Thèse soutenue

Relaxométrie du proton pour l'étude de fluides à l'intérieur de milieux poreux
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Emilie Steiner
Direction : Daniel CanetSabine Bouguet-Bonnet
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 18/11/2011
Etablissement(s) : Nancy 1
Ecole(s) doctorale(s) : SESAMES - Ecole Doctorale Lorraine de Chimie et Physique Moléculaires
Partenaire(s) de recherche : Laboratoire : CRM2 - Cristallographie, Résonance Magnétique et Modélisation - UMR 7036
Jury : Président / Présidente : Jean-Luc Blin
Examinateurs / Examinatrices : Marc Fleury
Rapporteurs / Rapporteuses : Pascal Fries, Lothar Helm

Résumé

FR  |  
EN

Pour caractériser la mobilité moléculaire au sein de structures complexes, la relaxométrie RMN consiste à déterminer les temps de relaxation dans une gamme de fréquence aussi large que possible et notamment à très basse fréquence où se manifestent les mouvements lents. L'évolution de la vitesse de relaxation longitudinale R1 (qui correspond à l'inverse du temps de relaxation longitudinale T1) en fonction de la fréquence de mesure conduit à ce que l'on appelle une courbe de dispersion. Les travaux présentés dans cette thèse sont entièrement dédiés à cette technique que nous avons décidé d'appliquer à l'étude de fluides introduits à l'intérieur de milieux poreux et ceci constitue une première au laboratoire. Les systèmes ayant servi de support à cette étude sont de nature très différente puisqu'ils concernent 1) des matériaux mésoporeux silicatés qui ont été hydratés dans le but d'étudier le comportement des molécules d'eau introduites à l'intérieur du matériau et 2) des organogels formés dans le toluène pour lesquels nous avons mené une étude du comportement dynamique du solvant à l'issue du processus de gélification. Pour caractériser au mieux la dynamique des fluides à l'intérieur de ces systèmes, des méthodes expérimentales originales, nécessitant l'utilisation de plusieurs instruments, ont été développées, permettant ainsi d'obtenir des courbes de dispersion allant de 0 à 400 MHz. Grâce à des développements méthodologiques et théoriques, nous avons été capables d'identifier les différents mécanismes de relaxation à l'origine de ces courbes de dispersion et de donner une signification physique aux paramètres issus de cette interprétation