Thèse soutenue

Linéarisation d'un émetteur mixte (analogique et numérique) utilisant une boucle cartésienne en technologie CMOS 65nm pour les communications mobiles avancées

FR  |  
EN
Auteur / Autrice : Nicolas Delaunay
Direction : Eric KerhervéNathalie Deltimple
Type : Thèse de doctorat
Discipline(s) : Electronique
Date : Soutenance le 20/12/2012
Etablissement(s) : Bordeaux 1
Ecole(s) doctorale(s) : École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde)
Partenaire(s) de recherche : Laboratoire : Laboratoire de l'intégration du matériau au système (Talence, Gironde)
Jury : Examinateurs / Examinatrices : Didier Belot, Dominique Dallet
Rapporteurs / Rapporteuses : Jean-Louis Cazaux, Jean-Michel Nébus

Résumé

FR  |  
EN

Depuis la première génération de téléphone mobile, de nombreuses fonctions et outils ont été intégrés dans nos terminaux. Il y a vingt ans, nous utilisions nos téléphone pour émettre des appels et envoyer/recevoir des messages. Aujourd’hui, l’accès à internet, la radio, l’appareil photo, des jeux et de la musique sont des fonctionnalités que l’on retrouve dans nos téléphones mobiles.Dans un contexte de téléphonie pouvant adresse plusieurs standards, l’objectif de cette thèse est de concevoir et de réaliser l’implémentation d’une architecture capable d’améliorer la linéarité de notre émetteur pour le standard 3G, utilisant des composants analogiques et numériques. Pour cela, notre étude se concentrera sur l’amélioration de la linéarité, tout en maintenant une consommation la plus faible possible mais également tout en évitant d’augmenter la taille d’une puce 3G. Nous allons démontrer qu’il est possible d’intégrer une technique de linéarisation tout en maintenant une consommation et une surface en silicium.Le premier chapitre présente différentes architectures d’émetteurs et des techniques de linéarisation avec leurs avantages et inconvénients. Il est également présenté des moyens d’évaluer l’efficacité d’un émetteur par des simulations ou des mesures. L’objectif de cette partie est de choisir une technique de linéarisation à laquelle nous associerons une architecture d’émetteur afin de répondre le plus rigoureusement à notre application et ces contraintes émanant.Le second chapitre détaille le fonctionnement du système complet, la partie numérique et la partie analogique, s’appuyant sur des études théoriques. Nous commencerons en détaillant les contraintes et les précautions qui doivent être prises en compte par le concepteur afin d’étudier l’instabilité et le bruit produit par l’émetteur. Nous décrierons alors deux algorithmes numériques permettant de réaliser la correction des signaux. Des simulations au niveau système de la boucle Cartésienne seront également présenté utilisant, dans un premier temps un amplificateur de puissance idéal, pour ensuite utilisé un amplificateur de puissance réalisé en technologie BiCMOS, et finalement un amplificateur de puissance conçu en technologie CMOS, qui est celle choisie pour notre étude.Le troisième chapitre présente la synthèse de la partie numérique en technologie CMOS des deux algorithmes précédemment cités, elle prend en compte toutes les étapes ; du code VHDL jusqu’au layout, permettant de réaliser un circuit numérique. Ensuite, il est décrit chaque composant de la boucle cartésienne, avec leurs propres simulations ou mesures. De plus, il est important de garder à l’esprit que l’objectif de cette thèse repose sur l’intégration du système complet (partie analogique et numérique) en technologie CMOS 65nm de STMicroelectronics, démontrant ainsi la faisabilité de la solution.Dans un premier temps, nous décrirons la partie numérique permettant de réaliser les étapes de correction de phase et de soustraction des signaux en technologie ASIC. L’algorithme de CORDIC a pour avantage de minimiser la consommation et l’occupation en Silicium de la partie analogique. Par la suite, l’architecture et les spécifications de chaque brique de base constituant la partie analogique seront présentées. Dans notre cas, la chaîne directe est composée de filtres, de mélangeurs, et d'un amplificateur de puissance. Notre objectif est de réaliser ces trois fonctions avec le minium de consommation et une surface du circuit la plus faible possible, ceci permettant une intégration plus aisée.Finalement, les simulations système seront présentées utilisant le logiciel de simulation ADC (Advanced Design Software) d’Agilent pour la partie analogique. Des co-simulations ont été réalisées sur le système complet, utilisant SystemVue pour la partie numérique. Les simulations réalisant ADS nous ont fourni les performances de chaque brique de base s’appuyant sur les caractéristiques des transistors.