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Chapter 1

Introduction

The design of Self-configuring Systems that adapt their service to dynamically chang-

ing environments is among the main research directions of autonomic computing and

communication. Providing solutions for distributed software systems supporting group

communication requires dynamic management of evolving group membership, and dy-

namic connections of deployment nodes. It also requires dynamically distributing soft-

ware entities on remotely interconnected deployment nodes. For a number of group

communication-based applications, reconfiguration anticipation is important. In order

to be applicable in different situations, designers of such applications have to ensure

tractability and scalability of elaborated solutions when changing from several to thou-

sands users, nodes, components and services. The particular class of collaborative

software applications can especially benefit from communicating systems’ advanced ca-

pabilities. Collaborative applications are distributed systems where several users act in

a coordinated manner in order to achieve a common goal. In such applications, users

are organized into structured groups where each participant may play a role. Several

tools are provided to users in order to communicate, share documents, and interact in

an efficient manner. Many collaborative applications have been successfully developed

within the desktop paradigm in different domains such as e-learning, engineering, de-

sign, etc. Exploiting features such as context information, mobility, etc. may enhance

the functionality and usability of collaborative applications. The fact that users are

located in the same environment, using personal mobile devices, and are connected

through wireless connections instead of using desktop computers remotely connected

through the Internet represents a very different approach for the design and use of such

1



2 CHAPTER 1. INTRODUCTION

applications. Contextual information can be exploited to detect potential collaboration

situations between several users and then spontaneously propose them to join a session

where they can interact together. This implicit way of collaboration differs from the

classic desktop collaboration where activities are initiated explicitly. Therefore, collab-

oration and even more context-aware collaboration raises several promising challenges.

The concept of context is crucial in applications that support collaboration. Indeed, if

a system is able to correctly detect context changes and react to them in an intelligent

way, it will be able to deliver a much richer user experience. In order to correctly ex-

ploit contextual information, context has to be represented with models that formalize

the considered contextual data. Also, dynamic context data have to be acquired and

introduced into instances of the available context models. Once context is acquired, the

system has to react to context changes; this is called adaptation. In the case of collabo-

rative applications, the main objects of adaptation are the collaborative sessions which

are established to support the users’ activities, and the components that manage such

sessions. Providing generic and scalable solutions for automated self-reconfiguration in

group collaboration support systems can be driven by rule-based reconfiguration poli-

cies. To achieve this goal, we elaborate a dynamic graph-based modelling approach and

we develop structural models that can represent the different interaction dependencies

from different configuration-related point of views: communication flows between the

distributed machines, the networked deployment nodes, and the service composition.

Our solution is based on graph grammars rewriting. We define architectures as graphs

where vertices correspond to deployment nodes, software services and their internal

components. Moreover, we provide graph transformation to specify rules for changing

deployment architecture while being in conformance to an architectural style. Dealing

with dynamically evolving architectures requires at least describing the set of consis-

tent architecture instances. This is mandatory to validate the management models

and verify architectural constraint preservation [GDD04]. An architecture instance is

considered consistent, if its corresponding description graph can be generated by a se-

quence of graph grammar productions. Our approach supports formal verification for

correctness and safety proofs. We implemented a graph rewriting system that ensures

automating our approach with a high performance making it tractable for large scale

configurations. In order to handle the complex design of communicating collabora-

tive system architectures and the related adaptation issues, we propose a multi-layer

modelling approach. This simplifies the problem by separating concerns in different
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abstraction layers. This approach assures generic solutions for automatic context aware

adaptation.

Our approach is based on the observation that semantic data analysis can be ex-

ploited to manage priorities and more generally to manage communications. This allows

us to represent, in a richer way, the semantics of the managed systems. Consequently,

these semantics offer a vector for ensuring interoperability between interactive and au-

tonomous heterogeneous management entities. They can contribute to enforce adapt-

ability where they support, by capturing semantics from organizational, environmental

and operational viewpoints, the automation of the accomplishment of management

actions on the overall distributed environment. We propose a combined use of both

ontologies and policies to enforce, in a context-aware approach, the adaptive behav-

ior of autonomous management entities. Modelled and ontological data are combined

at run time to determine the current context, which policies are applicable to that

context, and what services and resources should be offered to users and applications.

Ontologies have demonstrated their benefits to support non-functional properties, and

to manage QoS in distributed systems. Our ontology for communications not only

describes devices and communications in terms of functional and non-functional prop-

erties, but also allows to manage priorities of exchanged messages. This work focuses

on the presentation of the developed ontologies and emphasizes the beneficial effects

of semantic for self-adaptation behaviors. To illustrate the proposed models and their

transformations, we consider a case study of Emergency Response and Crisis Manage-

ment Systems (ERCMS) involving several cooperating participants which have different

roles and functions. We consider also the case of a Web Service-Based Applications: the

Foodhop. Using graph grammars, We handle architectural reconfiguration by defining

architectures as graphs where vertices correspond to software services and their opera-

tions. We use graph transformation to specify rules for deployment architecture changes

(evolutions) while being in accordance with the architectural style

This document is organized as follows. Chapter 2, details research activities dealing

with adaptation and focus on autonomic systems. The concepts of collaboration and

context are detailed. A new approach that focuses on managing reconfiguration com-

plexity in a runtime environment: “model@runtime” is presented. In the last part, We

focus on context adaptation in collaborative communicating systems.

Chapter 3, details our modelling approach for collaborative communicating architec-

tures. This approach defines abstraction levels to tackle level related problems indepen-
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dently. This separation in levels favours the realization of a multi-level adaptation, that

takes into account both high level requirements and low level constraints. Generic pro-

cedures for refinement and selection are presented in this chapter. Refinement ensures

that lower level models actually implement associated higher level models. Selection

allows choosing a model among a set of candidates at a given level. Ontologies, SWRL

rules, graphs, and graph’s grammars are presented. These rules handle both transform-

ing a given architecture within the same layer, and architectural mappings between

different layers.

Chapter 4 presents the graph matching and transformation engine that we developed

to implement the graph grammars approach. The ERCMS scenario and the FoodShop

application scenario are presented.

In ERCMS scenario, mobile actors collaborate to manage emergency situations.

We propose three ontologies to model different aspects related to communication as the

activity, collaboration and context. Adaptation actions are also proposed for adaptation

in communicating architecture. We presented refinement and selection procedures as

well as examples of external context and of resources context changes adaptations.

In the FoodShop scenario, we studied the dynamic reconfiguration of Service Ori-

ented Architectures for maintaining the Quality of Service in perturbation-prone envi-

ronments. Our approach uses graph grammar theories to implement rules that charac-

terize the set of the different configurations candidate to solve composite or monolithic

reconfiguration.

To validate our approach, we conducted an experimental evaluation using our graph

matching and transformation engine, GMTE, and the SWRL rule execution engine,

Jess. Our results show that ERCMS participant’s resources remain in service as required

for mission achievement thanks to our adaptation approach.

Finally, conclusions to this work are presented and several research perspectives

extending specific aspects of the present work are identified.



Chapter 2

Adaptation for Context-Aware

Collaborative Communicating

Systems

Designing and implementing self-adaptive communicating systems are a complex task.

To handle this complexity, several studies showed the need to lay on model-based de-

sign approaches associated with automated management techniques. In the first part

of this chapter, we detail research activities dealing with adaptation. In the second

part, we focus on autonomic system and we explain how the reconfiguration issue is

addressed in autonomic computing. After that, we detail the concepts of collaboration

and context. In next part, we present research activities that present a new approach:

“model@runtime”. These approaches focus on managing reconfiguration complexity in

a runtime environment. Finally, We focus on adaptation in collaborative communicat-

ing systems and we emphasis the context adaption solutions.

Adaptation is the operation of making changes to a program or an information

system to maintain its functionalities and, if possible, to improve its performance in

a certain execution environment. In the area of communicating systems and context-

awareness, adaptation is extended by the concept of adaptability that characterizes

system’s capability to change its behavior to improve its performance or to continue its

role in different environments.

5
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2.1 Adaptation Goals

After developing an information system, different reasons can lead to adaptation. These

reasons can be for corrective, evolutional or perfective purposes [KBC02]:

2.1.1 Corrective Adaptation

In some cases, we can notice that the application does not behave properly or as ex-

pected. The corrective adaptation is a solution to identify the application module

that causes the problem and to replace it by a new correct module. This new module

provides the same functionality as the former.

2.1.2 Evolutional Adaptation

When developing an application, some features are not taken into account. With the

changing needs of the user, the application must be extended with new features. This

extension can be achieved by adding one or more modules to provide new features

or modifying existing modules to enrich their functionality while keeping the same

application architecture.

2.1.3 Perfective Adaptation

The objective of this kind of adaptation is to improve application performance. For

example, we can have a module that receives a lot of requests and fails to meet them.

To avoid system performance degradation, we can duplicate this module to share the

requests with the existing one.

2.2 Objects of Adaptation

Adaptation approaches target many levels of information systems: User interfaces,

Content, Services, Middleware and Transport.
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2.2.1 User Interface Adaptation

User interface adaptation deals with producing Human-Computer means that can be

deployed and used on different types of terminals while meeting user’s preferences. Ma-

jor existing work related to user interface adaptation is based on models that describe

the different aspects of interaction between humans and machines. These models are

implemented in different XML or UML languages like UMLi [PP00] and XIML [PE02].

These models are used to produce the adequate user interface code corresponding to the

given XML or UML description. In the existing user interface adaptations, we distin-

guish two techniques: User Interface transformations and User Interface generation. In

the first technique, the adaptation process starts from a description language which is

very close to the user interface code that must be generated. This solution is adopted to

produce adapted Web pages to different terminals starting from an XML description.

In this kind of adaptation, style sheets (like XSLT) are used to specify replacement

rules of XML tags by scripts that can be directly used by the target device. The second

approach generates user interfaces code starting from a high level description which is

completely independent from the target programming language of the user interface.

SEFAGI [CL04] is an example of a platform using the generation technique to ensure

user interface adaptation.

2.2.2 Service Adaptation

Service-Oriented Architecture (SOA) paradigm is based on dynamically publishing and

discovering services. This kind of architectures provides the possibilities to dynami-

cally compose services for adapting applications to contexts. Service descriptions are

published, via the registry, by service providers and dynamically discovered by ser-

vice requesters. There are various implementation technologies like COM/ DCOM

(Component Object Model/ Distributed Component Object Model [Rog97, GG97] of

Microsoft, the EJB (Enterprise Java Beans) [MH00, Tho98] of Sun Microsystems, and

CCM (CORBA Component Model) [OMG99] of OMG (Object Management Group).

We can also consider JXTA [STS03] the peer to peer framework or .NET [Mic01] of

Microsoft.
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2.2.3 Middleware Adaptation

Other frameworks are proposed to provide adaptability at the middleware level. In

[NH04], an adaptive framework for supporting multiple classes of multimedia services

with different QoS requirements in wireless cellular networks is proposed. [STS03]

proposes CME, a middleware architecture for service adaptation based on network

awareness. CME is structured in the form of software platform which provide network

awareness to applications, and manage network resources in an adaptive fashion.

2.2.4 Transport Adaptation

At the transport level, [ESD03] provides frameworks for designing transport protocols

whose internal structure can be modified according to the application requirements and

network constraints. Adaptation actions correspond to the replacement of a processing

module or micro-protocol by another following a plug and play approach.

2.2.5 Content Adaptation

The adaptation of multimedia content has been the subject of considerable research.

Several techniques for adapting the delivered data to the user have been proposed.

These techniques are based on textual transformations [NSS01], [HL96], image transcod-

ing [WA03], or processing video and audio. One of the major issues in content adap-

tation is where the decision-making and transformations are made. In the literature,

three general approaches have been proposed according to the location of adaptation

processing between the source that hosts the content and destination that requests it:

(i) on the content provider side, (ii) on the requester side, and (iii) at an intermediary

(proxy) between the data source and the client. The content provider-side solutions

have some drawbacks. Indeed, the changes made on the content induce a calculation

load and consequent resource consumption on the server. However, this approach is

very suitable for situations with low variability and low adaptation frequency regarding

the simplicity of its implementation. But it is not reliable for cases where the adapta-

tion is triggered frequently. The content requester-side approach is suitable when the

transmission characteristics are less critical than the display limits of the user device

[NKSB99]. However, the usual complexity of adaptation processing hampers the wide

adoption of this approach [PAC+01]. Moreover, the client’s terminal usually have lim-
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ited computing capacity, power and storage. When considering the proxy solution, the

flexibility of positioning the adaptation mechanisms on the best content distribution

point is a major advantage compared to the other approaches (provider and content

sides). However, the proxy must be a trusted party by the provider and the requester of

the content. In addition, the third party may charge for the service it provides and the

resources it employs to perform the adaptation for the receiver. Therefore, accounting

mechanisms should be incorporated in the proxy solution in order to keep track of the

amount of resources utilized and the usage of data.

2.3 Model Based Adaptation Approaches

There are many relevant contributions concerning system architecture adaptation. This

kind of approaches uses model-based strategies to apply the necessary transformations

on the systems architecture to adapt it to environment and requirement changes. These

strategies define or reuse models describing the system software architectures. These

models are also known as ADLs (Architecture description languages). We distinguish

between three general ADL types: formal ADLs like graph grammars [HIM98] and

Petri nets [Mur89], semantic ADLs using ontologies [ZPM+07] and technical ADLs us-

ing XML deployment languages [DvdHT02]. The technical ADLs can be proprietary

or implementing the formal and the semantic ADLs. These ADLs are used to guar-

antee the architectural evolution and correctness during the different predictable and

unpredictable changes in the system’s environment. The necessary actions to achieve

such adaptations are specified using rules according to the application runtime context.

[CLC07] is an example of these approaches defining a complete model based architec-

ture adaptation at the service, content and user interface levels. [CGD+06] presents

another model based method using graph grammars to adapt cooperative information

systems to situation changes at the communication level.

2.4 Autonomic Computing

Managing autonomic systems should consider abstraction levels. More precisely , it

has to be managed in a coordinated manner both within and between these abstraction

levels. Distinguishing these abstraction levels allows designers and developers to master
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specification and implementation of adaptation rules. The autonomic concept and

systems suggested in the literature are defined in various ways. In our study, we target

the solutions given within and between different levels.

2.4.1 Basic concepts of autonomic computing

In this section, we present research activities that focus on the need of autonomic

computing; and the first concepts are introduced. They present the autonomic control

loop in detail. For IBM in [KC03], Autonomic computing systems are those systems that

automatically manage themselves by carrying out tasks that have been traditionally

performed by computer specialists. The self-management tasks are well defined. Self-

optimization is the ability of the system to optimize the use of resources. Self-healing

is the ability of the system to detect faulty behavior, and perform self-repair. Self-

configuration is the capacity of the system to change its structure and behavior. Finally,

self-protection is the ability of the system to detect intrusions, policy violation, etc. and

recover from them.

In [IBM06], the internal functional architecture of an Autonomic Element was in-

troduced. This architecture is composed of a number of functional modules that enable

the expected autonomic behavior through a set of autonomic operations. The auto-

nomic operations are achieved using a self-adjusting control loop. Inputs to the control

loop consist of various status signals from the system or component being controlled,

along with policy-driven management rules that orchestrate the behavior of the sys-

tem or component. Outputs are commands to the system or components to adjust its

operation, along with messages to other autonomic elements.

In [DDF+06], the authors present a survey of the state of research in autonomic

communications and present the autonomic control loop for network communication.

They address the five interlinked perspectives of the design and analysis of decentralized

algorithms; the modelling, handling and use of context, novel and extended program-

ming approaches; issues and approaches for addressing security and trust; and systems

evaluation and testing. Several challenges are presented in this work, such as interac-

tion with stranger, information reflection and collection, lack of centralized goals and

control, meaningful adaptation, cooperative behavior in the face of competition, hetero-

geneous services and semantics. They match these challenges against the cross-cutting

issues and show the technical ideas emerging from each issue when addressing each



2.4. AUTONOMIC COMPUTING 11

challenge.

2.4.2 Network level

In this section, we present some research activities that consider the network’s point

of view of autonomic computing. The work presented in [vdMDS+06], explains Au-

tonomic Network definition in more detail, links it to the foundational principles of

architecture for Autonomic Network Management, and provides guidance on how to

develop specifications and best practices for building Autonomic Communication Sys-

tems. The purposes of this paper are: firstly, to define required terminology necessary

to support the realization of an Autonomic Communications Framework. Secondly,

to define a flexible framework that can be used as the foundation of autonomic net-

work management. Finally, and to define how this framework can be used to build

Autonomic Communications Environments. This paper focuses on four research areas

that, in combination, define the foundations of autonomic network management: Mod-

elling and Knowledge Engineering for Autonomic Network Management; Automating

Network Configuration via Model-Centred Policy Analysis and Deployment; Network

Algorithms and Processes; Architecture and Methodology for Autonomic Network Man-

agement.

The work presented in [ABB+06] gives an overview of the different architectures that

support the design, implementation and deployment of autonomic systems. This paper

presents the issues related to the design, implementation and deployment of autonomic

networks. It focuses on the autonomic-management approaches. Authors present the

motivation behind the emergence of autonomic, self-managed systems and the required

features of such architectures. Then, they propose different architectures. In addition,

they discuss the complexity related to the autonomic information modelling and the

autonomic behavior. Moreover, they present the potential of bio-inspired techniques

and compare it with autonomic concepts.

The work presented in [MHSC04], examines the trends in next-generation wireless

access networks that will lead to a significant increase of the costs associated with the

deployment and configuration of such networks. The authors propose, the concept of a

self-deploying, self-configuring radio access network to resolve these issues. They pro-

pose algorithms from economic theory, ecology/population growth models, or cellular

automata. An example, taken from the field of cellular automata for a radio network
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capable of self-adaptation to achieve universal coverage in a simplified environment was

examined.

In [XB05], the authors present a mechanism for QoS-aware service composition and

adaptation of end-to-end network service for autonomic communication. They intro-

duce a service provisioning framework based on the autonomic communication princi-

ple, covering a number of essential functions: domain discovery, domain reacheability,

composition, cross-domain contracting, intra-domain provisioning, domain-wide mon-

itoring, and adaptation. Through domain graph abstraction, they reduce the domain

composition and adaptation problem to the classic-multiconstrained optimal path prob-

lem. They develop a set of new algorithms for QoS-aware service composition and

adaptation. Their composition algorithm finds a series of consecutive domains span-

ning end-to-end and select appropriate service class in each domain such that the overall

QoS requirements are satisfied. The algorithm also minimizes the overall cost of the

path. As the network condition changes over time or as the user roams across domains,

the adaptation algorithm ensures that the QoS requirements of the communication

path are respected as long as it is feasible to do so, while minimizing the cost of such

adjustments. Together, these algorithms are designed to support self-configuration, self-

optimization, and self-adaptation of network communication services. They address the

service provisioning problem at the domain level; the algorithms can function over het-

erogeneous intra-domain provisioning mechanisms, and more importantly, provide hard

end-to-end QoS guarantees over “soft” intra-domain QoS schemes.

2.4.3 Application level with Agents

In this section we focus on research activities that consider a Multi-Agent approach for

autonomic systems. The work presented in [LV07b], describes a Multi-Agent approach

to the modelling and design of Collaborative Ubiquitous Environments. These environ-

ments support collaboration among persons in a context of ubiquitous computing. In

particular, the paper shows how research in the topic of Multi-Agent Systems environ-

ment has provided both modelling abstractions and concrete computational supports

for the analysis, design and engineering of Collaborative Ubiquitous Environments. In

particular, the Multilayered Multi-Agent Situated System model was applied to repre-

sent and to manage several types of awareness information (both physical and logical

contextual information) which is an essential part of a Collaborative Ubiquitous En-
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vironment. This work differs from other existing proposals that employ agents and

agent-based infrastructures simply as a middleware for the design and implementation

of pervasive computing systems. The authors also present a selection of the available

platforms developed in this context and discuss their suitability to support the devel-

opment of Collaborative Ubiquitous Environments.

The work presented in [JI07] begins by discussing some of the general issues of

complex systems and explains why the agent-based approach is attractive. The article

investigates the application of multilevel hypernetworks in team robotics as an example

of a complex interaction-based system. The authors show how hypernetworks can

represent multilevel relational dynamics by the in-depth analysis of a robot soccer

simulation game. They have sketched a mathematical formalism for representing, the

relational structure between agents.

2.4.4 Frameworks and architectural proposals

In [LP06], the authors present the Accord programming framework that extends ex-

isting programming models/frameworks to support the development of autonomic ap-

plications in wide area distributed environments. The framework was built on the

separation of the composition aspects (e.g., organization, interaction, and coordina-

tion) of elements from their computational behaviors that underlies the component and

service based paradigm, and extends it to enable the computational behaviors of object-

s/components/services as well as their organizations, interactions, and coordination to

be managed at runtime using high level rules. The operation of the proposed framework

is illustrated using a forest fire management application.

In [YYF00], the authors present The NESTOR system. The NESTOR system ad-

dresses the needs of network management automation and of minimizing the manage-

ment of small home networks due to limited resources. The NESTOR system combines

several techniques from object modelling, constraint systems, active databases, and

distributed systems. In the NESTOR system, managers operate on an unified object-

relationship model of the network using a rich set of operations that support rollback

and/or recovery of operational configuration states. Declarative constraints prevent

the known configuration inconsistencies, and in conjunction with policy scripts may

automatically propagate changes to maintain consistency. Protocol proxies are used to

provide much of this functionality with little or no changes in the network clients. A
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protocol for replication and distribution of the directory assures availability and op-

erational efficiency. Other research activities try to analysis Autonomic Computing

Systems.

The work presented in [Lit07], investigates performance analysis techniques used by

an autonomic manager. It looks at the complexity of the workloads and presents algo-

rithms for computing the bounds of performance metrics for distributed systems under

asymptotic and nonasymptotic conditions, with saturated and nonsaturated resources.

The techniques used are hybrid, making use of performance evaluation and linear and

nonlinear programming models. The authors treat autonomic transactional distributed

systems. The system is modelled with a Queuing Network Model.

2.5 “‘Models@runtime”

Other research activities address problems related to the management of huge infor-

mation associated with runtime situations in self-adaptive software. A new approach

to manage complexity in runtime environments is referred as “models@runtime”. A

“model@runtime is a causally connected self-representation of the associated system

that emphasizes the structure, behavior, or goals of the system from a problem space

perspective.” as defined in [BBF09].

Authors in [MBJ+09], present an approach for specifying and executing dynamically

adaptive software systems. This approach combines model-driven and aspect-oriented

techniques. This work, which is a part of the EU-ICT DiVA project (Dynamic Vari-

ability in complex, Adaptive systems), addresses two drawbacks related to adaptation

and evolution management by using software models at runtime as well as at design

time. The authors intend to tram the explosion in the number of artefacts considered.

The authors in [Mao09] present model-based traces as runtime models and traces

analysis methods. They focus on the scenario-based trace as a runtime model and

on the metrics and operators to analyze it. They illustrate their proposed methods

using different application scenarios. The syntax and semantics of various types of the

model-based traces in this work are not formally defined.

Authors in [GvdHT09] provide operations control center through an adaptive vision

in which human users can understand and manage software systems at runtime. Their

approach, entitled “architectural runtime configuration management”, creates a model
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that captures an adaptive system’s configurations and corresponding behaviors and

organizes them in a historical graph of configurations.

2.6 Collaboration

Collaborative activities belong to the Computer Supported Collaborative Work

(CSCW) domain [CS99] that started in the 90s. CSCW emerges from four main do-

mains:

• Social sciences (sociology, organization theories) take into account the people, the

organizational structures, the group efficiency, and their benefits or disadvantages;

• Cognitive sciences (distributed artificial intelligence) with interpretation of data

semantics, planning and assistance for realizing common tasks;

• Human-machine interfaces, for designing multiuser interfaces;

• Distributed computing science (distributed systems and networking) for informa-

tion storage, transfer and exchange.

Collaborative activities involve users organized within groups that communicate and

act in a coordinated manner for achieving a common goal [EGR91, KK88]. This class

of applications is the most general one that can be considered. It generalizes the

particular case of a single user interacting with a set of pervasive devices and services,

classically considered in communicating systems. In our work, more general interactions

are considered: user-environment, user-user and/or user-group interactions.

2.7 Context

It is well-known that the concept of context plays a central role in communicating

systems. Since it is a complex concept, there are almost as many definitions of context

as research projects dealing with it.

2.7.1 Definition

From the adaptation point of view, a definition of context must take into account any

information that, in case of change, is likely to change any aspect of the application.
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This information should consider a variety of elements such as technical and commu-

nicational data, and social aspects of the user’s behavior. It should also enhance the

development of context-aware applications. Mobility and collaboration modes of en-

tities implied in the applications are specially important in communicating systems

environments. Indeed, users can move as well in space as in time, and the concept of

context must take these changes into account. Moreover, we must consider that devices

may be embedded and able to move geographically. Let us consider the definition of

Dey et al. [ADB+99]: “Context is any information that can be used to characterize the

situation of an entity. An entity is a person, place, or object that is considered relevant

to the interaction between a user and an application, including the user and applications

themselves.”

This definition simplifies the task of enumerating the context parameters of a given

application scenario for application developers. If a piece of information can be used

to characterize the situation of a participant in an interaction, then that information

is a part of the context. Although, this definition is missing a generalization of the

notion of user that we will call M. Where M can be a user, a machine or device

(including smart sensors, laptops, etc.) or any entity including a service or software

component. Moreover, mobility of entities is also missing from the definition above.

Physical location is a parameter that can characterize the context of an entity. When

the entity is moving, for example a user travelling in a car or in a bus, this parameter

is not static. Moreover the motion itself is also a parameter of the context, and it can

be defined by its origin, destination and speed (and in some cases its orientation). This

leads us to a new definition of context that we propose: “Context is any information that

can be used to characterize the situation of an entity M. M can be a person, a machine

or any object including a service, a software component, or data, that is considered

relevant to the interaction between any entities. Any entity M can be in motion within

space and time, and can be transformed to become a new entity.” The transformation

of entities means that for example an architecture of an application can change to be

adapted to a new set of context parameters, in a manner that the application is not

the same after change.
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Data Category Examples

Identity user

Spacial physical location, orientation, speed

Temporal physical date, time of day, season

Environmental physical temperature, light, noise

Social user people nearby, activity, calendar

Resources computing CPU, RAM, battery

Physiological user blood pressure, heart rate

Resources network bandwidth, throughput

Table 2.1: Examples of Contextual Data

2.7.2 Taxonomy of the Contextual Data

Taxonomies of context provide a classification of contextual data. They may be useful

for application designers in order to decide the most relevant types of contextual data

that will be considered in their applications. General taxonomies divide context into

two levels. The first level is composed of a set of four primary parameters: location,

identity, time, and activity. These parameters characterize the situation of a particular

entity. The secondary level of context parameters has a common characteristic: they

can be indexed by the first level parameters. For instance, a user’s music preferences is

a piece of secondary context because it can be obtained by using the user’s identity as

an index into an information space like a musical database.

Schilit [SAW94] divides primary context into three main categories: computing

context, user context and physical context. Some examples of contextual data of each

category can be found in Table 2.1. In the rest of this work, we will use a similar

classification: external context (i.e. groups, user, and physical context) and resources

context (equivalent to computing and network context). External context contains

information about the users, their location, time, the collaborative activity itself, etc.

It is application-dependant since each application will be interested in different aspects

of these external parameters. This context is captured with sensors that detect physical

information and translate it into exploitable data. Resources context describes the

processing and communication resources available on devices and communication links,

e.g., memory, CPU load, battery level, bandwidth between two nodes, etc. The level

of each resource can be directly captured on each device through the use of internal
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monitors.

2.7.3 Context-Awareness

The main motivation of Context-Awareness is making computers more aware of the

physical and social worlds we live in and of the available resources and breaking com-

puters out of the box. This is based on several assumptions:

• explicit input/output is rather slow, intrusive, and requiring user attention;

• the input/output loop between the box and the user is sequential.

The main objectives of Context-Awareness are to move away from the black box model

into context-sensitivity where human is out-of-the-loop (as much as possible) and to

reduce explicit interaction as much as possible. The main principle is to let computer

systems sense automatically, remember history of interaction, adapt to changing sit-

uations, and reduce explicit interaction. One needs to draw a boundary around the

system under consideration and to define explicit and implicit interactions. The con-

cept of Context-Awareness characterizes the capacity of a system to be adapted to the

changes of the context. According to Dey and Abowd, a system is sensitive to the

context if it uses the context to provide relevant information and services for the user,

where the relevance depends on the task required by the user [ADB+99]. Context-aware

applications are classified into three categories according to whether a context change

implies a simple presentation of the changes, it implies the execution of adapted services

or it implies specific storage of adapted data [Cha07].

2.7.4 Challenges

As seen in subsection 2.7.2 and subsection 2.7.3, Context and Context-Awareness re-

search fields may enable the transition towards real implementations of communicating

systems. However, there are still many issues that need to be solved. We cite here some

of them:

• Existence of general frameworks: instead of using ad-hoc, application-specific

context models and implementations, it would be desirable to have common

frameworks that can be used by any application. However, as pointed by Ed-

wards [Edw05], building such a framework is a very difficult task, because the
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use and meaning of context is evolving, fluid and ambiguous and it is very diffi-

cult to predict all of the facets of context that will be meaningful to people and

applications.

• Reasoning about context : it is necessary to have high-level abstract information

about context that aggregates raw context data, so reasoning is necessary in order

to correctly interpret this data. For example, if the system wants to know if two

persons are at the same place, should it consider their GPS coordinates, although

they are in the same city, in the same building, in the same room?

• Acquisition of contextual data: some context parameters are easy to acquire, e.g.,

position or temperature. But how to acquire information about physiological or

social context?

• Scalability of context acquisition and reasoning infrastructures, either in terms of

the volume of processed data and/or in terms of the number of supported client

applications.

2.8 Adaptation in Collaborative Communicating

Systems

In this section, some of the challenges in context adaptation for collaborative communi-

cating systems are highlighted. Adaptation is the operation of making run-time changes

to a software component or system in order to optimize its functionalities and perfor-

mance in a certain execution environment. About adaptability, which is defined as

the capability of a system to perform adaptation actions, Satyanarayanan says [Sat01]:

“adaptability is necessary when there is a significant disparity between a resource’s sup-

ply and demand.”

2.8.1 Classification

The adaptation solutions suggested in the literature can be classified as follows.
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2.8.1.1 Design vs Runtime

Two different adaptability views may be distinguished: the design time adaptability

[DK04, FH00, EBP01] and the runtime adaptability [CK00, BLNS06]. For the first

view, we can find design support tools which handle the application development cycle

and optimizes the resources for example. On the other hand, the runtime adaptabil-

ity [FDBC00] presents several adaptation techniques among which use proxy services,

change model of interaction and reorganize application structure.

2.8.1.2 Local vs Distributed

Adaptation may have a local or a distributed scope. Adaptive components can be

deployed on a single machine or distributed on several machines. In the first case,

the adaptation is local and only local changes are performed. In the second case, it

is distributed and synchronization problems between peer adaptive entities have to be

managed [Bri01].

2.8.1.3 Behavioral vs Architectural

The adaptation solutions suggested in the literature distinguish behavioral and archi-

tectural aspects. The adaptation is behavioral (or algorithmic) when the behavior of

the adaptive service can be modified, without modifying its structure. Standard proto-

cols such as TCP and specific protocols such as those presented in [WHZ+01, OBAA04]

provide behavior-based adaptation mechanisms. Behavioral adaptation is easy to im-

plement but limits the adaptability properties. The adaptation is architectural when

the service composition can be modified [IEE00, GP95, EHP+96] dynamically. In self-

adaptive applications, components are created and connected, or removed and discon-

nected during execution. The architectural changes respond to constraints related to

the execution context involving, for example, variations of communication networks and

processing resources. Moreover, they may also respond to requirement evolution in the

supported activities involving, for example, mobility of users and cooperation structure

modification.

We focus on architectural adaptation, as it is the most common way of achieving soft-

ware adaptation. As it has been pointed above, in the case of architectural adaptation

the object of the adaptation (what is adapted) is the system’s software: the set of compo-

nents present in the system and the way they are interconnected. Since communicating
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systems are a special case of distributed systems, the components may be deployed on

different nodes (devices) that are interconnected over a network. Therefore, the com-

ponent deployment and interconnection schema becomes the main object of adaptation

in such systems. In the particular case of collaborative systems, this deployment is

needed for establishing multimedia sessions between the users in order to support their

collaboration. Therefore, the main adaptation actions in a collaborative communicating

systems involve component (re)deployments and/or flow (re)configurations. For exam-

ple, if a new user enters a group and audio is needed for him to collaborate with the

other members of the group, then an audio component must be deployed on his ma-

chine and an audio flow must be set up between this component and the components

deployed on the devices of the other participants, so they can communicate. The trigger

of adaptation is the evolution of the context in which the application is executed. Adap-

tation to the resources context must be performed in order to optimize the utilization of

resources in a constrained environment. For example, the user’s personal devices have

limited computation power so applications have to reduce their CPU consumption in

order to allow the parallel execution of other applications. Battery is a critical resource

in a mobile environment, so the deployment of software architectures must be adapted

to the level of available battery on each device (e.g., deploy the most battery-consuming

components on devices having the higher battery level). Adaptation to external context

is crucial in order to provide users with a satisfactory service. It represents the main

difference of communicating systems with respect to classic desktop systems.

In the case of collaborative activities, it may be very useful in order to detect po-

tential collaboration situations and then spontaneously propose a collaborative session

interesting for users. Once the collaboration is initiated, external contextual informa-

tion may be also useful in order to organize the collaboration inside the group e.g.,

it can help to automatically decide in which group a user should participate, assign

roles to users, etc. This twofold context can be viewed as a mix of high-level require-

ments and low-level constraints. It may be difficult to conciliate these two aspects of

adaptation because they may be more or less orthogonal or even contradictory. Lay-

ered software architectures may be able to take into account adaptation actions needed

in different layers. However, as pointed by Satyanarayanan [Mah04], this conciliation

of layering and adaptation is very difficult to achieve and remains an open question.

Some modelling effort is required in this area in order to provide guidelines helping to

structure software communicating systems. Therefore, one of the main challenges of
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collaborative communicating systems is to correctly handle adaptation with respect to

changes in several levels of context.

2.9 Survey of Solutions for Context Adaptation in

Collaborative Communicating Systems

This section describes several major research activities about context adaptation for

communicating systems. The majority of these solutions also deal with some aspects

of collaboration. However, in our opinion, very few research activities treat specifically

the problem of providing tools for building context-aware collaborative applications

for communicating systems environments. The survey focuses on handling context

adaptation and the role that collaboration plays in the system. Related work has

been classified into three subsections in accordance with the facets highlighted in the

description: model, architecture or platform.

2.9.1 Model

Becker and Giese [BG08] present an approach based on graph transformation techniques

coupled with UML stereotypes in order to model self-adaptive systems. Adaptation,

which is performed at run-time, is decomposed into three levels: goal management,

change management and component control. However, in this approach, context and

collaboration are not explicitly modelled. Edwards [Edw05] presents a system named

Intermezzo that enables the construction of applications making use of rich, layered

interpretations of context. It provides a context data store and an integrated notifica-

tion service. This system is collaboration-oriented; contextual information is structured

through activities, that represent the use of resources (e.g., documents) made by users

of the system. The underlying context model is very rich and deals with problems such

as ambiguity, identity, evolution and equality of contextual data, providing solutions for

each one of them. However, the case of low-level resources context is not considered.

This work represents a great effort in providing a context information service for collab-

orative communicating applications. Adaptation to context changes is not considered

within the framework: it is up to applications using the framework to react to these

changes in order to provide a better service.
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Padovitz et al. [PLZ08] present a context model and reasoning approach developed

with concepts from the state-space model, which describes context and situations as

geometrical structures in a multidimensional space. A context algebra based on this

model is also presented. This work shows how merging different points of view over

context enhances the global context reasoning process. The authors provide a model

(named Context Spaces) that unifies the context views of different entities into a single

context representation. Based on this model, they present an approach to reason about

situations under uncertainty. They expand this model by developing Context Spaces

algebra, which comprises operators that allow merging the perspectives of different

entities in the pervasive environment. A multiagent system is used to enable distributed

reasoning about the context. The cooperative aspect on this work focuses on migration,

modelling and reasoning, partitioning, and merging context descriptions between agents

for attaining optimal reasoning and context awareness. Therefore, collaboration is a tool

for performing these tasks, but as in the previous case, high-level human collaboration

is not considered.

2.9.2 Architecture

Zhang et al. [ZLL07] propose an adaptive model infrastructure for pervasive computing

environments. They propose three adaptive layers: adaptive collaboration, adaptive

middleware and adaptive services layers. Adaptive collaboration layer provides a ser-

vice cooperation platform in dynamic environments. Adaptive middleware layer is a

self-reconfiguring layer that provides an optimized uniform high-level interface for imple-

mentation of distributed applications. The adaptive services layer provides an adaptive

contents service and adaptive user interfaces. Using this model, the approach makes

environmental changes invisible to collaboration among applications and users. From

the architectural point of view, this work is similar to ours, as it defines three layers.

However, collaboration in this work is limited to the collaboration between services to

adapt contents to the user interface. This adaptation is performed according to user

preferences and environment; it does not take into account user collaboration. The

middleware is implemented on top of CORBA. It uses reflection techniques to benefit

from the Object Repository Broker of CORBA to make this layer self adaptive.
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2.9.3 Platform

Ejigu et al. [ESB07] propose a collaborative context-aware service platform named

CoCA. This platform is data-independent and it may be used for context-aware ap-

plication development in pervasive computing. It performs reasoning and decisions

based on context data and domain-based policies using ontologies. Data are organized

into a generic context management model. The platform introduces a neighborhood

collaboration mechanism to facilitate peer collaboration between the pervasive devices

in order to share their resources. The generic context management modelling deals

with the way the context data are collected, organized, represented, stored, and pre-

sented. The collaborative context-aware service interprets and aggregates the level of

context values and performs reasoning about the context. Depending on this reason-

ing, decisions are taken about the actions to be triggered. In this work, collaboration

is used between devices in order to enhance the achievement context data acquisition.

It is quite different of our work because the collaborative aspect is used as a means of

acquiring context data and reasoning about it, but human, user-to-user collaboration

is not considered.

Lee et al. [LJP+06] present the project Celadon in order to establish an infras-

tructure enabling on-demand collaboration between heterogeneous mobile devices and

environmental devices. Celadon project is a middleware architecture for ubiquitous de-

vice collaboration. Collaborative environments are organized into Celadon zones, which

are public areas equipped with wireless access points for technologies such as Bluetooth

or 802.11, and with environmental devices, such as displays, printers and servers. Using

SOA, OSGi and Web Services, this infrastructure provides service discovery, description

and binding functions, collaborative session management, and association management.

Collaboration in this work is limited to sharing hardware or software resources. Sessions

are defined as a group of devices, and they are used to manage the sharing of resources.

The context considered in this work is the user context.

The Conami middleware [FNBS07] is a Collaboration-based Content Adaptation

Middleware for dynamic pervasive computing environments. The authors consider

the case of Mobile Ad hoc Networks (MANETs). The middleware allows devices in

MANETs to collaborate with each other to perform content adaptation. Content adap-

tation is derived from the context of the user and the user environment (e.g., user’s

preferences, device’s characteristics) and is done by composing available nearby ser-
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vices. The middleware implements a content adaptation tree construction algorithm

to consider the dynamicity of services. In this work, collaboration is considered as a

technique to adapt the content according to the devices’ capabilities. The considered

contents include user preferences and device characteristics. The context is used by an

Adaptation Decision Engine that chooses the services which will perform content adap-

tation. This middleware only handles content adaptation; architectural adaptation and

component deployment are not considered.

Perich et al. [PJYF05] present the design and implementation of a Collaborative

Query Processing protocol that enables devices in pervasive computing environments

to locate data sources, and obtain data that match their queries. The features of the

protocol enable devices, regardless their limited computing, memory, and battery re-

sources, to collaborate with other devices in order to obtain an answer for their queries.

The presented approach deals mainly with low level context parameters. Information

describing location, time, identity and the current user activity are also used. This al-

lows a device to predict what information the user will need. Based on that prediction,

a device adapts its strategies for querying its neighbor devices, caching of data, and col-

laborative processing. Collaboration in this work is limited to sharing information and

resources to deal with the lack of devices’ capacity; user collaboration is not considered.

2.10 Discussion

The majority of the presented research activities consider collaboration as a way to pro-

vide a better use of resources (hardware or software). This collaboration is performed

among several components of the system. Therefore, high-level, end-user collaboration,

and the tools that support it are not considered. In our work, collaboration is consid-

ered as a first-class activity that requires special support and that may benefit from

the potentialities of communicating systems. The presented research activities tackle

the adaptation to the context in different ways. In general, they focus either on the re-

sources context (low-level) or the user context (high-level). In our work, both contexts,

and their mutual influence, are considered. Each one is processed at a different level,

and the transformations between levels merge requirements from the upper level with

constraints from the lower level. The variety of the solutions in the literature underline

the need to provide tools, models and techniques to build adaptation in collaborative
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communicating systems. In this chapter, we synthesize the trends and outcomes of

collaborative computing, with respect to the evolution of computing devices. From

desktop-based group-aware applications, collaborative computing has evolved to be

built over numerous hidden devices, fixed and/or nomadic, and highly heterogeneous in

terms of computing and communicating capabilities. Design approaches have evolved

to take into account these important changes. The complexity increase has been tack-

led by introducing context adaptation approaches, able to automatically integrate the

presence of numerous, dynamic, highly heterogeneous, and nomadic devices. Group

sessions have evolved by introducing higher-level modelling approaches, able to handle

group intention, and to instantiate implicit sessions through high-level rules. Hence,

in the near future, the daily environment will transparently react to contextual infor-

mation and needs. New interactive collaborative activities will emerge from these rich

communicating environments. However, several research directions have to be pursued.

Handling context remains a central and complex problem. In our opinion, a unified

framework has to be proposed to use more effectively this context information. This

framework should lay on semantic technologies that are able to capture high-level inten-

tions. All these propositions define important challenges to be explored in the coming

years.



Chapter 3

Proposed Approach

In this chapter, our modelling approach for collaborative communicating architectures

is presented. This approach separates different concerns into associated abstraction

levels to enable a clear encapsulation of problems in different levels to tackle them inde-

pendently. Low level details are abstracted for higher levels, and therefore complexity

is reduced, thus achieving a clear and coherent design. Moreover, this separation in

levels favours the realization of a multi-level adaptation, that takes into account both

high level requirements (related to human activities) and low level constraints (related

to real implementations). Adaptation actions are more effective if they take into ac-

count data from several levels. Generic procedures for refinement and selection (that

enable transitions between levels) are presented in this chapter. Refinement ensures

that lower level models actually implement associated higher level models. Selection

allows choosing a model among a set of candidates at a given level. The chosen model

is optimal with regard to the current context and to a given policy.

3.1 Generic Modelling Approach

In the following, we present the model that we use in our approach. We provide generic

level models and generic procedures for refinement and selection. Then, we mention

the implementation in detail using OWL and graphs for models and rule oriented tech-

niques, such as SWRL and graph grammar productions, for refinement and selection.

27
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Figure 3.1: Multi-level Architecture Modelling

3.1.1 Multi-level Architecture Modelling

In our approach, models represent architectural configurations, i.e. sets of linked soft-

ware entities. An architectural configuration is denoted An,i, where n is the considered

abstraction level and i is the sequence order (i.e. an architecture An,i evolves to An,i+1

when it is reconfigured). For a given architectural configuration An,i at level n, multiple

architectural configurations (An−1,1, . . . , An−1,p) may be implemented at level n−1 (see

Figure 6.1).

Adapting the architecture to constraint changes at level n − 1 by switching among

these multiple architectural configurations maintains the n-level architectural configu-

ration unchanged. Moreover, when adaptation requires changes at level n, this may

need no changes at level n − 1. This happens if the initial and the new architectural

configurations of level n (e.g. An,i and An,i+1 in the Figure 6.1) share common imple-

mentations (e.g. An−1,j...An−1,q) at level n − 1.

This adaptation technique requires two different actions: refinement and selection.

Refinement determines the set An−1 = {An−1,1, . . . , An−1,p} of (n−1)-level architectural

configurations that implement a given n-level architectural configuration An,i. Selection

chooses the retained appropriate configuration among all possible architectural config-

urations at a given level. These two actions are explained in the following subsection.

3.1.2 Generic Refinement and Selection Procedures

A refinement associates a high level architectural configuration with a set of lower

level architectural configurations. A generic refinement procedure called Refine() (see

Table 3.1) is considered. For a given architectural configuration An,i at level n, the

procedure computes the set Ai
n−1. This set represents all possible architectural config-
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urations at level n − 1 that implement An,i.

1 Refine()

2 {
3 Let An be the set of configurations at level n
4 Let An−1 be the set of configurations at level n − 1.
6 Let An,i ∈ An, i ∈ N be a given configuration

7 Compute Ai
n−1 = {An−1,j ∈ An−1

such that: An−1,j implements An,i, j ∈ N}
8 }

Table 3.1: Generic Refinement Procedure

Given a set of possible architectures, it is necessary to choose an architecture to

be effectively deployed. We present here a procedure, Select() (see Table 3.2), that

allows choosing an architecture depending on several parameters. This procedure uses

the resources context (e.g. variations of communication networks and processing re-

sources) to eliminate the architectural configurations that can not be deployed within

the current resources levels. Among the set of selected architectures, the best config-

uration with respect to architectural characteristics (e.g. number of components) is

selected. The choice of an architecture must take into account the resources context at

first. The Context Adaptation() function (see Table 3.2, line 5) is a generic function

that depends on the resources context. For example, it can express the availability level

of a given resource (bandwidth, memory, energy, etc.). This function is used for two

purposes: first, it allows discarding architectures that cannot be deployed within the

current resources context. Second, it allows selecting the architectures best adapted to

that context. This function assigns a value to a given architecture depending on its

degree of adaptation to the current context. If the architecture is not compatible with

the current context, its value will be −1. Otherwise, it will receive a positive value.

Best suited architectures will receive higher values. When several architectures have the

same value of Context Adaptation(), a policy (indicated by the parameter Policy) is

used by the Select() procedure in order to retain the optimal configuration. If the cho-

sen policy is Weight, the selection is based on minimizing the function Dispersion()

(see Table 3.2, line 8). This generic function corresponds to the cost or the efficien-

cy/performance of an architecture. For instance, it may be defined as the number of

software components deployed per node. If the chosen policy is Distance, the selection
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1 Select(Policy)

2 {
3 Let An,p ∈ An, p ∈ N

4 Let C denote the context attributes

5 Select S1 = {An−1,k ∈ A
p
n−1

, k ∈ N such that:

Context Adaptation(An−1,k, C) ≥
Context Adaptation(X,C),∀X ∈ A

p
n−1

}
6 if card(S1) 6= 1
7 if Policy = Dispersion

8 Select S2 = {An−1,k ∈ S1, k ∈ N such that:

Dispersion(An−1,k) ≥ Dispersion(X),∀X ∈ S1}
9 if Policy = Distance

10 Let An,p and An,q ∈ An, p, q ∈ N

11 Let An−1,p the current mapping

at level n − 1 of An,p

12 Select S2 = {An−1,k ∈ A
q
n−1

, k ∈ N such that:

13 Relative Cost(An−1,p, An−1,k) ≤
Relative Cost(An−1,p,X),∀X ∈ S1}

14 if card(S2) 6= 1
15 Select any configuration from S2

16 }

Table 3.2: Generic Selection Procedure.

minimizes the distance between two architectural configurations at level n − 1, both

implementing the corresponding n-level architectural configuration. This is performed

using the function Relative Cost() (Table 3.2, line 13). Select() can be extended

with other possible policies.

3.2 Multi-layer Modelling of Collaborative Com-

municating Architectures

This section presents how we apply the multi-layer modelling approach presented above

to collaborative communicating systems in order to build a comprehensive generic

framework for such systems. Therefore, relevant abstraction layers have to be iden-

tified. Adaptation at the highest layers should be guided by the evolution of activity

requirements. Adaptation at the lowest layers should be driven by execution context
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constraint changes. The retained layers are represented in Figure 3.2. These layers are

numbered 3, 2 and 1 respectively and are presented detailed in the following paragraphs.

Context capture and representation is discussed after that.

3.2.1 Design Time Side

The application layer represents applications needing collaboration inside groups of

users and/or devices (which are generically called entities) in communicating environ-

ments. It contains software elements implementing the application’s business, as well

as user interfaces, security modules, etc. Among these elements, (at least) those that

are relevant with respect to collaboration are represented in the architectural model

corresponding to this abstraction layer, A3,i. Hence, this model is a business view of

the collaborating entities and the business relations between them. As this model is

highly application-dependant, it must be built by the designers of each application

and instantiated at runtime by the application itself. Application designers also have

to implement the refinement procedure allowing to obtain the set Ai
2 of collaboration

layer models that implement a given A3,i model. Only collaboration-related elements of

the application layer model will be taken into account in the refinement process1. The

collaboration layer provides a session level abstraction. It describes how the members

of a group are organized within sessions where they can send and receive data flows.

The main issue addressed by this layer is the determination of a high-level collabora-

tion schema that responds to the application’s collaboration needs. Hence, it is able

to manage collaborative sessions and to determine the elements needed to implement

such sessions.

The architectural model produced by this layer, A2,i, consists of a graph containing

the following elements: nodes, components and data flows (which are organized within

one or more sessions). This model is inspired by classic graph-based session description

formalisms such as dynamic coordination diagrams [BDVT04].

3.2.2 Run Time Side

The middleware layer provides a communication model that masks low-level details

(like TCP sockets, UDP datagrams and IP addresses) in order to simplify the repre-

1Nevertheless, the application layer model can contain other business elements (non collaboration-
related) and thus be used in order to represent the whole application.
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Figure 3.2: Layered Architecture Modelling

sentation of communication channels. This layer abstracts distributed systems, so they

are transparent for upper layers. For instance, this model may be based on abstractions

like Event Based Communications, Peer to Peer, Remote Procedure Calls or Remote

ethod Invocation. The architectural model produced by this layer, A1,i represents a de-

tailed deployment descriptor containing the elements needed to implement the sessions

defined by the collaboration layer. For instance, if this layer is implemented with an

Event Based Communication technology, the A1,i model contains the event producers,

event consumers and channel managers to be deployed on each node, as well as the pul-

l/push links between these elements. If a Peer-to-Peer implementation is considered,

the A1,i model contains peers, super-peers and pipes to link peers. The infrastruc-
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ture layer contains hardware devices and software components (e.g., OS, drivers) which

are needed to run applications on the user’s device(s). They also enable such devices

to communicate with other devices existing in the user’s environment. In our work,

we assume that the services and components of this layer are available and correctly

configured, and hence this layer is not handled by adaptation models.

3.2.3 Context Capture and Representation

In our work, we target the adaptation of cooperative applications due to different con-

text changes. These changes may be related to resource constraints (like connectivity,

energy level, available memory, etc.) or the evolution of the collaborative activity and

the environment where participants can join and leave, change their roles, active a

“do not disturb” mode in their devices, etc. We respectively call these two sets of

parameters resources context and external context. Context parameters are captured

by external modules. Relevant events, which are produced in the external context are

taken into account by the application layer (i.e. they are detected and translated into

modifications on the A3,i model, thus producing a new model A3,i+1). Relevant events,

that are produced, related to run-time resource changes are taken into account by the

middleware layer. If it is possible, changes are handled by reconfiguring the middle-

ware architecture model A1,i+1 (i.e. by selecting a different model among the possible

refinements of the collaboration model). If this is not possible, a message is sent to the

upper layer in order to inform it that the current architecture can not be implemented.

3.3 A Collaborative Framework for Communicating

Systems Reconfiguration

The proposed multi-layer modelling approach for collaborative communicating systems

remains generic with respect to implementation. Indeed, it neither states the formalism

of the presented models nor the means through which the refinement and selection pro-

cedures are implemented. As we have separated the approach and its implementation,

this generic approach may be implemented in different ways by different designers. In

this subsection, we propose an implementation that can be used by application design-

ers as a collaboration framework for communicating systems. Figure 6.2 illustrates our
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choices. We present the models used in each layer and then the refinement and selection

procedures that enable the transitions between layers. We distinguish three branches

the “Framework designer branch” the “Activity designer branch” that corresponds to

the Design Time side of our approach and the “Run Time branch” corresponds to Run

Time side of our approach.

3.3.1 Design Time Side

For description of the application layer architecture models (A3,i), we have chosen an

ontology based model based representation which constitutes a standard knowledge rep-

resentation technique, allowing reasoning and inference. Moreover, ontologies facilitate

knowledge reuse, and sharing through formal and real world semantics. Ontologies are

high-level representations of business concepts and relations. Such representations are

close to developers’ way of thinking; therefore they are well suited to represent appli-

cation layer models. We have describe these models in OWL [SWM04], the Semantic

Web standard for metadata and ontologies.

In general, ontologies are divided in two levels: a generic ontology and a specific

ontology. The former is a domain-wide ontology, but is independent of applications.

The latter ontology extends the generic one with terms specific to an application-specific

category. We have followed the same pattern in our implementation: we distinguish a

generic collaboration ontology (that describes sessions, users, roles, data flows, nodes,

etc.) and an application-specific ontology that extends the collaboration ontology with

business-specific concepts and relations.

The generic collaboration ontology is common to all applications, and therefore it

is provided within the framework. This ontology2 is represented in Figure 3.4. The

main concept in this ontology is Session. A session contains one or more Flows, which

have a source Node and a destination Node. Nodes are hosted on Devices. Each Node

has one or more associated Roles. Flows are processed by Tools, which are composed

of several Components (e.g. SenderComponents and ReceiverComponents). Related

Flows, Tools and Components share the same DataType (e.g. Audio, Text or Video).

Further explanations about this ontology and the associated choices can be found in the

work of Sancho [STV08]. Application designers can extend this generic ontology with

specific ontologies describing the business logic of their applications. The collaboration

2http://homepages.laas.fr/gsancho/ontologies/sessions.owl

http://homepages.laas.fr/gsancho/ontologies/sessions.owl
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layer model (A2,i) is a graph, inspired by dynamic collaboration diagrams [BDVT04],

shows the detailed structure of one or more session. A session is a set of data flows.

Each data flow goes from a sender component to a receiver component (components are
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Figure 3.4: Generic Collaboration Ontology

deployed on nodes)3. Sender and receiver components may have text, audio or video

as types. Flows are labelled with data types (audio, text and video) and the session to

which they belong. This graph is expressed in the GraphML language (an XML dialect

for representing graphs [BEH+01]).

3As the reader may have noticed, these same elements have already been presented in the collabora-
tion ontology. This redundancy is exploited in order to refine models from application to collaboration
layers, as it will be explained later.
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3.3.2 Run Time Side

For the middleware layer (A1,i), we consider the Event Based Communication (EBC)

paradigm [MC02]. The EBC model represents a well established paradigm for inter-

connecting loosely coupled components and it provides one-to-many or many-to-many

communication patterns. EBC entities are represented in the middleware layer model.

This model is a detailed graph containing a set of event producers (EP), event consumers

(EC), and channel managers (CM) connected with push and pull links. Multiple pro-

ducers and consumers may be associated through the same CM. Since this model is

also a graph, it is also expressed in the GraphML language.

3.4 Graph-Based Models for Architectural Trans-

formation

We introduce here both graph grammar foundations and the graph grammar based

approach that we use for the collaboration layer and the middleware layer models.

Graph grammars constitute an expressive formalism dynamic structure description.

Moreover, theoretical work on this field provides formal means to specify and check

structural constraints and properties [Roz97, EK91]. Inspired from Chomsky’s gener-

ative grammars [Cho56], graph grammars are defined, in general, as a classical system

< AX; NT ; T ; P >, where AX is the axiom, NT is the set of the non-terminal ver-

tices, T is the set of terminal vertices, and P is the set of transformation rules, also

called grammar productions. An instance belonging to the graph grammar is a graph

containing only terminal vertices and is obtained starting from axiom AX by applying

a sequence of productions in P .

There are different approaches for the definition of a graph grammar production

structure and the mechanisms used for the specification of its execution.

3.4.1 Basic approach for Graph Transformation

The basic approach to transform a graph G into a graph G′ is to replace a sub-graph

m of G by a graph d. G′ is the graph resulting from this operation. G is called the host

graph, m is called mother graph and d is called daughter graph. In this approach, a

grammar production is described in the basic model by a pair of graphs < L; R >. This
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Figure 3.5: Dangling Edges Problem

rule is applicable to a graph G if there is an occurrence of L in G. As a consequence, its

application leads to removing the occurrence of L from the graph G and substitute it

by a copy (isomorphous) of R. This basic definition introduces the problem of dangling

edges as shown in Figure 3.5 where the grammar production P is applied on graph G.

In this example, different matching of pattern L are possible in graph G (for instance,

nodes 2, 5, 4 respectively match nodes 1’, 2’, 3’). In this case, the removal of the pattern

corresponding to L will lead to the situation where edges that connect nodes 2 to 1,

3 to 2 and 4 to 3 will become dangling edges. Moreover, in this basic approach, it is

not possible to specify the gluing of the introduced pattern (i.e. gluing nodes 4’, 5’, 6’,

7’). To address the dangling edges problem, different approaches were introduced with

different choices concerning productions specification and dangling edge management.

3.4.2 The Double PushOut Approach

The Double PushOut (DPO) [Ehr87] considers a richer structure for grammar produc-

tions. These productions are specified by a 3-uplet < L; K; R > where L and R keep

the same significance as in the basic structure. K is a sub-pattern of L specifying a part

to be maintained after applying the rule. The application of this production requires

an additional condition called the dangling condition. This condition states that the



3.4. GRAPH MODELS FOR ARCHITECTURAL TRANSFORMATION 39

production is applicable only if its application will not lead to dangling edges. If the

two conditions (i.e. existence of an occurrence of L and absence of dangling edges) hold,

the application of the production implies the removal of the occurrence Del = (L \ K)

and the insertion of a copy of Add = (R \ K). The DPO approach introduces a more

sophisticated structure for grammar productions. Considering pattern K allows the

specification of graph transformations by considering nodes in the L pattern that will

not be removed after applying the related productions. However, DPO manages the

dangling issue in a very basic way. To overcome this limitation, we will consider a richer

handling for dangling edges and daughter graph gluing.

3.4.3 The Node Label Controlled Mechanism

The Node Label Controlled (NLC) mechanism [Roz97] is based on the specification of

the so-called connection instructions to allow the gluing of the daughter graph to the

neighbours of the mother graph nodes. These instructions consider node type/labels

to carry out this gluing. A production NLC is of the form < L; R > where L and

R are graphs containing labelled terminal and non-terminal nodes. The application of

such a production implies, the basic replacement of the mother graph L by the daughter

graph R. The connection instructions are of the form (µ, δ) where µ and δ are two labels

that can be assigned to terminal or non-terminal nodes. Their execution implies the

introduction of an edge between each node of the daughter graph labelled with µ and

each neighbour of the mother graph nodes that are labelled with δ 4. A grammar NLC is

thus described by a quadruplet < AX; NT ; T ; P ; C > where AX, NT, T, P respectively

represent the traditional axiom, the set of non-terminals, the set of terminals and the

set of grammar productions. C constitutes the set of grammar connection instructions.

These instructions are common to all the productions and after each application of one

of the productions belonging to P all the applicable instructions in C will be executed.

A simple example of the DPO transformation approach is given in Figure 3.6. We

notice that the host graph of this example G is different from the one given for the

basic approach (graph G of Figure 3.5). The difference lies in the fact that G does not

contain any more the edge connecting nodes 4 and 3 in G. This is due to the fact that if

4The existence of neighbours of the graph mother nodes that are labelled by δ is not a condition
for the applicability of the production. If such nodes do not exist in the host graph, the connection
instruction is simply ignored.
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Figure 3.6: DPO Approach Example

we maintain this edge in G, P would not be applicable any more because its application

would violate the dangling condition.

3.4.4 The Neighbourhood Controlled Embedding Mechanism

and its Extensions

The main weakness of the NLC approach is that nodes are distinguished only by their

labels. The Neighbourhood Controlled Embedding (NCE) mechanism [Roz97] addresses

this problem by making it possible to describe connection instructions referring directly

to the daughter graph nodes instead of referring to their labels. The instructions are

of the form (n, δ) where δ is a label of a terminal or non-terminal node, and where n

identifies a node belonging to the daughter graph. The execution of this instruction

implies the introduction of an edge between node n and all nodes that are neighbours of

the mother graph labelled by δ. An NCE graph grammar is defined by the quadruplet

< AX; NT ; T ; P > where AX, NT and T keep the same significance as in NLC gram-

mars. P Specifies the set of grammar productions that are of the form (L; R; C) where

(L, R) is NLC production and where C is a set of NCE instructions. Compared to the
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NLC approach, the instructions are not applied to the whole grammar productions set,

but are related to a specific production. The extension of NCE for directed graphs

is quite easy. Within the framework of this extension called directed NCE (dNCE),

connection instructions are described by a triplet (n, δ, d) where d ∈ {in, out} making

it possible to take into account edge direction:

• an instruction (n, δ, in) implies the introduction of an edge from the node n to all

n′ which are in-neighbours of the mother graph and that are labelled by δ.

• an instruction (n, δ, out) implies the introduction of an edge from the node n to

all n′ that are out-neighbours of the mother graph and that are labelled by δ.

This approach preserves the direction of the edges. Another approach makes it possible

modify edge direction. In this case, the instructions are specified by a quadruplet

(n, δ, d, d′) where n, δ and d keep the same significance as in the preceding approach d′

indicates the direction of the edge to be introduced. Thus, the instruction (n, δ, in, out)

(respectively (n, δ, out, in)) implies the introduction of an edge from node n and all

nodes n′ that are in-neighbours (respectively out-neighbours) of the mother graph and

who are labelled δ. The direction of the edge is, this time, from n to n′ (respectively

from n′ to n)5. To consider labelled edges, an additional extension of the NCE approach

can be introduced. This approach called edge label NCE (eNCE); it takes into account

the edges’ labels and their updating. Connection instructions are of the form (n, δ, p/q)

where n and δ indicate the same concepts as in the case of the classical NCE approach

while p and q are edge labels. The execution of this type of instructions implies the

introduction of an edge with the label q between n and all nodes labelled by δ and that

are p-neighbours6 of the mother graph. edNCE approach combines the two approaches

eNLC and dNLC. The grammar productions are of the form (X; D; C) such that C

is a set of instructions of the form (n, δ, p/q, d, d′). The execution of this instruction

implies the introduction of an edge in the direction indicated by d′ between the node

n and all nodes n′ that are p-neighbours and d-neighbours (i.e. in-neighbours if d=in

and out-neighbours otherwise) of the mother graph.

5Instructions (n, δ, in, in) and (n, δ, out, out) are respectively equivalent to the instructions (n, δ, in)
and (n, delta, out) that preserve edge direction.

6p-neighbours of a node n are all nodes n′ such that there exists an edge labelled by p which connects
n and n′.
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Figure 3.7: NLC Approach Example

Figure 3.7 gives an example of graph transformation using the NLC mechanism.

Non-terminal node 4 having the label A is replaced by a copy of the graph R, i.e. nodes

6 and 7 and the edge that connects them. The application of the instruction c1 has

as a consequence the introduction of an edge between nodes 6 and 2; c3 implies the

introduction of an edge between nodes 7 and 3 while c4 introduces the edge between 7

and 5. Instruction c2 is ignored since none of the neighbours of node 4 is labelled by

label c.

3.4.5 Our Approach: Combining DPO and edNCE

In our approach, a graph grammar is of the form < AX; NT ; T ; P > where AX, NT

and T keep the same significance as before. We use productions of type (L; K; R; C)

where (L; K; R) corresponds to the structure of a Double PushOut (DPO) production

and where C is a set of connection instructions. The instructions belonging to C are

of the edNCE type. They are specified by a system (n, δ, d, d′) where n corresponds to

a vertex belonging to the daughter graph R, p and q are two edge labels, δ is a vertex

label, and d and d′ are elements of the set in, out. For example, a production defined by
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Figure 3.8: Combining DPO and edNCE

the system (L; K; R; (n, δ, d, d′)) is applicable to a graph G if it contains an occurrence

of the mother graph L. The application of this production involves transforming G by

deleting the subgraph (Del = L \ K) and adding the subgraph (Add = R \ K) while

the subgraph K remains unchanged. All dangling edges will be removed.

The execution of the connection instruction implies the introduction of an edge

between the vertex n belonging to the daughter graph R and all vertices n′ that are

p-neighbours7 of and d-neighbours8. This edge is introduced following the direction

indicated by d′ and labelled by q. An example is given in Figure 3.8.

Production p3 has the same structure and transformation logic as in the DPO ap-

proach: node 5 is not removed even if it is matched with node 2’ belonging to the

L pattern because it also belongs to the K pattern. The example also considers the

edNCE connection instructions c1, c2 and c3 allowing the correct addition of edges

connecting nodes 2 and 6, and connecting nodes 3 and 7.

Following the commonly used conventions for graphs describing architertures, we

consider that vertices represent communicating entities (e.g. services, components)

7p-neighbours of a vertex n are all vertices n′ such that there exists an edge labelled by p which
connects n and n′.

8In-neighbours if d = in and out-neighbours otherwise.
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and edges correspond to their related interdependencies (e.g. communication links,

composition dependencies).

3.5 Refinement and Selection Implementation

In this section, we present how the application layer architecture models are refined

into collaboration layer architecture models, and how collaboration layer architecture

models are refined into middleware layer models. The application layer models are

ontologies represented in OWL and we use SWRL rules to implement the refinement

rules. Collaboration layer models and middleware layer models are graphs and we use

the graph grammar approach presented in subsection 3.4.5 to implement the refinement

rules between the architectural models of two layers.

3.5.1 Application–Collaboration Refinement and Selection

As the application layer model is represented in OWL, we use SWRL rules [HPSB+04b]

in order to implement its refinement to a collaboration architecture. Such rules consti-

tute a natural and flexible way for expressing designers’ choices for transformations (in

comparison, e.g. to hard-coding such transformations). SWRL rules have the following

form: b1, ..., bn → a, where b1, ...bn is the body of the rule and a is the head of the rule.

The terms a, b1, ..., bn are SWRL atoms, i.e. concept assertions, relation assertions or

built-ins. The semantics of the rule are: whenever the interpretation of the body holds,

then the interpretation of the head also holds. Some rules have been included along

with the generic collaboration ontology. For example, let us consider the rule shown

in Table 3.3. This rule states that, whenever an instance of DataFlow is found in

the ontology, two components have to be instantiated9: a ReceiverComponent having

the flow’s destination node as its deployment node, and a SenderComponent having the

source node as its deployment node. Similar rules are used for text and video flows, thus

generating text and video sender and receiver components. The rules implementing the

transition from the application-specific ontology to the generic collaboration ontology

are application-dependant, and therefore they have to be specified by the application

designers along with the application ontology. Thus, designers specify the application

9The SWRL built-in CreateOWLThing() creates new instances of existing concepts within a SWRL
rule.
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DataFlow(?af) ∧ hasSource(?af,?src) ∧
hasDestination(?af,?dst) ∧
swrlx:createOWLThing(?asc,?src) ∧
swrlx:createOWLThing(?arc,?dst)

→ AudioSenderComponent(?asc) ∧
isDeployedOn(?asc,?src) ∧
AudioReceiverComponent(?arc) ∧
isDeployedOn(?arc,?dst)

Table 3.3: A SWRL Rule for Establishing DataFlows

layer model and part of the refinement from application to collaboration layers. The

processing10 of the SWRL rules along with the application ontology produces a new

ontology instance that describes the collaboration layer graph in OWL language. This

graph is translated into GraphML in order to be shared with the middleware layer.

The refined model produced by the rule processing is unique, i.e. each application

layer model corresponds to a unique collaboration layer model. Therefore, the selection

procedure at this layer is straightforward.

3.5.2 Collaboration–Middleware Refinement and Selection

As the collaboration layer and the middleware layer models are represented by graphs,

graph grammar theories, presented in section 3.4, represent an appropriate formalism

to handle the refinement process. We provide a graph grammar-based implementa-

tion11 of the generic refinement procedure presented in Table 3.1. This implementa-

tion, called Grefine() (see Table 3.4), corresponds to the application of a set of graph

grammar productions p1 . . . pk that implement the refinement of an architectural con-

figuration from level n to level n − 1. We use a graph grammar, that addresses the

refinement of a given collaboration level architecture to all possible EBC level architec-

tures. The productions of this graph grammar consider collaboration components (e.g.

RevceiverComponent denoted R and SenderComponent denoted S )) as non-terminal

nodes and EBC entities (EPs, ECs and CMs) as terminal nodes. A session involving

10This processing is done with a rules engine such as Jess or a SWRL-enabled reasoning engine such
as Pellet.

11This implementation is done with a Graph Matching Transformation Engine (GMTE), available
at http://homepages.laas.fr/khalil/GMTE

http://homepages.laas.fr/khalil/GMTE
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1 G Refine()
2 {
3 Let An, An−1 be the set of configurations at level n and level n − 1.
4 Let An,i ∈ An, i ∈ N, be a given configuration
5 Compute An−1,i = {An−1,j ∈ An−1 such that:

∃p1 . . . pk ∈ P : An,i
pl...pk−−−→ An−1,j , j ∈ N}

6 }

Table 3.4: The Graph Refinement Procedure

several senders and receivers is refined as a CM connected to several EPs and ECs. In

order to refine a given collaboration architecture into a set of EBC architectures, the

graph grammar GGCOLLAB→EBC , detailed in the Table 3.5, is used12. In this graph

grammar, non-terminal nodes are collaboration entities while terminals nodes are EBC

entities. Therefore, the productions of this graph grammar refine ReceiverComponent

and SenderComponent (R and S ) into EPs, ECs and CMs. Similar grammar produc-

tions have been developed for text and video components. The production p1 refines the

pattern consisting of a SenderComponent (denoted as as) connected to a ReceiverCom-

ponent (denoted as ar) by the introduction of an event consumer, an event producer and

a channel manager for a specific session (denoted here by x). Connection instructions

ic1 and ic2 consider the push options. Other ReceiverComponents (resp. SenderCom-

ponents) linked to ar (resp. as) are connected to the created channel manager. The

production p2 refines the pattern consisting of a SenderComponent connected to a

channel manager. The production p3 refines the pattern consisting of a ReceiverCom-

ponent connected to a channel manager for a specific session (denoted here by x). The

production p4 guarantees that only one channel manager is kept for each session.

In order to choose the architecture to be effectively deployed, the selection procedure

Select() (see Table 3.2) is used. This procedure allows choosing an architecture de-

pending on several parameters. First, it uses the captured resources context to eliminate

the architectural configurations that cannot be deployed within the current resources

levels. Then, the best configuration with respect to architectural characteristics (e.g.

number of components) is selected. In order to select the optimal architecture among

those built by the refinement process, the generic selection procedure presented in

12This graph grammar is processed with a Graph Matching Transformation Engine (GMTE), avail-
able at http://homepages.laas.fr/khalil/GMTE.

http://homepages.laas.fr/khalil/GMTE
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GGCOLLAB→EBC = (AX, NT, T, P ) with:
T = {CM(cm, s, m), EC(ec, m), EP (ep, m)},
NT = {R(ar, m), S(as, m)} and
P = {p1, . . . , p4}

p1 = (

L = {R(ar, m1), S(as, m2), S
data,s
−−−→ R};

K = { };
R = {EC(ec1, m1), EP (ep1, m2), CM(cm1, s, m1),

CM
push
−−→ EC, EP

push
−−→ CM};

C = {
ic2 = (CM(cm1, s, m1), data, s/push, S, out/out),
ic1 = (CM(cm1, s, m1), data, s/push, R, in/in)})

p2 = (

L = {S(as, m2), CM(cm1, x, m1), S
data,s
−−−→ CM};

K = {CM(cm1, s, m1)};

R = {EP (ep1, m2), CM(cm1, s, m1), EP
push
−−→ CM};

C = { })
p3 = (

L = {R(ar, m2), CM(cm1, s, m1), CM
data,s
−−−→ R};

K = {CM(cm1, s, m1)};

R = {EC(ec1, m2), CM(cm1, s, m1), CM
push
−−→ EC};

C = { })
p4 = (
L = {CM(cm1, s, m1), CM(cm2, s, m2)};
K = { };
R = {CM(cm1, s, m1)};
C = { })

Table 3.5: Refinement Graph Grammar GGCOLLAB→EBC

Table 3.2 is used. Here, we present in detail our choices for the functions Dispersion(),

Relative Cost(), and Context Adaptation(). The function Dispersion() is used to

select architectures having fewer Channel Managers (CM) deployed on the same device.

The goal is to efficiently balance resource consumption and to be more robust. This

function is detailed in Table 3.6. It associates an architecture A1,q with the number of

nodes containing at least one CM. This definition gives higher values to architectures

having CMs dispersed in more nodes. The function Relative Cost() (see Table 3.7) is
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1 Dispersion()

2 {
3 Let A1,q be an architecture at level 1

4 Let node
q
i be a deployment node of A1,q

5 weight=0

6 For each node
q
i

7 if ∃CM deployed on node
q
i then weight=weight+1

8 return weight

9 }

Table 3.6: Dispersion Function

used to select the closest architecture to the currently deployed architecture. We choose

as a criterion of selection the number of redeployments needed to switch from a given

architecture to another. The function Context Adaptation() associates a given archi-

1 Relative Cost()

2 {
3 Let A1,q and A1,k be two architectures at level 1

4 Let node
q
i (componentj) be the deployment node

of componentj ∈ A1,q

5 rcost=0

6 For each componentj ∈ A1,q ∪ A1,k

7 if node
q
i (componentj) 6= nodek

i (componentj) then

rcost=rcost+1

8 return rcost 9 }

Table 3.7: Relative Cost Function

tecture to a value that reflects its degree of adaptation to the current resources context.

Our criterion for this function is as follows: well adapted architectures are those which

have fewer nodes in a critical situation. A node is in a critical situation when its level

for a certain resource is close to the threshold defined for that resource. This function

is detailed in Table 3.8. In this function, a set of resources Resource1 . . . ResourceR

(e.g. Resource1=energy, Resource2=CPU load and Resource3=available RAM). Li
r

represents the available level of the resource Resourcer for the node nodei. It is calcu-

lated as the resource’s level before deployment (given by the resources context module)

minus the amount of resource consumed by each deployed component; considering that

it is expressed as a percentage. The value Tr is a threshold that indicates the criti-
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1 Context Adaptation()

2 {
3 Let A1,q be an architectural configuration at level 1

4 Let N = card(A1,q)
5 Let Resource1 . . . ResourceR the set of considered resources

6 Let R = card({Resource1 . . . ResourceR})
7 Let nodeq

i be deployment node i of A1,q

8 Let Li
r the level of the resource r for nodeq

i

9 Let Tr be the threshold associated with the resource r
10 Let αi

r r ∈ [1..R] be weights associated with each resource

r for nodeq
i

11 Let βr r ∈ [1..R] be weights associated with each resource

r for A1,q

12 Let cadapt=0

13 for each i ∈ 1..N
14 for each r ∈ 1..R
15 P i

r = αi
rL

i
r − Tr

16 if Pr ≤ 0 then return -1

17 end for

18 end for

19 for each r ∈ 1..R
20 cadapt=cadapt+βrmini(P

i
r)

21 end for

22 return cadapt

23 }

Table 3.8: Context Aware Function

cal percentage of the resource r, for a given node, under which the deployment is not

possible. The coefficients αi
r represent the importance assigned to each level Li

r with

respect to the characteristics of nodei. For instance, the CPU load is more critical

for a smartphone than for a laptop, because the smartphone needs CPU processing

for answering calls, etc. Therefore, αi
CPU is 1 for a laptop nodes and 0.5 for a smart-

phone (i.e. a smartphone will be considered as critical when its CPU level is lower

than 2TCPU). P i
r is calculated for every node as the difference between the level of the

Resourcer (pondered by the correspondent αi
r) and the threshold Tr. If this difference

is negative for a node, this means that the node is in a critical state with respect to

Resourcer, and hence the considered architecture cannot be deployed. Therefore, −1
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is returned and the considered architecture will not be selected. If no node was found

to be in a critical situation, then the degree of adaptation to the context (cadapt) of

the considered architecture is calculated, as shown in Table 3.8, line 20. First, for every

resource, the minimum value of P i
r found on any deployment node of the architecture is

retained. Second, cadapt is calculated as an average of these minima (pondered by βr

coefficients). The βr coefficients represent the global importance degree given to each

resource (
∑R

1
βr = 1). Resources with higher βr are considered more important than

other resources. These coefficients can be defined by the administrator or the business

logic. This definition of the function Context Adaptation leads to the selection of the

architectures having the highest values of resources for their more critical nodes.

3.5.3 Deployment Service

The A1,i model produced by the middleware layer is the detailed deployment descriptor

that implements the low-level elements of the required architecture: producers, con-

sumers, channel managers, and links. In order to effectively deploy such elements into

real devices, a Deployment Service is needed. This service takes a deployment descrip-

tor A1,i as input and then it downloads, installs, and starts the required components

on each device. From our point of view, the implementation of this deployment service

may be based on the OSGi technology [OSG07]. Indeed, OSGi offers very promising

functionalities such as dynamic code loading and execution. Within this approach, de-

ployable components may be packaged as OSGi bundles that are easily handled by the

proposed deployment service.

3.5.4 Refinement and Selection Illustration

This subsection provides a global view of the top-down refinement process from appli-

cation level to middleware level that is initiated at the application startup. Similarly,

the adaptation process triggered by context changes is explained. Once the applica-

tion is started, the first step is the creation of the application level model A3,0 (which

is an instance of the application ontology) by the application. This model represents

the state of the application itself and its external context. The second step is to start

the refinement process to refine this model into a collaboration model A2,0. This is

done by the processing of the associated SWRL rules transformation. The produced
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graph A2,0 is used as an input to the Grefine() procedure, which returns a set A
0
1 of

middleware level models (graphs) that implement the given collaboration model. In

order to retain a single model to be deployed, the Select(Dispersion) procedure is

used. The retained model A1,0 is hence the optimal model taking into account the

current resources context first, and then the model dispersion, if necessary. Finally,

A1,0 is used by the deployment service as a deployment descriptor for the effective de-

ployment of components. The system keeps the same configuration until the arrival

of context events. Changes in the external context are translated into changes at the

application level, thus producing a new instance A3,1 of the application model. These

high-level changes imply the triggering of the refinement process in order to obtain a

new deployment descriptor. Therefore, external context changes are handled by an

inter-level adaptation, because they trigger modifications at several levels. First, this

model is refined into a new collaboration model A2,1. If this model is equal to the

previous A2,0, no reconfiguration is needed at collaboration and middleware levels, i.e.

the current low-level configurations implement the previous high-level configuration.

Otherwise, the procedure Grefine() is used in order to refine the collaboration model

A2,1 into a set A1
1 of middleware level configurations. Then, the Select(Distance)

is used to find A1,1 which is the most adapted configuration for the current context.

As previously explained, the use of the Distance policy implies that, if several choices

are possible, the chosen configuration will be the closest to the previous configuration

A1,0. If A1,1 and A1,0 are equal, then no redeployment is needed. Otherwise, a new

deployment is performed according to the new deployment descriptor A1,1. Changes in

the resources context are handled at the middleware level. Therefore, the response to

resources context changes is an intra-level adaptation. This adaptation is performed by

the Select(Distance) procedure. This procedure scans the set A
1
0 (which was built in

the initial refinement) in order to find a new model A1,p that is better adapted to the

new resources context than the previous model A1,0 to be used for redeployment. On

the other hand, Application and collaboration models remain unchanged. For all the

considered cases (initial refinement, external context adaptation, and resources context

adaptation), the Select() procedure may find none of the candidate configurations

can be deployed within the current resources context. This means that the high level

requirements can not be implemented with the current resources, so the middleware

level sends an alert to the application level. Therefore, the application level produces

a new model which considers this limitation, and the refinement process is triggered in
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order to obtain a new collaboration model followed by a new middleware model, which

is used for redeployment.

3.6 Conclusion

In this chapter, we presented a multi-layer architecture modelling approach for collabo-

rative communicating systems. Architectural models for application, collaboration and

middleware layers have been detailed. Ontologies, SWRL rules, graphs, and graph’s

grammars have been used for implementing a rule-based refinement process. These rules

handle both transforming a given architecture within the same layer, and architectural

mappings between different layers. This implementation forms a framework for building

collaborative communicating systems. Using such rule-based approach allows correct

architectural reconfigurations to be characterized, and to be used either offline to help

implementing the decision process, or online to handle architectural adaptations. We

presented also, different approaches for the definition of graph grammar production

structure, and the mechanisms used for the specification of their execution. In the next

chapter, we will present the case studies that we used to illustrate and evaluate our

proposed framework.



Chapter 4

Implementations, Case Studies and

Performance Study

In this chapter, we present the graph matching and transformation engine (GMTE),

the tool that we developed to implement the graph grammars approach we proposed

here (presented in subsection 3.4.5). We conducted an experimental study of our graph

rewriting system using the rules of the architecture adaptation models presented ear-

lier. We show a study related to the reconfiguration on the application layer that are

based on SWRL rules. We show the efficiency of our graph grammar reconfiguration

used on the middleware layer. We show in this chapter how graph grammars can be

used to design policy-driven reconfiguration mechanisms of architectures and to rule

running applications using reconfiguration laws for Web Service-Based Applications.

We conducted a simulation of ERCMS use cases. This simulation shows the manner in

which ERCMS entities collaborate to maintain connectivity and enhance the quality of

communication.

4.1 Graph Matching and Transformation Engine

The GMTE is implementied in C++. It is an efficient implementation of an extension

of Messmer’s algorithm ([Mes95]). This tool is capable of searching small and medium

graph patterns in huge graph in a short time. A computational complexity analysis of

the algorithm has been conducted [GUE06] and performant experimental results have

been obtained. It has also been proved that, when only constant labels are considered,

53
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this complexity is similar to the complexity of Ullmann’s algorithm ([Ull76]). Both

the pattern graph (called rule graph) and the host graph have labelled nodes and

edges. The rule graph labels may be totally or partially instantiated. Unification is

conducted for non-instantiated labels. The tool can be used non-interactively as a C++

library providing a function that can be invoked from either a C++ or a Java program.

The tool can be used through as a C++ executable that reads the rule graph and

the host graph description from input TXT or XML files. The XML standard used

is GraphML (Graph Markup Language). GraphML [BEH+01] is an XML-based file

format for graphs. It consists of a language core to describe the structural properties

of a graph and a flexible extension mechanism to add application-specific data. Its

main features include supporting directed, undirected, and mixed graphs, hypergraphs,

hierarchical graphs, graphical representations, references to external data, application-

specific attribute data, and light-weight parsers. Unlike many other file formats for

graphs, GraphML does not use a custom syntax. Instead, it is based on XML and

hence ideally suited as an interoperability format for all kinds of services generating,

archiving, or processing graphs.

A GraphML document is composed of a GraphML element and a variety of subele-

ments: graph, node, edge. A graph is denoted by a graph element. Nested inside

a graph element are the declarations of nodes and edges. A node is declared with a

node element, and an edge with an edge element. Our C++ tool has been associated

with a graphical user interface (see Figure 4.1) composed of the following zones and

components:

• A menu bar offering to the user items to manipulate the interface contents such

as creating, deleting, saving projects, graphs and rules.

• A tool bar that the user can use to edit graphs and rules (saving, undo, redo...).

• Project explorer giving the user a tree representing the list of opened projects,

graphs and rules.

• A component panel containing a list of buttons for creating nodes and edges.

• A graph representing zone which offers to the user the possibility to open and

show graphs she/he is manipulating.
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Figure 4.1: The Graphical User Interface

• A rule representing zone which offers the user the possibility to open and show

rules she/he is manipulating.

• Transformed graph zone which offers to the user has the possibility to open and

show graphs she/he had transformed.

• A rule legend with which the user can distinguish between rule zones (Inv, Del,

Abs, Add).
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– The Inv zone: representing a fragment of the graph rule which must be

identified (by homomorphism) in the input graph, if several subgraphs are

homomorphic to this area, a subgraph is chosen randomly. This fragment

remains invariant after the execution of the rule;

– The Abs zone: this zone represents a fragment of graph rule (containing the

fragment Inv) which must not exit (by homomorphism) in the graph. If this

fragment exists, the rule can not be executed;

– The Del zone: is under a fragment of the Inv zone that will be deleted when

executing the rule;

– The Add zone: is the fragment that will be added after executing the rule.

• Two tabs showing the information and the errors when transforming a graph.

The user can export graphs and rules from the tool to TXT format or XML format

according to the standard GraphML format as well as an image. The interface offers

an export wizard which gives the user the possibility to specify the export parameters,

such as file name, storage directory and the export format. The exported XML graph

file (see Figure 4.2) is composed of a graph element containing a list of nodes and edges

elements with different attributes describing each element. The exported XML rule file

(see Figure 4.3) is composed of a rule element containing a list of nodes representing

the different zones of the rule (Inv, Del, Abs, Add). Each zone element is composed of

a graph containing a list of node and edge elements with different attributes.

4.2 Emergency Response and Crisis Management

Systems Case Study

We consider the example of Emergency Response and Crisis Management Systems

(ERCMS). ERCMS-like activities involve structured groups of participants who are

communicating to achieve a common mission (e.g. save human lives, fight against a

huge fire, etc). Communication relationships between participants are subject to evolve

throughout the mission. By nature, ERCMS-like activities cannot be deployed over

a wired/static infrastructure which are subject to destruction or non existence. This

kind of activities need ad-hoc networks with mobile devices for communications. To
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Figure 4.2: The XML Graph File

support such group activities, future applications or network-oriented services should

be dynamically activated in response to implicit or explicit requests. These services

should be accessible independently of the users’ location and access point, wired or

wireless. They should take into account different time-varying requirements depending

on the targeted activity, users’ mobility, exchanged data flows (e.g. audio, video), and
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Figure 4.3: The XML Rule File

different time varying constraints such as variable communication and device resources.

Moreover, in ERCMS-like group activities, changes in the cooperation structure between

users should also be operated in response to different events such as decisions and

instructions from the mission’s coordinator or information acquired by the participants.

4.2.1 ERCMS Case Study Description

The scenario involves different types of mobile actors which carry different types of

communication devices. We distinguish human actors who may be professional actors

with special communication devices or occasional actors who carry a mobile device

(e.g PDAs, Phones). We distinguish also, robot actors like planes, helicopters and

ground robots. For all actors, the communication system must deal with unexpected
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Figure 4.4: ERCMS Mission Description

or expected evolution of user needs or the changes due to device/network constraints.

We can distinguish different steps during the mission. We give describe the two most

representative execution steps: “Investigation step” (for the localization and the identi-

fication of the crisis situation), and “Action step”(after the identification). ERCMS-like

activities are based on information exchange between mobile participants collaborating

to achieve a common mission. To be more generic, we define the different participants

roles: The supervisor of the mission, the coordinators, and the field investigators. Each

group of investigators is supervised by a coordinator (see Figure 4.4). Each participant

is associated with an identifier, a role and the devices he/she/it uses. Each participant

performs different functions:

• The supervisor’s functions include monitoring and authorizing/managing actions

to be done by coordinators and investigators. The supervisor is the entity which

supervises the whole mission. He waits for data from his coordinators who synthe-

size the current situation of the mission, and is characterized by having permanent

energy resources, and high communication and CPU capabilities.
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• Coordinators have to manage an evolving group of investigators during the mission

and to assign tasks to each of them. The coordinator has also to collect, interpret,

summarize and diffuse information from and towards investigators. The coordi-

nator has high software capabilities and hardware resources. In Figure 4.4, we

can distinguish 4 coordinators:

• The robot coordinator.

• The plane coordinator.

• The firemen coordinator that manages professional actors.

• The walkers coordinator (located in a watch tower) that manages occasional

actors.

• The investigator’s functions include exploring the operational field, observing,

analyzing, and reporting the situation. Investigators also act for helping, rescuing,

and repairing.

In Figure 4.4, we can distinguish coordination flows and cooperation flows. The co-

ordination flows are between investigators and their corresponding coordinator as well

as between the coordinators and the supervisor. The investigators transmit coordi-

nation information to the corresponding coordinator such as: feedbacks “D” that are

Descriptive data, and feedbacks “P” that are Produced data; they express the analysis

of the situation by an investigator. The supervisor function’s includes in supervising

the whole mission, i.e. deciding actions to be performed, and sending coordination in-

structions. Cooperation flows are between investigators of the same group (A2A type:

fireman2fireman, robt2robot, etc) or between investigators of different groups (A2B

type: robot2fireman, plane2firman, walker2fireman, etc). In the case of A2A coopera-

tion flow, we can distinguish:

• cooperation information: a robot can inform another about a field state (There

is a water there).

• cooperation requests: a fireman can ask another for help (Help me to bring this

heavy object).

• cooperation suggestions : a plane can warn another (Do not go backward).

In case of A2B cooperation flow, we can distinguish
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• cooperation information: a robot can inform a plane about a field state (there is

a robot in the area).

• cooperation requests: a fireman can warn a plane (do not dump water now/here).

We associate priorities to flows according to the mission’s structure. Different priorities

could be associated with different flows or terminals, according to the importance of

the participant role, and also to the resource communication state or the flow type

(cooperation, coordination, A2A, A2B, information, instructions, requests, and sug-

gestions). Figure 4.5 depicts the ontology that models the business concepts and its

relations to the ERCMS activity. The main concept is the Participant which has

several properties. The different types of participant (Supervisor, Coordinator, and

Investigator) are modelled as sub-concepts where each of them has its own addi-

tional properties. A Participant belongs to a Group that is lead by a Manager. A

Manager can be a Supervisor who manages a CoordinatorGroup or a Coordinator

who manages an InvestigatorGroup. The other important idea of this ontology is

the Entity concept. In fact, a Participant is also an Entity with two sub-concepts:

Artificial and Human. Various human participants are represented as concepts e.g.

Fireman, Pilot, or Walker and also the artificial entities e.g. robots or vehicles, for

instance. The different types of robots (Drone, and GroundRobot) are modelled as

sub-concepts of Robot, each one with its own additional properties. This is related to

the Generic Collaboration Ontology (GCO) [STV08], because, as shown in Figure 4.5,

GCO:CommunicationFlow is defined as a sub-concept of Flow and Entity is defined

as a sub-concept of GCO:Node. This means that participants’ roles are defined in the

collaboration ontology, and thus they inherit all their properties. For example, they

have a related GCO:Node that is deployed on a GCO:Device, etc.

4.2.2 Context Description

In our work, we target the adaptation of distributed cooperative applications due to dif-

ferent changing parameters. These parameters may include environmental constraints

(like connectivity, energy level, available memory, etc) or the evolution of the cooper-

ation environment where participants can change roles, memberships, and functions.

These parameters constitute the context of the cooperative application. We have de-

fined a context ontology (see Figure 4.6) to structure and organize these parameters.
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Figure 4.5: The ERCMS Ontology Description

Our context ontology describes the cooperation activity, the involved participants and

the environment constraints (machine constraints). It contains two levels: the generic

level and the specific level. The first level is independent of the application and the

activity types. The second level populates the generic one by specific terms to an ap-

plication category (like ERCMS applications). The generic level contains a concept
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Figure 4.6: General Structure of our Context Ontology

Participant that specifies the basic profile (name, login, etc) of a participant in the

cooperative activity and her/his current function. The concept Location describes the

physical space, and spatial relations of involved devices and users in the system. Lo-

cations can be specified by physical representations (GPS coordinates) and symbolic

high level representations (like places or cells identified by their names). The concept

Device describes the hardware (like available memory and CPU usage), and the soft-

ware (like operating system and installed applications) capabilities of the user device.

The concept Activity specifies the properties of the user’s activity: in progress, start-

ing dates, ending dates, etc. The concept Network describes the characteristics of the

network, such as the transport protocol, the connectivity, and the QoS of the available

connections. Finally, the concept PhysicalEnvironnement provides physical properties

of the user space (like ambient temperature) and her/his relation with her/his external

environment. The specific level ontology depends on the application type. It popu-

lates the generic level (with isa relationships) to add domain specific concepts that
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Figure 4.7: Instance Example from our Context Ontology

represent the application logic. For example, in our case study we defined, the con-

cept Participant from the generic level is populated in three subclasses: Supervisor,

Coordinator, and Investigator. This specific level also contains the real-world in-

stances of the defined concepts. Let us quote our illustration example where a fireman
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Figure 4.8: Instance Example of a Device Hardware Profile

(Investigator) holding a smart phone (Device) equipped with a camera connected to

the firemen coordinator (Coordinator) through a 3G communication (Network). He is

exploring (Activity) the field at a specific zone (InterpretedLocation) identified by

his 3G signal power (raw Location information). Figure 4.7 presents a simplified view

of this case. Figure 4.8 presents a simplified view of a smart phone (Device) equipped

with an IP-enabled camera.

4.2.3 Initial Refinement and Adaptation Process Examples

Our adaptation policy associates the suitable adaptation transformations with the cor-

responding context changes. We use SWRL rules [HPSB+04a] to define our adaptation

policy. The application designer defines these rules according to context changes that

he wants to handle. The header part (swrl:head) of these rules references the adaptation

transformations. The body part (swrl:body) references the context ontology elements.

These rules are executed when the context changes. They react to different events

concerning the cooperation environment and the context values.
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4.2.3.1 Top-Down Refinement Example

This subsection presents a top-down example showing the architecture models of the

three considered layers as well as the refinement processes between layers. The adap-

tation process is also illustrated. In this example, we focus on group3 of Figure 4.4

in order to illustrate the initial refinement. Group3 has three investigators Fireman1,

Fireman2, and Fireman3. There is a cooperation flow between Fireman1 and Fire-

man2. The firemen coordinator manages group3 and has a coordination flow with each

fireman and the supervisor. This business level architectural configuration is captured

by the game application and represented in the activity ontology A3,0. Concepts and

relations from the activity-specific ontology and from the generic collaboration ontology

are instantiated together. Generic collaboration rules are applied. In this case, the rule

presented in Table 3.3 is processed for each instance of DataFlow found, thus creat-

ing the corresponding SenderComponent and ReceiverComponent at the endpoints of

the audio flow. The resulting set of ontology instances represents a collaboration layer

graph. This graph is translated into GraphML language. The resulting collaboration

graph contains 5 senders (S ) and 3 receivers (R). The graph edges correspond to data

flows, and are labelled by data type (audio), and by the session to which they belong.

Each component has three attributes: the identifier, the type (sender or receiver), and

the deployment machine identifier. In order to refine this collaboration layer graph,

the GGCOLLAB→EBC graph grammar, detailed in Table 3.5, is used. This produces a

set of valid configurations A0
1. The procedure Selection() is used in order to find

the optimal configuration. The retained configuration, A1,0, is presented in Figure 2,

depicting the middleware layer. This configuration contains only terminal nodes (i.e.

nodes belonging to the EBC layer), and is obtained by the application of the sequence

Sp = p1; p1; p1; p2; p2; p4. Production p1 refines the pattern consisting of a S and R

linked. Productions p2 and p3 refine patterns for other Rs and S s. Production p4 elim-

inates redundant Channel Managers. This refinement creates a detailed deployment

descriptor which is used by the deployment service in order to deploy the indicated

components on each device, thus implementing the required application layer session.

4.2.3.2 External Context Changes Adaptation

In this subsection, we show examples of external context changes adaptation which

are due to evolution on the mission. The first situation is where a cooperation flow is
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needed between two investigators to avoid a conflict. The second case correspond to the

discovery, by an investigator, of a critical situation of an injured person. The situation

requires adaptation of the communication schema. The third case corresponds to an

addition of a new investigator to the mission.

4.2.3.2.1 Investigators Cooperation We consider a situation where an investi-

gator from group1 (e.g a plane in Figure 4.4) wants to drop water over an area in which

another investigator from group3 (e.g Fireman1 in Figure 4.4) is already in action. In

this case, the plane has to be notified as soon as possible, not to drop water on that

area. Another investigator from group 3 (e.g Fireman2), after seeing the plane, estab-

lishes a coordination flow to its coordinator and subsequently the coordinator indicates

the situation to the supervisor. In practice, we can suppose that the supervisor knows

already the position of the approaching plane. Then the supervisor notifies the plane

not to drop the water on that particular area via the plane coordinator. As there is no

connection between the plane and the Fireman2, Fireman2 needs to obtain the super-

visor’s decision that takes several steps. The other simpler solution could be to make

a connection between the plane and Fireman2 by establishing a new cooperation flow

by running the SWRL rule (see Table 4.1). This rule is executed when there is a need

to establish a cooperation flow between the investigators among different groups. By

this, Fireman2 can tell the plane “Do not drop the water”. After the establishment of

the new cooperation flow between the Fireman2 and the plane, a channel manager has

to be installed in the device of Fireman1. Thus, the corresponding event producer and

event consumer need to be deployed in the plane.

4.2.3.2.2 Critical Situation Discovery We consider a situation where an inves-

tigator from group3 (e.g Fireman1) discovers an injured person. Fireman1 needs more

cooperation flows with other firemen (Fireman2 in our case) to help this person and

with a physician to check the status of this person. We show the SWRL rule (see

Table 4.2) that expresses a critical situation discovery by an investigator. This rule is

executed when the value of hasStatus attribute in the context ontology changes. If an

investigator detects a critical situation, a transformation is performed to establish the

cooperation flows needed.



68 CHAPTER 4. CASE STUDIES AND PERFORMANCE STUDY

Supervisor(?s)∧Coordinatorgroup(?CG)∧managesGroup(s,CG)∧
Coordinator(?co1)∧Coordinator(?co2)∧hasMember(CG,co1)∧
hasMember(CG,co2)∧InvestigatorGroup(?IG1)∧
InvestigatorGroup(?IG2)∧managesGroup(co1,IG1)∧
managesGroup(co2,IG2)∧Investigator(?I1)∧
Investigator(?I2)∧hasMember(IG1,I1)∧
hasSender(IG2,I2)∧CoordinationFlow(?cf1)∧
hasReceiver(cf1,co1)∧ hasSender(cf1,s)∧
CoordinationFlow(?cf4)∧hasReceiver(cf4,co2)∧
hasSender(cf4,s)∧CoordinationFlow(?cf3)∧
hasReceiver(cf3,I1)∧hasSender(cf3,co1)∧
CoordinationFlow(?cf5)∧hasReceiver(cf5,I3)∧
hasSender(cf5,co2)

→SWRLb:createOWLThing(CooperationFlow(?cpf1))∧
hasSender(cpf1,I2) ∧ hasReceiver(cpf1,I1)

Table 4.1: Establishing a Cooperation Flow SWRL Rule

Investigator(?inv2) ∧ Investigator(?inv1)∧
hasID(?inv1,?i)∧ hasActivity(?inv1,?activity)∧
sameAs(?activity,exploring)∧hasAction(?activity,?a)∧
hasResult(?a,?result)∧ swrlb:equal(?result,true)

→ SWRLb:createOWLThing(CooperationFlow(?cpf1))∧
hasSender(cpf1,inv1) ∧ hasReceiver(cpf1,in2) ∧
SWRLb:createOWLThing(CooperationFlow(?cpf2))∧
hasSender(cpf2,inv1) ∧ hasReceiver(cpf,inv3)

Table 4.2: Critical Situation Discovery SWRL Rule

4.2.3.2.3 Adding a New Investigator We consider a situation where an investi-

gator (e.g Fireman4) wants to join group3 (firemen group). Fireman4 needs to estab-

lish a coordination flow with the firemen coordinator. We show the SWRL rule (see

Table 4.3) that allows the addition of a new investigator (Fireman4 in our case). This

rule is executed and thus a coordination flow is established with the firemen coordinator.
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Supervisor(?s)∧Coordinatorgroup(?CG)∧
managesGroup(s,CG)∧ Coordinator(?co1)∧
hasMember(CG,co1)∧InvestigatorGroup(?IG1)∧
managesGroup(co1,IG1)∧Investigator(?I1)∧
Investigator(?I2)∧hasMember(IG1,I1)∧
CoordinationFlow(?cf1)∧hasReceiver(cf1,co1)∧
hasSender(cf1,s)∧CoordinationFlow(?cf3)∧
hasReceiver(cf3,I1)∧hasSender(cf3,co1)∧
→ SWRLb:createOWLThing(CoordinationFlow(?cf5)∧
hasReceiver(cf5,I2)∧hasSender(cf5,co1)

Table 4.3: Adding a New Investigator SWRL Rule

4.2.3.3 Resources Context Changes Adaptation

When the resource context changes (like a RAM saturation, a CPU overload or an

energy level decrease) occurs, the adaptation process explained is triggered. In this

subsection, we show examples of resources context change adaptation that are due to

evolution on the mission or due to the constraints of the environment (e.g fire) or the

nodes (e.g not enough energy). The first situation, illustrates the case of an important

diminution of the energy level of the device of the firemen coordinator. The second

situation corresponds to the case of communication degradation due to mission needs.

The middleware layer, in this case, reacts and provides solutions in the EBC layer and

if it is impossible, it provides suggestions to the mission supervisor.

4.2.3.3.1 Energy level Diminution For instance, if there is an important diminu-

tion of the energy level of the device of the firemen coordinator, the EBC layer launches

the Select() procedure. This procedure chooses a new configuration (e.g. A1,5) which

is adapted to the new context parameters. In the configuration A1,5, the two CMs

previously deployed on the firemen coordinator device are moved to its neighbours:

the firemen coordinator, Fireman2, and Fireman3. Within this new configuration, the

firemen coordinator device has fewer components deployed on it, and thus its energy

consumption will decrease. Later on, the energy level of the firemen coordinator device

will fall below a threshold for which the firemen coordinator’s device can no more accept

components hosting. In this case, the triggered selection process will be unable to find

a valid middleware layer configuration suitable for the new context. This means that
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Figure 4.9: Adaptation for Connectivity and QoS Preservation

the required application layer configuration can not be implemented within this con-

text. Therefore, the middleware layer sends a reconfiguration event to the application

layer. This event is processed in the application layer in order to produce a new bet-

ter adapted configuration. For instance, we consider that the application layer decides

to permute the roles of the firemen coordinator, and Fireman3: Fireman3 becomes a

firemen coordinator and the firemen coordinator becomes a regular fireman: Fireman4.

This reconfiguration leads to a refinement similar to the one previously presented. This

minimizes the number of components deployed on the device of Fireman4.

4.2.3.3.2 Adaptation to Preserve Connectivity and to Improve QoS We

consider a group of three robots with their corresponding robot coordinator. This

corresponds to group3 of Figure 4.4. Figure 4.9 gives a summary of the sequence of

events of the scenario.

• Step 0. Initially two ground robots (Robot4 and Robot6 in see Figure 4.9) are

communicating. The communication flow between Robot4 and Robot6 is consid-

ered important for their cooperation.

• Step 1. In relation with mission objectives (rescue), Robot6 has to move away.

This step could be initiated if a robot receives a recommendation from the su-

pervisor of the mission to find an injured person in an area near to its position.
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Therefore, Robot6 and Robot4 detect a loss rate increase. In this case, the trig-

gered selection process will be unable to find a valid middleware layer configu-

ration suitable for the new situation. This means that the required application

layer configuration can not be implemented within this context. Therefore, the

middleware layer sends a reconfiguration event to the application layer. Thus the

problem (connectivity loss: threshold of adaptability is reached) is reported. A

suggestion of adaptation is decided and sent to each robot (“Coordinator2 should

move to position X to maintain connectivity”).

• Step 2. We consider that Robot4 can’t move from his position due to the mission

constraints. To maintain the communication between Robot4 and Robot6, Coor-

dinator2 has to move near Robot6 (step3). Coordinator2 is able to move because

the application layer allows him to do so.

• Step 3. Robot6 arrives to the required position, Coordinator2 maintains the

communication between Robot4 and Robot6. Unfortunately, this communication

is not efficient (high loss rate). Coordinator2 detects this problem. An adaptation

policy requires to improve this existing link (if possible) when a threshold of

comfort is reached. A fortuitous discovery robot (Robot3) can be used as a relay

for the communication. Robot3 comes close to Coordinator2 and Robot6 and

thus, the communication link quality is improved.

4.3 Application of Graph Grammars Models on

Web Service-Based Applications

In web service-based applications, a set of distributed services collaborate in order to

respond to user’s requirements. Such a composition is built while describing the whole

process required by the end user, and querying a repository about the available web ser-

vices (The WS Discovery Service). Here, we consider a generic template of architecture

where a Virtual Intermediate Connector (VIC) is used to bind service requesters. The

VIC can route the requests to effective service implementations depending on the opera-

tion being requested and provided, and the global or operation-specific performances of

the requested service. The VIC asks the WS Discovery Service for required web services

in order to achieve building the composed application. The research process is based
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on functionalities and qualities of the desired web service. The architecture graph

to which our approach applies may be characterized by any successive compositions

of the elementary patterns: Ni(ServiceRequester) → Nj(V ICType, Interface)) and

Nj(V IC) → Nk(ServiceProvider, performanceAttributes), where Ni, Nj , Nk denote

the graph nodes associated, respectively, with the “Service Requester”, the “Virtual

Intermediate Connector”, and the “Service Provider”. Once the composition process is

achieved, the application is ready to be deployed and used. During runtime, QoS offered

by each service may be degraded and hence, needs to be substituted it by rerouting the

requests for one or more operations to different service providers. A substitution is con-

sidered as the elementary architectural reconfiguration action after a QoS degradation

detection or prediction for the currently blinded service. Searching for an equivalent

service using the WS Discovery Service is required to find, partially or totally, equiv-

alent services. Our representation approach of architectural configurations relies on

graphs and graph grammars. Graph grammar theories represent an appropriate for-

malism to handle the reconfiguration process. Moreover, graph grammars are tractable

and powerful way of handling complex transformations and characterizing the set of

configurations without its explicit enumeration. Following the common representation,

a node refers to a web service and a directed edge denotes an invocation link.

4.3.1 The Graph Grammar-based rule-oriented reconfigura-

tion

We elaborate here graph grammars that implement reconfiguration policies and min-

imize unnecessary reconfigurations. We use the following notations in the sequel:

graph nodes are represented by Ni(att1, · · ·attn) where “i” allows a node to be iden-

tified in the graph and where att1, · · ·attn are attributes of the node. Attributes may

represent properties of the service associated with a given graph node such as: the

role : (Requester, P rovider), the status : (Deficient, Non Deficient), etc.

4.3.1.1 Monolithic Service Substitution Policy

Table 4.4 shows the graph grammar for substituting a single WS by another equivalent.

Applying the production p1 leads to the unbinding of the deficient WS described by

the sub-graph containing the node N2 and the edge N1 −→ N2, and the binding the
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Figure 4.10: Graphical Representation of GG1 Production p1

substitute WS described by the sub-graph containing the node N3 and the edge N1 −→

N3. Figure 4.10 shows a visual representation of this production that unbinds the

GG1 = (AX, NT, T, P ) with:
T = {N1(Id1, T ype, interface), N2(Id2, SW, State)},
NT = { }, and
P = {p1}

p1 = (
L = {N1(Id1, T ype, interface), N2(Id2, WS, Deficient),
N1 −→ N2});
K = {N1(Id1, T ype, interface)};
R = {N1(Id1, T ype, interface), N3(Id3, WS, not(Deficient)),

N1 −→ N3})

Table 4.4: GG1: The Monolithic Substitution of a WS

deficient service N1 and substitutes it by a Non Deficient service N3.

4.3.1.2 Cost-Aware Composite Service Substitution Policy

The graph grammar described in Table 4.5 describes a composite substitution policy

where requests related to a given operation Opi of the interface of a WS are routed

to a different WS implementing the same operation. This may be useful in different

situations where a new service is discovered and which implements, more efficiently or

less costly, the given operation. This can also be applied when a particular operation

is over-requested and a where load balancing is necessary. This can also apply to a

situation where an operation is implemented in a way that does not free resources and

its repeated invocation leads to an increasing response time. All these situations will be

summarized as an “availability” property of a service with respect to a given operation.

Figure 4.11 and figure 4.12 show a visual representation of the productions p1(Opi)

and p2(Opi) of GG2. Applying the production p1 leads to the removal of the edge
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GG2 = (AX, NT, T, P ) with:
T = {N1(Id1, T ype, interface), N2(Id2, WS, State)},
NT = { } and
P = {p1, p2}

p1(Opi) = (
L = {N1(Id1, T ype, interface), N2(Id2, WS, Deficient),

N1

{Op1,...,Opn}
−−−−−−−→ N2};

K = {N1(Id1, T ype, interface), N2(Id2, WS, Deficient)};
R = {N1(Id1, T ype, interface), N3(Id3, WS, not(Deficient)),

N1

{Op1,...,Opn}\Opi

−−−−−−−−−−→ N2, N1
Opi

−−→ N3};)
p2(Opi) = (
L = {N1(Id1, T ype, interface), N2(Id2, WS, Deficient),

N1

{Opi}
−−−→ N2};

K = {N1(Id1, T ype, interface))};
R = {N1(Id1, T ype, interface), N3(Id3, WS, not(Deficient)),

N1
Opi

−−→ N3});)

Table 4.5: GG2: Service Composite Substitution Policy

Figure 4.11: Graphical representation of GG2 production p1

Figure 4.12: Graphical Representation of GG2 Production p2

N1

{Op1,...,Opn}
−−−−−−−→ N2 , and the addition of the substitute WS as described by the sub-

graph containing the node N3 and the edges N1

{Op1,...,Opn}\Opi

−−−−−−−−−−→ N2 and N1

Opi

−−→ N3.

Applying the production p2 leads to the removal of the deficient WS as described by
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Figure 4.13: Proposed Architecture Applied to The FoodShop Case Study

the sub-graph containing the node N2 and the edge N1

Opi

−−→ N2 , and the addition of

the substitute WS described by the sub-graph containing the node N3 and the edge

N1

Opi

−−→ N3.

4.3.2 The FoodShop Case Study: A Web Application

The FoodShop application is concerned with a web service-based application represent-

ing a company that sells and delivers food. The company has online Shops and several

warehouses (warehouse1, ..., warehousen) located in different areas that are responsible

for stocking imperishable and perishable goods and delivering items to customers. The

VIC is deployed within the FoodShop application between each pair of provider/re-

quester as shown in Figure 4.13. The Diagnosis modules exchange information, in

order to coordinate the healing actions. For instance, for the two linked services shop1

and warehouse1, the QoS degradation of warehouse1 may propagate to shop1 from the

client point of view. This triggers a healing process within the twoVIC instances. If

not in coordination, each VIC substitutes its provider. However, the global reasoning

about the degradation deduces that the shop1 QoS degradation is due to the propa-

gation and only warehouse1 has to be substituted. The deployment of the FoodShop

within the VIC enables the monitoring at the HTTP level. It extracts parameters like

IP address, the deployment host, the communicating WS names, the invoked opera-

tions, the execution time and the communication type (synchronous or asynchronous).

These information allow the dynamic discovery of involved parties in the application

and the automatic building of the application profile. We have developed a monitoring

graphical interface with the VIC, in addition to the self-healing features. The collected

monitoring data enable us to draw up dynamically a visualization window of WS hosts
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Figure 4.14: Initial Architectural Configuration

and invoked operations.

4.3.3 Application of our Approach

To illustrate our approach, we propose the following scenario. Figure 4.14

shows the initial configuration C0. We consider two clients, two shops

and three warehouses. Each shop implements two operations: Op1 and

Op2. These operations are OrderProduct1 and OrderProduct2. Each ware-

house implements four operations: Op1, Op2, Op3 and Op4. These op-

erations are ReserveProduct1,ReserveProduct2, ReservePerishableProduct

and ReserveNonePerishableProduct. Client1 invokes the operation

shop1/OrderProduct1 that invokes the operation warehouse1/ReserveProduct1.

Client2 invokes the operation shop1/OrderProduct2 that invokes the operation

warehouse2/ReservePerishableProduct. Client2 invokes shop2/OrderProduct2

that invokes the operation warehouse1/ReserveNonePerishableProduct. To il-

lustrate the reconfiguration policies, two events are considered. The events are

“shop1/OrderProduct1 degradation”, and “warehouse2/ReserveProduct1 degrada-

tion”. In the following, we show the reconfiguration of the architecture when the

first policy is used. The architecture is reconfigured according to the reconfiguration

algorithm that implements, in this case, the graph grammar GG1 (see Table 4.4).
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Figure 4.15: Monolithic Service Substitution
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4.3.3.1 Monolithic Service Substitution Policy

When the shop1/OrderProduct1 performance is considered as degraded, the WS shop1

is disconnected and WS shop2 is binded to the requester , in order to provide the

service requested by the client as shown in C1 = C0
<GG1,p1> (see Figure 4.15). When

the warehouse2/ReserveProduct1 interaction performance is considered as degraded,

the WS warehouse2 is disconnected and WS warehouse1 provides the service requested

by the shop2 as shown in C1.1 = C1
<GG1,p1> (see figure 4.15). We can also have a

WS warehouse3 that provides the service requested by the shop2 as it is shown in

C1.2 = C1
<GG1,p1> instead of warehouse1. This policy represents a basic solution that

is efficient in case of a limited service number but in some cases generates unnecessary

reconfiguration. This is the case, for example, when warehouse2 is unbound with only

one operation (ReserveProduct1) at the origin of the QoS degradation. This triggers

the routing request to the equivalent operation ReserveProduct2 of warehouse2 that

is unnecessary (ReserveProduct2 is working).

4.3.3.2 Composite Service Substitution According to WS Cost Policy

To avoid unnecessary configuration enumeration, we propose a policy that replaces

the degraded operation based on its cost. The architecture is reconfigured according

the graph grammar GG2 (see Table 4.5). When the shop1/OrderProduct1 interaction

performance is considered as degraded, the OrderProduct1 of WS shop2 provides the

service requested by the client as shown in C1 = C0
<GG2,p2> (see Figure 4.16). When the

warehouse2/ReserveProduct1 interaction performance is considered as degraded, the

ReserveProduct1 of WS warehouse1 provides the service requested by shop2 as shown

in C1.1 = C1
<GG2,p2> (see Figure 4.16). Here, there is another alternative that using

ReserveProduct1 of warehouse3, but ReserveProduct1 of WS warehouse1 costs less.

Hence, the use of this policy avoids the generation of unnecessary reconfigurations, and

warehouse2 is still providing the operation ReserveProduct2.

4.4 Evaluation Experiments and Simulations

We contacted evaluation experiments useing our engine GMTE for executing the graph

grammar transformations, and the rule engine, Jess, for executing the SWRL rules. The

experiments have been achieved under grid Grid’5000 [CCD+05], an experimental grid
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Figure 4.16: Composite Service Substitution According to WS Cost

platform that interconnects clusters geographically distributed in France. Considered

grid nodes are single core machines (Sun Fire V20z) with an AMD Opteron 248 proces-

sor with 2.2 GHz of CPU speed and 2 GB of RAM. The provided network bandwidth

is up to 10GB/s. The results will help us studying scalability and limits of the cur-

rent models to investigate the tractability of an anticipation approach for adaptability.

The experimental performance evaluation focuses on execution time. The experiment

uses 30 machines in parallel. We limited our experiments to 30 machines in one site

(Toulouse). This number can be assumed to be representative for commonly available

computing infrastructure of a great number of companies and labs. Using such number

of machines gives a realistic idea about the tractability of our approach in real situation

for design-time purposes.
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Figure 4.17: Execution Time of Applying SWRL (Table 4.1) wrt Architecture Graph
Size

4.4.1 Evaluation of Adapting Architecture to Organization

Changes

The results, presented here, were obtained for the reconfiguration rules executed and

triggered by the SWRL rules (see Table 4.1 and Table 4.2) that correspond to the flow

establishment explained in section 4.2.

4.4.1.1 Flow Establishment SWRL Rule Evaluation

We consider the case of the SWRL rule that handles the flow establishment be-

tween two ERCMS participants. We are studying scalability and limits of our model-

driven approach implementation. We study the influence over the execution time (see

Figure 4.17) of the architecture description graph size. This corresponds to the appli-

cation of the SWRL rule shown in Table 4.1.The implementation performs well and

execution time is under 0.3 second for a 10 000 vertex graph (i.e. a system composed

of 10 000 participants).
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4.4.1.2 Experimentation of Adapting Architecture to Group Membership

Changes: Adding a New Investigators

The results, presented here, were obtained for the reconfiguration rules executed and

triggered by the SWRL of Table 4.3. This modifies the mission ontology which trig-

gers a refinement and the generation of the collaboration graph and its refinement into

a set of EBC Descriptors (middleware graphs). We generate the first N members of

this graph grammar corresponding to the N first consistent instances of the architec-

ture. This corresponds to applying productions p1, p2 and p3 of GGCOLLAB→EBC (see

Table 3.5) whenever it is possible to obtain all consistent architecture graphs. The ap-

plication of production p4 ensures the elimination of unnecessary nodes in the graphs.

The production applications include finding all graph matchings and transforming the

architecture graph by adding nodes and edges. The productions p2 and p3 add one

node and two edges. The production p1 adds two nodes and two edges. The system

takes about nine hours to calculate the 400 000 first consistent instances and more than

1 500 000 consistent instances are generated in about 194 hours. These values remain

acceptable for design-time purposes. Using a unique grid node, the system generates

almost the 400 000 first consistent instances in about 140 hours.
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4.4.2 Evaluation of Adapting Architecture to Resources

Changes

In this subsection, we show simulation results of executing adaptation to resources

context changes that are due to evolution on the mission or due to the constraints of

the environment (e.g fire) or the nodes (e.g not enough energy). We simulate the case

of communication degradation due to mission needs.

4.4.2.1 Connectivity Adaptation and QoS Preservation

We consider here the scenario explained in Figure 4.9 related to group3 (see Figure 4.4).

This group is composed of three robots (Robot4, Robot6 and Robot3) with their robot

coordinator (Coordinator2).

4.4.2.1.1 Simulation parameters For the simulation, we consider that Robot4

sends to Robot6 a video flow continuously using MEGP2 protocol. We consider X,

as a random variable that represents a Gaussian law with parameters m and σ which

characterizes the noise variation on the links. The variation is related to the distance

between nodes. Figure 4.19 gives first results on the observation of one flow (between

Robot4 and Robot6). The metric observed to evaluate the connectivity and the quality

of the existing flow is the number of lost packets (packet of data that never reaches its

destination).

4.4.2.1.2 Results and interpretations In Figure 4.19, the number of lost packets

increases slowly in Step 0. One minute after the beginning of the simulation, Step 1

begins and Robot6 moves to find an injured person in an area near its position. The

number of lost packets increases rapidly and reaches the threshold. The process of

adaptation is triggered here (see the highest point of the curve in Figure 4.19) and

Coordinator2 moves to avoid loosing the connectivity. Step 2 starts and the number

of lost packets decreases at the beginning. However, the number of lost packets still

beyond the comfort threshold for given time (one minute for our simulation) and an

additional adaptation action has to be executed. Robot3 has to moves to serve as

a communication relay. It comes near to Coordinator2 and Robot6. This action is

required to enhance the quality of communication. Step 3 starts and the number of

lost packets decreases. Robot6 arrives at the required position while Coordinator2 and
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Figure 4.19: Simulation Results of the Adaptation for Connectivity and QoS Preserva-
tion

Robot3 maintain the communication between Robot4 and Robot6. There is still packet

loses, but in an acceptable level.

4.4.2.2 Energy Evolution

We simulate here the behavior of an investigator that represents the ERCMS partic-

ipants. We study the impact of the communication buffer storing the outcoming/in-

coming for this kind of node.

4.4.2.2.1 Simulation parameters We focus here, on the energy evolution for each

node. We consider two random variables: X that represents a Poisson law of parameter

λ, which characterizes the node’s message production and, Y that represents a Gaussian

law parameters m and σ, which characterizes the bandwidth variation on the links. For

the memory state, we use a trace of a mobile node previously logged while taking into

account the variable X. We calculate the node’s energy according to the node state

(consuming or producing, active, and idle state).
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Figure 4.20: Energy Evolution on Nodes

4.4.2.2.2 Results and interpretations We show in Figure 4.20 the curves of node

energy evolution during time with and without adaptability. We plot the curves that

show the energy evolution on the investigator with and without adaptability that rep-

resent the general evolution of the energy on each node. We estimate how much time

the node stays “alive” or has enough energy to work properly. We show here the impact

of the communication buffer of the communication entities on the nodes. We notice

that the use of adaptability maintains the node running more time with any buffer

size (buffer size (Mb) = 0, 5, 10, 15, 20). The higher the buffer size is the longer the

node stays running. If we focus on the 10% threshold the energy available, we no-

tice that without adaptability the node reaches this threshold after 63 minutes. Using

adaptability the node reaches this threshold (10% energy available) later than that. In

Figure 4.20, the 10% threshold of the energy left is reached after 80 minutes (resp. 97,

130, 150) using a buffer size equal to 0 (resp. 10, 15, 20).

For this investigator, we notice that adaptability provides more energy due to our

refinement and selection policies that discharge participants when their resources are

decreasing.
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4.5 Conclusion

In this chapter, We have presented present the graph matching and transformation

engine that we developed to implement the graph grammars approach.

We have presented also two application scenarios. In the ERCMS scenario, mobile

actors collaborate to manage emergency situations such as those occurring during dis-

asters of forest fires. We propose three ontologies to model different aspects related to

communication as the activity, collaboration and context. Adaptation actions are also

proposed for adaptation in communicating architecture. These actions deal with differ-

ent changing context parameters such as resource constraints and architecture evolution

requirements. We presented refinement and selection procedures as well as examples of

external context and of resources context changes adaptations. These examples show

adaptation situations which are due to evolution of the application’s environment. In

the FoodShop scenario, we studied the dynamic reconfiguration of Service Oriented Ar-

chitectures for maintaining the Quality of Service in perturbation-prone environments.

Our approach uses graph grammar theories to implement rules that characterize the

set of the different configurations candidate to solve composite or monolithic recon-

figuration. Contrarily to enumerative approaches that define extensively the different

equivalent and valid configurations, our approach is more appropriate for handling the

scalablility.

To validate our approach, we conducted an experimental evaluation using our graph

matching and transformation engine, GMTE, and the SWRL rule execution engine,

Jess. Different situations show the effectiveness and the tractability of our approach.

Our results show that ERCMS participant’s resources remain in service as required for

mission achievement thanks to our adaptation approach. Situations of disconnection

from the mission groups are highly minimized.
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Conclusion

The adaptation of software architectures to support collaborative communication within

a dynamically changing context has been addressed in this work. the study includes

the automated deployment and management of service-oriented component-based ar-

chitectures; including reconfiguration description and handling at different levels of in-

teraction. We elaborated an adaptive multi-level modelling approach for reconfigurable

software architectures in order to address this problem. Our approach consistently

handles inter-level adaptation actions by considering a lower level architecture as a

refinement of an upper level architecture. Firstly, we provided a generic level model

based on ontologies as a description formalism, and SWRL for refinement rules de-

scription both for the application and collaboration layers. Secondly, we developed a

graph-based description, and a rule-oriented technique based on graph grammars, for

characterization, refinement and selection solution necessary for reconfigurable software

architectures.

Adapting the architecture to constraint changes at the lower layers by switching

among these multiple architectural configurations keeps the upper layer architectural

configuration unchanged.

This adaptation requires two different actions: refinement for deriving low level

candidate configurations and selection for identifying the optimal architectural config-

uration among all possible architectural configurations at a given layer.

Mastering the complexity of the design of such systems requires an appropriate

description of its structural properties that will drive the adaptive deployment process

at the different levels of interaction and within the different deployment nodes.

87
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The adaptation process handles the automatic change of the system’s architecture,

proactively or reactively, with respect to the observed events during run-time. For

instance, architectural components may be deployed, connected, and undeployed or

disconnected. The events that lead to applying the adaptation actions are triggered

when changes in the application context occur. We divided the context into external

context, e.g. user preferences, user presence and position, priority of communications,

etc.; and execution resource context, e.g. battery level, CPU load, available memory of

end user devices, available bandwidth etc.

Knowledge representation by ontologies, is used to detect potential collaboration

situations and to decide when group-wide sessions have to be created, adapted, etc.

Thus, we show that the use of semantic models in order to support adaptation con-

stitutes an interesting research direction. Adaptation policies are defined by means of

SWRL rules. Such rules allow associating the suitable adaptation transformations to

the external context changes. Jess engine is used to process the defined SWRL rules.

We implemented a graph rewriting system with expressive graphs and rewriting

rules. Compared to the literature, our notations are more expressive combining the

edNCE and DPO approaches, and allowing the consideration of both positive and

negative matching conditions. Experimental studies are conducted to evaluate the

performance of the related implemented tool (GMTE) and show their efficiency.

We elaborated rules that handle architectural mappings between collaboration layer

and middleware layer. Using such a rule-based approach allows correct architectural

reconfigurations to handle the architectural adaptation. Our approach has been suc-

cessfully illustrated for collaborative group communication and applied for Emergency

Response and Crisis Management Systems. On base of a graph transformation engine,

we have simulated our rules with successful scalability tests. The scalability study pro-

vided has been conducted to assess the tractability of our approach when dealing with

large scale group applications.

According to this work, many issues still open and need further investigation. Inclu-

sion of additional adaptation levels in the proposed framewok is needed. The defined

architectural and behavioral adaptation models are used to determine the best deploy-

ment configuration for a given activity related goal. These models consider adaptation

at the application, collaboration, and middleware levels. Moreover, the transport level

adaptation can by considered by dynamic micro-protocol assembly. To fill the gap

between the middleware level and the network level, refining Event Based Communi-
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cations entities into transport level entities is needed. Extending refinement procedure

and graph grammars should be a solution. Graph grammar extensions can be done

also to handle middleware layer abstractions instead of EBC. Context awareness is an

important aspect of adaptive communicating systems. In case of environmental change

(evolution in the application or resources change), “adaptation triggers” play an essen-

tial role in terms of notifying the decision maker about initiating adaptation actions.

The issues at hand here are how and when triggers need to be activated. Moreover,

any dramatic change in the situation may not be known in advance. The challenges

here are: How to take into account past trends when predicting future decisions, and

how to handle the external forces causing additional loads over the network and the

deployment nodes.

Adaptive systems implementing decision distribution are more likely to ensure ro-

bustness and scalability. Distributing intelligence is not easy, especially in the case

of adaptation, which needs special attention. A distributed decision should feature

high availability requirements and always be available to application entities. Future

work will include the definition of richer selection policies (considering further archi-

tectural characteristics). In addition, assigning priorities to flows as well as monitoring

resource deficiencies present interesting challenges. Non-Functional properties, such

as resilience and on-demand decision to handle priority requests have to be considered.

Non-cooperative situations like QoS and performance degradation and connectivity loss

are topics of research worth considering.

We are interested in supporting collaborative activities requiring dynamic implicit

group-wide collaborative sessions. Such sessions are initiated spontaneously without

user intervention and use potential collaboration situations. Therefore, spontaneous

sessions have to be detected, established, and then adapted to context changes. The

design and implementation of mechanisms enabling the spontaneous setup of implicit

sessions need to be considered.
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Extended French Abstract/Résumé

6.1 Introduction

Les nouvaux environnements communicants combinent plusieurs caractéristiques com-

plexes telles que la mobilité, les interactions ad-hoc, l’hétérogénéité des dispositifs, les

communications sans fil, etc. qui posent de nouveaux défis aux systèmes de communi-

cation chargés d’assurer le transport des informations échangées.

Dans ce contexte, nous nous intéressons plus précisément aux activités menées par

des utilisateurs organisés en groupes. Ces activités, appelées aussi activités collabora-

tives, peuvent bénéficier des opportunités offertes par les environnements communicants

en les exploitant intelligemment. Par exemple, dans les systèmes collaboratifs clas-

siques, ce sont les utilisateurs qui doivent indiquer explicitement le fait qu’ils veulent

initier une session, inviter des participants, etc. Dans un environnement communicant,

le système peut reconnâıtre les situations de collaboration potentielles (implicites) et

mettre en œuvre des sessions spontanées pour soutenir la collaboration entre les par-

ticipants.

Le concept de contexte est très important pour les systèmes communicants collabo-

ratifs (SCC). Le contexte peut être divisé en deux parties relative d’une part au contexte

externe (par exemple la présence et la position des utilisateurs, leurs préférences, l’heure

de la journée, etc.) et d’autre part au contexte des ressources (le niveau de la batterie

des dispositifs, la quantité de mémoire libre, le débit des communications, etc.).

Une fois que le contexte est capturé, le système doit répondre aux changements

détectés. Ceci traduit une adaptation au contexte. Par exemple, si un nouvel utilisateur
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arrive dans un groupe, l’architecture du système logiciel qui soutient la collaboration

doit changer ; par exemple des composants devront être automatiquement déployés sur

la machine de cet utilisateur afin qu’il puisse envoyer et recevoir des données.

Dans ce contexte, notre travail vise à gérer dynamiquement l’adaptation des ar-

chitectures des applications logicielles distribuées des environnements communicants

collaboratifs. Pour ce type d’applications, il est nécessaire de pouvoir modifier dy-

namiquement leur architecture en créant des composants, en les interconnectant, ou en

les supprimant, et ce pendant l’exécution des applications. Cette dynamicité répond

à des contraintes liées à des variations de capacités de communication, de calcul et

d’énergie, ainsi que des évolutions dans la nature des activités qu’elle soutiennent.

Dans ce mémoire nous proposons une approche orientée-modèle pour la reconfigura-

tion dynamique des applications logicielles. Cette approche est basée sur des techniques

orientées-règles. Les règles permettent des actions de transformation élémentaires rel-

atives, par exemple, aux composants logiciels qu’il faut introduire, supprimer, activer

ou désactiver, ou aux liens d’interdépendances (entre composants) à introduire ou à

supprimer. L’approche de modélisation que nous définissons dans ce manuscrit, cou-

vre plusieurs maillons de la châıne de description architecturale. Les instances des

architectures sont décrites par des graphes étendus où les composants sont représentés

par des nœuds et les interdépendances (par exemple les connexions entre les nœuds)

sont décrites par des arcs. Les styles architecturaux, permettant de décrire toutes

les instances consistantes d’une application à architecture dynamique, sont spécifiés

par des grammaires de graphes étendues. Les extensions concernent, par exemple,

l’introduction de variables typées dans les productions de grammaires et la notion de

restrictions à l’applicabilité de ces productions. Cette approche de modélisation traite

aussi la description des contraintes et des propriétés architecturales d’une application.

Ce type de contraintes est spécifié par l’absence ou la présence de motifs dans les graphes

décrivant l’architecture. Leur vérification automatique est réalisée à l’aide d’algorithmes

de recherche d’homomorphismes. Un autre intérêt de l’approche de description concerne

la possibilité d’extraire des paramètres et des propriétés architecturales (par exemple le

nombre maximal de services élémentaires composant un service composite, une struc-

ture de l’orchestration ou des interdépendances entre composants). Dans ce manuscrit,

nous traitons de manière détaillée un cas d’étude relatifs aux opérations d’intervention

d’urgence. Dans le cadre de ce cas d’étude, nous considérons trois niveaux d’adaptation

architectural relatifs aux niveaux application, collaboration et middleware, que nous
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caractérisons ci-après. Des raffinements sont définis pour permettre de transformer des

descriptions d’architectures considérées à un niveau donné vers les descriptions corre-

spondantes dans un autre niveau. Nous présentons également une implantation qui suit

cette approche et qui peut être utilisée par les concepteurs de SCC comme base pour

l’exécution des applications.

Outre l’état de l’art, le mémoire est structuré en trois parties principales que nous

résumons ci-après. La première partie (résumée en section 7.2) décrit l’approche pro-

posée pour la modélisation des architectures logicielles. La deuxième partie (résumée

en sections 7.3 et 7.4) décrit l’application de la méthodologie proposée au contexte des

systèmes communicants, avec pour cas d’étude les opérations d’interventions d’urgence.

Enfin, les résultats expérimentaux de la dernière partie de la thèse sont résumés en sec-

tion 7.5. Les conclusions et perspectives de nos travaux sont résumés en section 7.6.

6.2 Approche générique de modélisation

Dans cette section, nous présentons une approche générique pour la modélisation des ar-

chitectures logicielles. Cette approche introduit plusieurs niveaux d’abstraction dans le

but de séparer les différentes problématiques abordées. La complexité est ainsi réduite,

ce qui permet une conception du système plus claire et plus cohérente. Nous appli-

querons par la suite cette approche au cas des systèmes communicants collaboratifs.

6.2.1 Modélisation Architecturale Multi-niveau

Dans notre approche, les modèles manipulés représentent des configurations architec-

turales, c’est-à-dire, des ensembles d’entités logicielles distribuées sur un ou plusieurs

nœuds d’exécution et reliées entre elles par des liens de communication. Une config-

uration architecturale (ou plus simplement architecture) est dénotée An,i, où n est le

niveau d’abstraction considéré (n ∈ N) et i est un index permettant de distinguer les

configurations (i ∈ N). Pour chaque configuration architecturale An,i de niveau n, il

existe plusieurs configurations architecturales (An−1,1, . . . , An−1,p) qui l’implantent au

niveau n − 1, c’est-à-qui représentent un raffinement ou une vue détaillée de An,i (voir

Figure 6.1).

En général, les architectures des niveaux supérieurs sont déterminées par les exi-

gences de haut niveau de l’application considérée, tandis que les implantations possi-
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Figure 6.1: Approche de modélisation multi-niveau.

bles aux niveaux bas sont contraintes par les ressources disponibles. L’adaptation du

système à ces exigences et à ces contraintes se fait donc par le biais des configurations

architecturales retenues à chaque niveau. Quand l’adaptation impose un changement

au niveau n, un modèle est choisi parmi les modèles du niveau n − 1 qui implantent

le nouveau modèle de niveau n. Si l’ancienne et la nouvelle configurations au niveau n

ont des implantations communes au niveau n − 1, cela veut dire que la configuration

de niveau n − 1 actuelle implante aussi la nouvelle configuration de niveau n, et en

conséquence le processus d’adaptation s’arrête là. Sinon, il faut continuer à choisir des

implantations dans les niveaux n−2, n−3, ..., 0. La procédure générique de raffinement

permet ce raffinement.

1 Refine()

2 {
3 Soit An l’ensemble de configurations architecturales au niveau n
4 Soit An−1 l’ensemble de configurations architecturales au niveau n − 1
6 Soit An,i ∈ An, i ∈ N une configuration architecturale donnée

7 Calculer Ai
n−1 = {An−1,j ∈ An−1 tel que An−1,j implante An,i, j ∈ N}

8 }

Table 6.1: Procédure générique de raffinement

L’architecture du niveau le plus bas représente la distribution physique des com-

posants sur les machines peut donc être utilisée pour effectuer un déploiement au-

tomatique de ces composants. Ce déploiement automatique est réalisé par un ser-

vice de déploiement qui prend en entrée l’architecture de niveau 0 et qui effectue les

déploiements nécessaires pour mettre en œuvre la configuration y décrite. Les actions

de déploiement de composants sont basées sur la technologie OSGi [OSG07].
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La technique d’adaptation que nous avons décrite a besoin de deux actions

différentes : le raffinement et la sélection. Ces deux actions sont expliquées dans la

section suivante.

1 Select(Policy)

2 {
3 Soit An,p ∈ An, p ∈ N

4 Soit C représentant les attributs contextuels

(i.e. énergie et mémoire disponible)

5 Sélectionner S1 = {An−1,k ∈ A
p
n−1, k ∈ N tel que

Context Adaptation(An−1,k, C) ≥ Context Adaptation(X, C), ∀X ∈ A
p
n−1}

6 if card(S1) 6= 1
7 si Policy = Dispersion

8 Sélectionner S2 = {An−1,k ∈ S1, k ∈ N tel que

Dispersion(An−1,k) ≥ Dispersion(X), ∀X ∈ S1}
9 si Policy = Distance

10 Soit An,p et An,q ∈ An, p, q ∈ N

11 Soit An−1,p l’implantation courante au niveau n − 1 de An,p

12 Sélectionner S2 = {An−1,k ∈ A
q
n−1, k ∈ N tel que

13 Relative Cost(An−1,p, An−1,k) ≤ Relative Cost(An−1,p, X), ∀X ∈ S1}
14 si card(S2) 6= 1
15 Sélectionner une configuration architecturale parmi S2

16 }

Table 6.2: Procédure générique de sélection.

6.2.2 Procédures génériques de Raffinement et de Sélection

Le raffinement permet de calculer, à partir d’un modèle de niveau n, l’ensemble de

modèles de niveau n−1 qui implantent le modèle donné. Nous considérons la procédure

générique de raffinement Refine(), présentée dans la Table 6.1. Cette procédure est

générique du fait que le mot implante, dans la ligne 7, aura une signification différente

pour chaque niveau d’architecture. Dans un niveau, une fois que tous les modèles

possibles pour ce niveau ont été obtenus, il est nécessaire de sélectionner le modèle

retenu. Le modèle choisi représente l’architecture qui sera effectivement déployée. Nous

appelons ceci le processus de sélection. Nous considérons la procédure générique de

sélection, Select(), présentée dans la Table 6.2.
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Cette procédure utilise, en premier lieu, les données disponibles sur le contexte

d’exécution des machines (par exemple la quantité de mémoire disponible ou le niveau

de batterie des dispositifs) pour éliminer les configurations qui sont incompatibles avec

ces contraintes. Pour cela, elle utilise la procédure Context adaptation(), détaillée

dans Table 6.3, qui affecte une valeur à chaque architecture. Plus une architecture est

adaptée au contexte actuel, plus sa valeur sera grande. Les architectures incompatibles

avec le contexte actuel recevront une valeur de −1, ce qui veut dire qu’elles ne pourront

pas être retenues pour le déploiement.

Si plusieurs architectures ont la même valeur maximale, alors la procédure Select()

utilise une politique plus fine pour déterminer la meilleure architecture. Cette poli-

tique peut s’appuyer, par exemple, sur l’étendue de la répartition des composants dans

l’architecture (fonction Dispersion()) ou sur le nombre de redéploiements à faire si

l’on part de la configuration actuelle pour arriver à la configuration considérée (fonction

Relative Cost()). Ces fonctions sont détaillées dans les Table 6.4 et Table 6.5 dans

le cadre de l’application de l’approche au cas des systèmes communicants collaborat-

ifs. Notons que la procédure de sélection peut être facilement modifiée pour considérer

d’autres politiques.

6.3 Application au cas des Systèmes Communicants

Collaboratifs

Dans cette section, l’approche générale de modélisation introduite dans la section

précédente est appliquée à la modélisation des systèmes collaboratifs dans des envi-

ronnements communicants (SCC). Le but est de spécifier les problèmes inhérents à ce

type de systèmes et de proposer un cadre conceptuel pour leur conception. Pour cela,

nous identifions un ensemble de niveaux pertinents pour lesquels nous proposons des

modèles et des transformations.

La partie gauche de la Figure 6.2 illustre les niveaux retenus. Ces niveaux sont

génériques et peuvent ainsi être utilisés (et implantés) de façon différente par des concep-

teurs de systèmes différents. Cependant, nous proposons une implantation de référence

(actuellement en cours de développement) qui peut être utilisée comme cadre de con-

ception et d’exécution pour des SCC. Nos choix pour les formalismes et les technologies

utilisés dans les modèles et les transformations dans cette implantation sont illustrés



6.3. APPLICATION AUX SYSTÈMES COMMUNICANTS 97

1 Context Adaptation()

2 {
3 Soit A1,q une configuration architecturale au niveau 1

4 Soit N = card(A1,q)
5 Soit Resource1 . . . ResourceR l’ensemble des ressources considérées

6 Soit R = card({Resource1 . . . ResourceR})
7 Soit nodeq

i un nœud de déploiement i de A1,q

8 Soit Li
r le niveau de la ressource r pour nodeq

i

9 Soit Tr le seuil associé à la ressource r
10 αi

r r ∈ [1..R] les poids associés à chaque ressource r pour nodeq
i

11 Soit βr r ∈ [1..R] les poids associés à chaque ressource r pour A1,q

12 Soit cadapt=0

13 Pour chaque i ∈ 1..N
14 pour chaque r ∈ 1..R
15 P i

r = αi
rL

i
r − Tr

16 si Pr ≤ 0 alors retourner -1

17 fin pour

18 fin pour

19 Pour chaque r ∈ 1..R
20 cadapt=cadapt+βrmini(P

i
r)

21 fin pour

22 retourner cadapt

23 }

Table 6.3: Procédure d’adaptation au contexte

dans la partie droite de la Figure 6.2. Les paragraphes suivants décrivent brièvement

les niveaux retenus.

6.3.1 Niveau application

Le niveau supérieur est le niveau application. Ce niveau contient les éléments de haut

niveau qui définissent le métier de l’application. Parmi ces éléments, on trouve les

interfaces utilisateur, les modules de sécurité, les modèles de données métier, etc. Tous

les éléments concernant la collaboration sont capturés dans le modèle architectural de ce

niveau, A3,i
1. En conséquence, ce modèle est une vue métier des entités qui collaborent

et des relations existantes entre elles.

1Bien sûr, la représentation d’autres éléments ne concernant pas la collaboration peut être envisagée.
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1 Dispersion()

2 {
3 Soit A1,q une configuration architecturale au niveau 1

4 Soit node
q
i un nœud de déploiement i de A1,q

5 weight=0

6 Pour chaque node
q
i

7 si ∃CM déployé sur node
q
i alors weight=weight+1

8 retourner weight

9 }

Table 6.4: Procédure de calcul de la dispersion

1 Relative Cost()

2 {
3 Let A1,q et A1,k deux configurations architecturales au niveau 1

4 Soit node
q
i (componentj) un nœud de déploiement de componentj ∈ A1,q

5 rcost=0

6 Pour chaque componentj ∈ A1,q ∪ A1,k

7 si node
q
i (componentj) 6= nodek

i (componentj) alors rcost=rcost+1

8 }

Table 6.5: Procédure de calcul du coût relatif

Dans notre implantation, le modèle de niveau application est une ontologie, décrite

au moyen du langage OWL (le standard du web sémantique pour la description

d’ontologies) [SWM04]. Nous avons fait ce choix car les ontologies sont un système

de représentation des connaissances bien adapté à l’expression de concepts de haut

niveau, proches des activités humaines, ce qui est le cas dans ce niveau. De plus, elles

permettent de réaliser des inférences et des raisonnements, ce que nous exploitons pour

faire le raffinement du niveau application vers le niveau suivant.

Nous considérons, comme communément fait dans les systèmes ontologiques, deux

niveaux d’ontologies : une ontologie générique de la collaboration (qui décrit des ses-

sions, des utilisateurs, des rôles, des flux de données, etc ; voir [STV08]) et des on-

tologies spécifiques à chaque application. Les ontologies spécifiques sont définies par

les concepteurs des applications, tandis que l’ontologie générique est fournie dans notre

implantation2.

2Cette ontologie est disponible sur http://homepages.laas.fr/gsancho/ontologies/sessions.owl.

http://homepages.laas.fr/gsancho/ontologies/sessions.owl
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Figure 6.2: Cadre de modélisation pour les SCC et technologies d’implantation.

6.3.2 Niveau collaboration

Le niveau suivant est le niveau collaboration. Ce niveau représente des groupes

d’utilisateurs organisés en sessions où ils communiquent avec des flux de données. Le

modèle du niveau collaboration, A2,i, est un graphe (un diagramme de collaboration

dynamique ; voir [BDVT04]) qui contient la structure d’une ou de plusieurs sessions.

Une session est un ensemble de flux de données (texte, video or audio). Chaque flux a

comme origine et comme destination des composants logiciels différents. Les composants

font partie d’un outil. Les composants sont déployés dans des nœuds, qui représentent

les dispositifs des utilisateurs. Le graphe contenant ces éléments est exprimé avec le
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langage GraphML, un dialecte de XML pour la représentation de graphes.

6.3.3 Niveau middleware

Le niveau suivant est le niveau middleware. Ce niveau supporte un modèle de communi-

cation qui fait abstraction des détails de bas niveau (tel que les sockets TCP, les adresses

IP, la diffusion, etc). Ce niveau peut être basé, par exemple, sur des paradigmes connus

tels que le pair-à-pair, les appels procéduraux à distance, CORBA, etc. Dans notre

cas, le paradigme retenu est la communication orientée événement (Event-Based Com-

munications ou EBC, [MC02]) ; les éléments représentés dans ce modèle sont ainsi des

producteurs d’événements (EP), des consommateurs d’événements (EC) et des channel

managers (CM), ainsi que les liens entre eux. Le modèle correspondant à ce niveau

est un graphe représentant ces différents éléments et il est également exprimé avec le

langage GraphML.

6.3.4 Niveau infrastructure

Le dernier niveau est le niveau infrastructure. Ce niveau représente tous les éléments

logiciels et matériels qui sont nécessaires pour l’exécution d’applications dans les dis-

positifs. Par exemple, on y trouve le système d’exploitation, les pilotes, la pile TCP/IP,

les capteurs, etc. Nous faisons l’hypothèse que ces éléments sont disponibles et qu’ils

ont été correctement configurés ; il n’y a donc pas de modèle associé à ce niveau.

6.3.5 Implantation du raffinement et de la sélection

Les trois premiers niveaux de modélisation des SCC induisent deux opérations de raf-

finement et de sélection pour réaliser les transformations d’un niveau vers le niveau

inférieur.

Puisque les modèles de niveau application sont exprimés avec des ontologies, nous

avons retenu l’exécution de règles SWRL [HPSB+04b] pour le raffinement d’un modèle

de niveau application vers un modèle de niveau collaboration. En effet, ces règles

s’appliquent sur les éléments d’une ontologie et peuvent les modifier, en créer d’autres,

etc. De cette façon, en fonction des instances des concepts de niveau métier exprimés

dans l’ontologie, les règles extrairont le schéma de collaboration implicitement contenu

dans cette ontologie. Ce schéma résultant sera exprimé selon les concepts de l’ontologie
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générique de la collaboration. Puisque l’ontologie générique de la collaboration et les

modèles de niveau collaboration contiennent des éléments équivalents, la traduction de

l’ontologie en un graphe GraphML est une tâche relativement simple et automatique

car les deux langages sont des dialectes de XML. L’application d’un ensemble de règles

SWRL sur une ontologie de niveau application produit un seul modèle de niveau col-

laboration. Le processus de sélection n’est donc pas nécessaire pour cette première

transformation.

Puisque les modèles de niveau collaboration et de niveau middleware sont des

graphes, la technique de transformation de graphes est adaptée pour réaliser le raf-

finement entre ces deux niveaux. Plus concrètement, nous utilisons des grammaires de

graphes génératives [Cho56].

Nous nous appuyions sur les graphes abstraits de composants ou ACG en anglais.

L’approche ACG est une structure marquée et générique que nous employons pour

définir les graphes d’architecture (ACG totalement instanciés), et les graphes de règles

(ACG partiellement instanciés). Les graphes décrivent une architecture comme un

ensemble de composants associés aux nœuds du graphe et un ensemble d’arcs dénotant

les relations d’interdépendance entre ces composants.

Dans une structure ACG, les nœuds décrivent des composants logiciels et sont

marqués par les champs suivants : l’identifiant de composant, le type de composant, la

session, le type des données traitées et la localisation du composant (par exemple, la

machine sur laquelle il est exécuté).

Nous distinguons deux catégories de nœuds : les nœuds de règles et les nœuds

de graphes. La différence entre ces deux types de nœuds est que le premier est une

abstraction d’un type de composants et peut avoir des champs variables, alors que le

second correspond à un composant instancié de l’architecture et ne peut donc avoir que

des champs totalement instanciés.

Nous avons défini une grammaire de graphes dont les nœuds non-terminaux sont

les éléments du graphe de collaboration et les nœuds terminaux sont des entités EBC.

Ainsi, un graphe de niveau collaboration produit un ensemble de graphes de niveau

middleware qui l’implantent. Ceci est réalisé à travers la procédure de raffinement

basée sur la grammaire de graphes présentée dans la Table 6.6 utilisant les production

de la grammaire de la Table 3.5.

Une architecture est décrite par un graphe enrichi permettant d’intégrer les différents

paramètres de ses composants et leurs interdépendances. Nous utilisons le concept de
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Soit A
i
n−1 l’ensemble des configurations

architecturales du niveau n qui raffinent An,i

∀An−1,j ∈ Ai
n−1,

∃p1, . . . pm ∈ GG tel que An,i
p1,...,pm

−−−−→ An−1,j

Table 6.6: Procédure de raffinement basée grammaire de graphes

style architectural pour décrire les architectures dynamiques et la spécification de leurs

instances consistantes. Un style architectural est caractérisé par un modèle basé sur des

grammaires de graphes étendues. Nous utilisons une approche formelle permettant de

décrire les systèmes de transformation pour traduire une description définie à un niveau

d’abstraction donné vers un autre niveau d’abstraction. Cette approche se base aussi

sur les grammaires de graphes. Nous intégrons dans ce formalisme des mécanismes

de type NCE. Enfin, nous présentons une approche de modélisation permettant de

caractériser les événements et les règles ainsi que les protocoles de reconfiguration des

architectures. Nous utiliserons pour la caractérisation des règles de reconfiguration des

règles de transformation de graphes considérant des conditions d’application négatives

et des instructions de connexion de type NCE.

Notre implantation s’appuie pour cela sur un moteur de transformation de graphes3.

La procédure générique de sélection est utilisée ici pour choisir l’architecture op-

timale à retenir pour déploiement. Il suffit de faire des choix pour les fonctions

Context Adaptation(), Dispersion() et Relative Cost().

6.4 Cas d’étude

Afin de démontrer la faisabilité de l’approche, nous avons pris le choix de présenter un

traitement détaillé du cas d’étude des opérations d’intervention d’urgence (OUI). Au

travers de ce cas d’étude, nous avons considéré des exigences d’adaptabilité dues aux

changements du contexte d’exécution, à la panne des composants et à des contraintes

liées au provisionnement de la QdS (par exemple le taux de perte de messages).

Les OIU impliquent des groupes structurés de robots ou de personnels militaires

coopèrant pour la réalisation d’une mission commune. Les éléments de l’architecture

possèdent différents rôles et disposent de ressources inégales en capacités de commu-

3Disponible sur http://homepages.laas.fr/khalil/GMTE.

http://homepages.laas.fr/khalil/GMTE
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nication, en CPU et en énergie. Ils sont déployés sur des machines fixes et mobiles

et communiquent via des réseaux filaires et sans fil. L’activité comporte deux phases

d’exécution correspondant à une phase d’exploration du champ d’investigation et à

une phase d’action faisant suite à la découverte d’une situation critique. Les rôles

dans l’application et la structure des interactions entre participants évoluent d’une

étape à l’autre pour s’adapter à l’évolution des objectifs applicatifs et du contexte

d’exécution. Trois niveaux d’abstraction sont identifiés en qui font référence à trois

couches protocolaires : application, collaboration et middleware. Cependant, le principe

d’indépendance des couches OSI est remis en cause en autorisant la prise en compte,

au niveau considéré, d’informations dont la sémantique est d’un niveau différent; c’est

le principe de base du cross layering où une réorganisation affectant un niveau de

l’architecture peut se traduire par une réorganisation à un autre niveau architectural.

Les composants logiciels, qu’ils relèvent des couches application, collaboration ou mid-

dleware, auront à prendre en compte des besoins multiples et évolutifs dans le temps

liés à l’activité ciblée, à la mobilité des utilisateurs, aux flux de données échangés (au-

dio, vidéo et texte) et aux contraintes de l’environnement de communication. De plus,

l’évolution de la mission induira inévitablement des changements dans la hiérarchie et

dans la structure des coopérations entre intervenants, par exemple, suite aux informa-

tions acquises par les investigateurs sur le terrain ou suite aux décisions du superviseur

et des coordinateurs de la mission. La collaboration est basée sur l’échange de données

entre participants, notamment des données d’observation et des données d’analyse, pro-

duites périodiquement ou immédiatement après un événement particulier. Une équipe

d’intervention d’urgence est ainsi constituée de participants ayant différents rôles : un

superviseur de la mission, plusieurs coordinateurs, et plusieurs sections d’investigateurs.

Le superviseur de la mission gère l’ensemble des coordinateurs et chaque coordinateur

dirige une section d’investigateurs. À chaque rôle correspondent les fonctions suivantes

:

• Un superviseur a pour fonction de diriger et d’autoriser les actions qui sont

déléguées aux coordinateurs. Le superviseur est l’entité qui supervise toute

l’application, il attend des rapports de tous ses coordinateurs qui synthétisent

le contexte courant de l’application et l’informent du déroulement de la mission.

Le coordinateur est déployé sur une machine fixe, il dispose d’un accès à l’énergie

permanent et de capacités de communication et de CPU conséquentes.
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• Selon les actions et les objectifs assignés par le superviseur, un coordinateur doit

diriger ses investigateurs en leur assignant des tâches à exécuter. Il doit également

collecter, interpréter et synthétiser les informations reçues des investigateurs et

les diffuser vers le superviseur. Les coordinateurs sont déployés sur des machines

mobiles.

• Les investigateurs ont pour fonction d’explorer le champ opérationnel, d’observer,

d’analyser et de faire un rapport décrivant la situation aux coordinateurs qui les

contrôlent. Ils sont déployés sur des machines mobiles et disposent, donc, de

ressources limitées en énergie et en CPU.

Les fonctions assignées aux participants impliquent d’observer (D) le champ

d’investigation et de rapporter (P) sur ce qui est observé. Les données de retour D

sont des données descriptives tandis que les données de retour P sont des données pro-

duites et expriment l’analyse de la situation par un investigateur ou un coordinateur.

Le superviseur supervise l’ensemble de la mission, en décidant des actions à exécuter

en fonction des objectifs opérationnels et de l’analyse des retours P transmis par les

coordinateurs. Il possède sous ses ordres, au moins un coordinateur, et chaque coordi-

nateur possède au moins un investigateur. Un coordinateur est en charge de la partie

de la mission qui lui a été assignée par le superviseur. Il décide localement des actions

à exécuter en fonction de l’observation et de l’analyse des données D transmises par les

investigateurs. Pour prendre cette décision, le coordinateur peut également utiliser les

données P transmises par les investigateurs. Les coordinateurs rapportent l’évolution

de la sous mission au superviseur en utilisant des données de retour de type P.

Pour la modélisation de l’activité OIU nous avons défini une ontologie. Le con-

cept principal de cette ontologie est le concept Participant qui a plusieurs propriétés.

Les diffèrent types de participant (Supervisor, Coordinator, et Investigator) sont

modélisé en tant que sous-concepts dont chacun possède propriétés additionnelles.

Un Participant appartient a un Group qui est géré par un Manager. Un Manager

peut être un Supervisor qui gère un CoordinatorGroup ou un Coordinator qui gère

un InvestigatorGroup. L’autre concept important de cette ontologie est le concept

Entity. En effet, le concept Participant hérite du concept Entity qui peut être soit

Artificial soit Human. Plusieurs participants humains sont représentés par les con-

cepts : Fireman, Pilot, ou Walker. Plusieurs participants artificiels sont représenté par

les concepts : correspondant a des robots ou des véhicules (AmphibiousRobot, Drone,
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et GroundRobot).

Cette ontologie est liée à l’ontologie de collaboration à travers les concepts Flow et

Entity qui correspondent aux concepts de collaboration : CommunicationFlow et Node.

Nous avons utilisé l’ontologie pour décrire le contexte qui est liée à ontologie de l’activité

OIU à travers le concept Participant. Nous présentons un raffinement complet pour la

phase initiale de l’OIU. Nous avons expliqué le raffinement et les procédures de sélection

ainsi que des exemples présentant des adaptations a l’évolution du contexte externe et

des ressources de communication et d’exécution. Ces exemples montrent des situations

d’adaptation qui sont dues à l’évolution de l’environnement de l’activité.

6.5 Expérimentations et évaluations

Pour implanter notre approche, nous avons développé un moteur d’appariement de

transformation de graphes (GMTE : Graph Matching and Transformation Engine). Le

GMTE est un outil efficace que nous avons mis en œuvre en C++. Cet outil est basé

sur une extension de l’algorithme de Messmer [Mes95]. Il est capable de rechercher

des modèles de graphes petits et moyens dans des graphes de taille importante. Une

analyse de la complexité de notre algorithme de calcul a été effectuée qui a montré

sa performance. Nous avons également montré que, lorsque que les étiquettes sont

considérées comme des constantes, cette complexité est similaire à la complexité de

l’algorithme de Ullmann [Ull76]. Nous utilisons deux modèles de graphe : les graphes

de règles et les graphes hôte qui sont des graphes marqués. Un graphe de règles peut

être totalement ou partiellement instancié. L’unification est effectuée pour les étiquettes

non instanciées.

L’outil peut être utilisé d’une manière non-interactive, en tant que une bibliothèque

C++ qui fournit une API qui peut être invoqué à partir d’un programme C++ ou d’un

programme Java. L’outil peut être utilisé via un exécutable C++ qui lit un graphe de

règles et un graphe hôte à partir des fichiers TXT ou XML.

Le standard XML utilisé est GraphML (graphique Markup Language). GraphML

est un format de fichier basé sur XML pour les graphes. Il se compose d’un noyau qui

permet de décrire les propriétés structurelles d’un graphe et offre aussi un mécanisme

d’extension flexible pour ajouter des données spécifiques à l’application. Contrairement

à de nombreux autres formats de fichier pour la représentation des graphes, GraphML
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n’utilise pas une syntaxe personnalisées. En effet, il est basé sur XML et donc idéal

comme dénominateur commun pour tous les types de services de production, d’archivage

ou de traitement de graphes.

Notre outil a été associé à une interface utilisateur composé notamment des zones

et des éléments suivants:

• Une barre de menu offrant à l’utilisateur de nombreux éléments tels que la

création, la suppression et la sauvegarde des projets, des graphes et des règles.

• Une barre d’outils que l’utilisateur peut utiliser pour éditer des graphes et des

règles (sauvegarde, annuler, refaire ...).

• Un explorateur de projets donnant à l’utilisateur un arbre qui représente la liste

des projets, des graphes et des règles ouverts.

• Un panneau de composants contenant une liste de boutons pour créer des noeuds

et des liens.

• Une zone d’édition de graphes qui offre à l’utilisateur la possibilité d’ouvrir,

d’afficher et d’éditer des graphes hôtes.

• Une zone d’édition de règles qui offre à l’utilisateur la possibilité d’ouvrir,

d’afficher et d’éditer les règles.

• Une zone de visualisation des graphes transformés résultants des applications des

règles aux graphes hôtes.

Par ailleurs, nous avons étudié la reconfiguration dynamique des architectures ori-

entées services pour le maintien de la qualité de service dans les environnements com-

municants sensibles au contexte. Nous avons adopté un modèle d’architecture virtu-

alisée qui peut faire face au problème de l’adaptation de la communication demandeur-

fournisseur dans des situations différentes et à différents niveaux d’interaction. Notre

approche utilise la théorie des grammaires de graphes pour mettre en œuvre des règles

qui caractérisent l’ensemble des configurations candidates adaptées au contexte. Con-

trairement aux approches énumératives qui définissent l’ensemble des configurations

valides, notre approche est plus appropriée pour le passage à l’échelle qui caractérise

sans énumérer les configurations valides. Il peut gérer des applications Web dans une
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vision du monde ouverte comme dans les activités de collaboration où le nombre de

participants peut varier d’une manière incontrôlée et imprévisible.

Pour valider notre approche, nous avons effectué des expériences d’évaluation en

utilisant notre moteur GMTE et le moteur de règles Jess. Nous avons également simulé

également les attributs architecturaux quantitatifs. Pour ceci nous avons utilisé la

grille de calcul Grid’5000. Les grilles informatiques sont des plate-formes de calcul à

grande échelle, hétérogènes et distribuées. Le concept de grille informatique correspond

à la réalisation de vastes réseaux mettant en commun des ressources informatiques

géographiquement distantes. Les grilles de calcul permettront d’effectuer des calculs et

des traitements de données à une échelle sans précèdent. Le concept de grille peut en-

glober des architectures matérielles et logicielles très différentes, en fonction des objectifs

recherchés. La plate-forme Grid’5000 est une grille matérielle et logicielle, interconnec-

tant à très haut débit une dizaine de clusters de PC de grandes tailles. Pour fixer un

ordre de grandeur, chaque cluster peut comprendre 500 unités de calcul, d’où le total

de 5000 qui donne le nom de code du projet Grid’5000 [CCD+05].

Nous avons simulé différentes situations montrant l’efficacité de notre approche. Nos

résultats montrent qu’un participant l’OIU a plus de ressources pour poursuivre sa mis-

sion grâce notre approche d’adaptation. Les situations de déconnexion de participant

de la mission sont fortement réduites.

Nous avons évalué les temps d’exécution des règle SWRL notamment la règle de

mise en place de flux (c.f. Figure 4.17), nous avons expérimenté le temps de calculs des

reconfigurations architecturales notamment celles qui sont due aux modifications, des

membres d’un groupe (c.f. Figure 4.18).

Nous avons montré comment l’architecture de OIU s’adapte aux dégradations de

la communication. Nous montrons des résultats de simulation concernant l’adaptation

aux changements contexte que sont dus à l’évolution de la mission ou en raison des

contraintes de l’environnement (incendie par exemple) ou les nœuds (par exemple, pas

assez d’énergie).

6.6 Conclusion

La reconfiguration dynamique de l’architecture des applications communicantes collab-

oratives évoluant dans un environnement où le contexte est variable est un problème de
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recherche important que nous avons adessé dans nos travaux. Pour traiter ce besoin,

nous proposons une approche de modélisation multi-niveau pour la reconfiguration des

architectures. Nous proposons de gérer la reconfiguration en tenant compte des con-

traintes de niveau inférieur comme des exigences de niveau supérieur. D’abord, nous

définissons un modèle générique basé sur les ontologies comme un modèle pour la couche

application, et les règles SWRL comme un raffinement de la couche application vers la

couche collaboration. Ensuite, nous développons un modèle de graphe pour les couches

collaboration et middleware, et des productions de grammaires de graphes, pour la car-

actérisation, des architectures de la couche middleware qui raffine une architecture de

la couche collaboration. Nous proposons une technique d’adaptation aux changements

de l’état de ressources en conservant l’architecture de la couche application inchangée.

Cette technique d’adaptation nécessite deux actions : le raffinement et la sélection, ce

qui permet choisir la configuration optimale (la plus adapteé au contexte) parmi tous

les configurations possibles de la couche middleware.

Les événements qui provoquent l’adaptation sont relatifs au contexte de

l’environnement de l’application. Nous distinguons deux types de contexte : le contexte

externe incluant, par exemple, les préférences de l’utilisateur, la présence et la position

de l’utilisateur, la priorité de communications, etc., et le contexte lié aux ressources

d’exécution, par exemple, le niveau de batterie, la charge CPU, la mémoire disponible

de dispositifs utilisateurs, etc.

Nous avons utilisé les ontologies pour décrire le contexte et pour détecter les sit-

uations de collaboration possibles et décider quand les sessions doivent être créées,

adaptées, etc. Les politiques d’adaptation sont définies par au moyen de règles SWRL.

Ces règles permettent d’associer les transformations d’adaptation à l’évolution du con-

texte externe. Jess moteur est utilisé pour traiter les règles définies SWRL.

Nous avons développé un moteur d’appariement de transformation de graphes

(GMTE : Graph Matching and Transformation Engine). Le GMTE est capable de

rechercher de modèles de graphes petits et moyens dans des graphes de taille impor-

tante en peu de temps. L’outil peut être utilisé d’une manière non-interactive, en tant

que bibliothèque, en fournissant une interface qui peut être invoquée à partir d’un pro-

gramme externe. L’outil peut être utilisé en ligne de commande en lisant un graphe de

règle et un graphe hôte à partir de fichiers TXT ou GraphML.

Pour valider notre approche, nous avons effectué des expérimentations en utilisant

notre moteur GMTE et le moteur de règles Jess sur la grille de calcul Grid’5000.
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Nous avons simulé différentes situations de notre cas d’étude (les OIU) montrant

l’efficacité de notre approche. Nos résultats montrent qu’une machine gère mieux ces

ressources grâce notre approche d’adaptation. Les situations de déconnexion de par-

ticipant sont fortement réduites. Nous avons évaluée les temps d’exécution des règles

SWRL et les temps de calcul des reconfigurations architecturales dues aux modifica-

tions des membres d’un groupe. Nous avons montré comment l’architecture du système

de communication supportant une OIU s’adapte et résiste à la dégradation de la com-

munication face à une évolution des besoins liés la mission ou suite aux changements

de contexte liés à l’environnement.

De nombreuses questions restent encore ouvertes et nécessitent des investigations

complémentaires. Elles sont énoncées ci-après.

Pour combler l’écart entre la couche middleware et la couche infrastructure, il semble

opportun d’ajouter la couche transport. Le raffinement des entités des communications

en entités au niveau du transport est ainsi nécessaire. Des extensions de la procédure

de raffinement et des grammaires graphe devraient être une solution à cette question.

L’utilisation d’autres modèles pour la couche application est à considérer comme

l’utilisation de UML à la place des ontologies. Concernant la couche middleware,

l’utilisation d’un autre paradigme que les communications orientées évènements comme

les architectures pair à pair est aussi à étudier.

La définition des politiques de sélection les plus riches (en tenant compte d’autres

caractéristiques architecturales) est une perspective importante. Outre la dispersion et

le coût relatif des politiques qui exploitent les structurelles des architectures logicielles

serait intéressant.

Enfin, l’adaptation au contexte peut être encore plus étendue en ajoutant des con-

cepts plus pertinent à l’ontologie du contexte relatif a des contraintes transport par

exemple.
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collaboratifs”
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Les travaux de recherche effectués dans le cadre de cette thèse abordent les

problématiques d’auto adaptabilité ou d’auto configurabilité des applications dis-

tribuées dans des environnements machines et réseaux aux capacités et ressources

variables. Pour ce genre d’applications, et pour faire face aux ressources variables de

leur environnement d’exécution, il est nécessaire de pouvoir modifier leur architecture

interne pendant leur exécution, ce qui caractérise l’aspect dynamique et introspectif de

ces applications. De façon plus précise, la notion d’architecture dynamique caractérise

des applications dont les composants sont créés, interconnectés et supprimés pendant

l’exécution. Afin de garantir la validité des mises à jour de l’architecture, nous

avons recours à des techniques formelles. En particulier, les grammaires de graphes

représentent un moyen formel avec un pouvoir expressif suffisamment puissant pour

spécifier les aspects statiques et dynamiques des architectures. Pour pouvoir décrire

une architecture, nous nous basons sur l’approche ACG4 qui traite l’évolution dy-

namique des architectures logicielles par la transformation de graphe. Les architectures

dynamiques répondent à des contraintes liées à des variations de capacités de commu-

nication, de calcul et d’énergie, ainsi que des évolutions dans la nature des activités

qu’elles soutiennent telles que les activités de groupe d’utilisateurs mobiles de type

opération d’intervention d’urgence. Le caractère dynamique des architectures pose des

difficultés supplémentaires pour leur description. Dans ce manuscrit, nous proposons

de concevoir et de mettre en œuvre un environnement logiciel pour une “gestion guidée

par les modèles” des changements dans les architectures des applications distribuées

coopératives.

Les aspects adaptabilité des applications, les aspects transformations de graphe et les

aspects particuliers des applications distribuées coopératives sont étudiés. Un moteur de

transformation de graphes et un moteur de transformation d’architectures sont étudiés

et étendus dans le but de les valider. Une approche d’adaptation s’appuyant sur une

4Abstract Component Graph
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modélisation par les graphes et un style architectural de type Poducteur/Consommateur

est présentée pour des applications communicantes collaboratives sensibles au contexte.

Une démarche de raffinement est proposée permettant de garantir un certain degré

d’adaptabilité en faisant un compromis entre les différents paramètres du contexte.

Ces travaux de recherche ont aussi permis de définir un cadre algorithmique générique

de reconfiguration architecturale multi-niveaux pour la sélection des architectures de

déploiement les plus adaptées à un contexte et aux situations associées. Ce cadre

a été appliquée au cas de la communication et de la coopération de groupe. Elle a

aussi permis de modéliser le style architectural Producteur/Consommateur pour une

communication orientée évènement. Des règles d’adaptation ont été définies. Elles

comportent une partie basée sur SWRL5 pour la description du contexte et des règles

d’adaptation, et une partie basée sur les grammaires de graphes pour la transformation

des configurations de déploiement.

Enfin, nous avons apporté les modifications et les extensions nécessaires au moteur

de transformation d’architecture afin de l’adapter aux besoins des applications commu-

nicantes collaboratives et implanté le cadre algorithmique selon une technique guidée

par les modèles pour élaborer des politiques de reconfiguration correctes par construc-

tion. Nous avons développé des ontologies et des règles SWRL pour décrire le contexte

et le raisonnement lié à l’adaptation des configurations aux différentes situations.

5Semantic Web Rule Language
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Publications in French Spoken Conferences

[18] I. Bouassida. Approche d’adaptation au contexte pour les applications de com-
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Résumé 
 
Dans ce manuscrit, nous proposons de concevoir et de mettre en oeuvre un environnement 
logiciel pour une ``gestion guidée par les modèles'' des changements dans les architectures des 
applications distribuées coopératives. Les aspects adaptabilité des applications, les aspects 
transformations de graphe et les aspects particuliers des applications distribuées coopératives sont 
étudiés. Une approche d'adaptation s'appuyant sur une modélisation par les graphes et un style 
architectural de type Poducteur/Consommateur est présentée pour des applications 
communicantes collaboratives sensibles au contexte. Une démarche de raffinement est proposée 
permettant de garantir un certain degré d'adaptabilité en faisant un compromis entre les différents 
paramètres du contexte. Ces travaux de recherche ont aussi permis de définir un cadre 
algorithmique générique de reconfiguration architecturale multi-niveaux pour la sélection des 
architectures de déploiement les plus adaptées à un contexte et aux situations associées. Ce cadre 
a été appliqué au cas de la communication et de la coopération de groupe. Elle a aussi permis de 
modéliser le style architectural Producteur/Consommateur pour une communication orientée 
évènement. Des règles d'adaptation ont été définies. Elles comportent une partie basée sur SWRL 
pour la description du contexte et des règles d'adaptation, et une partie basée sur les grammaires 
de graphes pour la transformation des configurations de déploiement 
 
Mots clefs 
Reconfiguration dynamique, Grammaire de graphes, Collaboration, Système communicants 
adaptatifs. 
 
Abstarct 
 
In this work, we study dynamic reconfiguration of collaborative communicating applications. 
Providing generic and scalable solutions for automated self-reconfiguration in group 
collaboration support systems can be driven by rule-based reconfiguration policies. To achieve 
this goal, we elaborate a dynamic graph-based modelling approach and we develop structural 
models that can represent the different interaction dependencies from different configuration-
related point of views: communication flows between the distributed machines, the networked 
deployment nodes, and the service composition. Our solution is based on graph grammars 
rewriting. We provide graph transformation to specify rules for changing deployment architecture 
while being in conformance to an architectural style. In order to handle the complex design of 
communicating collaborative system architectures and the related adaptation issues, we propose a 
multi-layer modelling approach. This approach assures generic solutions for automatic context 
aware adaptation. Our approach is based on the observation that semantic data analysis that can 
be exploited to manage priorities and more generally to manage communications. This allows us 
to represent, in a richer way, the semantics of the managed systems. 
 
Keywords 
Dynamic Reconfiguration, Graphs Grammar, Collaboration, Communicating Systems 
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