Thèse soutenue

Dynamique Non-linéaire en Nano-cavités à Cristal Photonique en Semiconducteur III-V
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Maia Brunstein
Direction : Juan Ariel Levenson
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 08/06/2011
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Ondes et Matière (Orsay, Essonne ; 1998-2015)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Photonique et de Nanostructures (Marcoussis, Essonne ; 1984-2016) - Laboratoire de photonique et nanostructures
Jury : Président / Présidente : Pierre Viktorovitch
Examinateurs / Examinatrices : Juan Ariel Levenson, Pierre Viktorovitch, Marc Sciamanna, Massimo Giudici, Raffaele Colombelli, Peter Bienstman, Alejandro Giacomotti
Rapporteurs / Rapporteuses : Marc Sciamanna, Massimo Giudici

Résumé

FR  |  
EN

L’optique non linéaire traite les modifications des propriétés optiques d'un matériau induites par la propagation de la lumière. Depuis ses débuts, il y a cinquante ans, des nombreuses applications ont été démontrées dans presque tous les domaines de la science. Dans le domaine de la micro et nano-photonique, les phénomènes non linéaires sont à la fois au cœur d’une physique fondamentale fascinante et des applications intéressantes: ils permettent d'adapter et de contrôler le flux de lumière à une échelle spatiale inferieure à la longueur d'onde. En effet, les effets non linéaires peuvent être amplifiés dans des systèmes qui confinent la lumière dans des espaces restreints et avec de faibles pertes optiques. Des bons candidats pour ce confinement sont les nanocavités à cristaux photoniques (CPs), qui ont été largement étudiées ces dernières années. Parmi la grande diversité des processus non linéaires en optique, les phénomènes dynamiques tels que la bistabilité et l'excitabilité font l’objet de nombreuses études. La bistabilité est bien connue pour ces applications potentielles pour les mémoires et les commutateurs optiques et pour les portes logiques. Une réponse excitable typique est celle subjacente dans le déclanchement du potentiel d'action dans les neurones. En optique, l'excitabilité a été observée il y a une quinzaine d’années. Dans ce travail, nous avons étudié les régimes bistables, auto-oscillants et excitables dans des nanocavités semiconductrices III-V à CP. Afin de coupler efficacement la lumière dans les nanocavités, nous avons développé une technique de couplage par onde évanescente en utilisant une microfibre optique étirée. Grâce à cette technique, nous avons démontré pour la première fois l’excitabilité dans une nanocavité à CP. En parallèle, nous avons accompli la première étape vers la dynamique non linéaire dans un réseau de cavités couplées en démontrant le couplage optique linéaire entre nanocavitités adjacentes. Ceci a été réalisé en utilisant de mesures de photoluminescence en champ lointain. Un ensemble de résonateurs non linéaires couplés ouvre la voie à une famille de phénomènes dynamiques non linéaires très riches, basés sur la rupture spontanée de symétrie. Nous avons démontré théoriquement ce phénomène dans deux cavités couplées par onde évanescente. Les premières études expérimentales de ce régime ont été menées, établissant ainsi les bases pour une future démonstration de la rupture spontanée de symétrie dans un réseau de nanocavités non linéaires couplées.