
ÉCOLE CENTRALE DE LYON

ÉCOLE DOCTORALE Electronique, Electrotechnique, Automatique

Institut des Nanotechnologies de Lyon

Année : 2011 Thèse Numéro : 2011-26

Thèse
pour obtenir le grade de

DOCTEUR DE L’ÉCOLE CENTRALE DE LYON

Discipline : Electronique

présentée et soutenue par

Wan DU

le mercredi 14 septembre 2011

Modélisation et Simulation de Réseaux de

Capteurs sans Fil

Thèse dirigée par Ian O’CONNOR

JURY :

Lionel TORRES Professeur, Université Montpellier 2 Président
Hervé GUYENNET Professeur, Université de Franche-Comté Rapporteur
Cécile BELLEUDY Mâıtre de Conférences, Université de Nice-Sophia Antipolis Rapporteur

Fabien MIEYEVILLE Mâıtre de Conférences, École Centrale de Lyon Examinateur

David NAVARRO Mâıtre de Conférences, École Centrale de Lyon Examinateur

Ian O’CONNOR Professeur, École Centrale de Lyon Examinateur

To my parents and my sister

Acknowledgements

I would like to express my sincere appreciation to Prof. Ian O’connor, Dr. David

Navarroc and Dr. Fabien Mieyeville for their supervision, guidance and support

throughout my Ph.D. I am grateful to them for having shared so much of time and

insight in our weekly discussions. I have learned a lot from them.

I would also like to thank the China Scholarship Council (CSC) for the financial

support of my Ph.D studies. I am also thankful for the research facilities and support

provided by the Lyon Institute of Nanotechnology and Ecole Centrale de Lyon. I am also

grateful to the heterogeneous systems design group for providing travel support in order

for me to publish and present my research in many international conferences.

I wish to thank my colleagues of the heterogeneous systems design group, including

Junchen Liu who guided me for the work and life at Lyon when I first arrived in France,

Felipe Frantz, Vijayaragavan Viswanathan, Mihai Galos, Kotb Jabeur, Lioua Labrak,

Nataliya Yakymets, Zhenfu Feng and Nanhao Zhu who are always willing to share their

knowledge with me and have made it such an interesting place to work over the past

three years. I would also like to thank the two excellent engineers, Laurent Carrel and

Raphaël Lopez, for their technical supports of my research. Moreover, I won’t forget the

help from the secretaries, Ms. Patricia Dufaut and Ms. Nicole Durand, for their kindness,

availability and good humor that ease my thesis life.

Finally, I wish to thank my family and friends. Without their love and support, I can

never complete this thesis.

Résumé en français (Abstract in French)

Les évolutions des technologies du microsystème électromécanique (MEMS) et de

l’intégration à très grande échelle (VLSI) ont facilité le développement de capteurs

intelligents et de microprocesseurs et transceivers radiofréquence à faible puissance,

permettant l’essor des réseaux de capteurs sans fil (WSN: Wireless Sensor Networks)

ces dernières années. Un nœud de réseau de capteurs est généralement équipé d’un ou

plusieurs capteurs, une unité de calcul, une mémoire, une alimentation et d’une fréquence

radio (RF) transceiver. Divers phénomènes peuvent être mesurés, tels que les sons,

vibrations, humidité, pression ou température.

Les WSN ont été utilisés dans une large variété d’applications. Selon leurs

fonctionnalités, les applications peuvent être essentiellement classées en deux catégories:

les applications de surveillance et les applications de suivi. Diverses applications ont des

exigences différentes; par exemple, une application industrielle en temps réel nécessite

une latence faible de livraison de paquets, mais une autonomie d’une semaine est souvent

suffisante. En revanche, un système de surveillance de l’environnement à distance devra

avoir une durée de vie de plusieurs années avec un rapport cyclique faible. En raison de la

petite taille et des exigences de faible coût des nœuds, les ressources de nœuds de capteurs

telles que la capacité de traitement, le stockage et l’énergie, sont limités.

Pour mettre en œuvre de nouvelles applications, les techniques de réseau devraient

être étudiées afin de transmettre les données d’un nœud à un hôte qui peut être consulté

par les utilisateurs. Les protocoles de communication des réseaux de capteurs peuvent

être représentés en différentes couches, comme la couche d’application, de transport, de

réseau, de liaison de données et de physique. Chaque couche a plusieurs tâches spécifiques

et fournit des services à sa couche supérieure. Trois caractéristiques particulières rendent

la conception de protocoles WSN différents des autres réseaux sans fil (par exemle

informatiques). Un exeple est la source d’alimentation limitée qui nécessite des protocoles

WSN dédiés à l’économie d’énergie. Le dernier est le déploiement à grande échelle. Dans

un réseau composé de centaines ou de milliers de nœuds de capteurs, l’hôte peut être situé

hors de la portée de transmission de certains nœuds, ce qui nécessite la communication

multi-sauts (multi-hop).

Pour répondre aux diverses exigences des applications WSN, les concepteurs ont besoin

d’envisager un grand nombre de choix de conception au niveau du nœud (par exemple,

la consommation d’énergie des composants matériels et la capacité de traitement) et de

nombreux paramètres au niveau du protocole (par exemple, les algorithmes d’anti-collision

et des méthodes de routage). Comparée aux mesures sur banc de test, la simulation est

un moyen économique et rapide pour explorer de nombreuses solutions. La simulation est

actuellement la méthode la plus largement adoptée pour analyser les réseaux de capteurs.

En raison de l’énergie limitée sur les nœuds de capteurs, et afin de prolonger la durée

de vie du réseau, de nombreux efforts ont été efectués pour réduire la consommation

d’énergie du matériel, du logiciel, du protocole de communication et de l’application.

Par conséquent, il est nécessaire de prévoir avec précision la consommation d’énergie des

WSN, qui exige des modèles détaillés du matériel et du logiciel (HW/SW) des nœuds de

capteurs.

Beaucoup d’outils de simulation de WSN ont été développés en utilisant des

méthodes différentes telles que la simulation générale du réseau, l’émulation du système

d’exploitation (OS), la simulation d’instructions, et la simulation niveau système (SLDL).

Cependant, la plupart d’entre eux sont mis en œuvre dans les langages de programmation

génériques comme C++ et Java qui ne supportent pas directement la co-simulation

de HW/SW. Seul un petit nombre de simulateurs conçus en SLDLs supportent la

modélisation de la concurrence, de l’interruption et des primitives de synchronisation des

systèmes embarqués. Par exemple, SystemC est une bibliothèque en C++ qui permet la

conception d’un système matériel et logiciel. Il permet de modéliser le système embarqué

à différents niveaux d’abstraction et permettent aux concepteurs de se concentrer sur les

fonctionnalités du système en masquant les détails de communication et de calcul.

Par conséquent, afin de permettre la co-simulation matérielle / logicielle (HW/SW)

des nœuds et l’estimation précise de la consommation d’énergie des réseaux de capteurs, la

faisabilité et les avantages de l’utilisation de SLDLs dans la modélisation et la conception

de réseaux de capteurs sans fil doivent être étudiés. Un simulateur en SLDL pour les

WSN devrait être validé par des mesures expérimentales et évalué en comparant avec les

autres simulateurs existants de WSN.

Un simulateur de WSN en SystemC, nommée IDEA1 (hIerarchical DEsign plAtform

for sensOr Networks Exploration) a été développé. IDEA1 permet l’évaluation rapide

des performances d’un WSN au niveau système. Les résultats des simulations incluent le

taux de livraison de paquets (PDR: Packet Delivery Rate), la latence de transmission et la

consommation d’énergie. La principale caractéristique d’IDEA1 est la prédiction précise

de la consommation d’énergie. Le modèle d’énergie mis en œuvre dans IDEA1 prend

en compte les consommations de puissance de tous les modes opérationnels de chaque

composant matériel et les transitions entre ces différents modes.

Plusieurs plateformes de WSN, telless que MICAz et MICA2, sont modélisés. La

norme IEEE 802.15.4 est mise en œuvre. IEEE 802.15.4 a été largement utilisé dans

les applications de WSN, car il est conçu pour les communications bas débit et pour les

applications à faible consommation d’énergie en conformité avec les contraintes des WSN.

Quatre simulateurs de WSN en SystemC ont été développés, mais IDEA1 est le premier

simulateur en SystemC de WSN qui a été validé avec des mesures expérimentales et évalué

en comparant avec d’autres simulateurs. La validation des modèles de simulation est

nécessaire pour obtenir une précision suffisante et connue.LA comparaison avec d’autres

simulateurs peuvent évaluer les performances de IDEA1, principalement par rapport aux

aspects réseau.

Les contributions principales de cette thèse sont les quatre parties suivantes:

• Conception d’IDEA1: C’est un environnement de conception et de simulation

système pour les WSN. Il est développé en SystemC. L’architecture d’IDEA1 est

modulaire, donc de nouveaux modules (composants) peuvent être facilement mis

en œuvre et rajoutés. Beaucoup de paramètres au niveau système du nœud et au

niveau du réseau peuvent être configurés.

• Validation et évaluation d’IDEA1: Un banc d’essai de 9 nœuds de capteurs a été

construit pour valider les résultats de simulation d’IDEA1. Les simulations d’IDEA1

ont également été comparées avec NS-2, le simulateur le plus utilisé dans le domaine

des réseaux mobiles ad hoc (MANET). Les paramètres comparés sont la précision

de la simulation, l’analyse de la consommation et la vitesse de la simulation.

• Etude du réseau de capteurs IEEE 802.15.4: La performance d’un réseau de capteurs

IEEE 802.15.4 est étudié par IDEA1, y compris les taux de livraison de paquets,

la latence moyenne, la consommation d’énergie par paquets et la consommation

moyenne de puissance. De nombreux cas avec différentes configurations des

paramètres du protocole sont simulés.

• Etude d’une application industrielle: Dans ce projet, un réseau de capteurs sans fil

est déployé sur un véhicule pour mesurer les vibrations. Par la simulation d’IDEA1,

certaines conceptions préliminaires basées sur des protocoles de communication et

des plates-formes matérielles sont évaluées.

Cette thèse est organisée comme suit. Le chapitre 2 présente les réseaux de capteurs

sans fil par rapport aux applications, aux plates-formes matérielles, aux protocoles de

communication, à la modélisation et à la simulation. Une taxonomie des outils de

simulation WSN est proposée. L’état de l’art des simulateurs existants de WSN est résumé

selon le schéma de classification de la taxonomie. Le chapitre 3 décrit la conception

d’IDEA1. L’architecture, la mise en œuvre du modèle de simulation, les sorties, la

modélisation du réseau, et le modèle d’énergie sont expliqués en détail. Le chapitre 4

valide les résultats de la simulation et évalue la performance d’IDEA1. Les résultats de

simulation d’IDEA1 sont comparés avec certaines mesures expérimentales sur un banc

d’essai de 9 nœuds. Les performances d’IDEA1 ont également été comparés avec NS-2, le

simulateur le plus largement utilisé dans la recherche sur les WSN. Le chapitre 5 utilise

deux cas d’études pour montrer le flot de conception d’IDEA1. La performance du réseau

IEEE 802.15.4 du capteur est globalement évaluée. En outre, IDEA1 est également utilisé

pour étudier une application industrielle dans lequel un réseau de capteur sans fil est

déployé sur un véhicule pour mesurer les vibrations. Le chapitre 6 conclut cette thèse et

décrit des perspectives intéressantes.

Chapitre 2 Introduction au Réseau de Capteur sans Fil

Les réseaux de capteurs sans fil (WSN) sont des réseaux ad hoc de nœuds aux

ressources limitées qui sont déployés à différents endroits pour surveiller les conditions

physiques ou environnementales, comme la température, la vibration et le mouvement. Ce

sont des réseaux uniques en raison de ressources limitées (capacité de mémoire, de calcul

et d’énergie). Comme les nœuds sont souvent conçus pour fonctionner sur des périodes de

plusieurs mois ou années, l’énergie est la ressource la plus précieuse des nœuds. WSN ont

été employés dans beaucoup d’applications, tels que la surveillance de l’environnement,

les applications militaires et industrielles [1]. Différentes applications ont des exigences

différentes sur le matériel de capteur et les protocoles du réseau. La modélisation et

simulation ont été largement utilisées pour évaluer la performance des systèmes de WSN.

Dans la section 2.1, les applications de WSN sont introduites. Dans un passé récent,

les WSNs ont trouvé leur place dans une grande variété d’applications. Comme dans le

système de classification dans [2], les applications de WSN peuvent être essentiellement

classées en deux catégories: les applications de surveillance et les applications de suivi.

Dans les applications de surveillance, des réseaux de capteurs sont déployés dans un

endroit pour surveiller les phénomènes. Dans les applications de suivi, un ou plusieurs

nœuds de capteurs sont attachés à un objet cible et une infrastructure de réseau

de capteurs est déployée afin de détecter le mouvement de cet objet ou suivre ses

caractéristiques.

Dans la section 2.2, les plateformes matérielles actuelles disponibles sont étudiées.

Un nœud est normalement composé d’un ou plusieurs capteurs, une unité de traitement,

un transceiver radiofréquence(RF) et une ou plusieurs sources d’énergie. En plus de

la mesure, un nœud a besoin pour traiter les données d’une unité de traitement,

de transmettre les informations à d’autres nœuds grâce à son transceiver RF, en

consommmant le moins d’énergie de la batterie.

Dans la section 2.3, l’architecture du réseau et les protocoles de communication sont

analysés. LA couche MAC (Medium Access Control) définit les procédures de l’accès

au canal, afin d’éviter les corruptions de données et les collisions de paquets. Il assure

la fiabilité de la transmission entre deux nœuds en utilisant certaines retransmissions,

comme les accusés de réception (ACK). De plus, il détecte et corrige éventuellement les

erreurs qui peuvent survenir dans la couche inférieure.

Dans la section 2.4, les systèmes d’exploitation de WSN sont étudiés. Beaucoup

d’aspects essentiels de ces systèmes d’exploitation t sont résumés, y compris les

plateformes matérielles prises en charge, les langages de programmation, et la

reprogrammation.

Dans la section 2.5, une taxonomie des simulateurs existants de WSN est proposée. Il

partage les outils de simulation en quatre catégories selon leurs méthodes de modélisation.

Basée sur le système de classification de la taxonomie, une analyse sur les outils

existants de simulation est présentée. Basé sur l’analyse ci-dessus d’outils existants de

simulation de WSN, nous pouvons constater que la plupart des simulateurs sont mis

en œuvre dans les langages de programmation génériques comme C++ et Java qui ne

supportent pas directement la co-simulation du matériel et du logiciel de nœud. Les

simulateurs génériques de réseau se concentrent principalement sur l’étude des protocoles

de communication. Les émulateurs du système exploitation et les ISS (instruction set

simulator) peuvent accélérer la mise en œuvre du logiciel embarqué, mais elles impliquent

beaucoup de détails au bas niveau qui ne sont pas forcément disponibles au stade de la

conception. Les simulations à ce niveau ont normalement besoin d’une implémentation

exécutable de l’application finale et les protocoles. Seul un petit nombre de simulateurs

conçus dans SLDLs, tels que SystemC, peuvent fournir l’abstraction appropriée du

système final, mais aussi avec assez d’information détaillée sur le matériel et les opérations

du logiciel. En outre, la modélisation en SLDL est compatible avec le flot de conception

microélectrique.

SystemC fournit un support natif de modélisation simultanée, la hiérarchie

structurelle, les interruptions et les primitives de synchronisation des systèmes

embarqués [3]. Bénéficiant de la co-simulation de HW/SW, SystemC est plus approprié

pour la modélisation et simulation de WSN. A l’heure actuelle, quatre simulateurs en

SystemC de WSN [4, 5, 6, 7] ont été développés, mais aucun d’eux n’a été validé avec des

mesures expérimentales ou évalués globalement en comparant avec d’autres simulateurs.

Pour résoudre cette limitation, un nouveau simulateur en SystemC de WSN nommée

IDEA1 (plateforme de conception hiérarchique de réseaux de capteurs Exploration) a

été développé. Un banc d’essai de 9 nœuds a été construit pour valider les résultats de

simulation d’IDEA1. Les simulations d’IDEA1 ont également été comparés avec NS-2 qui

est le simulateur le plus utilisé dans la recherche de WSN mobile ad hoc (MANET) [8].

Chapitre 3 Conception et Implémentation d’IDEA1

Dans ce chapitre, un nouveau simulateur de WSN, nommé IDEA1 (hIerarchical DEsign

plAtform for sensOr Networks Exploration), est présenté. Les nœuds sont modélisés en

SystemC et leurs interconnexions en C++. SystemC est un langage de description niveau

système qui est largement utilisé dans la conception du système sur puce, par conséquent,

IDEA1 n’est pas seulement un simulateur, mais aussi un outil de conception de systèmes

pour WSN. Avec un modèle du nœud de capteur, il est possible d’évaluer la performance

du réseau. Quand les exigences du système final sont remplies, la mise en œuvre réelle de

la conception du système peut commencer à partir de cette description. IDEA1 fournit

aux concepteurs de systèmes des possibilités d’évaluer la performance du réseau avec

de nouvelles architectures à un stade précoce, et il permet également aux concepteurs de

simuler le protocole de communication sur des nouveaux nœuds, même si les plates-formes

matérielles sont encore en développement.

La section 3.1 présente brièvement SystemC. SystemC est une bibliothèque en C++

pour la conception du matériel et du système. Il peut être utilisé par les concepteurs

de systèmes complexes matériels et logiciels (HW/SW) [9]. Il supporte la co-design du

HW/SW à un niveau élevé d’abstraction. Cette évaluation de la performance primaire

donne au concepteur une compréhension fondamentale du système final à un stade précoce

du processus de conception.

La section 3.2 décrit l’architecture d’IDEA1. IDEA1 est un outil de simulation.

Chaque composant est modélisé comme un module individuel en SystemC qui

communique avec les autres via les canaux. Le noyau SystemC agit comme moteur de

simulation. Il planifie l’exécution des processus et des mises à jour de l’état de tous

les modules à chaque cycle de simulation. Tous les processus actifs sont invoqués au

même moment, ce qui crée une illusion de simultanéité. Les nœuds de capteurs sont

modélisés exactement comme leurs architectures. Les composants matériels d’un nœud de

capteur comprennent généralement un microcontrôleur, un transceiver, plusieurs capteurs

et une batterie. Chaque composante est modélisée comme un module individuel de

SystemC. IDEA1 comprend une bibliothèque qui contient de nombreuses implémentations

de plateformes matérielles existantes et de protocoles de communication. Il fournit

également un environnement graphique pour permettre aux utilisateurs une configuration

simple de la simulation et l’analyse des résultats.

La section 3.3 illustre la mise en œuvre d’IDEA1. Le microcontrôleur et le transceiver

RF sont modélisés comme des machines d’états finis (FSM). La FSM du microcontrôleur

est contrôlée par les interruptions générées par le transceiver et l’application. La transition

de l’état de transceiver est déclenchée par trois types d’événements, y compris le protocole

mis en œuvre, les commandes du microcontrôleur et les événements réseau. Le modèle de

réseau relie chaque nœud, gère la topologie du réseau et mise en œuvre de la propagation

des ondes radio. Le modèle de réseau établit un éventail de topologie à deux dimensions

basé sur cette information et les modèles de propagation radio. Dans IDEA1, chaque

état des composants matériels principaux dans un nœud de capteur est associé à une

consommation de courant. La durée et la consommation instantanée de chaque transition

entre deux états sont également identifiées. Pendant la simulation, les états de ces

composants sont mis à jour en fonction de l’exécution des logiciels et des événements

du réseau.

La section 3.4 présente les résultats de la simulation. Il y a deux types de sortie

de simulation dans IDEA1, y compris le log de simulation et le chronogramme des

événements. Le log de simulation est utilisé pour déboguer les implémentations du

modèle et montrer les comportements du réseau. Beaucoup de résultats statistiques des

comportements du réseau sont donnés à la fin du log de simulation, y compris les aspects

débit, latence de livraison de paquets, consommations de puissance et temps de simulation.

Pendant que la simulation est en cours, les états de tous les composants matériels et les

variables sont mises à jour en permanence et suivis dans un fichier (VCD), et peuvent

être affichées graphiquement en utilisant des outils de visualisation de forme d’onde.

Dans ce chapitre, un nouveau simulateur WSN niveau système, nommé IDEA1, est

présenté. Il est développé en SystemC et C++, ce qui rend la simulation compatible

au flot de conception des systèmes embarqués. Il permet l’exploration de l’espace de

conception à un stade précoce et permet une modélisation modulaire de nœuds de capteurs

et d’applications de WSN. Beaucoup de plateformes matérielles ont été modélisées et la

norme IEEE 802.15.4 a été mise en œuvre. Un modèle d’énergie a été proposé pour tous

les modèles de composants d’IDEA1.

Chapitre 4 Validation et Evaluation d’IDEA1

Dans ce chapitre, les performances d’IDEA1 sont évaluées, en particulier sous deux

aspects: la précision et le temps de simulation. Pour la validation de la précision, les

résultats de simulation d’IDEA1 sont comparés avec des mesures sur un banc d’essai

composé de 9 nœuds. La simulation d’IDEA1 est également comparée avec NS-2, le

simulateur le plus largement utilisé dans la recherche des WSN, y compris les comparaisons

des résultats de simulation et le temps de simulation.

La section 4.1 présente les paramètres utilisés pour évaluer les performances du

réseau. Quatre indicateurs sont utilisés pour évaluer les performances du réseau dans

les expériences et les comparaisons avec NS-2, dont le taux de délivrance des paquets

(PDR), le temps de latence moyen (AL), la consommation d’énergie par paquet (ECPkt)

et la consommation électrique moyenne (APC).

La section 4.2 décrit le banc d’essai et montre la comparaison entre les mesures et

les résultats de simulation. Un banc d’essai de 9 nœuds est construit. Deux types de

mesures ont été effectués. L’une est la mesure des consommations de tous les modes de

fonctionnement d’un nœud afin de calibrer le modèle d’énergie, qui sera utilisée dans la

simulation d’IDEA1. L’autre est la mesure sur le banc d’essai du réseau de 9 nœuds. Ce

réseau se compose de huit nœuds et un coordinateur. Les nœuds sentent l’environnement

périodiquement. La fréquence de lecture est présentée comme le taux d’échantillonnage.

L’application réalisée avec le banc d’essai a également été mis en œuvre dans IDEA1 avec la

même configuration. Pour évaluer les performances du réseau avec des rapports cycliques

différents, et la période d’échantillonnage est fixé à 10, 1, 0,1, 0,01 et 0,001 secondes

respectivement. La déviation moyenne des quatre métriques (PDR, AL, APC et ECPkt)

entre les simulations et les mesures est de 5,2%, 3,2%, 3,4% et 6,5% respectivement. Par

conséquent, la déviation moyenne entre les simulations et les mesures est de 4,6% qui peut

être accepté pour les simulations généraux au haut niveau.

La section 4.3 présente les résultats de simulation d’IDEA1 et de NS-2 sur un réseau

utilisant IEEE 802.15.4. De nombreux cas avec différentes configurations (principalement

BO et SO) et des taux d’échantillonnage ont été évalués. Des paramètres de l’algorithme

CSMA-CA (par exemple, macMinBE, macMaxCSMABackoffs, macMaxFrameRetries,

etc) sont définis avec les valeurs par défaut de la norme IEEE 802.15.4. Trois types

de résultats de simulation sont comparés, y compris NS-2, IDEA1 avec la modélisation du

matériel (IDEA1_ HW) et IDEA1 sans la modélisation du matériel (IDEA1_ NOHW).

Dans la dernière simulation, tous les paramètres matériels sont mis à 0. Comme le modèle

IEEE 802.15.4 de NS-2 ne considère pas le matériel, NS-2 et IDEA1_ NOHW sont au

même niveau d’abstraction. La déviation moyenne entre les IDEA1_ HW et NS-2 est de

26,7%, et celui entre IDEA1_ NOHW et NS-2 est de 4,8%. Le premier est plus grand

puisque l’information plus détaillée des opérations HW/SW a été considérée. La vitesse

de simulation des IDEA1 est 2 fois plus rapide que NS-2.

Chapitre 5 Cas d’études

Après la validation expérimentale de la précision et l’évaluation des performances,

IDEA1 est prêt à être utilisé dans des applications réelles. Il est d’abord utilisé pour fournir

l’évaluation du réseau IEEE 802.15.4 étudié dans le dernier chapitre. Les performances

d’IEEE 802.15.4 sont évaluées pour différents paramétrages. Enfin, IDEA1 est utilisé pour

étudier une application industrielle. Par la simulation, certaines conceptions préliminaires

basés sur les protocoles IEEE 802.15.4 et deux plates-formes matérielles différentes ont

pu être évaluées. Les quatre paramètres utilisés dans le chapitre 4, y compris les PDR,

AL, ECPkt et APC, sont évalués.

La section 5.1 propose une évaluation des performances du réseau IEEE 802.15.4 par

NS-2 et IDEA1. Selon l’étude dans la section 4.3, lorsque le taux d’échantillonnage est

petit, les nœuds dépensent trop d’énergie pour la recherche du paquet (traking) beacon.

Par conséquent, dans cette section, nous mettons en œuvre la même application, sans

tracking. Jusqu’à présent, BO est réglé sur 0, 1 et 2 respectivement, et SO est mis à 0.

Certaines autres configurations des paramètres du protocole et du mode non-beacon sont

également évalués pour trouver le meilleur choix de l’algorithme et la configuration des

paramètres pour des échantillonnages différents.

La section 5.2 étudie une application industrielle pour démontrer le flot de conception

et de la convivialité d’IDEA1. Un réseau de capteurs et actionneurs sans fil est déployé sur

une automobile pour mesurer et contrôler ses vibrations. La première tâche de notre travail

est de concevoir le réseau de capteurs. Au début, certains concepts préliminaires basés sur

plusieurs plates-formes matérielles et protocoles existantes doivent être examinées. Quatre

algorithmes MAC sont mises en œuvre, y compris IEEE 802.15.4 unslotted CSMA-CA,

IEEE 802.15.4 slotted CSMA-CA, IEEE 802.15.4 GTS et TDMA GTS. Deux plates-

formes matérielles ont été utilisées, N@L et MICAz.

Les algorithmes de CSMA-CA ne sont pas appropriés pour cette application en raison

du faible PDRs, qui est du au grand nombre de collisions. Le système se sature quand

le taux d’échantillonnage est trop élevé. Le PDR de l’IEEE 802.15.4 GTS est grand,

mais la latence est également très grande. Pour l’algorithme TDMA GTS, le PDR peut

atteindre 100%, mais ce réseau IEEE 802.15.4 ne peut pas répondre à l’exigence en temps

réel de cette application. Bien que la latence moyenne des paquets peut atteindre 7,0 ms,

le sizePayload est de 10 échantillons qui signifie que le premier échantillon de données

doit attendre au moins 17 ms avant d’être reçus par le coordonnateur. Cette latence

des données de capteurs est trop élevée pour générer un contrôle actif en temps réel.

Par conséquent, nous avons conclu que la norme IEEE 802.15.4 ne peut pas répondre à

l’exigence de cette application. Certains protocoles de communications à haute vitesse

doivent être étudiés.

Chapitre 6 Conlusions et Perspectives

Cette thèse a étudié la modélisation et la simulation de réseaux de capteurs sans fil.

Un nouveau simulateur WSN, nommé IDEA1, a été développé en SystemC.

Basé sur le support de la concurrence par SystemC, la hiérarchie structurelle, les

interruptions et les primitives de synchronisation, IDEA1 permet la co-simulation du

matériel et du logiciel des nœuds. En effet, les consommations d’énergie d’un nœud

individuel de capteurs et du réseau peuvent être prédites avec précision. Le modèle

d’énergie mis en œuvre dans IDEA1 prend en compte les consommations de puissance

de tous les modes de fonctionnement de chaque composant matériel et les transitions

entre les différents modes. Beaucoup de composants matériels, comme ceux composant

les plateformes MICAz et MICA2, sont modélisés. La norme IEEE 802.15.4 a été mise en

œuvre.

Premièrement, les résultats de simulation d’IDEA1 ont été comparés avec des mesures

expérimentales sur un banc d’essai de 9 nœuds, sur les aspects de taux de livraison

de paquets, latence moyenne, consommation d’énergie par paquets et consommation

moyenne de puissance. La déviation moyenne entre les simulations d’IDEA1 et les mesures

expérimentales est de 4,6% qui peut être accepté pour une simulation au niveau système.

Les performances d’IDEA1 ont également été comparées avec NS-2, le simulateur réseau

le plus largement utilisé dans la recherche de WSN. Bénéficiant de modèles matériels et

logiciels, IDEA1 fournit des informations plus détaillées sur les consommations d’énergie

que NS-2. Si les informations de certaines opérations matérielles relatives ne sont pas

prises en compte dans IDEA1, la déviation moyenne entre les simulations d’IDEA1 et

de NS-2 est de 4,8% ce qui prouve qu’IDEA1 peut fournir la même précision avec NS-

2. Toutefois, si les opérations matérielles relatives sont considérées dans la simulation

d’IDEA1, la déviation moyenne entre les simulations d’IDEA1 et NS-2 est de 26,7%. La

vitesse de simulation d’IDEA1 est 2 fois plus vite que NS-2.

Enfin, deux cas d’études ont été réalisés pour montrer la facilité d’utilisation et le flot de

conception d’IDEA1. La performance du réseau IEEE 802.15.4 a été entièrement évaluée.

Pour différentes charges de trafic, différents paramètres des protocoles sont simulés. En

outre, une application temps réel de contrôle actif des vibrations a également été étudiée.

Par les études de simulation d’IDEA1, le meilleur choix de protocole de communication

basés sur MICAz ou N@L a été trouvé.

Les travaux de recherche mis en œuvre dans cette thèse ont montré des résultats

intéressants. Toutefois, il y a beaucoup de recherches supplémentaires qui pourraient être

menées.

• Pour renforcer la capacité d’IDEA1 dans la modélisation des systèmes réels de WSN,

certains capteurs doivent être modélisés en SystemC.

• Le système d’exploitation est une partie importante du développement de logiciels

pour le système de WSN, par conséquent IDEA1 sera plus complet si on peut

modéliser le système d’exploitation. En outre, des modéles précis du logiciel, telles

que la simulation de jeu d’instructions, peut être étudiée.

• La simulation du réseau IEEE 802.15.4 a montré que cette norme est plus efficace

pour les applications à faible rapport cyclique. Donc, pour certaines applications

à haute fréquence d’échantillonnage, les protocoles de communication haut débit

doivent être étudiés.

• Les couches hautes, comme des couches réseau et transport, devraient être mises en

œuvre afin de permettre la simulation à grande échelle du réseau de capteurs.

• Les modèles de propagation radio dans la version actuelle d’IDEA1 ne contient

que deux modèles typiques. Certains modèles de propagation plus précis et plus

complexes doivent être mises en œuvre dans IDEA1.

• Le modèle de décharge de batterie dans la version actuelle d’IDEA1 est seulement

un processus linéaire. Certains modèles plus précis doivent être étudiés.

Contents I

Contents

II Contents

Contents III

Table of Contents . I

List of Figures . VIII

List of Tables . XIII

Chapter 1 : Introduction . 1

1.1 Brief Introduction to Wireless Sensor Networks 3

1.2 Research Motivation . 4

1.3 Research Contributions . 5

1.4 Selected Publications . 6

1.5 Thesis Structure . 8

Chapter 2 : Wireless Sensor Networks 11

2.1 Application Scenarios . 13

2.1.1 Monitoring Application Examples 14

2.1.2 Tracking Application Examples . 16

2.1.3 Summary . 17

2.2 Wireless Sensor Hardware Platforms . 18

2.2.1 Architecture of wireless sensor node 18

2.2.2 Hardware platforms . 20

2.3 Communication Protocols . 20

2.3.1 Introduction to Protocol Stacks . 22

2.3.2 Medium Access Control . 24

2.3.2.1 Synchronous MAC Protocols 25

2.3.2.2 Asynchronous MAC Protocols 27

2.3.2.3 IEEE 802.15.4 MAC protocols 28

2.3.3 Data Aggregation and Routing . 32

2.3.3.1 Network Topologies . 33

2.3.3.2 Routing Protocol for Mesh Topology 34

IV Contents

2.3.3.3 Routing Protocol for Cluster Topology 35

2.4 Operating Systems . 36

2.4.1 Characteristics of WSN Operating Systems 36

2.4.2 Summary of WSN Operating Systems 37

2.5 Modeling and Simulation . 40

2.5.1 Requirements of WSN Modeling and Simulation 41

2.5.2 A Typical Model of WSN System 42

2.5.3 A Taxonomy of WSN Simulation Tools 43

2.5.4 A Survey of WSN Simulation Tools 45

2.5.4.1 Network Simulators with Node Models 45

2.5.4.2 Node Emulators with Network Models 49

2.5.4.3 Node System Simulator with Network Models 51

2.5.4.4 Network Simulators with Node Emulators 53

2.5.5 Summary . 53

2.6 Conclusion . 56

Chapter 3 : Design and Implementation IDEA1 . 57

3.1 Modeling Wireless Sensor Networks with SystemC 59

3.1.1 Introduction to SystemC . 59

3.1.1.1 Features of SystemC . 60

3.1.1.2 SystemC Modeling Constructs 60

3.1.1.3 SystemC Simulation Kernel 61

3.1.2 Transaction Level Modeling . 62

3.2 IDEA1 Framework . 63

3.2.1 Architecture of IDEA1 . 63

3.2.2 Design Flow of IDEA1 . 65

3.2.3 Current Library . 66

3.2.4 Graphical User Interface . 71

3.2.5 IDEA1 Features . 72

Contents V

3.3 Simulation Model Implementations . 74

3.3.1 Sensor Node Modeling . 74

3.3.2 Microcontroller Model . 75

3.3.2.1 Model of ATMEL ATMega128 80

3.3.2.2 Model of Microchip PIC16LF88 82

3.3.3 Transceiver Model . 85

3.3.3.1 Transceiver Model of TI CC2420 and CC1000 86

3.3.3.2 Transceiver Model of Microchip MRF24J40 86

3.3.4 Network Modeling . 89

3.3.4.1 Packet Transmission . 90

3.3.4.2 Radio Propagation Model 90

3.3.5 Energy Model . 91

3.4 Simulation Output . 94

3.4.1 Simulation Log . 94

3.4.2 Event Sequence Tracing . 95

3.4.3 Sensor Data . 97

3.5 Conclusion . 98

Chapter 4 : Performance Evaluation of IDEA1 . . 99

4.1 Performance Metrics . 101

4.2 Experimental Validation . 102

4.2.1 Calibration of the Energy Model 102

4.2.2 A Testbed of Sensor Network . 103

4.2.2.1 Testbed Establishment 103

4.2.2.2 Testbed Measurements and Simulation Results 107

4.3 Performance Comparison with NS-2 . 111

4.3.1 Simulation Model Implementation of NS-2 and IDEA1 112

4.3.2 Simulation Results of NS-2 and IDEA1 114

4.3.2.1 Packet Delivery Rate . 115

VI Contents

4.3.2.2 Average Latency . 116

4.3.2.3 Average Power Consumption 118

4.3.2.4 Energy Consumption per Packet 119

4.3.2.5 Summary . 121

4.3.3 Simulation Time of NS-2 and IDEA1 121

4.3.4 Detailed Analysis of Power Consumptions by IDEA1 122

4.4 Conclusion . 124

Chapter 5 : Case Studies . 127

5.1 Performance Evaluation of IEEE 802.15.4 Sensor Network 129

5.1.1 Slotted CSMA-CA with Fixed SO and Various BO 130

5.1.1.1 Packet Delivery Rate . 130

5.1.1.2 Average Latency . 131

5.1.1.3 Average Power Consumption 134

5.1.1.4 Energy Consumption per Packet 135

5.1.1.5 Summary . 136

5.1.2 Slotted CSMA-CA with Equal SO and BO 137

5.1.3 Unslotted CSMA-CA . 140

5.1.4 Summary . 140

5.2 An Industrial Application . 143

5.2.1 Introduction to the Industrial Application 144

5.2.2 Preliminary Study . 145

5.2.3 Simulation Study . 147

5.2.3.1 Comparisons of MAC algorithms 148

5.2.3.2 Comparisons of Hardware Platforms 149

5.2.3.3 Detailed Analysis of Energy Consumption 150

5.3 Conclusion . 151

Chapter 6 : Conclusions and Future Works 153

Table of Contents VII

6.1 Summary of Work . 155

6.2 Future Works . 156

Appendix A : Modifications to the IEEE 802.15.4 NS-2 Model 161

Bibliography . 166

VIII List of Figure

List of Figure IX

List of Figures

X List of Figure

List of Figures XI

1.1 Overall structure of thesis . 9

2.1 A typical architecture of wireless sensor node 19

2.2 Protocol stack models: OSI Basic Reference Model [10], Zigbee stack [11]

and the sensor network protocol stack proposed in [12] 22

2.3 S-MAC Frame Format [13][14] . 25

2.4 IEEE 802.15.4 supported operation modes and algorithms 29

2.5 CSMA-CA algorithm of IEEE 802.15.4 [15] 30

2.6 The typical structure of a superframe [15] 31

2.7 Basic network topologies for wireless sensor network 33

2.8 A Typical Model of WSN System . 43

3.1 Architecture of IDEA1 . 64

3.2 Design flow of IDEA1 . 66

3.3 N@L node prototype . 69

3.4 Packet frame format of IEEE 802.15.4, redrawn from [15] 70

3.5 Graphical user interface of IDEA1: A network with 100 nodes is modeled

in this example . 72

3.6 A typical model of sensor nodes . 74

3.7 A typical model of microcontroller . 76

3.8 State machine for microcontroller of IEEE 802.15.4 MAC protocol 77

3.9 Algorithm for handling the concurrency of sensing and other operations . . 79

3.10 A typical model of transceiver . 85

3.11 Model of MRF24J40 in non-beacon mode with CSMA-CA algorithm . . . 87

3.12 Model of MRF24J40 in beacon mode with slotted CSMA-CA algorithm . . 88

3.13 Model of MRF24J40 in beacon mode with GTS algorithm 89

3.14 An example of simulation log . 95

3.15 An example of event sequence tracing . 96

3.16 Measured sensor data by N@L mote . 97

4.1 Hardware measurement configuration . 102

XII List of Figures

4.2 Testbed Measurement Configuration . 104

4.3 A typical wave record of current consumption of nodes 106

4.4 Measured and simulated results of PDR and AL 108

4.5 Measured and simulated results APC and ECPkt 109

4.6 A typical transmission process when sample rate is small 110

4.7 Simulation Results of Packet Delivery Rate by NS-2 and IDEA1 116

4.8 Simulation Results of Latency by NS-2 and IDEA1 117

4.9 Simulation Results of Power Consumption by NS-2 and IDEA1 119

4.10 Simulation Results of Energy Consumption per Packet by NS-2 and IDEA1 120

4.11 Simulation time of NS-2 and IDEA1 . 122

4.12 Power consumptions of hardware components in different operating modes 123

4.13 Power consumptions of hardware components for different tasks 124

4.14 Power consumptions of microcontroller for different tasks 125

5.1 Packet delivery rate of slotted CSMA-CA with fixed SO and various BO . 130

5.2 Latency of slotted CSMA-CA with fixed SO and various BO 131

5.3 Power consumption of slotted CSMA-CA with fixed SO and various BO . 134

5.4 Energy consumption per packet of slotted CSMA-CA with fixed SO and

various BO . 136

5.5 Simulated results of PDR and AL with SO equal to BO 138

5.6 Simulated results of APC and ECPkt with SO equal to BO 139

5.7 Simulated results of PDR and AL with nonbeacon-enabed mode 141

5.8 simulation results of APC and ECPkt with nonbeacon-enabed mode 142

5.9 M@L wireless sensor and actuator network infrastructure 144

5.10 Superframe structure for the TDMA-based GTS algorithm 146

5.11 Data fame structure of M@L application 147

5.12 An energy breakdown at component level 150

List of Tables XIII

List of Tables

XIV List of Tables

List of Tables XV

2.1 Wireless sensor hardware platforms . 21

2.2 Operating Systems for Wireless Sensor Networks 38

3.1 Input parameters of IDEA1 and their types 67

3.2 Outpt parameters of IDEA1 and their types 68

3.3 Current consumptions of MICAz mote [16][17] 93

3.4 Current consumptions of N@L mote [18][19] 93

4.1 Measured current consumptions of N@L motes (3.3 V VDD and 8 MHZ

clock frequency) . 103

5.1 Simulation results of Of MICAz and N@L motes 148

Chapter 1 : Introduction 1

Chapter 1 :

Introduction

2 Chapter 1 : Introduction

Chapter 1 : Introduction 3

1.1 Brief Introduction to Wireless Sensor Networks

With the advances in Micro-Electro-Mechanical Systems (MEMS) and Very-Large-Scale

Integration (VLSI) technologies which have facilitated the development of smart sensors

and compact low-power microprocessors and radio frequency transceivers, Wireless Sensor

Networks (WSNs) have gained worldwide attention in recent years. A sensor node is

typically equipped with one or more sensors, a processing unit, memory, a power supply

and a Radio Frequency (RF) transceiver [2]. Sensors are devices that can measure a

physical quantity and convert it into a signal which can be read by a processing unit.

Various phenomena can be measured, such as sound, vibration, humidity, pressure and

temperature.

WSNs have been used in a wide variety of applications. According to their

functionalities, WSN applications can be mainly classified into two categories:

monitoring applications and tracking applications [2]. Different applications have diverse

requirements; for example, a real-time industrial application requires short packet delivery

latency, but a lifetime of weeks is often enough. In contrast, a remote environment

monitoring system prefers a long lifetime of years with a low duty cycle. Due to the small

size and low cost requirements of sensor nodes, the resources of sensor nodes, such as

processing capability, storage and energy supply are limited [12].

To enable and implement new applications, networking techniques should be

investigated in order to transmit the sensor data to a host which can be accessed by

users. The communication protocols of WSNs can be realized in different layers, such as

application layer, transport layer, network layer, data link layer and physical layer. Each

layer has several specific tasks and provides services to its upper layer. Three special

features make the design of WSN protocols different from other wireless networks. One

is the limited power supply that requires the WSN protocols should be energy efficient.

Another one is self-organizing. Some applications need to randomly deploy sensor nodes,

which require the sensor network protocols and algorithms possess the self-organizing

4 Chapter 1 : Introduction

capabilities. The last one is the large scale deployments. In a network consisting of

hundreds or thousands of sensor nodes, the host may be located outside of the transmission

range of some sensor nodes, which necessitates the multi-hop communications.

To meet the diverse requirements of WSN application, designers need to consider

a great number of node-level design choices (e.g., energy consumption of hardware

components and processing capability) and many protocol-level parameters (e.g., anti-

collision algorithms and routing approaches). Compared to testbed and analytical

methods, simulation is a cheap and quick way to perform many experiments with different

hardware prototypes and network settings [20]. Simulation is currently the most widely

adopted method of analyzing WSNs [21].

1.2 Research Motivation

Due to the limited energy supply on sensor nodes, in order to extend the network lifetime,

many efforts have been taken to reduce the energy consumptions of hardware, software,

communication protocols and applications. Therefore, it is necessary to accurately predict

the energy consumption of WSN, which requires detailed models of the hardware and

software (HW/SW) of sensor nodes.

Many simulation tools for WSN have been developed by using different methodologies

such as general purpose network simulation, Operating System (OS) emulation,

instruction set simulation and System-Level Description Language (SLDL). However, most

of them are implemented in general programming languages such as C++ and Java that do

not support directly the HW/SW co-simulation. Only a few simulators designed in SLDLs

provide native support to model concurrency, pipelining, structural hierarchy, interrupts

and synchronization primitives of embedded systems [3]. As a SLDL, SystemC is a C++

class library for system and hardware design [9]. It can model the embedded system at

different abstraction level and allow designers to focus on the system functionalities by

hiding the unnecessary details of communication and computation.

Chapter 1 : Introduction 5

Therefore, in order to enable the HW/SW co-simulation of sensor nodes and accurate

energy consumption estimations of sensor networks, the feasibility and advantages of

using SystemC or other SLDLs in the modeling and design of wireless sensor networks

need to be investigated. The proposed SLDL-based WSN simulators should be validated

by experimental measurements and evaluated by comparing with other existing WSN

simulators.

1.3 Research Contributions

A novel SystemC-based WSN simulator named IDEA1 (hIerarchical DEsign plAtform for

sensOr Networks Exploration) is developed. IDEA1 allows rapid performance evaluation

of WSN systems at system-level. The simulation results include packet delivery rate,

transmission latency and power consumption. The key feature of IDEA1 is the accurate

prediction of energy consumption of each sensor node and the whole network. The energy

model implemented in IDEA1 takes into account the power consumptions of all operation

modes of each hardware component and transitions between different modes.

Many commercial off-the-shelf (COTS) hardware components, such as MICAz and

MICA2, are modeled. The IEEE 802.15.4 standard [15] is implemented. IEEE 802.15.4

has been widely used in WSN applications since it is designed for low data rate, short

distance, and low power consumption applications in conformity with the constraints of

WSN systems [22].

Although, four SystemC-based WSN simulators [4, 5, 6, 7] have been developed;

however, IDEA1 is the first SystemC-based WSN simulator that has been validated

with experimental measurements and evaluated by comparing with other simulators.

Properly validating simulation models against the real-world implementation is necessary

to mitigate many of the problems of simulation, such as package differences, incorrect

parameter settings, and improper level of detail [23]. Comparison with other simulators

can evaluate the performances of IDEA1 in aspects of simulation time, level of detail,

6 Chapter 1 : Introduction

usability, etc.

The major contributions of this thesis are the following four parts:

• Design of IDEA1: It is a validated SystemC-based system-level design and

simulation environment for WSN systems. The architecture of IDEA1 is well

designed as a component-based framework so that new modules can be easily

implemented and added. Many system parameters at both sensor node and network

levels can be configured.

• Validation and Evaluation of IDEA1: A testbed of 9 sensor nodes has been built to

validate the simulation results of IDEA1. The implementations of IDEA1 are refined

many times so as to limit the average deviation between the IDEA1 simulations and

the experimental measurements within an acceptable range. The simulations of

IDEA1 have also been compared with NS-2, the most used simulator in Mobile

Ad hoc NETwork (MANET) research [8], in aspects of simulation accuracy, power

consumption analysis and simulation speed.

• Simulation study of IEEE 802.15.4 sensor networks: The performance of IEEE

802.15.4 sensor network is studied by IDEA1, including packet delivery rate, average

latency, energy consumption per packet and average power consumption. Many

cases with different configurations of protocol parameters and network traffic loads

are simulated.

• Simulation study of a real vibration control application: In this project, a wireless

sensor and actuator network is deployed on a vehicle to measure and control

vibrations. By the simulation of IDEA1, some preliminary designs based on different

communication protocols and hardware platforms are evaluated.

1.4 Selected Publications

The research in this thesis has contributed to the following publications:

Chapter 1 : Introduction 7

1. W. Du, F. Mieyeville, D. Navarro, and I. O’connor, ”IDEA1: A Validated SystemC-

based System-level Design and Simulation Environment for Wireless Sensor Networks,”

EURASIP Journal on Wireless Communications and Networking, to appear

2. D. Navarro, W. Du, and F. Mieyeville, ”System-level Graphical Simulations for Wireless

Sensor Networks Design Space Exploration,” The Mediterranean Journal of Computers

and Networks, to appear

3. W. Du, D. Navarro, F. Mieyeville, and I. O’connor, ”IDEA1: A Validated System-level

Simulator for Wireless Sensor Networks,” In Proc. the 8th IEEE International Conference

on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2011), the 4th International

Workshop on Wireless Sensor, Actuator and Robot Networks (WiSARN-Fall), Valencia,

Spain, 17-22 October, 2011. to appear

4. F. Mieyeville, W. Du, and D. Navarro, ”Wireless Sensor Networks for active control noise

reduction in automotive domain,” the 14th International Symposium on Wireless Personal

Multimedia Communications, Brest, France, 3-6 October, 2011. to appear

5. D. Navarro, F. Mieyeville, W. Du, M. Galos and I. O’connor, ”Towards a Design

Framework for Heterogeneous Wireless Sensor Networks,” In Proc. 1st International

Symposium on Access Spaces (IEEE-ISAS 2011), Yokohama, Japan, 17-19 June 2011.

6. W. Du, F. Mieyeville, and D. Navarro, ”Modeling Energy Consumption of Wireless Sensor

Network by SystemC,”In Proc. the 5th International Conference on Systems and Networks

Communications (ICSNC 2010), IEEE Press, Nice, France, Aug. 22-27, 2010. (Best

Paper)

7. W. Du, D. Navarro, and F. Mieyeville, ”A Simulation Study of IEEE 802.15.4 Sensor

Networks in Industrial Applications by System-level Modeling,” In Proc. the 4th

International Conference on Sensor Technologies and Applications (SENSORCOMM

2010), IEEE Press, Venice/Mestre, Italy. July 18-25, 2010.

8. W. Du, F. Mieyeville, and D. Navarro, ”IDEA1: A SystemC-based System-level Simulator

for Wireless Sensor Networks,” In Proc. IEEE International Conferece on Wireless

8 Chapter 1 : Introduction

Communications, Networking and Information Security (WCNIS2010), IEEE Press,

Beijing, China. June 25-27, 2010.

9. D. Navarro, W. Du, F. Mieyeville, and F. Gaffiot, ”A Complete System-level Behavioural

Model for IEEE 802.15.4 Wireless Sensor Network Simulations” In Proc. the IEEE

International Symposium on Circuits and Systems (ISCAS2010), IEEE Press, Paris,

France. May 30-June 2, 2010.

10. W. Du, D. Navarro, F. Mieyeville, and F. Gaffiot, ”Towards a Taxonomy of Simulation

Tools for Wireless Sensor Networks,” In Proc. the 3rd International ICST Conference on

Simulation Tools and Techniques (SIMUTools 2010), ICST, Malaga, Spain. Mar. 15-19,

2010.

11. F. Mieyeville, W. Du, D. Navarro, and O. Bareille, ”Wireless Sensor Network for active

vibration control,” In Proc. the 1st International Conference on Passives and Actives

Mechanical Innovations in Analysis and Design of Mechanical Systems (IMPACT 2010),

Djerba, Tunisia. Mar. 22-24, 2010.

12. W. Du, D. Navarro, F. Mieyeville, and F. Gaffiot, ” IDEA1: Un Simulateur au Niveau

Système pour Réseaux de Capteurs sans Fil,” Journées Nationales du Réseau Doctoral en

Microélectronique, Montpellier, France, June 7-9, 2010

13. W. Du, F. Mieyeville, D. Navarro, and F. Gaffiot, ”Un Environnement de Simulation

de Réseaux de Capteurs sans Fil,” Ecole d’hiver Francophone sur les Technologies de

Conception des Systèmes embarqués Hétérogènes, Chamonix - Mont Blanc, France,

January 11-13, 2010.

1.5 Thesis Structure

The overall structure of this thesis is shown in Fig. 1.1

Chapter 2 introduces the wireless sensor networks with respect to applications,

hardware platforms, communication protocols, modeling and simulations. A taxonomy

Chapter 1 : Introduction 9

Fig. 1.1: Overall structure of thesis

of WSN simulation tools is proposed. A survey of the existing simulators for WSN is

provided according to the classification scheme of the taxonomy.

Chapter 3 describes the design of IDEA1. The architecture and design frame, model

implementation and simulation outputs will be explained in detail.

Chapter 4 validates the simulation results and evaluates the performance of IDEA1.

The simulation results of IDEA1 are compared with some experimental measurements on

a testbed of 9 nodes. The performances of IDEA1 have also been compared with NS-2,

the most widely used simulator in WSN research.

Chapter 5 uses two case studies to show the usability and design flow of IDEA1. The

performance of IEEE 802.15.4 sensor network is comprehensively evaluated by IDEA1. In

addition, IDEA1 is also used to study a real-time industrial application in which a wireless

sensor and actuator network is deployed on a vehicle to measure and control vibrations.

Chapter 6 concludes this thesis and outlines the activities of future research.

10 Chapter 1 : Introduction

Appendix A lists the modifications we have made to the IEEE 802.15.4 NS-2 model [24]

and [25] in release 2.34. It has been improved, since it was built complying with an

earlier standard edition (IEEE 802.15.4 draft D18), which has been replaced by the latest

revised release IEEE Std 802.15.4-2006 [15]. Moreover, some bugs are fixed and several

new functions are added.

Chapter 2 : Wireless Sensor Networks 11

Chapter 2 :

Wireless Sensor Networks

12 Chapter 2 : Wireless Sensor Networks

Chapter 2 : Wireless Sensor Networks 13

Wireless sensor networks (WSN) are large-scale ad hoc networks of resource-

constrained sensor nodes that are deployed at different locations and could cooperatively

monitor the physical or environmental conditions, such as temperature, vibrations and

motions. They are unique networks due to restricted resources (memory, energy, and

processing ability). As nodes are often expected to operate over periods of many months

or years and be self-powered, the energy is the most precious resource of the nodes.

Considerable researches are being undertaken into the development of energy-efficient

application, hardware, protocols and software. WSNs have been employed in a wide range

of application domains, such as health-related deployments, environment monitoring,

industry and military applications [1]. Different applications have different requirements

on wireless sensor hardware and network protocols. Simulation methods have been widely

used for evaluating the performance of WSN systems.

In this chapter, the background of WSN research is investigated. This chapter is

organized as follows. Firstly, in section 2.1, the applications of WSN are introduced.

Secondly, in section 2.2, the current commercially-available hardware platforms of wireless

sensor nodes are investigated. Thirdly, in section 2.3, the network architecture and

communication protocols, especially these of media access control and network layers,

are analyzed. Fourthly, in section 2.4, the operating systems of WSN are studied. Fifthly,

in section 2.5, a model of WSN system is provided. Based on this model, a taxonomy

of the existing WSN simulators is proposed. It categorizes the existing simulation tools

into four classes according to their modeling methodologies and their target applications.

Based on the classification scheme of taxonomy, a survey of the existing simulation tools

is presented. Finally, in section 2.6, this chapter is concluded.

2.1 Application Scenarios

In the recent past, wireless sensor networks have found their way into a wide variety

of applications with vastly varying requirements and characteristics. As the classification

14 Chapter 2 : Wireless Sensor Networks

scheme in [2], according to their functionalities, WSN applications can be mainly classified

into two categories: monitoring applications and tracking applications. In monitoring

applications, sensor networks are deployed in a location to monitor the phenomenas in

this area. In tracking applications, one or more sensor nodes are attached to a targeted

object and one infrastructure sensor network is deployed to detect the movement of this

object or to estimate its location. In the following two subsections, some typical examples

of these two kinds of applications are introduced.

2.1.1 Monitoring Application Examples

Macroscope of Redwood [26] is a case study of a wireless sensor network that

measures some environmental parameters (e.g., air temperature, relative humidity and

photosynthetically active solar radiation) surrounding a 70-meter tall redwood tree,

at a density of every 5 minutes in time and every 2 meters in space. The network

captured a detailed picture of the complex spatial variation and temporal dynamics of

the microclimate surrounding a coastal redwood tree. The collected data can be used to

validate biological theories. The hardware platform used in this application is Mica2Dot,

a repackaged Crossbow Mica2 mote [27].

The reliable clinical monitoring system [28] uses a wireless sensor network to measure

the heart rate and blood oxygenation of patients. The network is composed of a base

station, a set of relays, and sensor nodes attached to patients. The sensor data are

collected to the base station by the wireless multihop communications among the relay

nodes. The relay and patient nodes are based on Crossbow TelosB mote [29]. This

system was deployed in a step-down cardiology unit over seven months involving forty one

patients. It achieved high reliability in both network and sensing aspects. The fraction of

packets delivered to the base station can attain 99.68% and 80.85% of these packets have

valid pulse and oxygenation readings.

An industrial Predictive Maintenance (PdM) sensor network is deployed in [30] and

Chapter 2 : Wireless Sensor Networks 15

[31] to measure the vibrations and monitor the health status of equipments in a central

utility support building at a semiconductor fabrication plant. The vibrations are measured

by Wilcoxon model 786A sensors with Integrated Circuit Piezo (ICP) accelerometers.

Two platforms are used: one based on Crossbow Mica2 Motes [27] and the second on

Intel Motes [30]. Sensor nodes form clusters around gateway nodes which are within an

802.11 network providing high speed and highly-reliable backbone to relay sensor data to

enterprise server. Six clusters are deployed. Each cluster included several nodes (up to

10 motes) and each mote had about 5 sensors attached. The motes wake up at regular

intervals to capture and send data to their gateway node. The application lasted for 7

days. One data collection was performed to transmit 3000 vibration samples every hour.

Time and frequency domain waveform analysis of vibration data can identify changes in

amplitude and frequency patterns, suggesting repair or replacement.

Volcanic monitoring [32] extends the WSN applications to some environments that

humanity is not able to reach. A network consists of 16 sensor nodes was deployed on

Volcàn Reventador in northern Ecuador. Each sensor node is a T-mote sky device [33]

equipped with a seismoacoustic sensor. Sensor nodes are placed approximately 200-400

m apart from each other. Nodes relay data via multi-hop routing to a gateway node that

connected to a long-distance Free-Wave radio modem transmits the collected data to the

base station. During network operation, each sensor node samples two or four channels

of seismoacoustic data at 100 Hz. The data is stored in local flash memory. When an

interesting event occurs, the node will route a message to the base station. During the

19-day deployment, the network captured 230 volcanic events and retrieved 61% data.

PinPtr [34] is an example of military application which uses a WSN based on Crossbow

Mica2 Motes [27] running TinyOS [35] to locate snipers and the trajectory of bullets. The

system consists of sensor nodes that measure the muzzle blast and measure the time of

arrival (TOA) of acoustic shock waves. The sensor nodes form a multi-hop ad hoc network

that can deliver the measured TOA to a base station (typically a laptop computer), where

the sensor fusion algorithm calculates the shooter location with an accuracy within one

16 Chapter 2 : Wireless Sensor Networks

meter, and with a latency of less than two seconds.

The first three examples are normal monitoring applications that collect some

environment parameters periodically and sent the sensor data to a host to help scientists

to have a comprehensive and accurate control of environment. Volcanic monitoring and

PinPtr are security monitoring applications that also sense the environment frequently,

but the sensor nodes only transmit a data report when there is an interesting event occurs.

2.1.2 Tracking Application Examples

InTrack [36] is a cooperative tracking system that is able to locate a moving sensor

node with high accuracy over large areas. The radio-interferometric ranging technique,

q-range algorithm, proposed in [37], is used to calculate the location of target node.

In this algorithms, the target node and a second transmitter from the infrastructure

nodes transmit unmodulated high frequency sine waves at slightly different frequencies

concurrently. Two other infrastructure nodes, referred to as measuring nodes, can capture

the low beat frequency of the composite interference signal. The relative phase offset of

these two measuring nodes depends only on the distances between the four nodes. The

locations of the three infrastructure nodes are know; therefore, the location of target

node can be calculated by the relative phase offset of the two infrastructure nodes. After

obtaining the frequency and phase of the periodic interference signal, the two measuring

nodes route all measured data to a PC server. The q-ranging algorithm is executed on

the server and the location of the tracked node is computed. The system is tested in a

football stadium using 12 Crossbow XSM motes [38]. The location errors can be limited

into a small range, from 0.34 to 0.71 meter.

Sensor-network-based Vehicle Anti-Theft System (SVATS) [39] is a typical vehicle

alarming and tracking system. Three networks are implemented to achieve the alarming

and tracking tasks. The first one is formed by all sensors in vehicles parked in the same

parking area. Each vehicle is equipped with a wireless sensor nodes powered by the

Chapter 2 : Wireless Sensor Networks 17

vehicle. Each node is monitored by its neighbors which can identify possible vehicle

thefts by detecting unauthorized vehicle movement. When an abnormal phenomenon

occurs, this network will report the problem to a base station which in turn automatically

sends a warning message to the security officer. The second network is used to track the

stolen vehicle on road. It is composed of the sensor node within the vehicle and several

roadside wireless access points. The sensor node within the vehicle can detect its own

unauthorized movement by using movement sensors or by measuring sensor signal of its

neighbors, and hence report problems to the roadside wireless access points. The third

network is used in case the sensor node within the vehicle, referred to as master sensor,

is destroyed by the thief. Some more sensor nodes are deployed at several hidden places

inside the vehicle to monitor the master sensor and to report vehicle theft when master

sensor is destroyed.

2.1.3 Summary

Kay Romer et al. [40] use the dimensions in the design space to analyze the application.

They divided the design space into twelve dimensions, such as deployment, mobility,

lifetime, network topology, coverage, cost and size of nodes. Each dimension presents

one aspect that may impact the hardware, software and network protocols design. For

example, the topology affects many network characteristics such as latency, robustness,

capacity and complexity of data routing and processing; the resource constraints of nodes

limit the complexity of the software executed on sensor nodes.

Based on the above analysis of application, some requirements of WSN applications

are summarized as follows.

• Low cost : Large sensor network deployments require the sensor nodes be designed

as cheap as possible. In order to reduce the cost of nodes, the hardware should be

simple; this brings a limited process capacity and energy support.

• Energy efficiency : Depending on the application, the required lifetime of a sensor

18 Chapter 2 : Wireless Sensor Networks

network may range from some hours to several years. Since most of the existing

nodes are powered by battery, the energy is the most precious resource of nodes.

The software and the network protocol be energy-efficient.

• Real-time: in some applications, especially industrial applications, the collection of

sensor data should be completed within a short time to ensure the usability of data.

• Fault tolerant : the network system should be robust against environment change

and node failure (running out of energy, physical destruction, hardware and software

issues etc).

• Security : in some applications, especially military applications, the access to the

radio information should be strictly controlled, and unauthorized changes to the

message shall be detected and prevented.

• Reprogrammability : the remotely reprogramming of sensor nodes is necessary to

some applications where the physical touch of nodes is impossible.

2.2 Wireless Sensor Hardware Platforms

Wireless sensor nodes are the essential ingredient for a sensor network. Applications

and communication protocols are implemented on them. In this section, we first present

a typical architecture of wireless sensor node, and then introduce many commercially

available sensor nodes.

2.2.1 Architecture of wireless sensor node

A wireless sensor node is normally composed of one or more sensors, a processing unit, a

radio frequency (RF) transceiver and one or more power supplier. Despite of what they

are measuring with sensors, a node needs to process the data by a processing unit, to

transmit the information to other nodes through its RF transceiver and to take care of

Chapter 2 : Wireless Sensor Networks 19

how much energy is available in its battery [1]. A typical architecture of sensor node is

presented in Fig. 2.1.

Fig. 2.1: A typical architecture of wireless sensor node

Due to the cost and size constraints of sensor nodes, replaceable or large energy

resources is infeasible. The main challenge of the hardware design is to produce low

cost and energy-efficient sensor nodes. Ultra-low power operation is one of the main

design goals of sensor node hardware platforms [29].

Sensors used in WSN systems are devices that can measure a physical quantity and

converts it into a signal which can be read by a processing unit. Various phenomena can

be measured, such as sound, vibration, humidity, pressure and temperature. Because the

limited power supply of wireless sensor nodes, the processing units are normally 8 or 16

bits low power microcontrollers. Benefiting from the high growth of large scale integrated

circuit, current RF transceivers can provide more complete implementation of wireless

communication, normally including full hardware support of low level protocols (e.g.,

physical layer) and partially support of high level protocols (e.g., media access control

and network). Currently, frequencies used for WSN mainly include 315 MHz, 433 MHz,

868 MHz (Europe), 915 MHz (North America) and 2.45-GHz frequency band.

20 Chapter 2 : Wireless Sensor Networks

2.2.2 Hardware platforms

Many wireless sensor nodes have been developed by both academic organizations and

commercial companies. Each node has its own capabilities and features such as

power consumption, communication protocol support. An overview of commonly used

sensor node hardware platforms is available in [41]. Some typical platforms have been

summarized in Table 2.1.

Motes developed at the University of California, Berkeley and commercialized through

Crossbow Technology Inc., such as MICA and Telos series, have been widely used through

their flexible interfacing, small size and reasonable cost. A good background to the

family of motes is given by Polastre et al. [29]. TelosB is a low-power MSP430-based

platform. Imote2 is a high-bandwidth sensing platform featuring an enhanced processor

and larger memory. BTnode features in two different RF transceivers in the same node,

Bluetooth supported Zeevo ZV4002 and low power CC1000. It has also been used in many

applications, such as the remotely monitor of the physiological signals of a patient [46].

2.3 Communication Protocols

A wireless sensor network consists of numerous sensor nodes that are usually scattered in

a sensor field. Sensor nodes measure some environmental parameters and send the data

to a sink. The sink is a node that is in charge of collecting the sensor data of nodes and

sending the collected data to a base station through Internet or satellite networks. If the

sink is located out of the propagation range of a sensor node, some other nodes are used

to route the packet to its destination.

Communication protocols are fundamental to the research and design of WSN systems.

In this section, the architecture of WSN protocol stack is investigated and a brief summary

of existing protocols commonly used in each stack layer is presented. At the same time,

two widely adapted standards (ZigBee [11], IEEE 802.15.4-2006 [15]) are introduced.

C
h
ap

ter
2
:
W

ireless
S
en
sor

N
etw

ork
s

21

Tab. 2.1: Wireless sensor hardware platforms

Motes MICA2 [27] MICAz [42] TelosB [43] Imote2 [44] BTnode [45]
Microcontroller
Type Atmega128L ATmega128L TI MSP430 Intel PXA271 XScale ATmega128L
System Clock (MHz) 7.3728 7.3728 8 4 - 416 7.3728
Program memory (KB) 128 128 48 32000 128
RAM(KB) 4 4 10 32000 4
Sleep Current (µA) 0.3 0.3 5.1 390 [44] 0.3
Active Current (mA) 9 9 1.8 31 [44] 9
Transceiver
type CC1000 CC2420 CC2420 CC2420 Zeevo ZV4002 & CC1000
protocol standard n/a IEEE 802.15.4 IEEE 802.15.4 Bluetooth IEEE 802.15.4
frequency band 315, 433 2.4 GHz 2.4GHz 2.4GHz 2.4GHz &

or 868/916 MHz 315, 433 or 868/916 MHz
Data Rate (kbps) 38.4 250 250 250 n/a & 38.4
Modulation Type FSK O-QPSK O-QPSK O-QPSK n/a & FSK
Sleep Current (µA) 0.2 20 20 20 9900 (CPU on, radio off) [45]& 0.2
Idle Current (µA) n/a 426 426 426 n/a & n/a
Receive Current (mA) 7.4 18.8 18.8 18.8 102.3 (CPU on) [45]& 7.4
Transmit Current at 0dBm (mA) 10.4 17.4 17.4 17.4 102.3(CPU on) [45]& 10.4
Node
Min Vin (V) 2.7 2.7 n/a 0.85 0.85 [45]
Remarks first widely-used first IEEE 802.15.4 energy-efficient powerful Bluetooth

commercial mote support mote microcontroller processor support
The values without references are from the data sheet of each component.
n/a refers to that this value can not be found in the relative data sheet.

22 Chapter 2 : Wireless Sensor Networks

2.3.1 Introduction to Protocol Stacks

The protocol stacks are developed to facilitate the implementation of protocols. Protocol

stacks have been used for decades, providing a method of formally structuring the

functionality of a networking through the use of multiple layers [47]. Each implementing

distinct networking tasks and providing services to its upper layer [48]. By doing this, the

details and complexity of the actual layer implementation is hidden from different layers.

There are many protocol stack models have been proposed. The number, contents and

function of layers differs between models. Fig. 2.2 presents three most widely adopted

protocol stack models in WSN.

Fig. 2.2: Protocol stack models: OSI Basic Reference Model [10], Zigbee stack [11] and the
sensor network protocol stack proposed in [12]

The Open Standards Interconnection Basic Reference Model (OSI BRM) [10] proposes

a basic layered structure for communication protocols of general computer networks. In

this model, a networking system is divided into 7 layers. Within each layer, one or more

entities implement its functionality. Each entity interacts directly only with the layer

immediately beneath it, and provides service to its upper layer. Protocols enable an

Chapter 2 : Wireless Sensor Networks 23

entity in one host to interact with a corresponding entity at the same layer in another

host. Many other models for specific networks are developed based on OSI BRM model.

Zigbee [11] stack is a simplified OSI BRM model that is more suitable for Low-

Rate Wireless Personal Area Networks (LR-WPANs). The ZigBee standard is published

and maintained by ZigBee Alliance that provides the specifications of NWK layer and

application layer and adopts the IEEE 802.15.4 standard [15] as the foundations of MAC

and PHY layers. The functionality of different layers in ZigBee stack are described as

follows.

• Application layer provides an interface between users and protocols. It receives

the user data and uses the underlying network layer protocols to establish host-

to-host connections. It also integrates other functionalities of presentation, session

and transport layers, such as the reliability of transactions by employing end-to-end

retries, the rejection of the duplicate messages and the segmentation of messages

longer than the payload of a single network layer frame.

• Network (NWK) layer is used to enable the configurations of a network (starting

a network of coordinators, joining, rejoining and leaving a network of a device),

implement different routing mechanisms to efficiently exchange data in the network

and ensure both the authenticity and confidentiality of a transmission.

• Medium Access Control (MAC) layer defines the procedures of the channel access

in order to avoid data corruptions and packet collisions. It also specifies the

frame format and performs data encapsulation and decapsulation for communication

between devices [49]. It ensures the reliability of transmission between two nodes by

using some retransmissions such as acknowledgment (ACK) messages. In addition,

it detects and possibly corrects errors that may occur in the lower Layer.

• Physical (PHY) layer defines the electrical and physical specifications for devices. It

is a fundamental layer underlying the logical data structures. It performs character

24 Chapter 2 : Wireless Sensor Networks

encoding, transmission, reception and decoding. It provides carrier sense and

collision detection services to MAC layer.

More specific features of WSN systems are considered in the sensor network protocol

stack proposed in [12]. Besides the four layers in Zigbee stack, it also keeps the transport

layer of the OSI BRM model. The transport layer provides end-to-end communication

services, such as connection-oriented data stream support and flow control. In addition,

the power, mobility, and task management planes are used by the sensor nodes to lower

their overall power consumption, manage their movement and coordinate their tasks. The

implementation and optimization of these services may happen at any layer and some cross

layer designs need to be considered.

In the next two subsections, an overview of state-of-the-art MAC and NWK layers is

presented.

2.3.2 Medium Access Control

Limited energy resources place strict limits on the design of communication protocols and

applications for WSN. Most works on MAC protocols of WSN have focused on the energy-

efficient medium access techniques since the transceiver consumes a significant amount

of energy and the MAC protocol has the most direct control over its utilization [14]. By

applying proper MAC protocols, the energy waste can be reduced. The main sources of

energy waste in MAC layer are the follows [50].

• Collisions : When two packets arrive at a node at the same time, a collision occurs.

The packets have to be discarded and a new retransmission may be needed.

• Idling listening : In many MAC protocols such as IEEE 802.11, nodes have to listen

to an idle channel for possible arriving packet. Many measurements have shown

that idle listening consumes 50-100% of the energy required for receiving [13] [51].

Chapter 2 : Wireless Sensor Networks 25

If sensor nodes can be scheduled to turn on their receivers periodically for receiving

packets, much energy will be saved.

• Overhearing : Nodes may receive some packets that are not intended to them.

• Overhead of control packet : Control packets are necessary for the management of

protocol procedure, but their usage should be optimized as minimum.

The main motivation of the MAC protocols for WSN is to reduce the energy waste.

As proposed in [14] [52], they can be divided into two categories: synchronous and

asynchronous approaches. In this section, both the synchronous and asynchronous MAC

protocols are introduced. For each kind of protocols, many representative protocols will

be discussed. Finally, the IEEE 802.15.4 MAC protocols that combine the mechanisms of

both synchronous and asynchronous protocols will be presented.

2.3.2.1 Synchronous MAC Protocols

In synchronous protocols, the transmissions of different nodes are organized in an order

way to avoid collisions, such as Time Division Multiple Access (TDMA), and the time

and energy wasted in idle listening are decreased by scheduling the time when nodes must

be awake in order to communicate.

Sensor-MAC (S-MAC) [13][53] is a synchronous MAC protocol designed explicitly for

WSN. It forms virtual clusters within a network by synchronizing the sleep schedules of

neighboring sensor nodes. It schedules the operations of sensor nodes of a virtual cluster

into a frame format, as shown in Fig. 2.3.

Fig. 2.3: S-MAC Frame Format [13][14]

26 Chapter 2 : Wireless Sensor Networks

The durations of listening and sleep periods are fixed according to different application

scenarios. Sensor nodes periodically transmit SYNC messages which allow their neighbors

to learn their schedules. The listening portion is divided into many time slots. To ensure

only one sensor node sending the SYNC message during a frame, each node performs a

carrier sense of random slots and starts sending SYNC message if it has not detected any

transmission at the end of carrier sense. Before a transmission of data packet, sensor nodes

use RTS (request to send) and CTS (clear to send) scheme to address the hidden terminal

problems. The RTS packet contains the address of its receiver; thereby uninvolved sensor

nodes can go to sleep mode after the RTS/CTS exchanging, which limits the overhearing

problem. To avoid collisions, the same carrier sense procedure of sending SYNC message

is applied to every transmission of RTS. In addition, every transmitted packet contains

a duration field indicating how long the transmission will last. When a node receives a

packet intended to other nodes, it knows how long it has to keep silent.

S-MAC provides better energy conserving properties comparing with IEEE 802.11 [13].

It also minimizes and distributes the energy drain of coordinating sensor nodes for

communication evenly throughout the network. However, it has one limitation that the

duty cycles of sensor nodes are fixed and can not be changed at run-time according to

different traffic loads. Many improvements of S-MAC have been proposed in several

protocols to address its limitations. DSMAC [54] and T-MAC [55] extend S-MAC by

supporting dynamic duty cycles based on modifying the listening and sleep period lengths

according to traffic and energy considerations. AC-MAC [56] uses queued messages in

sensor nodes to introduce multiple data exchanges during one frame. SCP-MAC [57]

reduces the duty cycle from 1-2% to 0.1% or even below by scheduled channel polling

(SCP). Channel polling, also named as low-power listening (LPL), refers to the technique

that allows sensor nodes to wake up very briefly to check channel activity without actually

receiving data. It has been widely adopted in asynchronous MAC protocols such as

WiseMAC [58] and B-MAC [59] which will be introduced in the next subsection.

The main advantages of synchronous MAC protocols are that a sensor node knows

Chapter 2 : Wireless Sensor Networks 27

the schedules of its neighbors so that it can start transmissions to their destinations

efficiently. However, the cost of listening period is about ten times of that of polling a

channel for activity, thus its overhead in lightly used networks is higher than LPL based

approaches [57].

2.3.2.2 Asynchronous MAC Protocols

Asynchronous protocols attempt to reduce the probabilities of collision by using random

access mechanisms, such as carrier sense multiple access (CSMA), which also allows sensor

nodes to operate in distributed manner.

B-MAC (Berkeley MAC) [59] is a CSMA based asynchronous MAC protocol for low

power wireless sensor networks. For sending a packet, it uses clear channel assessment

(CCA) and CSMA backoff mechanism for channel arbitration. For receiving a packet, it

adopts LPL for putting the receivers into sleep mode. With LPL, sensor nodes wakes

up for checking the channel activities periodically. Every node operates according to its

independent schedule. During a certain time, if activity is detected, it stays awake for the

time required to receive the incoming packet. After reception, it returns to sleep. If no

packet is received, a timeout forces the node back to sleep. To reliably receive data, a data

packet should contain a preamble that is bigger than the interval of checking the channel

so that the sensor node can detect its channel activity. For example, if the channel is

checked every 100 ms, the preamble must be at least 100 ms. By using B-MAC protocol,

the energy consumed by idle listening is minimized. However, long preamble increases

the latency of data packet transmission and the power consumption of the sender and

all nodes within its propagation range. In addition, the LPL approach suffers from the

overhearing problem. The receivers who are not the target of the sender but located

within its propagation range have to receive the long preamble and find out the packet is

not intended for them at the end of preamble.

WiseMAC [58] uses the similar techniques and is developed almost at the same time

as B-MAC. However, it reduces the length of preamble by having sensor nodes remember

28 Chapter 2 : Wireless Sensor Networks

the sampling offsets of their neighbors. Each ACK packet has an extra field indicating the

time of next channel sampling so that the sender can start the transmission just before the

receiver wakes up. Beside the reduction of energy consumption of long preamble listening,

WiseMAC also limits the overhearing problem by the short preambles. The authors have

also applied WiseMAC [60] to the downlink of infrastructure WSN. The access points

that are linked with a backbone network using the WiseMAC protocol to transmit data

packets. WiseMAC is not suitable for broadcasting communications, because sensor nodes

are in different active/sleep schedules and the sender has to transmit a broadcasting packet

many times during the active portions of different sensor nodes.

X-MAC [52] improves the performance of B-MAC by employing a series of short

preambles that can reduce the time and energy waste caused by long preambles. X-

MAC divide the long preamble of low power listening into many short preambles which

contains a destination address field. Therefore, when non targeted nodes receive a short

preamble, they can choose to go to sleep, which resolves the overhearing problem. Between

two adjacent short preambles, there is a short pause that allows the receiver to send an

short ACK packet back to the sender; thereby the sender can stop sending the preamble

and start the data packet transmission. By using the short ACK mechanism, X-MA can

achieve additional energy savings at both the sender and receiver, as well as a reduction

in per-hop latency.

A key advantage of asynchronous MAC protocols is that it minimizes the overhead

of listening time when there is no traffic. Moreover, the sender and receiver can be

completely decoupled in their duty cycles. The distribution feature of this design removes

the overhead introduced by synchronized schedules.

2.3.2.3 IEEE 802.15.4 MAC protocols

The IEEE 802.15.4 standard specifies the PHY and MAC layers that are the basis for

many upper layer protocol standards (e.g., ZigBee [11] and MiWi [61]). It has been

widely used in WSN application since it is designed for low data rate, short distance, and

Chapter 2 : Wireless Sensor Networks 29

low power consumption applications in conformity with WSN constraints. It provides

both synchronous and asynchronous MAC protocols. In this section, a brief overview to

IEEE 802.15.4 protocols is provided. More detailed description could be found in the

standard documents [15].

IEEE 802.15.4 defines three types of logical devices, a Personal Area Network

(PAN) coordinator, a coordinator and a device. The PAN coordinator is the primary

controller of PAN, which initiates the network and operates often as a gateway to other

networks. Coordinators collaborate with each other for executing data routing and

network self-organization operations. Devices do not have data routing capability and

can communicate only with coordinators.

The MAC layer controls access to the radio channel using a CSMA-CA mechanism.

IEEE 802.15.4 MAC layer supports two operational modes: (1) the nonbeacon-enabled

mode, where the MAC is ruled by non-slotted CSMA-CA; (2) the beacon-enabled mode,

where beacons are periodically sent by the PAN coordinator to identify its PAN, to

synchronize nodes, and to delimit a superframe during which all transmissions must occur.

Fig. 2.4 shows all of the possible configurations.

Fig. 2.4: IEEE 802.15.4 supported operation modes and algorithms

In nonbeacon-enabled mode, the unslotted CSMA-CA algorithm can be used. In

beacon-enabled mode, there are two algorithms can be chosen, slotted CSMA/CA and

guaranteed time slots (GTS). Figure 2.5 illustrates the steps of both slotted and unslotted

CSMA-CA algorithms.

For the unslotted CSMA-CA algorithm, firstly, the number of backoff (NB) is

initialized to 0. Then the algorithm starts counting down a random number of backoff

30 Chapter 2 : Wireless Sensor Networks

Fig. 2.5: CSMA-CA algorithm of IEEE 802.15.4 [15]

periods. A backoff period, called aUnitBackoffPeriod, is equal to 20 symbols. One symbole

is the transmission time of 4 bits, which is 16 µs for a data rate of 250 kbps. When the

timer expires, the algorithm performs channel assessment. If the channel is idle, the node

starts transmitting; otherwise, NB is incremented. If NB does not reach the maximum

number of backoff (macMaxCSMABackoff), the algorithm goes back to delay a random

number of backoff periods again; otherwise, the channel access operation fails.

In slotted CSMA-CA algorithm, the operations of sensor nodes within a same PAN are

Chapter 2 : Wireless Sensor Networks 31

synchronized. The backoff period boundaries of every sensor node shall be aligned with a

superframe slot boundaries of PAN coordinator. Additionally, all the transmissions should

begin at the boundary of a backoff period. Different from unslotted CSMA-CA algorithm,

unslotted CSMA-CA adopts a contention window (CW) size of 2, which requires sensor

nodes to check the channel activity twice before claiming a free channel.

IEEE 802.15.4 supports beacon mode by the conception of superframe, as shown

in Fig. 2.6. The beacon packets are transmitted periodically by the coordinator to

synchronize the attached nodes and describe the superframe structure.

Fig. 2.6: The typical structure of a superframe [15]

Beacon Interval (BI) defines the superframe length, which includes an active period

and, optionally, an inactive period. Superframe Duration (SD) presents the length of

active period. BI and SD are determined by two parameters respectively, Beacon Order

(BO) and Superframe Order (SO).

BI = aBaseSuperframeDuration · 2BO, 0 ≤ BO ≤ 14 (2.1)

SD = aBaseSuperframeDuration · 2SO, 0 ≤ SO ≤ BO ≤ 14 (2.2)

The minimum duration of a superframe (aBaseSuperframeDuration) is fixed to 960

symbols corresponding to 15.36 ms, assuming 250 kbps in the 2.4 GHz frequency band.

The active portion consists of two periods, namely contention access period (CAP) and

contention free period (CFP). During CAP, nodes use the slotted CSMA-CA algorithm

to access the channel. During CFP, many GTSs (up to 7) can be allocated, which allow

32 Chapter 2 : Wireless Sensor Networks

the node to operate on the channel that is dedicated exclusively to it.

In order to support applications with particular bandwidth and latency requirements,

IEEE 802.15.4 offers the possibility of having a Contention Free Period (CFP) during a

superframe. One CFP may include many guaranteed time slots (GTS), which allows a

device to operate on the channel within a portion of the superframe that is dedicated

(on the PAN) exclusively to that device. To ask a GTS usage, the node must send a

GTS request command to the coordinator during CAP by using the slotted CSMA-CA

algorithm. On receipt of this command, the coordinator sends an ACK. Then, the node

keeps tracking the beacon frames for at most 4 superframes to verify which time slot is

allocated. The information is located in the GTS descriptor field of the beacon packet.

A minimum length of CAP with 440 symbols must be guaranteed in every superframe.

After the GTS request is acknowledged by the coordinator, the node keeps tracking the

beacon packet and sends data during its GTS slot.

The performances of four widely used MAC protocols, i.e., IEEE 802.11, TDMA,

SMAC and IEEE 802.15.4, have been evaluated by NS-2 network simulator [62] in [63].

The results showed that IEEE 802.15.4 outperformed better than the other three protocols

in terms of energy consumption and energy efficiency. However, it is not stable once the

number of sensors nodes increases. On the other hand, the scalability of SMAC is much

better.

2.3.3 Data Aggregation and Routing

In a narrow manner, data aggregation is the combination of data from different sources

according to aggregation functions, e.g., duplicate suppression, minimum, maximum and

average. For example, for an application measuring the average temperature of the whole

network, the average function can be used at every overlapping node [64]. Another

example is Directed Diffusion [65], which is a popular data aggregation paradigm for

WSNs. In their experiments, a duplicate suppression function is used. Intermediate

Chapter 2 : Wireless Sensor Networks 33

nodes suppress duplicate location estimates.

Generally, data aggregation is defined as the process of aggregating data from multiple

sensor nodes to provide fused information to the base station [66]; thus any routing

protocols aggregating the data from multiple sensor nodes can be viewed as data

aggregation algorithms. A more complete survey of routing protocols for WSN can be

found in [67].

Network topologies can be used to facilitate the data aggregation process. In the

following subsections, the basic topologies of sensor networks will be introduced and many

typical routing protocols will be summarized according to different network topologies.

2.3.3.1 Network Topologies

Three basic topologies are illustrated in Fig. 2.7.

Fig. 2.7: Basic network topologies for wireless sensor network

These topologies in Fig. 2.7 are also the three topologies that the ZigBee standard [11]

supports. In the star topology, every device transmits packets to the PAN coordinator

34 Chapter 2 : Wireless Sensor Networks

and direct transmissions between devices are not allowed. In order to extend the network

coverage, multi-hop deployment is used in the mesh topology. Some router are deployed

between the PAN coordinator and the target sensor node. The routers are also normal

devices, but besides sensing operations, they can also forward the packets from one sensor

node to an other. In the tree topology, a tree routed at the PAN coordinator is created

based on the parent-child relationships. The data of a device can be routed to the PAN

coordinator through its parent node. A disadvantage of tree topology is that a failure

of router may cause a rupture of the whole route. The re-establishment of the topology

may be energy consuming. Finally, in mesh topologies, direct transmissions between

devices are allowed; therefore, one devices can have more than one connections with other

nodes and the reliability is enhanced. Mesh topology is suitable for some highly dynamic

applications that require efficient self-configuration and large coverage. A disadvantage

is the increased network latency due to the message relaying. The data aggregation

techniques can be categorized according to the network topologies [66]: mesh and cluster

topologies.

2.3.3.2 Routing Protocol for Mesh Topology

In mesh networks, each sensor node plays the same role. Data aggregation is accomplished

by data centric routing.

Flooding [68] is one classical mechanism to relay data in sensor networks. When a

sensor node receives a data packet, it broadcasts this packet to all of its neighbors. This

process continues until the packet arrives at the destination. A big drawback of Flooding

is overlap [67]. It is possible in flooding that more than two nodes sense the same region

and send the same data to a coordinator.

To solve the overlap problem, a description of data should be advertised to neighbors

before the transmission of real data. SPIN [69] solves this problem by data advertising.

On receipt of a new packet, the router first informs its neighbors of this new sensor data.

Those who are interested to this packet will retrieve the data by sending a request message.

Chapter 2 : Wireless Sensor Networks 35

Directed Diffusion (DD) [65] differs from SPIN in terms of the on demand data querying

mechanism. In DD, the PAN coordinator queries the sensor nodes if a specific data is

available.

The Ad hoc On Demand Distance Vector (AODV) routing algorithm [70] adapted in

the ZigBee standard [11] is a reactive routing protocol designed for the mesh topology.

Reactivity means that a connection is established only when it is needed. No predefined

route needs to be maintained. When a sensor node wants to send data, it first broadcasts

a request to its neighbors which will forward this message to theirs. Every node has to

record the requesting node of each message. On receipt of a such message, if a node

already has a route to the destination indicated in the message, it will send a message

backwards through the reverse route to the requesting node which may receive several

feedbacks of different routs. The requesting node will choose an efficient route according

to some metrics, such as the least number of hops.

2.3.3.3 Routing Protocol for Cluster Topology

In cluster networks, hierarchical data aggregation is used. Data from different nodes

are fused at routers, which reduces the number of messages transmitted to the PAN

coordinator.

As a hierarchical data aggregation, Low Energy Adaptive Clustering Hierarchy

(LEACH) [71] is a cluster-based protocol. It include two operations, cluster formation

(the organization of network into clusters and the selection of cluster heads) and data

transmission. Data is aggregated at the cluster head and sent to the PAN coordinator. To

save energy, some signal processing functions may be applied by cluster head to compress

the data into a single signal.

The ZigBee standard [11] also defines a routing protocol for cluster topology, named as

Hierarchical routing (HERA). It is based on the MAC layer associations of IEEE 802.15.4

to perform the routing functionality. IEEE 802.15.4 MAC topology formation procedure

36 Chapter 2 : Wireless Sensor Networks

forms a network rooted by a PAN coordinator with some attached coordinators and devices

through passive or active scan. With HERA, a sensor node sends data to its parent node

and every router forwards data to its parent node until the PAN coordinator. On the

other hand, the PAN coordinator-to-device communication uses an inverse route. For the

device-to-device communication, packets are routed upward first to the PAN coordinator

and then downward to the destination along the cluster tree. Because of the parent child

relationship between nodes, synchronized communication is easy to implement. Each node

only needs to maintain the synchronization with its parent coordinator. Therefore, the

energy-efficient synchronized active and sleep schedule of all nodes, like the superframe

based mechanism of beacon-enabled mode of IEEE 502.15.4, become possible. However,

HERA suffers from the energy consuming re-association if a router fails.

2.4 Operating Systems

Due to the diversity of WSN applications and available sensor hardware platforms, an

operating system is needed to facilitate users to develop complicated applications on

WSN. The basic service of an operating system is to hide the low-level details of the

sensor nodes by providing an easy-to-use high level interface.

2.4.1 Characteristics of WSN Operating Systems

An operating system of WSN system must provide these following basic services: hardware

abstraction, task management, memory management, power management and peripheral

management [72].

Besides easy programming, WSN OS has to meet other requirements exposed by the

specific constraints of WSN, such as efficient execution, real-time and reprogramming.

These special requirements are described as follows.

• Efficient Execution: Due to the limited resource (energy, memory and processing

Chapter 2 : Wireless Sensor Networks 37

capability) of sensor nodes, the WSN OSs should provide small footprint and efficient

power utilization.

• Real Time: To provide native supports for real-time applications, the scheduler of

WSN OSs assign a priority to each task and use this property to decide which task

runs on the processor at a certain moment.

• Reprogramming : It refers to the service of changing the software or tasks of sensor

nodes remotely. It is important for some large scale applications that are installed to

some environments where humans are not able to attach easily [73]. Many operating

systems support reprogramming directly, such as SOS [74] and Contiki [75].

2.4.2 Summary of WSN Operating Systems

Some important WSN OSs are analyzed in Table 2.2. Many essential aspects of these

OSs have been summarized, including the supported hardware platforms, programing

language, methods supporting concurrency, reprogramming and real time support.

Some of the operating systems are still under development and improvement, but

some have been out of maintenance. However, they are studied in Table 2.2, because

they have used several interesting techniques, which make them valuable as an reference.

From Table 2.2, we can find that most of the operating systems support the MICA series

motes designed by UC Berkeley. Benefiting from the widely spread, TinyOS have been

extended to many sensor hardware platforms. Almost all the operating systems are based

on C programming, except TinyOS providing its own programming language, nesC. It is

an extension to C language designed to embody the structuring concepts and execution

model of TinyOS [35].

Sensor nodes always need to handle multiple tasks, including analog to digital

conversion of sensor signals, communication process, power management, etc. TinyOS

is an event-based operating system. It provides an abstracted programming interface

for sensor nodes in NesC. It handles the concurrency by asynchronous events and tasks.

38
C
h
ap

te
r
2
:
W

ir
el
es
s
S
en
so
r
N
et
w
or
k
s

Tab. 2.2: Operating Systems for Wireless Sensor Networks

OS Maintenance Hardware Processing
Unit

Language Concurrency Reprogramming Real-time

TinyOS [35] Yes MICA, Telos,
iMote2, etc.

ATMega128,
MSP430,
PIC, etc.

nesC Event and
Partial
Thread

No No

Mantis OS [76] No MICA2 ATMega128 C Thread No No
SOS [74] No MICA2 and

iMote2
ATMega128
and XScale
PXA271

C Event Yes No

Contiki [75] Yes MICA2 and
Telos

ATMega128
and MSP430

C Event and
Thread

Yes No

Nano-RK [77] Yes MicaZ and
FireFly

ATMega128 C Event No Yes

LiteOS [78] Yes MICAZ ATMega128 C Event and
Thread

Yes No

AmbientRT [79] Yes embedded
devices
with limited
memory,
processing
and energy
resources

MSP430 C Thread Yes Yes

Chapter 2 : Wireless Sensor Networks 39

Users should define the event handlers. To ensure low task execution latency, individual

tasks must be short; lengthy operations should be spread across multiple tasks. Unlike

TinyOS, Mantis OS [76] is a thread-driven operating system. Thread can be viewed as a

computational entity to accomplish an individual task. Mantis OS uses multithreading to

handle the concurrency. The OS kernel maintains a thread table that holds the priority

and other informations of treads. The threads are scheduled to be executed according to

their priorities. LiteOS [78] is also a multi-threaded operating system that provides Unix-

like abstractions for wireless sensor networks. A hierarchical file system and a wireless

shell interface for user interaction using UNIX-like commands are provided.

TinyOS does not support the reprogramming directly, because a TinyOS system image

is statically linked at compile time. Maté implements a virtual machine (VM) architecture

that allows developers to build custom VMs on TinyOS. Reprogramming is one primary

motivation for SOS [74]. It consists of dynamically-loaded modules and a common kernel.

The kernel provides basic hardware abstractions and module loading functionality at run-

time. Upon the kernel, modules are loaded to provide higher level functionality, such as

applications. Modules can be inserted, updated, and removed from sensor nodes at run

time.

Nano-RK [77] provide real-time execution of tasks by fixed-priority preemptive

multitasking to ensure that the execution of each task is with a targeted deadline. Tasks

proposed by processing unit, communication interface, as well as, sensor and actuator can

specify their resource demands. The operating system provides timely, guaranteed and

controlled access to CPU cycles and network packets. AmbientRT [79] is another real-time

supported operating system for WSN. It uses EDF (Earliest deadline first) preemptive

scheduling to guarantee the real-time execution of tasks. Unlike Nano-RK, the priorities

of tasks do not have to be assigned in AmbientRT. It allows the assignment of priorities

to tasks being done at run-time based on the timing properties of tasks, which enable a

better processor utilization.

40 Chapter 2 : Wireless Sensor Networks

2.5 Modeling and Simulation

Three techniques have been used to evaluate the performances of WSN systems: analytical

methods [80], physical testbeds [81] and simulations [82]. Many constraints imposed on

sensor networks, such as limited resources, decentralized collaboration and fault tolerance,

necessitate the use of complex algorithms that usually make analytical methods be

impossible [83]. Additionally, although using the physical testbeds is direct, such studies

also suffer some significant limitations, such as cost and scalability. It is costly and

troublesome to establish a testbed for a network with thousands of nodes. However,

simulation can provide a good approximation at lower cost and often in less time. For

example, one application lasting 27.8 hours with a sensing interval of 10 seconds, the

simulation time of NS-2 (open-source) is just 24 minutes. In addition, simulation also

provides an easy-to-use debugging environment and a better insight of network behaviors.

Therefore, simulation has become a common way to evaluate performances of WSN

systems.

Lots of simulators for WSNs have been developed in the past few years. But different

simulators may be designed to accomplish different target applications. For example, some

are intended to simulate the performance of communication protocols and some may be

designed to emulate the execution of the binary code. Therefore it is important to find

out their similarities and differences. Based on an elaborate study of WSN simulations

and the existing simulation tools, we proposed a classification scheme that categorizes the

existing simulation tools into four classes. According to the taxonomy, a comprehensive

study of the existing simulation tools for WSN will be made.

In this section, the modeling and simulation of WSN system are investigated. In

section 2.5.1, the requirements of WSN simulations are summarized. In section 2.5.2, a

typical model of WSN system is provided. In section 2.5.3, a taxonomy of existing WSN

simulation tools is proposed. According to this taxonomy, the current WSN simulators are

categorized into four classes. Finally, in section 2.5.4, a survey of existing WSN simulation

Chapter 2 : Wireless Sensor Networks 41

tools is presented.

2.5.1 Requirements of WSN Modeling and Simulation

By taking into account of the special characteristics of WSN systems and the requirements

of different WSN design fields (e.g. communication protocol design, application design

and node system design), we summarized the following six key requirements that are

important to a WSN simulation framework:

• Fidelity : The main purpose of simulation is to model the real-world system faithfully

and predict the system’s behavior. For WSN, it requires accurate models of radio

channels, physical environment and node system. Inaccurate simulation may lead

to erroneous conclusions. For example, an ideal battery model usually treats

the battery as a reservoir of energy from which the energy consumption can be

subtracted. However, this is not accurate as a real battery that shows non-linear

discharge behavior and recovery effects. It is proved that the accuracy of battery

models can affect the route fluctuations and routing overheads [84].

• Scalability : Because nodes are often deployed in large quantities in many WSN

applications, the simulator should well support the scalability. The simulation time

should be short.

• Energy aware: Due to the limited power supply on sensor nodes, network designers

need to obtain accurate power consumption and timing figures to tune their

applications before the deployment in real environments [85]. Therefore, the

simulator shall be able to accurately capture the energy consumption and timing

information of HW/SW operations and radio communication.

• Extensibility : It shall be easy to modify the existing modules or integrate some new

ones. A careful structure with clean interfaces and high modularity allows the users

to easily add or change functionality.

42 Chapter 2 : Wireless Sensor Networks

• Heterogeneity Support : Many recently deployed WSN systems are heterogeneous

systems, incorporating a mixture of elements with widely varying capabilities [86].

Therefore, modeling different kinds of nodes and managing the interconnections

among them are necessary in WSN simulations.

• Easy to use: A graphical user interface (GUI) can facilitate and speed the

establishment of the network topology and the composition of basic modules. It

can also allow the quick visualization of the simulation results. In addition, it

supports to trace and debug the simulation at real time. Non-specialist users can

get an easier control of the simulation by using GUI.

There is always a tradeoff between fidelity and scalability [82]. Better fidelity involves

more complex and detailed modeling. However, the simulators need more time to deal

with the additional detail. The simulation time may become intolerable if the number

of nodes is very large in some WSN applications. Thus, the high level abstraction is

sometimes more suitable for implementing the simulation with proper complexity and

little running time, and their results are detailed enough to answer the design questions

at an early stages of design flow. For example, at the beginning of a system design, the

need to quickly explore a variety of alternatives is more important than a detailed result

for a specific scenario. The challenge is to identify which level of detail does not affect

answers to the design questions at hand.

2.5.2 A Typical Model of WSN System

WSN mainly involves three parts: node system, network and physical environment. A

typical model of WSN system is presented in Figure 2.8.

In this model, the node system is composed of two parts: hardware and software.

The hardware platform consists of processing unit, RF transceiver, sensor and battery.

The software model includes operating system, protocol stack, application software

implementation and so on. Nodes are connected to each other by the wireless network

Chapter 2 : Wireless Sensor Networks 43

Fig. 2.8: A Typical Model of WSN System

model that holds the network topology and transfers packets among nodes. It also

implements many radio frequency channel models. The environment model specifies how

the physical parameters in the environment vary in both spatial and temporal sense.

2.5.3 A Taxonomy of WSN Simulation Tools

Environment modeling of WSNs is still at the beginning of development. A more detailed

description of environment modeling can be found in [21]. Since only few simulators have

addressed environment modeling well, our taxonomy will not treat it as a determinant.

We mainly focus on the node system and network modeling.

Simulation has been used in both node system and protocol designs to help the designer

easily evaluate their new designs. At the beginning, these two aspects are addressed by

different people with different knowledge and tools. In the context of node system design,

the aim is to design the nodes’ hardware, to implement the software running on the

hardware and to co-design the hardware and software (HW/SW) of a single node[87] [88].

The network performance of these nodes can not be simulated in this stage. In the

context of protocol design, the tools model the protocols, manage the concurrency among

different nodes, and simulate the throughput of the network. The protocol designers often

44 Chapter 2 : Wireless Sensor Networks

make simple assumptions to the behavior of hardware and software, but this may be not

detailed enough for some applications. For example, timing information in instruction

granularity shall be considered to the fast routing lookups [89]. In addition, it is better

to compress the data by processing them in local CPU rather than transmitting the

raw data to the destination node in some applications, since wireless communication is

a major energy consumer during the system operation [90]. Simulations shall be able

to help the designer find a balance between the wireless communication and the local

processing. Therefore, WSN simulations require designers to integrate the node system

and the network simulation together.

A common way to evaluate the WSN system is to add sensor node models to the

network simulators (e.g. NS-2 [62] and OMNeT++ [91]). There are two kinds of node

model: node models implemented by the network simulators and node emulators. The

latter refers to the instruction level simulators of the nodes’ microcontrollers or operating

system emulators.

Besides adding node models to the network simulators, we can also model the network

in the node system design tools (e.g. SCNSL [4]) or in the node emulator (e.g. Avrora [92]).

Therefore, the existing efforts in WSN evaluation can be divided into four categories:

network simulators with node models (NSNM), network simulators with node emulators

(NSNE), node system simulator with network models (NSSNM) and node emulators with

network models (NENM).

NSNM emphasizes more on discrete event scheduling, the radio medium, network

modeling and perhaps the sleep duty cycles of the sensor node. Network modeling is the

predominate object. Many node models implemented by NSNM are simple power and

estimated timing profiles.

NSNE integrates the advantages of both the network simulators and node emulators.

The network simulator provides the detailed network model. The node emulator gives

accurate timing information of the software execution because they simulate the system

performance with instruction cycle granularity. But the interconnection between the

Chapter 2 : Wireless Sensor Networks 45

network simulator and node emulator may take much time.

In NSSNM, the node system is often modeled by System-Level Description Languages

(SLDL), such as SystemC [9]. NSSNM has a simulation kernel which supports modeling

the concurrency and synchronization among different hardware components. SLDL can

also model the software, which allows the HW/SW co-design and co-simulation. It models

the node hardware in different abstraction level with different degrees of detail (e.g. system

level, transaction level and register transfer level).

The node emulators of NENM can be divided into two different sets: instruction

set simulators (ISS) for special microcontrollers and emulators designed to emulate the

execution of the application code of an operating system (e.g. TinyOS [35], SOS [74]

and Contiki [75]). They can provide high timing accuracy of software execution. The

embedded software developed for physical platforms can be executed directly in the

simulation framework with little or no modifications.

2.5.4 A Survey of WSN Simulation Tools

In this section, we will analyze the existing simulation tools according to classification

scheme of the taxonomy presented in section 2.5.3. The existing simulation tools are

divided to four classes. In each category, many simulators will be studied to demonstrate

their common features.

2.5.4.1 Network Simulators with Node Models

Many general-purpose network simulators, such as NS-2 [62], OMNeT++ [91],

OPNET [93], GloMoSim [48] and J-Sim [94], have been utilized in WSN simulations.

Some extensions have been applied to them to introduce the WSN specific characteristics.

Besides the extensions to general-purpose network simulators, some WSN-specific network

simulators have also been developed.

NS-2 [62] is a discrete event, object-oriented, general purpose network simulator.

46 Chapter 2 : Wireless Sensor Networks

Simulations are written by C++ and OTcl (Object-oriented Tcl) languages. In general,

C++ is used for implementing protocols and extending the NS-2 library. OTcl is used

to create and control the simulation environment. Its extensibility has been a major

contributor to its success, with protocol implementations being widely produced and

developed by the research community. According to [8], it is the most used simulator in

Mobile Ad hoc NETwork (MANET) research. Regarding WSN, it includes many ad-hoc

and WSN specific protocols [82]. An IEEE 802.15.4 model is developed in [24]. However,

NS-2 does not scale well in terms of memory usage and simulation time [95]. It also lacks

detailed support to measure the energy utilization of different hardware, software, and

firmware components of a WSN node [96]. SensorSim [97] is built on top of an NS-2

802.11 network model. It models the sensor node in two parts: software model (Function

Model) and hardware model. The power models of different hardware components have

been implemented. The state of the hardware model is changed based on the function

that is carried out by the software model. Therefore, the power consumption of the whole

network can be simulated. In addition, SensorSim can be interacted with real nodes.

However, the CPU and sensor models have not been implemented. Furthermore, IEEE

802.11 is designed for high speed connectivity and not optimized for WSN.

OMNeT++ [91] is a component-based network simulator, with an Eclipse-based IDE

and a graphical runtime environment. The IDE supports all stages of a simulation

project: developing, building, configuring, running simulation models and analysing

results. OMNeT++ consists of modules that communicate with message passing. Simple

modules implement the atomic behavior of a model, e.g. a particular protocol. Multiple

simple modules can be linked together and form a compound module. OMNeT++

provides the infrastructure to assemble simulations from these modules and configure

them (NED language). OMNeT++ can be extended easily by interfaces for real-time

simulation, emulation, parallel distributed simulation, SystemC integration and so on.

As OMNeT++ is becoming more popular, many contributions have been added to it.

The Mobility Framework (MF) [98] supports simulations of wireless and mobile networks

Chapter 2 : Wireless Sensor Networks 47

within OMNeT++. MF includes an 802.11 model. It can be seen as the first start point

of the WSN modeling by OMNeT++. An IEEE 802.15.4 implementation by OMNeT++

can be found in [99]. PAWiS [96] [100] is an OMNeT++ based WSN simulator. Its

architecture is similar to SensorSim. It can evaluate the power consumption of WSN

systems with many levels of accuracy which can still be balanced with complexity. The

model programmer has to insert special framework requests to the CPU module to

simulate the execution time and power consumption. These requests include the estimated

execution time of the firmware code on the CPU.

WSNet [101] is a modular-based event-driven high level wireless network simulator. It

is composed of many blocks that model the properties of sensor nodes and radio medium.

The sensor nodes model include the hardware and software abstraction and node behavior

modeling (e.g., mobility). WSNet can be used to evaluate the high level design, such as

traffic pattern, application dimensioning and protocol parameters tuning. It is one of the

two simulators in Worldsens [101], an integrated environment for development and rapid

prototyping of wireless sensor network applications. Worldsens also includes a low level

simulator to enable the refinement of WSN application development. The cycle accurate

simulator, WSim, will be introduced in the node emulator category, section 2.5.4.2.

SENSE [83] is another component-based simulator developed by C++. It models

various network devices as a collection of components. Connections between each

component are in the format of input and output ports. Packets are created, transmitted

and received by components through the ports. Through its component-based model,

SENSE can be extended easily. A new component can replace an old one if they have

compatible interfaces; inheritance is not required. SENSE also supports the parallel

simulation, which is provided as an option to the users.

GloMoSim [48] is a parallel simulator for WSNs. GloMoSim allows the users to select

sequential or one of the 3 available parallel synchronization algorithms (null message

protocol, conditional event protocol and accelerated null message protocol). Once a

parallel algorithm is selected, the analyst can additionally indicate the mapping strategy

48 Chapter 2 : Wireless Sensor Networks

and number of processors. Taking advantage of parallel simulation, GloMoSim has been

shown to scale to 10 000 nodes [102]. QualNet [103] is a commercial derivative of

GloMoSim. It has extended GloMoSim to other networks, such as satellite, cellular and

sensor networks. ZigBee protocol model is provided too.

Prowler [104] is an event-driven network simulator running in Matlab environment.

Benefits gained from Matlab environment are easy prototyping of applications and GUI

interface. Prowler is capable of simulating the radio transmission, propagation and

the MAC-layer operation in ad hoc networks. The radio models are based on specific

signal strength calculations combined with random errors. Prowler is well suited for

protocol and algorithm development. However, it does not have sensor node energy

modeling. NetTopo [105] is an integrated WSN-specific network simulator that provides

the simulation of virtual WSN and the visualization of real testbeds. It also supports the

interaction between the simulated WSN and real testbeds.

The main advantages of these simulators are that they usually have a rich library

of the radio modules and protocol implementations. Many contributions to these tools

are carried out ceaselessly. For example, the performances of NS-2 in the aspects of

scalability and extensibility are improved by its successor, NS-3 [106]. It also simplified

the model implementation by choosing C++ as the sole development language and the

usage of Python scripting language can be optionally enable [107]. However, the network

simulators are dedicated to model the network. It may be not the best way to model the

node system since they are normally incapable to model the concurrency within the node

and provide a direct path to HW/SW synthesis [4]. The energy consumption is usually

based on some assumptions or estimations of the software execution, for example, the

processor and RF transceiver of a sensor node have same operating state, but in fact the

processor can be in sleep mode when the RF transceiver is listening to the channel and

woken up by the RF transceiver when the latter receives a packet. As presented in [99],

most of the energy models of simulations at network level are not complete. The problems

are the following.

Chapter 2 : Wireless Sensor Networks 49

• Some energy models assume that the radio consumes the same power in idle listening

as in receiving state and they are ignoring the energy consumption in sleeping state.

• Few simulation models take into account the transition energy cost for switching

between the radio operational states.

• The energy consumption of the micro controller is frequently not considered, or the

power profile is very simple (just active and inactive states).

2.5.4.2 Node Emulators with Network Models

Two kinds of node emulator, operating system emulator and instruction set simulator,

are studied separately in this section. One special simulator providing the both features

will be presented too.

TOSSIM [108] and PowerTOSSIM [85] are two emulators designed to emulate the

execution of TinyOS [35]. Software development for WSN can be simplified by using

these emulators. They permit developing algorithms, studying system behaviors and

observing interactions among the nodes in a controlled environment. The application

code of TinyOS can be compiled to the simulation framework by only replacing a few low-

level TinyOS components that deal with hardware. TOSSIM can capture the behavior of

the network of thousands of TinyOS nodes at bit granularity. TOSSIM allows developer

to easily transition between running an application on motes and in the simulation

environment. PowerTOSSIM is an extension to TOSSIM in evaluation of the power

consumption. The main problem of such frameworks is that the user is constrained to a

specific platform (typically MICA motes) and a single programming language (typically

TinyOS/NesC) [100]. In addition, TOSSIM loses the fine-grained timing and interrupt

properties of the code that can be important when the application runs on the hardware

and interacts with other nodes [92].

ATEMU [109] is an instruction-level cycle-accurate emulator for WSN written in C. It

simulates programs of each individual node with accuracy down to the clock cycle. Its core

50 Chapter 2 : Wireless Sensor Networks

is an ISS. Along with support for the AVR processor, it also includes support for other

peripheral devices on the MICA2 sensor node platform, such as the transceiver. ATEMU

provides a GUI, called Xatdb, which provides users a complete system for debugging

and monitoring the execution of their code. Avrora [92], written in Java, improves the

performance of ATEMU in the scalability aspect. Avrora can scale to networks of up to

10000 nodes. Both ATEMU and Avrora provide a high behavioral and timing accuracy of

the WSN programs. Moreover, they are both language and operating system independent.

The main disadvantage of such frameworks is that they only support systems based on

components that have already existed, e.g. memories and processors, like MICA motes.

Unfortunately they do not cover systems containing new hardware blocks.

WSim is the low level simulator in Worldsens [101]. It is based on cycle accurate full

platform simulation using microprocessor instruction driven timings. It provides many

hardware block descriptions of components on the chip level. A sensor node platform can

be built by describing the physical interconnection among these components. WSim can

also handle real target binary code simulation and debugging. The time resolution can be

at nanosecond level. By combining WSim and WSNet, Worldsens can provide a complete

design flow of WSN application, from the high level design choices down to the target

code implementation, debug and performance analysis.

F. Fummi et al. [110] have developed an energy-aware simulator by integrating an

ISS of node’s microcontroller and a functional SystemC model of the network module

on SCNSL [4]. SCNSL is is a networked embedded system simulator, which will be

introduced in section 2.5.4.3. µCsim is used as the ISS for the Intel 8051 microcontroller

of the Texas Instruments CC2430F128 chip. Using ISS makes it possible to run the exact

binary embedded software on the simulated hardware platform. The SystemC kernel is

modified to communicate with the ISS through inter-process communication primitives

(e.g. a socket or shared memory).

COOJA [111] is a Java-based simulator that provides both the operating system

emulation and the instruction set emulation in a single framework. The Contiki operating

Chapter 2 : Wireless Sensor Networks 51

system [75] can be compiled to the simulation framework. It executes native code by

making Java Native Interface (JNI) calls from the Java environment to a compiled Contiki

system. MSPSim [112] is used as the instruction set simulator in the COOJA. MSPSim

is also written in Java. It supports the Texas Instruments MSP430 microcontroller and

includes some hardware peripherals such as sensor, communication ports, LEDs, and

sound devices. Recently, the COOJAMSPSim platform [113] has been extended to support

the TinyOS. The interoperability testing of nodes with different operating systems is

realized.

The main advantage of using such tools is that the code used for emulation can also

run on the real node, which reduces the effort to rewrite the code. In addition, they often

provide detailed information about resource utilization. The main problems are that they

are always constrained to specific hardware platforms or operating systems. Because much

detail of cycle-accurate level is considered, they can not scale as well as the node system

models at system level. Moreover, for new applications, it may take more time to develop

the final executable code than to abstract the applications at the beginning of system

design.

2.5.4.3 Node System Simulator with Network Models

WIreless SEnsor NEtwork Simulator (WISENES) [114] is developed in Specification and

Description Language (SDL) [115] , which is a high-level abstraction language widely-

used in communication protocol design and can be converted to C code automatically.

The key feature of WISENES is that its simulation models are reusable in the embedded

software design for the final system. However, WISENES only contributes to the software

implementation. SDL is unsuitable to model synchronous digital circuits because the

SDL system behavior is defined as a network of extended finite state machines that

communicate with each other using asynchronous signals [116]. On the other hand,

SystemC provides native supports of HW/SW co-simulation.

Kashif Virk et al. [5] have developed a SystemC-based modeling framework for WSN.

52 Chapter 2 : Wireless Sensor Networks

It models the applications, real-time operating systems, sensors, processor, and transceiver

at node level and signal propagations at network level. It is the first work using SystemC

in WSN simulation, but the simulation result is simple. Only a MAC behavior (states of

the sending and receiving tasks) waveform has been presented in [5].

ATLeS-SN (Arizona Transaction-Level Simulator for Sensor Network) [6] is a

Transaction-Level Modeling (TLM) based sensor network simulation environment

developed in SystemC. It models a sensor node in 3 components: application specification,

network stack implementation and sensor system. The physical channel is modeled as a

component. It provides an interface that can be called from sensor nodes. ATLeS-SN

demonstrated the feasibility of using TLM for sensor network application, but no standard

networking protocol has been implemented.

The SNOPS framework [7] is another TLM-based WSN simulator. A sensor node

transmits or receives a data packet to or from an environment model by transaction

exchanges. In [7], it is proved that the SNOPS framework requires 49.7% less simulation

time than PAWiS [96].

SystemC Network Simulation Library (SCNSL) [4] is a networked embedded system

simulator, written in SystemC and C++. It includes 3 modules: node (SystemC), node-

proxy (SystemC) and network (C++). During the initialization of simulation, each node

registers its information (e.g., location, TX power and RX sensitivity) at a network class

which maintains the network topology and transmits packets to other nodes. The node-

proxy is an interface between the network and nodes. By using Node-Proxy, nodes can be

designed as pure SystemC modules so as to exploit all advantages of SystemC in HW/SW

co-design and verification. SCNSL demonstrates a great perspective for system-level

simulation of WSN system, but it still has some limitations such as node-level simulation

without any specific hardware platform or energy model.

These simulators scale well since they usually model WSN at the system level. New

hardware and software modules can be easily added to the existing library. However, the

simulation results only can be used to the system level design.

Chapter 2 : Wireless Sensor Networks 53

2.5.4.4 Network Simulators with Node Emulators

Two main simulators have been developed in this category. Heemin Park et al. [117] have

developed a unified network and node level simulation framework. They developed the

Embedded Systems Power Simulator (ESyPS) by integrating sensor and radio modules

into EMSIM [118]. EMSIM is an energy simulation framework for embedded systems

featuring in StrongARM microprocessor and Linux OS. Then, they integrated the ESyPS

with SensorSim [97]. The framework can explore the interactions between network level

and node level.

Another example is sQualNet [119], which is a scalable and extensible sensor network

simulation framework built on top of QualNet [103]. It uses QualNet as the network

simulator and provides the emulation of the SOS operating system [74]. sQualNet allows

using the QualNet’s detailed models of channel, propagation, mobility, etc. The user

also can use the rich protocol suite for other kinds of networks to model heterogeneous

sensor networks. sQualNet introduces a sensor stack parallel to the networking stack and

provides accurate simulation models for various layers in the sensor and networking stack.

These two simulators integrate the advantages of both the network simulators and

node emulators. They provide accurate results about the energy consumption of the

whole network. However, they are both constrained to particular hardware and operating

system. Moreover, interactions between the network simulator and the node emulator have

to be well maintained, which increases the simulation time and impacts the scalability.

2.5.5 Summary

Based on the above analysis of existing simulation tools for WSN, we can find that most

of the simulators are implemented in general programming languages such as C++ and

Java that do not support directly the hardware and software co-simulation of sensor

nodes. The general network simulators mainly focus on the communication protocol

abstraction. The OS emulators and ISS can accelerate the implementation of embedded

54 Chapter 2 : Wireless Sensor Networks

software, but they involve too much detail in low level that is not available at the early

design stage. The simulations at this level normally need an executable implementation

of final application and protocols. Only a few simulators designed in SLDLs, such

as SystemC, can provide appropriate abstraction of final system but also with enough

detailed information of hardware and software operations. In addition, SLDL modeling is

compatible to a complete top-down design flow from the network level simulation to the

real implementation of final systems.

SystemC provides native support to model concurrency, pipelining, structural

hierarchy, interrupts and synchronization primitives of embedded systems [3]. Benefiting

from HW/SW co-simulation, SystemC is more suitable for the WSN modeling. At present,

four SystemC-based WSN simulators [4, 5, 6, 7] have been developed; however, none of

them has been validated with experimental measurements or evaluated comprehensively

by comparing with other simulators.

To resolve this limitation, a novel SystemC-based system-level WSN simulator named

IDEA1 (hIerarchical DEsign plAtform for sensOr Networks Exploration) is developed.

A testbed of 9 nodes has been built to validate the simulation results of IDEA1. The

simulations of IDEA1 have also been compared with NS-2 which is the most used simulator

in Mobile Ad hoc NETwork (MANET) research [8].

SystemC-based IDEA1 is not only a simulator, but also a system design environment

for WSN. Having a sensor node model, it is possible to evaluate its network performance.

Once the requirements of final system are met, the real implementation of HW/SW

components can start from this description. Contrary to WISENES focusing on the

high level software and protocol abstractions, IDEA1 is designed for the HW/SW co-

simulation of WSN systems. Every hardware component is modeled as an individual

module in IDEA1. By doing this, the concurrencies between different components

and the energy consumptions of each component can be accurately captured. For

example, the communications between microcontroller and RF transceiver and the current

consumptions of each operation state of main hardware component are considered in

Chapter 2 : Wireless Sensor Networks 55

IDEA1 simulation.

IDEA1 provides node system designers with possibilities to evaluate the network

performance of novel architectures at an early stage. It also allows communication protocol

researchers to simulate their proposals on new sensor nodes even if the hardware platforms

are still under development.

IDEA1 is based on the SCNSL library of alpha version. The network model of IDEA1

is inherited from SCNSL; however, many novel features have been developed, which are

summarized as follows.

• Emphasizing modular design, but not like ATLeS-SN, IDEA1 model a sensor

node exactly according to its hardware architecture. Each hardware component is

modeled as an individual module in SystemC. Different components communicate

with each other through channels, for example, Serial Peripheral Interface (SPI)

communications between processor and transceiver. By doing this, the energy

consumption of hardware components can be accurately evaluated. Many COTS

processors and transceivers have been modeled in IDEA1, such as ATMEL

ATMega128, Microchip PIC16LF88, TI CC2420 and Microchip MRF24J40.

• The software, such as applications and protocols, are implemented in separated

modules which can control the operations of processor. One of the most-used WSN

communication protocols, the IEEE 802.15.4 standard, has been implemented.

• An energy model has been developed to enable the accurate energy consumption

prediction. It has been calibrated by some experimental measurements.

• The simulation results (e.g., packet delivery rate, transmission latency and energy

consumption) of IDEA1 have been validated with some measurements of a testbed

consisting of 9 nodes.

• The performances of IDEA1 have been compared with NS-2 in the aspects of

simulation results and simulation time.

56 Chapter 2 : Wireless Sensor Networks

• A graphical user interface (GUI) has been developed to facilitate the system

configuration, the observation of network topology, and the analysis of simulation

results.

2.6 Conclusion

In this chapter, the background of wireless sensor network research was investigated,

including the aspects of application, sensor network hardware platforms, network

architectures, operating systems and simulations of wireless sensor networks. The

particular requirements of the WSN simulation were studied. A typical WSN system

model was presented. Based on these, a taxonomy of WSN simulations was proposed, and

a survey of the existing simulation tools for WSN was made according to the taxonomy.

Most of the significant existing simulation tools with relatively widespread uses have been

studied. Based on the analysis of existing sensor network simulators, their advantages and

limitations are summarized. In order to improve the fidelity and performance of WSN

simulations, a new simulator based on SystemC is needed to be developed and validated.

Chapter 3 : Design and Implementation IDEA1 57

Chapter 3 :

Design and Implementation IDEA1

58 Chapter 3 : Design and Implementation IDEA1

Chapter 3 : Design and Implementation IDEA1 59

In this chapter, a novel system-level WSN design and simulation environment, named

as IDEA1 (hIerarchical DEsign plAtform for sensOr Networks Exploration), is presented.

Sensor nodes are modeled in SystemC and their interconnections are implemented in

C++. SystemC is a system and hardware description language that is widely-used in

embedded system design; therefore, SystemC-based IDEA1 is not only a simulator, but

also a system design framework for WSN. Having a sensor node model, it is possible to

evaluate its network performance. Once the requirements of final system are met, the real

implementation of system design can start from this description. IDEA1 provides system

designers with possibilities to evaluate the network performance of novel architectures

at an early stage, and it also allows communication protocol designers to simulate their

proposals on new sensor nodes even if the hardware platforms are still under development.

This chapter is organized as follows. First, section 3.1 briefly introduces SystemC

and Transaction Level Modeling (TLM), and their usability in the field of WSN system

modeling. Second, section 3.2 describes the framework of IDEA1. Third, section 3.3

illustrates the implementation of IDEA1. Then, section 3.4 presents the simulation output.

Finally, section 3.5 concludes this chapter.

3.1 Modeling Wireless Sensor Networks with Sys-

temC

3.1.1 Introduction to SystemC

SystemC is an C++ class library for system and hardware design. It can be used by

designers and architects of complex system that is a aggregation of hardware and software

(HW/SW) [9]. It is designed to meet the requirements of electronic system designers to

improve overall productivity [120]. It provides real productivity gains by supporting

both the hardware and software co-design at a high level of abstraction. This primary

performance evaluation by SystemC gives the design team a fundamental understanding

60 Chapter 3 : Design and Implementation IDEA1

of the final system at an early stage of the design process.

3.1.1.1 Features of SystemC

The main features of SystemC are listed as follows.

• HW/SW co-design: Since SystemC is based on C++ language, it naturally supports

modeling the embedded software. On the other hand, to model hardware, it provides

necessary constructs for timing and concurrency. Therefore, it is a language that

can capture the behaviors of both the hardware and software components.

• Support for multi-level abstraction: With SystemC, we can model a system with

different levels of abstraction in a same design. For example, a system-level design

can be combined with a low-level model of a part of the system [121].

• Efficiency : Compared with the traditional hardware description language like

VHDL and Verilog, SystemC model is able to achieve a speed ten times faster

than a VHDL model at the same abstraction level [122].

• Reusability : SystemC enables the reuse of implemented models by structural

hierarchical libraries of design units and some other powerful mechanisms benefited

from C++, such as inheritance, templates and overloading. Great reusability

increases the speed and decreases the complexity of system model design.

3.1.1.2 SystemC Modeling Constructs

The main modeling constructors of SystemC are presented as follows.

• Modules : Complex embedded systems are comprised by many independently

components, including both the hardware and software components. In SystemC,

components are modeled by SC MODULE class, like the entity in VHDL andmodule

in Verilog, which implements the algorithms and processes data. A module may

contain many processes and ports.

Chapter 3 : Design and Implementation IDEA1 61

• Process : Processes can be invoked when an event occurs. There are three kinds

of processes, i.e., methods, thread and cthread. The method process is executed

when an event occurs. Once the execution begins it cannot be suspended. It

returns control to the simulation kernel after completing execution. Thus, the

action executed in a method process is completed instantaneously at a simulation

time point. To the contrary, the tread process can be suspended by calling a wait()

function, and it will resume execution when an event occurs or the wait time passed.

If a process is in wait state, it is treated as an inactive process. Cthread is a special

kind of threads that is sensitive only to the clock signal. It is useful for hardware

synthesis.

• Ports and Signals : Ports provide modules the interfaces to communicate with other

modules. Ports of different modules are connected by signals which implement the

transactions between two modules. Ports and Signals can be of any data type

supported by SystemC.

3.1.1.3 SystemC Simulation Kernel

SystemC simulation can be divided in three distinct major phases, includes elaboration,

simulation and postprocessing [120]. All the setting and control of these phases are

implemented in a sc main function, which is the start point of the SystemC simulation

program. During the elaboration phase, all the modules are initialized; the relative ports

are connected by signals. After elaboration, the simulation execution begins with a call

of the sc start function. The simulation kernel will update the values of all signals and

invoke all the active processes at every simulation cycle. An active process goes into the

suspended state after it completes its operation or reaches a wait statement. Once all

the active processes are invoked, simulator time advances a simulation cycle. Because

all the active processes are invoked at the same simulator time, it creates an illusion of

concurrency. Finally, when the simulator time reaches the point that the application sets,

the simulation stops and all the objects are deleted. A detailed and rigorous description

62 Chapter 3 : Design and Implementation IDEA1

and semantics of the SystemC simulation kernel can be found in [123].

3.1.2 Transaction Level Modeling

TLM has become a widely-used abstraction mothod to simplify the early architecture

exploration of embedded systems. It can speed up the system design and allow designers to

focus on the system functionalities, since unnecessary details are hidden and may be added

later. As Stuart Swan stated in [124], transaction level modeling is a modeling method

that models the communications by using function calls. It integrates the hardware and

software development and enables early system exploration and verification.

There are two kinds of components in TLM: communication and computation

components. TLM seperates the details of communication components from the

computation components. Communication is modeled by channels, while transaction

requests take place by calling interface functions of these channel models.

TLM also supports multi-level abstraction. As defined in [125], according to the time

accuracy degree of communication and computation components, TLMs can be divided

into 4 categories.

• Component-assembly model : In this model, the communication has no time

information and computation time is approximate.

• Bus-arbitration model : In this model, both the communication and computation

time are approximate.

• Bus-functional model : It contains time/cycle accurate communication and

approximate-timed computation.

• Cycle-accurate computation model : It contains cycle accurate computation and

approximate-timed communication.

By these hierarchical abstractions, TLM provides an efficient design process of complex

Chapter 3 : Design and Implementation IDEA1 63

systems that allows designers to start with a high-level behavioral model and successively

refine it until a final cycle-accurate implementation is reached.

3.2 IDEA1 Framework

IDEA1 is developed in SystemC and C++. The sensor node is modeled in SystemC and

the interconnections among nodes are implemented in C++. IDEA1 includes a library

that contains many implementations of existing hardware platforms and communication

protocols. It also provides a graphical user interface to facilitate users to configure

system, control simulation and analyze results. In this section, the architecture and

design framework of IDEA1 are presented.

3.2.1 Architecture of IDEA1

IDEA1 is a component-based simulation framework. Every component is modeled as

an individual SystemC module communicating with each other via channels. The

architecture of IDEA1 is illustrated in Fig. 3.1.

The SystemC kernel acts as the simulation engine. It schedules the execution of

processes and updates the state of all modules at every simulation cycle. All active

processes are invoked orderly at the same simulator time, which creates an illusion of

concurrency. SystemC provides us with a function, named wait, to set relative process to

inactive state until a sensitive event occurs, which can improve the simulation speed.

The node system is a composite module comprising 2 parts, hardware and software.

The sensor nodes are modeled exactly as their architectures. The hardware components

of a sensor node generally include a processing unit, a RF transceiver, several sensors

and a battery. Each component is modeled as an individual module of SystemC. The

software model consists of protocol stack and application implementations. A more

detailed explanation about the node system modeling will be presented in section 3.3.1.

64 Chapter 3 : Design and Implementation IDEA1

Fig. 3.1: Architecture of IDEA1

The network model of IDEA1 is inherited from SCNSL [4]. It is implemented as a pure

C++ class. All nodes are connected to a same network object via their proxy modules.

The network module manages the network topology, implements the radio propagation

and verify the occurrence of collisions. At the initialization phase, every proxy registers

its information in the network module such as position, TX power and RX sensitivity by

calling a function of network class. During simulation, the network object reads the packet

sent by nodes, calculates the distance between the source and its destination based on the

parameters of relative nodes, and forwards the packet according to the radio propagation

models. If two nodes in the radio range transmit at the same time, a collision will occur.

The network class does not has the conception of time; therefore, a proxy module written

in SystemC is used to enable the emulation of transmission delay by synchronizing the

event with the SystemC kernel simulation cycles. By using Node-Proxy, nodes can be

Chapter 3 : Design and Implementation IDEA1 65

designed as pure SystemC modules so as to exploit all advantages of SystemC in HW/SW

co-design and verification. A more detailed description about the network modeling will

be presented in section 3.3.4.

A GUI based on Qt platform [126] is developed to integrate all the parts, which

can facilitate the system configuration, network topology visualization, simulation control

and result analysis. Users can use graphical interface to configure the network system and

analyze the simulation results. A more detailed introduction of the GUI will be provided

in section 3.2.4.

3.2.2 Design Flow of IDEA1

The design flow of IDEA1 are summarized in Fig. 3.2. At the configuration stage of the

simulation, user set the parameters of the targeted application in an eXtensible Markup

Language (XML) file. After the configuration, the GUI can display the topology of the

network before the execution of simulation. According to the topology, users can verify

and modify their settings. When the executable simulation file start to run, it first read the

input parameter file and set its relative variables. When the simulation finish, the results

are provided in two forms: simulation log and event trace. The simulation log displays

all important steps of network behaviors and the simulation results; and the event trace

is recorded in a value change dump (VCD) file that tracks the state transitions of some

selected modules and can be read by a waveform viewer. This design flow is a typical

one that is supported by many other simulators, such as WISENES [114]. The particular

feature of IDEA1 is the state tracing of every module and selected variables which can

facilitate the verifications of model implementation.

Many parameters of different-levels can be configured by users, including node level,

protocol level, application level, etc, as listed in Table 3.1. Application parameters

describes the network compositions and application tasks. Network parameters defines

the environment. The protocol can be tuned by setting the protocol parameters.

66 Chapter 3 : Design and Implementation IDEA1

Fig. 3.2: Design flow of IDEA1

Node, microcontroller and transceiver parameters specify the capabilities of sensor node

platforms and some behaviors of hardware components. Regarding to the implementation

of simulation codes, these parameters are presented as variables which are defined as

different types. For example, the data rate is stated as a float variable.

Table 3.2 presents the output results and their types. The output parameters are

calculated after the simulation based on the statistics of network behaviors. They are

displayed at the end of simulation log. All output parameters can be divided into four

categories, i.e., packet delivery, latency, energy consumption and simulation time.

3.2.3 Current Library

Many commercial off-the-shelf (COTS) hardware platforms have been modeled, including

MICA2, MICAz and N@L motes. Therefore, the microcontroller models include ATMEL

ATMega128 and Microchip PIC16LF88; the RF transceiver models contain TI CC2420,

TI CC1000 and Microchip MRF24J40.

C
h
ap

ter
3
:
D
esign

an
d
Im

p
lem

en
tation

ID
E
A
1

67

Tab. 3.1: Input parameters of IDEA1 and their types

parameters type (unit) description

application level
number of nodes integer
position of nodes three-dimension integer array
sensing interval integer (µs) interval between two sensing
length of application integer (s) how long the application lasts
network level
attenuation exponent float attenuation exponent used in radio prorogation model
packet error rate integer packet error rate caused by channel interference
protocol level
data rate float(kbps)
channel access algorithm unsigned char non-slotted CSMA-CA, slotted CSMA-CA or GTS
BO integer determining the length of superframe
SO integer determining the length of the active portion of a superframe
node level
short address 2-byte integer array short address of nodes
long address 8-byte integer array long address of nodes
processing unit unsigned char array choose a microcontroller from the library for a node
transceiver unsigned char array choose a transceiver from the library for a node
microcontroller level
clock frequency integer array (Hz) operating frequency
voltage float array (V) Vdd
ADC conversion time float array (µs) the time for converting one sensor date.
SPI transmission time float array (µs) the time for sending one byte to the transceiver.
data memory size integer array (bytes) available data memory
power model float array (µW) power consumption of each operation model
transceiver level
data rate integer (bps) data rate of transceiver
TX power float array (dBm) transmission power
RX sensitivity float array (dBm) receiving sensitivity
wake up time integer array(µs) the time used to wake up from sleep mode
power model float array (µW) power consumption of each operation model
peripheral level
battery discharge rate float array() a factor impacting the lifetime of battery
initial energy integer array(µJ) initial energy reserve of battery
sensor data source unsigned char measured sensor data or random generated
power model float array (µW) power consumption of each operation model

68
C
h
ap

te
r
3
:
D
es
ig
n
an

d
Im

p
le
m
en
ta
ti
on

ID
E
A
1

Tab. 3.2: Outpt parameters of IDEA1 and their types

parameters type description

packet delivery
throughput float (bps) average throughput of the network
packet delivery rate float packets successfully transmitted divided by packets transmitted
collisions integer array number of collision happened to a node

latency
packet delivery latency float (µs) average transmission latency

energy consumption
energy consumption per node float (µJ) average energy consumption of a node
power consumption per node float (µW) average power consumption of a node
power consumption per packet float (µW) average power consumption for transmitting a packet
power consumption of microcontroller float array (µW) power consumption of the microcontroller in a node
power consumption of microcontroller in active mode float array (µW)
power consumption of microcontroller in sleep mode float array (µW)
power consumption of transceiver float array (µW) power consumption of the transceiver in a node
power consumption of transceiver in active mode float array (µW)
power consumption of transceiver in sleep mode float array (µW)
power consumption of SPI float array (µW) power spent on SPI transmission between the microcontroller

and transceiver of a node
power consumption of ADC float array (µW) power spent on converting the sensor data of a node
network lifetime float (s) from the beginning to the first node died

simulation time
simulation time integer (s) time used for running one simulation

Chapter 3 : Design and Implementation IDEA1 69

Since the processing units of the existing generic sensor node platforms are mostly

based on 8/16 bits microcontrollers [127], we mainly focus on some power-efficient

microcontrollers. These hardware components can be assembled to construct some COTS

hardware platforms (e.g., MICA2 [27] and MICAz [42]). As stated in section 2.1.2, MICA

motes are commercially available products that have been used widely by researchers

and developers. Microchip PIC16LF88 and MRF24J40 are the main part of the node

developed in our laboratory, named N@L (Node@Lyon), which has been used to establish

an experimental testbed for validating the simulation results of IDEA1. The N@L mote

prototype is depicted in Fig. 3.3.

Fig. 3.3: N@L node prototype

It is powered by 2 AA batteries. The main feature of N@L mote is low power

consumption. It is mainly composed of a PIC16LF88 microcontroller and a MRF24J40

transceiver. Its key feature is power efficient. The current consumption of active operation

mode of PIC16LF88 is only 0.93-1.2mA [18]. Another feature is hardware support of IEEE

802.15.4 standard by MRF24J40.

The microcontroller communicates with the RF transceiver via a SPI bus. For

transmission, the microcontroller needs to write a MAC header and sensor data to the

TXFIFO of RF transceiver. MRF24J40 will automatically add a synchronization header,

PHY header and Frame Check Sequence (FCS), and transmit the packet by using the

IEEE 802.15.4 media access algorithms. After transmission, the RF transceiver will

send the microcontroller an interrupt to report the transmission results. For receiving,

70 Chapter 3 : Design and Implementation IDEA1

MRF24J40 calculates and verifies the cyclic redundancy check (CRC) automatically and

sends an interrupt to the microcontroller to report a receipt of packet. If the packet

requires an acknowledgment (ACK), MRF24J40 will send an ACK automatically. The

microcontroller only needs to handle the sensing operation and read/write packets from/to

the RF transceiver.

In the aspect of communication protocol, IEEE 802.15.4 has been implemented,

including the three MAC algorithms (i.e., non-beacon non -slotted CSMA-CA, beacon-

enabled slotted CSMA-CA and GTS algorithm). Low Rate Wireless Personal Area

Network (LR-WPAN), especially IEEE 802.15.4, is intended to become an enabling

technology for WSN [12][22] which stresses short range operation, low data rate, energy

efficiency, and low cost.

At present, the packet frame format implemented in IDEA1 is mainly focusing on

IEEE 802.15.4. The packet frame format defined in IEEE 802.15.4 standard is presented

in Fig. 3.4.

Fig. 3.4: Packet frame format of IEEE 802.15.4, redrawn from [15]

Preamble sequence is used for synchronizing messages. SFD can indicate the starting

point of packet. A lot of information can be presented by the frame control field, such

as packet type (e.g., data, command, beacon and ACK), security enabled, ACK request,

etc. The frame check sequence is utilized for error detection and correction. The frame

format is implemented as a packet structure in IDEA1. The transmissions between nodes

are at packet-level in order to accelerate the simulation speed. However, the length of

packet can be changed and the transmission time of packets is cycle accurate.

Chapter 3 : Design and Implementation IDEA1 71

In recent years, many radio chips implement the communication protocols

(specifications of PHY and MAC layers) by hardware; for instance, Texas Instrument (TI)

CC2420 supports the IEEE 802.15.4 standard partially by hardware. Users of TI CC2420

must implement the CSMA-CA algorithms by software, such as backoff period waiting

and beacon tracking. However, Microchip MRF24J40 implements the IEEE 802.15.4

completely in hardware. Users only need to load the packet frame to the TXFIFO

buffer of the transceiver and trigger the transmission by sending a command from the

microcontroller to transceiver, and then the transceiver will handle the transmission and

report the transmission result to the microcontroller. A same function can be implemented

by both hardware and software, which refers to the HW/SW partitioning problem. Due to

the advantages of SystemC in HW/SW co-design and co-synthesis, we can model HW/SW

at TLM level and easily handle HW/SW partitioning at lower level.

3.2.4 Graphical User Interface

The GUI is designed as a plug-in to the simulation environment so that the experienced

designers can also write SystemC code directly to configure applications and control

simulations. An example of IDEA1 graphical user interface is presented in Fig. 3.5.

The GUI presented in Fig. 3.5 consists of three major parts: system configuration table

(top-left of the main window) managing all the system parameters that users can set the

input parameters, network topology widget (top-right) showing the relative positions of all

nodes and the radio connections among them, and a console (bottom) displaying the debug

information and simulation log. The users first establish their WSN systems by configuring

the system parameters in the system configuration table such as number of nodes, positions

of nodes and protocol parameters. The connections between two nodes indicated by a solid

line on the topology display window are calculated based on radio propagation models

that condiders many impact factor, such as positions of nodes, transmit power, receive

sensitivity and attenuation factor. Then the simulation can be started by pressing the

’Run’ button (light blue triangle) on the toolbar, which will trigger the execution of final

72 Chapter 3 : Design and Implementation IDEA1

Fig. 3.5: Graphical user interface of IDEA1: A network with 100 nodes is modeled in this
example

executable simulation program that will read the user setting recorded in an XML file

during runtime. Finally, the simulation results are shown in the console window and the

generated trace file, normally in Value Change Dump (VCD) format, can be viewed by

any waveform-viewing tools.

3.2.5 IDEA1 Features

IDEA1 can quickly model the WSN system at system-level with the detailed parameters

of hardware and software. As a simulator especially for WSN, it also has many other

features that meet the requirements of the special characteristics of WSN. They are as

follows.

• Scalability : The nodes are often deployed in large quantities in many WSN

applications. When simulating these applications, the simulation time should

not augment too much as the number of nodes increases. IDEA1 provides great

scalability as a result of the system-level modeling and its efficient implementation

Chapter 3 : Design and Implementation IDEA1 73

of SystemC code. It has been proved that the simulation speed of IDEA1 is 2 times

faster than NS-2. A detailed analysis will be presented in section 4.3.3.

• Energy aware: IDEA1 can assess accurately the energy consumption of a single

node and the lifetime of network. All the microcontroller and transceiver models in

IDEA1’s library are associated with an energy model based on some experimental

measurements or values from datasheets. The energy models include not only the

current consumptions of all the states, but also the current consumptions and timing

information of the transitions between two states.

• Extensibility : As an extensible simulator, it should be easy to modify the existing

modules or add some new ones. The code of the existing modules in IDEA1 can be

reused to develop new components by the users. In addition, IDEA1 is a component-

based simulation environment, so new hardware or software modules can be easily

integrated to the current library.

• Heterogeneity Support : Many recently deployed WSN applications are heteroge-

neous systems, incorporating a mixture of elements with varying capabilities. In

IDEA1, all the nodes are modeled by SystemC and they can be connected to the

network model as long as they have the compatible interfaces with the network

module.

• Compatibility to the embedded system design flow : Node system design is always an

important topic in the field of WSN. New node systems are modeled normally by

SystemC at first. SystemC has become an emerging de-facto-standard for system-

level modeling. Having a model of the system, it is possible to simulate and verify

it. Once the model is correct, the real hardware can be synthesized starting from its

description. Therefore, IDEA1 provides the node system designers the possibilities

to evaluate the network performance of their new designs at an early stage. And it

also allows the designers to simulate the proposed protocols on new hardware even

if it has not been fabricated. The models developed for the simulation can also be

74 Chapter 3 : Design and Implementation IDEA1

synthesized into lower-level designs.

• Easy to use: SystemC is very easy to learn if the users are familiar with C++

programming, since SystemC is a C++ library. In addition, the users can establish

their system with the components in our library, so they do not have to write any

code. The GUI also provides the users with some other useful functions to facilitate

the control of simulation and the analysis of results.

3.3 Simulation Model Implementations

In this section, we explain the implementations of simulation models of IDEA1 in detail,

including sensor node, microcontroller, transceiver, network and energy models.

3.3.1 Sensor Node Modeling

IDEA1 is a component-based simulator. Each hardware component is modeled as an

individual module of SystemC. A typical model of sensor node is defined, as presented in

Fig. 3.6.

Fig. 3.6: A typical model of sensor nodes

For hardware modeling, sensor is simulated as a stimuli generator that is an interface

specifying how the physical parameters in the environment vary in spatial and temporal

Chapter 3 : Design and Implementation IDEA1 75

terms. The processing unit converts the analog signal from the sensor module into digital

format by a built-in Analog to Digital Converter (ADC), processes the data and sends the

packet to the RF transceiver via a Serial Peripheral Interface (SPI) bus which is a standard

communication type between microcontroller and transceiver. The RF transceiver emits

the packets in the network by different media access protocols. Some connections are

used by the RF transceiver to report interrupts (INT) to the processing unit, such as a

receipt of packet, Clear Channel Assessment (CCA), etc. The processing unit can also

wake up or reset the RF transceiver by two connections relatively. The processing unit

and RF transceiver are modeled as Finite State Machines (FSMs). During simulation,

the state transition traces of each component are recorded. Each state of the hardware

components is associated with a Current Consumption (CC) based on experimental

measurements and their data sheets. The duration and current consumption of each

transition between two states are also identified. Based on this information, the battery

module calculates the energy consumption of each component and its residual capacity

according to particular battery models (e.g., linear model, discharge rate dependent model

and relaxation model [128]) during runtime.

3.3.2 Microcontroller Model

The microcontroller is modeled as a finite state machine, as presented in Fig. 3.7. The

FSM of microcontroller is controlled by the interrupts generated by RF transceivers and

the applications it implements. In the model presented in Fig. 3.7, the application is a

typical one. The microcontroller wakes up periodically by a built-in timer in order to

obtain a sensor data and try to transmit the data to it destination; in addition, it may be

in IDLE state for waiting a RX interrupt from RF transceiver. When the microcontroller

is in the SENSING state, it performs the sensing operating which is modeled by data

generation in the sensor module and analog-to-digital conversion in the microcontroller.

After conversion, it stores the sensor data in a buffer. It will go to either SLEEP or IDLE

state depending on the application specifications if the data size is less than a certain

76 Chapter 3 : Design and Implementation IDEA1

value (the payload field size of the protocol-defined packet); otherwise, it will go to TX

state. In this state, the microcontroller send the sensor data to the RF transceiver via SPI

when the size of sensor data is big enough to construct a packet frame. The transceiver

will send the packet to its destination. The microcontroller quits the TX state until the

transmission of the packet is finished, that is to say it receive a interrupt report of the

transmission results from RF transceiver. After a transmission, the microcontroller may

stay in TX state and transmit another packet, or it will go to SLEEP or IDLE state.

When the microcontroller is in IDLE state, if a packet is received by RX transceiver, it

will go to RX state for reading the packet via SPI by an interrupt from RF transceiver.

If the packet is intended to other nodes, the microcontroller need to resend it to RF

transceiver in order to forward it to its destination; otherwise, the microcontroller will go

to SLEEP or IDLE state.

Fig. 3.7: A typical model of microcontroller

The microcontroller model presented in Fig. 3.7 is a typical one. Any specific

microcontroller model can be developed based on this typical model. For specific

microcontrollers, the current consumptions of each states and some timing parameters

may need to be update; moreover, according to different RF transceivers, the RX and TX

process may be different. It depends on the hardware implementations of communication

protocols by the RF transceivers.

Chapter 3 : Design and Implementation IDEA1 77

When the microcontroller is in TX state, the node (both microcontroller and RF

transceiver) need to perform specific communication protocols in order to access the

channel and avoid collisions of packet. The protocols can be implemented either by RF

transceiver with hardware support or by microcontroller with software. In the latter case,

the TX state of microcontroller will be divided into many sub-states. For example, if the

IEEE 802.15.4 MAC protocols presented in section 2.3.2.3, the TX state will be replaced

by the following sub-states, as presented in Fig. 3.8.

Fig. 3.8: State machine for microcontroller of IEEE 802.15.4 MAC protocol

In Fig. 3.8, it is an example of IEEE 802.15.4 slotted CSMA-CA algorithm. When

entering to TX state, the microcontroller first backoff a random duration and check the

channel. If the channel is free, it will start transmitting a packet. The backoff period

boundaries should be aligned with the superframe slot boundaries and the microcontroller

should ensure that the transceiver commences all of its transmissions on the boundary

of a backoff period. One backoff period includes 20 symbols, corresponding to 320 µs if

78 Chapter 3 : Design and Implementation IDEA1

the data rate is 250kbps. For the unslotted CSMA-CA algorithm, there is no need to

locate the backoff boundary and the clear channel assessment only need to be performed

once. For the GTS algorithm, the algorithm is very simple, after the receipt of a beacon

packet, the microcontroller wait until its slot to transmit without any backoff or CCA

mechanisms.

The sensing operation has the first priority that can interrupt any task. If the

sensing timer expires when a microcontroller is in other states except SENSING state,

it will suspend ongoing task, start converting sensor data, and resume its old task after

the sensing. If an interrupt from RF transceiver occurs when the microcontroller is in

SENSING state, the interrupt will be recorded and handled after the sensing operation.

In order to save energy, nodes should go to SLEEP mode as long as they have no data

to send. However, the transition from SLEEP mode to ACTIVE mode of microcontroller

takes some time, for example, PIC16LF88 spends 4 ms to wake up from sleep to INTOSC

mode [18]. Sometimes, the interval between two consecutive sensing operations is less the

transition time of microcontroller. We proposed an algorithm to handle the concurrency

between the sensing and other operations, as presented in Fig. 3.9.

When the sensing timer expires, this algorithm will be invoked. If the sensing interval

is less than or equal to the transition time, the nodes do not go to SLEEP mode and they

set the sensing timer as the sensing interval; otherwise, they go to SLEEP mode after

sensing if they do no need to send the data immediately and they set the sensing timer

as a value that is the sensing interval minus the transition so that they have enough time

to wake up before sensing. Nodes firstly set the timer for the next sensing operation.

Secondly, they read the sensor data and wait a sensing operation duration. After sensing,

the nodes store the sensor data in a buffer. If the previous state is not SLEEP, they will

go to the previous state; otherwise, they will transmit a packet when the size of sensor

data is bigger than the the payload field size of protocol-defined packet.

The transition from one state to another is controlled by the system configuration

and network simulation. The microcontroller has to go to SENSING state whenever

Chapter 3 : Design and Implementation IDEA1 79

Fig. 3.9: Algorithm for handling the concurrency of sensing and other operations

the sensing timer expires, where the sample interval is an input parameter of system

configuration. In addition; it will go to RX state when it receive an interrupt form

RF transceiver, which is a result of network simulation. However, the time staying in

SENSING and RX states is constant. They are determined by the software executions.

In the SENSING state, the microcontroller performs the analog to digital conversion. In

the RX state, it reading the RXFIFO of RF transceiver via SPI reading. The time of this

operation depends on the SPI communications speed, the time of software configuration

80 Chapter 3 : Design and Implementation IDEA1

of SPI hardware and the length of the packet. The time staying in TX state is determined

by SPI writing and the packet transmission.

The embedded software running on microcontroller is divided into different tasks,

such as analog to digital conversion and SPI communication. Before the simulations,

the execution time of these tasks need to be inputted by users. The time for an analog

to digital conversion or SPI communication is composed by two parts. One is the time

to configure the ADC or SPI hardware by software, and the other is the conversion or

communication duration of hardware.

The software execution time of each tasks can be obtained by their C or assembly

codes. For some new architectures that are still under development, many execution time

estimation methods for embedded systems can be applied in our model like the SystemC-

based hybrid approach proposed in [129]. This approach combines the advantages

of simulation-based and analytical approaches. In the first step, cycle-accurate static

execution time analysis is applied at each basic block of a cross-compiled binary program

using static processor models. After that, the determined timing information is back-

annotated into SystemC for a fast simulation of all effects that can not be resolved

statically.

At present, in the library of IDEA1, there are two microcontroller models, ATMEL

ATMega128 and Microchip PIC16LF88. Some specifications of these two models will be

introduced in the following two subsections.

3.3.2.1 Model of ATMEL ATMega128

In this section, the timing specifications of ADC and SPI tasks of ATMEL ATMega128

are introduced. The energy consumptions of each operation state will be presented in the

energy model part, section 3.3.5.

According to the data sheet of ATMega128 [16], the ADC clock frequency should be

fixed between 50 kHz and 200 kHz to get a maximum resolution; therefore, if the CPU

Chapter 3 : Design and Implementation IDEA1 81

operation frequency is 7.3728MHz, the division factor of ADC prescaler should be set to

64 or 128 in order to get a 115.2 or 57.6 kHz ADC clock frequency; thus the conversion

time to this two division factor is 217µs and 434µs. The smaller one is chosen as the value

of this parameter in our simulations. The time taken by the microcontroller to configure

and control the ADC hardware can be estimated by the assembly code of this task. It

takes 12 clock cycles for the software ADC configuration; one analog to digital conversion

is therefore 218.6µs.

If the SPI prescaler is set to 2 and the operating frequency of microcontroller is 7.3728

MHz, ATMega128 needs to spend 2.17 µs to transmit one byte by SPI hardware. The

configuration software execution time is calculated based on the C and assembly codes.

The C code of SPI communication is presented in Listing. 3.1.

Listing 3.1: C code example for SPI communication of ATMega128

FASTSPI STROBE(int a)

{

PORTB &= ˜BM(CSN) ; //2 c l o c k c y c l e

SPDR = a ; //1 c l o c k c y c l e

while (! (SPSR & BM(SPIF))) ; // wai t ing f o r the end o f SPI communication .

PORTB |= BM(CSN) ; //2 c l o c k c y c l e

}

FASTSPI WRITE FIFO(p , c)

{

SPI ENABLE() ; //2 c l o c k c y c l e

SPDR = CC2420 TXFIFO ; //1 c l o c k c y c l e

while (! (SPSR & BM(SPIF))) ; // wai t ing f o r the end o f SPI communication .

for (UINT8 spiCnt = 0 ; spiCnt < (c) ; spiCnt++) { // f o r loop , 18 c l o c k

c y c l e

SPDR = ((BYTE∗) (p)) [spiCnt] ; //1 c l o c k c y c l e

while (! (SPSR & BM(SPIF))) ; // wai t ing f o r the end o f SPI communication .

}

SPI DISABLE() ; //2 c l o c k c y c l e

}

82 Chapter 3 : Design and Implementation IDEA1

BOOL basicRfSendPacket (BASIC RF TX INFO ∗pRTI)

{

// Write the packet to the TX FIFO

FASTSPI WRITE FIFO((BYTE∗) &packet , frameLength) ;

FASTSPI STROBE(CC2420 STXON) ; // enab l e the t ransmis s ion .

}

In this example, the RF transceiver is TI CC2420. It takes ATMega128 (0.68 + 2.17)

µs to transmit one strobe command and ((0.68 + 2.17) + (2.577 + 2.17) ∗ lengthFrame)

µs to transmit a data frame with a length of lengthFrame bytes. Unlike MRF24J40, it

does not need to write the address of each byte when writing a frame of several bytes to

CC2420. It only need to tell CC2420 that the frame is intended to TXFIFO and then

send the frame continually. To transmit one packet, the microcontroller needs to send

the data frame and a TX command to the transceiver. Therefore, ATMega128 needs

(2 ∗ (0.68 + 2.17) + (2.577 + 2.17) ∗ lengthFrame) µs to transmit a packet of lengthFrame

bytes to RF transceiver.

3.3.2.2 Model of Microchip PIC16LF88

In this section, the timing specifications of ADC and SPI tasks of Microchip PIC16LF88

are introduced.

An analog to digital conversion of PIC16LF88 takes 65.974µs, including 54µs

computation time (108 instruction cycles with 8MHz clock frequency) and 11.974µs

acquisition time (Minimum Required Acquisition Time [18]). One instruction includes

4 oscillator cycles in PIC16LF88. The computation time includes the configuration of

ADC hardware and read of ADC result. The C code used in this evaluation is presented

in Listing. 3.2.

Listing 3.2: C code example for analog to digital conversion of PIC16LF88

unsigned int ReadADC()

{

Chapter 3 : Design and Implementation IDEA1 83

/∗ I n i t i a l i s i n g the ADC channel 0 ∗/

TRISA0 = 0 ; //3 c y c l e s

/∗ Analogue−RA0/RA1/RA3 D ig i t a l−RA2/RA5 ∗/

ADCON1 = 0b10000100 ; //3 c y c l e s

/∗ S e l e c t i n g ADC channel ∗/

ADCON0 = 0b00000001 ; // Enable ADC, 3 c y c l e s

ADIE = 0 ; // Masking the in t e r rup t , 3 c y c l e s

ADIF = 0 ; // Rese t t in g the ADC in t e ru p t b i t , 3 c y c l e s

ADGO = 1 ; // S tar ing the ADC process , 1 c y c l e s

while (!ADIF) continue ; // Wait f o r convers ion complete

volati le unsigned int ADC VALUE;

ADC VALUE = ADRESL; // Get t ing LSB of CCP1, 9 c y c l e s

ADC VALUE += (ADRESH << 8) ; // Get t ing HSB of CCP1 , 60 c y c l e s

return (ADC VALUE) ; // Return the va lu e o f the ADC process , 9 c y c l e s

}

The number of instruction cycle needed for each statement is also provided in

Listing. 3.2. Before the start of conversion, the initialization of ADC channel and interrupt

is performed. After conversion, the results is stored in a variable and returned. Note that,

the while loop is waiting for the hardware conversion to be finished, which is not included

in the computation time.

For the SPI communication of PIC16LF88, if the SPI prescaler is set to 4 and

the operating frequency of microcontroller is 8 MHz, PIC16LF88 needs to spend 4 µs

to transmit one byte by SPI hardware. The configuration software execution time is

calculated based on the C and assembly codes. The C code of SPI communication is

presented in Listing. 3.3.

Listing 3.3: C code example for SPI communication of PIC16LF88

void s p iw r i t e s h o r t (in t8 address , i n t8 va lue)

{

output low (CS) ; //1 cyc l e

s p i w r i t e (((address<<1) & 0b01111111) | 0x01) ; //8 c y c l e s + SPI

t ransmis s ion time

84 Chapter 3 : Design and Implementation IDEA1

s p i w r i t e (va lue) ; //7 c y c l e s + SPI t ransmis s ion time

output high (CS) ; //1 cyc l e

}

void s p iw r i t e l o ng (in t16 address , i n t8 va lue)

{

output low (CS) ; //1 cyc l e

s p i w r i t e (((address>>3)&0b01111111) |0 x80) ; //22 c y c l e s + SPI t ransmis s ion

time

s p i w r i t e (((address<<5)&0b11100000) |0 x10) ; //27 c y c l e s + SPI t ransmis s ion

time

s p i w r i t e (va lue) ; //7 c y c l e s + SPI t ransmis s ion time

output high (CS) ; //1 cyc l e

}

void bas icRfSendPacket ()

{

s p iw r i t e l o n g (TXNFIFO0, 0 x0A) ; // l en g t h o f the frame payload

s p iw r i t e l o n g (TXNFIFO1, 0 b01100001) ; // frame con t r o l

s p iw r i t e l o n g (TXNFIFO2, 0 b10001000) ; // frame con t r o l

s p iw r i t e l o n g (TXNFIFO3,++nSequence) ; // sequence number

s p iw r i t e l o n g (TXNFIFO4, 0 x00) ; //Des address

s p iw r i t e l o n g (TXNFIFO5, 0 x00) ; //Des address

s p iw r i t e l o n g (TXNFIFO6, addNode0) ; //Src address

s p iw r i t e l o n g (TXNFIFO7, 0 x00) ; //Src address

s p iw r i t e l o n g (TXNFIFO8, 0 x11) ; // payload

s p iw r i t e s h o r t (TXNCON,0 x05) ; // t r i g data and ack requ i r ed .

}

In this example, the RF transceiver is MRF24J40. It takes (8.5 + 2 ∗ 4) µs to write

one byte to a register with short address of MRF24J40 RF transceiver and (29 + 3 ∗ 4)

µs to write a register of long address. Therefore, PIC16LF88 needs ((8.5 + 2 ∗ 4) + (29 +

3 ∗ 4) ∗ lengthFrame) µs to transmit a packet of lengthFrame bytes to RF transceiver,

including lengthFrame writes of long address register to load the frame to the TXFIFO of

Chapter 3 : Design and Implementation IDEA1 85

RF transceiver and one write of short address register (Transmit Normal FIFO Control

Register of MRF24J40) to enable the transmission.

3.3.3 Transceiver Model

The state transition of RF transceiver is triggered by three types of events, including

protocol implemented, microcontroller commands and network events. Different

transceivers may have various protocols implemented. However, for microcontroller

commands and network event, we have summarized some common events. Based on

this, a universal model of transceivers is developed, as illustrated in Fig. 3.10.

Fig. 3.10: A typical model of transceiver

The transceiver is woken up by a command of micrcontroller and wait for a specified

crystal oscillator start-up time to enter IDLE state. The transitions from IDLE state to

RX FRAME or TX FRAME states are also triggered by commands of microcontroller.

When a packet is received in RX FRAME state, the transceiver may automatically go to

TX FRAME state to send back an acknowledgment if an ACK is required by the received

packet.

For specific transceivers, some parameters need to be fixed, including the data

86 Chapter 3 : Design and Implementation IDEA1

rate, data frame needed to transmit from microcontroller to transceiver and the SPI

communication speed.

3.3.3.1 Transceiver Model of TI CC2420 and CC1000

TI CC2420 supports the IEEE 802.15.4 PHY layer with a 250 kbps data rate in the 2.4

GHz frequency band, but the maximum data rate of TI CC1000 is 76.8 kbps. TI CC2420

can add a preamble Sequence, start of frame delimiter and frame check sequence to the

data frame automatically; however, for TI CC1000, the microcontroller needs to write

these fields of packet to transceiver by SPI communication.

Because TI CC2420 and CC1000 do not implement any channel access algorithms with

hardware, the models of these two transceivers are almost the same with that presented

in Fig. 3.10. Two small changes have to be applied for CC1000. One is that CC1000

do not have IDLE state. It is woken up by the microcontroller and go directly to RX or

TX states. The other is that CC1000 do not support automatic address check and ACK

transmission.

3.3.3.2 Transceiver Model of Microchip MRF24J40

Since Microchip MRF24J40 provides hardware support of IEEE 802.15.4 MAC protocols,

its models of finite state machine extend the typical model by adding some protocol based

states and transitions of states. The three IEEE 802.15.4 media access algorithms has

been modeled, including unslotted CSMA-CA, slotted CSMA-CA and guaranteed time

slots (GTS). Therefore, three finite state machines of transceiver are developed according

to these MAC algorithms.

According to the tasks of unslotted CSMA-CA algorithm, the RF transceiver has 7

states, as presented in Fig. 3.11.

The transceiver is set to sleep mode or woken up from sleep modes by commands of

microcontroller. Like TI CC1000, there is no IDLE state in MRF24J40; therefore, the

Chapter 3 : Design and Implementation IDEA1 87

Fig. 3.11: Model of MRF24J40 in non-beacon mode with CSMA-CA algorithm

transceiver is woken up directly to RX mode. When a packet is received in RX mode, the

transceiver will inform the micrcontroller by an interrupt and automatically send back an

ACK packet immediately if an ACK is required. If a transmission of packet is triggered

by the microcontroller, the transceiver will use the unslotted CSMA-CA algorithm to

transmit the packet. After the transmission of a packet, the RF transceiver waits a fixed

duration for the transmission being acknowledged if the ACK request bit in the frame

control field of the packet is set. The transmission is successful if the ACK is received in

time. The transceiver will report the transmission results to the microcontroller and go to

RX state. A transmission may fail after macMaxCSMABackoff times attempts of clear

channel assessment or macMaxFrameRetries times failures of receiving an ACK packet.

A failure of receiving an ACK packet may be caused by the collisions of either data packet

or ACK packet. The microcontroller can set the RF transceiver to SLEEP mode from

any state immediately by a command.

The process of slotted CMA-CA algorithm is similar to the unslotted algorithm except

the backoff period boundaries of every node should be aligned with the superframe slot

boundaries and the MAC sublayer should ensure that the PHY commences all of its

transmissions on the boundary of a backoff period. The model of MRF24J40 with slotted

88 Chapter 3 : Design and Implementation IDEA1

CSMA-CA algorithm is presented in the Fig. 3.12.

Fig. 3.12: Model of MRF24J40 in beacon mode with slotted CSMA-CA algorithm

If it is a coordinator, the BEACON ACQUIREMENT/TRANSMISSION state is to

broadcast a beacon packet; for a device node, it is BEACON ACQUIREMENT. In order

to send a packet, the transceiver should first receive a beacon packet to be synchronized

with the coordinator. On a successful receipt of beacon packet, the node may go to

RX state if it has no data to send, or it will start a new transmission by using slotted

CSMA-CA algorithm. Before and after the random backoff, the transceiver should ensure

that the remaining CSMA-CA operations can be undertaken before the end of the CAP.

If the remaining number of backoff periods in the CAP is not enough for the random

backoff, the transceiver will continue the backoff countdown and resume it at the start

of the CAP in the next superframe. After the random backoff, if the remaining time is

not enough for the transaction, including two CCAs, one transmission of data packet and

one transmission of ACK packet, the transceiver will wait until the next superframe and

perform a new random backoff delay again. Therefore, on receipt of a beacon packet, the

Chapter 3 : Design and Implementation IDEA1 89

transceiver may go the backoff state to resume a transmission of the previous superframe.

To ask a GTS usage, the node must send a GTS request command to the coordinator

during CAP by using the slotted CSMA-CA algorithm. On receipt of this command, the

coordinator sends an ACK. Then, the node keeps tracking the beacon frames for at most

4 superframes to verify which time slot is allocated. The information is located in the

GTS descriptor field of the beacon packet. A minimum length of CAP with 440 symbols

must be guaranteed in every superframe. After the GTS request is acknowledged by the

coordinator, the node keeps tracking the beacon packet and sends data during its GTS

slot, as presented in Fig. 3.13.

Fig. 3.13: Model of MRF24J40 in beacon mode with GTS algorithm

On a successful receipt of beacon packet, the transceiver may go back to SLEEP state

if it has no data to send or it will wait until its GTS slot to transmit a packet. For the

transmission of GTS algorithm, ACK is not required, because the channel is allocated

exclusively to one node.

3.3.4 Network Modeling

The network model connects each node, manages the network topology and implemented

the radio propagation. In this section, two questions will be answered.

• Packet Transmission: how a packet from one node can be transmitted to another

node?

• Radio propagation model : what happens during the transmission?

90 Chapter 3 : Design and Implementation IDEA1

3.3.4.1 Packet Transmission

In this section, the packet transmission process in IDEA1 is described. As stated

in section 3.1.1, SystemC simulation executes in three distinct major phases, includes

elaboration, simulation and postprocessing. During the elaboration phase, a network and

several node objects are instantiated. Each nodeProxy object registers its information to

the network object. The registered information includes its address, position, TX power

and RX sensitivity. The network model establishes a two-dimension topology array based

on this information and the radio propagation models. A detailed description of the

implemented radio propagation models will be provided in section 3.3.4.2. As detailed

in [4], the network object also contains a pointer array that points to each nodeProxy

instance, which is used to send a packet to the relative nodes.

When the simulation runs, if a node, named as node A, wants to send a packet to a

node B, it firstly calls a public function of the network class to calculate the transmission

time of this packet. After waiting the transmission duration, the nodeProxy sends the

packet to the network model. On receipt of this packet, the network model will send that

packet immediately to all the nodes that are in the transmission range of the transmitter.

By doing these, the transmission duration is modeled.

The network model also assign a counter to each node which is used to check the

transmission validity with respect to collisions. The counter holds the numbers of active

transmissions that can reach a relative nodes at a given time. If it is bigger than one, a

collision occurs. When a node receives a packet, it check the destination address of that

packet and accept it if the addresses match.

3.3.4.2 Radio Propagation Model

Radio propagation model is used to predict the received signal power of each packet. Every

transceiver has a receiving sensitivity which is a threshold. If the power of a signal arrived

at a transceiver is below the receiving sensitivity of this transceiver, it will not be able to

Chapter 3 : Design and Implementation IDEA1 91

be successfully decoded. At present, two models have been implemented in IDEA1: the

free space propagation model [130] and the ITU (International Telecommunication Union)

indoor propagation model [131]. They present two typical working environments of WSN

applications, i.e., indoor and outdoor scenarios. The users can choose a propagation model

at the beginning of simulation by setting a system parameters. If these two models are

not accurate enough for the specific applications of some users, they can add some more

special radio propagation models in IDEA1.

The free space propagation model has the following form:

Pr(d) =
PtGtGrγ

2

(4π)2d2
(3.1)

Where Pr(d) presents the received power of a signal at the part of receiver which is

located d meters away from the transmitter. Pt is the TX power of a signal at the part

of transmitter. Gt and Gr are the antenna gains of the transmitter and the receiver

respectively. γ is the wavelength.

The ITU indoor propagation model is formally expressed as:

Ltotal = 20× log10f +N × log10d+ Lf(n)− 28 (3.2)

Where Ltotal is the total path loss. f is the transmission frequency and its unit is MHz. N

is the distance power loss coefficient. Lf is the floor penetration loss factor and its unit

is dB. Both the distance power loss coefficient and the floor penetration loss factor have

been given some recommended values by IUT based on various measurement results which

can be found in [131]. n is the number of floors between the transmitter and receiver.

3.3.5 Energy Model

Many energy models have been developed and implemented in the existing simulation

tools for WSN. For example, a power model of different hardware components have

92 Chapter 3 : Design and Implementation IDEA1

been included in SensorSim [97]. In this model, the power consumption of each

hardware component is considered, but the CPU and sensor device models have not been

implemented. A measured prototype power consumption model for Tampere University of

Technology Wireless Sensor Network (TUTWSN) motes is provided in [132]. The power

consumptions of TUTWSN mote in different operation modes (e.g., sleep, RX and TX)

have been measured; however, the transition between two states has not been considered.

An improved energy model [133] has been implemented in OMNeT++. In this model,

both the the transition energy cost for switching between the radio operational states

and the energy consumption of microcontroller have been considered. However, in the

implementation of this model, the authors assume that the microcontroller follows the

same sleeping schedule of the radio interface; nevertheless, the processor can be in sleep

mode when the RF transceiver is listening to the channel and woken up by the latter when

a packet is received. IDEA1 overcomes these limitations by component-based hardware

models of sensor nodes which allow each components to operate independently.

In IDEA1, each state of the main hardware components in a sensor node is associated

with a current load. The duration and current consumption of each transition between

two states are also identified. During the simulation, the states of these components are

updated according to software execution and network events. The energy consumed by

node i can be calculated as follows.

Ei =

N∑

j=0

(

M∑

k=0

Eijk +

O∑

l=0

Eijl)

=

N∑

j=0

(

M∑

k=0

V · Iijk · tijk +

O∑

l=0

V · Iijl · tijl)

(3.3)

Where Eijk presents the energy consumption of the kth state of the jth component of node

i, and Eijl presents the energy consumption of the lth state transition of the jth component

of node i. The node has N components consuming energy. Each component has M states

and O transitions. During the simulation, the state transition traces of each component

are recorded; thus the time spent on different states and transitions, tijk and tijl, is known.

Chapter 3 : Design and Implementation IDEA1 93

Based on this information, the battery module calculates the energy consumptions of each

component as well as the network lifetime during runtime.

The current consumptions of different operation modes need to be calibrated by

real measurements. A testbed has been established to calibrate the energy model and

validate the simulation results. It will be described in section 4.2. In this chapter, the

current consumptions of the main operation modes of the hardware components of MICAz

and N@L motes are summarized according to the data sheets of their main hardware

components [16][17][18][19], as presented in Table 3.3 and Table 3.4.

Tab. 3.3: Current consumptions of MICAz mote [16][17]

Microcontroller (ATMEL ATMega128) Transceiver (TI CC2420)
mode current consumption mode current consumption

(transition time) (transition time)
PowerDown 0.3µA PowerDown 17µA
PowerSaving 8.9µA IDLE 426µA
IDLE 4mA RX 18.8mA
Active 9mA TX(0dBm) 17.4mA
PowerSaving->Active n/a TX(-5dBm) 13.9mA

TX(-10dBm) 11.2mA
TX(-25dBm) 8.5mA
PowerDown -> IDLE 426µA(1ms)
IDLE -> RX 18.8mA(192µs)
IDLE -> TX 6.7mA(192µs)

Tab. 3.4: Current consumptions of N@L mote [18][19]

Microcontroller (Microchip PIC16LF88) Transceiver (Microchip MRF24J40)
mode current consumption mode current consumption

(transition time) (transition time)
Sleep 0.01∼8µA Sleep 2µA
Active 0.93∼1.2mA RX 19mA
Sleep->Active n/a(4mA) TX 23mA

SLEEP -> RX or TX n/a(2ms)
TX -> RX n/a(192µs)
RX -> TX n/a(192µs)

In Table 3.3, the timing information and current consumptions of transitions from

power saving states to Active state of the microcontroller have not been found in its data

sheet. The minimum current consumption of MICAz motes is 17 µA when the whole

system is in sleep mode. The current consumption increases to 4 or 9 mA when the

94 Chapter 3 : Design and Implementation IDEA1

microcontroller is woken up. It takes the transceiver 1 ms to wake up from power down

state to IDLE state to wait for the crystal oscillator to be stable. When this mote is

transmitting packets, its current consumption is 26.4 mA corresponding to 0 dBm TX

power. The transceiver also needs 192 µA to transit from IDLE to RX or TX states.

In Table 3.4, the current consumptions of the state transitions of N@L mote are not

found in the data sheets of its microcontroller and transceiver. Both PIC16LF88 and

MRF24J40 do not support an IDLE state. PIC16LF88 is an low power microcontroller.

Its active current consumption is only 0.93∼1.2 mA.

3.4 Simulation Output

There are three kinds of simulation output in IDEA1, including simulation log, event

sequence tracing file and sensor data received by nodes.

3.4.1 Simulation Log

The simulation log is used to debug the model implementations and show the network

behaviors. The designers can output debug information when an event occurs to verify

whether this event is triggered with correct logic. An example is presented in Fig. 3.14.

In this example, we can observe a complete transmission process of the transceiver of

node0. After one failed channel access, node1 delay a random number of backoff duration,

and then successfully find a free channel. On reception of the packet from Node0, the

coordinator sends an acknowledgment back. After receiving the ACK packet, Node0

go to SLEEP mode since it has no data to transmit. When the coordinator is sending

acknowledgment packet to Node0, the transceiver of node3 finds the channel is busy at

8448 µs by CCA.

Many statistical results of network behaviors are attached at the end of simulation

log, including aspects of throughput, packet delivery latency, power consumptions and

Chapter 3 : Design and Implementation IDEA1 95

Fig. 3.14: An example of simulation log

simulation time.

3.4.2 Event Sequence Tracing

During the simulation is running, the states of every hardware components and the

variables are updated continually. SystemC provides users a sc trace module to track

signals and records the values of signals into a file in Value Change Dump (VCD) format,

which can be displayed graphically by using waveform-viewing tools. The event sequence

tracing is analyzed to verify and refine the model implementations. Fig. 3.15 presents an

example of event sequence tracing.

A typical carrier sensing multiple access process is presented in this example. The

states of microcontroller and transceiver are presented as numbers. The meaning of each

state is also illustrated in Fig. 3.15. Node1 finds the channel being busy when node0 is

emitting data to the channel; therefore it waits for a random number of backoff periods

96 Chapter 3 : Design and Implementation IDEA1

Fig. 3.15: An example of event sequence tracing

to retransmit the packet.

The packet transmission process among different hardware components and network

is also presented. The packet with a value of 205 in Fig. 3.15 is transmitted from node0

to the network module and to the transceiver and microcontroller of the coordinator, as

shown by the arrows.

Depending on the event sequence tracing, we can also verify the timing accuracy at

cycle accurate level. For the slotted CSMA-CA algorithm, all the transmissions should

be aligned with the backoff boundary. As indicated by two vertical lines in Fig. 3.15,

the transmissions of node0 and node1 have started exactly at the beginning of a backoff

boundary.

The event sequence trace method can provide more comprehensive informations than

simulation log. Every state transition of interested variables is recorded in the VCD file;

on the contrary, the simulation log only tracks the event where a print function is invoked.

However, the simulation log is more flexible and readable; for example, the transmission

results (e.g., failure or success) can be attached in the simulation log directly.

Chapter 3 : Design and Implementation IDEA1 97

3.4.3 Sensor Data

At present, sensors are modeled as an individual module in IDEA1. The sensor module

generates sensor data in two ways. One is random generation, and the other is read

the real measured data in a data file. Some specific sensor chips will be modeled later.

Fig. 3.16 presents an example of the measured sensor data.

Fig. 3.16: Measured sensor data by N@L mote

The data is measured by one sensor of N@L mote, PZT PIC255 piezoelectric sensor,

and a sensor amplifier circuit based on TLV2772 from Texas Instrument. During IDEA1

simulation, every node reads its data from its sensor data file and transmits the data to the

coordinator by using some communication algorithms. After receiving the packets from

nodes, the coordinator stores the sensor data to different files according to every node.

These files can be compared with the original sensor data files to analyze the packet lost.

98 Chapter 3 : Design and Implementation IDEA1

3.5 Conclusion

In this chapter, a novel system-level WSN simulator, named IDEA1, is presented. It is

developed in SystemC and C++, which makes the simulation to be a part of the embedded

system design. It enables the design space exploration at an early stage and supports a

modular design pattern of sensor nodes and WSN applications. Many COTS hardware

platforms have been modeled and the IEEE 802.15.4 standard has been implemented. An

energy model has been implemented on all the hardware component models of IDEA1.

In next chapter, the performance of IDEA1 will be evaluated. The accuracy of the

simulation results of IDEA1 will be validated by some real measurements of a testbed. The

simulation results of IDEA1 will also be compared with NS-2, a widely-used simulator in

WSN field. Other performances of IDEA1, like simulation speed and power consumption

analysis, will also be evaluated.

Chapter 4 : Performance Evaluation of IDEA1 99

Chapter 4 :

Performance Evaluation of IDEA1

100 Chapter 4 : Performance Evaluation of IDEA1

Chapter 4 : Performance Evaluation of IDEA1 101

In this chapter, the performance of IDEA1 is evaluated, especially in two aspects:

accuracy and simulation time. For the accuracy validation, the simulation results of

IDEA1 are compared with some measurements on a testbed composed of 9 nodes. The

simulation of IDEA1 is also compared with NS-2, the most widely-used simulator in the

research of WSN, including the comparisons of simulation results and simulation time.

This chapter is organized as follows. Section 4.1 introduces the metrics used to evaluate

the network performances. Section 4.2 describes the testbed establishment and shows

the comparisons between the testbed measurements and simulation results. Section 4.3

presents the simulation results of both IDEA1 and NS-2 to an IEEE 802.15.4 sensor

networks. The differences between these two simulators are summarized. Finally, section

4.4 concludes this chapter.

4.1 Performance Metrics

Four metrics are used to evaluate the network performances in the testbed experiments

and comparisons with NS-2. They are defined as follows.

• Packet Delivery Rate (PDR): PDR is used to evaluate the network throughput. It

is the ratio of the number of packets successfully received to the number of packets

generated by nodes.

• Average Latency (AL): Latency of a packet is the duration from the generation of

the last sensor data in the packet to the receipt of this packet by coordinator. AL

is an average latency of all packets that successfully received by coordinator. If the

packets only contain one sensor data, AL is also the average latency of sensor data;

however, if several sensor data are transmit in one packet, the latency of a sensor

data is AL plus the interval between this data to the last sensor data.

• Energy Consumption per Packet (ECPkt): ECPkt is the average energy consumed

for successfully transmitting one packet.

102 Chapter 4 : Performance Evaluation of IDEA1

• Average Power Consumption (APC): APC is used to measure the average power

consumption per node which is a basic parameter to predict the lifetime of a sensor

node and the network.

4.2 Experimental Validation

To validate the accuracy of IDEA1 simulation, a testbed of 9 nodes is built. Two kinds

of measurements have been done. One is the measurements of the current consumptions

of every operation modes of an individual sensor node in order to calibrate the energy

model, which will be used in the simulation of IDEA1. The other one is the measurements

on the network testbed of 9 nodes.

4.2.1 Calibration of the Energy Model

Initially, the energy model needs to be calibrated by some experimental measurements.

The current consumptions of every operation mode of hardware components are measured.

Our measurement setup is illustrated in Fig. 4.1.

Fig. 4.1: Hardware measurement configuration

One resistor of 1 Ω was placed series with the power supply of a node (named as node0)

Chapter 4 : Performance Evaluation of IDEA1 103

Tab. 4.1: Measured current consumptions of N@L motes (3.3 V VDD and 8 MHZ clock
frequency)

PIC16LF88 microcontroller MRF24J40 RF transceiver
active 1.386mA sleep 17µA
sleep 7µA RX 23.504mA
sleep->active 7µA/1.846ms TX(0dBm) 23.961mA

TX(-10dBm) 22.901mA
TX(-20dBm) 22.631mA
TX(-30dBm) 22.409mA
sleep-> RX 6.7mA/720µs
sleep->TX 6.7mA/720µs

in order to measure the current consumption of the node by the voltage across this resistor.

The output of the voltage generator is adjusted to ensure that the node has a 3.3V power

supply. An instrumentation amplifier [134] with a gain of 76 is used to amplify the voltage

across the resistor. Tektronix MSO2012 mixed signal oscilloscope [135] is used to track

the output of this amplifier with the highest possible resolution. Tektronix MSO2012

provides a 1 GS/s sample rate. By doing this, the energy consumption of node0 can be

measured.

A set of micro-benchmarks have been developed to isolate the hardware consumption

of microcontroller and transceiver in order to obtain the current consumptions of each

operation mode. For the low current consumption of sleep mode, we use a digital multi-

meter that can capture extremely small current. The current consumptions of N@L motes

is listed in Table 4.1.

As shown in Table 4.1, both the microcontroller and transceiver need a period of time

to wake up from the sleep mode. The current consumptions of the transitions between

two states that are not available in data sheet are also measured.

4.2.2 A Testbed of Sensor Network

4.2.2.1 Testbed Establishment

A star topology testbed of 9 N@L motes is built, as illustrated in Fig. 4.2.

104 Chapter 4 : Performance Evaluation of IDEA1

Fig. 4.2: Testbed Measurement Configuration

This network consists of eight nodes and one coordinator. The nodes read a senor

data (an integer of one byte generated randomly) periodically. The reading frequency is

presented as sample rate. A sample rate is 10, which means that the node read the sensor

data every 0.1 s. The nodes send the sensor data to the coordinator immediately after the

data is read by using the IEEE 802.15.4 unslotted CSMA-CA algorithm. If the sensing

timer expires when the nodes is transmitting a old sensor data, the microcontroller will

store the new sensor data in a one-byte buffer. However, if the sensing tiler expires when

there is already a sensor data in the buffer waiting to be sent, the new sensor data will

replace the old sensor data in the buffer to enable a short latency of sensor data.

The parameters of the unslotted CSMA-CA algorithm (e.g., macMinBE, macMaxC-

SMABackoffs, macMaxFrameRetries, etc.) are set as the default values defined in IEEE

802.15.4 standard [15]. The TX power of RF transceiver is set to 0 dBm. The nodes

go to SLEEP mode after the transmission is finished. The transmission is successful if

an acknowledgment (ACK) is received; otherwise, it fails after macMaxCSMABackoffs

attempts of channel access failure or macMaxFrameRetries attempts of retrying to

Chapter 4 : Performance Evaluation of IDEA1 105

transmit the packet. The nodes are woken up periodically by a built-in timer which

uses an external oscillator in order to continue to increment asynchronous to the internal

phase clocks. The timer will continue to run during the sleep period of the microcontroller.

It can generate an interrupt on overflow that will wake up the microcontroller. In our

testbed, the timer1 of Microchip PIC16LF88 with a clock of 32.768 kHz is used to provide

this function.

Once the coordinator receives a packet from node0 with different sequence number, it

will toggle one of its I/O pins that is connected with a led. The voltage transition trace

of this led pin is also recorded by the oscilloscope in order to observe the latency of sensor

data. It is the duration from the generation of this sensor data to the receipt of the packet

by the coordinator. On the trace of oscilloscope, it is the duration from node0 is woken

up to the toggle of the led pin of coordinator.

A successful transmission of packet is determined by two factors. One is that the

coordinator successfully received the packet from node0, which is illustrated on the trace

of oscilloscope as the led pin of coordinator is toggled before node0 goes to sleep mode.

The other factor is that the data packet is successfully acknowledged by the coordinator,

which can also be observed on the trace. The duration between the led pin of coordinator

being toggled and node0 going to sleep mode is within an ACK packet transmission

time added by an ACK packet processing time. An ACK frame comprises 11 bytes; the

transmission time of an ACK packet is thus 352 µs. An ACK packet processing time

of node0 is 239 µs, including the data sequence number checking and some settings of

registers in order to set the transceiver to sleep mode. If the duration between the led pin

of coordinator being toggled and node0 going to sleep mode is very big, it means that the

first ACK packet is lost and nodes retransmitted the packet. In this case, only one packet

is considered in the calculation of PDR. A typical wave record is presented in Fig. 4.3.

In this example, the sample interval is 100 ms. The blue wave presents the voltage

across the 1 Ω resistor of node0 and the red wave refers to the transition trace of the led

pin of coordinator. The rise edge of the blue wave is the transition from sleep to active of

106 Chapter 4 : Performance Evaluation of IDEA1

Fig. 4.3: A typical wave record of current consumption of nodes

the nodes and the fall edge is the transition from active to sleep. When the coordinator

receives a packet from node0 with different sequence number, a switch of the red wave

occurs. From Fig. 4.3, we can see that the sample interval (the duration between two

rise edge of the blue wave is 100 ms). The pulse widths of the blue wave are different

because the duration of every transaction is different. From Fig. 4.3, three typical network

behaviors can also be observed.

• Successful transmission: Node0 is woke up by its timer1 and start transmitting

a packet to the coordinator. On receipt of a packet from node0, the coordinator

sends back an ACK packet to node0 and toggle its led pin. Once the transaction is

acknowledged by the coordinator, node0 will turn off its transceiver and go to sleep

mode.

• No ACK : Like the second sample transaction in Fig. 4.3, the coordinator did not

receive any packet from node0, which may be caused by collisions with other nodes’

transmission or channel access failures after macMaxCSMABackoffs attempts.

Node0 reported an failure transmission of packet after macMaxFrameRetries

attempts and went to sleep mode.

Chapter 4 : Performance Evaluation of IDEA1 107

• Multiple ACK : As the third transaction in Fig. 4.3, the first ACK packet from the

coordinator was not able to reach ndoe0 because of collisions or channel interference.

Node0 retried to transmit the packet and succeeded. For the latency, the first toggle

of the led pin of coordinator is considered. In addition, only one packet is calculated

in PDR.

4.2.2.2 Testbed Measurements and Simulation Results

The measurement results includes the four metrics, i.e., PDR, AL, APC and ECPkt. The

ECPkt and APC are measured by the current consumption trace of node0. AL and PDR

can be observed by the output trace of the led pin of coordinator.

The application performed by the testbed has also been implemented in IDEA1 with

the same configuration. To evaluate the performances of this network in different duty

cycles, sample interval is set to 10, 1, 0.1, 0.01 and 0.001 s respectively. The duty cycles

we have chosen can represent the main applications of WSN, from low rate sensing (0.1

Hz) to high speed rate (1 kHz). The low duty cycles are typical applications of WSN,

such as environment monitoring [26]. The high speed rate may be required in many real-

time automatic control applications [136]. The simulation and measurement results are

presented in Fig. 4.4 and Fig. 4.5 .

When the sample rates are 100 or 1000 Hz, the latency results of experimental

measurements are not available. The sample interval is too short that nodes sometimes

can not finish one transmission before the next sensing operation. The nodes may start

a new transmission immediately after a terminative one without going to sleep mode. In

this case, for a switch of the I/O pin of coordinator, we can not determine when the sensor

data is received by node0.

In Fig. 4.4 and Fig. 4.5, the average deviations for the four metrics (i.e., PDR, AL, APC

and ECPkt) between IDEA1 simulations and testbed measurements are 5.2%, 3.2%, 3.4%

and 6.5% respectively. Therefore, the average deviation between IDEA1 simulations and

108 Chapter 4 : Performance Evaluation of IDEA1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 1 10 100 1000

P
D

R
 (

%
)

Sample rate (Hz)

IDEA1

Testbed

(a) Packet Delivery Rate

 0

 5

 10

 15

 20

 0.1 1 10 100 1000

L
at

en
cy

 (
m

s)

Sample rate (Hz)

IDEA1

Testbed

 0

 5

 10

 15

 20

 0.1 1 10 100 1000

L
at

en
cy

 (
m

s)

Sample rate (Hz)

IDEA1

Testbed

(b) Average Latency

Fig. 4.4: Measured and simulated results of PDR and AL

testbed measurements is 4.6% which can be accepted for general high-level simulations.

With a small sample rate (0.1, 1, 10 and 31.25), the system is light loaded and

every node can finish its transmission before a new sensor data arrives. Therefore, the

Chapter 4 : Performance Evaluation of IDEA1 109

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.1 1 10 100 1000

P
o
w

er
 c

o
n
su

m
p
ti

o
n
 (

m
w

)

Sample rate (Hz)

IDEA1

Testbed

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.1 1 10 100 1000

P
o
w

er
 c

o
n
su

m
p
ti

o
n
 (

m
w

)

Sample rate (Hz)

IDEA1

Testbed

(a) Average Power Consumption

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.1 1 10 100 1000

E
n

er
g

y
/p

k
t

(m
J)

Sample rate (Hz)

IDEA1
Testbed

(b) Energy Consumption per Packet

Fig. 4.5: Measured and simulated results APC and ECPkt

average number of successful transmitted packets per sample interval is almost the same

for different sample rates. The PDRs and ALs remain stable. The ECPkt of a bigger

sample interval is larger, since it comprises longer period of sleep mode. The power

110 Chapter 4 : Performance Evaluation of IDEA1

consumption augments due to the decrease of sleep period. The largest sample rate

without transmission overlapping is 31.25 Hz. From the point view of network, a typical

transmission process in these cases is presented in Fig. 4.6.

Fig. 4.6: A typical transmission process when sample rate is small

After reading a sensor data at the same time, the nodes starts to transmit packets to

the coordinator by using unslotted CSMA-CA algorithm. A node will go to sleep mode

after its transmission finishes. As more and more nodes go to sleep mode, the network is

light loaded. The rest nodes can easily find an idle channel with less competitions. After

all the nodes finish their transactions, the network is IDLE. One transaction of a node is

the duration from the beginning of the transmission to the receipt of ACK packet. The

first node who finds the idle channel and is successfully acknowledged by the coordinator

will achieve the shortest latency. When the next sensing operation occurs, the same

process will be executed.

When the sample rates are 100 or 1000 Hz, the PDRs decrease and the other three

metrics augment. In these cases, the number of collisions increase and less packets can be

successfully received by the coordinator.

The available simulation results show that the latency increases when the sample rate

is 100, because the system is partially saturated and the transmissions of two adjacent

sample intervals overlap. There is no IDLE period in Fig. 4.6. Only a part of nodes

can finish their transmissions before the next sample interval begins and others have to

continue transmitting the old sensor data in the new sample interval. The new sensor

Chapter 4 : Performance Evaluation of IDEA1 111

data is loaded to a one byte data buffer in microcontroller. It will be sent after the old

transaction finishes. Thus, the transactions of the new sensor data is prolonged and the

average latency increases.

The latency is short when the sample rate is 1 kHz. In this case, the system is

completely saturated, the nodes always have one pending packet to send. When a node

reads a new sensor data, if there is a data in the buffer, this unsent data will be discarded.

The time for a sensor data staying in the buffer is less than the sample interval, 1 ms;

thus the average latency is supposed to be smaller than the one of 100 Hz sample rate and

a little larger than the one of small sample rates. However, The simulation results show

that its average latency is smaller than the one of small sample rates. In this case, the

network is always full of eight nodes for the competition of channel usage. The number

of clear channel assessment failure is big and the nodes gives up transmitting one packet

after macMaxCSMABackoffs failures. Thus, all the transactions in this case are short like

the one of first node in Fig. 4.6.

4.3 Performance Comparison with NS-2

NS-2 [62] is a discrete event, object-oriented, general purpose network simulator. Its

extensibility has been a major contributor to its success, with protocol implementations

being widely produced and developed by the research community. According to [8], it is

the most used simulator in Mobile Ad hoc NETwork (MANET) research. Therefore, in

this section, an application is studied by both NS-2 and IDEA1 with same configurations

of system parameters. The simulation results and the performance of these two simulators

are compared.

The same application in the section 4.2, a star topology network with eight nodes and

one coordinator, is studied. The nodes are in beacon-enabled mode and utilize the slotted

CSMA-CA algorithm to access channel.

The rest of this section is organized as follows. Section 4.3.1 introduces the NS-2

112 Chapter 4 : Performance Evaluation of IDEA1

simulation and the modifications we have made to improve an existing IEEE 802.15.4

NS-2 model. The differences about the model implementation between NS-2 and IDEA1

are also summarized. Section 4.3.2 presents the simulations results of NS-2 and IDEA1.

The deviations of the simulation results between NS-2 and IDEA1 are analyzed. Based

on the simulation results, the network behavior is explained. Section 4.3.3 shows the

comparison of simulation time between NS-2 and IDEA1. Finally, section 4.3.4 provides

more detailed analysis of the power consumption at component-level.

4.3.1 Simulation Model Implementation of NS-2 and IDEA1

In NS-2, four schedulers with different data structures (i.e., linked-list, heap, calendar

queue and real-time) are provided to maintain the event list which is ordered by the

timestamps of events. The scheduler executes the earliest event in the list to completion

and continue to execute the next event. One event performs some activities and possibly

generate some new events. NS-2 simulations are written in two languages, C++ and OTcl

(Object-oriented Tcl). In general, C++ code can be executed fast but it is inconvenient

to change (need to be recompiled), making it suitable for protocol implementation. OTcl

code runs much slower (interpreted) but can be changed easily, making it ideal for

simulation configuration. Therefore, once the network system implementation is compiled

as an executable file, many simulations of various configurations of system parameters can

be executed by just modifying the OTcl script.

In IDEA1, all models are implemented in C++ in order to facilitate the model

implementation process. However, as explained in section 3.2.2, all the system parameters

are defined in an XML file and are read by the simulation program at the beginning of

each simulation. Therefore, the change of system configuration can be done easily in

IDEA1 by resetting the relative parameters and recompilation is not necessary.

The NS-2 model we used is based on an existing IEEE 802.15.4 NS-2 model in

release 2.34 [24]. The extensions provided by [25] have also been added to this NS-2 model,

Chapter 4 : Performance Evaluation of IDEA1 113

such as sleep mode and symbol period CCA duration implementation. The existing IEEE

802.15.4 NS-2 model has been modified significantly, since it was built complying with an

earlier standard edition (IEEE 802.15.4 draft D18), which has been nowadays replaced

by the latest revised release IEEE Std 802.15.4-2006. Totally, twenty two modifications

have been implemented. A detailed description of these modifications can be found in

Appendix A.

In IEEE 802.15.4 standard, there are two synchronization mechanisms in the beacon-

enabled mode: beacon tracking and non beacon tracking (presented as noTracking mode

in this thesis). If tracking is specified, the node shall attempt to acquire the beacon

packet and keep track of it by regular and timely activation of its receiver. After the

transmission, if it has no sensor data to send, it will go to sleep mode. If tracking is not

specified, the node shall either attempt to acquire the beacon only once or terminate the

tracking after the next beacon. The IEEE 802.15.4 NS-2 model [24] has only implemented

the tracking mode; therefore, in section 4.3, the performance of the beacon-enabled mode

with beacon tracking is evaluated by both NS-2 and IDEA1. The beacon-enabled mode

without beacon tracking will be studied by IDEA1 in section 5.1.1.

The communication process in the modified IEEE 802.15.4 NS-2 model is described

as follows. When the sensing operating timer expires, the Service-Specific Convergence

Sublayer (SSCS) layer of the protocol stack in node sends a packet containing the new

sensor data to Media Access Control (MAC) layer by calling the mcps data request

function. The MAC layer will start the channel access process according to CSMA-CA

algorithms. If an idle channel is found, the MAC layer will handle down the packet to

Physical (PHY) layer which will transmit the packet to Channel module and decrement

energy. On receipt of a packet, the Channel module will forward the packet to each node

after a relative propagation delay. The PHY layer of the receiving nodes will be first

indicated of a new packet receipt, and it will pass the packet to upper layer. The MAC

layer will drops the packets not intended for it. It will also send back an ACK packet to

the sender if ACK request is specified in the packet frame.

114 Chapter 4 : Performance Evaluation of IDEA1

In IDEA1, the communication process is determined by the hardware architecture of

sensor nodes. The implementations of protocol stacks are based on hardware platforms.

For example, the specifications of both MAC and PHY layers of the IEEE 802.15.4

standard are implemented as hardware operations of RF transceiver of N@L motes;

however, if MICAz motes are used, the MAC layer specifications are implemented as

software operations of microcontroller since the transceiver of MICAz mote (TI CC2420)

does not provide hardware support of the IEEE 802.15.4 MAC layer. By doing this, the

timing and energy consumption behaviors of sensor networks can be modeled in detail.

For instance, if MICAz mote is used, the data exchange between MAC and PHY layer is

implemented by the SPI communication between microcontroller and transceiver.

The native support of hardware and software co-modeling embedded systems by

SystemC, such as primitives to model the concurrency, interrupts, structural hierarchy

and synchronization, enable us to easily model the HW/SW of sensor nodes within one

environment. For example, the statical and dynamical sensitivity mechanisms offered by

SystemC ensure that all the relative process can catch the event if an interrupt occurs. The

process can decide to handle the event immediately or ignore it. In the implementation of

IDEA1, if an relative interrupt occurs when the microcontroller is at SENSING state, it

will be ignored; however, if a sensing interrupt occurs when the microcontroller is at other

states, the microcontroller will stop what it is doing and handle the sensing interrupt

immediately. It will resume its task when the sensing operation finishes.

4.3.2 Simulation Results of NS-2 and IDEA1

Many cases with various configurations of parameters (mainly BO and SO) and different

sample rates have been studied. Other parameters of the CSMA-CA algorithms (e.g.,

macMinBE, macMaxCSMABackoffs, macMaxFrameRetries, etc.) are set to the values

defined by default in the IEEE 802.15.4 standard. To investigate the impact of different

combination BO and SO, BO is set to 3 values (0, 1 and 2) respectively and SO is set

to 0 for all the simulations. Each simulation includes 10000 samples, for example, when

Chapter 4 : Performance Evaluation of IDEA1 115

sample rate is 0.1, the application lasts 27.8 hours. Each case is simulated 100 times with

different seeds for the generators of random backoff slot numbers.

Three types of simulation results are compared, including NS-2, IDEA1 with

hardware modeling (denoted as IDEA1_HW) and IDEA1 without hardware modeling

(IDEA1_NOHW). In the last simulation, all the timing parameters about the hardware

operations are set to 0, including analog to digital conversion, SPI communication and

transitions from sleep to active of microcontroller and transceiver; thus these operations

do not consume any time or energy. Because the IEEE 802.15.4 NS-2 model does not

consider the hardware operations, NS-2 and IDEA1_NOHW are at the same abstraction

level. The hardware prototype used for this analysis is N@L motes and the energy model is

calibrated according to the testbed measurements presented in section 4.2. The simulation

results about the four metrics are presented in the following subsections.

4.3.2.1 Packet Delivery Rate

Fig. 4.7 shows the simulation results of PDR. The average deviation between IDEA1 HW

and NS-2 is 2.7% and the average deviation between IDEA1 NOHW and NS-2 is 1.0%.

If component level hardware operations are not considered, the simulation results of

IDEA1 NOHW and NS-2 is much similar since they are at the same level. The PDRs

of IDEA1 HW are smaller than NS-2 model, which is caused by its detailed sensor node

modeling, especially the impact of the sensing operations and SPI communication on the

communication process when the sample rates are high. For example, when the sample

rate is 1 kHz, during every sample interval (1 ms), the microcontroller has to spend 66

µs to convert the sensor data. If this sensor need to be sent, the SPI communication also

takes 386 µs. However, these parameters are all set to 0 in IDEA1 NOHW and NS-2

simulations; thus they can transmit more packet than IDEA1 HW.

In the light traffic load area on the left side of Fig. 4.7, PDR remains stable as the

sample rate increases. In these cases, the sample interval is long enough for every node

116 Chapter 4 : Performance Evaluation of IDEA1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 1 10 100 1000

P
D

R
 (

%
)

Sample rate (Hz)

BO=0,IDEA1_HW

BO=0,IDEA1_NOHW

BO=0,NS-2

BO=1,IDEA1_HW

BO=1,IDEA1_NOHW

BO=1,NS-2

BO=2,IDEA1_HW

BO=2,IDEA1_NOHW

BO=2,NS-2

Fig. 4.7: Simulation Results of Packet Delivery Rate by NS-2 and IDEA1

to accomplish its transmission before the next sensor data is received. As the sample rate

increases, the number of sensor data need to be sent per unit time augments and PDR

begins to decrease due to the increase of packet collisions. PDR with bigger BO begins

to decrease first, because SO is the same and a bigger BO means that one sample interval

includes less number of active portions.

4.3.2.2 Average Latency

The results of latency are presented in Fig. 4.8. The average deviation IDEA1 HW and

NS-2 is 8.9% and the average deviation IDEA1 NOHW and NS-2 is 2.6%.

The AL of a bigger BO is larger than a smaller BO, because SO is set to 0. If some

nodes can not transmit their sensor data in one active portion of a superframe, they

have to wait at least one inactive portion to resume their transmissions. A bigger BO

causes a longer inactive portion for waiting. As the sample rate increases from 1 to 1000,

the system goes through 3 different stages, including lightly loaded, heavily loaded and

saturated.

Chapter 4 : Performance Evaluation of IDEA1 117

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.1 1 10 100 1000

L
at

en
cy

 (
m

s)

Sample rate (Hz)

BO=0,IDEA1_HW

BO=0,IDEA1_NOHW

BO=0,NS-2

BO=1,IDEA1_HW

BO=1,IDEA1_NOHW

BO=1,NS-2

BO=2,IDEA1_HW

BO=2,IDEA1_NOHW

BO=2,NS-2

Fig. 4.8: Simulation Results of Latency by NS-2 and IDEA1

During the lightly loaded stage, AL remains stable because the transmissions between

two adjacent sample intervals do not overlap; the network utilization statuses are almost

the same for different sample intervals.

When the system is heavily loaded, it is transiting to be saturated. AL increases if

B0 is not equal to SO; on the contrary, it decreases slightly if B0 is 0. In this transition

period, some nodes can not complete their transmissions before the next sample interval

begins and the last one or two nodes transmitting during the overlapping period of two

sample intervals have to compete with other seven or six nodes for channel usage. If these

last transmissions succeed, they will be longer than the case there were no overlapping

between two sample intervals and AL will increase compared with the lightly loaded

118 Chapter 4 : Performance Evaluation of IDEA1

stage; if they fail, they will not be considered in the calculation of latency and AL will

decrease. In addition, the new sensor data of the last one or two nodes will be delayed for

transmitting, which extends AL. For the case that BO is 0, there is no inactive portion

during a superframe; thus the delay of new sensor data transmissions and the extension

of old sensor data transmissions are smaller than the loss of failed transmissions of old

sensor data, as a result, AL decreases. However when BO is 1 and 2, each superframe

comprises an inactive portion, especially in case that BO is 2, the length of superframe

is 61.44 ms which includes an inactive portion of 46.08 ms; thus the delay of new sensor

data transmissions and the extension of old sensor data transmissions are larger than the

loss of failed transmissions of old sensor data, as a result, AL increases.

As the sample rate continues to increase, the system becomes completely saturated.

In these cases, all nodes always have pending sensor data to be sent and they compete

for channel usage during the active portion of every superframe. If a node gets two new

sensor data before the end of a transmission, only the last sensor data will be sent and

first ones are discarded. The delay of new sensor data transmissions is small; therefore,

AL decreases.

4.3.2.3 Average Power Consumption

Fig. 4.9 demonstrates the simulation results of APC. The average deviation IDEA1 HW

and NS-2 is 45.8% and the average deviation IDEA1 NOHW and NS-2 is 7.2%.

As the sample rate increases, APC s augments, because more sensor data need to be

sent. For a same sample rate, the power consumption of a smaller BO is larger than a

bigger BO, since a smaller BO means more beacons received and shorter inactive portion

of a superframe.

During the lightly loaded stage, APC s augments slowly. In these cases, most of the

time, the nodes are in sleep mode. When the system is heavily loaded transiting to

be saturated, sharp increase of APC s can be observed. During this period, the power

Chapter 4 : Performance Evaluation of IDEA1 119

 1

 10

 100

 0.1 1 10 100 1000

P
o
w

er
 c

o
n
su

m
p
ti

o
n
 (

m
W

)

Sample rate (Hz)

BO=0,IDEA1_HW

BO=0,IDEA1_NOHW

BO=0,NS-2

BO=1,IDEA1_HW

BO=1,IDEA1_NOHW

BO=1,NS-2

BO=2,IDEA1_HW

BO=2,IDEA1_NOHW

BO=2,NS-2

Fig. 4.9: Simulation Results of Power Consumption by NS-2 and IDEA1

consumptions of transmissions account for the main part of the whole power consumption.

When the system becomes completely saturated, APC s become steady which are the

largest power consumptions per node. The nodes are always in active mode during the

active portion of a superframe. Because there is no inactive portion when BO is 0, its

power consumptions are bigger than others.

4.3.2.4 Energy Consumption per Packet

Fig. 4.10 illustrates the simulation results of ECPkt. The average deviation IDEA1 HW

and NS-2 is 49.3% and the average deviation IDEA1 NOHW and NS-2 is 8.3%.

During the lightly loaded stage, ECPkt decreases as the sample rate increases and the

smallest BO consumes the most energy for a fixed sample rate. In these cases, the average

number of packets transmitted during one sample interval is the same for different sample

rates, which can be proved by the constant PDRs in Fig. 4.7; ECPkt is therefore less if the

sample interval is shorter. For a fixed sample rate, a smaller BO consumes more energy

since one sample interval includes more superframes and the nodes have to wake up to

120 Chapter 4 : Performance Evaluation of IDEA1

 1

 10

 100

 0.1 1 10 100 1000

E
n
er

g
y
/p

k
t

(m
J)

Sample rate (Hz)

BO=0,IDEA1_HW

BO=0,IDEA1_NOHW

BO=0,NS-2

BO=1,IDEA1_HW

BO=1,IDEA1_NOHW

BO=1,NS-2

BO=2,IDEA1_HW

BO=2,IDEA1_NOHW

BO=2,NS-2

Fig. 4.10: Simulation Results of Energy Consumption per Packet by NS-2 and IDEA1

track the beacon packet at the beginning of each superframe.

The smallest ECPkt occurs when PDR begins to decline, where the system begins to

transit to be saturated. In this case, every node can accomplish its transmission before

new sensor data arrives, but the interval between the last node turns to sleep and the

next sensor data arrives is very short, so the nodes spend the least energy in sleep mode.

As the sample rate continues to increase, the ECPkt augments due to the transmission

overlap of two sample intervals and the increase of collisions. The energy consumption

per packet with bigger BO begins to increase first because the number of superframes per

sample interval is less for a larger BO.

When the system is saturated, ECPkt remains constant and the smallest BO consumes

the least energy. In these cases, nodes are always having pending sensor data to send. The

number of successfully transmitted packets per superframe is almost the same; therefore

ECPkt remains constant for the same BO. In addition, for a fixed sample rate, because

one superframe includes a longer inactive portion if BO is larger, its ECPkt is bigger.

Chapter 4 : Performance Evaluation of IDEA1 121

4.3.2.5 Summary

Based on the simulation results in Fig 4.7, Fig 4.8, Fig 4.9 and Fig 4.10, the deviations

of the simulation results between IDEA1_HW and NS-2 about the PDR, AL, APC and

ECPkt are 2.7%, 8.9%, 45.8% and 49.3% respectively. The ones between IDEA1_NOHW

and NS-2 are 1.0%, 2.6%, 7.2% and 8.3%. Therefore, the average deviation between

IDEA1_HW and NS-2 is 26.7%, and the one between IDEA1_NOHW and NS-2 is

4.8%. The former is bigger since more detailed information of HW/SW operations

have been considered. Especially when the sample rate is low, the deviations of

ECPkt and APC results between IDEA1 and NS-2 are very large, because the SPI

communications of microcontroller and transceiver account for a very great proportion

of the power consumptions. For example, the SPI communication takes 42.4% of the

power consumption of microcontroller when sample rate is 0.1. A more detailed power

consumption analysis of each hardware component will be provided in section 4.3.4.

4.3.3 Simulation Time of NS-2 and IDEA1

For the simulations in section 4.3, the simulation speed of IDEA1 is about 2 times faster

than NS-2. The simulation time of NS-2 and IDEA1 for the application with BO set to

2 is presented in Fig. 4.11.

The simulation of IDEA1 is IDEA1_NOHW, which is at the same abstraction level of

the IEEE 802.15.4 NS-2 model. All the simulations are executed individually on a server

with an Intel 2.66 GHz Xeon X3230 processor and a 4.6 GB memory. For the application

lasting 27.8 hours with a sample rate of 0.1 Hz, the simulation time of IDEA1 and NS-2

are 7.35 and 24.0 minutes respectively. The high speed simulation of IDEA1 profits mainly

from the efficient simulation kernel of SystemC and our optimized model implementation.

SystemC provides a wait function which can set relative processes to inactive state until

an interesting event occurs. In our model, this event interrupt mechanism is used in the

while statement of FSM implementation. Instead of checking the states of microcontroller

122 Chapter 4 : Performance Evaluation of IDEA1

 1

 10

 100

 1000

 0.1 1 10 100 1000

S
im

u
la

ti
o
n
 t

im
e

(s
)

Sample rate (Hz)

BO=2,IDEA1

BO=2,NS-2

Fig. 4.11: Simulation time of NS-2 and IDEA1

and transceiver every simulation cycle, their FSMs are woken up only when an interesting

event occurs, which can reduce the simulation time significantly.

4.3.4 Detailed Analysis of Power Consumptions by IDEA1

In previous sections, the fidelity of IDEA1 simulation have been proved by testbed

measurements, and the performance of IDEA1 has been compared with NS-2. In this

section, the detailed hardware modeling feature of IDEA1 is shown by a further analysis

of this application in section 4.3.

The IEEE 802.15.4 NS-2 model is at node-level. A sensor node is modeled as

a single module and no specific hardware component has been modeled. However,

IDEA1 is at component-level, both the operations of individual hardware component

and the communications among them are considered, such as SPI communication between

microcontroller and transceiver and analog to digital conversion of sensor data. The power

consumptions of hardware components in different operating modes can be investigated

by IDEA1. In this section, a complete performance evaluation of IEEE 802.15.4 sensor

Chapter 4 : Performance Evaluation of IDEA1 123

network is provided by IDEA1.

Compared to NS-2, IDEA1 can provide detailed informations about the energy

consumptions of individual hardware components. The power consumptions of hardware

components in different operating modes are also presented in Fig. 4.12.

Fig. 4.12: Power consumptions of hardware components in different operating modes

From Fig. 4.12 we can see that the average power consumption per node is bigger

when BO is 0 than BO is 2, because the nodes spend more energy for beacon tracking

when BO is 0. For a fixed BO, the power consumption per node augments as the sample

rate increases, since the nodes spend less time in sleep mode and more collision occurs. In

addition, the transceiver consumes much more energy than the microcontroller and the

energy consumed in the sleep mode is very little.

Fig. 4.13 presents the average power consumption of hardware components for different

tasks. Tracking presents the power consumed by useless beacon tracking. On receipt of a

beacon packet, if the node has no data to transmit, this beacon tracking is useless. Useful

refers to the power consumption that the useless beacon tracking is subtracted.

From Fig. 4.13, we can see that the nodes spend too much energy for useless beacon

124 Chapter 4 : Performance Evaluation of IDEA1

Fig. 4.13: Power consumptions of hardware components for different tasks

tracking when the sample rate is small. Besides the power consumptions of active and

sleep operating mode, we can also divide the power consumption of microcontroller in

active operating mode into more detailed parts, including analog to digital conversion,

SPI communications with transceiver and processing. Fig. 4.14 illustrates the power

consumption of microcontroller for different tasks.

The microcontroller spend most of its energy for processing data and executing codes, a

part of its energy for SPI communication and a little energy for analog to digital conversion

and in sleep mode. The consumption of SPI communication is too big to be ignored,

especially when sample rate is small.

4.4 Conclusion

In this chapter, the accuracy of IDEA1 has first been validated by experimental testbed

measurements. The average deviation between the simulation results of IDEA1 and the

testbed measurements is 4.65%,which can be accepted for many high level simulations.

Chapter 4 : Performance Evaluation of IDEA1 125

Fig. 4.14: Power consumptions of microcontroller for different tasks

Secondly, the performances of IDEA1 have also been compared with NS-2, the most

widely used simulator in WSN research. Benefiting from the SystemC-based hardware

and software co-simulation, IDEA1 can easily model the concurrency and interconnnection

within and among hardware components. It can provide more detailed informations about

the energy consumptions than the IEEE 802.15.4 NS-2 model. Based on system-level

modeling, the simulation speed of IDEA1 is 2 times faster than NS-2.

126 Chapter 4 : Performance Evaluation of IDEA1

Chapter 5 : Case Studies 127

Chapter 5 :

Case Studies

128 Chapter 5 : Case Studies

Chapter 5 : Case Studies 129

After the experimental validation of accuracy and performance evaluation by

comparing with other simulators, IDEA1 is ready to be used in real applications. It

is firstly used to provide further performance evaluation of the IEEE 802.15.4 sensor

network studied in last chapter. The performances of this IEEE 802.15.4 are evaluated

for different parameter setting and traffic loads. Finally, IDEA1 is used to study a real

industrial application in which a wireless sensor and actuator network is deployed on a

vehicle to measure and control vibrations. By the simulation, some preliminary designs

based on IEEE 802.15.4 protocols and two different hardware platforms are evaluated.

The four metrics used in chapter 4, including PDR, AL, ECPkt and APC, are used.

This chapter is organized as follows. Section 5.1 offers a further comprehensive

performance evaluation of the IEEE 802.15.4 sensor networks studied by NS-2 and IDEA1.

Section 5.2 studies an industrial application to demonstrate the design flow and usability

of IDEA1.

5.1 Performance Evaluation of IEEE 802.15.4 Sensor

Network

A comprehensive evaluation of IEEE 802.15.4 sensor network is performed in this section.

According to the study in section 4.3, when the sample rate is small, the nodes spend too

much energy for beacon tracking without any data to send. Therefore, in this section,

we will implement the same application without beacon tracking mechanism and evaluate

the performance of this network. Until now, BO is set to 0, 1 and 2 respectively, and

SO is set to 0. Some other configurations of protocol parameters are also evaluated to

explore the maximum sample rate the IEEE 802.15.4 can support. All the simulations

are implemented on IDEA1 with considerations of hardware operation. The hardware

prototype used for this analysis is also N@L motes

The rest of this section is organized as follows. Section 5.1.1 evaluates the performance

130 Chapter 5 : Case Studies

of IEEE 802.15.4 networks in beacon-enabled mode without beacon tracking. Therefore,

in section 5.1.2, the same simulations are re-executed with SO set to the same value

with BO. Finally, in section 5.1.3 studies the IEEE 802.15.4 nonbeacon-enabled mode

and summarizes the performance evaluation of IEEE 802.15.4 LR-WPAN for industrial

applications.

5.1.1 Slotted CSMA-CA with Fixed SO and Various BO

In this section, the same application is implemented without beacon tracking mechanism

and a further analysis of this application will be presented.

5.1.1.1 Packet Delivery Rate

The simulation results of packet delivery rate are presented in Fig. 5.1.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 1 10 100 1000

P
D

R
 (

%
)

Sample rate (Hz)

BO=0,Tracking

BO=0,noTracking

BO=1,Tracking

BO=1,noTracking

BO=2,Tracking

BO=2,noTracking

Fig. 5.1: Packet delivery rate of slotted CSMA-CA with fixed SO and various BO

In Fig. 5.1, Tracking presents the simulations of beacon tracking mechanism and

noTracking refers to the simulations without beacon tracking mechanism. The average

absolute deviation of PDR between the tracking and notracking modes is less than 0.1%

Chapter 5 : Case Studies 131

which is the simulation error. The two modes should have the same PDR, since the

only difference between them is whether to track the beacon during the period after a

transmission and before a new sample cycle and the transmissions are not impacted.

5.1.1.2 Average Latency

Fig. 5.2 presents the results of latency. The average absolute deviation of AL between

the tracking and notracking modes is 2.4%. The system with notracking mode also goes

through 3 different stages, i.e., lightly loaded, heavily loaded and saturated. The tendency

in change of latency of both modes are the same.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.1 1 10 100 1000

L
at

en
cy

 (
m

s)

Sample rate (Hz)

BO=0,Tracking

BO=0,noTracking

BO=1,Tracking

BO=1,noTracking

BO=2,Tracking

BO=2,noTracking

Fig. 5.2: Latency of slotted CSMA-CA with fixed SO and various BO

The ALs of notracking mode are a little bigger than those of the tracking mode, which

132 Chapter 5 : Case Studies

is caused by the timing cost of resynchronization. With notracking mode, nodes go to

sleep mode after a transmission if they have no data to send. They wake up some time

later and performs a new sensing operation. They need to be resynchronized with the

coordinator if they want to send this new sensor data. The microcontroller wake up the

transceiver to acquire a beacon packet. During the transition from sleep to active mode

of transceiver, the coordinator may be transmitting a beacon packet. The nodes will

miss this beacon packet and they have to listen the channel for almost one superframe

duration to receive the next beacon. This resynchronization process can be observed in

the example of simulation log presented in Listing. 5.1.

Listing 5.1: Log fragment of noTracking mode

Node0 : Begin to wake up to read s enso r data at 8598154 us .

Node0 : r eads a new senso r data (Value , Time) : 248 , 8 . 6 at 8600066 us .

Node0 : s t a r t to wake up the t r a n s c e i v e r at 8600066 us .

Transce iver 8 : s t a r t s t r ansmi t t ing the beacon at 8601600 us

Proxy 8 : Begin emitt ing rad io packet at time 8601792 us .

Proxy 8 : Complete emitt ing rad io packet at time 8602336 us .

Transce iver 0 : i s woken up at 8602066 us

Node0 : s t a r t s to transmit the data to the t r a n s c e i v e r (NR= 0) with data =

248 at 8602066 us

Transce iver 0 : s t a r t s to track beacon with s t a t e = 10 at 8602066 us

Transce iver 0 : r e c e i v e s a TX packet from mi c r o c on t r o l l e r at 8602446 us .

Transce iver 8 : s t a r t s t r ansmi t t ing the beacon at 8663040 us

Proxy 8 : Begin emitt ing rad io packet at time 8663232 us .

Proxy 8 : Complete emitt ing rad io packet at time 8663776 us .

Transce iver 0 : r e c e i v e s a beacon packet and s t a r t to transmit the TX packet

at 8663776 us

Transce iver 0 : generated a random number as backo f f s l o t s , s l o t s = 3 at 8664

ms

The example shown in Listing. 5.1, BO is set to 2, corresponding to 61.44 ms

superframe. With the notracking mode, the nodes have to wake up their transceivers

after reading a new sensor data; however, during the wakeup transition of transceiver, the

Chapter 5 : Case Studies 133

coordinator has transmitted a beacon packet at 860.16 ms. The nodes have to listen to

the channel and receive a beacon packet after one superframe duration at 866.3776 ms.

If the tracking mode is used, this resynchronization will not occur. The transceiver uses

a built-in timer to count for the superframe length and wake up automatically before the

transmission of beacon packet. The same scenario of the tracking mode is illustrated in

Listing. 5.2.

Listing 5.2: Log fragment of tracking mode

Node0 : Begin to wake up to read s enso r data at 8598154 us .

Transce iver 0 : Begin to wake up to track beacon at 8599600 us .

Node0 : r eads a new senso r data (Value , Time) : 248 , 8 . 6 at 8600066 us .

Transce iver 0 : s t a r t s to track beacon with s t a t e = 10 at 8601600 us

Node0 : s t a r t s to transmit the data to the t r a n s c e i v e r (NR= 0) with data =

248 at 8601600 us

Transce iver 8 : s t a r t s t r ansmi t t ing the beacon at 8601600 us

Proxy 8 : Begin emitt ing rad io packet at time 8601792 us .

Transce iver 0 : r e c e i v e s a TX packet from mi c r o c on t r o l l e r at 8601986 us .

Proxy 8 : Complete emitt ing rad io packet at time 8602336 us .

Transce iver 0 : r e c e i v e s a beacon packet and s t a r t to transmit the TX packet

at 8602336 us

Transce iver 0 : generated a random number as backo f f s l o t s , s l o t s = 5 at

8602560 us

The beacon packet at 860.16 ms was received by the synchronized transceivers which

are woken up for tracking beacon automatically by a built-in timer. Therefore, the latency

of notraking mode is larger than that of tracking mode.

Note that the timing cost of resynchronization of the notracking mode, compared to

the tracking mode, only happens when a transmission of beacon packet occurs during the

wakeup transition of transceiver. If there is no beacon packet transmission during the

wakeup transition of transceiver, the latency results of notracking and tracking modes are

the same. In this case, the difference between these two modes is power consumption.

After reading a sensor data, the nodes of tracking mode can go to sleep again and

134 Chapter 5 : Case Studies

wake up before the transmission of beacon packet, because they know the information

of superframe. However, the nodes of notracking mode have to listen the channel until a

receipt of beacon packet.

5.1.1.3 Average Power Consumption

Fig. 5.3 demonstrates the simulation results of APC. Firstly, we analyze the change

tendency of the power consumption of notracking mode. Finally, we compare the difference

between the notracking and tracking mode.

 0.1

 1

 10

 100

 0.1 1 10 100 1000

P
o
w

er
 c

o
n
su

m
p
ti

o
n
 (

m
w

)

Sample rate (Hz)

BO=0,Tracking

BO=0,noTracking

BO=1,Tracking

BO=1,noTracking

BO=2,Tracking

BO=2,noTracking

Fig. 5.3: Power consumption of slotted CSMA-CA with fixed SO and various BO

During the lightly loaded stage, the APC s of notracking mode increase as the sample

rate augments. In these cases, the nodes go to sleep mode after the transmission and wake

up when the next sample interval begins, so the energy spent during one sample interval

for different sample rate are almost the same. The difference of energy consumption

between two sample rates is the length of sleep mode. Therefore, the APC s increases

as the sample interval decreases. In addition, the APC of a bigger BO is higher than

that of a smaller BO, because the energy cost of resynchronization of notracking mode

for a bigger BO is more heavy. In these cases, after reading a new sensor data, the

Chapter 5 : Case Studies 135

microcontroller turns on the transceiver to listen for a beacon. The listening period is the

cost of resynchronization which can be observed in Listing. 5.1. The transceiver of Node0

is woken up at 8602066 µs which is 60974 µs before the beacon packet transmission. The

transceiver has to listen to the channel during this time. The listening period may last

long if the length of superframe is big. Finally, APC is tending towards stability when

the system is saturated. The microcontroller keeps in active mode and the transceiver

goes to sleep mode during the inactive portion of a superframe and turn to active when

active portion begins.

The APC s of notracking mode are smaller than tracking mode during the lightly loaded

stage, because one sample interval consists of a lot of superframes and the tracking mode

spends too much energy for useless beacon tracking. When the system is heavily loaded,

the APC s of notracking mode are much bigger than tracking mode. During this period,

the cost of resynchronization of notracking mode is much bigger than the useless beacon

tracking of tracking mode since one sample interval consists of a few of superframes. When

the system becomes completely saturated, the two modes have the same behaviors and

the APC s become steady.

5.1.1.4 Energy Consumption per Packet

Fig. 5.4 illustrates the simulation results of ECPkt. During the lightly loaded stage,

the ECPkts of notracking mode remain constant, because the energy spent during

one sample interval for different sample rate are almost the same and the numbers of

successfully transmitted packet during one sample interval for different sample rates are

same. While the system is heavily loaded, ECPkt begins to decrease because the cost of

resynchronization declines. Finally, ECPkt is tending towards stability when the system

is saturated.

When the sample rate is small (0.1, 0.25, 0.5, 1 and 2.5 for BO set to 1), the

ECPkts of notracking mode are smaller than the tracking mode, because the useless

beacon tracking consumes much energy. At the end of lightly loaded stage and the entire

136 Chapter 5 : Case Studies

 1

 10

 100

 0.1 1 10 100 1000

E
n
er

g
y
/p

k
t

(m
J)

Sample rate (Hz)

BO=0,Tracking

BO=0,noTracking

BO=1,Tracking

BO=1,noTracking

BO=2,Tracking

BO=2,noTracking

Fig. 5.4: Energy consumption per packet of slotted CSMA-CA with fixed SO and various BO

transition stage, the ECPkts of notracking mode are bigger than the tracking mode, since

the resynchronization of notracking mode consumes much energy. When the system is

saturated, the ECPkts of notracking and tracking mode are the same. In these cases, the

system behaviors of the two modes are the same.

5.1.1.5 Summary

Based on the above analysis, we can find a best parameter setting for different sample

rates. If the sample rate is small, the notracking mode with BO set to 0 consumes the

least energy for transmitting one packet and provides the shortest AL with the best PDR.

When the sample rate is 25, the tracking mode with BO set to 0 performs better than

any other settings. If the sample rate is bigger than 25, for this application with 8 nodes

and 1 coordinator, the performance of these two modes are the same. In this period,

the contention-based CSMA-CA algorithm cannot guarantee a PDR bigger than 95% and

BO should be set to 0 in order to provide biggest PDR with shortest AL and smallest

ECPkts; however, these advantages are obtained by sustaining a big power consumption

which results a short lifetime of sensor nodes and the network.

Chapter 5 : Case Studies 137

The beacon-enabled mode without beacon tracking and with SO set to 0 has

successfully solved the useless beacon tracking problem. The ECPkts and APCs become

smaller when the sample rate is smaller. However, it still has a problem that the ALs of

a bigger BO are much longer than a smaller BO, which is caused by the waiting in the

inactive portion of a superframe because SO is set too small and some transmissions can

not be finished in one superframe. Therefore, in next section, the same simulations in this

section will be re-executed with SO set to the same value with BO.

5.1.2 Slotted CSMA-CA with Equal SO and BO

In the last section, SO is fixed to 0 and variable BO results different duty cycle in a

superframe. In this section, the application is implemented by using the beacon-enabled

slotted CSMA-CA algorithm without beacon tracking and with a SO that is equal to BO ;

the inactive portion of the superframe is thus 0. The unfinished transmissions do not have

to wait a long inactive portion for resuming. The simulation and measurement results are

presented in Fig. 5.5 and Fig. 5.6.

In order to facilitate the comparisons, the simulation results of beacon-enabled mode

without beacon tracking and with SO set 0 are also illustrated in Fig. 5.5 and Fig. 5.6.

Two improvements have been obtained if SO is set to the same value with BO. They are

presented as follows.

• PDR: PDRs with BO set to 1 and 2 are increased when the sample rate is bigger

than the start point of the stage of transition to be saturated. Because SO is equal

to BO, the nodes have more time to transmit the sensor data and the start point of

the system heavily loaded is deferred.

• AL: Latency diminishes, since the inactive portion of a superframe is set to 0 and

the nodes do not have to wait a long time for resume their transmissions in a new

superframe. During the lightly loaded stage, the ALs of a bigger BO are larger than

a smaller BO. In these cases, the nodes are in sleep mode if they have no sensor data

138 Chapter 5 : Case Studies

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 1 10 100 1000

P
D

R
 (

%
)

Sample rate (Hz)

BO=0,SO=0

BO=1,SO=BO

BO=1,SO=0

BO=2,SO=BO

BO=2,SO=0

(a) Packet Delivery Rate

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.1 1 10 100 1000

L
at

en
cy

 (
m

s)

Sample rate (Hz)

BO=0,SO=0

BO=1,SO=BO

BO=1,SO=0

BO=2,SO=BO

BO=2,SO=0

(b) Average Latency

Fig. 5.5: Simulated results of PDR and AL with SO equal to BO

to be sent. They will be woken up by a built-in timer if they need to read a sensor

data. In the beacon-enabled mode, the nodes can only transmit the new sensor

Chapter 5 : Case Studies 139

 0.1

 1

 10

 100

 0.1 1 10 100 1000

P
o
w

er
 c

o
n
su

m
p
ti

o
n
 (

m
W

)

Sample rate (Hz)

BO=0,SO=0

BO=1,SO=BO

BO=1,SO=0

BO=2,SO=BO

BO=2,SO=0

(a) Average Power Consumption

 1

 10

 0.1 1 10 100 1000

E
n
er

g
y
/p

k
t

(m
J)

Sample rate (Hz)

BO=0,SO=0

BO=1,SO=BO

BO=1,SO=0

BO=2,SO=BO

BO=2,SO=0

(b) Energy Consumption per Packet

Fig. 5.6: Simulated results of APC and ECPkt with SO equal to BO

data after they successfully receive a beacon packet. We name this kind of delay of

latency is the cost of resynchronization. A sensor data may wait for a longer time to

be sent if BO is bigger. When the system is heavily loaded, the ALs become small.

140 Chapter 5 : Case Studies

As the system becomes completely saturated, the ALs of a bigger BO are shorter

than a smaller BO as a result of less receiving of beacon.

5.1.3 Unslotted CSMA-CA

The cost of resynchronization is an intrinsic drawback of beacon-enable mode; in this

section, the performance of nonbeacon-enabled mode with unslotted CSMA-CA algorithm

is thus evaluated. The simulation results are shown in Fig. 5.7 and Fig. 5.8.

The simulation results of beacon-enabled mode without beacon tracking and with SO

set 0 are also illustrated in Fig. 5.7 and Fig. 5.8. Without the cost of resynchronization, the

nonbeacon-enabled mode provides smaller ALs than beacon-enabled mode; in addition,

the ECPkts and APCs of nonbeacon-enabled mode are smaller if the system is not

saturated. However, the PDRs of nonbeacon-enabled mode are smaller than beacon-

enabled mode. Because the transmissions of nonbeacon-enabled mode are not aligned

with the backoff period boundary and CW is set to 0, the number of collisions is increased.

When the system is saturated, the ECPkts of nonbeacon-enabled mode are bigger due to

its smaller PDRs.

5.1.4 Summary

Based on the above simulations and analysis, we can find the following conclusions.

• The nonbeacon-enabled mode can provide better performance in the aspects of

latency and energy consumptions than beacon-enabled mode, but with a smaller

PDR.

• The beacon-enabled mode can offer a bigger PDR, but it has one intrinsic cost of

resynchronization which increases the latency and power consumption.

• If the sample rate is small and the system is lightly loaded, the nodes spend too

much for many useless beacon receipts if tracking is specified; thus notracking mode

Chapter 5 : Case Studies 141

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 1 10 100 1000

P
D

R
 (

%
)

Sample rate (Hz)

BO=0,SO=BO

BO=1,SO=BO

BO=2,SO=BO

nonbeacon-enabled

(a) Packet Delivery Rate

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.1 1 10 100 1000

L
at

en
cy

 (
m

s)

Sample rate (Hz)

BO=0,SO=BO

BO=1,SO=BO

BO=2,SO=BO

nonbeacon-enabled

(b) Average Latency

Fig. 5.7: Simulated results of PDR and AL with nonbeacon-enabed mode

should be used. In order to minimize the impact of the resynchronization cost, BO

is set to 0.

142 Chapter 5 : Case Studies

 0.1

 1

 10

 100

 0.1 1 10 100 1000

P
o
w

er
 c

o
n
su

m
p
ti

o
n
 (

m
W

)

Sample rate (Hz)

BO=0,SO=BO

BO=1,SO=BO

BO=2,SO=BO

nonbeacon-enabled

(a) Average Power Consumption

 1

 10

 0.1 1 10 100 1000

E
n
er

g
y
/p

k
t

(m
J)

Sample rate (Hz)

BO=0,SO=BO

BO=1,SO=BO

BO=2,SO=BO

nonbeacon-enabled

(b) Energy Consumption per Packet

Fig. 5.8: simulation results of APC and ECPkt with nonbeacon-enabed mode

• During the period that the system is heavily loaded, if SO is set to the values of BO,

the start point of the transition can be deferred. In addition, the beacon-enabled

mode with beacon tracking can support a better ECPkt.

Chapter 5 : Case Studies 143

• When the system is completely saturated, the PDRs of the CSMA-CA algorithms

are less than 50% and a bigger BO with SO set to its value can provide a better

performance in the aspects of both latency and energy consumption.

5.2 An Industrial Application

In this section, IDEA1 is used to study an industrial application of WSN in vibration

measurement in order to validate and demonstrate the usability of IDEA1 in the real

project.

WSNs have recently received much attention in the industrial communications

community [137]. An important class of applications is monitoring the equipment and

machinery health, using for example vibration, heat or thermal sensors. Our group

participated in a project, named Mechanic@Lyon (M@L) [136]. It is a project supported

by Ingénierie@Lyon (I@L), an institute of Carnot Network. The objective of this project is

to identify and integrate some new intelligent control technologies in automotive systems

in order to improve the internal comfort (reduce the vibration and noise). A wireless

sensor and actuator network is deployed on an automobile to measure and control its

vibration.

The first task of our work is to design the sensor network from the network protocol to

the hardware specifications of each component on a sensor node. At the beginning, some

preliminary designs based on several existing hardware platforms and communication

protocols need to be investigated at an early stage.

The rest of this section is organized as follows. Firstly, section 5.2.1 introduces

the industrial application. Secondly, section 5.2.2 studies this application by analytical

methods. Finally, section 5.2.3 presents the simulation results of IDEA1.

144 Chapter 5 : Case Studies

5.2.1 Introduction to the Industrial Application

The architecture of sensor and actuator network is shown in Fig. 5.9. This sensor network

is composed of several nodes and a coordinator. The nodes measure periodically the

vibrations of their given positions by a piezoelectric sensor and transmit the data to a

coordinator which collects the sensor data of all nodes. A sample occupies one byte. The

coordinator is connected to a host that analyzes the collected data and implements control

algorithms by an actuator network. The main challenges of designing this sensor network

are the high sample rate and real-time requirements. The node should read the sensor

data with a sample rate exceeding kilohertz and send the data to the coordinator within

a short latency.

Fig. 5.9: M@L wireless sensor and actuator network infrastructure

At the early stage, some preliminary designs based on the existing hardware platforms

and network protocols need to be evaluated. Four metrics, including PDR, AL, ECPkt

and APC, are used to evaluate the network performance.

The performance of IEEE 802.15.4 [15] protocol is first evaluated since it has been

widely used in the real time industrial automations [138]. In next section, some

preliminary analysis are made in order to obtain a first understanding of this application.

Chapter 5 : Case Studies 145

In section 5.2.3, both the CSMA-CA and GTS algorithms are evaluated by simulations.

Two sensor nodes that support the IEEE 802.15.4 standard, MICAz and N@L, are

chosen as the hardware platforms. These two sensor platforms have been introduced

in section 2.2.2 and section 3.2.3.

5.2.2 Preliminary Study

In this section, some preliminary analysis are provided based on some existing works on

the performance analysis of the IEEE 802.15.4 standard. At first, the eight nodes deployed

on the vehicle roof are modeled. The nodes and coordinator form a star topology, where

all nodes can communicate with the coordinator directly. The nodes store the sample

data temporarily in a data buffer and they will send the sensor data to the coordinator

if the data in the buffer is more than sizePayload bytes. sizePayload is the payload field

length of data packet.

As shown by the simulation results of IEEE 802.15.4 protocols in section 5.1, the

PDRs of the CSMA-CA algorithms are very small when the sample rate is 1 kHz, because

they are based on the random backoff mechanism and contention-based channel access.

In addition, the mathematical analysis in [139] [140] proves that the unslotted and slotted

CSMA-CA algorithms can not guarantee a 100% packet delivery rate and the channel

access success probability decreases monotonically when the number of nodes is bigger

than one, since the number of nodes competing for the channel increases.

As stated in section 2.3.2.3, the contention free guaranteed time slots algorithm is

design to support applications with particular latency requirements. The studies made

in [141] showed that the minimum latency of IEEE 802.15.4 GTS algorithm is 15.9 ms

for any star network of any size, since the IEEE 802.15.4 standard requires a minimum

length of CAP period that is 440 symbols (7.04 ms).

Besides the limited minimum latency of the IEEE 802.15.4 GTS algorithm, another

constraint of this algorithm is that the maximum number of GTSs in a superframe is set

146 Chapter 5 : Case Studies

to 7. Since our application consists of 8 nodes, a TDMA-based GTS algorithm proposed

in [138] is adopted. It is more suitable for industrial applications which require low packet

delivery latency. It makes some modifications to the IEEE 802.15.4 GTS algorithm and

these modifications can be easily implemented by software on the two hardware platforms

we use. The contention access period (CAP) is set to 0. The contention free period (CFP)

is divided into 8 equal parts, called node slot, which are allocated to nodes off-line. During

its slot, the node wakes up if it has data to transmit. Transmissions do not require ACKs

since they happen during GTSs without contention. The node tracks the beacon at the

beginning of every superframe. It starts transmitting within its GTS that is allocated

beforehand. The node is in SLEEP mode when it is not transmitting data or receiving

beacon packets. The structure of this superframe is presented in Fig 5.10.

Fig. 5.10: Superframe structure for the TDMA-based GTS algorithm

The sample data is presented as a short integer type with one byte. The data frame

format has been presented in Fig. 3.4. Because all the nodes can reach the coordinator

directly and the number of nodes is 8, we use the short address with two bytes to identify

the nodes and coordinator, and the data frame only includes one address, either the source

address or the destination address. For a packet from a node to the coordinator, the value

in the address field is the source address so that the coordinator can identify the packet is

from which node; for a packet from the coordinator to the nodes, the destination address

is loaded in the address field of the data frame so that the right node can receive this

packet. In this context, the maximal size of payload field can attain 121 bytes, since the

maximal value of the frame length field is 127 bytes. The frame length, frame control,

sequence number and address fields occupy 6 bytes. The data fame structure is presented

Chapter 5 : Case Studies 147

in Fig. 5.11.

Fig. 5.11: Data fame structure of M@L application

This data frame is the data needed to be transmitted from the microcontroller to

transceiver via SPI bus. The other fields, like preamble sequence, start of frame delimiter

and frame check sequence, will be added by the transceiver automatically.

Because all the existing analysis focus on the IEEE 802.15.4 standard and they ignored

the timing detail of the hardware and software implementations in real motes, we need to

do some simulations by IDEA1 to take account into the hardware and software operations.

In addition, the size of the payload field in data packet is adjusted to find out the shortest

latency of best packet delivery rate. At the same time, the power consumptions of different

hardware platforms are also investigated.

5.2.3 Simulation Study

In this section, the application is implemented in IDEA1 and analyzed. The goal is

to evaluate whether the IEEE 802.15.4 sensor network based on these two platforms

can successfully transmit all the sensor data within a short time. The energy models of

MICAz and N@L motes used in this application are based on the measurements presented

respectively in section 3.3.5 and section 4.2.1.

Four IEEE 802.15.4 MAC algorithms are implemented, including nonbeacon-enabled

unslotted CSMA-CA, beacon-enabled slotted CSMA-CA, original GTS and TDMA-based

GTS. Due to the constraints of the maximum GTS slots number of the IEEE 802.15.4

standard, the number of nodes in the simulation for this algorithm is set to 7. For

each of the four algorithms, many cases with different configurations of parameters

148 Chapter 5 : Case Studies

(e.g., sizePayload, superframe length, macMaxCSMABackoffs, macMaxFrameRetries,

etc.) have been simulated. Since the sample rate is constant, a small sizePayload results in

more packets to be sent, causing more collisions and thus lower PDR. In contrast, a large

sizePayload leads a longer time for transmitting a packet, which increases the possibilities

of channel access failures and causes lower PDR too. The best PDR, hence, occurs in the

case with a moderate sizePayload. However, sizePayload should be as short as possible.

A smaller sizePayload means the first sensor data in the packet need to wait a shorter

time to be sent. Here only the best result with the highest PDR (or lowest AL if two or

more cases achieve the biggest PDRs) is presented. Each case includes 2500 samples and

is simulated 100 times with different seeds of the random number generator of backoff

periods. The simulation results of MICAz and N@L motes are provided in Table 5.1.

Tab. 5.1: Simulation results of Of MICAz and N@L motes

Algorithm Unslotted CSMA-CA Slotted CSMA-CA IEEE802154 GTS TDMA-based GTS
Hardware platform MICAz N@L MICAz N@L MICAz N@L MICAz N@L
sizePayload (byte) 30 30 30 30 30 15 10 19

BO n/a n/a 1 1 1 0 n/a n/a
BI (µs) n/a n/a 30720 30720 30720 15360 10000 19000
PDR (%) 36.5 54.4 39.7 67.4 97.4 97.4 100 100
AL (µs) 11583 15841 22426 24250 53854 42777 6953 12508

ECPkt (µJ/pkt) 3811 1924 3784 1576 1283 1001 425 408
APC (µW) 46693 35155 50397 35684 41071 64630 42300 21264

APC of microcontroller (µW) 29916 4576 29916 4576 29915 4448 29928 4573
APC of transceiver (µW) 16777 30579 20481 31108 11157 60182 12371 16691

5.2.3.1 Comparisons of MAC algorithms

The CSMA-CA algorithms are not appropriate for this industrial application due to the

low PDRs, which is caused by the large number of collisions. The sample rate is too high

that the system is overloaded.

For the original IEEE 802.15.4 GTS algorithm, because the packet is transmitted

after the CAP portion (at least 7.04 ms), the AL is high. During one superframe of 30.72

ms, 30.72 sensing operations are performed, but only 30 sensor data can be sent in one

packet; the PDRs can not therefore be 100%. This algorithm is implemented by software

in MICAz and by hardware in N@L. For MICAz mote, after receiving a beacon packet,

Chapter 5 : Case Studies 149

the microcontroller can set the transceiver to sleep mode until its GTS slot; however for

N@L mote, the transceiver performs automatically and stays in active mode during the

CAP portion of a superframe. Therefore, the power consumption of this algorithm based

on N@L motes is much bigger than that of MICAz motes.

For the TDMA-based GTS algorithm, the PDRs can attain 100%, which prove that

the TDMA-based GTS algorithm can reliably transmit the sensor data to the coordinator.

However, this IEEE 802.15.4 sensor network fails to meet the real-time requirement of this

application. Although the average latency of packets can attain 7.0 ms, sizePayload is 10

samples which mean that the first sample data should wait 17 ms to be received by the

coordinator. This latency of sensor data is too high to generate a real-time control action.

5.2.3.2 Comparisons of Hardware Platforms

The PDRs of N@L are bigger than MICAz, because the MAC algorithms are implemented

in MRF24J40 by hardware and the sensing operation in PIC16LF88 has limited impact on

the communication process. For N@L mote, the communication process in transceiver and

the sensing operation (analog to digital conversion) in microcontroller can be performed

at the same by these two hardware components; however, the microcontroller of MICAz

mote has to stop its task immediately when the sensing timer expires.

The ALs of N@L is larger than MICAz, since for transmitting a same data frame

the SPI communication between PIC16LF88 and MRF24J40 is longer than that between

ATMEL ATMega128 and TI CC2420. In order to transmit one packet of several bytes

from PIC16LF88 to MRF24J40, the address needs to be sent before each byte. However,

ATMega128 only has to transmit one address for a whole packet.

Microchip PIC16LF88 is a power-efficient microcontroller. With a extra low power

consumption microcontroller, the APC s of N@L is smaller than MICAz, although the

power consumption of MRF24J40 is much higher than CC2420. CC2420 provides an

IDLE state that is power saving. When it is not receiving or transmitting, it will be at

150 Chapter 5 : Case Studies

IDLE state. However, MRF24J40 does not support an IDLE state. Except transmitting,

the transceiver is at RX state which is energy consuming.

5.2.3.3 Detailed Analysis of Energy Consumption

Besides the global results about the performances at network level presented in Table 5.1,

some detailed analysis about the energy consumption at hardware component level are

also provided, as presented in Fig. 5.12.

U
ns

lo
tt
ed

S
lo

tt
ed

IE
E

E
 G

T
S

T
D

M
A

 G
T

S
U

ns
lo

tt
ed

S
lo

tt
ed

IE
E

E
 G

T
S

T
D

M
A

 G
T

S

MICAz N@L

Fig. 5.12: An energy breakdown at component level

In Fig. 5.12, the energy consumption of a node is broken down into many small

parts, including consumptions of microcontroller and transceiver. The main operations of

microcontroller is composed of analog to digital conversion, SPI communication and data

processing. For the transceiver, we have chosen to separate the energy consumption in

two parts : consumption in active mode and consumption in sleeping mode.

From Fig. 5.12, we can find that the energy consumption of ATEMega128 (yellow

Chapter 5 : Case Studies 151

part) is much more than that of PIC16LF88. The latter is more power-efficient. In

addition, the analog to digital conversion of PIC16LF88 (66µs) is short than that of

ATEMega128 (219µs). However, the transceiver of N@L mote, MRF24J40, is much more

power consuming than that CC2420, the transceiver of MICAz mote. Compared with

other algorithms and configurations, the energy consumption of MRF24J40 with the IEEE

GTS algorithm is very large, because this algorithm is implemented by hardware and the

transceiver stays on active after receiving a beacon packet until its GTS slot. On the

contrary, more flexibility can be obtained by the software implementation of this algorithm

on MICAz and the microcontroller can set the transceiver to sleep mode after the receipt

of a beacon and wake it up before the allocated GTS slot.

5.3 Conclusion

In this chapter, IDEA1 has been used in two case studies to demonstrate its usability and

design flow. First, the performance of IEEE 802.15.4 sensor network has been evaluated

by IDEA1 simulations. The advantages and disadvantages of different algorithms with

various parameter settings for different traffic loads have been summarized. Finally,

IDEA1 has been used to design a real-time industrial application in which a wireless

sensor and actuator network is deployed on a vehicle to measure and control vibrations.

The best configurations of protocol parameters for various traffic loads based on different

hardware platforms have been identified. By these two case studies, the usability of IDEA1

in real development of WSN systems has been demonstrated. IDEA1 can help the system

designers to evaluate some primary designs with low timing and financial cost at an early

stage of design flow. It is able to explore the design space by tuning the parameters of

both sensor nodes and network protocols.

152 Chapter 5 : Case Studies

Chapter 6 : Conclusions and Future Works 153

Chapter 6 :

Conclusions and Future Works

154 Chapter 6 : Conclusions and Future Works

Chapter 6 : Conclusions and Future Works 155

6.1 Summary of Work

This thesis has investigated the modeling and simulation of wireless sensor networks.

A validated SystemC-based system-level design and simulation environment for WSN

systems, named IDEA1, has been developed.

Based on the SystemC-based support of modeling concurrency, structural hierarchy,

interrupts and synchronization primitives of embedded systems, IDEA1 enables the

hardware and software co-simulation of wireless sensor networks. By doing this, the

energy consumptions of an individual sensor node and the whole network can be

accurately predicted. The energy model implemented in IDEA1 takes into account the

power consumptions of all operation modes of each hardware component and transitions

between different modes. IDEA1 implements a clock-based synchronization mechanism

to provide performance evaluation with cycle accurate communication and approximate

time computation. Many off-the-shelf hardware components, such as MICAz and MICA2,

are modeled. The IEEE 802.15.4 standard is implemented.

Firstly, the simulation results of IDEA1 were compared with some experimental

measurements on a testbed of 9 nodes in the aspects of packet delivery rate, average

latency, energy consumption per packet and average power consumption. The average

deviation between the IDEA1 simulations and the experimental measurements is 4.6%

which can be accepted by general system-level simulations. The performances of IDEA1

have also been compared with NS-2, the most widely used simulator in WSN research.

Benefiting from the SystemC-based hardware and software co-simulation, IDEA1 provides

more detailed information about the energy consumptions than NS-2. If the timing

information of some relative hardware operations are not considered in IDEA1, the average

deviation between IDEA1 and NS-2 simulations is 4.8% which proves that IDEA1 can

provide the same accuracy with NS-2. However, if the relative hardware operations

are considered in the IDEA1 simulation, the average deviation between IDEA1 and

NS-2 simulations is 26.7%. Especially when the sample rate is low, the deviations of

156 Chapter 6 : Conclusions and Future Works

energy consumption results between IDEA1 and NS-2 are very large, because the SPI

communications between microcontroller and transceiver and other hardware operations

account for a very great proportion of the power consumptions. Based on system-level

modeling, the simulation speed of IDEA1 is 2 times faster than NS-2.

Finally, two case studies have been performed to show the usability and design flow

of IDEA1. The performance of IEEE 802.15.4 sensor network was comprehensively

evaluated. For various traffic loads, diverse configurations of protocol parameters,

including unslotted and slotted CSMA/CA algorithms and different superframe

architectures are simulated. In addition, a real-time active vibration control application

was also studied. By the simulation studies of IDEA1, the best choice of communication

protocols based on MICA2 or N@L motes was found.

6.2 Future Works

The research work implemented for this thesis has successfully met the research

motivations proposed in section 1.2. However, the investigated research area of modeling

and simulation of wireless sensor networks has been highlighted as a diverse aspect of

WSNs. There are many additional research that could be conducted to further this

research.

• To enhance the capability of IDEA1 in modeling the real WSN systems, some typical

sensor chips need to be modeled by SystemC.

• Operating system is one important part of the software development for WSN

system; therefore IDEA1 will be more powerful if it can provide operating system

abstraction supports. In addition, more accurate software modeling techniques, such

as instruction set simulation, will be investigated.

• The simulation of IEEE 802.15.4 sensor networks showed that this standard is

more efficient for low duty cycle applications; therefore, for some high sample rate

Chapter 6 : Conclusions and Future Works 157

applications, more communication protocols, especially high data rate protocols,

need to be investigated.

• The protocols of high layers, such as network and transport layers, should be

implemented so as to enable the large scale sensor network simulation and design.

• The radio propagation models in current version of IDEA1 only contains two typical

application scenarios. Some more accurate and complex propagation models should

be implemented in IDEA1.

• The battery discharge model in current version of IDEA1 is only a linear one. Some

more accurate models need to be investigated.

158 Appendix A. Modifications to the IEEE 802.15.4 NS-2 Model

Appendix A. Modifications to the IEEE 802.15.4 NS-2 Model 159

Appendix A :

Modifications to the IEEE 802.15.4

NS-2 Model

160 Appendix A. Modifications to the IEEE 802.15.4 NS-2 Model

Appendix A. Modifications to the IEEE 802.15.4 NS-2 Model 161

When comparing the performances of IDEA1 with NS-2, we utilized the IEEE 802.15.4

NS-2 model in release 2.34 [24] and [25]. The existing IEEE 802.15.4 NS-2 model has been

modified, since it was built complying with an earlier standard edition (IEEE 802.15.4

draft D18), which has been nowadays replaced by the latest revised release IEEE Std

802.15.4-2006 [15]. In addition, some bugs have been fixed and several new functions have

been added. The main modifications are listed as follows.

1. Add function ”sendData(IE3ADDR SrcAddr,IE3ADDR DstAddr,UINT 8 pay-

loadLength,bool isUperlayer)” in the p802 15 4sscs class. Users can call this function

to send data to the MAC layer in the tcl script.

2. Add function ”MCPS DATA confirm(UINT 8 msduHandle,MACenum status)” in

the p802 15 4sscs class. This function is used by the MAC layer to report the

transmission results to the SSCS layer. On receipt of this report, the MAC layer

can start next transmission.

3. Add function ”MLME BEACON NOTIFY indication(UINT 8 BSN,PAN ELE

*PANDescriptor,UINT 8 PendAddrSpec,IE3ADDR *AddrList,UINT 8

sduLength,UINT 8 *sdu)” in the p802 15 4sscs class. This function is used

by the MAC layer to report the successful receipt of a beacon packet so that

the SSCS layer knows when the CAP ends. During the inactive portion of the

superframe, the ”sendData” function can not be invoked.

4. Disable ”if ((!mpib.macAutoRequest)||(wph->MSDU PayloadLen > 0))” in the

function ”recvBeacon(Packet *p)” of p802 15 4mac to enable the SSCS layer to

handle the beacon transmission event.

5. Enable the first ”log(p->refcopy());” in the ”recvData(Packet *p)” function and

disable the first ”log(msdu->refcopy());” in the ”MCPS DATA indication” function

of p802 15 4mac so as to log a packet in the trace file immediately when the node

receives the packet, but not after sending the ACK.

162 Appendix A. Modifications to the IEEE 802.15.4 NS-2 Model

6. Change ”if(newtime > 0.0)” to ”if(newtime > 0.0000000001)” in ”locateBound-

ary(bool parent,double wtime)” function of p802 15 4mac, because newtime is a

double variable, when it is 0, in fact, it is a small value that is bigger than 0

and less than 0.0000000001.

7. According to the IEEE 802.15.4 standard-2006, after backoff, if the CSMA algorithm

can not proceed the following process in this CAP, it should wait to the next

superframe and redo the backoff. Add ”start (false);” in the ”newBeacon(char trx)”

function of p802 15 4csmaca.

8. Add ”rxCmd = 0;” in the ”if ((frmCtrl.frmType == defFrmCtrl Type MacCmd) &&

(wph->MSDU CmdType == 0x01))”statement of the ”recv(Packet *p, Handler *h)”

function of p802 15 4mac in order to solve the problem that some devices can not

associate with the coordinator because the BSY drop packet. If the beacon timer

expires when the coordinator is sending ACK for the CM4 command to a node, the

coordinator has to send beacon immediately. In this case, the rxCmd packet should

be cleared, so that when that a device sends a new CM4 command, the coordinator

will not drop it by checking ”rxCmd!=0”.

9. Change ”if ((rxCmd)||(txBcnCmd))” to ”if (rxCmd)” in the ”recv(Packet *p,

Handler *h)” function of p802 15 4mac in order to solve the problem that some

devices can not associate with the coordinator because the BSY drop packet. If

the beacon timer expires when the coordinator is waiting an ACK for the CM2

command, the coordinator is forced to send beacon immediately. In this case, the

txBcnCmd packet has not been cleared, so when nodes send a new CM4 command

in the next superframe, the coordinator will drop it by checking ”txBcnCmd!=0”.

With this modification and the last one, the BSY error becomes rare, but I can not

remove it totally. It happens randomly to some simulations. Maybe there are still

some cases I did not discover. To guarantee the correctness of my simulations only

concerning the communication process after the association stage, I check the trace

Appendix A. Modifications to the IEEE 802.15.4 NS-2 Model 163

file of every simulation. If there are some devices not successfully associated, I will

redo that simulation.

10. Change ”delay = locateBoundary((p802 15 4macDA(txAck) ==

mpib.macCoordShortAddress),0.0);” to ”delay = 0.0;” in the

”PLME SET TRX STATE confirm(PHYenum status)” function of p802 15 4mac.

The transmission of an acknowledgment frame in the CAP period shall commence

either aTurnaroundTime symbols after the reception of the last symbol of the data

or MAC command frame or at a backoff slot boundary. I chose to use the first case.

11. Disable ”reset();” in the ”newBeacon ()” function of p802 15 4csmaca. In a new

superframe, the CSMA-CA algorithm does not need to reset. It will continue the

operation in the last superframe. For example, if NR is 2 in at the end of last

superframe, at the beginning of new superframe, NR is still 2 and does not need to

reset to 0.

12. Some modifications in mcps data request() of p802 15 4mac.cc to set the format of

sending packet.

13. Replace the ”canProceed()” function of p802 15 4csmaca by a modified function

made by Ca Phan on ”http://mailman.isi.edu/pipermail/ns-developers/2007-

July/003196.html”. The reason is ”First, we can not use UINT 16 for

t bPeriods,t CAP. Because the values of t CAP (in abackoffperiodunit) will exceeds

the maximum value of 16bits number for SO>=11. For instance, when SO=11, then

t CAP= 98304 (abackoffperiodunits) > 65535 (maximum value of 16bits). Hence,

in this function, we have to use UINT 32 instead of UINT 16. Second, when this

function calculates the bPeriodsLeft, an fundamental error occurs when the packet

arrives in the off period. In this case, the bPeriodsLeft get a wrong value.”.

14. Two further modifications have been implemented in the new modified

”canProceed()” function of p802 15 4csmaca.

164 Appendix A. Modifications to the IEEE 802.15.4 NS-2 Model

t bPeriods sometimes is -1998362383. It is caused by ”t CAP = (UINT 32)

(tmpf / phy->getRate(’s’));”. Converting to end of CAP to an integer caused many

errors.

With ”t transacTime += phy->trxTime(txPkt); t transacTime += mac-

>mpib.macAckWaitDuration / phy->getRate(’s’);”, the txPkt time has been added

to t transacTime, but with ”macAckWaitDuration=phy->trxTime(txPkt)+phy-

>trxTime(ACKPkt),”, the txPkt time is calculated again.

15. Add the modifications of Iyappan, who has added the sleep mode to nodes.

16. Add sensing time information in the timestamp field of pkt so as to measure the

average latency of sensor data.

17. Add macBeaconSOTimer in ”p802 15 4mac” class to set nodes to sleep after the

active portion.

18. Add ”status =SLEEP;” in the ”putNodeToSleep();” function and ”status =IDLE;”

in the ”wakeupNode(void).” function of Phy802 15 4. The energy is updated during

channel sleep time . Maybe it is cause by the incompatibility between Iyappan’s

code (based on release 2.28) and release 2.34.

19. Add ”#define NONBEACON ” in the ”p802 15 4phy.h” file to set the network

to Nonbeacon-enabled mode (do not check if it is during CAP of a superframe

in sendData of SSCS802 15 4 and do not setWakeTimer in putNodeToSleep of

p802 15 4phy).

20. Add ”mac->phy->putNodeToSleep();” in the ”MCPS DATA confirm” function of

SSCS802 15 4 to set nodes to sleep if the transmission finishes and no data to

transmit. In addition, add ”mac->phy->wakeupNode();”in the ”sendData” function

of SSCS802 15 4 to wake nodes up if they are in SLEEP.

21. Change ”node()->energy model()->DecrSleepEnergy(NOW-channel sleep time ,

P sleep);” to ”node()->energy model()->DecrSleepEnergy(NOW-

Appendix A. Modifications to the IEEE 802.15.4 NS-2 Model 165

update energy time , P sleep);” in the ”wakeupNode()” function of Phy802 15 4.

The UpdateSleepEnergy() function is invoked every second if the sleep interval

is bigger than 1s, so the DecrSleepEnergy function will decrease more energy,

including the energy that has been decreased UpdateSleepEnergy().

22. Add ”node()->energy model()->DecrIdleEnergy(NOW-update energy time ,

P idle);” in the ”putNodeToSleep” function of Phy802 15 4 to decrease the energy

consumed from the last update energy time to NOW.

166 Bibliography

Bibliography

[1] D. Bri, M. Garcia, J. Lloret, and P. Dini, “Real deployments of wireless sensor

networks,” Proc. of the 3rd int. conf. on Sensor Technologies and Applications, pp.

415–423, 2009.

[2] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer

Networks, vol. 52, no. 12, pp. 2292 – 2330, 2008.

[3] G. Sachdeva, R. Dömer, and P. Chou, “System modeling: A case study on a wireless

sensor network,” University of California, Irvine, Tech. Rep. CECS-TR-05-12, 2005.

[4] F. Fummi, D. Quaglia, and F. Stefanni, “A systemc-based framework for modeling

and simulation of networked embedded systems,” in Proc. of the Forum on

Specification and Design Languages, 2008, pp. 49–54.

[5] K. Virk, K. Hansen, and J. Madsen, “System-level modeling of wireless integrated

sensor networks,” in Proc. of the Int. Symposium on System-on-Chip, 2005, pp.

179–182.

[6] J. Hiner, A. Shenoy, R. Lysecky, S. Lysecky, and A. G. Ross, “Transaction-level

modeling for sensor networks using systemc,” in Proc. of the 2010 IEEE int.

conf. on Sensor Networks, Ubiquitous, and Trustworthy Computing, ser. SUTC ’10.

Washington, DC, USA: IEEE Computer Society, 2010, pp. 197–204.

[7] M. Damm, J. Moreno, J. Haase, and C. Grimm, “Using transaction level modeling

techniques for wireless sensor network simulation,” in Proc. of the Conference on

Design, Automation and Test in Europe, ser. DATE ’10, 2010, pp. 1047–1052.

[8] S. Kurkowski, T. Camp, and M. Colagrosso, “Manet simulation studies: the

incredibles,”SIGMOBILE Mob. Comput. Commun. Rev., vol. 9, pp. 50–61, October

2005.

[9] IEEE Std 1666 - 2005 IEEE Standard SystemC Language Reference Manual,

Institute of Electrical and Electronics Engineers, 2006.

[10] Information technology – Open Systems Interconnection – Basic Reference Model:

The Basic Model, Institute of Electrical and Electronics Engineers Std., 1994.

[11] ZigBee specification - Document 053474r17, ZigBee Alliance, 2007. [Online].

Available: http://www.zigbee.org/

http://www.zigbee.org/

Bibliography 167

[12] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor

networks: a survey,”Computer Networks, vol. 38, no. 4, pp. 393–422, 2002. [Online].

Available: http://dblp.uni-trier.de/db/journals/cn/cn38.html#AkyildizSSC02

[13] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol for wireless

sensor networks,” in Proc. of the Joint Conference of the IEEE Computer and

Communications Societies (InfoCom), USC/Information Sciences Institute. New

York, NY, USA: IEEE, June 2002, pp. 1567–1576.

[14] K. K. II and P. Mohapatra, “Medium access control in wireless sensor networks,”

Computer Networks, vol. 51, no. 4, pp. 961 – 994, 2007.

[15] IEEE Standard for Information technology- Telecommunications and information

exchange between systems- Local and metropolitan area networks- Specific

requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical

Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks

(WPANs), Institute of Electrical and Electronics Engineers, 2006.

[16] ATMEL ATMega128 datasheet, Atmel Corporation. [Online]. Available: www.

atmel.com/atmel/acrobat/doc2467.pdf

[17] TI CC2420 datasheet, Texas Instruments Incorporated. [Online]. Available: focus.

ti.com/lit/ds/symlink/cc2420.pdf

[18] PICmicro Mid-Range MCU Family Reference Manual, Microchip Technology Inc.

[Online]. Available: ww1.microchip.com/downloads/en/devicedoc/33023a.pdf

[19] Microchip MRF24J40 Data Sheet, Microchip Technology Inc. [Online]. Available:

ww1.microchip.com/downloads/en/DeviceDoc/DS-39776b.pdf

[20] G. P. Halkes and K. G. Langendoen, “Experimental evaluation of simulation

abstractions for wireless sensor network mac protocols,” EURASIP J. Wirel.

Commun. Netw., vol. 2010, pp. 24:1–24:2, April 2010.

[21] G. V. Merrett, N. M. White, N. R. Harris, and B. M. Al-Hashimi, “Energy-

aware simulation for wireless sensor networks,” in Proc. of the 6th Annual IEEE

communications society conference on Sensor, Mesh and Ad Hoc Communications

and Networks, ser. SECON’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 64–71.

[22] P. Baronti, P. Pillai, V. W. Chook, S. Chessa, A. Gotta, and Y. F. Hu, “Wireless

sensor networks: A survey on the state of the art and the 802.15.4 and zigbee

standards,”Computer Communications, vol. 30, no. 7, pp. 1655 – 1695, 2007.

http://dblp.uni-trier.de/db/journals/cn/cn38.html#AkyildizSSC02
www.atmel.com/atmel/acrobat/doc2467.pdf
www.atmel.com/atmel/acrobat/doc2467.pdf
focus.ti.com/lit/ds/symlink/cc2420.pdf
focus.ti.com/lit/ds/symlink/cc2420.pdf
ww1.microchip.com/downloads/en/devicedoc/33023a.pdf
ww1.microchip.com/downloads/en/DeviceDoc/DS-39776b.pdf

168 Bibliography

[23] T. R. Andel and A. Yasinac, “On the credibility of manet simulations,” Computer,

vol. 39, pp. 48–54, July 2006.

[24] J. Zheng and M. J. Lee, “Will IEEE 802.15.4 make ubiquitous networking a reality?:

a discussion on a potential low power, low bit rate standard,” Communications

Magazine, IEEE, vol. 42, no. 6, pp. 140–146, Jun. 2004.

[25] I. Ramachandran, A. K. Das, and S. Roy, “Analysis of the contention access period

of ieee 802.15.4 mac,”ACM Trans. Sen. Netw., vol. 3, March 2007.

[26] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,

T. Dawson, P. Buonadonna, D. Gay, and W. Hong,“A macroscope in the redwoods,”

in Proc. of the 3rd int. conf. on Embedded networked sensor systems, ser. SenSys

’05. New York, NY, USA: ACM, 2005, pp. 51–63.

[27] MICA2 Datasheet, Crossbow Technology, Inc. [Online]. Available: www.xbow.com/

Products/Product pdf files/Wireless pdf/MICA2 Datasheet.pdf

[28] O. Chipara, C. Lu, T. C. Bailey, and G.-C. Roman, “Reliable clinical monitoring

using wireless sensor networks: experiences in a step-down hospital unit,” in Proc.

of the 8th ACM Conference on Embedded Networked Sensor Systems, ser. SenSys

’10. New York, NY, USA: ACM, 2010, pp. 155–168.

[29] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power wireless

research,” in Proc. of the 4th international symposium on Information processing in

sensor networks, ser. IPSN ’05. Piscataway, NJ, USA: IEEE Press, 2005.

[30] L. Nachman, R. Kling, R. Adler, J. Huang, and V. Hummel, “The intel mote

platform: a bluetooth-based sensor network for industrial monitoring,” in Proc.

of the 4th Int. Symposium on Information Processing in Sensor Networks, 2005, pp.

437–442.

[31] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan,

N. Kushalnagar, L. Nachman, and M. Yarvis, “Design and deployment of industrial

sensor networks: experiences from a semiconductor plant and the north sea,” in

Proc. of the 3rd int. conf. on Embedded networked sensor systems, ser. SenSys ’05.

New York, NY, USA: ACM, 2005, pp. 64–75.

[32] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and

J. Lees, “Deploying a Wireless Sensor Network on an Active Volcano,” IEEE Internet

Computing, vol. 10, no. 2, pp. 18–25, Mar. 2006.

www.xbow.com/Products/Product_pdf_files/Wireless_pdf /MICA2_Datasheet.pdf
www.xbow.com/Products/Product_pdf_files/Wireless_pdf /MICA2_Datasheet.pdf

Bibliography 169

[33] Tmote Sky Datasheet, Moteiv Corporation. [Online]. Available: http://sentilla.

com/files/pdf/eol/tmote-sky-datasheet.pdf

[34] G. Simon, M. Maróti, A. Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap, J. Sallai,

and K. Frampton, “Sensor network-based countersniper system,” in Proc. of the 2nd

int. conf. on Embedded networked sensor systems, ser. SenSys ’04. New York, NY,

USA: ACM, 2004, pp. 1–12.

[35] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System

architecture directions for networked sensors,” ACM SIGPLAN Notices, vol. 35,

pp. 93–104, November 2000.

[36] B. Kusy, G. Balogh, J. Sallai, A. Lédeczi, and M. Maróti, “Intrack: high precision

tracking of mobile sensor nodes,” in Proc. of the 4th European conference on Wireless

sensor networks, ser. EWSN’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 51–

66.

[37] M. Maróti, P. Völgyesi, S. Dóra, B. Kusý, A. Nádas, A. Lédeczi, G. Balogh, and

K. Molnár, “Radio interferometric geolocation,” in Proc. of the 3rd int. conf. on

Embedded networked sensor systems, ser. SenSys ’05. New York, NY, USA: ACM,

2005, pp. 1–12.

[38] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler, “Design of a wireless

sensor network platform for detecting rare, random, and ephemeral events,” in Proc.

of the 4th international symposium on Information processing in sensor networks,

ser. IPSN ’05. Piscataway, NJ, USA: IEEE Press, 2005.

[39] H. Song, S. Zhu, and G. Cao, “Svats: A sensor-network-based vehicle anti-theft

system,” in Proc. of the 27th IEEE Conference on Computer Communications, 2008,

pp. 2128–2136.

[40] K. Römer and F. Mattern, “The design space of wireless sensor networks,” IEEE

Wireless Communications, vol. 11, no. 6, pp. 54–61, December 2004.

[41] “The sensor network museum project.” [Online]. Available: http://www.snm.ethz.

ch/Main/HomePage

[42] MICAz Datasheet, Crossbow Technology, Inc. [Online]. Available: www.xbow.com/

Products/Product pdf files/Wireless pdf/MICAz Datasheet.pdf

[43] TelosB Datasheet, Crossbow Technology, Inc. [Online]. Available: www.willow.co.

uk/TelosB Datasheet.pdf

http://sentilla.com/files/pdf/eol/tmote-sky-datasheet.pdf
http://sentilla.com/files/pdf/eol/tmote-sky-datasheet.pdf
http://www.snm.ethz.ch/Main/HomePage
http://www.snm.ethz.ch/Main/HomePage
www.xbow.com/Products/Product_pdf_files/Wireless_pdf /MICAz_Datasheet.pdf
www.xbow.com/Products/Product_pdf_files/Wireless_pdf /MICAz_Datasheet.pdf
www.willow.co.uk/TelosB_Datasheet.pdf
www.willow.co.uk/TelosB_Datasheet.pdf

170 Bibliography

[44] Imote2 Hardware Reference Manual, Crossbow Technology, Inc. [Online]. Available:

www.xbow.com/Products/Product pdf files/Wireless pdf/Imote2 Datasheet.pdf

[45] BTnode Platform, ETH Zurich. [Online]. Available: http://www.btnode.ethz.ch/

[46] Y. Zhang and H. Xiao, “Bluetooth-based sensor networks for remotely monitoring

the physiological signals of a patient,”Trans. Info. Tech. Biomed., vol. 13, pp. 1040–

1048, November 2009.

[47] A. Tanenbaum, Computer Networks, 4th ed. Prentice Hall Professional Technical

Reference, 2002.

[48] X. Zeng, R. Bagrodia, and M. Gerla, “Glomosim: a library for parallel simulation

of large-scale wireless networks,” in Proc. of the twelfth workshop on Parallel and

distributed simulation, ser. PADS ’98. Washington, DC, USA: IEEE Computer

Society, 1998, pp. 154–161.

[49] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 5th ed.

USA: Addison-Wesley Publishing Company, 2009.

[50] I. Demirkol, C. Ersoy, and F. Alagoz, “MAC protocols for wireless sensor networks:

a survey,” Communications Magazine, IEEE, vol. 44, no. 4, pp. 115–121, 2006.

[51] E. Shih, P. Bahl, and M. J. Sinclair, “Wake on wireless: an event driven energy

saving strategy for battery operated devices,” in Proc. of the 8th annual int. conf.

on Mobile computing and networking, ser. MobiCom ’02. New York, NY, USA:

ACM, 2002, pp. 160–171.

[52] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-mac: a short preamble mac

protocol for duty-cycled wireless sensor networks,” in Proc. of the 4th int. conf. on

Embedded networked sensor systems, ser. SenSys ’06. New York, NY, USA: ACM,

2006, pp. 307–320.

[53] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with coordinated

adaptive sleeping for wireless sensor networks,” IEEE/ACM Trans. Netw., vol. 12,

pp. 493–506, June 2004.

[54] P. Lin, C. Qiao, and X. Wang, “Medium access control with a dynamic duty cycle for

sensor networks,” in Proc. of the IEEE Wireless Communications and Networking

Conference (WCNC), vol. 3, 2004, pp. 1534–1539 Vol.3.

[55] T. van Dam and K. Langendoen, “An adaptive energy-efficient mac protocol for

wireless sensor networks,” in Proc. of the 1st int. conf. on Embedded networked

sensor systems, ser. SenSys ’03. New York, NY, USA: ACM, 2003, pp. 171–180.

www.xbow.com/Products/Product_pdf_files/Wireless_pdf /Imote2_Datasheet.pdf
http://www.btnode.ethz.ch/

Bibliography 171

[56] J. Ai, J. Kong, and D. Turgut, “An adaptive coordinated medium access control

for wireless sensor networks,” in Proc. of the IEEE Symposium on Computers and

Communications, vol. 1. Los Alamitos, CA, USA: IEEE Computer Society, 2004,

pp. 214–219.

[57] W. Ye, F. Silva, and J. Heidemann, “Ultra-low duty cycle mac with scheduled

channel polling,” in Proc. of the 4th int. conf. on Embedded networked sensor

systems, ser. SenSys ’06. New York, NY, USA: ACM, 2006, pp. 321–334.

[58] A. El-Hoiydi and J.-D. Decotignie, “Wisemac: An ultra low power mac protocol

for multi-hop wireless sensor networks,” in Algorithmic Aspects of Wireless Sensor

Networks, ser. Lecture Notes in Computer Science, S. Nikoletseas and J. Rolim,

Eds. Springer Berlin / Heidelberg, 2004, vol. 3121, pp. 18–31, 10.1007/978-3-540-

27820-7 4.

[59] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless

sensor networks,” in Proc. of the 2nd int. conf. on Embedded networked sensor

systems, ser. SenSys ’04. New York, NY, USA: ACM, 2004, pp. 95–107.

[60] A. El-Hoiydi and J.-D. Decotignie, “Wisemac: an ultra low power mac protocol

for the downlink of infrastructure wireless sensor networks,” in Proc. of the Ninth

Int. Symposium on Computers and Communications 2004 Volume 2 (ISCC”04) -

Volume 02, ser. ISCC ’04. Washington, DC, USA: IEEE Computer Society, 2004,

pp. 244–251.

[61] D. Flowers and Y. Yang, AN1066 application note: MiWi Wireless

Networking Protocol Stack, Microchip Technology Inc., 2007. [Online].

Available: http://ww1.microchip.com/\penalty\exhyphenpenaltydownloads/

\penalty\exhyphenpenaltyAppNotes/\penalty\exhyphenpenaltyAN1066%20-

%20MiWi%20App%20Note.pdf

[62] K. Fall and K. Varadhan, The ns Manual (formerly ns Notes and Documentation),

Jan. 2009. [Online]. Available: http://www.isi.edu/nsnam/ns/doc/ns doc.pdf

[63] N. R. H. Ioannis Mathioudakis, Neil M.White and G. V. Merrett, “Wireless sensor

networks: A case study for energy efficient environmental monitoring,” in Proc. of

Eurosensors 2008, Dresden, Germany, Sep. 2008.

[64] M. Watfa, W. Daher, and H. Al Azar, “A sensor network data aggregation

technique,” Int. Journal of Computer Theory and Engineering, vol. 1, pp. 19–26,

2009.

http://ww1.microchip.com/penalty exhyphenpenalty downloads/penalty exhyphenpenalty AppNotes/penalty exhyphenpenalty AN1066%20-%20MiWi%20App%20Note.pdf
http://ww1.microchip.com/penalty exhyphenpenalty downloads/penalty exhyphenpenalty AppNotes/penalty exhyphenpenalty AN1066%20-%20MiWi%20App%20Note.pdf
http://ww1.microchip.com/penalty exhyphenpenalty downloads/penalty exhyphenpenalty AppNotes/penalty exhyphenpenalty AN1066%20-%20MiWi%20App%20Note.pdf
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf

172 Bibliography

[65] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a scalable and

robust communication paradigm for sensor networks,” in Proc. of the 6th annual

int. conf. on Mobile computing and networking, ser. MobiCom ’00. New York, NY,

USA: ACM, 2000, pp. 56–67.

[66] R. Rajagopalan and P. K. Varshney, “Data-aggregation techniques in sensor

networks: A survey.” IEEE Communications Surveys and Tutorials, vol. 8, pp.

48–63, 2006.

[67] K. Akkaya and M. Younis, “A survey on routing protocols for wireless sensor

networks,”Ad Hoc Networks, vol. 3, no. 3, pp. 325 – 349, 2005.

[68] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman, “A survey of gossiping

and broadcasting in communication networks,”Networks, vol. 18, no. 4, pp. 319–349,

1988.

[69] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols for

information dissemination in wireless sensor networks,” in Proc. of the 5th annual

ACM/IEEE int. conf. on Mobile computing and networking, ser. MobiCom ’99.

New York, NY, USA: ACM, 1999, pp. 174–185.

[70] I. D. Chakeres and E. M. Belding-Royer, “Aodv routing protocol implementation

design,” in Proceedings of the 24th International Conference on Distributed

Computing Systems Workshops - W7: EC (ICDCSW’04) - Volume 7, ser. ICDCSW

’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 698–703.

[71] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient

communication protocol for wireless microsensor networks,” in Proc. of the 33rd

Hawaii int. conf. on System Sciences-Volume 8 - Volume 8, ser. HICSS ’00.

Washington, DC, USA: IEEE Computer Society, 2000, pp. 8020–.

[72] A. M. V. Reddy, A. P. Kumar, D. Janakiram, and G. A. Kumar, “Wireless sensor

network operating systems: a survey,” Int. J. Sen. Netw., vol. 5, pp. 236–255, August

2009.

[73] C. Hartung, R. Han, C. Seielstad, and S. Holbrook, “Firewxnet: A multi-

tiered portable wireless system for monitoring weather conditions in wildland fire

environments,” in Proc. of the 4 th int. conf. on Mobile Systems, Applications, and

Services. ACM Press, 2006, pp. 28–41.

[74] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dynamic

operating system for sensor nodes,” in Proc. of the 3rd int. conf. on Mobile systems,

Bibliography 173

applications, and services, ser. MobiSys ’05. New York, NY, USA: ACM, 2005, pp.

163–176.

[75] A. Dunkels, B. Gronvall, and T. Voigt,“Contiki - a lightweight and flexible operating

system for tiny networked sensors,” in Proc. of the 29th Annual IEEE int. conf. on

Local Computer Networks, ser. LCN ’04. Washington, DC, USA: IEEE Computer

Society, 2004, pp. 455–462.

[76] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald,

A. Torgerson, and R. Han,“Mantis os: an embedded multithreaded operating system

for wireless micro sensor platforms,”Mob. Netw. Appl., vol. 10, pp. 563–579, August

2005.

[77] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-rk: An energy-aware resource-

centric rtos for sensor networks,” in Proceedings of the 26th IEEE International

Real-Time Systems Symposium. Washington, DC, USA: IEEE Computer Society,

2005, pp. 256–265.

[78] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He, “The liteos operating system:

Towards unix-like abstractions for wireless sensor networks,” in Proc. of the 7th int.

conf. on Information processing in sensor networks, ser. IPSN ’08. Washington,

DC, USA: IEEE Computer Society, 2008, pp. 233–244.

[79] T. Hofmeijer, S. Dulman, P. Jansen, and P. Havinga, “Ambientrt - real time

system software support for data centric sensor networks,” in Proceedings of the

2004 Intelligent Sensors, Sensor Networks and Information Processing Conference.

IEEE Computer Society Press, 2004, pp. 61–66.

[80] V. Prasad and S. Son, “Classification of analysis techniques for wireless sensor

networks,” the 4th int. conf. Networked Sensing Systems, pp. 93–97, 2007.

[81] V. Handziski, A. Köpke, A. Willig, and A. Wolisz, “Twist: a scalable and

reconfigurable testbed for wireless indoor experiments with sensor networks,” in

Proc. of the 2nd international workshop on Multi-hop ad hoc networks: from theory

to reality, ser. REALMAN ’06. New York, NY, USA: ACM, 2006, pp. 63–70.

[82] E. Egea-López, J. Vales-Alonso, A. S. Mart́ınez-Sala, P. Pavón-Marõio, and

J. Garćıa-Haro, “Simulation tools for wireless sensor networks,” Proc. of the

Int. Symposium on Performance Evaluation of Computer and Telecommunication

Systems, 2005.

174 Bibliography

[83] G. Chen, J. Branch, M. Pflug, L. Zhu, and B. Szymanski, “Sense: A wireless sensor

network simulator,” in Advances in Pervasive Computing and Networking, B. K.

Szymanski and B. Yener, Eds. Springer US, 2005, pp. 249–267, 10.1007/0-387-

23466-7 13.

[84] M. Varshney and R. Bagrodia, “Detailed models for sensor network simulations

and their impact on network performance,” in Proc. of the 7th ACM international

symposium on Modeling, analysis and simulation of wireless and mobile systems,

ser. MSWiM ’04. New York, NY, USA: ACM, 2004, pp. 70–77.

[85] V. Shnayder, M. Hempstead, B.-r. Chen, G. W. Allen, and M. Welsh, “Simulating

the power consumption of large-scale sensor network applications,” in Proc. of the

2nd int. conf. on Embedded networked sensor systems, ser. SenSys ’04. New York,

NY, USA: ACM, 2004, pp. 188–200.

[86] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Osterweil,

and T. Schoellhammer, “A system for simulation, emulation, and deployment

of heterogeneous sensor networks,” in Proc. of the 2nd int. conf. on Embedded

networked sensor systems, ser. SenSys ’04. New York, NY, USA: ACM, 2004,

pp. 201–213.

[87] F. Fummi, M. Loghi, G. Perbellini, and M. Poncino, “Systemc co-simulation for

core-based embedded systems,” Design Automation for Embedded Systems, vol. 11,

pp. 141–166, 2007, 10.1007/s10617-007-9006-7.

[88] L. Séméria and A. Ghosh, “Methodology for hardware/software co-verification

in c/c++ (short paper),” in Proc. of the 2000 Asia and South Pacific Design

Automation Conference, ser. ASP-DAC ’00. New York, NY, USA: ACM, 2000,

pp. 405–408.

[89] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding tables

for fast routing lookups,” in Proc. of the ACM SIGCOMM ’97 conference on

Applications, technologies, architectures, and protocols for computer communication,

ser. SIGCOMM ’97. New York, NY, USA: ACM, 1997, pp. 3–14.

[90] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-aware

wireless microsensor networks,” Signal Processing Magazine, IEEE, vol. 19, no. 2,

pp. 40–50, 2002.

[91] A. Varga, “The omnet++ discrete event simulation system,” Proc. of the European

Simulation Multiconference (ESM’2001), June 2001.

Bibliography 175

[92] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: scalable sensor network simulation

with precise timing,” in Proc. of the 4th international symposium on Information

processing in sensor networks, ser. IPSN ’05. Piscataway, NJ, USA: IEEE Press,

2005.

[93] “Opnet,” OPNET Technologies, Inc., 2006. [Online]. Available: http://www.opnet.

com/

[94] A. Sobeih, W.-P. Chen, J. C. Hou, L.-C. Kung, N. Li, H. Lim, H.-Y. Tyan, and

H. Zhang, “J-sim: A simulation environment for wireless sensor networks,” in Proc.

of the 38th annual Symposium on Simulation, ser. ANSS ’05. Washington, DC,

USA: IEEE Computer Society, 2005, pp. 175–187.

[95] V. Naoumov and T. Gross, “Simulation of large ad hoc networks,” in Proc. of the 6th

ACM international workshop on Modeling analysis and simulation of wireless and

mobile systems, ser. MSWIM ’03. New York, NY, USA: ACM, 2003, pp. 50–57.

[96] J. Glaser, D. Weber, S. A. Madani, and S. Mahlknecht, “Power aware simulation

framework for wireless sensor networks and nodes,” EURASIP J. Embedded Syst.,

vol. 2008, pp. 3:1–3:16, January 2008.

[97] S. Park, A. Savvides, and M. B. Srivastava, “Sensorsim: a simulation framework

for sensor networks,” in Proc. of the 3rd ACM international workshop on Modeling,

analysis and simulation of wireless and mobile systems, ser. MSWIM ’00. New

York, NY, USA: ACM, 2000, pp. 104–111.

[98] W. Drytkiewicz, S. Sroka, V. Handziski, A. Koepke, and H. Karl, “A mobility

framework for omnet++,” in Proc. of the 3rd Int. OMNeT++ Workshop, 2003.

[99] F. Chen, N. Wang, R. German, and F. Dressler, “Performance evaluation of ieee

802.15.4 lr-wpan for industrial applications,” in In 5th IEEE/IFIP Conference on

Wireless On demand Network Systems and Services (IEEE/IFIP WONS 2008.

IEEE, 2008, pp. 89–96.

[100] D. Weber, J. Glaser, and S. Mahlknecht, “Discrete event simulation framework for

power aware wireless sensor networks,” in Proc. of the 5th int. conf. on Industrial

Informatics, 2007, pp. 335–340.

[101] G. Chelius, A. Fraboulet, and E. Fleury, “Worldsens: development and prototyping

tools for application specific wireless sensors networks,” in Proc. of the International

Conference on Information Processing in Sensor Networks, Boston, USA, 2007, pp.

176–185.

http://www.opnet.com/
http://www.opnet.com/

176 Bibliography

[102] M. Takai, R. Bagrodia, K. Tang, and M. Gerla, “Efficient wireless network

simulations with detailed propagation models,” Wirel. Netw., vol. 7, pp. 297–305,

May 2001.

[103] QualNet, Scalable Network Technologies. [Online]. Available: http://www.

scalable-networks.com

[104] G. Simon, P. Volgyesi, M. Maroti, and A. Ledeczi, “Simulation-based optimization

of communication protocols for large-scale wireless sensor networks,” in 2003 IEEE

Aerospace Conference, Big Sky, MT, March 2003.

[105] L. Shu, C. Wu, Y. Zhang, J. Chen, L. Wang, and M. Hauswirth, “Nettopo: beyond

simulator and visualizer for wireless sensor networks,” SIGBED Rev., vol. 5, pp.

2:1–2:8, October 2008.

[106] E. Weingärtner, H. Vom Lehn, and K. Wehrle, “A performance comparison of recent

network simulators,” in Proc. of the 2009 IEEE int. conf. on Communications, ser.

ICC’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 1287–1291.

[107] J. L. Font, P. Iñigo, M. Domı́nguez, J. L. Sevillano, and C. Amaya, “Analysis of

source code metrics from ns-2 and ns-3 network simulators,” Simulation Modelling

Practice and Theory, vol. 19, no. 5, pp. 1330–1346, 2011.

[108] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and scalable simulation

of entire tinyos applications,” in Proc. of the 1st int. conf. on Embedded networked

sensor systems, ser. SenSys ’03. New York, NY, USA: ACM, 2003, pp. 126–137.

[109] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras, “ATEMU: a fine-

grained sensor network simulator,” in Sensor and Ad Hoc Communications and

Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE Communications

Society Conference on, Oct. 2004, pp. 145–152.

[110] F. Fummi, G. Perbellini, D. Quaglia, and A. Acquaviva, “Flexible energy-aware

simulation of heterogeneous wireless sensor networks,” in Proc. of the Conference

on Design, Automation and Test in Europe, ser. DATE ’09. 3001 Leuven, Belgium,

Belgium: European Design and Automation Association, 2009, pp. 1638–1643.

[111] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-level sensor

network simulation with cooja,” in Proc. of the First IEEE Int. Workshop on

Practical Issues in Building Sensor Network Applications (SenseApp ’06), Tampa,

Florida, USA, Nov. 2006.

http://www.scalable-networks.com
http://www.scalable-networks.com

Bibliography 177

[112] J. Eriksson, A. Dunkels, N. Finne, F. Österlind, T. Voigt, and N. Tsiftes, “Demo

abstract: Mspsim - an extensible simulator for msp430-equipped sensor boards.” in

Proc. of the 5th European Conference on Wireless Sensor Networks, 2006.

[113] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt, R. Sauter, and

P. J. Marrón, “Cooja/mspsim: interoperability testing for wireless sensor networks,”

in Proc. of the 2nd int. conf. on Simulation Tools and Techniques, ser. Simutools

’09. ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering), 2009, pp. 27:1–27:7.

[114] M. Kuorilehto, M. Hännikäinen, and T. D. Hämäläinen, “Rapid design and

evaluation framework for wireless sensor networks,” Ad Hoc Netw., vol. 6, pp. 909–

935, August 2008.

[115] “Sdl forum society homepage.” [Online]. Available: http://www.sdl-forum.org/

[116] M. Haroud and A. Biere, “Hw accelerated ultra wide band mac protocol using sdl and

systemc,” in Proc. of the 10th int. conf. on Architectural support for programming

languages and operating systems, ser. ASPLOS-X. New York, NY, USA: ACM,

2002, pp. 85–95.

[117] H. Park, W. Liao, K. H. Tam, M. B. Srivastava, and L. He, “A unified network and

node level simulation framework for wireless sensor networks,” in Proc. of the 2009

IEEE int. conf. on Communications, 2003.

[118] T. K. Tan, A. Raghunathan, and N. K. Jha, “Emsim: An energy simulation

framework for an embedded operating system,” in Proc. of the IEEE Int. Symposium

on Circuits and Systems, 2002, pp. 70–77.

[119] M. Varshney, D. Xu, M. Srivastava, and R. Bagrodia, “squalnet: An accurate and

scalable evaluation framework for sensor networks,” in Proc. of the int. conf. on

Information Processing in Sensor Networks, 2007.

[120] D. C. Black and J. Donovan, SystemC: From the Ground Up. Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 2005.

[121] T. Grotker, System Design with SystemC. Norwell, MA, USA: Kluwer Academic

Publishers, 2002.

[122] E. Aboulhamid, “New hardware/software design methodologies,” in The 13th ICM

International Conference on Microelectronics. IEEE, 2001, pp. 3–5.

http://www.sdl-forum.org/

178 Bibliography

[123] J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, W. Rosenstiehl, and W. Mueller,

“The simulation semantics of systemc,” in Proceedings of the conference on Design,

automation and test in Europe, ser. DATE ’01. Piscataway, NJ, USA: IEEE

Press, 2001, pp. 64–70. [Online]. Available: http://portal.acm.org/citation.cfm?

id=367072.367091

[124] S. Stuart, “A tutorial introduction to the systemc tlm standard,” 2006.

[125] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in

CODES+ISSS ’03: Proc. of the 1st IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis. New York, NY, USA: ACM,

2003, pp. 19–24.

[126] Qt - A cross-platform application and UI framework. [Online]. Available: http://

qt.nokia.com/

[127] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy, “The platforms enabling

wireless sensor networks,” Commun. ACM, vol. 47, pp. 41–46, June 2004.

[128] A. Savvides, S. Park, and M. B. Srivastava, “On modeling networks of wireless

microsensors,” in Proceedings of the 2001 ACM SIGMETRICS international

conference on Measurement and modeling of computer systems, ser. SIGMETRICS

’01. New York, NY, USA: ACM, 2001, pp. 318–319. [Online]. Available: http://

doi.acm.org/10.1145/378420.378808

[129] J. Schnerr, O. Bringmann, M. Krause, A. Viehl, and W. Rosentiel, “Systemc-based

performance analysis of embedded systems,”Model-Based Design of Heterogeneous

Embedded Systems, pp. 27–55, 2010.

[130] J.-P. M. Linmartz,Wireless Communication. P.O. Box 37208, 1030 AE Amsterdam:

Baltzer Science Publishers
”
1996.

[131] “Propagation data and prediction methods for the planning of indoor radiocomm.

systems and radio local area networks in the frequency range 900 mhz to 100 ghz,”

1999.

[132] M. Kohvakka, J. Suhonen, M. Kuorilehto, V. Kaseva, M. Hännikäinen, and T. D.

Hämäläinen, “Energy-efficient neighbor discovery protocol for mobile wireless sensor

networks,”Ad Hoc Networks, vol. 7, no. 1, pp. 24 – 41, 2009.

[133] F. Chen, I. Dietrich, R. German, and F. Dressler, “An Energy Model for

Simulation Studies of Wireless Sensor Networks using OMNeT++,” Praxis der

http://portal.acm.org/citation.cfm?id=367072.367091
http://portal.acm.org/citation.cfm?id=367072.367091
http://qt.nokia.com/
http://qt.nokia.com/
http://doi.acm.org/10.1145/378420.378808
http://doi.acm.org/10.1145/378420.378808

Bibliography 179

Informationsverarbeitung und Kommunikation (PIK), vol. 32, no. 2, pp. 133–138,

June 2009.

[134] LT1014 amplifier, Linear Technology. [Online]. Available: http://cds.linear.com/

docs/Datasheet/10134fd.pdf

[135] Tektronix MSO2012 mixed signal oscilloscope, Tektronix. [Online]. Available:

http://www.tek.com/

[136] F. Mieyeville, W. Du, D. Navarro, and O. Bareille, “Wireless Sensor Network for

active vibration control,” in Proceedings of the 1st International Conference on

Passives and Actives Mechanical Innovations in Analysis and Design of Mechanical

Systems (IMPACT 2010), Mar. 2010.

[137] A. Willig, “Recent and emerging topics in wireless industrial communications,” IEEE

Transactions on Industrial Informatics, vol. 4, no. 2, pp. 102–124, 2008.

[138] F. Chen, T. Talanis, R. German, and F. Dressler, “Real-time enabled IEEE

802.15.4 sensor networks in industrial automation,” in 2009 IEEE Int. Symposium

on Industrial Embedded Systems. IEEE, Jul. 2009, pp. 136–139.

[139] C. Buratti, “Performance analysis of ieee 802.15.4 beacon-enabled mode,” IEEE

Transactions on Vehicular Technology, 2010.

[140] N. I. Dopico, C. Gil-Soriano, I. Arrazola, and S. Zazo, “Analysis of ieee 802.15.4

throughput in beaconless mode on micaz under tinyos 2,” in Proc. of the 72th IEEE

Vehicular Technology Conference, VTC Fall, 2010, pp. 1–5.

[141] T. ElBatt, C. Saraydar, M. Ames, and T. Talty, “Potential for intra-vehicle wireless

automotive sensor networks,” in Proc. of IEEE Sarnoff Symposium, 2006, pp. 1–4.

http://cds.linear.com/docs/Datasheet/10134fd.pdf
http://cds.linear.com/docs/Datasheet/10134fd.pdf
http://www.tek.com/

Modélisation et Simulation de Réseaux de Capteurs sans Fil

Résumé:

Cette thèse traite de la modélisation et la simulation de réseaux de capteurs sans
fil afin de fournir des estimations précises de consommations d’énergie. Un cadre de
conception et de simulation basé sur SystemC au niveau système est proposé, nommé
IDEA1. Elle permet l’exploration de l’espace de conception de réseaux de capteurs à un
stade amont. Les résultats de simulation comprennent le taux de livraison de paquets, la
latence de transmission et les consommations d’énergie. Sur un banc d’essai comportant
9 nœuds, la différence moyen entre les IDEA1 simulations et les mesures expérimentales
est 4.6 %. Les performances d’IDEA1 sont comparées avec un autre simulateur largement
utilisé, NS-2. Avec la co-simulation matérielle et logicielle, IDEA1 peut apporter des
modèles plus détaillés de nœuds de capteurs. Pour fournir les résultats de la simulation
au même niveau d’abstraction, IDEA1 réalise les simulations deux fois plus vite que NS-2.
Enfin, deux études de cas sont accomplies pour valider le flot de conception d’IDEA1. La
performance de l’IEEE 802.15.4 est globalement évaluée pour diverses charges de trafic et
configurations de paramètres de protocole. Une application de contrôle actif des vibrations
est également étudiée. Les simulations d’IDEA1 trouvent le meilleur choix de protocoles
de communication.

Mots clés: réseaux de capteurs sans fil, co-simulation de matériel et logiciel, SystemC,
validation expérimentale, l’évaluation des performances, MAC protocole.

Modeling and Simulation of Wireless Sensor Networks

Abstract:

This thesis deals with the modeling and simulation of wireless sensor networks in
order to provide mote accurate prediction of energy consumptions. A SystemC-based
system level design and simulation framework is proposed, named as IDEA1. It enables
the design space exploration of sensor networks at an early stage. The simulation
results include packet delivery rate, transmission latency and energy consumptions. A
testbed consisting of 9 motes is built to validate the simulation results of IDEA1. The
average deviation between the IDEA1 simulations and the experimental measurements
is 4.6%. The performances of IDEA1 are compared with a widely-used WSN simulator,
NS-2. With the hardware and software co-simulation, IDEA1 can provide more detailed
models of sensor nodes. For offering the simulation results at same abstraction level,
IDEA1 only uses one third of the simulation time of NS-2. Finally, two case studies
are performed to validate design flow of IDEA1. The performance of IEEE 802.15.4
sensor networks is comprehensively evaluated for various traffic loads and configurations
of protocol parameters. In addition, a real-time active vibration control application is
also studied. By the simulation of IDEA1, the best choice of communication protocols
and hardware platforms is found.

Key words: wireless sensor networks, hardware and software co-simulation, SystemC,
experimental validation, performance evaluation, MAC protocol.

	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	Brief Introduction to Wireless Sensor Networks
	Research Motivation
	Research Contributions
	Selected Publications
	Thesis Structure

	Chapter 2 : Wireless Sensor Networks
	Application Scenarios
	Monitoring Application Examples
	Tracking Application Examples
	Summary

	Wireless Sensor Hardware Platforms
	Architecture of wireless sensor node
	Hardware platforms

	Communication Protocols
	Introduction to Protocol Stacks
	Medium Access Control
	Synchronous MAC Protocols
	Asynchronous MAC Protocols
	IEEE 802.15.4 MAC protocols

	Data Aggregation and Routing
	Network Topologies
	Routing Protocol for Mesh Topology
	Routing Protocol for Cluster Topology

	Operating Systems
	Characteristics of WSN Operating Systems
	Summary of WSN Operating Systems

	Modeling and Simulation
	Requirements of WSN Modeling and Simulation
	A Typical Model of WSN System
	A Taxonomy of WSN Simulation Tools
	A Survey of WSN Simulation Tools
	Network Simulators with Node Models
	Node Emulators with Network Models
	Node System Simulator with Network Models
	Network Simulators with Node Emulators

	Summary

	Conclusion

	Chapter 3 : Design and Implementation IDEA1
	Modeling Wireless Sensor Networks with SystemC
	Introduction to SystemC
	Features of SystemC
	SystemC Modeling Constructs
	SystemC Simulation Kernel

	Transaction Level Modeling

	IDEA1 Framework
	Architecture of IDEA1
	Design Flow of IDEA1
	Current Library
	Graphical User Interface
	IDEA1 Features

	Simulation Model Implementations
	Sensor Node Modeling
	Microcontroller Model
	Model of ATMEL ATMega128
	Model of Microchip PIC16LF88

	Transceiver Model
	Transceiver Model of TI CC2420 and CC1000
	Transceiver Model of Microchip MRF24J40

	Network Modeling
	Packet Transmission
	Radio Propagation Model

	Energy Model

	Simulation Output
	Simulation Log
	Event Sequence Tracing
	Sensor Data

	Conclusion

	Chapter 4 : Performance Evaluation of IDEA1
	Performance Metrics
	Experimental Validation
	Calibration of the Energy Model
	A Testbed of Sensor Network
	Testbed Establishment
	Testbed Measurements and Simulation Results

	Performance Comparison with NS-2
	Simulation Model Implementation of NS-2 and IDEA1
	Simulation Results of NS-2 and IDEA1
	Packet Delivery Rate
	Average Latency
	Average Power Consumption
	Energy Consumption per Packet
	Summary

	Simulation Time of NS-2 and IDEA1
	Detailed Analysis of Power Consumptions by IDEA1

	Conclusion

	Chapter 5 : Case Studies
	Performance Evaluation of IEEE 802.15.4 Sensor Network
	Slotted CSMA-CA with Fixed SO and Various BO
	Packet Delivery Rate
	Average Latency
	Average Power Consumption
	Energy Consumption per Packet
	Summary

	Slotted CSMA-CA with Equal SO and BO
	Unslotted CSMA-CA
	Summary

	An Industrial Application
	Introduction to the Industrial Application
	Preliminary Study
	Simulation Study
	Comparisons of MAC algorithms
	Comparisons of Hardware Platforms
	Detailed Analysis of Energy Consumption

	Conclusion

	Chapter 6 : Conclusions and Future Works
	Summary of Work
	Future Works

	Appendix A : Modifications to the IEEE 802.15.4 NS-2 Model
	Bibliography

