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Introduction

An oil is any substance that is liquid at ambient temperatures and does not mix with
water but may mix with other oils and organic solvents. This general definition includes
vegetable oils, volatile essential oils, petrochemical oils and synthetic oils. Some oils burn
in liquid or aerosol forms, generating heat which can be used directly or converted into
other forms of energy such as electricity or mechanical work. To obtain many fuel oils,
crude oil is pumped from the ground and is shipped via oil tanker to an oil refinery. There,
it is converted from crude oil to diesel fuel (petrodiesel), ethane (and other short-chain
alkanes), fuel oils (heaviest of commercial fuels, used in ships/furnaces), gasoline (petrol),
jet fuel, kerosene, benzene (historically), and liquefied petroleum gas. A 42 gallon barrel
(U.S.) of crude oil produces approximately 10 gallons of diesel, 4 gallons of jet fuel, 19
gallons of gasoline, 7 gallons of other products, 3 gallons split between heavy fuel oil and
liquified petroleum gases and 2 gallons of heating oil. The total production of a barrel of
crude oil into various products results in an increase to 45 gallons [1, 2].

The oil is located under the earth and is captured in the small pores of the rocks. The
sizes of the throats are very polydisperse and range between a few hundred nanometers
to a few micrometers. Fracturated regions comprise channels of a few centimeters. To
recover oil, well are constructed. The oil well is created by drilling a hole into the earth
with an oil rig. A steel pipe (casing) is placed in the hole, to provide structural integrity
to the newly drilled wellbore. Holes are then made in the base of the well to enable oil
to pass into the bore. Finally a collection of valves called a "Christmas Tree" is fitted to
the top, the valves regulating pressures and controlling flows. During the primary recovery
stage, reservoir drive comes from a number of natural mechanisms. These include: natural
water displacing oil downward into the well, expansion of the natural gas at the top of the
reservoir, expansion of gas initially dissolved in the crude oil and gravity drainage resulting
from the movement of oil within the reservoir from the upper to the lower parts where the
wells are located. Recovery factor during the primary recovery stage is typically 5-15%.

While the underground pressure in the oil reservoir is sufficient to force the oil to the
surface, all that is necessary is to place a complex arrangement of valves (the Christmas
tree) on the well head to connect the well to a pipeline network for storage and processing.

Over the lifetime of the well the pressure will fall, and at some point there will be
insufficient underground pressure to force the oil to the surface. After natural reservoir
drive diminishes, secondary recovery methods are applied. They rely on the supply of ex-
ternal energy into the reservoir in the form of injecting fluids to increase reservoir pressure,
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hence replacing or increasing the natural reservoir drive with an artificial drive. Sometimes
pumps, such as beam pumps and electrical submersible pumps (ESPs), are used to bring
the oil to the surface. Other secondary recovery techniques increase the reservoir’s pressure
by water injection, natural gas reinjection and gas lift, which injects air, carbon dioxide or
some other gas into the bottom of an active well, reducing the overall density of fluid in the
wellbore. Typical recovery factor from water-flood operations is about 30%, depending on
the properties of oil and the characteristics of the reservoir rock. On average, the recovery
factor after primary and secondary oil recovery operations is between 35% and 45%.

Tertiary, or enhanced oil recovery methods increase the mobility of the oil in order to
increase extraction.

Thermally enhanced oil recovery methods (TEOR) are tertiary recovery techniques that
heat the oil, thus reducing its viscosity and making it easier to extract. Steam injection
is the most common form of TEOR, and is often done with a cogeneration plant. In this
type of cogeneration plant, a gas turbine is used to generate electricity and the waste heat
is used to produce steam, which is then injected into the reservoir. This form of recovery is
used extensively to increase oil extraction in the San Joaquin Valley, which has very heavy
oil, yet accounts for 10% of the United States oil extraction. In-situ burning is another
form of TEOR, but instead of steam, some of the oil is burned to heat the surrounding
oil [3].

Chemical compound can also be used in tertiary recovery. The Company Rhodia is
working actively on this approach. The subject of my PhD is linked to this project.

The injection of various chemicals, usually as dilute solutions, have been used to improve
oil recovery. Injection of alkaline or caustic solutions into reservoirs with oil that has
organic acids naturally occurring in the oil will result in the production of soap that may
lower the interfacial tension enough to increase production. Injection of a dilute solution
of a water soluble polymer to increase the viscosity of the injected water can increase
the amount of oil recovered in some formations. Dilute solutions of surfactants such as
petroleum sulfonates may be injected to lower the interfacial tension or capillary pressure
that impedes oil droplets from moving through a reservoir. Special formulations of oil,
water and surfactant, microemulsions, can be particularly effective in this. Application of
these methods is usually limited by the cost of the chemicals and their adsorption and loss
onto the rock of the oil containing formation. In all of these methods the chemicals are
injected into several wells and the production occurs in other nearby wells.

The use of viscous solution of polymers allows also to improve oil recovery. Poly-
acrylamide molecules of high molecular weight are injected to increase the amount of oil
recovered in China. This improves the sweeping of the oil. This avoids instability of the
propagation of the interface between polymer solutions and oil. The number of water
preferential paths towards the outlet well is decreased. The sweeping is more efficient.
More over the increase of the water viscosity avoid the trapping of the oil. Microbial
injection is part of microbial enhanced oil recovery and is presently rarely used, both be-
cause of its higher cost and because the developments in this field are more recent than
other techniques. Strains of microbes have been both discovered and developed (using
gene mutation) which function either by partially digesting long hydrocarbon molecules,



9

by generating biosurfactants, or by emitting carbon dioxide.
The aim of the Company Rhodia is to develop surfactants solutions to increase the

amount of recovered oil. In order to reach this aim, the reasons for oil trapping have to
be elucidated and understood. One needs to define functioning points in terms of required
viscosity, required interfacial tension, required wetting properties. The formulations have
to be adapted to these values but they have also to be stable in a wide range of temperature
and in a wide range of salt concentrations.

The subject of my PhD deals with an academic work in relation with this project. We
want to understand why so little amount of oil is produced during the second recovery.
We look for the microscopic factors in charge of the existence of an unstable and ramified
front between water and oil. One of the major difficulties in achieving a good description
of biphasic flows in interconnected network is the large number of parameters potentially
involved. These include the viscosity of the two fluids, the interfacial tension between
them, the wetting properties, their respective flow rates, the topology of the network and
the considered length scales.

To capture the phenomena involved in this process, two approaches are commonly
developed. One is a macroscopic approach and deals at the level of the porous media. The
second one is a microscopic approach and deals with the flow at the level of the pores of
the rocks. In the following, we will use the second approach. In the next section, we will
recall briefly how it is possible to characterize the features of the flow at the porous media
level. Then we will describe the physical principles that rule the flow at the pore level.
We will display a brief overview of the open questions and discuss the questions we will
address.

Flow in porous media

Engineers use Darcy laws to model the flow of a liquid in a porous media [4]. Forgetting
all the details of the porous media structure they assume that the flow rate per unit of
volume q of a Newtonian fluid in a porous media is related to the drop of pressure through
a linear relation:

~q = −K
η

(~∇P − ρg) (1)

where g is the gravity, ρ the density, K the Darcy constant, η the viscosity of the newtonian
fluid. K depends upon the geometry of the porous media.

This equation captures the flow of Newtonian fluids provided that the Reynolds number
(i.e. the ratio between the inertial and the viscous forces) is low and provided that the
porous media is not altered by the flow.

This approach becomes tricker when one wants to apply it to biphasic flows.
Indeed, due to Laplace law, the drop of pressure between two phases is equal to

Po − Pw = γ(
1

ra
+

1

rb
) (2)
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where γ is the interfacial tension between the two fluids, ra and rb the two radii of curvature
of the interface and Po and Pw respectively the pressure in the oil phase and in the water
phase.

We recall that the interfacial tension γ is the energy required to create an interface of
unit area between the two liquids. The presence of interfaces between the two fluids induces
pressure jumps. These pressure jumps make the Darcy analysis difficult. It is usually
admitted that the flow rate of water qw and the flow rate of oil qo remain proportional to
the drop of pressure in each fluid. Engineers write:

~qw
S

= −Kkrw
ηw

· ~∇Pw (3)

~qo
S

= −Kkro
ηo
· ~∇Po (4)

where S is the surface perpendicular to the flow, krw the relative water permeability, kro
the relative oil permeability, Pw the pressure in the water phase, Po the pressure in the oil
phase, ηw the water viscosity and ηo the oil viscosity. krw and kro are functions of So and
Sw, which are the oil and water saturation. So and Sw respectively measure the volume of
oil and water compared to the total volume available.

Mass conservation leads to:

So + Sw = 1 (5)

φ
∂Sw
∂t

+
∂qw
∂x

= 0 (6)

φ
∂So
∂t

+
∂qo
∂x

= 0 (7)

where φ is the porosity of the porous media.
To close the system, one equation is missed. The two pressure fields may be linked

by assuming that Pw − Po = Pc(Sw), where krw, kro and Pc(Sw) are measured in separate
experiments on sample of rocks. The previous set of equations allows one to predict the
flow at the reservoir level.

This macroscopic approach is very usefull but it does not give us informations about
the features of the fluid we have to inject in order to increase the amount of recovered oil.
These parameters are hidden in the relative water or oil permeability, or in the evolution
of Pc as a function of Sw. To do such an analysis at the pore level is required.

Flow in micro-models

We jump at the pore scale and focus on the displacement of a wetting fluid by a more viscous
non wetting one. In absence of viscous or gravity forces, the displacement (drainage) of
a wetting fluid by a non-wetting fluid is solely governed by the capillary forces. They
prevent the non-wetting fluid from spontaneous entering in the porous media. It can enter
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a throat (of radius R) only when the pressure in the non-wetting fluid exceeds the pressure
in the wetting fluid by a value of Pc, the capillary pressure given by Pc = 2γ/R, where γ is
the interfacial tension. As a consequence, the fluid penetrates the pore throat, which has
the largest size (the smallest capillary pressure) among the available ones. This process is
successfully described by the invasion percolation (IP) model.

In the presence of both viscous and capillary forces, the pressure field is not uniform
anymore. The viscous forces modify the difference of pressure between the two fluids and
promotes the entrance of the invading fluid in the smaller throat.

In this case the displacement is characterized by two dimensionless parameters: the
capillary number Ca = η1V/γ and the viscosity ratio M = η1/η2, where V is the velocity
of the injected fluid, η1 its viscosity, η2 the viscosity of the displaced fluid, and γ the
interfacial tension.

Lenormand has proposed a phase-diagram of drainage in porous media [5]. Their
approach leads to an original display of the corresponding domains on a general diagram
with axes of capillary number and viscosity ratio. Three regimes correspond to the limits
when two of the three forces: capillary forces, viscous forces and pressure gradient, are
negligible, as sketched in Figure 1.

For M > 1 at low capillary number, the zone separating the two fluids includes a
front with open structures on many length scales surrounded by two compact structures
(capillary fingering). As Ca increases, the front width decreases and leaves the place to a
stable compact flow. These two propagation mechanisms can be captured using concepts
from gradient percolation (i.e. introducing a pressure gradient in the two fluids). For
M < 1, same picture holds for low capillary numbers. However, at high capillary numbers,
viscous fingering causes an unstable displacement. These phenomena were experimentally
evidenced using micromodels of porous media which allow a direct observation of the phases
displacement.

The wetting situation (i.e. the nature of the rocks) has been much discussed in the
literature [6] and seems an important issue in the oil enhanced recovery processes. Oil
recovery in oil wet reservoir is more difficult than in water wet reservoir.

In order to understand this point, it is required to study the flow as a function of the
wetting situation. We address this question in this PhD. Our aim is to understand how a
meniscus between two liquids advances in a single throat of a porous media.

Outlines of the PhD

We want to study the displacement of liquid-liquid interfaces. In the literature, many
geometries have been used to address this question. Spreading of a drop, raise of the
meniscus in a capillary tube or on a vertical surface are examples of such geometries. In
this work, we focus at the pore level and study the displacement of a liquid-liquid meniscus
in a micro channels of circular or rectangular sections. We address the role of microscopic
flows and corners films in this process.

Chapter 1 deals with a short presentation of wetting and spreading theories. We discuss
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Figure 1: Original phase-diagram of Lenormand [5] in the drainage experiment for the
displacement of a wetting fluid by another one. Three main regimes are illustrated through
a general diagram with axes representing the capillary number and the viscosity ratio.
These illustrations represent the injected fluid (black) from the center and the displaced
one (transparent).

both the static and the dynamic properties. We present the microscopic films and the
corner films.

Chapter 2 displays some methods of fabrications of microfluidic chips on PDMS, on
glass and on resin SU-8.

Chapter 3 and 4 deal with the wetting dynamics in the drainage situation. We study
the dynamics of liquid-liquid menisci in a circular tube at small capillary numbers in
partial, pseudo-partial and complete wetting conditions. In the inner surface treated glass
tube, there exists a thin wetting film in the last two situations. We control precisely the
displacement of two immiscible liquids to observe the meniscus velocities and contact angles
as a function of pressure gradient. Under pseudo-partial wetting condition, we observe that
there is a pressure range where the velocity is extremely low (below 1 µm/s) but non zero,
in contrast with partial wetting, where the meniscus is blocked by a pinned contact line
corresponding to the standard contact angle hysteresis. The role of surface heterogeneity is
discussed to explain the observations. In the same pseudo-partial wetting system, special
dynamic properties are also observed, which concerns various transient regimes of velocity
after a prompt change of pressure gradient.

Then we focus on more complex geometry and we will analyze the role of the corner
films. For a tube of arbitrary cross-section exhibiting corners, capillarity requires that
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the wetting liquid remains along the corners. Liquid flows in these corner films. We
experimentally investigate the role of these corner flows on the dynamics of a liquid-liquid
meniscus, under complete wetting situation, by taking advantage of a microfluidic PDMS
cross-junction. Our results show that there is a strong coupling between the corner flows
and the meniscus displacement, when it lies in the vicinity of the junction (up to 10 times
the channel width). Part of the observations is accounted for by a model based on a
network of adaptive hydrodynamic resistances. Chapter 5 addresses this property.

Lastly, we design a special circle channel to study the consequences of corner flows in the
drainage process under complete wetting situation. Wetting liquid clusters are trapped in
the pore or in a porous media model. Here we demonstrate that trapped cluster of wetting
fluid is drained by a new mechanism, which is different from the displacement by viscous
forces. Under complete wetting situation, the trapped wetting liquid diminishes its volume
gradually through the corners. We develop a model that captures the experimental data.
It will be detailed in Chapter 6 and 7.
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Summary

Flow in porous media:

• Darcy Law describes the flow of a liquid in a porous medium. It proceeds by
averaging several properties and gives a global picture of the flow. The flow rate
and the drop of pressure are described as a function of macroscopic features of
the porous medium (porosity, permeability).
• For a flow between two immiscible fluids, the presence of interface induces the

pressure jumps, which makes Darcy analyses difficult.

Flow in micro-models:

• At the pore scale, the displacement of a wetting fluid by a non-wetting one
is characterized by two dimensionless parameters: the capillary number Ca =
ηV/γ and the viscosity ratio M = η1/η2. The capillary number is the ratio
between viscous forces and capillary forces.
• According to Ca and M , viscous fingering, capillary fingering or a stable com-

pact flow are observed during drainage.
• Experiments show that wetting properties play an important role in the oil

recovery process.

The outline of this PhD

• We focus on the displacement of a meniscus between two liquids in micro chan-
nels of circular or rectangular sections.
• We study the wetting dynamics in complete, pseudo-partial and partial situ-

ations. We analyze our results in the framework of the thermally activated
depinning theory. Under pseudo-partial wetting situation, the role of the wet-
ting film on the wetting dynamics is analyzed.
• In a channel of arbitrary cross-section exhibiting sharp corners, we analyze the

role of corner flows under complete wetting situation.
• The consequence of corner flows in the drainage process under complete wetting

situation is studied in a loop.
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Chapter 1

Wetting

1.1 Introduction

A liquid, placed in contact with a solid, will flow to minimize its free energy. The flow will
continue until the liquid attains a stable or possible metastable equilibrium configuration.
This is a common wetting and spreading phenomenon, which occurs in various industrial
areas. The liquid may be a paint, a lubricant, an ink of a dye. The solid may either
show a simple surface or be finely divided (suspensions, porous media, fibers). At large
scales, wetting or non-wetting plays an important role in oil recovery [7], the efficient
deposition of pesticide on plant leaves [8], the drainage of water from highways [9] and
the cooling of industrial reactors. At smaller scale, wetting solutions are proposed to
solve technological problems in microfluidics and nanoprinting, inkjet printing, etc. [10].
There are also applications for the modification of surface properties. It could be chemical
means to modify the surface chemistry (like plasma treatment [11], silanization [12]). It
could be functional coating to modify the wetting properties, which means a deposit of
thin film intended to generate some special properties (i.e., antireflection, antifreezing, or
antifouling). Generally speaking, wetting phenomena are an area where chemistry, physics,
and engineering intersect.

These modifications of surface by "chemical" interactions act over the scales of molecules,
which is often referred as short-ranged interactions. Surface forces such as Van der Waals
or electrostatic forces are paramount for determining the wettability of a surface. Van der
Waals surface forces, which is called "long-ranged", can still be important over distances
corresponding to dozen of molecules, because their algebraic decay is rather slow.

In this chapter, we explain how to characterize different types of wetting, and their
physical properties. Here the theories come from [13–19]. We also present wetting dynamics
and hysteresis properties. These theories will help us to better understand the experimental
results in this thesis work.

17
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1.2 Wetting criteria
The wetting behavior of a liquid on a solid substrate is determined by the difference between
the cohesive interactions holding the liquid and the adhesive interactions between the liquid
and solid [20]. Here, we neglect the electrostatic interactions, since dodecane and silicon oil
are electrically neutral. The interactions with a short-range repulsion and an algebraically
decaying attraction can thus be related to the molecular interaction potentials, Lennard-
Jones form [21].

u(r) = ε

[(r0

r

)12

−
(r0

r

)6
]

(1.1)

where r0 and ε are positive constants, and r is the intermolecular distance.
The attractive term u(r) ∝ 1/r6 is dominated by the long-range interactions of van

der Waals forces. This algebraic tail form adequately describes the London dispersion
energy between non-polar molecules, the Debye energy between dipolar and non-polar
molecules, as well as the Keesom energy between freely rotating dipolar molecules. There
are other forces (e.g., hydrogen bonding, hydration forces, etc.) which are very short
ranged and leads to exponentially decaying forces between interfaces rather than algebraic
ones. Sharma and Jameel [22, 23] carried out a systematic study of the interplay between
these short-ranged polar surface forces and the Lifshitz-van der Waals apolar forces (arising
from 1/r6 potentials). They adopted the simplifying assumption that the apolar spreading
parameter is simply proportional to the amplitude of the tail of the net apolar interaction
between interfaces. Using the Young-Laplace and Navier-Stokes equations they related the
stability properties of a thin adsorbed film to macroscopic wetting parameters such as the
contact angle.

We consider a three-phase system. A liquid film of thickness h on a solid substrate. h
is much greater than the range of molecular interactions, but enough thin to consider the
contribution of long-range interactions to the energy balance. The third phase, which is
the ambiant phase, could be liquid or vapor. With a quite thin film on a solid surface with
thickness h, the free energy of this film is of the form:

F (h) = γsl + γ + P (h) (1.2)

where γsl is the solid-liquid’s interfacial tension and γ the liquid-ambiance interfacial ten-
sion. P (h) is an alternatively additional energy term, which should be described not only
in terms of the intermolecular forces (van der Waals forces), but also many other compo-
nents: dipole-dipole, hydrogen bonds, and various effects due to the anomalous density of
the liquid near the wall [14]. At large h, P (h) tends to zero. When h is larger than the
molecular size a0, P (h) is controlled by long range van der Waals forces

P (h) =
A

12πh2
, a0 � h� l (1.3)

where A is the Hamaker constant of the system, which depends on the intermolecular
constants in the presence.
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As a result of this interaction potential on the wetting behavior, if the adhesive solid-
liquid interactions are strong, the system can lower its free energy by increasing the distance
h between the two surfaces. This leads to a net repulsive force per unit area between the
solid-liquid and liquid-vapor interfaces, which is called the disjoint pressure Π(h), accounted
in the literature by the introduction of Derjaguin [24]

Π(h) = −dP (h)

dh
(1.4)

1.2.1 Hamaker constant

The Hamaker constant A is thus a key property for determining the wetting behavior,
and can be calculated exactly [25], in terms of the dielectric properties of the three ma-
terials, where solid and vapor denote the material in the two half spaces, and liquid is
the intermediate material. These materials are characterized by their frequency-dependent
polarizability. In the "repulsive" case, in which the layer tends to thicken, we have A > 0.

For the above three phases system, the effective Hamaker constant can be calculated
with Equation 1.5 [20]. The index 1, 2 and 3 refer to displacing fluid, displaced fluid and
substrate.

A132 = −3

4
kBT ·

ε1 − ε3
ε1 + ε3

· ε2 − ε3
ε2 + ε3

− 3hνe

8
√

2
· (n2

1 − n2
3) · (n2

2 − n2
3)√

(n2
1 + n2

3) · (n2
2 + n2

3) · [
√
n2

1 + n2
3 +

√
n2

2 + n2
3]

(1.5)
where εi designates the relative permittivity of component i, ni is its refraction index
(values measured in the laboratory for the fluids and referred from the Handbook for the
solid substrates: glass and cross-linked PDMS), kB is the Boltzmann constant 1.381 ×
10−23 J.k−1, T the atmosphere temperature 298 K, h is the Planck constant 6.626 ×
10−34 J.s and νe is the adsorption frequency in the ultraviolet, equal to 1015 [26].

In Equation 1.5, the first term presents the integration of the dipolar interactions over
all frequencies, and expresses them as an effective interaction between the two surfaces
bounding the half spaces. It is given by the "zero frequency" dielectric constants of the
materials, called zero-frequency or Keesom and/or Debye part.

The second term considers the main contribution to the integral. The frequencies
corresponds to visible light. And consequently it is given by the refractive indices in the
visible. It is called the dispersive or London part.

The Hamaker constant A is the sum of the two contributions given above. It also
follows the second term that, for a symmetrical situation (two identical materials separated
by a third and different material), the net effect of the van der Waals forces is always
an effective attraction between the two interfaces (A<0). Thus if only van der Waals
interactions are important, two interfaces are attracted to each other and V = 0. In
general, a wetting problem is different, as there are three different materials. In that case,
it follows Equation 1.5 that depending on the dielectric properties of the three media,
Hamaker constant A can have either sign.
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1.2.2 Spreading parameter

For a system of three phases: vapor, solid, liquid, we introduce the spreading parameter S,
defined by S = γsv − (γsl + γlv), which is the difference between the energy of a dried solid
and that of a solid covered by a macroscopic layer of liquid [13] (γsv, γsl and γlv are the
solid-vapor, solid-liquid and liquid-vapor interfacial tensions, respectively. The spreading
parameter S is often determined using contact angle measurements of a drop of liquid on
a solid surface in air, which will be detailed later.

If the three interfacial tensions and the Hamaker constant are known, the wetting state
of the fluid follows directly. If S < 0 and regardless of the sign of A, a droplet with a
finite contact angle minimizes the free energy of the system, and this is the partial wetting
situation (detailed in Section 1.2.4). On the other hand, if S ≥ 0, the contact angle is zero.
This prohibits the formation of a wetting layer. Furthermore, if S ≥ 0 and A < 0, a wetting
layer will form, and the system will consequently be in equilibrium when a macroscopic
uniform liquid film covers the whole solid surface. We speak of complete wetting (detailed
in Section 1.2.3). If S ≥ 0 and A > 0, an intermediate state may occur: pseudo-partial
wetting (detailed in Section 1.2.5), which exhibits a coexistence of macroscopic contact
angle and microscopic wetting film.

1.2.3 Complete wetting

In a classical vapor/liquid/solid system, the free energy F (h) per unit area of a flat film
of thickness h, pictured in Figure 1.1, is given by Equation 1.3, where we take S to be
positive and A to be negative.

F (h) may be a monotonically decreasing function (Figure 1.1(a)), or have a maximum
(Figure 1.1(b, c)) at h = hm. Then, for h < hm, Π(h) becomes negative. In any case
above, the free energy minimum corresponds to a solid, wet by a thick film h→∞. This
complete wetting is studied in detail in the review of P. G. de Gennes in 1985 [13].

γSO

F(h)

γSL+γ

S

hS h
(a)

F(h)

γSO

γSL+γ
S

hS h
(b)

hM

F(h)

γSO

γSL+γ hSmin h

(c)

hSmax

Figure 1.1: Qualitative plot of the free energy F (h) of a film versus thickness h for S
positive and A negative. (a) F (h) is monotonously decreasing, (b) F (h) has a maximum
and one inflection point, (c) F (h) has two reflection points. In all cases, F (h) is minimal
for h→∞, this corresponds to the complete wetting situation.
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hS

DistalProximal

Molecular
      Tip

Figure 1.2: Final "pancake" in the case of complete wetting. Near the contact line, the
profile is parabolic in the proximal region controlled by van der Waals energies and ends
with a microtip reaching the solid surface with a horizontal slop. The solution hs(min)

(hs(max)) corresponds to a minimum (a maximum) of the energy F (h).

In this wetting situation, a small droplet, put in contact with a flat solid surface, spreads
out and becomes the thin "pancake", pictured in Figure 1.2. The thickness of this wetting
film h results from a competition between S, which favors a large wet region and long-
range forces, which tend to thicken the film. The tangent to the curve F (h) in Figure 1.1
graphically constructs a threshold thickness hs of "pancake", whose equation is given by:

P (0) = S = P (hs) + hsΠ(hs) (1.6)

The droplet spreads and achieves a thin wetting film surrounded by a dry solid to
minimize its energy. The films with thickness greater than hs are stable, and with thickness
less than hs are metastable or unstable. This thickness is not always required small, when
S � γ, this thickness is greater than a molecular film. Theoretically, a droplet under
complete wetting spreads and achieves a wetting film of thickness hs. With smaller S, the
thickness is greater, as P and hΠ(h) tend to 0 when h becomes big. So a small S involves
a thick wetting film.

1.2.4 Partial wetting

The negative spreading parameter S and positive or negative Hamaker constant A lead to
partial wetting. The liquid droplet makes a finite contact angle on a dry solid, sketched in
Figure 1.3, with corresponding free energy F (h) in Figure 1.4.

When S is negative, the droplet does not spread and form a macroscopic contact angle
θ with the substrate. This angle is noted θe in equilibrium, which is determined by the
resultant between adhesive and cohesive forces. The contact angle provides a measure of
wettability [27]: A contact angle θe < 90◦ usually indicates that wetting of the surface is
very favorable, and this is a hydrophilic surface. A contact angle θe > 90◦ generally means
that wetting of the surface is unfavorable and this is a hydrophobic surface.

For a liquid droplet on a solid substrate in Figure 1.5, three different phases are present:
vapor, liquid and solid. Therefore there are three interfacial tensions needed to be con-
sidered: solid-liquid γsl, liquid-vapor γlv and solid-vapor γsv. The relation between the
equilibrium contact angle θe and the three interfacial tension is given by Young’s equation
(1805) [28]:

cosθe =
γsv − γsl
γlv

(1.7)
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Practically, the spreading parameter of the vapor/liquid/solid system is measured by
the γlv.

S = γlv(cosθlv − 1) (1.8)

where γ = γlv denotes the liquid-vapor interfacial tension.
For a liquid/liquid/solid system, the spreading parameter is defined when the three

phases are in equilibrium (force balance) with each other. A simple combination of Young’s
law (see Equation 1.7) allows to deduce the value of S.

S = γS1 − (γS2 + γ12) = γ2vcosθ2v − γ1vcosθ1v − γ12 (1.9)

where, index 1 and 2 are the two liquids. Specially, for a water/oil/solid system, we have

S = γair/oilcosθoil/solid − γair/watercosθwater/solid − γ = γ(cosθe − 1) (1.10)

In a liquid/liquid/solid system, the droplet could be liquid A in liquid B or liquid B in
liquid A on solid surface. Each situation leads to a spreading parameters S1 or S2.

With this relation Equation 1.10, the θe can only be defined for negative S. The small
spreading parameter S corresponds to a big contact angle θe, which means the surface is
less wettable by this liquid.

Drop

Dry

(a) (b)

Dryθe θe
Drop

Figure 1.3: Final equilibrium of a droplet in the case of partial wetting. The solid around
the droplet is dry: the profile is hyperbolic and curved downward if A is negative in (a)
and upward if A is positive in (b).
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Figure 1.4: Free energy F (h) corresponding to partial wetting. Both situation have negative
S, but negative A in (a) and positive A in (b). F (h) has no minimum at finite thickness.
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Figure 1.5: Young’s relation is interpreted as a mechanical force balance on the three-phase
contact line.
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Figure 1.6: Free energy corresponding to pseudo-partial wetting. Both S and A are posi-
tive.

1.2.5 Pseudo-partial wetting

This wetting is characterized by a positive spreading parameter S and a positive Hamaker
constant A.

Depending on the particular shape of Π(h), sketched in Figure 1.6, Brochard-Wyart
predicted another type of wetting designed as pseudo-partial wetting, for which the inter-
action between the solid and the non-wetting phase (usually vapor) is attractive at long
range and repulsive at short distances. In this situation, a macroscopic equilibrium contact
angle θe coexists with a thin wetting film of thickness he, sketched in Figure 1.7, which is a
result of the long-range interaction forces. θe and he are related in equilibrium, but depend
on the considered conditions (fixed volume, fixed pressure, size of the droplet ...) [30]. The
free energy presents a minimum at a thickness of film hm in Figure 1.6, which corresponds
the final equilibrium state of this droplet with a spherical cap and a film of thickness hm.
The contact angle θ in equilibrium is given by a balance of forces acting on the contact
line:

γe = γcosθ (1.11)

where γe = γ + hΠ + P is the effective interfacial tension of the microscopic film. For
h = hm, Π = 0 and γe = γ + P .

We will present an example of spherical droplet under this wetting and some exper-
imental results in Chapter 3. We will also present that this wetting is common under
a liquid/liquid/solid system, when the substrate is grafted by a layer of silane. But to
well understand this wetting, we should distinguish pseudo-partial wetting from precursor
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Figure 1.7: In pseudo-partial wetting condition, the final equilibrium state of a large droplet
(a) and its wedge profile (b). There is a spherical cap and a film of thickness hm corre-
sponding to the minimum of F (h) shown in Figure 1.6. The droplet and the film join with
a hyperbolic profile. The truncated wedge is discussed by Wayner [29].

film under complete wetting in section 1.2.5.1 and frustrated complete wetting in section
1.2.5.2.

1.2.5.1 Precursor films

Under complete wetting situation, for S at the order of γ, during the spreading of a droplet,
the van der Waals forces lead to the formation of a precursor film in front of the contact
line. Precursor films should be distinguished from films that exist in equilibrium, and help
us to understand the dynamical film structure that precedes a spreading drop [31]. Away
from the liquid drop, the thickness of precursor film is typically just a single molecular
layer.

These films are established by flow from the main drop. This feature was confirmed by
using ellipsometry [32, 33], interference patterns [32], polarized reflection microscopy [34],
and phase-modulated interference microscopy [35].

Figure 1.8: Schematic drawing of a moving contact line for complete wetting S > 0, A < 0.
Ahead of the apparent contact line there is a precursor film driven by van der Waals forces.



1.2. WETTING CRITERIA 25

1.2.5.2 Frustrated complete wetting

We should discuss about another intermediate wetting state, called frustrated complete
wetting, which is characterized by a mesoscopic wetting film [36]. As only the long-range
interactions oppose to the formation of a macroscopic wetting film [37]. With A > 0, the
Van der Waals interactions generate an attractive force between the two interfaces. This
force promotes the gas phase to contact the substrate, and the short-range interactions
promote the liquid phase on the surface. So the short and long-range interactions have
contrary effects.

While, in the situation with a mesoscopic wetting film, the long-range interactions
oppose the complete wetting of liquid phase and tend to diminish the wetting film, the
short-range interactions tend to promote the wetting of gas phase with the substrate, and
induce the wetting transition, frustrated complete wetting [38,39].

In the thesis work of Bertrand [16], he distinguished pseudo-partial wetting from frus-
trated complete wetting. For pseudo-partial wetting the thickness of microscopic film is
determined by the competition between the short-range interactions, which promote the
spreading of droplet, and the positive Hamaker constant, which tends to diminish the
wetting film. For the frustrated complete wetting, the interfacial potential of short-range
interactions is negligible. The thickness of mesoscopic film is determined by the equilib-
rium between Hamaker constant, which promotes the microscopic wetting film, and the
second term of development of interfacial potential of Van der Waals, which promotes a
macroscopic film.

We treat the pseudo-partial wetting and frustrated complete wetting as the same. Be-
cause the appearance of macroscopic drop and microscopic wetting film around it give the
same criteria. And the same shape of disjoining pressure needs a system with a minimum
free energy with a infinite thickness.

From an experimental point of view, pseudo-partial wetting has been observed with
a rather limited number of systems the wetting of air/pentane/water [40] by neutron
reflectometry [41], of air/alkane/brine-AOT by ellipticity measurements [42–44], and of
air/PDMS/surfactant solution by a video microscope [45, 46]. Despite this few examples,
this type of wetting has inspired several theoretical works that focused on the shape of
interface from the macroscopic scale to the microscopic one [30,47,48].

Bertrand [16] reported temperature-induced wetting transitions for different alkanes
and a novel pressure-induced wetting transition for an alkane mixture. The experiments
enable us to determine the global wetting phase diagram as a function of chain length
and temperature which they subsequently calculate theoretically, as shown in Figure 1.9.
The two transition lines are found to be approximately parallel, in accordance with basic
theoretical arguments [37].
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Figure 1.9: Wetting phase diagram as a function of chain length and temperature: the filled
circles correspond to the experimental wetting transitions and the solid line is the theo-
retically calculated line. The open circles correspond to the experimental critical wetting
transitions and the dashed line is the theoretically calculated critical wetting transition
line [37].

1.3 Shape of the interface and equilibrium properties
In the previous section, we described the different wetting situations. Here our aim is
to describe the shape of the interface between the fluids and the solid in the absence of
gravity. We will consider two geometrical situations : the plate and plate geometry and
geometries displaying wedges. We will suppose that Bond numbers are small, and neglect
gravitional effects. We will then discuss the shape of the interfaces in those geometry as a
function of the wetting situation.

1.3.1 Plate and plate geometry

We first deal with the plate and plate geometry, which is equivalent, up to a factor of 2, to
the case of a circular tube. We consider two infinite plates separated by a distance h, as
sketched in Figure 1.10. The geometry is loaded by two fluids (fluid 1 and fluid 2) and we
wonder what is the shape of the interface. We note P0 and P as the pressures, respectively
in fluid 1 and fluid 2.

1.3.1.1 Partial wetting situation

We first consider the partial wetting situation. At rest, there is no flow. The pressure field
are homogeneous and the pressure gradient sets the shape of the interface:

P0 − P = γ(
1

Ra

+
1

Rb

) (1.12)

where Ra and Rb are the two curvature radii of the interface.
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This equation is supplemented by boundary conditions that set the contact angle at the
solid interface. Following Eq:1.9 the contact angle on a perfect substrate at equilibrium is
given by the knowledge of spreading parameter S. We recall that S = γS1 − (γS2 + γ12) =
γ12(cosθe − 1).

In the partial wetting case, the interface is thus of small area and there does not exist
microscopic films. For an ordinary (disordered) substrate, the situation is more complex.
The surface has chemical defects (its chemical compositions vary from point to point) or
physical defects (surface roughness). Contact angle of sessile drop θe on this kind of surface
is not unique. If we inject more liquid into this drop through a needle, the drop remains
pinned to its contact line and its contact angle increases until a threshold value, often noted
advancing contact angle θa, beyond which the contact line advances. Reciprocally, if we
decrease its volume by pumping the liquid, its contact line remains pinned until another
threshold value θr, the receding contact angle. Classical point of view about hysteresis
describes that triple line is pinned and immobile whenever θ lies within a finite interval
θr < θe < θa [13]. We could define the hysteresis of contact angle:

∆θ = θa − θr (1.13)

An ideal solid surface is flat, rigid, perfectly smooth, chemically homogeneous, and
has zero contact angle hysteresis. Practically, a good surface could be defined by a small
hysteresis ∆θ ≤ 5◦. If we place a droplet on a non-cleaned glass, the hysteresis ∆θ could
be several dozen degrees, which has been studied by Johnson and Dettre on substrates
with various roughness [49].

We still have a poor understanding of the hysteresis for random substrates as we have
no theoretical or experimental answer to such basic questions as how hysteresis depends
on the density of defects or on the strength of the defects.

1.3.1.2 Pseudo-partial and complete wetting situation

The shape of the interface between the two liquids is more complex. Microscopic films may
exist.

We consider a film of thickness he, in equilibrium with a meniscus inside a flat tube of
radius R (see Figure 1.10). There is a macroscopic contact angle, provided that disjoining
pressure Π(h) is negative at long range, as sketched in Figure 1.11 or Figure 1.6.

Derjaguin’s equation (Equation 1.4) applies to determine the shape of the meniscus
and reads in two dimensions [24]:

p0 − p(x) = γ
hxx

(1 + h2
x)

3/2
+ Π(h) (1.14)

In the macroscopic meniscus, the disjoining pressure could be neglected, and the previ-
ous equation leads to constant curvature, so that the macroscopic contact angle is linked
to the pressure difference by p0 − p = 2γ cos θ/R. Far from the meniscus (towards the he
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Figure 1.10: Schematic drawing of the considered situation: a meniscus in a tube, where
the pressure of the two phases are p0 and p. Below: a zoom on the contact line region
showing the intermediate region between the macroscopic meniscus and the thin wetting
film.

decreasing direction), the thickness he of the wetting film is given by p0− p = Π(h). For θ
smaller that π/2, integration of Equation 1.14 leads to:

(p0 − p)(R− he) = γ +

∫ R

he

Π(h)dh (1.15)

which gives after usual approximations an additional relation between the macroscopic
contact angle and the disjoining pressure:

2 cos θ = 1 +
1

γ

∫ ∞
he

Π(h)dh (1.16)

This shape of disjoining pressure thus allows the coexistence between a macroscopic
contact angle θ and a film of thickness he. Note that he is always higher than a thickness
hmin, solution of 2γ/R = Π(h), and should also be smaller than hmax. However, consid-
ering in more details stability criteria and following Starov [18] [Wetting and spreading
dynamics], a solution with θ > π/2 is not stable.

At equilibrium, the pressure is uniform inside both phases and thus 2γ cos θe/R = Π(he).
Then, Equation 1.16 is the integration of the generalized Laplace law from the meniscus
region to the flat wetting films, which constitutes the second equation needed to define
the equilibrium state [18]. Thus there is only one equilibrium contact angle expected for
pseudo-partial wetting systems with ideal surfaces. In the complete wetting situation, the
macroscopic angle is equal to 180◦C. The thickness of the film is set by the disjoining
pressure Π(h).
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Figure 1.11: Schematic drawing of the disjoining pressure under consideration. Interactions
are attractive at long range, and repulsive at short distance, so that there exists a stable
film whose thickness is below hmax.

1.3.2 Existence of corner films

The shape of the interface between two liquids may differ in complex geometries. The
presence of wedge has some important consequences on the equilibrium shape of the inter-
faces, due to capillarity. Indeed, the combination of a uniform curvature of the interface
and the boundary conditions of fixed angle at the solid surface leads to the formation of
an long liquid rivulet along the wedge, providing that the opening angle of the wedge is
low enough. The existence condition of such a stable rivulet in a wedge of opening angle
α is given by the Concus-Finn relation [50], which reads

θ < π/2− α

2
, (1.17)

where θ is the contact angle.
In order to understand this relation, let us consider a tube that have a circular cross

section except in one edge such as the schematic drawing in Figure 1.10, the curvature
between the two phases is given by 2 cos θ/R, where R is the tube radius. Far from the
meniscus, we expect for an infinite rivulet that the curvature has only one dimension.
The cross-section of the rivulet is schematic drawingd in Figure 1.12, which defines the
notations used. Its curvature is given by cos (θ + α/2) /l sin (α/2). The size l of the rivulet
is thus given by

l = R
cos
(
θ + α

2

)
2 cos θ sin α

2

(1.18)

From this equation, one recovers directly the Concus-Finn relation, by stating that l
is necessary positive. Here it has been implicitly assumed that θ < π/2, that is to say we
have considered the fluids that preferentially wets the solid surfaces. The problem is of
course symmetric.
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Figure 1.12: Schematic drawing of non-circular tube exhibiting a wedge of angle α.

It is interesting to focus on the particular case of α = π/2, which will be the situation
encountered experimentally in tubes of square cross-sections. Then, the size l of the corner
film is given by R (cos θ − sin θ) /2. There exists corner films only for θ < π/4. In the limit
of small contact angles, the size l is one fourth of the channel size.

Note that those considerations are valid for all the wetting situations. The angle in-
volved in the Equation.1.18 is the contact angle in the partial wetting situation, the macro-
scopic contact angle in the pseudo-partial wetting situation and Π in the complete wetting
situation.

From a practical point of view, these corners are very often present in porous media
because of the complex geometry.

1.4 Wetting dynamics

In the previous section, we have described the features of the wetting in equilibrium. In
this section we deal with wetting dynamics. Despite much research over many years, the
precise mechanism, by which a liquid front advances on a solid remains only partially
understood. The main parameters used to quantify the wetting dynamics are the relative
velocity and the dynamic contact angle θd. The first one is a velocity at which the liquid
moves across the solid, i.e. the wetting-line velocity V . The second one may be an angle,
which if formed between the moving liquid interface and the solid surface at the line of
three-phase contact (the contact line). The dynamic contact angle is the key boundary
condition. The relation between the velocity and the angle depends upon the presence or
absence of wetting films and thus upon the nature of the wetting. However, little is known
concerning the dynamics properties of wetting and spreading in pseudo-partial wetting
situation. Since it is an intermediate situation between partial wetting, where contact
angle hysteresis plays an important role at low velocities, and complete wetting, where
there is no hysteresis, the description of the dynamics under pseudo-partial wetting asks
for experimental studies. In the following we will describe the partial, pseudo-partial and
complete wetting situation. We will not discuss the existence of corner films. Even though
their roles have been pointed out in the literature, a comprehensive description of the flow
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in those films has not yet been given.

1.4.1 Wetting dynamics: partial wetting situation

This section deals with the wetting dynamics in the partial situation case. Several attempts
have been made in the literature to explain the observed behaviors. At this stage, three
main approaches are used. They differ from each other both in terms of their conceptual
frameworks and in their identifications of the effective channels of energy dissipation.

The first one introduced by Cox is a hydrodynamic approach. The dissipation is due to
the viscous flow within the wedge of the liquid near the moving contact line. Changes in the
experimentally observed (and therefore macroscopic) dynamic contact angle are attributed
to the viscous bending of the liquid-gas interface within a mesoscopic region below the
scale of observation.

The second approach originates from the Frenkel/Eyring view [51] of liquid transport
as a stress-modified molecular rate process. This approach discards dissipation due to the
viscous flow. It focuses insteadly on what occurs in the immediate vicinity of the moving
contact line due to the process of attachment or detachment of fluid particles (molecules)
to or from the solid surface. The last approach is more recent and is formally similar to the
second one. It is however conceptually very different since the thermally activated process
concerns successive pinning and depinning of the contact line.

1.4.1.1 Hydrodynamics approach

Following the hydrodynamic approach, changes of the dynamic contact angle are observed
experimentally (and therefore macroscopically). These changes are attributed to viscous
bending of the liquid-gas interface within a mesoscopic region below the scale of observa-
tion. The microscopic contact angle θm is usually assumed to be governed by short-range
intermolecular forces and to retain its static value θe, though empirical relationships be-
tween θm and V have also been proposed as a way of specifying θm. Within this hydrody-
namic model there are therefore three relevant length scales, as shown in Figure 1.13.

Figure 1.13: Schematic representation of viscous bending on the mesoscale for an advancing
meniscus. There are three relevant length scales [52].
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As it is well known, the classical hydrodynamic approach, which describes the flow near
a moving wetting line, does not result in a physically acceptable solution. Because of the
conflict between a moving contact line and the conventional no-slip boundary condition
between a liquid and a solid, stresses are unbounded at the wetting line. The force exerted
by the liquid on the solid becomes infinite. One approach to deal with this singularity
has been to truncate the solution artificially at the molecular scale where the continuum
description breaks down. Alternatively, the flow equations and boundary conditions have
been modified by relaxing the no-slip condition in the vicinity of the contact line. In this
case, the force exerted on the solid is then finite, though the stresses in the liquid remain
unbounded. The balance between the energy dissipation and the interfacial tension energy
leads to a relation, which describes the change in the dynamic contact angle due to viscous
bending of the liquid-gas interface. For low dynamic contact angle (θd < 3π/4), it may be
written in terms of the capillary number as:

θ3
d − θ3

m = 9Caln(L/lm) (1.19)

where ln(L/lm) is a fitting parameter. L and lm are appropriately chosen macroscopic and
microscopic length scales, respectively. This is noted as Cox-Voinov’s Law.

If the hydrodynamic model is applied to the spreading of small drops and small contact
angles, Equation 1.19 leads to simple scaling laws for the base radius R and the dynamic
contact angle θd as a function of time t. It is the Tanner law (see Equation 1.24 and 1.25).
These relationships have been widely confirmed for small drops of completely wetting
liquids [53–56]. This result is sometimes advanced as a more general demonstration of the
validity of Equation 1.19 and its underlying assumptions.

1.4.1.2 Molecular-kinetic theory

f cl

E*

λ

Figure 1.14: Schematic drawing of the molecular-kinetic theory by Blake and Haynes [57].
Contact line motion is the hopping of molecules between the potential wells provided by
the substrate.

A few years before the emergence of the various derivations of the hydrodynamic the-
ory, Blake and Haynes proposed a rather different approach to describe the contact line
movement. It supposes that the microscopic processes, that take place in the vicinity of the
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contact line, dominate the dissipation, in contrast to the hydrodynamic approach, where
this contribution is neglected (the microscope scale is even truncated in the integration).
In the original "molecular-kinetic model" [57, 58], shown in Figure 1.14, the dynamics of
the contact line is a result of jumps at the molecular scale from one adsorption site to
another. The thermally activated process is controlled by two parameters: the microscopic
size λ of elementary activated jumps and E∗, an "activation free energy of wetting" [57].

E∗/λ2 is expected to be in the order of the energy of adhesion between solid and liquid.
The idea is that under a force fcl at the contact line, each individual molecules jump over

a length λ in a local minimum of energy of depth E∗. At thermal equilibrium, backward
and forward jumps are equal. The applied forces per molecule fclλ deforms the potential
landscape to make forward steps, so that the frequency 1/τ of these jumps is given by

1

τ
=

2

τ0

e
− E∗
kBT sinh

λ2fcl
2kBT

(1.20)

where τ0 is a microscopic time for a single "attempt". Since the contact line speed is
V = λ/τ , one thus obtains

V = λν0e
− E∗
kBT sinh

λ2γ(cosθe − cosθd)
2kBT

(1.21)

where ν0 is a thermal frequency (ν0 ≈ kBT/h).
This equation is generally used in its linearized form since λ is a molecular size and

the argument of the hyperbolic sine is smaller that 1. In this limit, the various unknown
parameters reduce to a single one. If λ has a clear physical meaning, the energy E∗ is
less clear. Pomeau [59] proposed that E∗ is estimated as the heat of evaporation per
molecule, which would lead to eE∗/kBT ≈ ρliquid/ρgas ≈ 103, significantly enhancing the
speed dependence of the microscopic contact angle. Recently, it was also proposed that
E∗/λ2 is in the order of the work of adhesion WA = γ(1 + coseq) [60]. However, these are
order-of-magnitude estimates, and given the very strong dependency of the contact line
velocity with respect to λ and E∗, effectively one has to treat λ3ν0 exp((−E∗/kBT ) /2kBT )
as an adjustable parameter, to infer the dynamic contact angle θd.

1.4.1.3 Combined model

Despite their fundamentally different physics and somewhat different predictions, both the
hydrodynamic and molecular-kinetic models have been shown to be reasonably effective in
describing the experimentally observed behavior of the dynamic contact angle in a range
of systems. While hydrodynamic approach predicts that for small contact angles V ∝ θ3,
molecular-kinetic theory predicts V ∝ θ2.

In the past, opinion regarding the two models has appeared somewhat polarized. How-
ever, a point of view that is gaining increasing ground is the possibility that both wetting
line friction and viscous dissipation play a part in determining the dynamic contact angle.
Leaving aside the specific details of the two models, it seems self-evident, on simple ther-
modynamic grounds, that the microscopic contact angle will be disturbed by movement of
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the contact line, and equally self-evident that viscous flow in the small wedge of liquid near
the contact line is likely to modify the meniscus profile in this region. The real question
concerns the relative importance of the two effects and how they can best be described.

Considering dynamic wetting as an irreversible process, Brochard and de Gennes [61]
assume that the rate of energy dissipation per unit length of the wetting line is the product
of the flux U and the out-of-balance interfacial tension force γ(cos(θe) − cos(θd)). If one
then supposes that the total energy dissipation comprises the viscous losses in the (thin)
wedge of liquid adjacent to the moving wetting line plus the losses due to wetting-line
friction, then, using simplified arguments, one obtains:

γ(cos(θe)− cos(θd))V =
6ηV

θd
ln(L/Lm)V + ξV 2 (1.22)

Here, the lengths L and Lm together with the contact angle θd define the wedge of liq-
uid in which viscous dissipation occurs (estimated using the lubrication approximation).
The length L characterizes the size of the wedge, and Lm the molecular limit where con-
tinuum mechanics breaks down. Because the contact angle of the wedge θd occurs in
the denominator of the viscous term, viscous dissipation dominates at small contact an-
gles. Brochard-Wyart and de Gennes interpreted the friction coefficient ξ in terms of the
molecular-kinetic theory.

Others similar expression have been obtained by Petrov [62,63] and de Ruijter [64].

1.4.1.4 The Shikhmurzaev model

A natural starting point for the modeling is the definition of a contact angle through the
equation which introduces this concept into macroscopic fluid mechanics. On a macroscopic
length scale, the interfaces are modeled as geometrical surfaces of zero thickness possessing
some specific "surface" properties, first of all the interfacial tension. When the liquid is at
rest, the static contact angle θe is introduced through the well-known Young’s equation,
which from a mechanical standpoint is simply the projection of the force balance on the
tangent to the solid surface assumed to be smooth and chemically homogeneous. When the
contact line is moving, the force balance equation remains valid, but the fact that θd changes
suggests that at least one value of the interfacial tension is changing. Shikhmurzaev [65]
suggests that this change comes from temporal transient and from the requirement for
a fluid particle to adapt its properties to its neigboorhood. Indeed, if we look at the
flow in the reference frame moving with the contact line, we will see that a fluid element,
which initially belongs to the free surface, arrives at the three-phase interaction region,
traverses it in a finite time to become an element of the liquid-solid interface, and is
finally driven away from the contact line by the moving solid wall. Hence, the interfacial
tension and other surface properties associated with this fluid element have to change from
values corresponding to the liquid-gas interface to those of the liquid-solid interface. This
process, which is of course not instantaneous, gives rise to a interfacial tension gradient in
the vicinity of the contact line. The shear-stress singularity is removed since the interface
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and the solid have their own velocity in this model. Note that no slip between the liquid
and the solid is assumed.

This leads to :

cos(θe)− cos(θd) =
2V (ρs2e + ρs1eu0(θd))(1− ρs1e)−1

(V 2 + ρs2e)
1/2 + V

(1.23)

where V is the nondimensional contact line velocity, u0(θd) is the tangential component of
the free surface velocity in the reference frame moving with the contact line, ρs1e and ρs2e
are equilibrium surface density corresponding to the liquid-gas and liquid-liquid interface.

1.4.1.5 Comparison with experiments

In this section, we examine the success of the models outlined before. Comparison between
experimental data and theoretical model is a difficult task. In dynamic contact angle
experiments, it is clearly important to measure the angle as accurately as possible over the
widest possible range of wetting line speeds and angles. Unless this is done, it is difficult
to assess which theory is effective or not.

We will see in the following examples that at this stage it is difficult to clearly define
which theory applies to which wetting situation. Hoffman’s data [66] deals with silicone oils
in a glass capillary. Silicone oils wet clean glass, so a precursor film is probable. Both the
conventional hydrodynamic theory and the molecular kinetic theory are able to represent
the data reasonably well, with sensible values of the fitting parameters. We note that the
fit with the hydrodynamic model is slightly better. Note that the fit has to be truncated
to θd < 3π/4 due to the expansion made in the calculation.

Figure 1.15: Effect of flow on apparant contact angle of an advancing liquid-air interface.

Blake et al [67] studied the contact angle for a polyethelene terehtalate (PET) tape
plunging into a pool of aqueous glycerol mixture. For Ca less than 1 × 10−3, only the
molecular kinetic theory provides a good fit to the data. For high values of Ca both theory
describe the data. We note that the parameter used to fit the data at low speed are not
consistent with the one used at high speed when the molecular kinetic theory is used. Same
contradictions were observed by G.N. Batts using di-n-butyl phthalate on PET at 55◦C
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(Kodak Limited R & D) [52]. This suggests that both channels of dissipation play a role
in the displacement of the triple line. Hydrodynamics seems to play the major role for
high value of the capillary number whereas molecular displacement are in charge of what
happens at small viscosity. Overall it seems that neither model is universally applicable
but that both hydrodynamic and molecular mechanisms are at work: that viscous bending
may occur, but θm is also speed dependent. Combined model is thus a way to describe the
entire curve. This is specially true if the data is restricted to a narrow class of liquids.

An exception is in the case where one viscous liquid displaces another. Here serious
discrepancies have been found experimentally with the hydrodynamic model whether the
molecular-kinetic model describes well the data [68]. Note that applying Shikahmurzaev’s
model may in some case give a good precision even though some discrepanacies may be
found for low capillary number.

At this stage, no clear model emerges and experiments dealing with a wide range of
liquids are required to probe these theories. More importantly for a practical point of
view, none of these theory deals with the contact angle hysteresis, which is one of the most
important features that need to be taken into account at low capillary numbers. In all the
approach, the equilibrium contact angle is taken to be either the advancing one, either the
receding one, depending on the contact line motion.

1.4.1.6 Thermally activated depinning theory

The last approach which has emerged more recently is based on a thermally activated mo-
tion, similarly to the molecular kinetics theory (MKT). However, the physical mechanism
of the motion is rather different. Instead of molecular jumps, Prevost et al. proposed,
that, on a disordered substrate, the thermally activated jump corresponds to successive
depinning events from one defect to another [19, 69]. The idea of this model, designed
thereafter as the "thermally activated depinning theory" is that for the contact line to
move under a force fcl = γ(cosθe − cosθd), per unit length on the contact line, the contact
line has to unpin the mesoscopic pinning sites of the surfaces [19,70].

Although this model is formally equivalent to the MKT and leads to the same equation
(see Equation 1.21), λ and E∗ have a very different physical meaning. λ is now the
correlation length of the disorder and E∗ the typical energy barrier between two pinned
configurations of the contact line. The corresponding orders of magnitude are thus very
different, and, consequently, the Equation 1.21 could no more be linearized. Indeed, the
argument of the hyperbolic sine is now larger than 1 and the dynamics is exponential.
Similarly to the MKT, the additional viscous dissipation considered in the hydrodynamic
theory should be added to the model to be able to describe high-Ca regimes.

Taking advantage of the very low viscosity of supercooled helium system, Prevost et
al. reported a set of measurement, that strongly indicates in this case such a model
applies. Since the superfluid helium-4 does not wet cesium at low temperature [71], it
makes viscous dissipation negligible below 2.17 K. This system has been proven useful
to study some of general features of wetting transition such as the roughness of contact
line on a disordered substrate [69]. Prevost et al. have measured the contact angle of
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a liquid helium-4 meniscus on a cesium substrate as a function of velocity of the three
phase contact line at low temperature. Equation 1.21 gives the exponential dependence
of velocity V and dynamic contact angle cosθd − cosθe in Figure 1.16 for sufficiently large
forcing fclλ

2/kBT � 1. The dynamics is indeed found to be exponential with respect
to the driving force and thermally activated (see Figure 1.16). Since both fcl and kBT
are known experimentally, the fits of Figure 1.16 determine the activation length λ. For
the helium system under study, λ ∼=15 nm is found, which is significantly larger than any
atomic distance and which matches the surface correlation length of the defects.

Figure 1.16: Contact line velocity plotted as a function of the applied forces per unit length
fcl for various temperatures under a liquid helium-4/cesium substrate system [70]. Solid
lines are exponential fits to the experimental data.

This approach has been followed by Petrovet al. [62,63], to obtain E∗ and λ for a range
of low viscosity alcohols on an amorphous substrate. Remarkably, the length λ is found
to be in the order of 8 nm, in qualitative agreement with the activation length extracted
from Figure 1.16. This result once again points to a process, which limits the contact
line velocity and takes place on scales much larger than a molecular length. It has been
suggested by Prevost et al. that λ is to be identified with the density of pinning sites, at
least for the systems mentioned above.

Up to our knowledge, rather few experiments have been yet reported to validate this
third approach.

1.4.1.7 Thermally activated depinning theory and Hysteresis

One of the main success of the thermally activated depinning theory is to be able to
describe the contact angle hysteresis as well as the dynamics at low capillary numbers.
Recalling that the hyperbolic sine is not in its linear range in the case of high λ, the
velocity predicted by this approach naturally exhibits many order of magnitudes and an
apparent "pinned" regime where the velocity is very low, corresponding to the macroscopic
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contact angle hysteresis. The activated regime is nothing but a thermal rounding of the
depinning transition.

Disorder leads to contact line pinning, which in turn provokes the hysteresis of contact
line. The precise value of the threshold is not universal: it depends on the shape and
density of the defects, their chemical nature, etc.

Figure 1.17: Activation energy as a function of the hysteresis for liquid hydrogen on various
disordered cesium substrates.

In the depinning approach, there is a single physical mechanism and a single energy
scale E∗, which controls both the dynamics close to the threshold and the hysteresis H.
Such a simple picture makes sense for systems such as cryogenic liquids on alkali-metal
substrates. For such substrates with a disorder scale in the order of 10 nm, Rolley and
Guthmann [19] showed that E∗ is in the order of H, as sketched in Figure 1.17. Measured
values of E∗ are on the order of hundred kBT . A clear prediction of these energy is however
still lacking at present.

In summary, it seems that the motion of a contact line is still an open question, as
reflected by the three groups of theories presented above. If the thermally activated depin-
ning theory that is emerging is appealing since it allows one to describe the contact angle
hysteresis, it suffers up to now of a lack of experimental validation and needs an additional
approach to describe the dynamics at higher Ca, at least when viscous dissipation could
not be neglected.

1.4.2 Wetting dynamics: complete and pseudo-partial wetting sit-
uation

The presence of wetting films modifies the wetting dynamics. In this section, we address
this question. We have decided to group complete and pseudo-partial wetting situation
since they only differ by the A value. At small scale, they display repulsive interactions that
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create a wetting film. Scriven has exposed this subject at length in [72]. In the following we
will present the major points and the major conclusion of this article. The prototype flow
considered here is relevant to the displacement of a fluid by another between two plates.
A numerical result, which is calculated by Dr. Hugues Bodiguel, is also presented. As in
the previous section, corners films are absent in this situation.

1.4.2.1 Wetting films under complete wetting

The spreading of a complete liquid has been well discussed in literature. We recall the
main results in three situations.

Spreading of a droplet A droplet spreads and achieves a thin wetting film on a smooth
homogeneous substrate. Its thickness is answered by Tanner [53]. During the spreading,
the drop radius has a power lax with time:

R(t) ≈
[

10γ

9Bη
A

]1/10

∝ t1/10 (1.24)

designed as Tanner law. The constant B is estimated theoretically: B1/10 = 1.186, and
A is a constant: A = (4V/π)3. The power 1/10 found for the viscous spreading of small
droplets has been well corroborated by many other experiments [54–56]. Tanner law could
be also written for the dynamic contact angle and reads:

θd ≈ t−3/10 (1.25)

Wetting film on a solid plate When an infinite plate is withdrawn (at an angle α to
the horizontal, with a constant velocity V ) from an infinite pool of viscous liquid under
complete wetting situation. A layer of liquid film is therefore deposited on the plate
surface. Landau, Levich and Derjaguin [73,74] proposed a model (LLD model) to describe
this thickness under the form:

h ≈ κ−1Ca2/3 (1.26)

which describe the evolution of this deposited wetting film, κ−1 = 0.95. This validity
condition is given as l� Ca.

Wetting film in a capillary tube In a circular tube with radius b, which is much
smaller than the length l. The thickness of wetting film is given by Bretherton law [75]:

h ≈ bCa2/3 (1.27)

which describe the thickness of deposited wetting film in a circular tube.
This law is not valid if the radius of tube is big, h � b. In this situation, we need to

consider a geometric correction [76]. As Bretherton law initially describes the displacement
of bubble in water, it is not necessary to consider the viscosity ratio. But in the situation



40 CHAPTER 1. WETTING

with liquid/liquid meniscus, Schartz et al demonstrated that Bretherton’s law stays valid
with a rather small change of the prefactor, which depend on the viscosity ratio, provided
that Ca here is defined with displaced fluid [77].

1.4.2.2 Theory of forced displacement

A meniscus between two immiscible phases advancing between two plates leaves behind
him a film of the fluid, which is displaced. Provided the displacement speed measured by
the capillary number is small (Ca = ηV/γ < 0.01), the leading portion of the meniscus is
dominated by capillarity and is thus in good approximation described by a static meniscus.
Behind the film displays a uniform thickness. A transition zone connects the two regions.
The equation governing the shape of the film relies on a balance of viscous capillary and
disjoining forces and momentum fluxes acting on a slice of a film of differential thickness
in the main direction of the flow.

0 = (H−h)
δγsf
δx

+(H−h)h
δ

δx
(2K)γff−h(τ (1)

xy (x,H)−(τ (1)
xy (x, h))+(H−h)(τ (2)

xy (x, h)−(τ (2)
xy (x, 0))

(1.28)
where γsf is the solid-film tension due to intermolecular forces, 2K is twice the mean
curvature of the fluid-fluid interface, γff is the fluid interfacial tension and τxy is the shear
component of the viscous stress tensor. The superscripts 1 and 2 denote the displacing
and displaced fluids, respectively.

δγsf/δx can be expressed in terms of the disjoining pressure. It is equal to

δγsf
δx

= h
δΠ

δh

δh

δx
(1.29)

The continuity of the fluid velocity and of the shear stress at the interface allow us to find
the film profile equation in the low-slope approximation.

d

dx

[
hxx

(1 + h2
x)

3/2

]
= −H

2

γff

δΠ

δh
hx + 12Ca(h− h∞)

G(h)

(4(1− h)2 + 3mh(1− h))h3
(1.30)

G(h) = (1− h)2 +m

[
(3− h∞)(h+ h∞) + (3m− 2)h∞h

2(1− h∞)2 + 3mh∞(2− h∞)
− h2

]
(1.31)

where Ca is the capillary number.
In absence of displacement, at rest we get the augmented Young-Laplace equation (see

Eq 1.16). This equation links the contact angle to the disjoining pressure and the film
thickness.

1.4.2.3 Contact line profile in displacement

In the displacement situation, solving the previous set of equation requires numerical sim-
ulation or numerical expansions. The results distinguish two regimes of capillary number
for two dimensional steady displacements. At low capillary number, displacements can be
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classified as quasi static. In this regime, the film profile is governed almost entirely by
capillarity and disjoining pressure: meniscus shape is given in good approximation by the
augmented Young Laplace equation. At higher capillary pressure, wetting properties, as
determined by disjoining pressure , are insignificant and Bretherton’s purely hydrodynamic
theory governs the shape of the film. The transition between the two regimes is abrupt
extended over no more than an order of magnitude of capillary number. We have analyzed
in great details these calculations and Dr. Hugues Bodiguel has performed some numerical
simulations to improve the numerical expansions.

We proceed with approximations and we rewrite the Equation 1.30. We envisage a
steady state, with a meniscus velocity V . Away from the meniscus region, we assume the
flow of the fluids to obey Poiseuille’s law, and this allows to estimate the meniscus velocity
as:

V =
1

α

R2

ηL

(
p∞ −

2γ cos θ

R

)
(1.32)

where p∞ stands for p(x → −∞) in the non wetting fluid. This equation ensures the
momentum balance at the macroscopic interface. The pressure gradient in the non wetting
phase is then simply given by (p∞ − 2γ cos θ/R)/L.

Since the velocity is very small, we neglect the pressure gradient in the non-wetting
phase. Standard lubrication approximation in the wetting film leads to (ref to Figure 1.10):

ht +
1

βη

d

dx

(
h3px

)
= 0, (1.33)

where β is a numerical factor with the exact value in Equation 1.30:

β =
12(1− h)2 + 12m( (3−h∞)(h+h∞)+(3m−2)h∞h

2(1−h∞)2+3mh∞(2−h∞)
− h2)

(4(1− h)2 + 3mh(1− h))
(1.34)

Usual lubrication approximation is not valid at the meniscus. This should not be a
problem here since the meniscus shape is circular except for small h, where hx � 1.

It is then imperative to change the origin of the x-axis in order be in the frame of the
meniscus. Writing x′ = x−V (t)t, we get ht = V hx′ . The previous equation transforms to:

V hx′ = − 1

βη

d

dx′
(
h3px′

)
(1.35)

After one integration, it reduced to

V = − 1

βη
h2px′ +

C

h
(1.36)

C is, at this point, an unknown constant. It seems reasonable to assume that far from the
meniscus, the film thickness will reaches a constant value h∞, and the pressure gradient
should vanish, p(x′ = h∞) = 0 leads to C = V h∞.
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Using Equation 1.14 and switching to dimensionless quantities (distances normalized
by R and pressures by γ/R), we obtain the following differential equation:

βCa

(
1− h̃e

h̃

)
= h̃2 d

dx̃

 h̃x̃x̃(
1 + h̃2

x̃

)3/2
+ Π̃(h̃)

 (1.37)

with boundary conditions:

h(0) = 1 (1.38)
hx(0) = −∞ (1.39)
hx(∞) = 0 (1.40)

Once this equation is solved for a given Ca, the apparent contact angle cos θ is given by
the curvature at x = 0. Then Equation 1.32 could be used to determine the corresponding
pressure p∞:

p̃∞ =
αL

R
Ca− lim

x→0

h̃x̃x̃(
1 + h̃2

x̃

)3/2
(1.41)

Note that the differential equation (Equation 1.37) is only valid for very low values
of Ca (typically below 10−7) and thus only aims at describing the hysteresis-like region
between P1 and P2.

1.4.2.4 Numerical results

In fact, the infinite thickness h∞ does not need to be fixed at the equilibrium value but is an
output of the calculation. Equation 1.37 is transformed using the substitution y(h) = hx,
and is solved for h ∈ [h∞, 1], with boundary conditions y(h∞) = 0, y′(h∞) = 0 and
y(1) = −∞, where h∞ is unknown. In practice, this equation is solved at fixed h∞ with
the first and second bound condition, and h∞ is then varied to match the third one.

For the disjoining pressure, we use the Van der Waals forces with form displayed in
Figure 1.10, with the following parameters : Ag/w = −7× 10−9, Ag/o = 1× 10−9, d = 104.
These values correspond to standard values of Hamaker constants (in non dimensional
units) and a plate separation of 100 µm. The equilibrium contact angle is in this case
cosθ=0.92. Firstly, the meniscus profile h(x) could be calculated for various capillary
number Ca, sketched in Figure 1.18.

The meniscus goes with a wetting film for the βCa > 10−2.5, shown in Figure 1.19. Their
thicknesses verify the Bretherton law, Equation 1.27. Compared with the Landau-Levich
theory, Equation 1.26, we get the value of prefacteur β = 1.9.

And for the small Ca (βCa < 10−2.5), the Cox-Voinov law, Equation 1.19, is valid as
shown in Figure 1.20. Here, the logarithmic factor is about 1, which is quite low. It should
be on the order of 7.
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Figure 1.18: Profiles h(x) for various Ca. Blue (left) curves correspond to negative values
of Ca. In insert, magnified view of the equilibrium profile.

Figure 1.19: Film thickness as a function of Ca. Bretherton film are formed for βCa >
10−2.5 and the thicknesses are well accounted by the theoretical prediction. Identifying the
prefactors leads to a value of β = 1.9.

It should be noted that when the parameters Ag/w, Ag/o, d and cosθ vary, the results
displayed in Figure 1.18, 1.19 and 1.20 do not change much. In summary, we recover
Cox-Voinov law for low Ca, and Landau-Levitch films for high Ca, with a transition at
θ = 0. The disjoining pressure does not have any influence at the macroscopic scale, except
concerning the equilibrium contact angle. No hysteresis-like plateau are reported. We will
come back later on this point.

1.5 Conclusion

This overview of the literature demonstrates clearly that some important features of wetting
dynamics are not yet understood. The dynamics of contact lines and contact angles in
microscopic scales, specially between two immscible liquids, is discussed in this thesis work.
The wetting conditions, which contains partial, complete and pseudo-partial wetting, and



44 CHAPTER 1. WETTING

Figure 1.20: Ca as a function of the meniscus curvature cosθ.

the various geometries of channels are interested. In this work we plan to address the
following questions.

Firsly, we adress to the concequences of the microscopic wetting films. Various experi-
mental results show contact angle dynamics with velocities. And also indicate the systems
activation energy to displace a interface. A general point of view among all the wetting
systems is proposed. They distinguish each other from the different levels of activation
energy.

Secondly, the wetting film in a corner under complete wetting situation is discussed.
Its consequences are displayed in two situations: one has a crossed juntion, the coupling
of main pressure gradient and corner pressure gradent leads to the corner flow effects.
The other one has a special design of microfluidic chip, the consequence of drainage is
demonstrated and several quantitative relations are also modelled.
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1.6 Summary

We define the wetting criteria on:

• The wetting behavior is a result of the molecular interactions between the liquids
and the solid . It can be described using the spreading coefficient S and the
Hamaker constant A. Three situations are encountered: complete, partial and
pseudo-partial wettings.
• S > 0 and A < 0 lead to complete wetting. A wetting film of thickness h lies

on the solid substrate. The three phases do not meet.
• Partial wetting corresponds to S < 0 andA > 0 orA < 0. The three phases meet

on a line. We observe a macroscopic contact angle θ. Young’s relation describes
quantitatively the relation among the interfacial tensions γ and contact angle θ.
• Pseudo-partial wetting corresponds to S > 0 and A > 0. We observe a macro-

scopic contact angle θ that coexists with a microscopic wetting film h∞ around
the drop.

We study the shape of the interface in equilibrium and their properties.

• For a plate-plate geometry with distance h, the shape of contact line depends
on wetting types.
• Under partial wetting situation, the static contact θe is comprised between the

advancing angle θa and the receding angle θr. There is no weeting films and
the three phases meet at the contact line. Displacement of the contact line
occurs when θ is out of the interval [θr, θa]. The nature and the amplitude of
the hysteresis zone is still poorly understood.
• Under complete and pseudo-partial wetting situation, the interface shape is

complex because of the existence of microscopic wetting films, where we should
consider the disjoining pressure Π(h). Under complete wetting situation, the
contact angle is θ = 180◦ and h is set by Π(h).
• In a complex geometry, wedges lead to the presence of wetting liquid in the

corners.

Wetting dynamics

• The main parameters used to quantify the dynamics of wetting are relative
velocity V and dynamic contact angle θd.
• In partial wetting situation, two models describe this dynamics: the hydro-

dynamic model and the molecular-kinetic theory. Some comparisons between
models and experiments are presented for wetting dynamics. At this stage, there
does not exist a comprehensive model describing all the cases reported in the
literature.
• In pseudo-partial wetting, wetting film modifies the dynamics. Little is known

concerning the dynamics properties of wetting and spreading in pseudo-partial
wetting situation. The theory of forced displacement could describe the contact
line profile under displacement by considering Π(h). We note that taking into
account Π(h) does not predict an hysteresis-like plateau.
• In complete wetting situation, wetting films of a spreading droplet on a solid

plate or in a capillary tube are discussed. Tanner’s Law, LLD model and
Bretherton’s Law describe those situations, respectively.
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Chapter 2

Materials and methods

This chapter adresses the different technology of microfabrications and several modifica-
tions of surface properties. At the end, methods of characterisation of liquid properties are
also presented.

2.1 PDMS microfluidic chips
We report results obtained in PDMS (Polydimethylsiloxane) devices by using standard
microfabrication techniques [78, 79]. This device is created in the elastomeric material
poly(dimethylsiloxane) (PDMS), that makes it possible to carry out a complete cycle of
design, fabrication (in less than 24 hours), and testing of microfluidic systems rapidly.
It is chemically stable, but swells in the presence of certain oils. We have used a double
photolithography method to fabricate a device with two layers of channels. We recall below
the main steps of the procedure, which is sketched in Figure 2.1.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 2.1: Illustration of fabrication of PDMS device. [80]

a) Wafer cleaning and spin coating. We use 3 inch silicon wafers, which are initially
cleaned with acetone, then refluxed with isopropanol. Then, plasma cleaning (a cleaner

47
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purchased from Harrick) is performed to remove organic residues and to active the sub-
strate. A certain thickness h of negative photoresist resin is spin-coated on this wafer.
There are two types of photosensitive polymers: positive and negative resins. Here, we use
the negative resins SU-8 2050 (purchased from MicroChem): Ultraviolet radiation causes
an exposed polymerization area and subsequently thermally cross-linked portions rendered
insoluble to a liquid SU-8 developer, while the non-irradiated resin selectively disappears.
With a spin coater, we use a rotation speed of 3000 rpm for 30 s with an acceleration of
300 rpm/s, and get a thickness about h = 50 µm.

b) Soft bake. The spin coated wafer is placed on a level hotplate with a good thermal
control and uniformity (purchased from SAVATEC). The soft bake temperatures and dura-
tion vary with the thickness of film thicknesses. For h = 50 µm, the evaporation of solvent
is during 3 minutes at 65 ◦C and then during 6 minutes at 95 ◦C. And for h = 150 µm,
the duration of soft bake is 5 minutes at 65 ◦C and then during 30 minutes at 95 ◦C.

c) Ultraviolet exposure. A photomask, which gives the geometric features of the de-
vice, has the transparent channel areas and dark protected areas. The spin coated wafer is
insolated through the photomask, which is placed above the wafer. The exposure energy
depends on the film thickness, e.g., 200 mJ/cm2 for h = 50 µm, but 300 mJ/cm2 for
h = 150 µm. To fabricate the multilayer channels, the step b) and c) are repeated with
various rotation speeds and exposure time. It should be noted that the different patterns
are superimposed precisely with mask aligner of SUSS Micro Tec.

d) Post exposure bake and development. The wafer is then baked directly after the
exposure. After 1 minute, an image of the mask should be visible. The durations vary
with the film thickness. For h = 50 µm, it takes 1 minute at 65 ◦C and 5 minutes at
95 ◦C and for h = 150 µm, it takes 1 minute at 65 ◦C and 10 minutes at 95 ◦C. The
development of exposed wafer takes place in immersion, spray or spray-puddle processes
with SU-8 developer, which is usually PGMEA (polyethylene glycol monomethyl ether
acetate), or ethyl lactate. The duration varies with the thickness, e.g., it takes 8 minutes
for thickness of 200 µm and 4 minutes for 50 µm. The wafer is sprayed and washed by
isopropanol for approximately 10 seconds, followed by drying with nitrogen. After resin
development, a positive resin relief on the wafer is obtained. A silanization of HMDS
(hexamethyldisilazane) is performed as an adhesion promoter for resins.

e) Molding of PDMS. A 10:1 mixture of PDMS prepolymer and curing agent (Sylgard
184, Dow Corning) is stirred thoroughly and then degassed in a vacuum bell jar. The
prepolymer mixture was poured onto the wafer from a petri dish and cured for 45 minutes
at 65 ◦C. The duration of curing and hardness depend on the ratio of prepolymer and
curing agent.
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f) Cutting of patterns. After curing, the PDMS replica was peeled from the mold of
silicium. The inlets and outlets of microchannels are drilled with punches, whose diameter
are chosen according the used injection tubes. We get a block of PDMS with a thickness
of 5-6 mm, in which there’s the micro channels with the shape on the photo mask. The
piece of PDMS is cut around the pattern with channels.

g) Bonding of PDMS devices. To cover the micro channels, a glass slide is equally
cleaned by organic solvent and plasma cleaner, and then spin coated with a thin layer of
PDMS (at the order of dozen of micrometers), and cured for 45 minutes at 65 ◦C. The two
pieces of PDMS were placed in a plasma cleaner and oxidized for 90 seconds. Immediately
after removal from the plasma cleaner, the substrates were brought into conformal contact,
and an irreversible seal formed spontaneously. Plasma modifies the surface properties
of PDMS by the formation of carboxylic acids and a smooth, inorganic layer of silicon
oxide. The formation of the carboxylic acids influences the wettability of the surface (to be
hydrophilic) for about 12 hours and also provides scaffolding for further modifications [81].
To assure the bonding and wait the wetting property of surface to return hydrophobic, the
sealed chip is left in the oven at 65 ◦C for more than 24 hours.

With these procedures, the microchannels have the four walls with the same materials,
which leads to the same wetability. The bonding with plasma is resistant (during the
manipulation, the local pressure arrive 2-3 bar) and sustainable (reusable).

2.2 Surface treatment: silanization

The surface property of glass capillary tube can be treated by chemical methods. Silaniza-
tion is a method for organic thin film preparation and reduces the surface energy. It is
used in a multitude of applications like coating for corrosion inhibition, adhesion promo-
tion, anti-reflection, anti-statics, and biomolecule immobilization etc.

The principle of silanization is to cover the surface through self-assembly with organo-
functional alkoxysilane molecules. It is a type of self-assembled monolayers (SAMs) [82].
The alkoxysilane contains at least one silicon-carbon bond, which is very stable and nonpo-
lar. The presence of an alkyl group gives rise to low surface energy and hydrophobic effects,
which means to vary the wetting properties. Mineral components like mica, glass and metal
oxide surfaces can all be silanized, because they contain hydroxyl groups which attack and
displace the alkoxy group on the silane thus forming a covalent -Si-O-Si- bond [83]. Two
types of grafting processes are used: vapor phase method and solvent method [84]. We
have worked with the liquid method, the silane solution is injected in the glass capillary.

The surface coverage resulting from the silanization reactions depends on several vari-
ables such as nature of the solvent, temperature, reaction time, degree of hydration of
the substrates, the cleaning procedure utilized prior to silanization of substrates, and the
nature/morphology of the oxide layer on the substrate [85].

The solvent method is common because of its easier feasibility. Several solvents are
used: toluene, carbon tetrachloride, hexadecane, fluorinated oil (i.e. FC-40), etc [84, 85].
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Toluene is frequently used, because it is rather polar and can also be adsorbed on the silica
surface and then prevents the silanol groups on the surface from reacting. As a consequence,
it results in a lower grafting density. Carbon tetrachloride, which is less polar than toluene
is less adsorbed on the silica surface, and as a consequence, higher contact angles and
grafting densities can be observed [84]. Hexadecane favors the physisorption of silane on
the solid substrate [86].

The temperature may play a role for it change the solvation and the adsorption of
silane on the substrate. For example, the grafting of OTS (octadecyltrichlorosilane) in
hexadecane solution, the optimum temperature is 18◦C [86].

The surface concentration of silanes grows rapidly in the first few minutes in most of the
studies [84, 87]. A duration too long favors the silanes condensation and polymerization,
which cause the heterogeneities of the grafting [88]. Too high concentration of silane might
also increase the condensation, that’s why the solution is generally not concentrated (with
the order of 10−2 or 10−3 mol/L).

In a clean, zero-aqueous environment, these silanes remain stable for long time periods
(for years). But wherever there are even traces of water in the medium, the silanization
processes immediately start to progress. Water initiates hydrolysis of initial compounds,
which subsequently condensate (polymerize), shown in Figure 2.2 [88]. Therefore, it’s
imperative to silanize in an environment without water. The use of anhydrous solvent is
one of variables to obtain a homogeneous grafting. Nevertheless, because of the humidity,
silanization requires always a lot of delicate tests and precautions.

Figure 2.2: Hydrolysis and condensation of trifunctional silane [88].

2.2.1 Surface preparation

Two types of grafted glass surfaces have been considered in this thesis work: the lab micro-
scopic slides and circular capillary tubes, which is a 10 cm glass circular tube of VitroCom
with 0.20 mm inter diameter and 0.33 mm outer diameter. The cleaning procedure used
prior to the silanization of the substrates is a crucial parameter involved in the variability
of the grafting and structure of the layers. Before silanization, these were initially ultra-
sonically cleaned in acetone, then refluxed in isopropanol, and finally subjected to piranha
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solution (1/2 hydrogen peroxide (33%), 1/2 sulphuric acid 97%) for 5-10 minutes. The
Piranha solution is a highly oxidative, corrosive and possibly explosive chemical, which is
used to remove organic residues from substrates. These glasses are rinsed with purified
water (18 MΩ, low organic content) and blown with dry nitrogen in a vacuum drying oven
at 120◦C. The rinsing and drying steps are important, because even the acid trace will
degrade the silanes. Then, plasma cleaning is performed to remove organic residues and
active the substrate.

Plasma cleaning involves the removal of impurities and contaminants from surfaces
through the use of an energetic plasma created from gaseous species, such as argon and
oxygen. The plasma is created by using high frequency voltages (typically kHz to >MHz) to
ionise the low pressure gas (typically around 1/1000 atmospheric pressure). The substrate
is then ready to graft the silanes.

2.2.2 Silanization: PFTS, OTS

Two types of silanes are used by solvent method: OTS (octadecyltrichlorosilane) and PFTS
(1H,1H,2H,2H-Perfluorooctyl-trichlorosilane, called fluorinated silane).

CF3(CF2)5CH2CH2 Si Cl- -

-Cl

-

Cl
CH3(CH2)16CH2 Si Cl- -

-Cl

-

Cl

Figure 2.3: Molecular structure of OTS and PFTS.

For the process of OTS silanization, we use the OTS in toluene with a concentration
of 10−3% in mass. The solution is made to flow in the capillary tube or to immerge the
glass slide during 30 minutes, rinsed with chloroform in an ultrasonic bath for 20 minutes,
and then well rinsed by water. The capillary tube or slide is also put in a oven for hours
to finalize the formation of covalent bond [85]. The substrate silanized by OTS is ready to
use.

The silanization of PFTS is with a concentration of 5% by mass in fluorinated oil FC-
40. This solution is made to flow in the capillary tube or to immerge the glass slide during
1 hour. The substrate is well rinsed with chloroform, ethanol and then water (with a
duration of 20 minutes each time). The substrate silanized by PFTS is ready to use.

2.3 Resin SU-8 microfluidic chip
In many microfluidic applications identical channel wall properties are emphasized to ensure
the uniform wetting or surface charging. As the PDMS chip deforms easily, and the oil could
enter in the porous walls, we need a microfluidic chip to avoid these problems. Enclosed
SU-8 microchannel devices [89, 90] are good choises. They are fabricated with the base of
standard microfabrication techniques with resin SU-8. In Reference [91], SU-8 structures
were sandwiched between silicon and glass wafers using SU-8 itself as an adhesive. Here,
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we use the resin of SU-8 3000 series, which is an improved formulation of SU-8 2000, and
has improved adhesion and reduced coating stress. Here, we recall some additional steps,
compared with PDMS devices.

1) Mask This mask, sketched in the left part of Figure 2.4, is different from those for
PDMS devices. Because the resin SU-8 for PDMS chip is used as a mold, but here the
non-irradiated resin disappears and forms directly the channels. Special attentions have
been paid to draw this mask. The filling of the channels by the adhesive SU-8 and breaking
during the pressing period are the two main problems, that coule occur during the process.
A mask with an auxiliary structures (or moats) is designed, sketch in the left and middle
parts of Figure 2.5. These moats could efficiently prevent the filling of the channels. The
white transparent part allows the resin to be exposed, cross-linked and then to form the
channels’ walls. The contour of the white zone is much smaller than the wafer size, because
during the step of soft bake, the initially isothick film will wrinkle its edge. A concequence
is that the baked film has a thickness much important than the center. Such a thickness
variation will easily break the wafer. In order to bond two pieces of wafers, we press them
with a pressure of about 3.5× 105 Pa.

The reduced white zone permit to take off the edge zone. The spiral zone is designed
very compact to decrease the total surface of the channel zone. The reduced channel zone
surface avoids efficiently the problem of breaking of the glass wafer during the bonding
step. The red part is the channels, which has a spiral part and a linear branch. In the
linear part there’s a circle with two branches of different widths, which is zoomed in the
middle part of Figure 2.5. The reason of assymetric will be detailed later. Around the red
channels, moats are designed in black in order to avoid the blocking of channels during the
bonding step [89]. This design has been improved several times and efficiently prevent the
totally or partially filling of unexposed SU-8.

2) Ordinary SU-8 process (a-d) Glass wafer cleaning, spin coating, soft bake, ultravi-
olet exposure and post exposure bake. We use a 3 inch glass wafer, which is ultrasonically
cleaned in acetone, then refluxed in isopropanol, and finally subjected to piranha solution.
This wafer is then well rinsed by purified water and dried with nitrogen. A rotation pro-
gram with a speed of 3000 rpm for 30 s and an acceleration of 300 rpm/s is used to deposit
a layer of 5 µm with resin SU-8 3005 and a layer of 50 µm with resin SU-8 3050. These
two layers of resin SU-8 are spin-coated in series on the same wafer: the 50 µm layer is
spin-coated after the steps of soft bake, ultraviolet exposure and post exposure of the 5 µm
layer. The spin-coated wafer is soft baked at 95 ◦C during 2 mins for 5 µm and during 15
mins for 50 µm. The exposure energy for 5 µm is 100 mJ/cm2 for the 1st layer without
photomask. The layer 50 µm is exposed with 250 mJ/cm2 with the detailed photomask.
It takes 1 minute for the 5 µm layer and 5 minutes for the 50 µm layer at 95 ◦C for the
post exposure bake.
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3) Bonding layer preparation(e) Another glass wafer is prepared. The inlet and
outlet are drilled with a sand blasting machine (purchased from Arene blast). The wafer
is then well cleaned. Another layer of SU-8 (a 50% (by mass) mixture of SU-8 3005 and
cyclopentanone) is spincoated with the same program as for the 5 µm layer. This wafer is
partially soft baked during 40 s at 95 ◦C.

4) Bonding(f) These two wafers are well aligned and bonded under pressure of 3.5 bar
(3.5×105Pa) on a hot plate with a ramp of increasing temperatures. 5 steps of temperatures
from 45 ◦C to 105 ◦C with an increase of 15 ◦C is applied each 10 minutes. A plateau
of 120 ◦C last for one hour, and then a ramp of decreasing temperatures from 120 ◦C to
45 ◦C with an decrease of 15 ◦C each 10 minutes. The glass transition temperature is
around 200◦C.

5) Bonding of connectors Once the two wafers are well bonded, the connectors NanoPort
are bonded above the inlet and outlet by a epoxy adhesive potecny NOA61 (which is a
photopolymer that will be cured when exposed to ultraviolet light.

UV

Glass wafer

Unexposed SU-8

Crosslinked SU-8

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.4: Main steps of microfabrications of SU-8 device. The steps (a) to (d) are the
same with PDMS mold fabrication. The steps (e) and (f) are performed to bond two glass
wafers to form the channels with all the walls in resin.

2.3.1 Wetting of SU8

The surface of the crosslinked SU-8 is hydrophobic and relatively flat (few roughness).
The wetting properties with several liquids are tested. In order to characterize the wetting
properties of SU-8, several couples of liquids are used to measure their contact angles θ.
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Figure 2.5: Mask and mold photo of the SU-8 device. (a) The expected chip motif for
experiments of Chapter 7. (b) The real printed mask, with the channels (as the shape in
(a)) and the moats around them. (c) Even around a circle with radius of 250 µm, the
moats are also needed. (d) the sharp wall of SU-8 mold.

As detailed in Figure 2.1, we measure the contact angles of droplets in the liquid/liquid/solid
system. They are measured in a reservoir with two paralel transparent glass walls by a
high resolution camera. Table 2.1 reports that the results obtained for various couples of
fluids. As the rolling droplets could be the main reasons to determine a complete wetting
system, we obtain complete wetting for several couples of liquids: FC-40/silicone oil V5,
FC-40/dodecane, FC-72/silicone oil V20 and FC-70/dodecane. Their viscosity ratios are
M = 0.75, 2.5, 0.03, 17.9, respectively. These complete wetting systems allow us to test the
parameter M in the experiments of Chapter 7. Photos of rolling droplets are sketched in
Figure 2.6.

Figure 2.6: Photos of non-wetting droplet in a completely wetting liquid: FC-40/silicone
oil V5, FC-40/dodecane and FC-72/dodecane.

2.4 Characterization of fluid properties

2.4.1 Viscosities of the used fluids

In this thesis work, several couples of fluids are used to form the interface. We have used
dodecane, silicone oil V5, V20 (Rhodorsil) and paraffin oil as wetting liquids. The non-
wetting ones are water, surfactant solution (TTAB, CTAB), aqueous glycerine solution,
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phase 1 phase 2 contact angle(◦)
dodecane air 1.1
dodecane water 14.0
silicone oil V5 air 0
silicone oil V20 air 0
silicone oil V20 water 60.4
silicone oil V20 dodecane 0
water air 97.4
water dodecane 119.6
water silicone oil V5 123.3
TTAB solution air 37.8
TTAB solution dedecane 158.4
TTAB solution silicone oil V5 166
FC-40 air 18.2
FC-40 water 83.6
FC-40 dodecane 180
FC-40 silicone oil V5 180
FC-40 silicone oil V20
FC-72 dodecane 180
FC-72 silicone oil V5 139.4
FC-72 silicone oil V20
FC-70 dodecane 180

Table 2.1: Contact angles of droplets of phase 1 in phase 2 on a plat SU-8 surface for
various couples of liquids. TTAB solution stands for a concentration of 2.3×10−3 in mass.
All the measurements are taken at around T = 23◦C. The contact angle displays the
wetting properties. θ = 180◦ means that the droplets roll easily, which indicates complete
wetting systems.

fluorirated oil FC-40, FC-72 and FC-70. The propertes are listed in Table 2.2. The viscosity
of aqueous glycerine solution is detailed in Figure 2.7. We prepare this solution of a certain
viscosity with this table and measure it with a rheometer (AR-G2, TA Instruments) with
a cone plate geometry.

2.4.2 Interfacial tension measurement

Drop profile method The pendant drop method involves the determination of the drop
profile of one liquid suspended in another liquid (or air) at mechanical equilibrium. This
profile is determined by the balance between gravity and surface forces [93,94].

γ(C − C0) = ∆ρgz (2.1)
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Figure 2.7: Viscosity of aqueous glycerine solution [92], which is used to change the system’s
viscosity ratio M .

where C is the drop curvature at equilibrium, γ is the interfacial tension of liquid, C0 is
the curvature at z = 0, the apex of the droplet, ∆ρ is the density difference, and g is
the gravitational acceleration. The drop is suspended axisymmetric around the axis z, the
curvature C is expressed in cylindrical coordinates:

C = − rzz
(1 + r2

z)
3/2

+
rz

r(1 + r2
z)

1/2
(2.2)

with rz = dr/dz and rzz = d2r/dz2.
The solution of Equation 2.1 gives the drop profile. The digitized profile of pendant

drop at equilibrium is obtained by image analysis, and is then fitted by the solution of
Equation 2.1, which allows to determine γ [95].

Practically, with the same reservoirs of measurement of contact angle, we measure the
interfacial tension with droplet profile method between each couple of immiscible liquids.
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Liquids η ρ γ θ(◦) in air
(mPa× s) (103kg/m3) (mN/m) glass-OTS PDMS

Water 1 1 72.8 106.2 92.2
Dodecane 1.34 0.75 25.35 7.3 18.6
Paraffin oil 26 0.84 28.50 58.5
Silicon oil V20 20 0.94 20.19 0
Silicon oil V5 5 0.91 10.73 0
FC-40 3.4 1.9 15.41 15 38.4
FC-72 0.6 1.68 12.76
Glycerol TTAB 18 1.17 32.63 120
TTAB solution 1 1 37.77 60.3
CTAB solution 1 1 120

Table 2.2: Physical properties of used liquids at T = 23 ◦C. TTAB solution has a concen-
tration of 2.7× 10−3 and CTAB solution of 2× 10−6.

A home-made MATLAB program allows to fit the drop profile and the interfacial tension
value. Table 2.3 represents all the used liquid-liquid interfacial tension in this thesis work.

Figure 2.8: Measurement of interfacial tension with pendant drop method.

Drop weight method For very small interfacial tension, the profile method does not
work. We need the drop weight method, which is another way to measure the interfacial
tension. It relies on dripping a liquid of density ρi at a low flow rate from a capillary of out
radius R into air or another liquid (with density rhoe) and measuring the weight of drop
that are formed. The method’s origin can be traced to Tate [96], who postulated that the
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drop’s equilibrium among the drop weight (FW = mg), the buoyant force FB = mgρe/ρi
and the surface force Fγ = 2πRγ, which is at the three phases contact line at the end of
capillary. m is the drop mass, g is the gravitational acceleration and γ is the interfacial
tension between the liquid and air or another liquid. The drop mass is usually measured
by a mean value of dozen of drops. If the liquid in the capillary wets perfectly the capillary
tube, drop’s equilibrium at the moment when the drop is dripped is written:

mg
ρe
ρi

+ 2πRγ = mg (2.3)

Then the interfacial tension γ is under this form:

γ =
mg∆ρ

2πRρi
(2.4)

where ∆ρ = ρi − ρe is the density difference between two phases.
In reality, it is well known that only one portion of a pendant drop, which is grown

from a dripping tip breaks away while a smaller fraction of the pendant drop remains
undetached from the tip [97]. This inevitably results in smaller detached drop, or less
weight, thus leading to an underestimation of the liquid interfacial tension. This problem
is usually rectified by multiplying the calculated interfacial tension value with a factor
that can be determined from an experimental curve developed by Harkins and Brown [98].
The curve is a plot of the fraction of the ideal drop volume, f(R/V 1/3) = V/VIdeal, as a
function of the dimensionless tip radius, R/V 1/3. Once the actual drop volume, V (and
hence R/V 1/3), is known, the correction factor f(R/V 1/3) can be determined from the
curve, and the interfacial tension can then calculated by

γ =
mg∆ρ

2πRρif(R/V 1/3)
(2.5)

Harkins and Brown’s correction factor ranges withR/V 1/3 from 0.0638 to 4.45 and f(R/V 1/3)
from 0.19 to 0.94. This method could achieve a precision of 0.1%.

γ(mN/m) Dodecane Silicone oil V20 Silicone oil V5
Water 48.2 33.81 41.87

TTAB solution 5.71 10.67 3.83
Glycerol TTAB 4.3372 3.19 2.47

FC-40 5.09 4.94 2.50
FC-72 2.14 4.42 1.60

Table 2.3: Concerned interfacial tension in this thesis work. TTAB solution has a concen-
tration of 2.7× 10−3. Aqueous glycerol TTAB solution has a concentration of 2.25× 10−3

and 70% of glycerol in mass. Two other interfacial tensions are also measured between
dodecane with fluorescent dye (KeyStone yellow 131SC) and fluorinated oil FC-70 and
FC-40: 4.32 and 3.13 mN/m.
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2.5 Conclusion
We study the roles of wetting films and of corner flows in glass tubes and microfluidic
chips. We use microfluidic chips and commercial glass tube, which are silanized to vary
the wetting properties. For microfluidic chips, we have used two materials: resin SU-8
and PDMS. For all the devices, we were asked to test various couples of fluids that exhibit
complete partial or pseudo-partial wettings. and study the microscopic wetting films under
complete and pseudo-partial wetting conditions. The results are detailed in Chapter 3 and
4. The classical PDMS technics are used to fabricate the cross section channels in order
to study the corner flows in Chapter 5. SU-8 chip is quite useful to study qnantitatively
the consequences of trapped clusters in Chapter7.

2.6 Summary

PDMS microfluidic chips

• We presented the main steps involved in the microfabrication of PDMS chips.
• We use a cross junction to study the effect of corner flows and to impose drop

of pressure on the invading but also on the prisoner fluid.

Glass surface treatments

• Silanization allows us to tune the energy of the surface and prepare hydrophobic
surfaces.
• Two methods of silanization are used in this thesis work: PFTS, OTS.

Resin SU-8 microfluidic chip

• As oil enters the walls of the PDMS chip, we use a chip made of SU-8 resin.
• We present the main steps of microfabrication.
• We studied the wetting properties of SU-8 and found many fluids in complete

wetting situations.

Characterization of liquid properties

• Viscosity and interfacial tension of studies systems are measured with various
methods.



60 CHAPTER 2. MATERIALS AND METHODS



Part II

Meniscus dynamics in a circular tube
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Chapter 3

Stationary states

3.1 Introduction

In this chapter we investigate various liquid-liquid meniscus dynamics. Their steady states
of meniscus displacement are observed under different wetting systems: partial, complete
and pseudo-partial wetting. The meniscus dynamics are studied in a glass circular capillary
tube and controlled by pressure drops. We show that, contrary to air-liquid systems,
pseudo-partial wetting is a quite common situation, provided that the solid surface is
coated by a hydrophobic layer. This layer of coating leads results different from those for
partial wetting and complete wetting. There is a hysteresis-like zone, which is a plateau
zone but where the velocities are not zero. The width of the hysteresis zone varies for
different systems. An interpretation of thermally activated depinning theory is proposed
for the hysteresis zone in the discussion.

3.2 Experimental setup

The idea is to displace a liquid/liquid meniscus in a circular glass tube under an imposed
pressure drop. The initial system is shown in Figure 3.1. It consists of a glass capillary
tube, which is fixed on a glass support, two nanoports, which are used as an entrance
and an exit of the two liquids, and two tubes, which are connected to two reservoirs. A
pressure controller is connected to the tubes to control the liquid-liquid interface in the
capillary tube. However the velocity measurements in this inial set up are not reproducible:
A droplet of wetting liquid may become trapped in the entrance. This trapped liquid
produces a dead volume, which affects the meniscus displacement under imposed pressure
drops.

To prevent the formation of trapped droplets and the dead volume, an improved ex-
perimental setup is designed, sketched in Figure 3.2. It consists of two reservoirs con-
nected by a horizontal circular glass tube with a radius of R = 100 µm and a length of
L = 8 cm, which is commercialized by VitroCom (supplied by CTS from UK) and silanized
by OTS(see 2.2.2). The tube is suspended in mid-air by drilling two small holes in each
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Figure 3.1: schematic drawing of the initial experimental setup.
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Figure 3.2: schematic drawing of the experimental setup.

reservoir. The two reservoirs are glass vials of 30 milliliter with the two holes about 1 cm
high from the bottoms. These two reservoirs are filled with the immiscible liquids, one
with a wetting liquid (dodecane), another with pure water. The capillary tube exceeds
several millimeters in the interrier of the two vials and are well bonded by epoxy adhesive
at the holes. The two reservoirs are connected to a pressure controller which allows one to
impose pressures precisely.

Starting from a situation where the wetting liquid is pushed by a pressure drop, the
wetting liquid exceeds the tube and floats up in the vial, which is filled with water. The
suspended capillary tube prevents the formation of dead volume efficiently. Once another
pressure drop is applied to drive the meniscus into the tube, only one meniscus at a time is
formed. The displacement of meniscus is recorded by a camera AVT Pike F505B mounted
on a binocular Olympus SZX16. The meniscus velocity and its curvature are measured
simultaneously, as a function of the applied pressure drop.

The displacement of the meniscus is extremely sensitive to small pressure drops varia-
tions. The liquid level change could also distort the measurement, as water of h=1 cm is
equivalent to a pressure of 100 Pa. We should adjust the liquid levels to balance the liquid
pressure. By taking account of their respective densities of oil and water, a ratio of height
between water and dodecane is settled as hdodecane/hwater=1.33. The big sectional area of
vial is also chosen to avoid pressure distortion.
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3.2.1 Pressure controlled flow

Pressure controlled flow plays an important role in microfluidics. The flow rate response
time and stability are independent on the tubing and microsystems characteristics [99].
Pressure controlled flows allow one to precisely generate or manipulate the droplets [100–
102], to manipulate particles and cells [103], to microfluidic applications in physics [104],
in chemistry [105], in rheology [106,107].

Pressure controlled flow is chosen to study the meniscus dynamics in our experiments.
Because we study the meniscus displacements and deformations with not only a stationary
movement, but also the equilibrium states, which have zero velocities. With small veloci-
ties, the contact angle changes take place under equilibrium states with pressure control.
In addition, to control the meniscus displacement with a quite low velocity in the order of
µm/s, pressure control flow is more precise.

A commercially available pressure controller (Fluigent MFCS 4C) was used to drive in-
dependently the phases into the device, applying pressure patterns typically with accuracy
of about 6 Pa in its measurement range from 0 to 2500 Pa. This multi channels output
device provides a stable and pulseless flow with an instantaneous response time.

Why don’t we choose the flow rate controlled flow? Current microfluidic manipulation
systems such as syringe, peristaltic or piston pumps are poorly adapted to the manipula-
tion of fluid volumes in the nanoliter range, leading to hysteresis, long equilibration times,
irreproducibility and pulsing. For example, syringes pumps, which are widely used as flow
rate controllers to push a liquid or gas, are driven via stepper motor and precision ball
screw. Flow rate response time and stability strongly depend on tubing and microsys-
tem characteristics. The accuracy of instantaneous flows in microchannels is poor due to
hysteresis and connections compliance.

Furthermore, the flow rate control usually corresponds to a fixed non-zero velocity,
which is not adapted to our experiments where the meniscus displacement is zero for a
finite pressure drop(see later). Furthermore, because of mechanical limitation meant, we
could hardly get small enough flow rate, e.g. several nanoliters per hour.

3.2.2 Different wetting systems

In order to vary the wetting properties, we use different couples of immiscible liquids
on various solid substrates. The liquids couples consist of dodecane/aqueous solution and
dodecane/fluorinated oil (FC-40). The liquids are flowed in glass tubes silanized either with
octadecyltrichlorosilane (OTS) or 1H,1H,2H,2H-Perfluorooctyl-trichlorosilane (PFTS), and
in Tygon tubes, purchased from VWR. All the chemical products were purchased from
Sigma-Aldrich. We recall briefly the wetting studied here (detailed in Section 1.2).

Complete wetting is characterized by S > 0 and A < 0. At equilibrium, the droplet
spreads out and form a film of uniform thickness covering the whole surface.
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Partial wetting is characterized by S < 0. At equilibrium, the droplet does not spread
and remains a lens (a macroscopic contact angle θe). There is usually contact line hysteresis
in this wetting.

Pseudo-partial wetting has S > 0 and A > 0. However, compared with complete
wetting, it exhibits an attractive interaction at long range between the solid (A > 0) and
the non-wetting phase, and a repulsive interaction at short distances. In this situation, a
macroscopic equilibrium contact angle θe coexists with a thin wetting film of thickness he.

Figure 3.3: Two equilibrium states of the glass-OTS/dodecane/water system. Left: A
droplet of dodecane in water under a flat OTS-grafted glass plate exhibits a macroscopic
contact angle θe = 40◦. Right: a droplet of water in dodecane on the same surface does
not stick to the surface θe = 180◦. The droplets are about 1 mm diameter in both cases.
Picture is taken by C. Cottin [80].

It is not straightforward to know a priori if a given system with spreading parameter
S > 0, exhibits complete or pseudo-partial wetting. Indeed, it requires the knowledge of
the disjoining pressure Π(h) which contains various contributions, given the complexity of
the used systems (aqueous solutions of surfactants, glass surface grafted with silane). It is
however rather simple to experimentally distinguish pseudo-partial wetting from complete
wetting. Under both wetting situations, if a drop of non-wetting phase is deposited on
surface immersed in a wetting liquid, a spheric droplet stands on the surface and freely
rolls on it when the surface is slightly tilted, as sketched in Figure 3.3.

However, if a drop of wetting phase is deposited on a surface immersed in the non-
wetting liquid, the spreadings appear differently: for complete wetting, it reaches a very
thin film slowly at long time. For pseudo-partial wetting, we observe a different behavior.
Figure 3.3 shows two equilibrium states of glass-OTS/dodecane/water system of pseudo-
partial wetting. The droplet spreads on the surface but reaches a steady state with a
finite contact angle. Even after one week, the contact angle remains unchanged and it
corresponds to an equilibrium state. Its spreading parameter S2 = γgw − (γgo + γwo)
is negative in this situation. It exhibits an attractive interaction at long range between
the solid (glass) and the non-wetting phase (water), and a repulsive interaction at short
distances. In this situation, a macroscopic equilibrium contact angle θe coexists with a
thin wetting film of thickness he. θe and he are related in equilibrium, but depend on the
considered conditions. Such a configuration is only expected for pseudo-partial systems
where the shape of the disjoining pressure in Figure 1.11 allows a coexistence between a
thin wetting film and a macroscopic contact angle [14].
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Table 3.1 summarizes the properties of the used systems. We determine for every couple
of fluids the interfacial tension γ by the pendant drop method. The spreading parameter S
is calculated with Young’s equation Equation 1.7. Except for the glass-PFTS surface, all
the systems exhibit a positive spreading parameter, meaning that there is always a wetting
film of oil covering the surface. This is confirmed experimentally when trying to deposit
a droplet of the non-wetting fluid on a planar solid surface immersed in the wetting fluid.
Tygon/dodecane/FC-40 is distinguished as complete wetting, because its advancing and
receding contact angle remain θ = 180◦ and without hysteresis.

Systems γ (N/m) S (N/m)
Partial wetting
glass-PFTS/dodecane/water 43.2× 10−3 −2.9× 10−3

Pseudo-partial wetting
glass-OTS/dodecane/water 43.2× 10−3 2.4× 10−3

glass-OTS/dodecane/TTAB 5.8× 10−3 9.4× 10−3

glass-OTS/dodecane/FC-40 5.1× 10−3 11× 10−3

Tygon/dodecane/water 43.2× 10−3 > 0
Complete wetting
Tygon/dodecane/FC-40 5.1× 10−3 > 0

Table 3.1: Measured interfacial tension and calculated spreading parameter S at 25◦ in
the form "solid surface/wetting phase/non-wetting phase". TTAB stands for an aqueous
solution of tetradecyltrimethylammonium bromide at 1.0×10−4 g/L (TTAB) or 4.1×10−3

(TTAB(II)). Fluorinert liquid FC-40 is a kind of electronic liquid, which is fully fluorinated
with a molecular formula of C21F48N2. The viscosities of the fluids are 0.89 mPa.s (all
aqueous solutions), 3.4 mPa.s (FC-40) and 1.34 mPa.s (dodecane).

Limiting ourselves to the Van der Waals contribution to the surface interaction, we
could anticipate the sign of the long range tail of disjoining pressure. It is given by the
opposite of the sign of the Hamaker constant of the considered system by Brochard-Wyart
et al. [14]. The solid surface consist of a very thin layer of silane covering a thick glass
surface (see Section 2.2.2).

The particular shape of the disjoining pressure considered here, sketched in Figure 1.10,
is obtained by a glass substrate grafted with a silane layer, wetted by dodecane in presence
of water. This configuration produces the desired shape of the disjoining pressure, even
when considering only Van der Waals interactions. Using combination relations for a
stratified system that consist in a semi-infinite medium of glass (g), a layer of silane (s)
of thickness d, a layer of dodecane (o) of thickness h and a semi-infinite medium of water
(w), the long range potential W (h) =

∫ h
∞Π dh of nonretarded Van der Waals interactions

reads:
W (h) ' Aw/g − Aw/s

(h+ d)2
+
Aw/s − Aw/o

h2
(3.1)

where Aij are the Hamaker constant that can be deduced from the Hamaker constant of
the pure components thanks to Aij =

√
AiiAjj. In the considered case, the first term is



68 CHAPTER 3. STATIONARY STATES

positive and prevails at short distance while the second is negative and prevails at long
distance, leading to a minimum in W , and consequently to the shape of the disjoining
pressure sketched in Figure 1.11.

For oil films much thicker than the silane layer thicknesses, the contribution from this
layer could be neglected and the Hamaker constant of the system is approximated by
Ag/o/w = Ag/w − Aw/o (the indices g, o and w refers to the glass, oil and water phases,
respectively). Using values from the literature [20], we find Ag/o/w ' 4.5 × 10−22 for
glass/dodecane/water (we were not able to find the value for the systems involving Tygon
tubes). This positive value is consistent with our observations, since for partial and pseudo-
partial systems, the interaction is attractive at long distances, whereas it is repulsive for
the systems exhibiting complete wetting.

3.3 Steady velocities

In this set of experiments, we focus on steady states of meniscus displacements in the
experimental setup, which is described in Section 3.2. With the setup in Figure 3.2 under
pressure control, the meniscus dynamics could be studied. In this simplest situation, the
observed parameters of velocity, pressure and meniscus shape show the characteristics of
the given system. For all the results reported here, we wait until a steady regime of
velocities is reached. Special attention has been paid to perform the measurement a long
time after the change of pressure, and to verify that the velocity is constant during the
measurement.

In the following we will use non-dimensional quantities defined as P̃ = ∆PR/2γ and
Ṽ = 4η̄V L/γR, where η̄ = (η1 + η2) /2 . 2γ/R is the capillary pressure and γR/4η̄L is the
characteristic velocity of a meniscus under a pressure drop equal to the capillary pressure.

3.3.1 Complete wetting

Figure 3.4 shows the results obtained with the systems in complete wetting. The complete
wetting system of Tygon/dodecane/Fluorinert FC-40 exhibits a linear relation between Ṽ
and P̃ , with a slope close to unity. Furthermore, Ṽ = 0 for P̃ ' 1, showing that the
macroscopic contact angle remains constant and equals 180◦ for receding and advancing
menisci, which is confirmed by image analysis. The insert shows the graphic continuity
of small velocities, which means there is no hysteresis zone. The meniscus image inserts
indicate the uniform curvature for the advancing and receding menisci. The absence of
velocities hysteresis and uniform curvature are two characteristics of the complete wetting
system.

3.3.2 Partial wetting

The glass-PFTS/dodecane/water system leads to partial wetting. The meniscus velocity
Ṽ as a function of P̃ is sketched in Figure 3.5. There are two linear branches of slope in the
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Figure 3.4: Non-dimensional meniscus velocity in steady state as a function of the pressure
drop for the Tygon/dodecane/FC-40 system (complete wetting). The full lines represents
Ṽ = P̃ − 1. The meniscus image inserts show that the advancing and receding menisci
keep the same curvature at small velocities.

order of unity, but separated by a pressure interval where the velocity vanishes. The contact
line is pinned in this range of pressure. When the meniscus is moving, the contact angle
coincide either to the advancing contact angle θa or to the receding one θr, which is verified
by the measurement of the curvatures in the insert graphic between curvature C and P̃ .
Corresponding to the Ṽ − P̃ relation, the curvatures adjust themselves during the pinned
zone (Ṽ=0). The contact angle varies in the pinned interval to accommodate the pressure
difference that is imposed. The hysteresis is rather high (90◦) for this system, probably
due to an inhomogeneous grafting of the surface. We note that there are several non-
zero velocities in the hysteresis zone, which may be a result of the inhomogeneous surface
roughness at different positions of the tube. It should be remarked that the velocities in
the edge of hysteresis zone are non zeros, which could be an effect of contact line hysteresis
and will be detailed in the discussion.

3.3.3 Pseudo-partial wetting: glass-OTS/dodecane/water system

The meniscus velocity Ṽ as a function of the pressure drop P̃ obtained with the glass-
OTS/dodecane/water system is shown in Figure 3.6. The results look very similar to
those of the partial wetting system discussed above: two linear branches are observed
for P̃ < 0.6 and P̃ > 1, separated by a plateau where the velocity is very small (below
10 µm/s). Contrary to what we observe for partial wetting, the velocity does not strictly
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Figure 3.5: Non-dimensional meniscus velocity in steady state as a function of the pressure
drop for the Glass-PFTS/dodecane/water system (partial wetting). There are two linear
viscous regimes and a hysteresis plateau with Ṽ=0 or Ṽ ≈0. The slope of each linear
branch is 0.81.

vanish but is very small (see the insert in Figure 3.6), showing that there is no pinning.
We call this plateau zone a hysteresis-like zone. Some experiments last even several days
and we hardly ever find a meniscus pinned on the glass surface. Figure 3.7 shows one of
the small and stable velocities, which keeps a v=0.09 µm/s linearly during more than 16
hours under a P̃=0.71. We also observe that a pressure perturbation in this regime leads
to a sudden move of the meniscus with a high velocity that eventually relaxes after some
time, which is discussed in Chapter 4. Special attention has been paid to perform the
measurement a long time after the change of pressure drop, and to verify that the velocity
is constant during the measurement.

We observe the shape of the menisci in the plateau region. Figure 3.8 shows that the
curvatures increase under reduced pressure drops P̃ from 0.52 to 1.04.

These observations show that although the stationary Ṽ − P̃ relation is at first sight
similar to that of partial wetting, the mechanisms responsible for the plateau region are
different. Let us recall that, for this system, S > 0, which means that there is always a
wetting film of dodecane on the solid surface. The covered layer OTS modified the surface
roughness, which may favor the existence for a wetting oil film. This film may be the
reason of non-zero velocities. Further details are shown in the discussion.
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Figure 3.6: Meniscus velocity in steady state as function of the pressure drop for
OTS/dodecane/water. The two linear branches have a slope of 1.1. Absolute values of
non-vanishing velocities are shown in insert as a function of P̃ , showing that the meniscus
is not pinned but moves very slowly.

3.3.4 Other pseudo-partial wetting systems

The observations of pseudo-partial wetting system described above hold for all the other
pseudo-partial wetting systems. Figure 3.9 displays the Ṽ − P̃ relation obtained for various
aqueous solutions of standard surfactants against dodecane in OTS-grafted glass tube,
together with the glass-OTS/dodecane/FC-40 and the Tygon/dodecane/water systems.
All of these systems have a positive spreading parameter, and exhibit a hysteresis-like
plateau where the velocity is very small but where the contact line is not pinned. The only
difference between these systems is the pressure drop at which the meniscus starts to recede
with a significant velocity (receding linear branch), which is indicated in the Figure 3.9.
It thus seems natural to relate the observation of an contact angle hysteresis-like range
without pinning to the pseudo-partial nature of the wetting for all of these systems. Our
experimental setup is then a method to distinguish between pseudo-partial and complete
wetting conditions.

3.4 Discussion

Using a simple set-up, we report velocity measurements of a single liquid-liquid meniscus in
a tube in different wetting conditions under pressure control and at low capillary numbers.
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Figure 3.7: A stable displacement of a dodecane/water meniscus in a glass-OTS circular
tube. It advances 4.5 mm during about 12 hours with a mean velocity V = 0.09 µm/s.

Figure 3.8: An illustration of curvature changes under pressure control for the glass-
OTS/dodecane/water system. The images are taken for P̃=0.52, 0.58, 0.64, 0.69, 0.75,
0.86, 0.87, 0.96, 1.04.

We observed three different behaviors. In the complete wetting situation, the velocity
is proportional to the pressure drop and the contact angle remains constant and equal
to 180◦. In the pseudo-partial and partial situation, the velocity is proportional to the
pressure drop for high absolute values of the velocity. In both case a plateau region in
the vicinity of V equals zero separates the two hydrodynamic branches. In this region,
the velocity is equal to zero in the partial wetting situation and is close to zero in the
pseudo-partial wetting situation.

Our aim in the following is to understand how wetting theory captures these behaviors.
To compare our data with the model we need to measure the dynamic contact angle

θd as a function of the velocity V . Indeed since the capillary tube is cylindrical, optical
aberrations induce large error bars. To measure slight variations of the angle, we have
chosen a hydrodynamic approach. We study the evolution of the meniscus velocity as a
function of the pressure drop. In steady states, the pressure difference is the sum of the
capillary pressure and the viscous pressure drop corresponding to Poiseuille flow, in the
region that is far from the meniscus. Due to the high aspect ratio of the tube, both end
effects and the meniscus region can be neglected so that the pressure difference is given by

∆P = −2
γ cos θd
R

+
8V L

R2
[η1x+ η2 (1− x)] (3.2)

where L is the tube length, V is the meniscus velocity, which also corresponds to the mean
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Figure 3.9: Ṽ − P̃ relations for various pseudo-partial wetting systems that have a positive
spreading parameter (see table 3.1). The pressure corresponding to the end of the receding
linear branch is highlighted by vertical dashed lines. The concentrations for the solutions
of surfactants are 1× 10−4 for TTAB(I) and 4.1× 10−3.

velocity in the tube, η1 and η2 are the viscosities of the two fluids, and x is the reduced
position of the meniscus inside the tube, which is normalized by L. The contact angle θd is
defined in the non-wetting phase. Using thereafter non-dimensional quantities defined by
P̃ = ∆PR/2γ and Ṽ = 4η̄V L/γR, where η̄ = (η1 + η2) /2 the previous equation reduces
to

P̃ = − cos θd + Ṽ
[η1x+ η2 (1− x)]

η̄
= − cos θd + aṼ (3.3)

Since x is set around 0.5 and do not vary significantly during the experiments, a is close
to one. However its exact value is at this stage unknown.

To extract a and θd we use the following procedure. In our experiments, θd may vary in
the vicinity of zero velocity but remains constant for high velocities. Indeed, we investigate
regions characterized by very small capillary numbers (typically between 10−9 and 10−4).
Hydrodynamic forces do not induce a variation of the contact angle. Assuming that θd does
not depend upon Ṽ for large Ṽ in our experiments, we measure a. a is simply the slope
of the curve P̃ as a function of Ṽ . We recall that for high velocities, all the experimental
data display a linear evolution of the velocity as a function of the pressure.

Knowing a, we then deduce:

cos θd = aṼ − P̃ (3.4)
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3.4.1 Comparison with the wetting dynamics theory: the hydro-
dynamic approach

We first check that hydrodynamics plays no role in the evolution of the contact angle.
We calculated the value of the fitting parameter ln(L/lm) for the FC-40 system using
Equation 1.19.

We found that ln(L/lm) is larger than 105, as sketched in Fig 3.10. In the Cox model
L is the distance from the solid at which the solution is truncated. lm is the slip length.
In the literature, L is typically around 10 µm and lm around 1 nm. This leads to a value
of the fitting parameter around 10 [52]. ln(L/lm) in our study we find very large values of
ln(L/lm) that do not make sense.

Thus for the low Ca investigated here, this hydrodynamic approach does not describe
our experimental results.
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Figure 3.10: ln(L/lm) as a function of θd for the pseudo-partial wetting system FC-40

3.4.2 Comparison with the wetting dynamics theory: the ther-
mally activated depinning theory

In the following, we will compare these data with thermally activated depinning theory.
Assuming that the advancing and receding phase are not symmetric the model predicts:

Ṽ =

{
Aasinh(Ba(cosθe − P̃ + Ṽ )), Ṽ > 0

Arsinh(Br(cosθe − P̃ + Ṽ )), Ṽ < 0
(3.5)
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with

Aa,r = λa,rν0e
−
E∗a,r
kBT

Ba,r =
λ2
a,rγ

2kBT

A mean activation energy ε∗ can be defined as

ε∗ = E∗a/λ
2
a + E∗r/λ

2
r (3.6)

The interesting point in this model is that a single physical mechanism controls both the
hysteresis (or the pinning) of the contact line and its dynamics at the depinning threshold:
the activated regime is nothing but a thermal rounding of the depinning transition, as
sketched in Figure 1.14. Hence, one expects that the hysteresis H = γ(cosθr − cosθa),
where θa is the advancing angle and θr is the receding one, scales like ε∗.

The effectiveness of a given model is usually assessed by fitting the experimental data
to the relevant equation with its free parameters, as given in Table 1, where θe is the only
measurable parameter. To evaluate its effectiveness, the first criteria is to calculate the
error between the experimental data and the best fit.

In our situation, we will not follow this standard procedure. Our experimental data
are noisy. Due to some inaccurate measurements of the velocity or of the hydrodynamic
resistance, Equation 3.4 may lead to values for the cosines of the contact angle higher than
1 or smaller then -1. Such points force us to abandon a classical procedure.

In the following, we will set θe to the middle of the hysteresis plateau. Under those
conditions, we are left with two fitting parameters. For a given λ we will set the value of
the energy E∗ that allow us to describe the range of the hysteresis plateau. Then we will
select the parameter couple (λ, E∗) that fit the low velocities values. The choice will be
made manually by comparing the figures displaying the experimental data and the model.
Figure 3.12 and 3.13 will demonstrate that we may trust the fitted values of the parameters
even this procedure is not straightforward.

3.4.3 Complete wetting

We consider firstly the complete wetting situation. Our data does not show a hysteresis
zone. Figure 3.11 displays the evolution of Ṽ as a function of cosθd. The data are noisy.
They show that the contact angle remains constant. One may wonder if such data can
be fitted with the molecular-kinetic model. Coming back to the origin of the model, we
may write that for low values of the force f , V is proportional to f . f is given by the
difference between the two contact angles. It may also be written as the difference between
the pressure drop in the meniscus region and the capillary pressure.

We thus get :

Ṽ = 4η̄AaBafL/γ
2R2 = (AaBa4η̄/γ

2R2)(P̃m − 1) = K(P̃m − 1) (3.7)
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Figure 3.11: Ṽ as a function of cosθd for a complete wetting system. The values of cosθd
around -1 means the constant θd.

Where P̃m is the pressure drop in the meniscus zone. Let us note P̃c the dimensionless
pressure drop due to viscous dissipation in the two liquids .

As P̃ = P̃m + P̃c and P̃c = aṼ we get

P̃ = Ṽ ((1/K) + a) + 1 (3.8)

a has been defined before.
This set of equation shows that the molecular-kinetic model predicts a linear behavior in

this case. However, due to the lack of precision on the determination of the hydrodynamic
resistance, we are not able to extract the value of K.

3.4.4 Partial wetting

We consider partial wetting. Figure 3.12 displays the evolution of Ṽ as a function of cosθd.
The data display a zone where the velocity is equal zero.

The data are well described by the molecular-kinetic model. In order to capture the
zero velocities, λ larger than 5 nm are required. This induces that the energy is larger
than 120 kBT . This energy is very large.

3.4.5 Pseudo-partial wetting

Pseudo-partial wetting has a non-zero velocity plateau, which is different from partial
wetting. These non-zero velocities could be described and fitted by the Rolley model. We
have worked with pseudo-partial wetting systems: FC-40, Water, TTAB, TTAB(II),
CTAB, Water-Tygon. Figure 3.13 display the experimental data and the fit. The data are
reported using linear or logarithmic coordinates. This allows us to check the quality of the
fit and to choose the parameters that describe the hysteresis boundaries but also report
the values of the velocities in the plateau region.

We note that the obtained values for E∗ are smaller in the pseudo-partial situation
than in the partial one. The values of λ are around a few nanometers as previously. The
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Figure 3.12: Ṽ as a function of cosθd for a partial wetting system. The red circles are
experimental. The three solid lines are traced with theoretical values for three couples of
parameters of λ and E∗. In order to capture the zero velocities, we decide to choose values
of λ larger than 5 nm and E∗ equals 120 kBT . The zero velocities are set as Ṽ = 10−23.
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Figure 3.13: Three pseudo-partial wetting system Water, CTAB and FC-40. The solid
lines are theoretical with three couples of parameter λ and E∗.

FC-40 system exhibits very large values of λ. This suggests that the surface displays less
defects.

Following the approach of Rolley [19], Figure 3.14 displays the evolution of the normal-
ized energy ε∗/γ as a function of the normalized hysteresis parameter cosθr − cosθa. We
note that these parameters are proportional. Moreover they collapse on a line close to the
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Figure 3.14: Normalized mean activation energy ε∗/γ as a function of the normalized
hysteresis H/γ, red symbols are our experiments and black symbols from Rolley [19].

Systems θe (◦) λ (nm) E∗/(kBT )
Partial 97 5 120
Water 124 3 40
CTAB 150 3 35
FC-40 165 20 43

Table 3.2: Tested parameters for the partial and pseudo-partial wetting systems. θe, λ and
E∗ are the fitted parameters.

one previously measured by Rolley on other surfaces with other fluids.
This suggests that the pinning of the contact line on mesoscopic defects is likely to

control both the wetting hysteresis and the activated dynamics which is observed close to
the depinning threshold.

3.5 Conclusion

In this simple set-up, by changing the surface property and liquid couples, the property
of the three-phase system and of the surface are discussed. We study the dynamics of
liquid-liquid menisci in a circular tube at small capillary numbers in partial, pseudo-partial
and complete wetting conditions. In the treated glass tube inner surface, there exists a
thin wetting film in the last two situations. We precisely control the displacement of
two immiscible liquids to observe the meniscus velocities, contact angles as a function of
pressure drop. In pseudo-partial wetting condition, we observe that there is a pressure
range where the velocity is extremely low (below 10 µm/s) but non zero, in contrast with
partial wetting, where the meniscus is blocked by a pinned contact line corresponding to
the standard contact angle hysteresis. The role of surface heterogeneity is discussed to
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explain the observations.
From these data, we have extracted the link between the contact angle θd and the

velocity Ṽ . We show that the molecular-kinetic model describes the evolution of the
contact angle θd in all the situations : complete, pseudo-partial and partial wetting. λ
is roughly constant and equal to a few nanometers. The energy value depends upon the
wetting situation. It is large in the partial wetting situation (120 kBT ) and around 40 kBT
for the pseudo-partial wetting situation.

3.6 Summary

Experimental setup

• An inner surface treated capillary tube is suspended in mid-air between two
reservoirs. Two pressures are applied to an unique interface. The meniscus
velocity V and its curvature are measured as a function of the applied pressure
drop P .
• One of the advantages of this setup is to avoid the dead volume and droplets.

The pressure controller has an accuracy of about 6 Pa, which allow us to study
displacement with low velocity.
• Glass surface treatment silanization allows us to obtain various wetting types:

partial, complete and pseudo-partial wettings.

Stationary movement of liquid-liquid meniscus

• In complete wetting situation, V is proportional to the drop of pressure and
vanishes at the capillary pressure.
• In partial wetting situation, V equals zero in the hysteresis-like plateau . In the

high-pressure regime, the velocity and the drop of pressure are proportional.
• In pseudo-partial wetting situation, we observed a hysteresis-like plateau, which

has non-zero velocities. The curvature variations in the hysteresis-like plateau
are also displayed.

Comparison with thermally activated depinning theory

• Dynamics of contact angle can’t be described by hydrodynamic approach.
• The thermally activated depinning theory captures dynamics in the complete

wetting, partial and pseudo partial wetting situations.
• For the various pseudo-partial and partial wetting system, the parameters of

disorder length λ and activation energy E∗ could be measured by fitting the
relation between Ṽ and cosθd. The activation energy of partial system is larger
than the one of the pseudo partial system. λ increases when the hysteresis
decreases suggesting that surfaces displaying less hysteresis have less defects.
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Abstract

We study the dynamics of liquid-liquid menisci in a circulartube at small capillary numbers in partial, pseudo-partialand complete
wetting conditions. There exists a thin wetting film in the last two situations. By pseudo-partial wetting, we refer to systems
having non-monotonic disjoining pressures, as described by Brochard-Wyartet al., Langmuir 7, 335-338 (1991). In this situation,
the disjoining pressure allows the coexistence of a microscopic thin film (but not molecular) and a macroscopic contact angle.
We measure the meniscus velocity as a function of the pressure drop for different wetting conditions. In pseudo-partial wetting
condition, we observe that there is a pressure range where the velocity is extremely low (below 1µm/s) but non zero, in contrast
with partial wetting, where the meniscus is blocked by a pinned contact line corresponding to the standard contact anglehysteresis.
The role of quasi-equilibrium and of surface heterogeneityis discussed to explain the observations.
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1. Introduction

When a droplet spreads on an ideal solid surface, two dif-
ferent types of wetting appear, designed as partial and com-
plete wetting. These can be described by the spreading parame-
ter, S = γSG − (γS L + γLG), which is the difference between
the energy of a dried solid and that of a solid covered by a
macroscopic layer of liquid [1] (γSG, γS L andγLG are the solid-
gas, solid-liquid and liquid-gas surface tensions, respectively).
There is partial wetting forS < 0, the liquid forms a drop with
a finite contact angleθ, and complete wetting forS > 0, the
liquid spreads completely to minimize its energy.

When the thickness of the liquid film is very small, one needs
to consider the contribution of long range interactions in the
energy balance. This is accounted in the literature by the in-
troduction of Derjaguin’s disjoining pressureΠ [2]. Depending
on the particular shape ofΠ(h), Brochard-Wyartet al. [3] pre-
dicted another type of wetting designed as pseudo-partial wet-
ting, for which the interaction between solid and non-wetting
phase (usually air) is attractive at long range and repulsive at
short distances. In this situation, a macroscopic equilibrium
contact angleθe coexists with a thin wetting film of thickness
he. These two quantities are related at equilibrium, but depend
on the conditions considered (fixed volume, fixed pressure, size
of the droplet...) [4].

From an experimental point of view, pseudo-partial wetting
has been observed with a rather limited number of systems[5,
6, 7, 8, 9, 10]: brine-AOT/alkane/air, water/PDMS/air and wa-
ter/alkane/air. Despite these few examples, this type of wetting
has inspired several theoretical work that focused on the shape
of interface from the macroscopic scale to the microscopic one
[4, 11, 12]. Little is known however concerning the dynam-
ics properties of wetting and spreading in this wetting situa-

tion. Since it is an intermediate situation between partialwet-
ting where contact angle hysteresis plays an important roleat
low velocities, and complete wetting where there is no hystere-
sis, the description of the dynamics in pseudo-partial wetting
asks for experimental studies.

In this work we investigate various liquid-liquid systems and
show that, contrary to air-liquid systems, pseudo-partialwetting
is a quite common situation, provided that the solid surfaceis
coated by an hydrophobic layer. We focus on the steady state
of meniscus velocity in circular tubes under pressure control
and discuss the difference between the three types of wetting
situations: partial, complete and pseudo-partial wetting.

2. Material and methods

2.1. Systems
In order to vary the wetting properties, we use different cou-

ples of immiscible liquids that consist in dodecane and an aque-
ous solution or a fluorinated oil (FC-40). They are used in
glass tubes silanized either with octadecyltrichlorosilane (OTS)
or 1H,1H,2H,2H-Perfluorooctyl-trichlorosilane (PFTS), and in
Tygon tubes, purchased from VWR. All the chemical products
were purchased from Sigma-Aldrich. Table 1 summarizes the
properties of the systems used. We determine for every couples
of fluids the surface tensionγ using the pendant drop method.
The spreading coefficient S is defined byS = γsw − γso − γ,
whereγso andγsw are the surface tensions of the oil/ solid inter-
face and of the aqueous solution/ solid interface, respectively.
It is determined by using contact angle measurements of a drop
of oil on the solid surface in air, and a drop of water in the same
conditions. A simple combination of Young’s law then allow to
deduce the value ofS. The sign ofS is used to distinguish par-
tial wetting systems (S < 0) from complete or pseudo-partial
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wetting (S > 0). Except for the glass-PFTS surface, all the
systems exhibit a positive spreading coefficient, meaning that
there is always a film of oil covering the surface. This is con-
firmed experimentally when trying to deposit a droplet of the
non-wetting fluid on a planar solid surface immersed in the wet-
ting fluid. The droplet stands on the surface and freely roll on it
when the surface is slightly tilted.

γ (N/m) S (N/m)
Partial wetting
glass-PFTS/dodecane/water 43.2 · 10−3 −2.9 · 10−3

Pseudo-partial wetting
glass-OTS/dodecane/water 43.2 · 10−3 2.4 · 10−3

glass-OTS/dodecane/TTAB 5.8 · 10−3 9.4 · 10−3

glass-OTS/dodecane/FC-40 5.1 · 10−3 11 · 10−3

Tygon/dodecane/water 43.2 · 10−3 > 0
Complete wetting
Tygon/dodecane/FC-40 5.1 · 10−3 > 0

Table 1: List of the system used and their properties at 25◦C in the form ’solid
surface/wetting phase/non-wetting phase’. TTAB stands for an aqueous solu-
tion of tetradecyltrimethylammonium bromide at 1.0 × 10−4 g/L (TTAB-I) or
4.1× 10−3(TTAB-II). The viscosities of the fluids are 0.89 mPa.s (all aqueous
solutions), 3.4 mPa.s (FC-40) and 1.34 mPa.s (dodecane).

It is not straightforward to know a priori if a given system
with S > 0 exhibits complete or pseudo-partial wetting. Indeed,
it requires the knowledge of disjoining pressure which contains
various contributions, given the complexity of the systemsused
(aqueous solutions of surfactants, glass surface grafted with
silane). It is however rather simple to experimentally distin-
guish between these two types of wetting. If one deposit a drop
of wetting phase on a surface immersed in the non-wetting liq-
uids, it spreads slowly, reaching at long times a very thin film.
On the contrary, we observe for the systems denoted as ’pseudo-
partial’ in table 1, a different behavior. The droplet spreads on
the surface but reaches a steady state with a finite contact angle
(see Fig. 1). Even after one week, the contact angle remains
unchanged and we could thus conclude that it corresponds to
an equilibrium state. Such a configuration is only expected
for pseudo-partial systems where the shape of the disjoining
pressure allows a coexistence between a thin wetting film anda
macroscopic contact angle [3].

Figure 1: Two equilibrium states of the OTS/dodecane/water system. Left: A
droplet of dodecane in water under a flat OTS-grafted glass plate exhibits a
macroscopic contact angle. Right: a droplet of water in dodecane on the same
surface does not stick to the surface. The droplets are about1mm diameter in
both cases.

Limiting ourselves to the van der Waals contribution to the
surface interaction, we could anticipate the sign of the long
range tail of disjoining pressure. It is given by the opposite
of the sign of Hamaker constant of the considered system [3].
The solid surface consist of a very thin layer of silane cover-

ing a thick glass surface. For oil films much thicker than the
silane layer thicknesses, the contribution from this layercould
be neglected and the Hamaker constant of the system is approx-
imated byAg/o/w = Ag/w − Aw/o (the indicesg, o andw refers
to the glass, oil and water phases, respectively). Using val-
ues from the literature [13], we findAg/o/w ≃ 4.5 × 10−22 for
glass/dodecane/water (we were not able to find the value for the
systems involving Tygon tubes). This positive value is consis-
tent with our observations, since for partial and pseudo-partial
systems, the interaction is repulsive at long distances, whereas
it is attractive for the systems exhibiting complete wetting.

2.2. Experimental setup

The experimental setup consists in two reservoirs connected
by a horizontal circular tube of radiusR= 100µm and of length
L = 8 cm. It is sketched in Fig. 2. The tube is suspended
in midair by drilling two small holes on each reservoir. The
two reservoirs are connected to a pressure controller (Fluigent
MFCS) which allows to impose a pressure difference with an
accuracy of about 6 Pa. Starting from a situation where the
tube is entirely filled by the wetting fluid, a meniscus is formed
inside the tube by applying a pressure drop. This setup effi-
ciently prevents the formation of droplets of the wetting fluid at
the inlet of the tube: there is only one meniscus at a time in the
tube. The displacement of meniscus is recorded by a camera
mounted on a binocular. The meniscus velocity and its curva-
ture are measured simultaneously, as a function of the applied
pressure difference.
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Figure 2: Scheme of the experimental setup.

3. Results

In this set of experiment, we focus on steady states. For all
the results reported here, we wait until a stationary regimeis
reached. Although this is achieved within much less than one
second in most of the tested situations, we have also observed
some very long transient regimes when the velocity is very low.
Special attention has been paid to do the measurement a long
time after the change of pressure, and to verify that the velocity
is constant during the measurement.

In steady state, the pressure difference is the sum of the cap-
illary pressure and the viscous pressure drop corresponding to
Poiseuille flow, in the region that is far from the meniscus. Due
to the high aspect ratio of the tube, both end effects and the

2



meniscus region could be neglected so that the pressure differ-
ence is given by

∆P = −2
γ cosθ

R
+

8VL
R2

[
η1x+ η2 (1− x)

]
(1)

whereL is the tube length,V is the meniscus velocity, which
also corresponds to the mean velocity in the tube,η1 andη2 are
the viscosities of the two fluids, andx is the reduced position
of the meniscus inside the tube. The contact angleθ is defined
in the non-wetting phase. Sincex is set around 0.5 and do not
vary significantly during an experiment, the second term of the
right-hand side could be rewritten using the mean viscosityη̄ =
(η1 + η2) /2 of the two fluids. Using thereafter non-dimensional
quantities defined bỹP = ∆PR/2γ and Ṽ = 4η̄VL/γR, the
previous equation reduces toP̃ = − cosθ + Ṽ.

For all the systems, the capillary pressure 2γ/R lies in the
range 100-1000 Pa, and the characteristic velocityγR/(4η̄L) ≈
800− 1.5 · 104µm/s. Note thatθ is a macroscopic contact an-
gle, that in principle depends on the velocity for high capillary
numbers (Ca= η̄V/γ) and that could be accounted by as Cox-
Voinov’s law [14]. However, given the very small capillary
numbers investigated in this study (10−9 − 10−4), we neglect
the variations of the contact angle due to hydrodynamic forces.

3.1. Partial and complete wetting

Fig. 3 shows the results obtained with the systems in com-
plete and partial wetting. The complete wetting system exhibits
a linear relation betweeñV and P̃, with a slope close to unity.
Furthermore,Ṽ = 0 for P̃ ≃ 1, showing that the macroscopic
contact angle remains constant and equals to 180◦ for receding
and advancing menisci, which is confirmed by image analysis.
For the partial wetting system, there are two linear branches of
slope on the order of unity, but separated by a pressure interval
where the velocity vanishes. The contact line is pinned in this
range of pressure. When the meniscus is moving, the contact
angle coincide either to the advancing contact angle or to the re-
ceding one, which is verified by the measurement of curvature
shown in Fig. 3. The contact angle varies in the pinned interval
to accommodate the pressure difference that is imposed. The
hysteresis is rather high (90◦) for this system, probably due to
an inhomogeneous grafting of the surface. These two systems
are thus in perfect agreement with the literature.
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Figure 3: Left: Non-dimensional meniscus velocity in steady state as a function
of the pressure drop for the tygon/dodecane/FC-40 system (complete wetting).
The full lines represents̃V = P̃−1. Right: PFTS/dodecane/water system (partial
wetting). The slope of each linear branch is 0.81.

3.2. Pseudo-partial wetting
The meniscus velocity as a function the pressure drop ob-

tained with the OTS/dodecane/water system is shown in Fig. 4.
The results look very similar to those of the partial wetting
system discussed above: two linear branches are observed for
P̃ < 0.6 andP̃ > 1, separated by a plateau where the velocity
is very small (below 10µm/s). Contrary to what we observe
for partial wetting, the velocity does not strictly vanish but is
very small (see the insert in Fig. 4), showing that there is no
pinning. We also observe that a pressure perturbation in this
regime leads to a sudden move of the meniscus with a high ve-
locity that eventually relax after some time. These observations
show that though the stationarỹV − P̃ relationship is at first
sight similar to that of partial wetting, the responsible mecha-
nisms for the plateau region are different. Let us recall that, for
this system,S > 0, which means that there is always a wetting
film of dodecane on the solid surface.
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Figure 4: Meniscus velocity in steady state as function of the pressure drop
for OTS/dodecane/water. The two linear branches have a slope of 1.1. Abso-
lute values of non-vanishing velocities are shown in insertas a function ofP̃,
showing that the meniscus is not pinned but moves very slowly.

All of these observations hold for various systems. Fig. 5
displays theṼ − P̃ relation obtained for various aqueous solu-
tions of standard surfactants against dodecane in OTS-grafted
glass tube, together with the OTS/dodecane/FC-40 and the ty-
gon/dodecane/water systems. All of these systems have a pos-
itive spreading parameter, and exhibit a plateau where the ve-
locity is very small but where the contact line is not pinned.
The only difference between these systems is the pressure drop
at which the meniscus starts to recede with a significant veloc-
ity (receding linear branch), which is indicated in Fig. 5. It
thus seems natural to relate the observation of an contact angle
hysteresis-like range without pinning to the pseudo-partial na-
ture of the wetting for all of these systems. Our experimental
set up is then a method to distinguish between pseudo-partial
and complete wetting conditions.

At equilibrium, the pressure is uniform inside both phases
and thus 2γ cosθe/R = Π(he). Then, integrating the general-
ized Laplace law from the meniscus region to the flat wetting
films leads to cosθe = 1 + 1/γ ×

∫ ∞
he
Π(z)dz, which constitute

the second equation needed to define the equilibrium state [15].
Thus there is only one equilibrium contact angle expected for
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linear branch is highlighted by vertical dashed lines. The concentrations for the
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pseudo-partial wetting systems with ideal surfaces. The rigor-
ous interpretation of the observation of pressure range where
the meniscus velocity is very small for the pseudo-partial wet-
ting systems is beyond the scope of this article. We may how-
ever think of two possible mechanisms, based either on non-
ideal surfaces, either on quasi-equilibrium states.

The first possibility is to invoke topological or chemical het-
erogeneities of the solid surfaces which has been shown to be
responsible for contact angle hysteresis in partial wetting sys-
tems. The consequences of a non-flat surface in a pseudo-
partial system would however be slightly different since there
is a very thin layer of the wetting phase separating the solidand
the non-wetting phase. It might explain why we do not observe
contact line pinning in the pseudo-partial systems, but instead a
very slow movement.

The second possible interpretation relies on theoretical argu-
ments developed by Starov and coworkers (see part 3.10 of ref-
erence [15]). They proposed that between an advancing contact
angle and a receding one, the meniscus and its surrounding wet-
ting film adopt aquasi-equilibriumshape which thus lead to a
natural contact angle hysteresis, without surface imperfections.
Due to the very small thickness of the wetting film, the equilib-
rium state between the infinite film far from the meniscus and
the macroscopic contact angle is rather hard to achieve since
any small flow in the wetting film induces an important pressure
gradient. Thus, for a non-equilibrium pressure drop between
the two macroscopic phases, the meniscus could reach rapidly
a macroscopic contact angle which balances the applied pres-
sure drop, leading to a very slow velocity, even though the thin
wetting film is not at equilibrium. As discussed by Starovet
al., this quasi-equilibrium situation is greatly dependent onthe
disjoining pressure curve, and requires a non monotonic shape,
such as in pseudo-partial cases. The advancing contact angles
is expected to be close to 180◦ and the receding one higher that
90◦, which is always the case in our observations.

4. Conclusion

Using a simple set-up, we report in this article velocity mea-
surement of a single liquid-liquid meniscus in a tube in different
wetting conditions under pressure control, and for low capillary
numbers. Complete and partial wetting systems exhibit a stan-
dard behavior, that is simply accounted by Poiseuille law, and
for partial wetting system, a contact angle hysteresis where the
contact line is pinned. Similar experiments applied to pseudo-
partial wetting systems lead to the conclusion that this type of
wetting leads to an apparent contact angle hysteresis. The latter
differs from the partial wetting case since the contact line is not
pinned but moves very slowly. This behavior is observed for
various systems and thus seems to be generic for solid-liquid-
liquid systems in pseudo-partial wetting conditions.

These results ask for complementary work in order to be
able to conclude on the mechanism responsible for the apparent
contact angle hysteresis. We proposed two possible interpreta-
tions based either on surface heterogeneity or on the existence
of quasi-equilibrium state. In particular, varying the surface
roughness and measuring the disjoining pressure may help to
discriminate between these two and should be the focus of fu-
ture work. Finally, the meniscus dynamics in pseudo-partial
wetting systems ask also for deeper observations since we no-
tice long transient regimes before reaching the steady state de-
scribed in this article.
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Chapter 4

Unstationnary dynamics

4.1 Introduction

In Chapter 3, we have focused on steady states, where the meniscus moves at a constant
speed under a given pressure drop. In fact, although steady state is achieved within much
less than one second in most of the tested situations, we have also observed some very
long transient regimes when the velocity is very low. In this chapter, we focus on these
transient regimes induced by a sudden change of the pressure drop. These regimes could
be very long.

4.2 Transient regimes

With the same setup as depicted in Figure 3.2, we work with a liquid-liquid system dode-
cane/water inside a 200 µm-diameter OTS-silanized glass capillary tube. This system has
a capillary pressure Pc= 864 Pa, and is in pseudo-partial wetting conditions, as discussed
last chapter.

We have used the following experimental protocol to study how the meniscus displace-
ment reaches steady state. Starting from a situation where the tube is entirely filled by
the wetting fluid, a pressure drop Pi is applied to form one single meniscus inside the tube.
The starting position is a few centimeters upstream from the observation field, so that the
steady state regime has been reached when the measurement begins. A sudden change of
pressure drop from Pi to P is made just after the meniscus enters the observation field, and
the meniscus displacement is monitored. We analyze these images to get the displacement
informations.

In some situations, this displacement is not linear, one of which is shown as an example
in Figure 4.1. A prompt change of pressure drop from 850 Pa to 900 Pa is shown in the
left part. This change leads to a very long kinetics in the position-time plot in the middle
part. A high velocity is observed at the beginning and decreases markedly with time until
an asymptotic constant velocity regime is reached. It takes about 0.1 s for the pressure
drop to change from a stable one to another. However, it takes more than 300 s to get
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a steady state regime for the meniscus velocity. This long duration response to a prompt
pressure drop change is designed thereafter as the transient regime. As we could precisely
control and measure the pressure drop simultaneously, this is not a result of pressure values
relaxation. It should related the motion of the apparent contact line.

Figure 4.1: Left: a prompt (t < 0.1 s) step-changed pressure drop from 850 Pa to 900 Pa
induces a kinetics longer than 300 s. Middle and right: the experimental and fitted relations
between meniscus position z(t) and time t under a system of glass-OTS/dodecane/water.
(see also Figure 4.1 and Equation 4.1)

4.2.1 Characteristic time τ

The time-resolved position, shown in Figure 4.1, could be fitted by using a exponential
function between meniscus position z and time t:

z = a · e− t
τ + z0 + v∞t (4.1)

where t is the elapsed time since time t0, which is the moment of the pressure drop step, z0

is the meniscus position at t0, V∞ is the final steady state velocity at t =∞. A fitted curve
is sketched in Figure 4.1 with two fitted parameters τ=108.8 s and V∞=0.4 µm/s. The
blue solid curve corresponds to the exponential fit. We focus on the measurement of the
characteristic time, which exhibits big variations as a function of the applied parameters,
and in particular the final pressure drop.

We vary the initial pressure Pi and final pressure P between -1 kPa and 2 kPa and
observe in every cases an exponential relaxation. Some examples of transient regimes are
shown in Figure 4.2, 4.3 and 4.4.

Independently of the displacement directions, the transient regimes occur either be-
tween two advancing displacements, or two receding displacements, or between one ad-
vancing and one receding displacements. The transient regimes that follow the pressure
drop step could be very long or very quick. Distinguished from the duration of the transient
regimes, we made a rough classification by characteristic time τ :

• (1) Fast transient regime (τ<2 s). In Figure 4.2, every figure has two steady displace-
ments without transient regimes. The velocities of each steady displacement could
be measured by their slopes. Their displacements gives representative directions:
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from advancing (90 µm/s) to advancing (1703 µm/s), from receding (-718 µm/s)
to receding (-14041 µm/s), from receding (-109 µm/s) to advancing (2218 µm/s).
All the three have final velocities relatively high.
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Figure 4.2: Three examples of fast transient regimes: 950 Pa→1150 Pa, 550 Pa→ -850 Pa,
550 Pa→1150 Pa under a system of glass-OTS/dodecane/water.

• (2) Long transient regime (τ<50 s). In Figure 4.3, every figure has two steady
displacements and a transient regime. The characterized time τ of transient regimes
and velocities V∞ of the second displacements could be fitted by Equation 4.1. We
get τ=2.5 s, 5.2 s, 31.3 s and V∞ = −845 µm/s, 912 µm/s, 10.4 µm/s, respectively.
We find the final velocities smaller than those of the fast transient regime.

Figure 4.3: Three examples of long transient regimes: 1150 Pa→650 Pa, 550 Pa→750 Pa,
850 Pa→950 Pa under system of glass-OTS/dodecane/water.

• (3) Very long transient regime (τ>50 s). In Figure 4.4, every figure has two steady
displacements and a transient regime. The characterized time τ of transient regimes
and velocities V∞ of the second displacements could be fitted by Equation 4.1. We
get τ=5544 s, 51. 7s, 87.2 s, respectively. The meniscus decelerates and the final
velocities are not zero.

Several displacements with very long transient regimes are recorded during quite long
periods, and the final velocities are stable. One of them is shown in Figure 3.7, a steady
state velocity of V = 90nm/s leads to a displacement of 4.5 mm during about 17 hours.
This special transient property seems to be related with small velocities.

Note that the fact that the velocities are small but non vanishing together with the
presence of transient regimes demonstrate that there is no strong pinning of the contact
line in these systems.
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Figure 4.4: Three examples of very long transient regimes: 800 Pa→850 Pa,
950 Pa→750 Pa, 850 Pa→900 Pa with τ = 5544 s, 51.7 s, 87.2 s under system of glass-
OTS/dodecane/water.

4.2.2 Pressure drop diagram

For this given system, the relaxation times of menisci are studied as a function of two
parameters: the initial and arrival pressure drops Pi, P . We want to study the influence
of these two pressures drops on the characteristic time of the trancient regime.

Menisci displacements are observed for several series of pressure drop step, Pi = 550 Pa,
850 Pa, 950 Pa and 1150 Pa. For each Pi, several final pressures P are tested. The
characteristic times τ are obtained by fitting the trancient response by Equation 4.1. We
observe very different characteristic times, from below 1s to several hours. We use the
above detailed classification of the transient times to map the observation on a diagram in
the Pi−P space parameter. It is show in Figure 4.5 where the black point(·), blue star(∗)
and red circle(◦) design the fast, long and very long transient regimes.

Several general trends could be drawn from this diagram:

• The transient regimes are symmetrical in the vicinity of Pc.

• The transient regimes depend only on the arrival pressure drop P , and does not
depend much on Pi.

• The very long transitions occur around Pc.

4.2.3 Correlation with the steady state velocity V∞

As suggested by the above rough analysis, τ does not seem to depend on Pi. In Figure 4.6,
we thus plot τ as a function of arrival pressure drop P . The characteristic time τ presents a
huge increase around the capillary pressure Pc. The pressure range where the characteristic
time is rather high corresponds to the so-called plateau regime (or hysteresis zone) observed
in the steady state.

Figure 4.6 presents an empiric correlation between the characteristic time τ in the
transient regime and the (unsigned) steady state velocity. Both quantities seem to be
quite well correlated given the precision and the reproducibility of the experiment, and the
characteristic increases linearly with respect to the inverse of the steady state velocity. All
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Figure 4.5: Diagram showing the couples (Pi, P ) that have been investigated for the system
glass-OTS/dodecane/water. Each experiment is classified according to its characteristic
time (see text for details): fast transition (t<2 s, dots), long transition(t<50 s, stars), very
long transition(t>50 s, circles).

types of the transient regime agree well with this linear relation. It suggests that τ is in a
very first approximation roughly proportional to 1/v∞.

τ =
L

v∞
(4.2)

with a length scale, which would be defined by this relation, on the order of 2 mm.

−500 0 500 1000 1500 2000 2500

10
0

10
2

10
4

Pression(Pa)

C
h
a
ra
ct
er
is
ti
c
ti
m
e
τ
(s
)

10
3

10
5

10
7

10
9

10
0

10
2

10
4

1/ |V | (s/µm)

C
h
a
ra
ct
er
is
ti
c
ti
m
e
τ
(s
)
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4.2.4 Transient regimes in other systems

Transient regimes occur also in other couples of liquids. Here we show a simple table of
all the studied solid/liquid/liquid systems. The existence of transient regimes may be a
criterion to distinguish the wetting property of a system. Table. 4.1 shows the properties of
certain systems. Complete wetting is easy to distinguish from others without the transient
regime and hysteresis plateau. The discussed pseudo-partial wetting has this property of
very long transient regimes except one system: glass-OTS/dodecane/FC-40. This system
has a quite short hysteresis-like plateau, but the transient regimes are all quite short or
nearly τ = 0. We note that the partial systems do not exhibit long transient regimes but
remain pinned inside the hysteresis zone. This dynamic property seems thus to be a conse-
quence of the wetting film. We believe that the transient regime is the period throughout
that the macroscopic meniscus and the microscopic wetting films are coordinating their
values. This could involved a change of contact angle θ and thickness h. The steady dis-
placement follows this transition. θ and h have reached their equilibrium values, that are
the values of the final steady states V∞.

Transient Hysteresis Wetting
regime plateau property

glass-OTS/dodecane/water Yes Yes pseudo-partial
glass-OTS/dodecane/dyed water Yes Yes pseudo-partial
glass-OTS/dodecane/TTAB Yes Yes pseudo-partial
glass-OTS/dodecane/CTAB Yes Yes pseudo-partial
tygon/dodecane/water Yes Yes pseudo-partial
galss/dodecane/water No Yes Partial
galss-PFTS/dodecane/water No Yes Partial
glass-OTS/dodecane/FC-40 No Yes pseudo-partial
tygon/dodecane/FC-40 No No complete

Table 4.1: All the studied systems are shown with their properties of hysteresis plateau,
transient regime and wetting types. These properties could also be a method to distinguish
the wetting types. The systems with long transient regimes and hysteresis plateau are
pseudo-partial wetting. The glass-OTS/dodecane/FC-40 has not transient regimes but
V 6= 0 hysteresis. It’s also distinguished as pseudo-partial wetting. The systems with
V = 0 hysteresis plateau are partial wetting. The systems without transient regimes and
hysteresis plateau are in complete wetting situation.

4.3 Discussion

The very huge time scales that we have reported above are rather puzzling. They exists
only around the hysteresis zone, for system in pseudo-partial wetting conditions. The less
the steady state velocity, the higher the relaxation time. When the corresponding steady
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state is very close to the equilibrium contact angle, then the characteristic time could
be as high as 103 s. From an experimental point of view, this result ask for a precise
protocol. In order to measure the steady state velocity, it is necessary to wait a great
amount of time in the hysteresis zone. This is why we have used for the experiments in
steady state (see previous chapter) such a precise protocol. If the pressure is changed
during the transient regime, then meniscus displacement is very hard to understand and
reproducibility is difficult to ensure. It seems that the meniscus movement is governed by
the history of the pressure variations. This issue is rather consistent with the very long
transient times reported in this chapter.

Similar transient regimes has also observed occasionally in other systems. With a
water/cyclohexane system, Chertcoff [108] et al. have studied the meniscus dynamics in
a millimeter-size glass capillary tube initially saturated with cyclohexane, which is water
wet. Their setup is very similar to the one we have used, since the meniscus movement
is controlled by a pressure difference. After a sudden change of pressure, they report
transient regimes of characteristic time that could be as high as a few hundreds of seconds.
These effects are particularly strong at very low capillary numbers between 3 × 10−9 and
5 × 10−7. It seems that these observations is very similar to ours, but unfortunately, the
authors do not precise the exact type of wetting of their system. Given the fact that we
have only seen these kinds of transient regimes in pseudo-partial wetting conditions, it is
temptative to think that the systems they used is also in pseudo-partial wetting conditions.
The authors suggest that the relaxation are due to adsorption sites with a wide range
of characteristic times: decreasing the velocity increases the number of sites active for
adsorption and enhances the wetting of high-energy glass surface by water. However, such
an interpretation do not really explain why there exists a transient regime at a very low
capillary numbers.

The long times found suggest that the small thickness of the wetting films play a
great role, since flows in these films are small. However, an hydrodynamics approach (see
Section 1.4.2) would predict that the film thickness is monotonically slightly changed in
pseudo-partial wetting systems, when the pressure is varied around the equilibrium contact
angle. This type of approach would thus not lead to a maximum of characteristic times at
the equilibrium contact angle. Moreover, it could probably not explain the symmetry we
found around the equilibrium. If the pressure is above or below the equilibrium pressure,
we indeed find that the velocity is high at time zero and then relaxes. It seems thus that
the distance to equilibrium is the key to the observed relaxation.

We found an empiric correlation between the velocity in the steady state and the
characteristic time. Their ratio is constant and equals 2 mm. This length is much higher
than channel size, but we are not able to provide any satisfying interpretation of the
physical meaning of this length scale.

Our data in the steady state are rather compatible to a motion of the contact line
controlled by thermally activated depinning events. It might be interesting to extend that
kind of mechanism to the out of equilibrium case. Yet, such a description is not available
in the literature, and ask for theoretical work, maybe using out-of-equilibrium statiscical
mechanics.
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4.4 Conclusion
We report in this part some striking observation of the contact line movement after a
sudden change of pressure in the hysteresis zone, for pseudo-partial wetting systems. Its
velocity is much higher just after this change that the steady state velocity. It then relaxes
to the steady state value with a characteristic time that greatly depends on the velocity
in the steady state. It is very high close to the equilibium and we found that it varies
proportionaly to the inverse of the steady state velocity.

These results ask for some interpretations. Since it occurs only in pseudo-partial wetting
system, inside the hysteresis controlled by depinning events, the corresponding mechanism
should involve the small thickness of the wetting films that are presented in pseudo-partial
systems, and the surface roughness is responsible to the hysteresis.

Although the interpretrations are not very clear yet and ask for theoretical work, these
results do have strong experimental consequences. In order to be able to measure steady
state velocities, it is necessary to wait until the end of the transient regime. Since the
characteristic times are in the hystereresis zone on the order of 100 s, proptocols should
be defined with great attention. Very complex contact line movements could be observed
if one does not wait enough before changing the pressure.

4.5 Summary

Transient regimes

• A very long kinetics occurs when a prompt change (about 0.1 s) of pressure
drop is applied. A high velocity is generated and decreases markedly with time
until an asymptotic, constant velocity regime is reached. It may take more than
several hundreds of seconds to get a steady state velocity.
• Characterized time τ describes the long relaxation of velocity. It is fitted by an

exponential function.
• By varying the initial and arrival pressure drop, the characterized time displays

various relaxation durations from 0 s to 104 s. Three types of transient regimes
are distinguished by τ and displayed in the parameter plane initial and arrival
pressure drops.
• The transient regimes are symmetrical in the vicinity of capillary pressure PCa.

The transient regimes depend only on the arrival pressure drop P , and does not
depend much on Pi. The very long transient regimes occur for final pressure
drops around PCa.
• The characteristic time τ presents a logarithmic trend at both sides of capillary

pressure PCa. τ is roughly proportional to 1/V∞. They define a length scale of
L = 2 mm.



Part III

Flows in corner films
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Chapter 5

Corner flow around a static meniscus

5.1 Introduction
The movement of a liquid-liquid meniscus in a circular tube at small capillary numbers
is a rather simple problem since it follows Poiseuille’s law with an effective pressure that
incorporates the capillary pressure. However, for a tube of arbitrary cross-section exhibiting
sharp corners, which are useful example of simple pore shapes, capillarity requires that the
wetting liquid remains along the corners. These corner films may flow.

In this part we experimentally investigate the role of these corner flows on the dynamics
of a liquid-liquid meniscus, under complete wetting situation, by taking advantage of a
microfluidic PDMS cross-junction. A diagram of coupling pressure drops under stationary
state is in Chapter 5.

5.1.1 Corner flow

The spreading of wetting liquids with a liquid or air ambiance in a capillary tube is a basic
problem. Its spreading rate depends on the fluid properties (interfacial tension, viscosity,
wetting) and substrate properties (roughness, interaction with liquid: van der Waals, dis-
joining pressure...) [13]. It was shown, both theoretically [109] and experimentally [34],
that a complete wetting liquid is solely controlled by the drops in the capillary and hy-
drostatic pressures in the macroscopic liquid body. Under conditions of strong preferential
wetting, the emphasis has been placed on the transport of the wetting phase by flow in
surface grooves and edges, in which is often called a "wetting film", and on the snap-off
of threads of the non-wetting phase, which is caused by capillary instabilities that occur
because of the presence of the wetting film on the pore walls. There are many studies of
capillary driven flow in a cylindrical tube [110] and in the irregular section channels [111].
In a quasi-static displacement and in a displacement at very low capillary number in the
order of 10−7, the movement of the wetting phase plays a major role in the displacement
process.

Three or two phases flow (nonaqueous phase liquid, water, gas) in microchannels are
discussed for oil recovery [112–115]. In a polygonal capillary, static menisci are governed
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by the Young-Laplace equation, which expresses in differential form the force balance
between interfacial tension and the net pressure force acting on an element of the meniscus,
e.g. imbibition and drying of a liquid/air meniscus. Due to capillary forces, the size
and movement of air-liquid meniscus along an interior corner of a container is studied
theoretically and experimentally [116], or in capillary tube with irregular sections: square
ones [117–119] and triangle ones [118, 120, 121]. Dong and Chatzis [117] have shown,
theoretically and experimentally, the imbibition rate of a wetting liquid in the corners of a
square capillary tube occupied predominantly by the non-wetting gas phase. The velocity
of imbibition depends on the fluid properties(interfacial tension, viscosity), the contact
angle, and the geometry of the corner, as characterized by the tube size and the degree of
roundedness.

Usually capillary number, roughness of the microscopic tubes and shape of cross section
play an important role during imbibition [122,123]. As triangles provide a useful example
of simple pore shapes, the exact meniscus curvature of perfectly liquid draining from pores
of general triangular cross section is calculated [124]. An interacting triangular tube bundle
model is developed, which is consistent with the experimental results of non-wetting fluid
trapping in another wetting fluid in porous media [125].

Numerical simulations have shown the meniscus shapes in irregular section tubes in
three dimensions [47, 126, 127] or two [128]. Numerical results computed from the aug-
mented Young-Laplace equation has an excellent agreement with a profile of an air-liquid
meniscus in a square capillary [47]. Furthermore, theoretical models of relationship between
fluid configuration and Capillary number (or flow rate) are built for air-liquid imbibition
in a square capillary [123].

The movement of a solid/liquid/liquid contact line has been studied since 1970’s [129].
Experimental results investigate the mechanisms of this displacements of one fluid by
another in a network of capillary ducts [5]. The meniscus in Figure 5.1 is coexist with the
wetting fluid remaining in the extreme corners of the cross-section.

Figure 5.1: Situation of the fluids in the section of a duct with pressures Pw in wetting
fluid and Pnw in non-wetting fluid [5]. (a) perspective view, (b) sectional view.

Controlling the flow patterns between two immiscible phases in microchannels has at-
tracted a lot of attentions. Droplet formation has been widely studied in various microge-
ometries. Well structured flow patterns (drops, pears, pearl necklaces, ...) are generated by
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two-phase flows in immiscible fluids through hydrodynamic focusing in square microchan-
nels [130, 131]. This crossed microchannel could generate droplets with a high degree of
monodispersity [132, 133]. Generally, the continuous phase wets the walls well. The fluid
interaction with the walls plays an important role for the flow pattern formation. The wet-
ting property of liquids on the substrate leads to different regimes [130]. The modification
of droplets velocity by the crossed channels is studied [134].

During these processes, the wetting fluid can flow along the edges of the ducts. Meniscus
dynamics are studied strongly on the indirect control of corner flows in a microchannel.
But direct controls are not discussed yet.

5.2 Experimental approach

5.2.1 Wetting properties of using systems

We study the displacement of Fluorinert oil FC-40 in a straight PMDS microfluidic channel
filled with silicone oil V20. Figure 5.2 displays the velocity of the meniscus as a function
of the pressure drop. The velocity is proportional to the pressure drop. There’s no contact
angle change between advancing and receding situation and no pressure plateau region
for velocity v = 0. It means that the meniscus could advance or recede without changing
curvature, which demonstrates a complete wetting situation. Further, the slope is 1.2×10−8

corresponds to hydrodynamic resistance Rh. The x-intercept 220 Pa corresponds to the
capillary pressure PCa = 237 Pa. These measurements are in agreement with the spreading
parameter value S, which is positive and the Hamaker constant which is negative.
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Figure 5.2: A velocity-pressure relation checks the complete wetting system: Fluorinert oil
FC-40/silicone oil V20/PDMS. Straight PDMS channel has a cross section of 50×200 µm.
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Complete wetting γ (N/m) S (N/m) A
PDMS/Dodecane/FC-40 4.7× 10−3 7.99× 10−3 −5.2× 10−24

PDMS/Silicone oil V20/FC-40 5.1× 10−3 2.56× 10−3 −1.4× 10−22

PDMS/Silicone oil V5/FC-72 2.8× 10−3 4.41× 10−3 −1.9× 10−23

Table 5.1: List of the used complete wetting system and their properties at 25◦ in the form
’solid surface/wetting phase/non-wetting phase’.

5.2.2 Setup

We want to control the displacement of a meniscus. In order to control the flow of both
phases, we need to set the pressure drop in the non wetting fluid but also in the wetting
fluid. In order to do so, we focus on a cross geometry (see Figure 5.3). It consists of two
channels: main one with width w1 = 50 µm, length L1 = 12 mm, and crossed one with
w2 = 20 µm, L2 = 100 µm, which has each side a prolongation with width w = 200 µm,
L3 = 3mm. In these crossed channels, three pressures P1, P2 and P3 could be applied at
four ends to control the meniscus and the corner flows..

P2, oilP1, Water

P3, oil

20µm

Figure 5.3: Upper part is the schematic design of microchannels. Zoom of junction zone
and sectional view of the rectangular channel.

By a procedure of photolithography and PDMS molding, the height of channels is
well controlled h = 50 µm. The capillary pressures, which keep the meniscus a constant
contact angle θ, are in main channel: PCa1 = γ(2/w1 + 2/h) and in crossed channel:
PCa2 = γ(2/w2 + 2/h).

The inlet of the main channel is connected to a reservoir filled with fluorinated oil FC-
40. This reservoir bears a pressure P1. The outlet is connected to a reservoir filled with
silicone oil. This reservoir bears a pressure P2. The two inlets of the perpendicular channels
are connected to a reservoir filled with silicone oil. In this last reservoir the pressure is
equal to P3. All three reservoirs are connected with a pressure controller (Fluigent MFCS
4C) which allows to impose pressures P1, P2 and P3 with an accuracy of about 6 Pa in a
range lying between 0 and 2500 Pa.
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5.2.3 Method

To be sure to apply a given pressure drop on the liquid-liquid meniscus, we must avoid the
formation of droplets or bubbles in the channels or in the connexions.

Once the chip is connected with reservoirs through tubes, a pressure drop is applied to
push the preferentially wetting liquid until the channels are filled by wetting fluid. Starting
from this situation, another pressure drop is applied to form one single meniscus (before
the junction) in the channel by applying a set of pressure drops with great care.

P12 = P1 − P2, P32 = P3 − P2 (5.1)

We restrict our study to a limited range of pressure drop in order to avoid the formation
of drops at the junction. P12 is slightly above the capillary pressure PCa = γ(2/w1 + 2/h)
and P32 remains closed to zero. The displacement of meniscus is recorded by a camera
AVT Pike F505B mounted on a binocular Olympus SZX16. The meniscus velocity and
sectional flow shapes are measured simultaneously, as a function of the applied pressure
drops. We experimentally investigate the role of corner flows on the dynamics of a liquid-
liquid meniscus. The corner flows are controlled under a pressure drop through wetting
liquid in the corners.

5.2.4 Pressure drop limitation

As we have mentioned, the applied pressure drops should be in a limited range, which is
between two regimes: drop forming and invasion in crossed channels, as sketched in Figure
5.4. The left one shows the pressure limit when the drops begin to be formed. The right
one shows the pressure limit when the wetting liquid invades in the crossed channels.
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Figure 5.4: The limits of pressures drops. Left: the pressure limit when the drops begin
to be formed. Right: pressure limit when the wetting liquid will invade in the crossed
channels.

In the following, we restrict our study to the pressure drop values under which the
meniscus remains in the main channel.
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5.2.5 Corner flow illustration of confocal microscopy

As the pressure drops are applied to control the two phase flows, we would like to observe
their velocity fields. Confocal microscopy is a good method to probe these corner flows.

5.2.5.1 Principle of confocal microscopy

Confocal microscopy is an optical imaging technique used to reduce the optical depth and
contrast of a micrograph by using point illumination and a spatial pinhole to eliminate
out-of-focus light in specimens that are thicker than the focal plane [135]. It enables the
reconstruction of three-dimensional structures from the obtained images. This technique
has gained popularity in the scientific and industrial communities and typical applications
are in life sciences, semiconductor inspection and materials science.

The principle of confocal microscopy is sketched in Figure 5.5. The confocal principle
in epi-fluorescence laser scanning microscopy is presented in the left part. Coherent light
emitted by the laser system (excitation source) passes through a pinhole aperture that
is situated in a conjugate plane (confocal) with a scanning point on the specimen and a
second pinhole aperture positioned in front of the detector(a photomultiplier tube). As
the laser is reflected by a dichromatic mirror and scanned across the specimen in a defined
focal plane, secondary fluorescence emitted from points on the specimen (in the same focal
plane) pass back through the dichromatic mirror and are focused as a confocal point at
the detector pinhole aperture.

The significant amount of fluorescence emission that occurs at points above and below
the objective focal plane is not confocal with the pinhole and forms extended airy disks in
the aperture plane. Because only a small fraction of the out-of-focus fluorescence emission
is delivered through the pinhole aperture, most of this extraneous light is not detected
by the photomultiplier and does not contribute to the resulting image. The dichromatic
mirror, barrier filter, and excitation and emission points on a specimen to a new plane that
becomes confocal with the pinhole apertures of the light source and detector.

As only one point in the sample is illuminated at a time, 2D or 3D imaging requires
scanning over a regular raster (i.e., a rectangular pattern of parallel scanning lines) in the
specimen. The achievable thickness of the focal plane is defined mostly by the wavelength
of the used light divided by the numerical aperture of the objective lens, but also by
the optical properties of the specimen. The thin optical sectioning makes these types of
microscopes particularly good at 3D imaging and surface profiling of samples.

We use a confocal microscope of CARL ZEISS LSM 5 LIVE. With the tracers "fluo-
rescent microspheres", which consists of 1 µm polystyrene beads loaded with fluorescent
dyes commercialized by Molecular Probes, we choose the laser at wavelength 488 nm and
a filter of LP505, which passes the wavelength higher than 505 nm to the detector. And
for our channel of width 100 µm, an objective of EC40× with adapted index n = 1.30 is
utilized, which is mounted on a piezo stage from Physik Instrumente, which allows us to
construct 3D imaging by scanning the different focus plane of z direction with an accuracy
of 0.9 µm/layer. We scan the several horizontal planes in the channels. The scanning is
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Figure 5.5: schematic drawing of confocal microscopy.

piloted by a software zen10. And the velocity fields are analyzed by tracking the particles
trips with a home-made MATLAB program of Hugues Bodiguel.

5.2.5.2 Reverse flow

Here, Figure 5.6 shows an illustration of the velocity fields of a system with an aqueous
phase FluoSphere/TTAB/Water/Glycerin (with a ratio on mass of 0.7% : 0.3% : 40% :
59%) and an oil phase dodecane in PDMS microfluidic chip. The chip is designed as
Figure 5.3, and the meniscus control is described in the section 5.2.3. Two pressure drops
P12 and P32 have the opposite signs, so two reverse flows are shown in two layers: one near
the channel wall and another in the middle. The white points correspond to the particles
and the green flashes correspond to the directions and magnitudes of velocities of these
particles. The Poiseuille flow in the left part shows no influence of the corner oil flows on
the central aqueous phase. The right one shows a strong reverse flow near the channel wall
and low velocities in the center.

5.3 Diagram of pressure drops

We study the displacement of a meniscus between fluorinated oil FC-40 and silicone oil V5.
Once the meniscus has moved as shown in below part of Figure 5.3, the meniscus dynamics
is a result of local pressure drops. To study these effects, we measure the pressures which
make the meniscus velocity v = 0 at a position L.

This stationary state corresponds to one only pressure drop, and even a small distur-
bance could displace the meniscus. Applied pressure drop advances the meniscus when it
is bigger than PCa, in the contrary, the meniscus recedes. To simplify the measurements
we need to define an almost stationary state (v∼=0): when a meniscus is displaced less than
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Figure 5.6: Illustration of reverse flow in the PDMS chip with crossed channels. With
the system FluoSphere/TTAB/water/glycerin and dodecane in PDMS, the channel has a
section of 100× 50 µm, in a position of 100 µm from the cross. Each photo has a width of
100 µm. They have heights of hleft = 5 µm, hright = 19.5 µm for the two layers.

5 µm during a period of 300 seconds under stationary pressures drops. This approximation
gives a criterion to measure local pressure which is almost equal the capillary pressure. We
study the meniscus dynamics for different positions: before, far from and near the junction.

5.3.1 Meniscus before and far after the junction

5.3.1.1 Single channel

If we consider a general situation: the movement of a liquid-liquid meniscus in a single
capillary. Its dynamics is dominated by local pressure drops around the meniscus as shown
in Figure 5.7. In equilibrium, we have P ∗1 − P ∗2 = PCa, which makes the meniscus with
velocity v = 0. These effective pressures P ∗1 , P ∗2 could be reduced for any meniscus.

P2*P1*

Figure 5.7: Dynamics of the meniscus could be dominated by the effective pressures drop
around the meniscus.
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5.3.1.2 Before the junction

Near a junction, effective pressure P ∗2 could be changed by a wetting liquid flow between
pressure P2 and P3. For a meniscus after the junction, corner flows could complicate the
pressure distribution. We begin with a situation without the corner flow when the meniscus
is before the junction.
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Figure 5.8: A linear relation for a meniscus before the junction. The slope is 1.12.

For a given position before the junction, we search a pressure drop P32 for a given P12

which leads to an almost stationary state i.e. no displacement of the meniscus. A series of
P32 are measured, which corresponds to a series of P12. We find that a couple of pressure
drops could stabilize the meniscus at a given position. For a meniscus position shown in
lower part of Figure 5.8, we have couples of pressure drops, which stabilize the meniscus at
this position. These pressures drops are normalized by capillary pressure PCa and drawn
in Figure 5.8. This linear relationship with a slope of 1.12 means a linear distribution of
these two pressure drops P12 and P32. Normalized by capillary pressure PCa, the pressure
drop graphics show a direct comparison with PCa. This pressure drops relation could also
be compared easily with systems withs different interfacial tensions or channel geometries.

Other linear relations are observed for different positions before the junction, which are
parallel lines with the curve in Figure 5.8. They show a pressure change in the wetting
phase related to the distance L, which is not the key point to study here.

5.3.1.3 Far after the junction

Now we focus on situations where the nose of non-wetting liquid has a length L after the
cross junction. When L is as big as shown in the lower part of Figure 5.9, the couples
of pressure drops which lead to an almost stationary state are shown in the upper part.
These points show that the meniscus advances (v>0) when P12 is bigger than the capillary
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pressure and recedes (v<0) when P12 is smaller than the laplace pressure. These points
are independent with P32, which means there is no influence of corner flows.
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Figure 5.9: A linear relation for a meniscus at a distance of L = 15.4 · w, where w is the
channel width. The two sides of this curve lead to an advancing or receding meniscus until
a new equilibrium.

5.3.2 Diagram of pressure drops

Now we focus on the nose of non-wetting liquid has a length L after the cross junction.
We measure the couples of pressure drops which stabilize the meniscus at other positions.
They are shown in Figure 5.10, with positions L = 0, 0.2·w, w, 1.8·w and 5.8·w, where
w is the main channel width. Each series has its own symbol. These series of pressures
for various positions form a diagram, which indicates the movement of meniscus under a
couple of pressure drop for a position near the junction. By applying a set of pressures in
the diagram, a moving meniscus with quite small velocity could decelerate until an almost
stationary state at a given position.

From this diagram, we can conclude the following trends:

• The curve with L = 15.4 ·w illustrates the situation where L→∞. There is almost
no influence of corner flows.

• The curve with L = 0 shows another situation when there are no corner flows.

• The curves with L = w and 1.8·w have a turn when P32 is small. It is the result
of combination of pressure drops and corner shapes, which will be discussed in the
hydrodynamic resistance model.

Two other complete wetting systems are also studied: FC-40/silicone oil V20 and FC-
72/silicone oil V5 with PDMS. We get the same behavior as sketched in Figure 5.11.
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Figure 5.10: Diagram of couples of pressure drops to stabilize the meniscus at different
positions. Each series of pressures corresponds to a position marked with a type of symbol.

5.4 Hydrodynamic resistance model

5.4.1 Hydrodynamic resistance

In the following, we will model the previous result by invoking hydrodynamic coupling
between the two liquids.

Before deeming into the model, we recall some notions dealing with hydrodynamic
resistance.

The pressure-driven, steady-state flow of a liquid through long, straight and rigid chan-
nels of any constant cross sectional shape is referred to as Hagen-Poiseuille (or simply
Poiseuille) flow, and it is often characterized by the hydraulic resistance, Rhyd = ∆P/Q,
where ∆P is the pressure drop along the channel and Q is the flow rate through the
channel. There is an analogy with electrical circuits: pressure drop corresponds to po-
tential difference and flow rate to current. This analogy is rigorous at very low Reynolds
numbers [136].

An arbitrarily shaped cross-section Ω in the xy plane for a straight channel placed along
the z axis. A natural unit for the hydrodynamic resistance is given by dimensional analysis
as

Rhyd = ηL/A2 (5.2)

where L is the channel length, η the dynamic viscosity of the liquid, A =
∫

Ω
dxdy the

cross-sectional area.
In this work, we just consider the mean velocity in the microchannels. Flow rate could
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Figure 5.11: Two other complete wetting systems. Left: FC-72/silicone oil V5/PDMS,
Right: FC-40/silicone oil V20/PDMS.

be reduced as Q = v · AS, where v is mean flow velocity and S is the sectional area. The
hydrodynamic resistance becomes Rhyd = ∆P/(v · A). Typically, we use Rh ≡ RhydA =
αηL/x2, where α is dimensionless geometrical correction factor, x is a length for various
cross section shapes: circular, rectangular and triangular. α is characterized by its given
shape [137], as shown in Table 5.2.

Here, we calculate the prefactor α of a circular sectional surface. We assume that the
inertial forces are negligible in front of the viscous ones. Under such hypothesis, Navier-
Stokes equations simplify to give the Stokes equations.

η∆v = ∇P (5.3)

where:
η∆vz =

∂2vz
∂z2

+
1

r

∂

∂r
(r
∂vz
∂r

) +
1

r2

∂2vz
∂θ2

(5.4)

For a velocity v that does not depend upon z and θ, Equation 5.3 becomes:

∆vz =
1

r

∂

∂r
(r
∂vz
∂r

) (5.5)

As P depends only upon z, we get:

η
∂vz
∂r

= ∂zP
r

2
(5.6)

where, η is the viscosity of liquid, vz is the velocity along the channel, ∂zP is pressure drop
along the channel.

Solving this equation under the boundary condition vz(r = ri) = v(ri) leads to:

vz(0 ≤ r ≤ ri) =
∂zP

η
(
r2

4
− r2

i

4
) + v(ri) (5.7)
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The mean velocity through this channel is given by:

v̄z =

∫
vzdSi
Si

(5.8)

Si is the circle with radius r = ri.

v̄z = −∂zP (
S

8ηπ
) + v(ri) (5.9)

IF there is not slip at the wall, we get v(ri) = 0. In this situation the prefactor is α = 8.

Cross section shape α
Circular x = R 8
Rectangular (h ≤ w) x = h = w 28.4

x = h = 1/2w 17.5
x = h = 1/10w 12.8

Triangular (a, b, c) x = a = b = c 34.6
x = a = b =

√
2/2c 38.4

Table 5.2: Rh = αηL/x2 for channels with various cross section shapes: circular with
radius R, rectangular with width w, height h and triangular with sides of lengths a, b, c.

Similar to Kirchhoff’s junction and loop rules in electrical circuits, the hydrodynamics
resistances also obey these laws. For a junction in a channels’ network, the algebraic
sum of flow rates is zero. We have equivalently the loop rule for a closed channels loop.
As a result, the hydrodynamic circuits could be treated as electrical resistor networks
(pressure drop is equivalent to the electric potential, flow rate is equivalent to the current,
and hydrodynamic resistance plays the same role as the Ohm’s resistance). Further, the
hydrodynamic resistances obey similar rules in series or parallel circuits: Two resistances
Rh1 and Rh2 in series and in parallel are equivalent to a resistance shown in Equation 5.11.

Series: Rh = Rh1 +Rh2 (5.10)
Parallel: 1

Rh
= 1

Rh1
+ 1

Rh2
(5.11)

5.4.2 Hydrodynamic resistance model

At the corners of a rectangular-section channel under complete wetting, capillarity requires
the wetting liquid along the corners. We note the pressures near the junction as P ∗1 , P ∗2
and P ∗3 in different channels, as sketched in Figure 5.12.

In general, the displacement of a meniscus is controlled by the local pressure drop
P ∗1 − P ∗2 as shown in Figure 5.7.

When the meniscus does not move, the pressure drop P ∗1 −P ∗2 equilibrates the capillary
pressure.

P ∗1 − P ∗2 = γ(
2

w
+

2

h
) = PCa (5.12)
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Figure 5.12: Left: local pressures as a result of pressure drops in the microchannels. Right:
a hydrodynamic resistance schematic drawing for the biphasic flow at left.

As there is no flow in the main channel, the non wetting liquid has v = 0. As shown in
Chapter 7 the mean velocity in the injected phase is equal to :

v = a2(−∂xP1

η1

A1(ε,M)− ∂xP2

η2

B1(ε,M)) (5.13)

As the meniscus does not move, we deduce a relation between the pressure drop in the
injected fluid and the pressure drop in the wetting fluid.

∂xP1

η1

A1(ε,M) = −∂xP2

η2

B1(ε,M) (5.14)

∂xP1 = −∂xP2B1(ε,M))η1

η2A1(ε,M)
(5.15)

Numerical estimate leads to B1 less than 10−4 and A1 around 1/28. This clearly shows
that the pressure drop in the nose is negligible in front of the pressure drop in the corners.
In the following we will then assume that P1 equals P ∗1 and neglect P ∗1 −P1 in front of the
others pressure drop. We thus write P1 = P ∗1 .

Wetting liquid flows may pass continuously through the wetting liquid and can be
divided to three zones: in crossed channel, in main channel and though the corners. With
the mass conservation, flow rates keep the same in the three zones:

(P2 − P ∗2 )S2

Rh2

=
(P ∗2 − P ∗3 )SN

RhN

=
(P ∗3 − P3)S3

Rh3

(5.16)

where Rhi, (i = 1, 2, 3 or N), is hydrodynamic resistance. And with definition RhN =
αLη/r2

c , where α is a geometrical correction factor [137], rc is the width of corner flow. In
the following, we will estimate α using the results from 7.

Near the crossed channel of the junction, the biphasic interface is in equilibrium by
capillarity:

γ

rc
= P ∗1 − P ∗3 (5.17)
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Substituting P ∗1 , P ∗2 and P ∗3 with above expressions, we get:

P32Rh2

(P12 − PCa)S2

− (
Rh2

S2

+
Rh3

S3

) =
αLη

(4− π)γ4
(P12 − P32 + (P12 − PCa)

Rh3S2

Rh2S3

)4 (5.18)

Using dimensionless variable we get:

P̃32

P̃12 − 1
− (1 +

Rh3S2

Rh2S3

) =
44αL

(4− π)Lcα′
(P̃12 − P̃32 + (P̃12 − 1)

Rh3S2

Rh2S3

)4 (5.19)

Equation 5.19 shows the relationship between the pressure drops P̃12, P̃32 and nose
length L to stabilize the liquid-liquid meniscus near the junction. With a MATLAB pro-
gram, we calculate a couple of pressure drops for each L, which stabilize the meniscus.
With several length L, a diagram could be traced, which displays the stationary states of
a meniscus in Figure 5.10.

The model predicts qualitatively the experiments. In the following section, we look for
a quantitative comparison.
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Figure 5.13: Modelling diagram of couples of pressure drops to stabilize the meniscus at
different positions. Each series of pressures corresponds to a position marked with a color.

5.4.3 Comparison between the model and the experimental data

Let us first discuss, two limit behaviors. When the meniscus is before the junction, there
are no corners and L is equal to zero. The meniscus in equilibrium gives a simplified
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equation of Equation 5.18:

P̃32 = (P̃12 − 1)(1 +
Rh3S2

Rh2S3

) = A(P̃12 − 1) (5.20)

This leads to a linear relation between P̃12 et P̃32 with a slope of A=1.43 in our geometry.
This slope agrees well with the measured slope in Figure 5.8. Experimentally, we found
A = 1.19, 1.16 and 1.18 in the various systems: FC-40/dodecane, FC-40/silicone oil V5,
FC-72/silicone oil V20, respectively.

When the meniscus is far from the junction, the Rh in corner becomes big. Equa-
tion 5.16 is simplified to P ∗2 = P2, P ∗3 = P3 and P̃12 = 1.

The displacement of the meniscus does not depend upon P32 as sketched in Figure 5.9.
At this stage, we note a first disagreement. P̃32 does not vanish for P̃12 = 1. This is due
to the deformation of the PDMS near the junction. The size of the channel varies in this
region. This induces a change of the curvature of the meniscus at rest, and thus a variation
of the local value of PCa. In other word PCa depends upon the position in the channel.
As we have not taken into account this variation in our model we get a non zero value of
P̃32 for P̃12 = 1. We recall that P̃12 is calculated on a given capillary pressure which is a
constant.

When L is not too large, RhN in the corners is comparable with Rh2 and Rh3, the
equilibrium states are described by Equation 5.18.

Figure 5.13 shows that the value of P̃12 required to get a zero velocity depends upon
P̃32. The model describes qualitatively our data.

At this stage quantitative comparisons between our experiments and the model remain-
difficult.

To fit our data, we miss the value of α. In our situation, the Chapter 7 predicts a value
of α equal to 1000, by using the lubrication approximation theory.

To fit our data at least for L less than 3 · w, where w is the size of the channel, we
use a value of α equal to 50. We believe that this disagreement is related to the shape of
the meniscus. In chapter 7, we have assumed that the shape of the corner films does not
depend on x, where x is the direction of the channel. When L is short , this rough estimate
is not valid anymore.

These two points prevent us to give a quantitative comparison between our model and
the data. However, we note that the value of required α to fit the data is in agreement
with the modification of the corner shapes. Near the nose the corner films are thicker.
This leads to a lower value for α.

5.4.4 Conclusion

We have studied the flow of a meniscus in a cross junction. We have developed a set up
allowing us to control the pressure drop on both fluids. We show that the flow in the corner
films modifies the value of the pressure drop required to stop the meniscus. In other words,
the Laplace law seems to be no more valid. We have proposed a model that captures this
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process. The use of the lubrication approximation avoids us to compare quantitatively our
data and the model.

As an outlook, we propose to address this question in the partial wetting situation.

5.5 Summary

Corner flow around a meniscus

• Wetting fluid could exist in a wedge of a channel of irregular section. It can
flow along the ducts and influences the displacement of meniscus. Its velocity
depends on fluid properties (interfacial tension, viscosity), contact angle and
geometry of the corner.
• Several complete wetting systems in a PDMS chip are used to study the menis-

cus dynamics.
• The meniscus in the main channel is controlled under two pressure drops. One

of them is applied between the two liquids in main channel and another one
through the corner wetting liquid. There is a strong coupling between the
corner flows and the displacement of meniscus, when it lies in the vicinity of
the junction (up to 10 times the channel width).
• Reverse flows in this PDMS chip are evidenced using confocal microscopy.

Flow diagram near a cross junction.

• We limit our sudy to an intermediate range of pressure. The drop of pressure
P1 − P3 and P3 − P2 are low enough respectively to avoid the invasion of the
cross channel and to induce drop formation at the junction.
• The coupling between the two pressure drops stabilizes the meniscus at different

positions from the junction. A given position correspond to a serie of pressure
drops .
• A flow diagram displaying the static position of the meniscus in the parameter

plane drop of pressure in the internal fluid and drop of pressure in the external
is displayed. Strikingly, it shows that the drop of pressure between the inlet and
the outlet of the main channel required to stop the meniscus differs from the
Laplace pressure. We note that it depends upon the drop of pressure applied
on the inlet of the crossed channel.

Hydrodynamic resistance model

• Hydrodynamic resistance describes the pressure drop along the flow. The sta-
bilzed meniscus is a consequence of local pressure equilibrium.
• A model based on a network of adaptive hydrodynamic resistances is con-

structed. A qualitative agreement is found.
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Chapter 6

Flows in corner films: theoretical
approach

6.1 Introduction

During the invasion of a porous media by a non-wetting fluid, the pore size heterogeneity
induces capillary fingering that leads to the formation of preferential path in the medium.
After the percolation, the structure does not significantly evolves, and a steady state flow
in a partially saturated medium occurs. The corresponding residual saturation could be
rather low if the invasion has been performed at low capillary numbers. The non-wetting
phase is organized in ganglions and clusters that occupy principaly the smallest pores, i.e.
the locations where the capillary pressures is maximum. If the flow is continuous, a steady
state is reached, which implies that these clusters are rather stable [80].

The possibility of mobilizing these trapped clusters is of particular interest for many
application, including oil recovery. Classical methods rely on an increase of the capillary
number after the invasion step. By doing so, it is possible to decrease significantly the
residual oil saturation, but the required capillary numbers are usually higher than 10−3 or
10−2. Such values are either hard to reach or either out of the possible range, if one puts
aside the very special case of ultra-low interfacial tensions.

The mobilization mechanism that is known to occur is based on phase displacement
driven by pressure differences due to viscous forces [138]. The mobilization of trapped
cluster in zones of low permeability, it has been shown at least in idealized micromodels of
porous media that a simple pressure balance could account for the critical capillary number
above which the residual clusters are displaced. The viscous pressure drop along a given
cluster has to overcome a fraction of the capillary pressure of the trapped phase [139]. This
can lead to rather high critical capillary number, especially for small clusters or ganglions,
since the viscous pressure drop is proportional to the cluster size. Pore scale simulations
illustrated moreover that cluster mobilization is simultaneous with break up, leading to
smaller cluster that are more and more difficult to displaced.

We propose here that another drainage mechanism could play a great role, provided

113
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that the displaced wetting fluid has a small contact angle. Under these conditions, since
the pores or the media are of arbitrary shapes, we expect the fluids to coexists inside one
pore, due to capillarity. This effect is predominant in wedges of small opening angles.

The main idea of this drainage through the liquid wedges rely on finite volume argument
for the displaced and on the fact that the main flow of the injected fluid entrain the wetting
liquid by viscous forces. Therefore the liquid wedges are drained, and their size should
decrease as time evolves. Since the size of these liquid wedge is closely related to the
pressure difference between the two phases, this drainage of the wedge films lead to a
pressure decrease in the cluster. Once this pressure is reduced below the capillary pressure
of the small pores where the trapping has occured, the cluster is no more in equilibrium
and starts to empty itself through the corner films, avoiding the global displacement of
the cluster. Contrary to the classical mechanism, we will demonstrate that there is no
threshold, and that, though very slow, it also happens at very low capillary numbers.

This chapter presents a theoretical approach on corner films flows. Using the lubrication
approximation we develop the equations governing the time and space change in the corner
film size. These equations will be analyzed and solved, for the particular of a cluster
drainage through the corner films.

6.2 General governing equations

6.2.1 Flows in corner films

Our aim here is to see how the flow inside the corner film or outside modifies its size, or
alternatively how its presence modifies the flows.

For that purpose, we need to relate the velocity in both phases (inside and outside the
corner film) to the pressure drops. In the low-Reynolds limit, this involves the resolution of
Stokes equation, inside a rather complex geometry, that is schemed in Figure 6.1. It consists
in a square tube, where there are corner films of radii εa. We assume that the tube is long
and that the corner film size varies slowly, so that standard lubrication approximation could
be used. In this framework, the velocity is oriented along the main axis of the channel,
and the pressure in each phase only depends on x.

Stokes equation is then reduced to

∂xpi =
1

a2
ηi
(
∂2
y + ∂2

z

)
ui (6.1)

where ui is the x component of the velocity in phase i (i = 1, 2), ∂xpi is the pressure
gradient in phase i and ηi its viscosity. The coordinate x and y are normalized by the
size of the square a. The boundary conditions are no-slip on the solid surface, and, on
the interface between the two phases, the velocity and the tangential stress continue, i.e.
u1 = u2 and η1∂nu1 = η2∂nu2. Due to the linearity of the Stokes equation and of the
boundary conditions, the mean velocities vi = 〈ui〉 are linear functions of the pressure
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Figure 6.1: schematic drawing of the channel cross section that has corner films.

gradients and thus could be expressed by

vi
a2

= −∂xp1

η1

Ai(ε,M)− ∂xp2

η2

Bi(ε,M) (6.2)

where we introduce the coefficients Ai and Bi that only depends on ε and M = η1/η2.
It is not easy to solve analytically this problem due to the complexity of the geometry

and we use a numerical schematic drawing to obtain the coefficient Ai and Bi for various
values of M and ε. The solution has been done with the software COMSOL by Bertrand
Selva.

Figure 6.2 shows the variations Ai and Bi coefficients as function ofM . A1 and B2 are in
a first approximation independent on M , which is rather natural since M only changes the
nature of the interface boundary condition. The others exhibits two asymptotic regimes,
that are either a constant, either proportional to M , or inversely proportional to M .

M � 1 M � 1 Empiric expression
A1 A0

1 (ε) A∞1 (ε)
A0

1+A∞1
2

+
A0

1−A∞1
2

erf
(

1
k

log (M/M0)
)

A2 A∞2 (ε)M/M0 A∞2 (ε) (A∞2 M/M0) /
√

1 + kM/M0 + (M/M0)2

B1 B0
1 (ε) B0

1(ε)M0/M B0
1/
√

1 + kM/M0 + (M/M0)2

B2 B0
2 (ε) B∞2 (ε)

B0
2+B∞2

2
+

B0
2−B∞2

2
erf
(

1
k

log (M/M0)
)

Table 6.1: Empiric expressions of the coefficents Ai, Bi and their asymptoyic behavior at
low and high viscosity ratii.

Table 6.1 summarizes the asymptotics behavior of the coefficients as a function of M ,
and provides empiric expressions for intermediate values of M . As could be guessed from
Figure 6.2, the constants k and M0 appearing in the empiric expressions of Table 6.1 do
not vary significantly when ε is varied, contrary to the asymptotic values. In fact, this
approximation is strictly valid for low values of ε, but starts to fail when ε > 0.1.
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Figure 6.2: Calculated values of the coefficients A1, B1, A2 and B2 as a function of the
viscosity ratioM = η1/η2, for three ε values : ε = 0.25 (squares), ε = 0.1 (circles), ε = 0.025
(triangles).

6.2.2 Film size variations

In the previous section, we anticipate that the pressure gradient inside and outside the
corner film could be different. However, the pressure difference between the two phases
should verify Laplace law, which reads

p1 − p2 =
γ

a

(
1

ε
+

∂2
x′ε

[1 + (∂x′ε)2]3/2

)
(6.3)

where the second therm of the right-hand side could be neglected, provided that we expect
slowly varying films, where x′ = ax. It is obvious from this equation that for uniform corner
films, the two pressure drops are the same. It also implies that any film size variations lead
to a difference in the pressure drops of the two phases.
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Then the last step is to ensure volume conservation. This reads

∂tε
2 + ∂x

(
ε2v2

)
= 0 (6.4a)

∂x
(
ε2v2 +

(
1− ε2

)
v1

)
= 0 (6.4b)

Equations 6.2, 6.3 and 6.4 form a complete system, for which the only approcimation
relies on the lubrication approximation, i.e. ∂xε� 1.

6.3 Drainage of a trapped cluster through corner films

6.3.1 Stability conditions for a trapped cluster

In any complex geometries such as a porous media, the heterogeneity in pore sizes leads to
phase trapping. We consider here that a wetting fluid is displaced by a non-wetting one at
a fixed flow rate. A low capillary numbers, the flow is essentially governed by capillarity
and the non-wetting fluid only invade the biggest pores, where the capillary pressure that
is minimum. This capillary fingering leads to phase trapping of the wetting fluid in the
smallest pores, as depicted in Figure 6.3.

Once the cluster is formed, it could be displaced by a viscous pressure difference, which
simply results form of viscous forces. It is possible to show that these clusters of the
non-wetting fluid are rather stable.

If one consider a single cluster of size ξ, its stability with respect to viscous forces is
ensure by a capillary pressure difference between upstream and downstream menisci. This
difference is coming from both the contact angle hysteresis (in partial wetting) and from
meniscus accommodation with the geometry. One expect that the pressure difference is
a fraction of the mean capillary pressure, given by γ/a (a being here the pore size). For
the cluster to be stable, this pressure drop needs to dominate the viscous pressure drop,
proportional to ηξV/a2. Thus there is a threshold in capillary number below which a
cluster is stable even at long time, which is proportional to a/ξ. Such an analysis should
be handle with care, since the capillary number uses here is a "local" one, i.e. calculated
from a local mean velocity. If the medium is only slightly saturated, this local velocity
can be higher than the one estimated from the flow rate over the cross section area (Darcy
velocity). Nevertheless, one sees that the threshold could be very high for small clusters,
asking for a capillary number close to unity in order to be displaced. Importantly, below
the threshold, the clusters are stable (for more details about the stability conditions, see
References [80] and [139]).

In a porous medium, since the mechanism that leads to their formation is the same
as the one used to mobilize them, we can directly conclude that all the clusters that are
formed during the invasion of the medium at a fixed capillary number will remain stable
unless the capillary number is increased by any means.

This mechanism of drainage thanks to viscous pressure drop is thus not present at low
capillary numbers. We will now investigate in details the possibility of a drainage that
could occur through by the corner films. The mechanism is rather different since it is now
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Figure 6.3: schematic drawing of a trapoped cluster. Due to capillarity the wetting fluids
(colored in the schematic drawing) is trapped in small pores.

the pressure difference between the two phases (and not the viscous pressure drop in the
non-wetting phase) that increases.

6.3.2 Model geometry and assumptions.

Let us consider a straight channel of square cross section and of size a. Additionally, let
us suppose that their exists a cluster located at x = 0, trapped by capillarity. The mean
capillary pressure of this cluster is higher that that of straight channel.

Let us consider that the flow rate in phase 1 is imposed at a flow rate upon which the
trapped cluster remains stable (in the sense of the viscous pressure drop mechanism), and,
additionally that there exists a meniscus displacement inside the main channel. Close to
that meniscus, the pressure difference between the two phases is 4γ/a. Thus, just behind
the meniscus where the second term of the right-hand side of Equation 6.3 is negligible,
the size of the corner films is fixed at a value of ε∞ = 1/4.

According to the viscous entrainment by the flow in phase 1, we expect from Equation
6.2 that there exists a flow in phase 2. The main idea of the proposed mechanism relies on
the fact that the flow rate of phase 2 is limited by finite volume (only phase 1 is injected).
This should provoke a reduction of the corner film size, and thus a decrease of the pressure
in phase 2. This reduction of p2 should lead to the drainage some cluster of the wetting
phase trapped by capillarity. In order to describe this mechanism, we thus need to solve
the size evolution of the corner films, together with the flow in these films.

6.3.3 Steady states in corner flows

Obviously from the set of equations, there exists a particular solution that is homogeneous,
which is ε = ε∞. Switching from now on to non-dimensional quantities (the pressures
being normalized by γ/a, the distance by a and the velocities by γ/η), and introducing the
capillary number defined by Ca = η1Q/a

2γ, where Q is the imposed flow rate. We obtain
for the pressure gradients :
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∂x′p
′
1 = ∂x′p

′
2 =

Ca
(1− cε2∞) (A1 +MB1)

(6.5)

where c = (4−π)/16 is a constant, so that the total surface of the corner films reads cε2a2.
Thus there exists a flow in phase 2, the velocity v′2 = v2η1/γ being given by

v′
∞
2 =

Ca (A2 +MB2)

(1− cε2∞) (A1 +MB1)
(6.6)

This mean velocity is of course lower that that of phase 1. If one notes as Γ the ratio of
the mean velocityies, it is given by

Γ = v∞2 /v
∞
1 =

A2 +MB2

A1 +MB1

� 1 (6.7)

This particular solution thus could holds only if a continuous flow of the phase 2 is
allowed. In the following, we suppose on the contrary that this flow is limited and should
thus vanish far from the meniscus.

6.3.4 Unsteady states

6.3.4.1 Governing equations

Let us now remove the steady state assumption, and assume that since the x variation of ε
should be small, the pressure difference in between the two phase is simply 1/ε. For a sake
of simplicity, let us assume that v1 is given in a fixed flow rate experiment by Ca/(1− cε2).
This assumption corresponds to neglect the time variation of the corner film size in the
conversation equation of phase 1. It is justified by the fact that the surface occupied by
the film size is very small. It greatly simplifies the problem. Under this approximation
(which in practice is rather justified) the pressure gradient in phase 1 could be obtained
directly from Equation 6.2 and reads

∂x′p
′
1 = − 1

A1 +MB1

(
Ca

1− cε2 +
MB1

ε2
∂x′ε

)
(6.8)

Then, using Equation 6.2 for phase 2 and volume conservation in phase 2, we obtain the
following evolution equation for ε, without further approximations:

∂t′ε
2 + ∂x′

{
Γ

Caε2

1− cε2 +M (ΓB1 −B2) ∂x′ε

}
= 0 (6.9)

where t′ = tγ/η1a. Writing t̃ = t′MCa2, and x̃ = xCa/a, the equation do not depend on
Ca and may be written in the more compact form:

∂t̃ε
2 + ∂x̃

[
f(ε,M)ε2 − g (ε,M) ∂x̃ε

]
= 0 (6.10)
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where

f =
1

M

Γ

1− cε2 (6.11a)

g = −ΓB1 +B2 ' B2 (6.11b)

Thus the characteristic time involved in the size change of corner films is η2a/γCa2.
The natural length scale for the distance is a/Ca. The lubrication approximation is thus
appropriate for Ca� 1.

Figures 6.5 and 6.6 display the evolution of the fonction f and g as a function of M
and ε, respectively. Concerning the ε dependance, f and g scale like ε2 at the lower order
in ε. They are fitted using a polynomial function of degree 4 in order to account for the
deviations from this scaling for ε > 0.1.

f and g reach asymptotic values for low and high M , that are given by :

f(M → 0) = A∞2 /M0 +B0
2 (6.12a)

f(M →∞) = B∞2 /
(
A∞1 +B0

1M0

)
(6.12b)

g(M → 0) = B0
2 (6.12c)

g(M →∞) = B∞2 −B0
1B
∞
2 M0/

(
A∞1 +B0

1M0

)
(6.12d)

These functions are plotted in Figure 6.4.
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Figure 6.4:

For any values of M , g < f by at least one order of magnitude. Both are increasing
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function of ε. For arbitrary values of M and ε, f and g are fitted by:

f =
f∞(ε) + f0(ε)

2
+
f∞(ε)− f0(ε)

2
erf

(
1.15 log

M

M0
f (ε)

)
(6.13a)

g =
g∞(ε) + g0(ε)

2
+
g∞(ε)− g0(ε)

2
erf
(

1.15 log
M

M0
g (ε)

)
(6.13b)

where

f∞ = 0.0399ε2 − 0.0508ε3 − 0.0386ε4 (6.14a)
f0 = 0.8891ε2 − 2.371ε3 + 2.841ε4 (6.14b)
M0

f = 3.393 + 0.8408ε− 11.50ε2 − 18.86ε3 + 43.64ε4 (6.14c)
g∞ = (1.1389ε2 − 0.1167ε3 − 0.3930ε4)× 10−3 (6.14d)
g0 = (2.984ε2 + 0.1189ε3 − 0.0006ε4)× 10−3 (6.14e)
M0

g = 2.602 + 0.4747ε− 5.5541ε2 − 12.77ε3 + 21.96ε4 (6.14f)
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Figure 6.5: Calculated values of f and g as a function of the viscosity ratio M = η1/η2,
for three values of ε: ε = 0.025 (squares), ε = 0.1 (circles), ε = 0.25 (triangles).

It is interesting to note that the first non-vanishing coefficient of the Taylor expansion
of f and g is the ε2 term. Therefore, the governing Equation 6.10 could be approximated
for ε� 1 by:

∂t̃ε
2 + ∂x̃

[
αε4 − βε2∂x̃ε

]
= 0 (6.15)

where α and β depend on M .

6.3.4.2 Comments on the governing equations

We have already discussed that one general solution of the problem is to have a uniform
corner flow thickness, leading to similar pressure gradients in both phases. We now envisage



122 CHAPTER 6. FLOWS IN CORNER FILMS: THEORETICAL APPROACH

10
−3

10
−2

10
−1

10
0

10
−8

10
−6

10
−4

10
−2

10
0

f

ε

1

2

10
−3

10
−2

10
−1

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

g

ε

2

Figure 6.6: Calculated values of the fonctions f and g as a function of ε, for three values
of M : M = 10−2 (squares), M = 1 (circles), M = 102 (triangles).

some situations where this solution does not match the left boundary conditions. As already
dicussed, the film size near any moving meniscus is ε∞ = 1/4, corresponding to a velocity
in phase 2 given by Equation 6.6.

Therefore, if one fixes at a given location either the flow rate in phase 2, or the film
size (or equivalently the pressure difference between the two phases), the uniform solution
is no more suitable near this location.

Let us have a look at the linearized equation around a ε = ε∞. Equation 6.10 is then
given at the first order in ξ = ε− ε∞ by:

∂t̃ξ + u∞∂x̃ξ −
g(ε = ε∞)

2ε∞
∂2
x̃ξ = 0 (6.16)

where
u∞ =

1

2ε∞

∂fε2

∂ε

∣∣∣∣
ε=ε∞

(6.17)

It corresponds to a standard 1-dimensional transport equation with a velocity u∞. It could
be easily verified that this velocity is much lower than this velocity the meniscus velocity,
dx̃m/dt̃ ' 1. Indeed, it is always below typically a few percent. We find u∞ = 0.052 for
M → 0 and u∞ = 2.6× 10−3 for M →∞. The meniscus velocity is ẋm = Q1/a

2 (1− cε2∞),
which reads in the adimensional form dx̃m/dt̃ = 1/(1 − cε2∞) ' 1. The third terms (the
equivalent diffusion term) has a rather low coefficient (a few 10−3).

The fact that u∞ � ẋm has some important consequences since it implies that any
variations of the film size will be convected slower than the meniscus. It also implies that
the asymptotic solution near the meniscus is a uniform film thickness, ε(x) = ε∞. It is
thus possible to state that translating the right boundary conditions towards infinity will
not change the solution. From a numerical point of view, this boundary condition could
be fixed at a given arbitrary location, far enough from x = 0.



6.3. DRAINAGE OF A TRAPPED CLUSTER THROUGH CORNER FILMS 123

6.3.5 Solutions with no flow rate in the corner films

6.3.5.1 Numerical solution

We solve Equation 6.10 with a left boundary conditions that is no flow rate at x = 0,
i.e. ε2f − g∂x̃ε = 0. This boundary condition represents the case of a trapped cluster at
x = 0. The right boundary condition is obtained close to the meniscus, where ε = ε∞ =
1/4. The meniscus velocity is given at any time by the mean value in phase 1, in the
meniscus region. Thus, at fixed flow rate in phase 1, the mensiscus velocity is given by
v1 = (γ/η1)Cat/ (1− ε2∞) (in physical units).

We first solve numerically the equation. Figure 6.7 displays a typical results. One can
easily verify that for x̃ > u∞t̃, the film size is unperturbed and equals the right boundary
condition value. It decreases near x = 0 due to the no flow condition.
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Figure 6.7: Solutions obtained for M = 1.

Figure 6.8 focus on the evolution of the film size at x = 0. This evolution depends onM
but exhibits to distinct regimes. At very short time (i.e. when ε(0, t) ' ε∞), ∆ε ∼ t−1/2. At
long time (i.e. when ε� ε∞), ε ∼ t−1/3. These two asymptotics regimes will be discussed
in the following sections.

The delay tc necessary to reach a given value εc at x = 0 only depends on M . An
example is shown in Figure 6.9. Similarly to the function f/g, there are asymptotic values
for low and high M . Note that the transition between the two asymptotic values occur at
M greater than 1. In the transition region, t̃c ∝M .

6.3.5.2 Asymptotic solution for long time

Let us try to find an asymptotic solution at long time. We start from Equation 6.15 that
is valid for low values of ε. It might be rewritten in the following form:

∂t̃ε+ 2αε2∂x̃ε− β (∂x̃ε)
2 − β

2
ε∂2
x̃ε = 0 (6.18)
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1/6. The solid line represents the best fit obtained using the following empiric function:
tc(M) = t∞c − (t∞c − t0c) exp

[
− (M/Mc)

k
]
, with t∞c = 28, t0c = 0.24, Mc = 165 and k = 1.13.

Let us rescale again time, space and ε, so that this equation reduces to:

∂t̄e+ e2∂x̄e−
1

2
(∂x̄e)

2 − 1

4
e∂2

x̄e = 0 (6.19)

where e = ε/ε∞, t̄ = α2ε3∞t̃/β and x̄ = αε∞x̃/β. The boundary conditions are e(∞, t̄) = 1
and ∂x̄e|x̄=0 = e(0, t̄)2.

We then assume that the two first terms of Equation 6.19 are dominant, except for
small and big x. The resulting approximate equation reads ∂t̄e+ e2∂x̄e = 0, for which the
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general solution e is solution of

φ(e)e2 + te2 − x = 0 (6.20)

This solution could not match the right boundary conditions, e = 1 for x→∞. However,
as already discussed, we expect that a constant solution is obtain for x̄ > t̄. We thus
tarnsform the right boundary conditions into e(x̄ = t̄, t̄) = 1, and solve the equation for
x̄ < t̄. This implies that φ(1) = 0. Then, we simply match the solution for x→ 0. On the
other hand, the left boundary conditions allow to express e as e = e0 +xe2

0 +O(x2), where
e0 = e(0, t). Inserting this developpement in Equation 6.20, we obtain:

e2
0(φ(e0) + t)− x

[
e4

0φ
′(e0) + e3

0φ(e0) + te3
0 − 1

]
+O(x2) = 0 (6.21)

Straightforward identification then leads to{
e4

0φ
′(e0)− 1 = 0

φ(e0) = −t (6.22)

Finally, using the fact that φ(1) = 0, the function φ is given by φ = (1− 1/e3)/3. We
can thus deduce directly the time evolution of e0, i.e. e0 = (3t+ 1)−1/3. Note that this is
very good agreement with the scaling found for the numerical solution (see Section 6.3.5.1
and Figure 6.8). The complete solution for e could be obtained from Equation 6.20, and
is solution of

e3 (3t+ 1)− 3xe− 1 = 0, (6.23)

for which the single real root is expressed as

e(x, t) = 21/3
2−2/3 (1 + 3t)4/3

(
1 +

√
1− 4x3

1+3t

)2/3

+ x+ 3xt

(1 + 3t)5/3
(

1 +
√

1− 4x3

1+3t

)1/3
(6.24)

This solution constitutes a very good approximation at long time, since the space vari-
ations of e are small and thus the second order derivatives of e could be safely neglected,
expect near x = 0. Figure 6.10 displays some comparisons between this asymptotic solu-
tions and the numerical solution of Equation 6.19. The agreement is rather good at long
time and for not too small x. It fails however at short time and for small x since the
leading terms of Equation 6.19 are not the two first ones. For x� 1 even at long time the
two last terms of the equation should become the leading ones since the size variation near
x = 0 are rather big. It should thus be possible to obtain a better solution for small x by
considering a matching to a solution at small x. This is left for future work.

6.3.5.3 Asymptotic solution for short time

At short time, one can obtain an asymptotic solution after linearizing Equation 6.19. The
linearized equation reads:

∂t̄e+ ∂x̄e−
1

4
∂2
x̄e = 0 (6.25)
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Figure 6.10: Blue dashed line : simulation. Red solid line : asymptotic solution (Equation
6.24). Top, solutions for t̄ < 1000 (right: zoom at small x). Bottom: short time comparison
(t̄ < 3).

The solution of this equation, for a linearized left boundary condition that is ∂x̄e = 1,
is straigthforward since it corresponds to the classical solution of the heat equation at
constant flux. The solution reads:

e = 1 + x̄erfc
(
x̄√
t̄

)
−
√
t̄

π
exp

(
− x̄

2

t̄

)
(6.26)

Figure 6.11 to a comparison between the solutions of the linearized equation. It is made
in Figure 6.11 for t < 10−2. One may notice that the solution of linearized equation starts
to deviate significantly from the true solution for t > 10−2.

Of particular interest is the variation of the film size at x = 0. It is given by:

e(0, t) = 1−
√
t

π
(6.27)

6.3.6 Unsteady states with fixed values of ε at x = 0

Let us now envisage that at time tc, the size of the corner film has reached the critical
value for which the cluster is no more stable. The cluster will then start to empty inside
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Figure 6.11: Comparison at short time (t < 10−2) between the solution of Equation 6.19
and the one of the corresponding linearized equation.

the corner film. But because this involves movements of menisci, the pressure difference
and consequently the size of the corner film is now fixed. Equation 6.10 thus need to be
solved with a left boundary condition that is equal ε0.

The initial condition should be the profile obtained at the end of the first phase, where
the film size is decreasing close to the cluster.

Figure 6.12 shows examples of the numerical resolution of equation 6.10. Similarly to
the previous case, the corner film size is unperturbed at long distances x. Close to x = 0,
a steady solution with ε = ε0 is developping. The transition between these twoo flat region
is simply convected and dispersed, with a velocity given by

u0 =
1

2ε0

∂fε2

∂ε

∣∣∣∣
ε=ε0

(6.28)

For x̃ < u0t̃, the film size is approximately equal to ε0, meaning that the total flow
in phase 2 at x = 0 is simply given by f(ε0,M)cε2, and the mean velocity in phase 2 by
f(ε0,M).

Similarly to the previous section, it is possible to find an asymptotic solutions, provided
that the leading terms should be the same as previously, in the transition region, i.e. for
x ∈ [v0t, v∞t].

6.3.7 Summary and discussion

6.3.7.1 Summary in physical units

Let us try to summarize the results obtained. We consider a cluster trapped in a region
having a capillary pressure that is a fraction r of the main capillary pressure. The menisci
ahead from this cluster advancing at a capillary number Ca will drain the corner films.
The size of the corner films is at the beginning high enough to prevent the cluster to be
drained. During this regime, the corner film is drained, and its size is decreased close to
the cluster.
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Figure 6.12: Left: numerical profiles of the corner films with fixed left boundary conditions
ε0 = 1/6 in the case of M = 1. The different lines correspond to several time values
(t̃ < 20).

In a second regime, the corner film size has reached the size rε∞a for which the cluster is
no more stable: the pressure difference between the two phases is greater than the capillary
pressure inside the trapped cluster. It is now the cluster that is drained, through the films.
The main question is to know the rate at which this drainage occurs.

1st regime: film drainage The first regime, film drainage, exhibits the the following
features:

(i) The corner film size is unperturbed on a wide region near the advancing menisci, and
remains equal to ε∞ = 1/4.

(ii) Close to the cluster (x = 0), there is domain where the corner film size is decreasing.
The characteristic length d of this domain is given at long time by

d =
Q1

a2

1

2ε∞
∂ε
(
fε2
)∣∣
ε=ε∞

t (6.29)

or in terms of Q2, simply by

d =
1

2cε∞a2
∂εQ2|ε=ε∞ t (6.30)

This drained region thus increases linearly with time, with a velocity in the order of
the mean velocity in phase 2. For the usual case of ε = 1/4, the above computations
leads to

d ' 5.15× 10−2Q1

a2
t, forM � 1 (6.31a)

d ' 2.55× 10−3Q1

a2
t, forM � 100 (6.31b)
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These asymptotic values of d are valid when d > (g/fε∞)a/Ca ≈ 10−1a/Ca, since
at shorter time, the capillarity could not be neglected as compared to the convection
and tends to enhance d. In the very short time limit, d should increases as

d ' a

√
gMγt

2ε∞
η1a ≈ 0.1

√
γt

η2a
(6.32)

However in this limit the value of ε(x = 0) as not been significanty reduced.

(iii) The corner size close to the trapped cluster decreases as a function of time. Again,
we should distinguish between a short time region and a long time region. How-
ever, whatever the time scale, the time tc necessary to reach a critical value of εc is
proportional to the characteristic time of the problem and is thus given by:

tc = ψ(εc,M)
aη2

γCa2 (6.33)

Though the function ψ depends on M , its variations is limited to the range 1 < M <
100 where it increases (in fact in this range, ψ ∝M and thus tc only depends on η1),
since its reach asymptotic values for low and high M . For example, for εc = 1/6, the
asymptotic values of ψ are 0.24 (M � 1)and 28 (M � 100).

At short time and long time, the asymptotic solutions allows to access the asymptotic
behavior of the function ψ.

At short time, for ε(0, t) ' 1, ε(0, t) = 1−
√
α2ε3∞t̃/βπ, with t̃ = Ca2γt/η2a and thus

ψ (εc,M)) =
βπ

α2ε3∞
(1− εc)2 (6.34)

At long time (and thus for ε(0, t) � ε∞), the asymptotic solutions allows to access
the asymptotic behavior of the function ψ. Indeed, the film size decreases at long
time as :

ε(0, t) = ε2∞(3α2t̃/β)−1/3 with t̃ = Ca2γt/η2a (6.35)

Consequenty,

ψ(εc,M) =
β

3α2

ε
2/3
∞

ε3c
≈
{

0.02/ε3c , for M � 1
3.8/ε3c , for M � 100

(6.36)

2nd regime: cluster drainage through corner films During this second regime, the
cluster is emptying through the corner films for which the size close the cluster is fixed by
the capillary pressure in the trapped zone, i.e. ε = εc = rε∞. The main features of this
regime are the following:
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(i) The film size basically exhibits three domains. For x > d, the corner film size is kept
to ε∞ = 1/4. The distance d is still accounted by equation 6.29. For x < dc, the
corner film size equals the value close to the cluster. dc is also given by Equation
6.29, provided that ε∞ is replaced by εc. In between there is a transition region which
width increases as a function of time and which is roughly linear.

(ii) After a rather short transition, the flow rate is thus fixed in phase 2 and equals the
flow rate of an homogeneous corner film of size εc :

Q2 = cε2cMf(εc,M)Q1 (6.37)

Therefore, the flow rate in the displaced phase is always proprotional to the main
flow rate. For rather low values of ε, f is well approximated by α(M)ε2. Thus Q2

scales as ε4 which greatly reduces the draiange rate if ε is small. Asymptotic values
for extreme value of M are provided below :{

Q2 ≈ 5× 10−2ε4cMQ1, for M � 1
Q2 ≈ 2× 10−3ε4cMQ1, for M � 100

(6.38)

Therfore the drainage of the cluster is greatly enhanced for high values of M , but
note that in the range 1-100, the flow rates is roughly independant on M .

6.3.7.2 Cluster at a fixed location x0 > 0

It is temptative to enlarge the scope of the drainage mechanism presented here. During
the drainge of a porous medium, if the wetting properties allow corner films, we expect
from the previous analysis a drainage through the corner films. We recall that it is due to a
finite volume of the wetting fluid. Thus this additional sweeping start from the inlet where
the corner film size is progressively decreased. The porous medium contains in general
many of these clusters located at various places.

Contrary to the previous analysis, they are not located at x = 0 (the inlet), as shown in
the left part of Figure 6.13. It means that the delay time necessary to reach the critical value
of εc could be meach greater than the one calculated above. We envisage this case below.
Using our analysis, it is rather straightforward (at least with the numerical solution), to
determine the time needed to reach the corresponding critical value of the corner film size.

For a cluster loacted at a fixed position x̃0, the scaling of the result is straightforward
since the solution in non-dimensional units only depends on M . Thus we would expect a
scaling for the delay time which is Ca−2. However, this result is not really pertinent, since
the characteristic length scale of the problem is 1/Ca. Thus for a fixed physical length x0,
the variations of the delay time when varying the capillary number are in general more
complex since we need to use the time and space solution of the equation.

When x̃� 1 and for not too small values of ε, we can use the fact that the solution is
simply convected at a velocity that is proportional to Ca. Thus the time (in physical unit)
that is necessary to reach a given value εc at x = x0 is proportional to x0/Ca.
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Figure 6.13: Left: The variation of time-resolved film size depends on the observation
location x0. Right: Calulated values of the delay time tc as a function of Ca, for M = 1
and for several cluster locations. The locations x0 indicated in the legend stands for a
channel of size a = 50µm. At low Ca and for small x, the data are proportional to Ca−2.
At high Ca or for larger x0, they scales like Ca−1.

For x̃ � 1, the solution is a bit more complex but since in this case the pertubation
spreads independantly on the convection term, we can expect that a scaling in Ca−2 would
hold in this regime, similarly to the x = 0 case.

Due to the complexity of the problem at fixed locations, we solve the problem numer-
cally, as a function of Ca. The Figure 6.13 displays a piece of the results obtained. At high
capillary numbers, x̃ � 1 since x̃ = xCa/a, and the delay time, at which the corner film
size reaches the value εc, is proportional to 1/Ca. The order of magnitude of the duration
of the first regime where the corner film is drained depends greatly on the location. In the
high-Ca regime, it increases linearly with the location x0. In the low Ca regime, it does
not depends on x0.

From a pratical point of view, the numerical solutions allow to map the transition
between the two regime. For M = 1, the transition is about x̃ ∼ 10−3. It means that,
unless the capillary number is very low, or if the cluster location is about the channel size,
experiments always are in the high-Ca regime where the delay time scales proportionally
to x0/Ca.

A more detailed analysis might be interesting but ask for a significative amount of work.
We limit ourselves in this part to draw a general picture and to run numerical solutions
adapted to the experiments that are presented in the following chapter.

Once the corner film size has reached the value below the cluster is drained, the flow
rate downstream is rapidly fixed by the steady value of the corner film. The analysis made
for a cluster located at x = 0 thus holds directly.
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6.4 Conclusion
We have presented in this chapter a draiange mechanism through the corner films. In
order to be able to describe it, we have used a lubrication approximations which requires
the relationship between the presssure gradients in both phases and the mean velocities.
These relations were obtained by numerical solutions. These results are not restricted to
the drainage problem, but generic to corner flows in square channels. Then, the pressure
gradients are coupled through the laplace pressure due to the corner film curvature. Finally
evolution equations are obtained through volume conservation.

When a flow rate is imposed in the inner non-wetting phase, the system of equations
reduces to a single partial differential equation that describes the shape evolution of the
corner films. Considering its application to the case of a trapped cluster, we show that the
no-flux boundary conditions leads to a drainage of the films close to the cluster. We have
calculated the delay time required to reach the pressure difference under which the cluster
should shrink. It scales in Ca−2 if the cluster is located at the inlet, and in Ca−1 if it is
located far from the inlet. Then the cluster should be drained through the corner film at a
velocity that is proportionnal to the applied flow rate in the non-wetting phase. We note
that it depends significantly on the viscosity ratio but the drainage flow rate is always much
lower than that of the inner phase. Thus this process is slow. Interestingly, contrary to
cluster mobilization by a viscous pressure difference between upstream and donstream the
cluster that exhibits a thrshold in the capillary number, the mechanism that we propose
here applied even at very low Ca.
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6.5 Summary

Flows in corner films

• In a square channel, the presence of wetting flows in the corners influences the
main flow. The film size variations lead to pressure difference between the two
phases.
• We model the flow in the framework of the lubrication approximation. We

assume that the variation of the velocity field as a function of the direction of
the channel are low compared to the one perpendicular at the flow. We write
the mass conservation. Knowledge of the hydrodynamic resistances is required
to obtain a relation between the two drops of pressure. We assume that the
variation of the velocity field as a function of the direction of the channel are low
compared to the one perpendicular at the flow We calculate the hydrodynamic
resistance as a function of the curvature radius of the corners for flat corners.
When a flow rate is imposed in the inner non wetting phase, the system of
equation reduces to a single partial equation. Considering the application to
the case of a trapped cluster, we show that the no-flux boundary condition leads
to a drainage of the films close to the cluster and thus to the drainage of the
cluster.

Drainage of a trapped cluster through corner films

• Considering the application to the case of a trapped cluster, we show that the
no-flux boundary condition leads to a drainage of the films close to the cluster
and thus to the drainage of the cluster
• Numerical solutions of evolution of the corner films is discussed with boundary

conditions of no flow rate at x = 0. Asymptotic solutions for long time and
short time are obtained.
• The delay time required to reach the pressure difference required to under which

the cluster should shrink scales as 1/Ca2 if the cluster is located at the inlet
and as 1/Ca if it is far the inlet. We recall the the no-flux condition is imposed
at the inlet.
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Chapter 7

Experiments of drainage of trapped oil
through corners films

In the previous chapter, we envisaged theoretically the possibility to drain a trapped cluster
of oil by some flow in corner films. Briefly, if the displaced wetting phase has a low enough
contact angle, it remains inside the wedge of channels although a meniscus is moving
downstream. This corner films are in equilibrium, but their presence lead to a continuous
flow of this displaced wetting fluid because of the viscous entrainement. Therefore, the
size of the corner film decreases in time. Not only the wetting fluid occupying these films
is progressively swept, but also any reservoir of this fluid trapped in capillary favorable
regions. Indeed, the reduction of the corner film size increase laplace pressure, and thus
the pressure difference between the two phase. When it is low enough, the blocked menisci
around the cluster are no more stable and it empties. This process holds provided that the
corner films form a continuous network and are connected to the clusters.

The aim of this chapter is to validate experimentally and quantitatively this mecha-
nism, for various viscosity ratios and as a function of the capillary number. Apart from
geometrical details, these are the two single physical parameters.

7.1 Experimental approach

7.1.1 Device and geometry

We need a geometry where it is possible to trap some wetting fluid by capillarity. One
of the most simple geometry is a single derivation on a channel that has a smaller size,
and thus a greater capillary pressure. The Figure 7.1 skteched the geometry of the device.
Channels are of square cross section expect in the narrow arm of the loop where the width
is half of the height. The capillary pressure is thus higher in this arm by a factor of 1.5.
As shown below, this difference is sufficient to provoke some phase trapping in this arm,
for Ca > 10−3.

The device was made either in PDMS either in SU8. The fabrication and the chip

135
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Figure 7.1: A schematic drawing of the circle channel zone, which is near the entrance of
the SU-8 chip. The dimensions of this chip is H = 50 µm, R1 = 25 µm, R2 = 12.5 µm,
R = 250 µm. The left one shows that the dark wetting liquid is in place and is pushed by the
white non-wetting one. Because of this complete wetting system, the wetting liquid prefers
to stay in the corners, as sketched in the right side (but the corner size is exaggerated).

characteristics have been presented in section 2.3. As compared to PDMS device, SU8
ones offer the great advantage that they are impermeable to oil. We will show in the
following that it is a very important point.

� ��

Figure 7.2: Image of the microfluidic chip made in resin SU-8. The resin is between two
pieces of glass wafers. Two nanoports are bonded by a glue épotecny NOA61. The left one
is the entrance and the right one is the exit.

In order to keep the meniscus inside the chip during the whole experiment and thus to
ensure that the pressure difference between the phase remains at some values close to the
capillary pressure, we specially design a very long channel in this chip, using a spiral that
could be seen in Figure 7.2. The total length is about 1.41 m, which allows to obtain very
long resident time at low flow rates.

The inlet and outlet connexion are made using nanoports: the one in the center of
spiral zone is the outlet, the other one, which is connected with the linear branch, is the
inlet. At the inlet side, a switchable valve of is connected between the seringe and the
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inlet, which allows to fill the device with the wetting fluid and then to switch easily to
non-wetting fluid to begin the experiment.

7.1.2 Capillary trapping

The geometry that we used is naturally designed to ensure a wetting phase trapping.
Before focusing on the drainage through the corner films, let us analyze the invasion of
this particular device by a non-wetting fluid.

L

Rp

Rg = Rp(1+ε)

Figure 7.3: The considered geometry with two section radius lightly different from each
other. L is the circle length. Rp and Rg are the radius for the narrow and large branches,
where Rg = Rp(1 + ε).

We consider the model geometry depicted in Figure 7.3, consisting in a loop with two
arms of different sectional radii. At low capillary numbers and in a flow rate imposed
experiment, the non-wetting fluid enters only the largest channel. The other meniscus
is blocked by capillarity. When the meniscus in the larger channel has reached the next
junction, the remaining wetting fluid remains trapped. In order to determine the capillary
number below which this trapping occurs, it is convenient to consider the time at which
the meniscus in the larger channel as that to invade the whole arm of the loop. The mean
velocities in the large and anrrow chanel (v and v′, respectively) are given by

v =
αa2

η1L
(P − γC) (7.1)

v′ =
α′a′2

η2L′
(P − γC ′) (7.2)

where the prime symbol stands for the narrow channel, a is the channel size, L is the channel
length, α the hydrodynamic conductance factor (α = 0.035 for a square channel), P the
pressure difference between the two junctions, and C is the C = 1/(1/R1 + 2/H) = a/4.

The fact that the meniscus in the narrow channel is blocked (v′ = 0) allow to obtain
directly the critical capillary number Cac below which complete trapping occurs. One
obtains

Cac = 4α
a

L

( a
a′
− 1
)

(7.3)
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The term a/a′ is the ratio of channels’ arbitrary shape.
For our geometry, a/a′ = 3/2 and we find a value of for the critical capillary number

of 4.4× 10−3. For Ca above this value, the wetting fluid is partially trapped in the narrow
side. Pratically, the partial trapping play an impotant role when Ca > 2× 10−2. Because
the partilly trapped zone is till limitted compared with the whole volume, as shown in
Figure 7.4. A trapping is also performed in the experiments. So all our measurement are
taken with Ca < 2× 10−2.

Figure 7.4: The partial trapping occurs for Ca > Cac

7.1.3 Fluids and materials

The device are in made in two different materials. PDMS and SU8 are used. Section 2.3
details the fabrication procedures.

We use several couple of fluids of various viscosity ratii that are in a total wetting
situation. The Table 7.1 lists these. Part of the experiments are carried out under a
binocular Olympus SZX16 using a standard transmitted light for illumination. A camera
AVT Pike F505B allow to record movies. In this case, the two liquids are distiguinshed by
their refraction index.

In the two last systems in Table 7.1 a fluorescent dye KeyStone yellow 131SC as
been dissolved in dodecane to allow fluorescence intensity measurement using darkfield
fluorecent microscroscopy. A olympys microscope with a 10× objective has been used for
this purpose. The main interest of fluorscence microscopy is here to achieve an estimation
of the volume of wetting liquid inside the corner films.

7.1.4 Protocol

The following protocol has been systematically used in the experiments.
The experiments begins with filling the whole channel by the wetting liquid (here, we

use dodecane). The flow comes from the outlet side at a flow rate of about 300 µL/h,
controlled by a seringue pump. The wetting fluid is pushed during a rather long time
(30 mins) to remove any bubble or drops that could be formed during this filling. After
this stage, the whole device and the tubing is entirely filled with the wetting fluid.
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in SU8 device M = η1/η2 PCa2 (Pa) γ (mN/m)
FC-40/silicone oil V5 0.75 150 2.50
FC-40/dodecane 2.53 305.3 5.09
FC-72/silicone oil V20 0.03 265.2 4.42
FC-40/dodecane (fluorescence) 2.53 187.8 3.13
FC-70/dodecane (fluorescence) 17.9 259.2 4.32

Table 7.1: Parameters of used complete wetting systems in the microfluidic chip of resin
SU-8. In the PDMS chip, FC-40/silicone oil V5, and FC-40/silicone oil V20 are used. A
vast variation of M is tested in our systems. The capillary pressure of the narrow channel
PCa2 indicate the pressure necessary to push the non-wetting liquid into it. It is calculated
by PCa2 = γ(1/R2+2/H), where f and H are the largeur and height of the narrow channel.

Then the outlet tube is unplugged from the syringe and immersed inside a vial con-
taining some wetting fluid.

The final step corresponds to the measurement one. The tubing at the inlet is plugged
to a syringe containing the non-wetting fluid and a fixed flow rate is applied. We varied
this flow rate in several order of magnitude as it is the main control parameter. Time zero
is set at the time at which the meniscus separating the two fluids enters the device.

7.2 Experimental results

We start by the results obtained in SU-8. Indeed as will be shown in the following, the
experiments in PDMS should be analyzed with great care due to oil permeation in the
PDMS.

7.2.1 Qualitative observations

Let us first describe qualitatively the observations. As chown in the serie of images in
Figure 7.5, the invading fluid (in dark on the images) invades only the large arm of the
loop at low capillary numbers. Then, after some time, the wetting fluid trapped in the
narrow arm (called "tarpped cluster" in the following) starts to be drained progressively.
Interestingly, both upstream and downstream menisci recede at the same time: the cluster
shrinks very slowly. This SU8 resin is impermeable with respect to the fluids used, the
fluids is drained through the corner films.

The dynamics of this drainage exhibits two phases. At first, the menisci of cluster do
not move (or very slightly) during a period of time, in the following which refers to the
delay time. Then the drainage occurs at a constant speed. The duration of this second
phase is generally on the same order of magnitude as the first one.

In the framework of the theoretical analysis of the previous chapter, these two phases
are rather straightforward to understand. Just after the trapping, the size of the corner
film is fixed by the moving meniscus and equals to 1/4 of the channel width. The pressure
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Figure 7.5: Drainage process of a complete wetting system: FC-40/dodecane
(fluorescence)/SU-8. The whole circle channel is filled by a fluorinated liquid (dodecane).
The non-wetting liquid is pushed in from the left side with Ca = 1.2× 10−3. The wetting
fluid in the narrow channel is trapped in the beginning, and then drained through the
corner of the rectangular channels. The intensity of fluorescence shows the wetting liquid
volume variation.

difference between the two phase is too low to allow the menisci to enter the narrow channel.
Then, after some time, the drainage of the corner film leads to a reduction of the corner
film size around the cluster. At a given size threshold, the pressure difference reaches the
capillary pressure of the narrow channel, allowing the menisci to enter it.

7.2.2 Estimation of film size variations

In order to be more quantitative, we use fluorescence microscopy to estimate the corner
film size. For low enough dye concentration and illumination intensity, the fluorescence
intensity is proportional to the dye quantity. Under this assumption, it is thus proportional
to the volume of the corner film.

We choose a rectangular zone Ω(x, y) which contains the channel wall of large channel
side and shown in the insert of Figure 7.6, where we see a corner film. We compute a
normalized corner film intensity ˜I(t) by integrating the pixel intensity over this domain,
defined by

˜I(t) =
I(t)− Imin(t)

Imax(t)− Imin(t)

(7.4)

where I(t) is the mean intensity on the chosen domain.
An example of this fluorescence intensity variation is shown in Figure 7.6. Three regimes

could be observed (see T1, T2 and T3 in the figure). By correlating this regime to the cluster
menisci movement, we are able to interpret these regimes.

1) Initial delay. At first, the intensity decrease which means that the corner wetting
volume decreases. Correlatively, we observe that the mensici around the trapped cluster
are blocked. They do not move or adjust in the junction. In the beginning, when the
cluster is created, the local pressure difference between the two phases ∆P1 = P1 − P2 =
γ(1/R1 + 2/H), where R1 = H/2 = 25µm. The pressure difference necessary for the non-
wetting fluid to enter the narrow channel is ∆P2 = γ(1/R2 + 2/H), where R2 = 25µm.
Since the corner film size is decreasing, the pressure difference increases and eventually
reaches ∆P2 so that at the end of this first regime, the non-wetting fluid enters the narrow
channel. Both upstream and downstream menisci advances.
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Figure 7.6: Normalized total intensity of fluorescence in the chosen rectangular in the insert
photo, for an experiment conducted at Ca = 1.2 × 10−3, with the FC-40/dodecane/SU8
system. The intensity variation indicates that the wetting liquid volume in the corner film
decreases with time. Three periods T1, T2 and T3 correspond to the drainage initial delay,
the drainage of the cluster, and finally the drainage of corners.

2) Drainage of the cluster. During this regime, fluorescence intensity measurements
show that the volume of the corner film is fixed. At the same time we observe a slow
movement of the menisci leading to a drainage of the trapped cluster. Once the non-
wetting liquid enters the narrow channel, the advancement in this narrow channel asks for
the same local pressure difference ∆P2. Since we expect the drainage occuring in the corner
films to be rather slow, the menisci move very slowly, meaning that the pressure difference
between the phases remains equal to ∆P2. This is consistent with the observation. In
other words, the boundary conditions is switched from no flux to a fixed corner film size
at the transition between the two first regimes.

The fluorescence intensity in this plateau is around 20% of the initial intensity. Recalling
that the corner film size is directly related to the pressure difference, we expect the ratio of
the film size in the plateau to the initial one to equal ∆P1/∆P2 = 2/3, given the geometric
features of the device. Since the intensity is related to the volume of the wetting fluid in
the corners, we would expect a value of about 44% in this plateau, under the assumption
that the fluorescence intensity is proportional to the dye quantity. Since many phenomena
could affect such a linearity, it is not surprising to obtain a quantitative discrepancy. In
these experiments, we could only interpret qualitatively the intensity variations.
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3) Drainage of the corner film. At the end of the second regime, the trapped cluster is
totally drained, expect along the corners. At this time, the fluorescence intensity decreases
again, meaning that the corner film size decreases again. Since there is no more a reservoir
of wetting fluid in the trapped cluster, the boundary conditions upstream switches to no
flux again, and leads to a drainage of the corner film.

7.2.3 Cluster length measurements

Since it is not straighforward to achieve a quantitative measurement using fluorescence
microscopy, we limit ourselves to measure the size of the trapped cluster as a function
of time. More precisely, we compute through image analysis the length variation of the
trapped cluster, ∆L = L(0) − L(t). Since the channel has a constant cross-section, this
measurement is also a measure of the drained volume. Figure 7.7 displays an example of
this analysis. We recover the two first regimes described above. In the first one, ∆L ≈ 0
and in the second one, it increases linearly with time. Depending on the experiments, the
length variation does not exactly vanish during the whole first regime. This is due to a
progressive adaptation of the mensicus curvature inside the junctions. Since it is related to
details of the geometry of the junctions, we do not discuss further this effect and restrict
ourselves in the following to measure systematically the two accessible quantites of the
length variation as a function of time: the duration T1 of the first regime, and the drainage
flow rate given by the slope of ∆L(t) in the second regime times the cross section area.
These two quantities will be compared to the theoretical analysis in the following.
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Figure 7.7: Two examples of normalized or real cluster length variation of the trapped
cluster.

7.2.4 Delay time before drainage

We report in Figure 7.8 the delay time measured systematically on various systems as a
function of Ca. this time has been determined by plotting the cluster length as a function
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of time and by defining the transition between the first two regimes (see Figure 7.7). The
date could be divided into two groups. At low Ca the delay times are, though dipsersed,
describred by a power-law of exponent -1, i.e. T1 ∼ 1/Ca. At first sight, the viscosity
ratio does not have a strong influence. At high Ca (Ca > 10−2), we observe an abrupt
decrease of the delay time. However, the scenario is somewhat different in this case, since
we approach the limit at which the viscous forces are too strong to provoke the capillary
trapping. Indeed, as explained in Section 7.1.2, trapping occurs only below a critical
capillary number that is on the order of 4.4× 10−3. The scenario is therefore different for
this data, since drainage occurs not only because of the corner films but also because of
the high pressure drop. In the following, we focus on the data obtained at lower capillary
numbers.

Let us now compare these results to the prediction of the previous chapter. As discussed
in Chapter 6, we expect two different regimes for the delay time. If the cluster is located
very closed to the inlet, then the delay time is simply the time required to reach the critical
corner film size. Then the expected scaling is T1 ∝ Ca−2. If the meniscus is located far
from the inlet, the delay time is much higher and the scaling switch to T1 ∝ Ca−1. The
transition between these two regimes depends on Ca and is given by Cac = 4.4 × 10−3.
For the geometry used in our device, the distance xc separating the inlet and the cluster
is about 1cm, that is to say x̃c = 200. Thus, for the range of studied Ca, we expect to be
always in the second regime, where the delay time is inversely proportional to Ca. This is
what we get experimentally on about two orders of magnitude, as shown in Figure 7.8.

In order to ahcieve a quantitative comparison, we replot in Figure 7.9 the data in the
normalized units of the theoretical part. Concerning the delay time, these are normalized
by η2a/γ. In these units, the prefactor of the Ca−1 scaling depends on M and of the
value of εc, the corner film size at which the cluster starts to be drained. For the value of
εc corresponding to the geometry of the device, which is 1/6, we compute the theoretical
delay time for serveral values of M . They are plotted together with the experimental data
in Figure 7.9. For several systems the agreement is rather good, given that there is no
fitting parameter. Putting aside one of the systems (FC-40/dodecane), the increase of the
delay time when increasing M is experimentally consistent with the expected variation.
We do not understand why this particular system is so different from the other and gives
the delay times that are more than one order of magnitude than expected.

7.2.5 Drainage flow rate

From the measurement of the cluster length in time, we determine the flow rate Qd at which
the cluster is drained. For t > T1, the cluster length as a function of time is fitted by a
linear relation which, multiplied by the channel cross-section 2HR1, leads to the drainage
flow rate Qd. Since the theoretical analysis predict that during this dranaige the mean
velocity in the corner films is simply proportional to the velocity in the inner phase, we
expect Qd to be proportional to Ca, or in other words to the imposed flow rate Qi. Thus
we plot ind in Figure 7.10 the ratio Qd/Qi as a function of the capillary number. Although
the points are rather dispersed, this ratio remains roughly constant in the range of cpaillary
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Figure 7.8: Delay before the drainage of cluster starts for systems of various viscosity ratii,
in SU-8 device. The solid line is an indicative power-law function of exponent -1.
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Figure 7.9: Various complete wetting systems with different viscosity ratiosM . The values
are shown in Table. 7.1. All the systems verify the relation T1 ∝ Ca−1. M leads to light
variations, but T1 depends mainly on Ca.

number tested, as expected. It increases when increasing the viscosity ratio. This effect
could be understood easily since the drainage flow rate is simply the consequence of viscous
entrainement by the inner phase. The more viscous the inner phase is, the more efficient
the drainage takes place.
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Figure 7.10: Drainage flow rate of the cluster normalized by the imposed flow rate Qd/Qi,
as a function of the capillary numbers. For various systems, this ratio is in a first approx-
imation independant on the capillary number, showing that Qd ∝ Ca.

In order to analyze further the effect of the viscosity ratio, we plot in Figure 7.11 the
ratio as a function of M . We recall the theoretical prediction detailed in Section 6.3.7.1 :

Qd = cε2cMf(εc,M)Qi. (7.5)

This M dependancy of the flow rates ratio Qd/Qi is not trivial but since f is constant
in the limits of small or big M , it increases proportionaly to M in these limits. The
predicted relation is plotted together with the experimental results in Figure 7.11, for the
experimental value of εc (2/3). The comparison is not very accurate, but the global trend is
on rather good agreement. The order of magnitude is roughly predicted, but the measured
values are for some system higher than that of the model, by a significative factor.

7.2.6 Results in PDMS chips

We now present the results obtained in PDMS chips. The observations are qualitatively
the same: there is a delay before the mensici enters the narrow arm of the loop. This
delay time is plotted in figure 7.12 as a function of the capillary number. When comparing
the rescaled time to the theoretical ones, we find that experimental times are much lower
than predicted. Such a discrepancy falls out of experimental errors and uncertainties.
Furthermore, the dependancy of this time as a function of Ca is also different to that
predicted. We find that below 10−3, it is roughly independant on the applied capillary
number. Since the experiments conducted in SU-8 device lead to delays on the order of
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Figure 7.11: Comparison between the experimental drainage rates (normalized by the
imposed flow rate) Qd/Qi and the predicted ones (solid lines, see text), as a function ofM .
The data are the same as in figure 7.10, and stand for various flow rate. Their dispersion
is an indication of the error bars, which are rather high in these experiments.

the predicted one and decreases as Ca−1, we can conclude that a different mechanism is
occuring in PDMS device.

A possible interpretation of this result is to consider that PDMS is permeable to oil.
The oil cluster is progressively swelling the PDMS. This hypothesis is rather consistent with
the fact that the observed time is in a first approximation independant on the capillary
number.

This result has some important consequences. It illustrate that PDMS could not be
used to study biphasic flows when the time scale of the experiment is higher that a few
dozens of seconds. This is particularly the case of drainage or imbition experiments in
micromodels of porous media. We believe that this result prevent to interpret the perfect
sweeping that is observed at long times in these types of experiment.

7.3 Discussion
The experimental results presented above capture well the trends predicted in the previous
chapter. The mechanism seem to be rather robust: the scaling are recoverd, the order of
magnitude is correct. A quantitative agreement is even found for some systems, but it is
necessary to recognize that the data are globally dispersed and that a rather important
disagreement that is found for some systems. Although we feel confortable concluding that
the mechanism we propose for the corner film to be drainged holds, we are wondering why
the agreement is not better, and why there is an important data dispersion. Several points
might be raised.

Firstly, these experiments are rather long : up to a day for the lowest capillary numbers.
At these time scales, many external parameters could vary significantly, the temperature
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Figure 7.12: Delay time before drainage inside PDMS devices. The left plot displays the
normalized experimental times T1 as a function of the capillary numbers, together with the
theoretical calculated times (M between 0.01 and 100). On the right, the same data are
plotted in physical units.

in particular. A more controlled environnement seem to be necessary to achieve a better
accuracy.

Secondly, and probably the main point, the delay time is greatly dependant on the
exact nature of the boundary conditions. In particular, it is experimentally very difficult
to achieve a no-flux boundary condition at the inlet. We use a tubing that is is not wet by
the wetting fluid. Thus, we expect the tubing to be completely filled by the non-wetting
fluid when the experiments starts. However, it is not possible to prevent the wetting fluid
to form some small droplets or to be trapped in the inlet region of chip. Indeed, at this
position, the geometry is not well controlled. And although the nanoport connection is
optimal concerning dead volumes, the junction between the tubing and the chip is possible
to trap a small amount of the wetting fluid. We could not easily verify this issue since the
glue at the inlet make the observation difficult. If there is an - even small - reservoir at the
inlet, then the no-flux boundary conditions at the inlet is not satisfied at the beginning
of the experiment. An additional delay can occur. In some experiments, we have seen
some doplets of the wetting fluid flowing just after the meniscus has passed the junction.
These experiments were discarded but they underline that there might be some wetting
fluid trapped at the inlet. We believe that one of the only way to remove this experimental
difficulty would be to use a device where the wettability is different close to the inlet.
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7.4 Conclusion
We have presented in this chapter the experimental results that validate a drainage mech-
anism through corner films. The qualitative observations are in very good agreement with
the theoretical predictions presented in the previous chapter. The draiange of a cluster of
wetting fluid trapped by capillarity is delayed from the invasion by the non-wetting fluid.
This delay time correspond to the time necessary to decrease the corner film size up to
a value set by the capillary pressure difference between the moving meniscus and the one
inside the trapped cluster. In pratice, this time correspond to the time required for the film
size variation to arrive to the cluster position. It leads to a scaling in Ca−1 that is verified
experimentally. Moreover, the prediction succeed in accounting for the order of magnitude
of this delay time and for the variations with the viscosity ratio, though for some series
of experiment, a rather important dispersion is found. After this delay time, the cluster
empties, and the corner film size near the cluster remains constant until it is completely
swept. Again this matches the predictions. We were able to measure the drainage rate.
We find that it is roughly proportional to the capillary number in the low Ca limit. The
order of magnitude of this flow rate is again well captured by the theoretical analysis. It is
very low since the ratio of the drainage flow rate to the imposed one is between 10−6 and
10−3, depending on the viscosity ratio. The high M is, the higher the drainage flow rate.

The mechanism of drainage through is thus very slow as compared to standard drainage
due to cluster displacement under viscous pressure drops. It is not likely to be suitable
for oil recovery applications since in these applications, the length scale is huge and re-
covery time scales are on the order of years. However this mechanism might be used in
other applications that involve porous media on much shorter length scale such as soil
remediation.

Beside, this experimental study show that PDMS device are not suitable for biphasic
flows involving long time scales due to oil swelling of PDMS.

We have studied systems that are in complete wetting situation. Corner films are also
present in partial wetting conditions, when the contact angle is low enough. It would be
very interesting to see whether under the partial wetting situation, this drainage mechanism
still occurs. Although there is in principle no main differences, the contact angle hysteresis
may complicate the size variation of the corner films.

Finally, we investigated a drainage situation, but the case of imbibition might also be
interesting.
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7.5 Summary

Experimental approach

• A microfluidic dispositif of resin SU-8 is designed to study the consequence of
corner flows in drainage process. We focus on the complete wetting situation.
• A general discussion about the capillary trapping as a function of capillary num-

ber is presented. We are interested in the trapping situation with an important
volume under complete wetting condition. After percolation, these clusters are
connected through the corners and could be displaced entirely.

Experimental result

• The whole drainage of cluster is characterized quantitatively. We analyze the
delay time before drainage and the drainage flow rate. A quantitative agreement
between the data and the model is displayed.
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Conclusions and Perspectives

Rhodia company has developed in the last five years an activity dealing with chemical
enhanced oil recovery. Chemical compound enhance oil recovery because they increase the
viscosity of water, decrease the interfacial tension or change the wetting conditions. In this
work, we deal with the last topic. Our aim is to understand at the pore level the role of
the wetting properties on the displacement of oil and on its trapping.

We focused on a simple geometry: a capillary tube. We take advantage of microfluidic
and millifluidic technologies and prepare geometries of various shapes (circular or rectangu-
lar) in various materials (PDMS, SU8, glass). We use various surface treatments to control
the energy of the surface and tune the wetting properties. We followed the displacement
of the interface between the two phases in various wetting situations: complete, partial,
pseudo-partial. Pseudo-partial situation that corresponds to a positive spreading parame-
ter and to a positive Hamaker constant is an exceptional situation for air liquid systems.
We have shown that at the opposite it is a common one for liquid/liquid systems as soon
as the solid surface is coated with a hydrophobic layer. This situation is likely to happen
in the oil well where the hydrophilic rock is covered by an asphaltene layer. In circular
channel, the displacement of the meniscus in the three situations may be described using
the thermoally activated depinning theory. Our experiments deals with the low capillary
number regime and hydrodynamic effects play no role. Thermally activated depinning the-
ory assumes that the contact line moves through a succession of jumps. Two parameters
describe the pinning depinning events: E∗, the typical energy barrier between two pinned
configurations of the contact line and λ the size of the jumps.

We show that the partial case corresponds to high energy values (120 kBT ), where
as the pseudo-partial case corresponds to low energy values (40 kBT ). The size of the
hysteresis plateau is correlated to the normalized energy suggesting that the displacement
occurs through a succession of jumps between pinned configurations. Larger values of the
correlation length are measured for pseudo-partial case with low hysteresis plateau. This
comforts the previous picture, lower hysteresis suggests the presence of less defects and
thus of larger distance between two jumps.

Pores in the reservoir are not circular. Wetting fluid remains prisoners in the corners.
We have analyzed the role of the flow in the corners and shown that they modify the value
of the apparent capillary pressure. In other words, zero velocity occurs in the invading fluid
not for a zero pressure drop for the internal fluid but for an negative (or positive) pressure
drop balanced by a positive (or negative) pressure drop in the corner flows. This implies
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that the drop of pressure P1 − P2 where P1 is the pressure of the invading fluid near the
inlet and P2 the pressure of the prisoner fluid near the outlet is not equal to the capillary
pressure γC, where C is the curvature of the meniscus and γ the interfacial tension. These
corners flows have a huge repercussion in absence of reservoir for the wetting phase. Flow
in the invading phase sweeps the liquid in the corner. The shape of the corner changes
due to mass conservation and the curvature radius decreases. A meniscus blocked near
a small throat will thus enter it when its size will fit it. We have developed a model
in the lubrication framework to describe this process. The resulting set of equation is a
Burger equation remembering the equation of drainage in foams. Using Comsol, we have
calculated the values of the velocity and of the hydrodynamic resistance. Experimental
data agree quantitatively with the experiments.

The outlook of this work deals with this last point. We have pointed out a new process
that modifies the drainage and the oil trapping mechanism and induces a new mechanism
of oil recovery. We note that this mechanism is very efficient. No oil remains trapped. We
have only studied its pertinence in the complete wetting situation. Experiments dealing
with in the partial wetting situation are required.

From an application point of view, we have to check the pertinence of this process in
more complex geometries. We also note that this process this process supposes the use of
high volumes of invading phase and the existence of wetting films. These constraints might
be too strict for the oil enhanced recovery applications.
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