with respect to p(.), we prove that it is

asymptotically design-unbiased. In order to prove it, we consider the asymptotic

framework as introduced by Isaki and Fuller (1982) and the following assumptions.

Hypothesis

(A1). πk > λ > 0 ∀k ∈ U

(A2). lim
N→∞nmaxk 6=l |πkl − πkπl| < c <∞

(A3). limN→∞
1
N

∑
U y

2
k <∞ with ξ-probability 1.

(A4). lim
N→∞

n
N = π ∈ (0, 1)

(A5). ||xk|| < c <∞ for all k ∈ U.

Lemma 1. Under assumptions (A1)-(A4), we have that

1

N

(
t̂y,π − ty

)
= Op

(
1√
n

)
.
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Proof. We calculate the variance under the sampling design of 1
N

(
t̂y,π − ty

)
. If

E

[
1

N
(t̂y,π − ty)

]2

= O

(
1

n

)
implies that 1

N (t̂y,π − ty) = Op

(
1√
n

)
. We have,

E

[
1

N
(t̂y,π − ty)

]2

= V ar

(
1

N
t̂y,π

)
=

1

N2

∑
U

∑
U

∆kl
yk
πk

yl
πl

(3.16)

where ∆kl = πkl − πkπl and k, l ∈ U . We partition 3.16 into two cases, k = l and

k 6= l respectively.

E

[
1

N
(t̂y,π − ty)

]2

=
1

N2

∑
U

πk(1− πk)
y2
k

π2
k︸ ︷︷ ︸

(i)

+
1

N2

∑
k∈U

∑
l∈U l 6=k

(πkl − πkπl)
yk
πk

yl
πl︸ ︷︷ ︸

(ii)

.

(3.17)

Consider 3.17(i) which is bounded by

1− λ
λ

1

N2

∑
U

y2
k =

1− λ
λ

n

N

1

n

1

N

∑
U

y2
k = O

(
1

n

)
,

by hypothesis (A3) and (A4). Now, consider 3.17(ii). This term is bounded by

max
k 6=l |∆kl|
N2λ2

∑
k∈U

∑
l∈U l 6=k

ykyl ≤
n

n

max
k 6=l |∆kl|
λ2

1

N2

∑
k∈U

∑
l∈U l6=k

ykyl.

We have

1

N2

∑
k∈U

∑
l∈U
l 6=k

ykyl ≤
1

N2

(∑
k∈U

yk

)2

≤ 1

N

∑
k∈U

yk
2.

(3.18)

We have in fact added the terms for k = l, so the left hand side of expression (3.18)

is inferior than the right hand side. The last inequality is obtained by applying

the Cauchy Schwarz inequality. Thus, (ii) is bounded by,

n

n

max
k 6=l |∆kl|
λ2

1

N

∑
k∈U

yk
2 = O

(
1

n

)
. (3.19)
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Proposition 3. Under hypothesis (A1)-(A5), we have that: η̂π − η̂ = Op

(
1√
n

)
.

As consequence, 1
N

(
t̂PC − ty

)
= 1

N

(
t̂DIFF − ty

)
+op

(
1√
n

)
, where t̂DIFF =

∑
s
yk
πk
−(∑

s
z̃′k
πk
−
∑

U z̃′k

)
η̂ where η̂ = (Z′rZr)

−1 Z′ry. The asymptotic variance of t̂PC is

the variance of t̂DIFF ,

AV (t̂PC) =
∑
U

∑
U

(πkl − πkπl)
yk − z̃′kη̂

πk

yl − z̃′lη̂
πl

. (3.20)

The asymptotic variance AV (t̂PC) is not known and we suggest estimating it by:

V̂ (t̂PC) =
∑
s

∑
s

(πkl − πkπl)
πkl

yk − z̃′kη̂π
πk

yl − z̃′lη̂π
πl

. (3.21)

Proof. Now for the estimator of the principal component regression coefficient

η̂π =

(∑
s

z̃kz̃
′
k

πk

)−1(∑
s

z̃kyk
πk

)
,

where
∑

s
z̃′kyk

πk
is the Horvitz-Thompson estimator of

∑
U z̃kyk. We can consider

η̂π again as

η̂π = (Z′r,sΠ
−1
s Zr,s)

−1︸ ︷︷ ︸
Q̂s

Z′r,sΠ
−1
s ys︸ ︷︷ ︸

q̂s

where Q =
∑

U z̃kz̃
′
k = Z′rZr with Q̂s = Z′r,sΠ

−1
s Zr,s and q = Z′ryU with q̂s =

Z′r,sΠ
−1
s ys.

Here, if we show that,

a). 1
N ||Q̂s −Q||2 = Op

(
1√
n

)
where ||.||2 is the trace norm defined for any matrix

S by ||S||22 = trace(S′S).

b). 1
N ||q̂s − q|| = Op

(
1√
n

)
where ||.|| is the Euclidean norm,

then we can show that

||η̂π − η̂||2 = Op

(
1

n

)
, (3.22)

since,

η̂π − η̂ =

(
1

N
Q̂s

)−1 1

N
q̂s −

(
1

N
Q

)−1 1

N
q

= N
(
Q̂−1
s −Q−1

)
︸ ︷︷ ︸ 1

N
(q̂s) +NQ−1 1

N
(q̂s − q) .
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Using Q̂−1
s −Q−1 = Q̂−1

s

(
Q− Q̂s

)
Q−1, we get,

N ||Q̂−1
s −Q−1||2 = N ||Q̂−1

s

(
Q− Q̂s

)
Q−1||2

≤ N ||Q̂−1
s ||2 · ||

(
Q− Q̂s

) 1

N
||2︸ ︷︷ ︸

Op

·N ||Q−1||2
(

1√
n

)
≤ N ||Q̂−1

s ||2 ·Op
(

1√
n

)
·N ||Q−1||2

= Op

(
1√
n

)
. (3.23)

Since the eigenvalues of 1
NQ are far from zero so N ||Q−1||2 is bounded. The

same is true for 1
N Q̂s, so || 1

N Q̂s|| = Op(1).

Let prove now that 1
N ||Q̂s − Q||2 = Op

(
1√
n

)
and 1

N ||q̂s − q|| = Op

(
1√
n

)
. We

have z̃k = (zki)
r
i=1 and

1

N2
||q̂s − q||2 =

1

N2

∑
k∈U

∑
l∈U

(
r∑
i=1

(zkiyk) (zliyl)

)
αkαl

where αk = Ik
πk
− 1, k ∈ U. Using the Lemma (3.6.2) of Goga (2003, page 182), the

results follows if we prove that,

1

N

∑
k∈U

(
r∑
i=1

(zkiyk)
2

)
<∞︸ ︷︷ ︸

(i)

and
1

N2

∑∑
k 6=l

∣∣∣∣∣
(

r∑
i=1

(zkiyk) (zliyl)

)∣∣∣∣∣ <∞︸ ︷︷ ︸
(ii)

.

Now, the above relation (i) can be written as,

1

N

∑
k∈U

(
r∑
i=1

(zkiyk)
2

)
=

1

N

∑
k∈U

(
r∑
i=1

z2
kiy

2
k

)

=
1

N

∑
k∈U

(
r∑
i=1

z2
ki

)
︸ ︷︷ ︸
||z̃k||2

y2
k

=
1

N

∑
k∈U
||z̃k||2 · y2

k , and using (A5),

≤ c

N

∑
k∈U

y2
k <∞
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Relation (ii) can be written as,

1

N2

∑∑
k 6=l

∣∣∣∣∣
(

r∑
i=1

(zkiyk) (zliyl)

)∣∣∣∣∣ ≤ 1

N2

∑
k∈U

∑
l∈U

r∑
i=1

|zkiykzliyl|

=
1

N2

r∑
i=1

(∑
k∈U
|zkiyk|

)2

≤ 1

N

∑
k∈U

(
r∑
i=1

z2
kiy

2
k

)
<∞.

Now we shall prove (a). We have

Q =
∑
U

z̃kz̃
′
k

with

Q̂s =
∑
s

z̃kz̃
′
k

πk
.

So,

Q̂s −Q =
∑
U

z̃kz̃
′
kαk.

Also,

||Q̂s −Q||22 =
∑
k∈U

∑
l∈U

tr(z̃kz̃
′
kz̃lz̃

′
l)αkαl

and using the same lemma from Goga (2003), the results follows since

1

N

∑
U

tr
(
z̃kz̃
′
k · z̃kz̃′k

)
≤ 1

N

∑
U

||z̃kz̃′k||22 ≤
1

N

∑
U

||z̃k||4 <∞.

3.2.4 Calibration with Principal Components

The calibration technique (Deville and Särndal (1992)) described briefly in chapter

1, deals with deriving a weighted estimator t̂wy of population total using the

sample calibrated weights wk. For the chi-square distance
∑

s (wk − dk)2/dkqk,

the weights are the solution of the following optimization problem,

wc = argminws
(ws − ds)

′Π̃s(ws − ds)

subject to w′sXs = 1′UX,
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where Π̃s = diag(q−1
k d−1

k )k∈s and qk are positive constants most often equal to 1.

The resulting calibration weights can be written as,

wc = ds − Π̃
−1

s Xs(X
′
sΠ̃
−1

s Xs)
−1(d′sXs − 1′UX)′.

The estimator t̂PC given by (3.10) may be obtained using the calibration approach

(Deville and Särndal (1992)). The vector of auxiliary information is now composed

of the first r principal components such that Zr = (z1, . . . , zr). More exactly,

we construct the estimator t̂yw =
∑

sw
c
kyk calibrated on the finite totals of the

principal components zi, i = 1 . . . , r instead of Xi, i = 1, . . . , p variables. So, the

weights wc = (wck)k∈s satisfy

wc = argminw

∑
s

(wk − dk)2

dkqk

subject to w′cZr,s = 1′UZr. (3.24)

The resulting PC calibrated weights are given as,

wc = ds − Π̃
−1

s Zr,s(Z
′
r,sΠ̃

−1

s Zr,s)
−1(d′sZr,s − 1′UZ)′. (3.25)

The calibration estimator for the total ty is in fact a GREG type estimator given

by,

t̂cPC = wc′ys = d′sys −
(
d′sZr,s − 1′UZr

) (
Z′r,sΠ̃

−1
s Zr,s

)−1
Z′r,sΠ̃

−1
s ys

= t̂y,π −

(∑
s

z′k
πk
−
∑
U

z′k

)
η̂π

The calibration weights obtained in this way will not allow to find exact totals of

the initial auxiliary variables Xi for i = 1, . . . , p. This property is verified in the

projection space on Zr.

3.2.5 Calibration on second moment of the principal component

variables

An interesting extension of the classical calibration approach can be obtained

noting that the variance of the principal components variable zi is the eigen value
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λi,

1

N
z′izi =

1

N

∑
k∈U

z2
ki = λi, for all i = 1, . . . , p

This means that we can add supplementary calibration equations on the sec-

ond moment of the principal components. Consider Z2
r = (z2

1, . . . , z
2
r) with z2

i =

(z2
ki)k∈U . We want to find the calibration weights wc that satisfy the following

optimization problem

wc = argminw

∑
s

(wk − dk)2

dkqk

subject to w′cZr,s = 1′UZr, w′cZ2
r,s = 1′UZ2

r

where Z2
r,s is the sample restriction of Z2

r . In order to compute the calibration

weights, the objective function is written in a matrix form as,

wc = argminw(w − ds)
′Π̃s(w − ds)

where Π̃s = diag(qk)
−1
k∈sΠs. We can form a matrix Tr of dimension N × 2r such

that, Tr = (Zr,Z
2
r) and its sample restriction as, Tr,s = (Zr,s,Z

2
r,s). The set of

calibration constraints can be re-structured as,

w′Tr,s = 1′UTr.

We construct a Lagrangian function L(w, λ),

L(w, λ) = (w − ds)
′Π̃s(w − ds)− 2

(
w′Tr,s − 1′UTr

)
λ

We take the first derivative of Lagrangian function with respect to w and λ

∂L
∂w

= 2Π̃s(w − ds)− 2Tr,sλ

and put it equal to 0, we get,

Π̃s(w − ds)−Tr,sλ = 0

w − ds = Π̃−1
s Tr,sλ.
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Finally we get the following shape of the weights where λ is unknown

w = ds + Π̃−1
s Tr,sλ.

We consider the calibration equations again and put the above acquired weights

in it,

w′Tr,s = 1′UTr

d′sTr,s + λ′T′r,sΠ̃
−1
s Tr,s = 1′UTr

d′sTr,s − 1′UTr + λ′T′r,sΠ̃
−1
s Tr,s = 0.

Hence we have λ as follows,

λ = −
(
T′r,sΠ̃

−1
s Tr,s

)−1 (
d′sTr,s − 1′UTr

)′
.

The solution is given by

wc = ds − Π̃−1
s Tr,s

(
T′r,sΠ̃

−1
s Tr,s

)−1 (
d′sTr,s − 1′UTr

)′
(3.26)

The calibration estimator for the total ty is in fact a generalized regression esti-

mator for the N × (2r)-dimensional auxiliary information Tr = (Zr,Z
2
r) as follows

t̂cMPC = wc′ys = d′sys −
(
d′sTr,s − 1′UTr

) (
T′r,sΠ̃

−1
s Tr,s

)−1
T′r,sΠ̃

−1
s ys

= t̂y,π −

(∑
s

t′k
πk
−
∑
U

t′k

)
B̂z,z2 (3.27)

where tk = (z̃′k, z̃
2
k
′
) is the k-th row of Tr and B̂z,z2 =

(
T′r,sΠ̃

−1
s Tr,s

)−1
T′r,sΠ̃

−1
s ys.

The idea of finding estimates using the calibration on second order (or higher)

moments of the auxiliary variables stems from the works done by Ren (2000)

and Särndal (2007). Both articles show that an estimator constructed using the

calibration on the second order (or higher) moments of the auxiliary variables is

expected to perform better than the estimates constructed using only their first

order moments. Nevertheless, calibration on the second moment adds r supple-

mentary equations so a small number r should be used.
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3.2.6 Partial Principal Component Calibration

Often there is the case when we want to find exact sample estimates of total for

some auxiliary variables. This might be due to the importance associated with

those auxiliary variables. Age, sex, socio-professional categories etc may be a few of

those auxiliary variables. Following the idea of Bardsley and Chambers (1984) for

partial ridge regression, we can modify the simple calibration into partial principal

component calibration. Breidt and Chauvet (2011) have used the same technique

but at the sampling stage. In their study, the sample was selected by the cube

method.

For this purpose, we partition our data matrix into two parts such that it can be

written as,

X = (X̃1, X̃2)

where X̃1 = [X1, . . . ,Xp1 ] includes those p1(<< p) variables which need to be

exactly calibrated. To be more precise, the variables in X̃1 contain the maximum

importance in the estimation procedure and are very few in numbers. On the

other hand X̃2 = [Xp1+1, . . . ,Xp] contains p−p1 variables such that p−p1 >> p1.

We shall now calculate the p − p1 principal components Z̃2 corresponding to

the variables in X̃2 and orthogonal on X̃1. First r1 principal components are

chosen from Z̃2 = [zp1+1, . . . , zp] such that r1 << (p− p1). We shall denote these

r1 principal components by Z̃2r1 = [zp1+1, . . . , zr1 ] and their selection can be made

using any of the famous methods for selection of principal components (see Mason

and Gunst (1985) and Jolliffe (2002)). Our auxiliary data matrix denoted by M

becomes,

M = (X̃1, Z̃2r1)

Thus our optimization problem becomes,

wc
ppc = argminw

∑
s

(wk − dk)2

dkqk

subject to,

w′cppcMs = 1UM
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where Ms = (X̃1s, Z̃2sr1) is the sample restriction of M. The resulting weights

will get the following shape obtained in a similar manner to the previous,

wc
ppc = ds − Π̃−1

s Ms

(
M′

sΠ̃
−1
s Ms

)−1 (
d′sMs − 1′UM

)′
(3.28)

These weights are in fact using maximum variation available in Z̃2sr1 and on

the same time minimizing the dimension of auxiliary data.(A certain aspect of the

presence of the multicollinearity among the variables in Z̃2sr1 has to be verified

and its absence may ensure the improvement in the estimation procedure with

reduction in the dimension). The estimator of the total for the above weights

w′cppc becomes,

t̂cppc = w′cppcys

= d′sys −
(
d′sMs − 1′UM

) (
M′

sΠ̃
−1
s Ms

)−1
M′

sΠ̃
−1
s ys

= t̂y,π −

(∑
s

m′k
πk
−
∑
U

m′k

)
B̂m (3.29)

where B̂m =
(
M′

sΠ̃
−1
s Ms

)−1
M′

sΠ̃
−1
s ys.

3.2.7 Estimated Principal Component Calibration

We discussed deriving the principal components when the auxiliary data set X1, . . . ,Xp

is available for all units k ∈ U . This however may not be possible practically. In

this section we consider the case when we know xk only for the sample units

k ∈ s ⊂ U but their population means and standard deviations σ1, . . . , σp are

known. As previously, we suppose that X1, . . . ,Xp are standardized. We shall

estimate the covariance matrix

Σ =
1

N
(X′X) =

1

N

∑
k∈U

xkx
′
k =

1

N
(X− X̄︸︷︷︸

0

)′(X− X̄︸︷︷︸
0

)with X = (X1, . . . ,Xp)

by

Σ̂ =
1

N̂

(
Xs − ˆ̄X

)′
Π−1
s

(
Xs − ˆ̄X

)
,

=
1

N̂

∑
s

1

πk
(xk − ˆ̄X)(xk − ˆ̄X)′
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where ˆ̄X = 1
N̂

∑
s

xk
πk

and N̂ =
∑

s
1
πk

. For example, in simple random sampling

without replacement we have πk = n
N .

This estimated covariance matrix Σ̂ has the eigenvalue-eigenvector pair as (λ̂1, â1), . . . , (λ̂p, âp)

such that λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂p and λ̂i, related to âi are design-based estimators of

λi, related to ai. We have that

Σ̂âi = λ̂iâi (3.30)

Σ̂ =

p∑
i=1

λ̂iâiâ
′
i, (3.31)

and Cardot et al (2010) showed that under assumptions (A1), (A2), and (A4),

(A5)

|λ̂i − λi| = Op

(
1√
n

)
and

||âi − ai|| = Op

(
1√
n

)
.

We suggest to estimate the principal component zi by,

ẑi = Xâi, i = 1, . . . , p.

Hence

Ẑ = (ẑ1, . . . , ẑp) = XÂ,

where Â = (â1, . . . , âp). Remark that the ẑi is known for i ∈ s but the total of ẑi

over population U may be computed as

tẑi =
(
t′x
)
âi = 0

tr(Σ̂) = p = λ̂1 + λ̂2 + . . .+ λ̂p.

The first r2 PC’s, ẑ1, ẑ2, . . . , ẑr2 are selected on the basis of the first r2 largest eigen-

values λ̂1, . . . , λ̂r2 . We use these estimated principal components ẑ1, ẑ2, . . . , ẑr2 to

construct the calibration estimator of the population total.

Ẑr = (ẑ1, . . . , ẑr2) =
(

ˆ̃z′k

)
{k∈U}

= XÂr,
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with Âr = (â1, . . . , âr). Our optimization problem in this case becomes,

wc
pc,est = argminw

∑
s

(wk − dk)2

dkqk

subject to,

w′cpc,estẐr,s = 1U Ẑr

where Ẑr,s = XsÂr is the sample restriction of Ẑ. The resulting weights are given

by,

wc
pc,est = ds − Π̃

−1

s Ẑr,s(Ẑ
′
r,sΠ̃

−1

s Ẑr,s)
−1(d′sẐr,s − 1′U Ẑ)′. (3.32)

The total estimator is given as,

t̂pc,est = w′cpc,estys = d′sys −
(
d′sẐr,s − 1′U Ẑr

)(
Ẑ′r,sΠ̃

−1
s Ẑrs

)−1
Ẑ′r,sΠ̃

−1
s ys

= t̂y,π −

(∑
s

ˆ̃z′k
πk
−
∑
U

ˆ̃z′k

)
η̂π,est (3.33)

where

η̂π,est =
(
Ẑ′r,sΠ̃

−1
s Ẑr,s

)−1
Ẑ′r,sΠ̃

−1
s ys. (3.34)

The estimator t̂pc,est can be written in function of X as,

t̂pc,est = t̂y,π −
(
t̂x,π − tx

)′
β̂PC,π,est, (3.35)

where β̂PC,π,est = Ârη̂π,est.

Result 11. Under the assumptions (A1)-(A5), we have η̂π,est − η̂ = op(1). As a

consequence, β̂PC,π,est − β̂PC,π = op(1).

Proof. We consider for simplicity that qk = 1 for all k ∈ U. We show first that

N−1(Ẑ′r,sΠ
−1
s Ẑr,s − Zr

′Zr) = Op(n
−1/2).

Let A = (a1, . . . ,ap) be the N × p matrix of eigenvectors estimated by Â =

(â1, . . . , âp). Let also Ar = (a1, . . . ,ar) be the N × r matrix of the first r eigen-

vectors estimated by the n × r matrix Âr = (â1, . . . , âp). We have from relation

(3.2) that Zr = (z1, . . . , zr) = XAr yielding

1

N
Z′rZr = A′r

(
1

N
X′X

)
Ar

= diag(λj)
r
j=1 := Λr.
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From (3.31) and under the given assumptions, we have that

1

N̂
X′sΠ

−1
s Xs = Σ̂ + X̂X̂

′
= ÂΛ̂Â′ + op(1),

which yields

1

N
Ẑ′r,sΠ

−1
s Ẑr,s = Â′r

(
1

N
X′sΠ

−1
s Xs

)
Âr

= Λ̂r + op(1).

Under assumptions (A1),(A2) and (A4)-(A5), we have that λ̂j − λj = Op(n
−1/2)

(Cardot et al., 2010) and by consequence, ||Λ̂r − Λr||2 = Op(n
−1/2) where the

trace norm || · ||2 defined for any matrix S by ||S||22 = trace(S′S). So, we have

proved that

N−1(Ẑ′r,sΠ
−1
s Ẑr,s − Z′rZr) = Λ̂r −Λr = Op(n

−1/2).

Since λj and λ̂j are strictly positive for all j = 1, . . . , r, we obtain that

N
(

(Ẑ′r,sΠ
−1
s Ẑr,s)

−1 − (Z′rZr)
−1
)

= Op(n
−1/2).

Hence,

η̂π,est − η̂ = (Ẑ′r,sΠ
−1
s Ẑr,s)

−1Ẑ′r,sΠ̃
−1
s ys − (Z′rZr)

−1Z′ry

=
(
N(Z′rZr)

−1 +Op(n
−1/2)

)(
N−1Z′ry +Op(n

−1/2)
)
− (Z′rZr)

−1Z′ry

= Op(n
−1/2)

since N(Z′rZr)
−1 = O(1) and N−1Z′ry = O(1) by assumption (A5).

Result 12. Under the assumptions (A1)-(A5), we have N−1(t̂pc,est−ty) = N−1(t̂DIFF−

ty) + op(n
−1/2) where t̂DIFF = t̂yπ −

(
t̂zπ − tz

)′
η̂.

Proof. We have

1

N
(t̂pc,est − ty) =

1

N
(t̂yπ − ty)−

1

N

(
t̂zπ − tz

)′
η̂π,est

=
1

N
(t̂yπ − ty)−

1

N

(
t̂zπ − tz

)′
η̂ − 1

N

(
t̂zπ − tz

)′
(η̂π,est − η̂)

=
1

N
(t̂yπ − ty)−

1

N

(
t̂zπ − tz

)′
η̂ + op(n

−1/2).
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The asymptotic variance AV (t̂pc,est) is similar to the 3.20, given as,

AV (t̂pc,est) =
∑
U

∑
U

(πkl − πkπl)
yk − z̃′kη̂

πk

yl − z̃′lη̂
πl

. (3.36)

But its estimate is different than 3.21 and is written as,

V̂ (t̂pc,est) =
∑
s

∑
s

(πkl − πkπl)
πkl

yk − z̃′kη̂π,est
πk

yl − z̃′lη̂π,est
πl

. (3.37)

3.3 Simulation Study on the PC calibrated estimators

From a large population of Mediametrie data described in section (2.4), we took

a large sample of 5930 individuals on the 49 columns for the first two weeks of

September 2010 and considered this sample as our population. The X matrix

is of dimension 5930 × 49. We used 21 variables which include 4 quantitative

and 17 qualitative variables. Different number of class in 17 qualitative variables

resulted in 45 columns and hence making the data matrix of dimension 5930× 49.

The number of columns in this simulation study is 49 compared to 19 in section

2.4. The objective of our simulation study is the estimate of total time watched on

second Monday of September 2010 on a particular T.V. channel by 5930 individual.

The true value for the variable of interest is ty = 228537.6 minutes watched on

a particular T.V. channel. As we saw in section (2.4), the GREG estimator did

not work as it came out to be singular due to the seriously ill-conditioned data.

We realize a simulation study considering the HT estimator and on three types of

calibrated PC estimators is realized including,

(a). The Horvitz-Thompson estimator can be written as,

t̂yπ =
∑
s

yk
πk
.

(b). The Population PC calibrated estimator for population total, this means that

we have xk for all k ∈ U allowing computation of z1, z2, . . . , zr. The expres-

sion for the PC calibrated weights is given by,

wc = ds − Π̃
−1

s Zr,s(Z
′
r,sΠ̃

−1

s Zr,s)
−1(d′sZr,s − 1′UZ)′,
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and the PC calibrated estimator of the population total is,

t̂cPC = wc′ys = d′sys −
(
d′sZr,s − 1′UZr

) (
Z′r,sΠ̃

−1
s Zr,s

)−1
Z′r,sΠ̃

−1
s ys

= t̂y,π −

(∑
s

z′k
πk
−
∑
U

z′k

)
η̂π

where η̂π =
(
Z′r,sΠ̃

−1
s Zr,s

)−1
Z′r,sΠ̃

−1
s ys.

(c). The Estimated PC calibrated estimator for population total. The expression

for estimated PC calibrated weights is

wc
pc,est = ds − Π̃

−1

s Ẑr,s(Ẑ
′
r,sΠ̃

−1

s Ẑr,s)
−1(d′sẐr,s − 1′U Ẑ)′,

the total estimator is given as,

t̂cpc,est = w′cpc,estys = d′sys −
(
d′sẐr,s − 1′U Ẑr

)(
Ẑ′r,sΠ̃

−1
s Ẑr,s

)−1
Ẑ′r,sΠ̃

−1
s ys

= t̂y,π −

(∑
s

ẑ′k
πk
−
∑
U

ẑ′k

)
η̂π,est,

where η̂π,est =
(
Ẑ′r,sΠ̃

−1
s Ẑr,s

)−1
Ẑ′r,sΠ̃

−1
s ys.

(d). The PPC calibrated estimator for population total. The PPC calibrated

weights are given by

wc
ppc = ds − Π̃−1

s Ms

(
M′

sΠ̃
−1
s Ms

)−1 (
d′sMs − 1′UM

)′
,

the estimator of the total for the above weights w′cppc is,

t̂cppc = w′cppcys

= d′sys −
(
d′sMs − 1′UM

) (
M′

sΠ̃
−1
s Ms

)−1
M′

sΠ̃
−1
s ys

= t̂y,π −

(∑
s

m′k
πk
−
∑
U

m′k

)
B̂m

where B̂m =
(
M′

sΠ̃
−1
s Ms

)−1
M′

sΠ̃
−1
s ys.
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The principal components matrix Z of dimension 5930× 49 is calculated using

the data matrix X. We considered r = 25 as the first 25 PC’s account almost

84% of the variability available in the covariance matrix 1
NX′X. So the matrix of

PC’s (Zr) (in Equation 3.25) has the dimensions 5930 × 25. We shall divide our

simulation study in two major parts,

(i). Performance of PC calibrated estimator.

(ii). Variance estimation.

For the first part of simulation study (i), the number of simulations B = 1000

and for the second part of simulation study (ii) B = 3000. Simple random sam-

pling without replacement (SRSWOR) is used as a sampling design in our ap-

plied computation of the calibrated estimators. Several performance indicators

are computed to evaluate each type of the 3 calibrated estimators given above.

This includes,

(1). Coefficient of variation for the PC weights ws

cv(ws) =

√
V ar(ws)

mean(ws)
. (3.38)

(2). Gain for PC calibrated estimator with respect to the Horvitz-Thompson es-

timator

Gain =

1
B−1

∑B
b=1

(
θ̂

(b)
PC − θ

)2

1
B−1

∑B
b=1

(
θ̂

(b)
HT − θ

)2 . (3.39)

(3). Relative bias (RB) for PC calibrated estimators

RB =

∑B
b=1 θ̂

(b)/1000− ty
ty

. (3.40)

(4). Relative error (RE) for PC calibrated estimators

RE =
1
B

∑B
b=1 t̂

(b)
PC − ty

ty
. (3.41)
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We considered two simulation cases for each estimator to check its performance,

(i). PC estimator for fixed sample size (n=500 and n=1000) and variable number

of PC’s ( r=1,5,10,15,20,25,30,35,40,45,47)

(ii). PC estimator for variable sample size (n=250,500,750,1000,1250,1500,1750,2000)

and fixed number of PC’s (r=25).
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PC calibrated weights for r=20

F
re

q
u

e
n

c
y

5 10 15 20

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

b. r=20

Figure 3.1: PC calibrated weights for n=500

We drew histograms for the PC calibrated weights for different number of PC’s

at n = 500. For r = 20 (figure 3.1(b)), the division of PC calibrated weights is

more symmetrical compared to r = 10 (figure 3.1(a)) or r = 25 (figure 3.2(a)).

We also sketched histograms for the ratio between the PC calibrated weights and

Horvitz Thompson weights for different number of PC’s. For r = 10 (figure 3.4(a)),

the interval between the minimum and maximum limits of the ratio is 0.5 which

increases to 1.0 for r = 20 (figure 3.4(b)), 1.5 for r = 25 (figure 3.5(a)), 2.0 for

r = 40 (figure 3.6(a)) and 2.0 for r = 45 (figure 3.6(b)). The exception emerged

for r = 30 (figure 3.5(b)), where the respective interval between the lower and

upper limit remains 1.2.
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PC calibrated weights for r=25
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Figure 3.2: PC calibrated weights for n=500

PC calibrated weights for r=40
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PC calibrated weights for r=45
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Figure 3.3: PC calibrated weights for n=500
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Ratio between HT weights and PC calibrated weights for r=10
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Ratio between HT weights and PC calibrated weights for r=20
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Figure 3.4: Ratio between PC calibrated weights and HT weights for n=500

Ratio between HT weights and PC calibrated weights for r=25
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Ratio between HT weights and PC calibrated weights for r=30
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Figure 3.5: Ratio between PC calibrated weights and HT weights for n=500
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Ratio between HT weights and PC calibrated weights for r=40
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Ratio between HT weights and PC calibrated weights for r=45
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Figure 3.6: Ratio between PC calibrated weights and HT weights for n=500
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Figure 3.7: PC Total estimate for different sample size n, r=25, simulations=1000

The boxplot total estimates for different sample size (see figures 3.7, 3.8) tends

towards the true value of the variable of interest with the increase in sample size.

The red line passes through the true value of the population total ty = 228537.6.

In both cases, we can see that with the increase in sample size, the distance

between the true and estimated value diminishes. However, the median value of

estimates remains smaller than the true value despite of being very close. For

example for n = 500, the mean total estimator t̂pc = 217962.5 and for n = 1000,

it is, t̂pc = 223547.04 . This hints us that our estimator performs an under-

estimation which is even serious for the smaller sample size. On the other hand

as we increase the number of PC’s, the mean estimate of the t̂PC lower than the

true value ty = 228537.6. So, we can conclude that for smaller sample size and

increasing the number of PC’s after a certain number, our estimator t̂PC tend to

under-estimate the population total (see table 3.1 ).

The figures (3.9(a) and 3.10(a)) indicate that the increase in the sample size

results in the fall of the coefficient of variation for the PC weights. A higher value

for the mean coefficient of variation, 0.34 at n = 250 drops down to 0.22 at n = 500
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Figure 3.8: PC Total estimate

Table 3.1: PC Estimates, r=25

Estimator n=500 n=1000

t̂PC 217962.5 223547.4

t̂pc,est 216020.1 222631.8

and further stables to 0.15 at n = 1000. The blue and red lines in figures 3.9(a)

and 3.9(b) represent the value for the mean coefficient of variation at n = 500

and n = 1000 respectively and notably the respective values are somewhat similar

in both cases. This pattern continues and for n = 2000, the mean coefficient of

variation turns to 0.09. For the estimated PC’s, the PC estimator performs slightly

better than the estimator drawn from the original PC’s (see figures 3.9(b),3.10(b)).

The blue and green lines in figure 3.10(b) pass through the mean coefficient of

variation at n = 500 and n = 1000 respectively.

On the other hand, in case of increasing the number of principal components

(see figures 3.11(a), 3.12(a) and 3.13(a)), the trend is inverse. That is, increase

in the number of principal components also increases the coefficient of variation
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Figure 3.9: Coefficient of variation for different sample size

and the same is true for the estimated PC calibrated weights (see figures 3.11(b),

3.12(b) and 3.13(b) ).

This reveals that our PC estimator of population total ty performs better with

the increase in the sample size but due to the cost issue we may be restricted

to a rather smaller sample size (say n = 500 or n = 1000) which also give us

reasonable reduction in the coefficient of variation. In the second case of variable

number of principal components, we see that for r = 25 (which takes almost 84%

of the variation into account) at n = 500 the mean value (0.22) of coefficient

of variation is relatively higher as compared to the mean coefficient of variation

(0.14) case when n = 1000 (see tables 3.2 and 3.3). Another important fact comes

out is that when we estimate our principal components, the variability in terms

of the coefficient of variation is a bit lesser than the PC estimator for population

principal components.

This may be due to the fact that we estimated the PC’s, so the use of smaller set

(sample) of the standardized observations is for the their estimation also reduced

the variability. The difference in performance in terms of the coefficient of variation
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Coefficient of variation for estimated PC's for different n, r=25, simulations=1000
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Figure 3.10: Coefficient of variation for different sample size

(variability) gets more clear for smaller sample size and large number of PC’s.

The gain, which in fact is the ratio of the variance of t̂PC and the variance of

t̂yπ, decreases with the increase in the sample size. It shows the relative benefit

we gain with respect to the Horvitz-Thompson estimator t̂yπ.

The figure 3.14 shows that the larger sample, the smaller value for the ratio of

the variance (gain). This means that as we increase our sample size, the benefit

increases with respect to the t̂yπ estimator in terms of the gain. This, however is

different for the change in the number of the PC’s. That is, as we increase the

number of PC’s, the value of gain also increases hence our estimator becomes less

efficient for larger number of PC’s (see figures 3.15(a) and 3.16(a)). For n = 500,

the gain value goes more than 1 after r = 25, making our proposed estimator t̂PC

less efficient. For n = 1000, the gain value remains under 1 even for the maximum

number of the PC’s, hence advocates the efficiency for the larger sample.
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Mean Coefficient of variation for estimated PC's for different no. of PC's at n=500, simulations=1000
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Figure 3.11: Coefficient of variation for different number of PC’s, n=500
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Mean Coefficient of variation for different no. of PC's at n=1000, simulations=1000
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Mean Coefficient of variation for estimated PC's for different no. of PC's at n=1000, simulations=1000
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Figure 3.12: Coefficient of variation for different number of PC’s, n=1000
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Coefficient of variation for different no. of PC's at n=1000, simulations=1000
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Coefficient of variation for estimated PC's for different no. of PC's at n=1000, simulations=1000

No. of PC's
C

o
e

ff
ic

ie
n

t 
o

f 
v
a

ri
a

ti
o

n

r=1 r=5 r=10 r=15 r=20 r=25 r=30 r=35 r=40 r=45 r=47

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

b. Estimated

Figure 3.13: Coefficient of variation for different number of PC’s, n=1000
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Figure 3.14: Gain for different sample size, r=25
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Figure 3.15: Gain for different number of PC’s, n=500
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Gain for different number of PC's at n=1000, simulations=1000
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Figure 3.16: Gain for different number of PC’s, n=1000
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Mean Relative Bias for different sample size for estimated PC calibration, r=25, simulations=1000
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Figure 3.17: Relative bias for different sample size

However, in case of the estimated PC’s, the gain value is slightly on the higher

side both for n = 500 and n = 1000. Our estimator t̂PC has the relative bias for

n = 500 almost 5.1% which is slightly lower as 5% for t̂pc,est (see table 3.2 ). For

n = 1000, the relative bias goes from almost 2.1% to 1.9% (see table 3.3) for t̂PC

and t̂pc,est respectively which is not huge.

Similarly, the relative error also follows the trend as of the relative bias, gain

and coefficient of variation. That is, as n increases, the relative error decreases

(see figure 3.22) and as r increases, the relative error also increases after a certain

value of r (see figures 3.23, 3.24). However, for the estimated t̂PC , the relative

error for t̂pc,est is slightly higher than of the t̂PC (see tables 3.2 and 3.3). For

n = 500, RE = 7% which is a bit higher and for n = 1000, RE = 4%.
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Mean Relative Bias for estimated PC's for different no. of PC's at n=500, simulations=1000
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Figure 3.18: Relative bias for different number of PC’s, n=500
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Mean Relative Bias for different no. of PC's at n=1000, simulations=1000
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Figure 3.19: Relative bias for different number of PC’s, n=1000
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Figure 3.20: Relative Estimation error at r=25

Although relative error is on higher side but it is understandable because r = 25

is almost half of the total number of PC’s available. Now, how to decide what

number of PC’s should be taken and what should be the sample size? In our

case, first 25 PC’s (r = 25) take almost 85% of the variation into account and has

coefficient of variation of 2% and 1.5% for n = 500 and n = 1000 respectively.

Similarly, the data dimension is reduced from 49 variables to the 25 and yet

conceded only 7% of the relative error and coefficient of variation is also on the

lower side. The benefit in terms of the gain is also higher. So our calibration

weights using the PC’s is doing well even for a small sample size n = 500 which

is almost 8% of the total population. We, then applied our calibration weights to

estimate the known totals for some of the original auxiliary variables Age (X40),

Number of T.V.’s in a house (X47), Number of persons in a house (X48)

and First week watched minutes (X49). We wanted to verify that how far

the weights estimate the X totals. Relative estimation errors are found for these

variables and compared between them for n = 500 and n = 1000 ( see figures 3.20

and 3.21).
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Figure 3.21: Relative Estimation error for estimated PC’s at r=25

Clearly we can see that for all the four variables, the relative estimation error is

lower for the estimator using estimated PC’s at n = 500. For example for Age, the

scatter of the values of the estimation error goes up to almost 20% (figure 3.20(b))

for population PC estimator but it remains well under 15% for the estimated PC

estimator. For the No. of T.V.’s in a house ((X47)), the difference is even more

clear. For population PC estimator is almost 19% and for estimated PC estimator

it remains up to 10%.
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Figure 3.22: Relative error for different sample size
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Figure 3.23: Relative error for different number of PC’s, n=500
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Figure 3.24: Relative error for different number of PC’s, n=1000

126



Similarly for Number of persons in a house (X48), for estimated PC estimator,

the maximum relative estimation error remains almost 12% as compared to about

18% of the population PC estimator. For the variable First week minutes, the

limits remain 25% and 20% for population PC estimator and estimated PC esti-

mator respectively. Again for a large sample size n = 1000, the relative estimation

error almost cuts off into half and are not so different between them. Thus we can

say that as the sample size increases, the estimation error for the estimator using

population PC and estimated PC become less distant.

Table 3.2: Performance of PC estimator, n=500

r=25 n=500 Estimated PC n=500

Mean coefficient of variation 0.22 0.22

Mean gain 0.97 1.01

Mean relative bias 0.05 0.05

Mean relative error 0.07 0.08
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Figure 3.25: PPC Coefficient of Variation for different number of PC’s
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Figure 3.26: PPC Gain for different number of PC’s

Table 3.3: Performance of PC estimator, n=1000

r=25 n=1000 Estimated PC, n=1000

Mean coefficient of variation 0.15 0.15

Mean gain 0.83 0.85

Mean relative bias 0.02 0.02

Mean relative error 0.04 0.04

Table 3.4: Performance of PPC estimator

r1=24 n=500 n=1000

Mean coefficient of variation 0.24 0.1563374

Mean gain 0.85 0.754646

Mean relative bias 0.008 0.003

Mean relative error 0.06 0.04

Applying the partial principal component calibration on our media data, we

partitioned our matrix X such that X̃1 = (Xsex,Xage,Xnbtv,Xnpf ) and X̃2 con-

128



●

●

●
●

●
●

●

●

PPC Gain for different n, r=24, simulations=1000

Sample size

P
P

C
 G

a
in

n=250 n=500 n=750 n=1000 n=1250 n=1500 n=1750 n=2000

0
.8

1
.0

1
.2

1
.4

1
.6

Figure 3.27: Gain for PPC
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Figure 3.28: Relative Error for PPC

Table 3.5: Original Total vs PC estimates for different n

Variables Original Total n=500 n=1000

Type.menag 3749 3566.283 3666.612

CSP 5901 5619.041 5773.36

Internet 5928 5644.765 5800.479

Enfants 2819 2683.061 2758.391

First Week Minutes 1703739 1616919 1666277

Table 3.6: Original Total vs Estimated PC estimates for different n

Variables Original Total n=500 n=1000

Type.menag 3749 3570 3668.009

CSP 5901 5619 5774.971

Internet 5928 5644.825 5801.74

Enfants 2819 2687.525 2758.287

First Week Minutes 1703739 1614463 1666277
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Mean Relative Bias for different no. of PC's at n=500, simulations=1000
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Mean Relative Bias for different no. of PC's at n=1000, simulations=1000
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Figure 3.29: PPC Relative Bias for different number of PC’s

Table 3.7: Original Total vs PPC estimates for different n

Variables Original Total n=500 n=1000

Type.menag 3749 3740.857 3745.39

CSP 5901 5891.604 5897.596

Internet 5928 5919.314 5924.652

Enfants 2819 2817.28 2818.324

First Week Minutes 1703739 1695369 1700725

tained the rest of variables. The principal component matrix Z̃2 from X̃2 is com-

puted and first 24 principal components associated to the largest 24 eigenvalues

which account for almost 85% of the total variation. That is,

Z̃2r1 = (Z2(1), . . . ,Z2(24))

and therefore the partial principal component matrix M is a (5930 × 29) matrix

such that,

M = (X6,X7,X40,X47,X48,Z2(1), . . . ,Z2(24)).
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Figure 3.30: Relative Bias for PPC
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Figure 3.31: C.V. for PPC

Simulation study similar to the PC and estimated PC calibration is done. C.V.,

relative gain, relative bias and relative error are calculated to evaluate the perfor-

mance of the PPC calibration estimator. Comparing the figure (3.31) with figure

(3.10) and figure (3.25) with figures (3.11 and 3.12 ), the coefficient of variation

for partial principal component (PPC) calibration, we can say that it follows the

same trend as for the coefficient of variation for PC and estimated PC calibration

estimators. Referring to the tables 3.2, 3.3 and 3.4, we can see that there is not

much difference between the coefficient of variations between the different cali-

bration methods. So the coefficient of variation is almost similar to the previous

calibration methods.

The gain for PPC calibration for different sample size (figure 3.27) attains

the trend identical to the PC and estimated PC calibration estimators (figure

3.14). However, for the variable number of r1, the gain curve for PPC (figure

3.26) depicts smaller values than the PC and estimated PC calibration estimators

(figures 3.15, 3.16). For n = 500, the PPC gain is 0.8528435 (table 3.4) which is

almost similar to the gain for the PC and estimated PC at n = 1000 (table 3.3).

The improvement in the estimation procedure due to the PPC calibration in terms
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Figure 3.32: PPC Relative Error for different number of PC’s

of the relative gain is more prominent for n = 1000.

The relative bias for the PPC calibration method attains serious improvement

(compare figures 3.17 and 3.30). That is, for PPC calibration at n = 500 the rela-

tive bias is less than 0.8% (table 3.4 ) compared to 4.5% for the PC and estimated

PC calibration (table 3.2). This is due to the inclusion of the M which contains

the original X̃1 variables and hence reduces their part of bias. It also shows the

greater importance of the variables included in X̃1. We, however may not put

any variable of X in X̃1. We tried some other variables which seemingly were

important to be calibrated exactly but they resulted in the singularity problem.

So, the choice of the X̃1 variables in the partial principal component calibration

matrix M may need some work to do.

For n = 500, the relative error for the PPC calibration estimator (figure 3.28,

3.32 and table 3.4) is slightly lower than for the PC and estimated PC calibration

estimators (figures 3.22, 3.23 and table 3.4). For the PPC calibration, the relative

error decreases with the increase in n. For the variable r1 (figure 3.32), the relative

error increase with the increase in PPC up to r1 = 24, then it starts increasing
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 Estimated variance for different r at n=500, simulations=3000
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 Estimated variance for different r at n=1000, simulations=3000
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Figure 3.33: PC Variance for different number of PC’s

and then gets stable.

In the next step, we used the PPC calibration weights wppc to calibrate the

totals of the original auxiliary variables X to see that how much estimation error

is caused by the use of wppc. The four variables Xsex,Xage,Xnbtv, and Xnpf

which were used in the matrix M are exactly calibrated by the partially principal

component weights wppc. We calculated total estimators for Xtypemenag, Xcsp,

Xinternet, Xenfants and X(first.week.minutes) for n = 500 and n = 10000 using wpc

(table 3.5) , wppc,est (table 3.6) and wppc (table 3.7) and compared them with their

original totals.

Clearly, we can see that the results for wpc (table 3.5 ) and wpc,est (table 3.6 )

are almost similar and a bit far from their original totals. But the totals estimated

using wppc are significantly close to their respective original totals. The relatively

lower relative estimation error (figures 3.38(a) and 3.38(b)) for wppc further clears

the picture that the estimation of the population totals using PPC calibration

gives better results than the PC calibration and the estimated PC calibration

(figure 3.20).
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 Estimated PPC variance for different r at n=500, simulations=3000
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 Estimated PPC variance for different r at n=1000, simulations=3000
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Figure 3.34: PPC Variance for different number of PC’s

Variance estimation

We then calculated the estimated variance for the PC, estimated PC and PPC

estimator for different n and different r with number of simulations equal to 3000.

The estimated variance for the PC (figure 3.35) and estimated PC estimator

(figure 3.36)for different sample size decreases simultaneously in almost similar

pattern. The trend remain identical for the estimated variance of PPC estima-

tor (figure 3.37). For variable number of PC’s, the estimated variance goes down

smoothly until r = 25 and then suddenly falls immensely for r = 30 and then

smooths up to r = 47 (figure 3.33). The estimated variance for the PPC estimator

for different r (figure 3.34 ) is better than that of PC and estimated PC estimator.

Relative error for the variance is also calculated for different estimator. Inter-

estingly, the RE for variance for PC estimator (figure 3.42 ) and PPC estimator

(figure 3.43) attain the similar pattern for n = 500. It increases rapidly with the

increase in r up to a certain level (r = 30 for PC estimator, figure 3.42) and then

smooths from onwards. For variable n, the RE of estimated variance are not very
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 Estimated variance for PC estimator for different n, r=25, simulations=3000
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Figure 3.35: Variance for PC
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 Estimated variance for Estimated PC estimator for different n, r=25, simulations=3000
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Figure 3.36: Variance for estimated PC
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 Estimated variance for PPC estimator for different n, r=24, simulations=3000
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Figure 3.37: PPC Variance for different sample size

much different for PC and PPC estimator (see figures 3.40 and 3.41).
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 PPC Relative Estimation Error for r=24 at n=500, simulations=1000
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 PPC Relative Estimation Error for r=24 at n=1000, simulations=1000
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Figure 3.38: PPC Estimation error for different number of PC’s
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 Estimated Variance for estimated PC's for different number of PC's at n=500, simulations=3000
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Figure 3.39: PC Variance for different number of PC’s
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 Relative Error of Estimated variance for PC estimator for different n, r=25, simulations=3000
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Figure 3.40: RE for PC variance for dif-

ferent n
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 Relative Error of Estimated variance for PPC estimator for different n, r=25, simulations=3000
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Figure 3.41: RE for PPC variance for dif-

ferent n
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 Relative Error of Estimated variance for different r at n=500, simulations=3000
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Figure 3.42: RE for PC variance for

n=500
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 Relative Error of Estimated PPC variance for different r at n=500, simulations=3000
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Figure 3.43: RE for PPC variance for

n=500
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Chapter 4

Discussion and Perspectives

This thesis report deals with the estimation of a population total when an in-

hand large dimensional auxiliary data is severely ill-conditioned. Two types of

methods are proposed to deal with the ill-conditioned auxiliary variables in the

estimation of a population total and their variances are estimated. The first tech-

nique consists of penalizing the diagonal of the covariance matrix. A detailed

overview of the different existing ridge regression solution viable in various sta-

tistical circumstances, is given in chapter 2. Estimation of regression coefficient

using optimization problems in model-based and model-assisted cases are obtained

and therefore used to construct the respective estimators for the population total.

Similar ridge estimators are devised using a model-free approach called ridge cal-

ibration or penalized calibration and their equivalence is proved. A special case

of ridge regression estimator (Bardsley and Chambers, 1984) is considered and

its equivalence to the partially penalized calibration estimators (Guggemos and

Tillé, 2010) is shown (proposition 2). Different interpretations of the ridge regres-

sion estimation are discussed and a link is established between them. Statistical

properties are derived for ridge estimator and their improvement over least square

estimator is shown. Clearly, the ridge estimator performs better than the least

square estimator of the population total in terms of the MSE. We applied the

ridge technique on the Mediametrie data set, which was seriously ill-conditioned
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and multicollinear having a significant percentage of minimum eigenvalues zeros.

The second method studied was the principal component regression (PCR).

GREG-type estimator is constructed using PC’s and also different types PC cali-

bration is introduced such as PC calibration on the second moment, partial princi-

pal component calibration and calibration using estimated PC’s. Compared to the

ridge regression estimator, which is a penalizing method, PC calibration is rather

a dimension reduction technique (Jolliffe, 2002). Application of these methods

on the Mediametrie data is done to estimate the population total of the variable

of interest using the proposed PC calibration techniques and found that these

techniques perform better than the Horvitz-Thompson estimator. Graphical and

tabular comparisons between these PC calibration techniques are established.

The development of these methods was in fact inspired and motivated by a

statistical data problem named ill-conditioning or some times multicollinearity

present in Mediametrie (Paris) data available to us for different T.V. channels and

we saw that our newly proposed methods gave improved results.

Although, we used only, simple random sampling without replacement (SR-

SWOR) as a sampling design, our approach is general and can be applied to other

sampling techniques such as stratified random sampling. These methods can also

be applied on other data sets such as in website data where the number of users

are enormous and the estimation of total users visiting a certain website page may

be of particular interest. Also in the telecommunications domain, the estimation

of total number of calls made from a particular network to any other particular

network may be of interest.

An interesting extension of this work may be to use a sampling design with

unequal probabilities (Brewer, 1999). The variance and its convergence will be

interesting to develop in this case under calibration. In this case, the total estima-

tor and its asymptotic variance will get different shapes. Certain conditions will

be necessary in assigning weights to each unit. The construction of the estima-

tors using unequal probabilities is complex as each unit will be assigned different
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weights according to its size.

PC Calibration methods can also be applied under the small area estimation

scenario ( see Rao (2003), Chambers (2005) and Wang et al, 2008). Small area

estimation is getting more and more importance due to the need of reliable small

area statistics when only a small sample is available for these areas (Pfefferman,

2002). We may also look for the development of more adequate methods to handle

qualitative variables. Multiple correspondence analysis (MCA) is used for this pur-

pose (see Kaciak and Louviere, (1990) and Greenacre and Blasius (2006)). Cross

validation analysis may also be used as a tool to select the number of principal

components to be included in the analysis (Jolliffe, (2002), Krzanowski, (1987)

and Josse and Husson (2011)). Cross validation may equally be applied to find an

optimal ridge parameter (Jung, (2009), Golub et al, 1979).
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