Contribution to the development of Aitken Restricted Additive Schwarz preconditioning and application to linear systems arising from automatic differentiation of compressible Navier-Stokes solutions with respect to the simulation’s parameters

par Thomas Dufaud

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Damien Tromeur-Dervout.

Soutenue le 25-11-2011

à Lyon 1 , dans le cadre de École doctorale en Informatique et Mathématiques de Lyon , en partenariat avec Institut Camille Jordan (Rhône ; 2005-....) (laboratoire) .

Le président du jury était Jocelyne Erhel.

Le jury était composé de Damien Tromeur-Dervout, Stéphane Aubert.

Les rapporteurs étaient Luc Giraud, Eric de Sturler.

  • Titre traduit

    Contribution au développement du préconditionnement Aitken Schwarz Additif Restreint et son application aux systèmes linéaires issus de la différentiation automatique des solutions de Navier-Stokes dépendant des paramètres de la simulation


  • Résumé

    Un préconditionneur à deux niveaux, reposant sur la technique d’accélération d’Aitken d’une suite de q vecteurs solutions de l’interface d’un pro- cessus itératif de Schwarz Additif Restreint, est conçu. Cette nouvelle technique, dénomée ARAS(q), utilise une approximation grossière de la solution sur l’interface. Différentes méthodes sont proposées, aboutissant au développement d’une tech- nique d’approximation par Décomposition en Valeures Singulières de la suite de vecteurs. Des implémentations parallèles des méthodes d’Aitken-Schwarz sont pro- posées et l’étude conduit à l’implémentation d’un code totalement algébrique, sur un ou deux niveaux de parallélisation MPI, écrit dans l’environnement de la biblio- thèque PETSc. Cette implémentation pleinement parallèle et algébrique procure un outil flexible pour la résolution de systèmes linéaires tels que ceux issus de la dif- férentiation automatique des solutions de Navier-Stokes dépendant des paramètres de la simulation


  • Résumé

    A two level preconditioner, based on the Aitken acceleration technique of a sequence of q interface’s solution vectors of the Restricted Additive Schwarz iterative process, is designed. This new technique, called ARAS(q), uses a coarse approximation of the solution on the interface. Different methods are discussed, leading to the development of an approximation technique by Singular Value De- composition of the sequence of vectors. Parallel implementations of Aitken-Schwarz methods are proposed, and the study leads to a fully algebraic one-level and two- level MPI implementation of ARAS(q) written into the PETSc library framework. This fully parallel and algebraic code gives an adaptive tool to solve linear systems such as those arising from automatic differentiation of compressible Navier-Stokes solution with respect to the simulation’s parameters


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Claude Bernard. Service commun de la documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.