Thèse soutenue

Ingénierie écologique des communautés microbiennes de méthanisation des déchets ligno-cellulosiques
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Olivier Chapleur
Direction : Jean-Jacques Godon
Type : Thèse de doctorat
Discipline(s) : Sciences de l'environnement
Date : Soutenance le 18/06/2012
Etablissement(s) : Paris, AgroParisTech
Ecole(s) doctorale(s) : Ecole Doctorale Agriculture, Alimentation, Biologie, Environnement, Santé (2000-2015 ; Paris)
Partenaire(s) de recherche : Laboratoire : Hydrosystèmes et bioprocédés (2005-2019)
Jury : Président / Présidente : Philippe Vandenkoornhuyse
Examinateurs / Examinatrices : Jean-Jacques Godon, Théodore Bouchez, Franck Poly, Laure Vieublé Gonod
Rapporteurs / Rapporteuses : Philippe Vandenkoornhuyse, Patrick Dabert

Résumé

FR  |  
EN

Dans le but d'évaluer la possibilité de mise en place une ingénierie écologique des processus microbiens de la digestion anaérobie dans les bioprocédés, différents leviers environnementaux ont été appliqués à des digesteurs de cellulose. Le premier levier étudié, de nature physico-chimique, était la température. Le deuxième faisait appel à une adaptation préalable d'une biomasse complexe par incubation avec des molécules simples avant mise en présence de cellulose. Le dernier consistait en la co-inoculation de diverses biomasses exogènes avec une boue anaérobie. Les conséquences des perturbations apportées par ces leviers sur les dynamiques métaboliques et écologiques de bioréacteurs anaérobies dégradant de la cellulose ont été évaluées. Différents indicateurs physico-chimiques ont été utilisés pour caractériser la dégradation de la cellulose (production de molécules intermédiaires, production de gaz, etc.). Les outils de la biologie moléculaire ont permis de caractériser les dynamiques microbiennes à l'échelle des communautés (par fingerprinting ARISA) ou des individus (par pyroséquençage de l'ADNr 16S). L'utilisation d'isotopes stables (cellulose marquée 13C), a permis de réaliser un traçage précis des flux de matières (intermédiaires de dégradation de la cellulose enrichis en 13C) et des microorganismes impliqués dans la chaîne de dégradation de la cellulose (groupes microbiens fonctionnels identifiés par la technique de « stable isotope probing »). Les expériences de changements de température ont montrél'influence importante de ce paramètre sur les communautés microbiennes, en particulier les archées. Elles ont mis en évidence le caractère asymétrique de l'effet de la température sur les communautés microbiennes et les conséquences irréversibles du passage par les conditions thermophiles. Ces propriétés ouvrent des perspectives intéressantes pour exploiter les chocs de température afin de modifier les propriétés de la biomasse. L'expérience de fonctionnalisation de la biomasse à l'aide de quatre molécules simples (acide propionique, acide butyrique, glucose et cellobiose) montre qu'un modelage des populations microbiennes par préadaptation est possible. Une fois en contact avec la cellulose, les biomasses fonctionnalisées génèrent des schémas de dégradation et des structures de communautés qui se répartissent de manière inattendue en deux catégories seulement. Ce résultat suggère qu'il est possible d'orienter les états d'équilibre d'une communauté microbienne complexe par préadaptation fonctionnelle. Enfin, des expériences de co-inoculation ont mis en avant la difficulté d'exploiter directement les propriétés enzymatiques de flores cellulolytiques performantes mais également les possibilités de modifier les équilibres de diversité au sein de la biomasse du bioprocédé. Ces expériences suggèrent qu'un paramètre tel que la diversité de la communauté d'un bioprocédé pourrait être manipulé par bioaugmentation. Ce travail démontre que nous disposons d'ores et déjà d'un certain nombre d'outils pour élaborer une ingénierie écologique des bioprocédés à travers une nouvelle démarche de gestion qui se place à l'échelle de l'écosystème microbien et des services associés.