
Année 2011

UNIVERSITE DE CERGY PONTOISE

THESE

Présentée pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE DE CERGY PONTOISE

Ecole doctorale: Sciences et Ingénierie
Spécialité: Génie Electrique

Par

Imen BAHRI

Contribution of FPGA-based System-on-Chip
controllers for embedded AC drive applications

JURY

Rapporteurs : Prof. Guillaume Gateau Université de Toulouse
 Dr. Daniel Chillet Université de Rennes

Examinateurs : Prof. François Verdier Université de Nice
 Prof. Ilhem Slama Belkhodja

Prof. Bruno Allard

Mr. Régis Meuret

Université de Tunis

Université de Lyon

Expert Safran Power

Directeur de thèse : Prof. Eric Monmasson

Université de Cergy Pontoise

Co-directeur : Dr. Mohamed El Amin Ben khelifa

Université de Cergy Pontoise

Laboratoire SATIE - UCP/UMR 8029, 1 rue d’Eragny, 95031 Neuville sur Oise France

Contribution of FPGA-based System-on-Chip
controllers for embedded AC drive applications

Imen BAHRI

November 13, 2011

Contents

Nomenclature iv

Abstract vi

Résumé viii

General Introduction x

1 State of art of FPGA-based System-on-Chip for embedded control sys-
tems 2
1.1 Introduction . 2
1.2 Aircraft application constraints . 3
1.3 Hardware architectures . 4

1.3.1 ASICs . 5
1.3.2 ASIPs . 6
1.3.3 FPGAs . 7
1.3.4 System-on-Chip . 8
1.3.5 Multi-Processor System-on-Chip 10
1.3.6 Multi-layer software architecture 11

1.4 FPGA-SoC design �ow . 12
1.5 Interest of the SoC approach for AC drive applications 13
1.6 Co-design methodology . 15

1.6.1 Modeling . 15
1.6.2 Partitioning . 15
1.6.3 Modeling tools for Co-design . 16

1.7 Proposed Co-design methodology for electrical drives 16
1.8 Conclusion . 19

2 Design and validation of FPGA-based motor drive for High-Temperature
environment 21
2.1 Introduction . 21
2.2 Application overview . 22
2.3 Design and validation methodology . 23

2.3.1 Control algorithm design and functional validation 24
2.3.2 Architectural design and modular veri�cation of the control archi-

tecture . 31
2.3.3 Real-time simulation . 36

2.4 SoC performance evaluation . 40
2.5 Conclusion . 45

i

CONTENTS ii

3 Speci�cations and algorithm development-Time delay impact 47
3.1 Introduction . 47
3.2 Speci�cations . 47

3.2.1 Power stage . 48
3.2.2 Measurement boards . 49
3.2.3 Digital Control Unit . 49

3.3 Sources of time delay . 49
3.3.1 Computation time delay . 49
3.3.2 Sample-and-Hold e¤ect of the PWM 50

3.4 Stator current controller . 52
3.4.1 Current controller synthesis . 52
3.4.2 Speed controller . 59
3.4.3 Rotor speed and position observer using EKF algorithm 60
3.4.4 Discretization and �xed-point data setting 64

3.5 Conclusion . 66

4 Co-design methodology: HW-SW partitioning 68
4.1 Introduction . 68
4.2 First stage of experimental validation 69

4.2.1 Digital platform . 70
4.2.2 Overview of the experimental set up 73

4.3 Performance estimation . 76
4.4 Fine granularity library . 77
4.5 Medium granularity library . 79
4.6 Coarse granularity library . 81

4.6.1 Area estimation . 82
4.6.2 Time estimation . 84
4.6.3 Memory use . 86
4.6.4 Parallelism parameter . 86
4.6.5 Benchmark: EKF Sensorless speed controller 87

4.7 HW-SW partitioning . 92
4.8 Formalization of the HW-SW partitioning problem 93
4.9 Genetic Algorithm : NSGA-II . 95

4.9.1 Principle . 96
4.9.2 NSGA-II con�guration . 97

4.10 HW-SW partitioning results . 98
4.11 Conclusion . 109

5 Real-Time Operating System for HW-SW controllers: Application to
the case of AC drives 111
5.1 Introduction . 111
5.2 Related works . 112
5.3 Problem statement and motivation . 112
5.4 Micrium: MicroC/OS-II . 114
5.5 Porting MicroC/OS-II . 116
5.6 Description of the RTU . 118

5.6.1 The FSL interface and the decoder 118
5.6.2 Scheduler and Time manager Modules 119

CONTENTS iii

5.6.3 Semaphore Manager . 120
5.6.4 Area and time performances . 121

5.7 Benchmark: motor control . 122
5.8 Conclusion . 125

6 General conclusion 126

Nomenclature

List of abbreviations

A3 : Algorithm Architecture Adequation
ATO : Angle Tracking Observer
ADC : Analog Digital Converter
ASIP : Application Speci�c Integrated Processor
ASIC : Application Speci�c Integrated Circuit
CB-PWM : Carrier Based Pulse Width Modulation
CFG : Control Flow Graph
DAC : Digital Analog Converter
DSP : Digital Signal Processor
DFG : Data Flow Graph
EKF : Extended Kalman Filter
ECU : Embedded Control Unit
FPGA : Field Programmable Gate Array
FF : Flip-Flop
HAL : Hardware Abstraction Layer
HF : High Frequency
IGBT : Insulated Gate Bipolar Transistor
LUT : Look Up Table
MEA : More Electrical Aircraft
NSGA-II : Non-Dominated Sorting Genetic Algorithm
PI : Proportional Integral regulator
PMSM : Permanent Magnet Synchronous Machine
PLB : Processor Local Bus
Pc : Crossover rate
Pm : Mutation rate
RTOS : Real Time Operating System
RTU : Real Time Unit
RPU : Resolver Processing Unit
SEU : Single Event Upsed
SEFORA : Smart MEA For Operating in Rough Atmospheres
SPI : Serial Peripheral interface
SVM : Space Vector Modulation
VHDL : Very High speed integrated Hardware Description Language
VSI : Volatage Source Inverter

iv

NOMENCLATURE v

List of symbols

Start : Start signal

� : Electrical position

�e : Electromagnetic torque

�L : Load torque

J : Inertia

p : Pairs of poles of a motor

!e : Electrical speed (rad/s)

E : DC link

R : Resistor

V : Voltage

I : Current

Ts : Sampling period

Tsw : Switching period

x : State space vector

u : Input vector

y : Output vector

w; v : System and measurement disturbances

K : Kalman matrix

P; P0 : State error covariance matrix, Initial state error covariance matrix

Q;R : Covariance state noise and covariance measurement noise matrices

s : Laplace operator

Indexes
d� q : Rotating reference frame indexes

�� � : Stationary reference frame indexes

a; b; c : 3-phase reference frame index
� : Reference quantity

^ : Estimated quantity

k : Sampling index

k=k � 1 : Predicted quantity

k=k : Optimal estimated quantity

Abstract

Designing embedded control systems becomes increasingly complex due to the grow-
ing of algorithm complexity, the rising of industrials requirements and the nature of ap-
plication domains. One way to handle with this complexity is to design the corresponding
controllers on performing powerful and open digital platforms.
More speci�cally, this PhD deals with the use of FPGA System-on-Chip (SoC) plat-

forms for the implementation of complex AC drive controllers for avionic applications.
These latter are characterized by stringent technical issues such as environment condi-
tions (pressure, high temperature) and high performance requirements (high integration,
�exibility and e¢ ciency).
During this thesis, the author has contributed to design and to test a digital controller

for a high temperature synchronous drive that must operate at 200�C ambient. It consists
on the Flux Oriented Controller (FOC) for a Permanent Magnet Synchronous Machine
(PMSM) associated with a Resolver sensor. A design and validation method has been
proposed and tested using a FPGA ProAsicPlus board from Actel/Microsemi Company.
The impact of the temperature on the operating frequency has been also analyzed.
A state of the art FPGA SoC technology has been also presented. A detailed descrip-

tion of the recent digital platforms and the constraints in link with embedded applications
was investigated. Thus, the interest of a SoC-based approach for AC drives applications
was also established.
Additionally and to have full advantages of a SoC based approach, an appropriate

HW-SW Co-design methodology for electrical AC drive has been proposed. This method
covers the whole development steps of the control application from the speci�cations to
the �nal experimental validation. One of the main important steps of this method is
the HW-SW partitioning. The goal is to �nd an optimal combination between modules
to be implemented in software and those to be implemented in hardware. This multi-
objective optimization problem was performed with the Non-Dominated Sorting Genetic
Algorithm (NSGA-II). Thus, the Pareto-Front of optimal solution can be deduced. The
illustration of the proposed Co-design methodology was made based on the sensorless
speed controller using the Extended Kalman Filter (EKF). The choice of this benchmark
corresponds to a major trend in embedded control of AC drives.
Besides, the management of SoC-based architecture of the embedded controller was

allowed using an e¢ cient Real-Time Operating System (RTOS). To accelerate the services
of this operating system, a Real-Time Unit (RTU) was developed in VHDL and associated
to the RTOS. It consists in hardware operating system that moves the scheduling and
communication process from software RTOS to hardware. Thus, a signi�cant acceleration
has been achieved. The experimentation tests based on digital current controller were
also carried out using a laboratory set-up. The obtained results prove the interest of the
proposed approach.

vi

ABSTRACT vii

Keywords
� Field Programmable Gate Array

� AC drive controller

� Resolver sensor

� Sensorless controller

� High temperature

� System-on-Chip

� Hardware-Software Co-design

� Optimization

� Genetic algorithm

� Operating system

� Scheduler

Résumé

La conception des systèmes de contrôle embarqués devient de plus en plus complexe en
raison des algorithmes utilisés, de l�augmentation des besoins industriels et de la nature
des domaines d�applications. Une façon de gérer cette complexité est de concevoir les
contrôleurs correspondant en se basant sur des plateformes numériques puissantes et
ouvertes.
Plus précisément, cette thèse s�intéresse à l�utilisation des plateformes FPGA System-

on-Chip (SoC) pour la mise en �uvre des algorithmes d�entraînement électrique pour des
applications avioniques. Ces dernières sont caractérisées par des di¢ cultés techniques
telles que leur environnement de travail (pression, température élevée) et les exigences de
performance (le haut degré d�intégration, la �exibilité).
Durant cette thèse, l�auteur a contribué à concevoir et à tester un contrôleur numérique

pour un variateur de vitesse synchrone qui doit fonctionner à 200 �C de température
ambiante. Il s�agit d�une commande par �ux orienté (FOC) pour une Machine Synchrone
à Aimants Permanents (MSAP) associée à un capteur de type résolveur. Une méthode
de conception et de validation a été proposée et testée en utilisant une carte FPGA
ProAsicPlus de la société Actel/Microsemi. L�impact de la température sur la fréquence
de fonctionnement a également été analysé.
Un état de l�art des technologies basées sur les SoC sur FPGA a été également présenté.

Une description détaillée des plateformes numériques récentes et les contraintes en lien
avec les applications embarquées a été également fournie. Ainsi, l�intérêt d�une approche
basée sur SoC pour des applications d�entrainements électriques a été démontré.
D�un autre coté et pour pro�ter pleinement des avantages o¤ertes par les SoC, une

méthodologie de Co-conception matériel-logiciel (hardware-software (HW-SW)) pour le
contrôle d�entraînement électrique a été proposée. Cette méthode couvre l�ensemble des
étapes de développement de l�application de contrôle à partir des spéci�cations jusqu�à
la validation expérimentale. Une des principales étapes de cette méthode est le parti-
tionnement HW-SW. Le but est de trouver une combinaison optimale entre les mod-
ules à mettre en �uvre dans la partie logicielle et ceux qui doivent être mis en �uvre
dans la partie matérielle. Ce problème d�optimisation multi-objectif a été réalisé en util-
isant l�algorithme de génétique, Non-Dominated Sorting Genetic Algorithm (NSGA-II).
Ainsi, un Front de Pareto des solutions optimales peut être déduit. L�illustration de
la méthodologie proposée a été e¤ectuée en se basant sur l�exemple du régulateur de
vitesse sans capteur utilisant le �ltre de Kalman étendu (EKF). Le choix de cet exem-
ple correspond à une tendance majeure dans le domaine des contrôleurs embraqués pour
entrainements électriques.
Par ailleurs, la gestion de l�architecture du contrôleur embarqué basée sur une ap-

proche SoC a été e¤ectuée en utilisant un système d�exploitation temps réel. A�n
d�accélérer les services de ce système d�exploitation, une unité temps réel a été dévelop-
pée en VHDL et associée au système d�exploitation. Il s�agit de placer les services

viii

RÉSUMÉ ix

d�ordonnanceur et des processus de communication du système d�exploitation logiciel
au matériel. Ceci a permis une accélération signi�cative du traitement. La validation
expérimentale d�un contrôleur du courant a été e¤ectuée en utilisant un banc de test du
laboratoire. Les résultats obtenus prouvent l�intérêt de l�approche proposée.

Mots clefs
� Réseaux de portes programmables sur site �Field Programmable Gate Array

� Contrôle d�entraînement électrique

� Capteur de position Resolveur

� Commande sans capteur mécanique

� Haute temperature

� Système sur puce

� Co-conception matériel-logiciel

� Optimisation

� Algorithme génétique

� Système d�exploitation

� Ordonnanceur

General Introduction

During these last decades, the More-Electric Aircraft (MEA) has solicited the interest
of both academic and industrial communities. The main objectives consist in increasing
the scope of electrical energy sources instead of the mechanical and pneumatic ones [2],
[16].

It is true that the adoption of the MEA allows numerous bene�ts such as the perfor-
mance optimization, the decrease of maintenance costs, the reduction of CO2 gas emission
and the weight gains. However, this trend comes along serious technical issues such as
environment conditions (pressure, high temperature) and high performance requirements
(high integration, �exibility and e¢ ciency) [3].

In this context, this PhD thesis deals with the development of embedded control
system for embedded AC drive used in aircraft applications. The design of aircraft appli-
cations embedded control systems is an interesting challenge due to the growing of control
algorithm complexity, environment conditions and the rising of aircraft requirements and
speci�cations. Moreover, high control reactivity and large bandwidth are essential for
aircraft applications. This can be ensured based on mature technologies such as Field
Programmable Gate Array (FPGA) digital platforms.

The FPGAs present a great interest to implement such complex algorithms [6]-[7].
Indeed, FPGAs provide high integration density and modularity. They also o¤er the
possibility to design very powerful dedicated parallel architectures which can dramatically
reduce the execution time. For a challenging aircraft embedded control system, the
development of FPGA-based Intellectual Property (IP) modules is well convenient. It
provides portability of modules between di¤erent targets. Consequently, it avoids losing
time in development and certi�cation which decreases the whole cost development system.
Besides, for these critical applications, where the safety is of prime importance, the
con�guration must be kept against the SEU (Single Event Upset) radiations and even
when power is o¤ [76]. In this sense, FPGA Flash RAM technology has also demonstrated
its e¢ ciency in terms of reliability.

The evaluation of FPGA-based AC drives for electrical applications has been the
focus of many researches. Providing a well-structured design methodology was their
main concern [93],[11]. The evaluation of FPGAs has been extended to see how much it
can be suitable for the implementation of complex AC drive controllers. A full hardware
sensorless controller for a synchronous AC drive has been implemented [113]. It is based
on the Extended Kalman Filter (EKF) which estimates the rotor position and speed.
Other sensorless techniques based on high frequency carrier injection have also been

x

GENERAL INTRODUCTION xi

tested with Brushless Synchronous Starter Generator (BSSG) and successfully tested
under an actual aircraft testbench [8].

Recently, FPGAs have integrated several heterogeneous natures of cores on a single
chip. This approach, called System-On-Chip (SoC), consists of varied components like one
or several processors, memories, matrix of programmable logic elements and interfaces,
all in the same chip. This heterogeneous system allows taking a lot of advantages by the
combination of software and hardware which provides more density integration and more
�exibility [12],[10]. In this case, Hardware/Software (HW/SW) Co-design methodology
becomes a strategic trend to optimally design embedded control systems.
Furthermore, with the ever increasing complexity of control algorithms, the man-

agement of the SoC-based embedded controllers can take advantages using a Real-Time
Operating System (RTOS). This will provide an abstracted environment in order to sim-
plify and to coordinate the behavior of the system. However, the overhead of RTOS
services cannot be neglected especially for severe time constrain applications [29].

Thesis objectives and contributions

In the frame of the more electric aircraft domain, this PhD thesis is a contribution
to the design of FPGA-based controllers for AC drives embedded applications. Based on
a SoC approach, this work aims to optimally design the controllers. This is performed
using a HW-SW Co-design methodology and a task manager. In the following, thesis
objectives and author�s contribution are detailed,

� In the frame of SEFORA project (Smart MEA For Operations in Rough At-
mospheres), author has contributed to design and to test a digital controller of
a high temperature synchronous drive. A design and validation methodology for
FPGA-based digital controller was proposed. As �rst stage of validation, the pro-
posed design method was tested on the ProAsicPlus board from Actel/Microsemi.
The impact of the temperature on the operating frequency was also studied. In fu-
ture, an ASIC board will be synthesized by another partner of the project [17],[10].

� A HW-SW Co-design methodology for AC drives has been proposed. Taken into
account functional and architectural constraints, this method presents a guidance to
optimally implement control modules between HW and SW. It is ranging from the
early speci�cations of the system to the �nal experimental validation. The illustra-
tion of the proposed Co-design methodology was made based on the sensorless speed
controller using the Extended Kalman Filter (EKF). The choice of this benchmark
corresponds to a major trend in embedded control of AC drives [115], [129].

� The �Non-dominated Sorting Genetic Algorithm (NSGA-II)�was chosen to deal
with the considered multi-objectives optimization. It aims to �nd the Pareto-Front
of optimal solutions minimizing the SoC consumed resources and the execution
time. Thus, a signi�cant speedup gain has been reached compared to the pure SW
solution.

� The management of the SoC-based embedded controller was provided using an
e¢ cient Real-Time Operating System (RTOS). To accelerate the services of this

GENERAL INTRODUCTION xii

operating system, a Real-Time Unit (RTU) was developed in VHDL and associated
to the RTOS. It consists in hardware operating system that moves the scheduling
and communication process from software RTOS to hardware. The proposed design
takes only 4.3% of the FPGA available resources which is very few compared to the
obtained acceleration bene�ts.

Thesis outline
This thesis consists of �ve main chapters, described as follows.
Chapter 1 presents the background of this thesis. Then, the state of art of the digital

platforms (FPGAs, ASIPs, ASICs, SoCs) used in embedded control systems is described.
The interest of the SoC-based approach for AC drive applications is also discussed. Thus,
a HW-SW Co-design methodology for electrical AC drives is proposed.

Chapter 2 deals with the design and validation of FPGA-based synchronous drive for
high temperature environment. The designed controller is based on the Field Oriented
Control (FOC) principle. The controlled system consists on the Permanent Magnet
Synchronous Machine (PMSM) associated to a load and a resolver position sensor. As
�rst stage of validation, the proposed method was performed using the ProAsicPlus board
from Actel/Microsemi Company. These tests allow the preparation of the �rst-time-right
corresponding silicon ASIC board.

Chapter 3 details the speci�cations and algorithm development steps of the Co-design
methodology. Thus, hardware speci�cations of the controlled system, chosen switching
period and control parameters are detailed. The adopted control strategy consists on
the sensorless speed controller based on the Extended Kalman Filter (EKF). During
algorithm development, the impact of time delay on the control bandwidth and stability
margin is analyzed and time delay limits were de�ned.

Chapter 4 presents the architectural development step. It consists in two main steps:
the performance estimation (area, time, memory size) and the HW-SW partitioning. The
aim is to �nd an optimal partitioning of control modules between HW and SW in terms
of area, execution time and memory size. The Non-dominated Sorting Genetic Algorithm
(NSGA-II) was used to deal with this multi-objective optimization.

Chapter 5 describes the development of a HW-SW RTOS to provide the management
of the controller tasks. To have a more deterministic RTOS, a hardware Real Time Unit
(RTU) was developed using VHDL and was associated to the RTOS. It consists in hard-
ware operating system that moves the scheduling and the communication process from
software RTOS to hardware. The scheduler and the semaphore services were implemented
in hardware. An experimental validation based on current controller was carried out us-
ing a laboratory set-up. The obtained results give proof of the interest of the proposed
approach.
Finally, conclusions are drawn and perspectives are given.

Chapter 1 State of art of
FPGA-based System-on-Chip for

embedded control systems

1

Chapter 1

State of art of FPGA-based
System-on-Chip for embedded
control systems

1.1 Introduction

Nowadays, Embedded Control Systems (ECSs) are becoming more and more sophisti-
cated. This is a direct consequence of the growing complexity of control algorithm and
the rising of industrial requirements [3],[2]. These requirements are not just limited to
new algorithm concepts or a high level of performances. Indeed, �exibility, cost and
time-to-market reduction are also of prime importance.
More speci�cally, the implementation of complex AC drives controller for avionic

applications, which is the target application of this PhD, is a good example of these
trends. In addition to the above mentioned requirements, these applications target always
more reliable, e¢ cient and most of all compact systems. In this context, the proximity of
the digital control platforms from higher temperature heating sources, like the engines,
are now investigated. This presents a serious technical issue. To cope with all these
challenges, the use of e¢ cient design methodologies which take bene�ts of the main
advantages of the current digital technologies becomes crucial.
Among these technologies, the Field Programmable Gate Arrays (FPGAs) present

a great interest for implementing such complex algorithms [4]-[9]. Their high integra-
tion rate and their ability to exploit the inherent parallelism of the algorithm to be
implemented make them very advantageous compared to pure software solutions such as
microcontrollers or Digital signal processors (DSPs).
Besides, it is now usual to implement processor cores within FPGAs. Hence, FPGA

can be considered as full System-On-Chip (SoC) solutions that make them very attractive
for implementing embedded control systems. However, an optimal implementation of
control algorithm based on a SoC approach requires the use of a rigorous Hardware-
Software Co-design methodology. Indeed, an e¢ cient partitioning of the control algorithm
between software and hardware parts must be established [13].
Furthermore, the use of Real-Time Operating Systems (RTOS) may provide a better

management of the control tasks. It allows also embedded controllers to be designed,
modi�ed and expanded more easily.
In this chapter, the background related to this thesis is presented. Firstly, aircraft

2

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

application constraints are presented. Then, the available digital technologies used for
implementing embedded control systems are presented. The interest of using FPGA and
SoC approaches in the AC drive domain is also established and the needs to have a
Co-design expertise is emphasized. Finally, a Hardware-Software (HW-SW) Co-design
methodology for AC drives is proposed. It provides a full design �ow ranging from
speci�cations to the �nal FPGA implementation.

1.2 Aircraft application constraints

The More Electrical Aircraft (MEA) trend aims to increase the electricity part over the
other types of energy on board of an aircraft [14]-[16]. This is mainly motivated by the
expected gains in terms of weight, volume and cost. The inherent �nancial bene�ts have
prompted aircraft manufacturers to integrate more and more power electronics systems
in recent aircrafts. Figure 1.1 illustrates the progressive evolution of the embedded elec-
trical power in recent aircrafts. As an example, the Electro Hydraulic Actuators (EHA)
project aims to replace the initial hydraulic actuators by the Electro-Hydraulic ones.
This system was successfully integrated into the airbus A320. The Electrical Thrust Re-
verser Actuation System (ETRAS), developed by Hispano-Suiza Company, has been also
successfully used in the airbus A380.

Figure 1.1: Evolution of the embedded electrical power in the aircraft domain[15].

Along this trend and focusing on digital controller, the main objective is a better
integration of the digital controller. Before, complex control algorithms were performed
using several Electronic Control Units (ECUs) that ensure the control of a physical plant,
as depicted by Figure 1.2.
Main challenges in designing embedded control systems are:

� Flexibility: This issue is related to the possibility to adjust or to modify a function
without having to re-design the whole controller.

� Modularity: It consists in dividing the whole control algorithm in functional mod-
ules. These functional modules are stored in a library, called Intellectual Property
(IP) module library. The elements of this library can be re-used during the devel-
opment of new projects, thus capitalizing the knowledge of the design team.

3

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

Figure 1.2: Trends of the Embedded Control Systems.

� High integration: The deployment of heterogeneous functions into one system,
called global control unit, needs a high level of integration. As depicted Figure
1.2, this will lead to a more compact system with a signi�cant reduction of wires,
a reduced Electronic Magnetic Interference (EMI) impacts and a more reliable sys-
tem.

� Testability: Once the controller is implemented, it is of great importance to be able
to test it easily.

However and even if the assets of employing more power electronics in aircraft are
demonstrated, these gains are conjointly associated to new challenges such as environment
conditions (high temperature, high pressure). The search for ever more compact systems
and their location in harsh environment impact seriously the reliability of the devices.
This is the case of Smart MEA For Operation in Rough Atmosphere (SEFORA) project
study which deals with the development of ECSs working at a range of temperatures from
-55 to 200 �C[17]. Part of our thesis work deals with this high temperature challenge.
More details are provided in the next chapter.

1.3 Hardware architectures

As said before, Embedded Control Systems (ECSs) are playing an increasingly important
role in real-time control applications. Typical requirements are the development of small,
reliable, and multi-functional system. In the same time, the continuous progress of CMOS
technology and the increasing demands of new products have led to the integration of
more and more transistors within a single chip, with respect of Moore�s law.
Moore�s law states that the number of transistors on a chip is doubling every 18�24

months. As a result, more computing capacity and higher integration level are provided to
deal with the growing complexity of applications. According to the regular International
Technology Roadmap for Semiconductors (ITRS)[22], Figure 1.3 presents the rythm of
growth of the number of computing cores and of the memory size integrated in a single
chip.

4

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

All these advances in digital electronics technologies lead to more e¢ cient digital
control units that take several forms. As shown in Figure 1.4, three main technologies
are available: The ASICs, the FPGAs and the ASIPs.

Figure 1.3: The growing of the computing cores numbers and the growing of the
memory size integrated on a single chip [22].

Figure 1.4: Hardware architectures used for embedded control systems

1.3.1 ASICs

The Application-speci�c integrated circuits (ASICs) are divided into two main groups:
the circuits designed for custom applications (custom) and the pre-characterized circuits
(semi-custom). ASICs are characterized by a high level of integration, predictable and
good timing, reliability, high performances and low power consumption. All these char-
acteristics make them very suitable for operation in harsh environments. However, these
circuits are well known for their high design cost and long development cycle. Hence, de-
signer must follow a strict design methodology and leads rigorous veri�cations to ensure

5

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

that there will be no functional nor timing problems on the �nal component. Moreover,
these components are not used in the prototyping environment because they o¤er no
programmability by the end user.

1.3.2 ASIPs

Application-Speci�c Instruction-set Processors (ASIPs) are processes dedicated to a given
�eld of algorithm and for speci�c applications. ASIPs can be seen as dedicated micro-
processors that also have additional peripherals (such as general purpose input/output,
timer, counter. . .) and communication interfaces (I2C, CAN, SPI. . .) to interact in real
time with their environment. This high integration ability makes this type components
well suitable for signal processing and control systems.
The earliest ASIP�s architectures were based on Von Neumann principle, shown Figure

1.5.a. They used a single bus to transfer data and instructions from the memory to the
CPU. Two improvements have emerged with the Harvard architecture (shown Figure
1.5.b) : the use of two separate memories and the use of pipeline. The �rst memory
is used for data storage and the second one to store instructions. Thanks to pipeline,
parallel processing can also be performed. These features allow faster processing and high
data throughputs.

Figure 1.5: ASIPs architectures, (a) Von Neumann architecture, (b) Harvard
architecture.

6

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

These ASIPs technologies have been used to perform a wide range of applications.
Their main advantages are great �exibility and low cost. However, the use of these com-
ponents is limited especially in applications demanding high computation performances.
This is due to the �xed internal architecture which implies a serialization of the treat-
ment.

1.3.3 FPGAs

The FPGAs technology is a good compromise between the �exibility of ASIPs and the
performances of ASICs. As shown in Figure 1.6, FPGAs are based on a sea of logic blocks
dedicated to treatment and on elements of interconnection between these blocks. Coarser
grain hardware elements such as DSP blocks, Hard/Soft processor cores, memories and
clock manager are also provided in most of the recent FPGA platforms [73].
FPGAs o¤er the possibility to design very powerful dedicated parallel architectures

which can dramatically reduce the execution time of the control algorithm to be imple-
mented. For embedded control system, the development of a library of FPGA-based
Intellectual Property (IP) modules is convenient. This provides portability of the corre-
sponding modules between di¤erent targets.

Figure 1.6: Generic structure of a FPGA.

In the following, we will present brie�y the most popular FPGA technologies:

� SRAM technology: It is mainly proposed by the Xilinx and Altera Companies. The
advantages of this technology are its high density and its rapid recon�guration.
Moreover, these circuits can be dynamically recon�gured partially or entirely. This
process is named dynamic recon�guration. But, the main drawback of SRAM-
based FPGA is the use of standard memory loaded at initialization because they
use CMOS technology. So, the use of this technology is limited in case of critical-
safety applications such as aircraft and automotive �elds [73],[75].

� Antifuse technology: The principle of this technology is based on the injection of a
high current or a laser that heats and then melts the silicon layer between endpoints

7

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

so as to make connections. So, the con�guration is maintained even after power is
o¤. However, it is a One-Time-Programmable technology. This makes it impractical
in the case of prototyping environments.

� Flash technology: The con�guration of this technology is based on �ash connec-
tions that keep the con�guration state when the power is o¤. Its immunity against
the Single Event Upset (SEU) radiations and its reduced static power consumption
make this technology attractive for embedded systems. However, the main disad-
vantages of this technology are the limitation of the available internal resources and
the limited number of recon�guration cycles [76].

1.3.4 System-on-Chip

More recently, new architectures, called System-On-Chip (SoC) have emerged. A SoC
architecture integrates within a single chip various components like one or more proces-
sors, analog circuitry, memories, a matrix of programmable logic elements (see Figure
1.7). By combining software and hardware, these solutions provide a better integration
density, a reduced communication overheads and a good level of �exibility. All these
assets prove that these solutions present a promising interest for control applications.
In SoC-based approaches, two types of processor cores can be considered, the "Hard

processor core" and the " soft processor core".

Figure 1.7: Generic System-on-Chip architecture.

1.3.4.1 Analog Device

Actel/ Microsemi Fusion family is a mixed-signal FPGA platform integrating processor
and con�gurable analog. It o¤ers a new level of integration by allowing the designer to
implement an Analog-Digital converter (ADC) within the chip. It consists on a 12-bit
ADC successive approximation. These features make these devices suitable for control
applications [76], [10], [24].

8

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

1.3.4.2 Hard processor cores

The hard processor cores are non-synthesized processors. They are characterized by a
custom layout using VLSI which is integrated within the FPGA with other internal re-
sources. To communicate with its external environment, this processor needs the use of
some peripherals and buses that consume resources from the FPGA matrix such as com-
munication buses, memories, timer and so on. These processor cores o¤er fast processing
and communication advantages. For example, Altera provides an ARM9 processor in its
series EPXA10 which are marketed as Excalibur TM device [75]. Xilinx proposes also a
PowerPC 440 hard-wired on-chip [73]. Recently, Actel launched a Cortex-M3 integrated
into a smart-Fusion FPGA [76]. The architecture of the Cortex-M3 is presented by Figure
1.8.b.

1.3.4.3 Soft processor cores

The soft processor cores are synthesized processors. The FPGA con�gurable logic cells
are used to implement these processor cores. The main advantage is the possibility to
choose the con�guration options. Hence, designer can choose the processor functionalities
that correspond to the �nal application. An example of soft processor core is the Xilinx
Microblaze. Its architecture is presented Figure 1.8.a.

Figure 1.8: Processor architectures (a) Xilinx Microblaze soft processor core, (b)
Actel/Microsemi SmartFusion Cortex-M3 hard processor core.

Table 1.1 presents a comparison between a standard DSP controller device and several
SoC processor cores (Xilinx PowerPC hard core, Actel/Microsemi Cortex-M1 and Altera
NIOS II/f soft processor core).

9

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

Features
Xilinx

Virtex� 5
Actel

Fusion1

Altera

Stratix III

Texas

Intruments

CPU PowerPC 440 Cortex-M1 NIOS II/f DSP C28x

Frequency(MHz) 400 60 290 150

Bit Number 32 b 16/32 b 32 b 32 b

Pipeline

stages

RISC

superscalar

7� stages

RISC

3� stages
RISC

6� stages
DSP

8� stages

32x32 Multiplier
Hardware

(1 cycle)

Synthesizable

standard(3cycles)

small(33cycles)

Hardware

(1 cycle)

Hardware

(1 cycle)

ADC �
SAR� 12b

rate : 600Ksps
�

Pipeline� 12b
rate : 12:5Msps

Logic cells

Usage
� 4353 1020 �

Synthesizable No Yes Yes No

Con�gurability � ++ ++ �

Performance ++ + + ++

Table 1.1: Features of processor cores for SoCs

A recent study made by Texas Instruments compares the indicated architectures to
some other popular architectures [23]. Table 1.2 presents the summary of the presented
report. The comparison is based on time-to-market, performance, price, development
easiness, power consumption and �exibility.

Time-to-market Performance Price Power Flexibility
ASIC Poor Excellent Good Excellent Fair

DSP(ASIP) Excellent Fair Good Good Excellent

FPGA Good Excellent Poor Poor Fair

MCU(ASIP) Excellent Fair Excellent Fair Excellent

RISC(ASIP) Good Fair Fair Fair Excellent

Table 1.2: Architectures comparison [22]

1.3.5 Multi-Processor System-on-Chip

Real-time applications are becoming increasingly complex. This explains the motivation
towards the use of Multi-Processor in System-On-Chip architectures (MPSoC). This o¤ers
a higher level of performance over a single processor, especially in terms of computation
performances [25]-[26].
However, the main MPSoC design challenges are the communication infrastructure.

Indeed, most of these communication models are based on dedicated channels or shared

10

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

buses. Unfortunately, scalability is limited by serialization of multiple requests to access
to the bus. One promising approach is the concept of network-on-Chip (NoC). It consists
in a set of routers that compose a network, which allows all the nodes connected to it
(containing system resources and cores) to communicate with each others [27],[28]. This
promises higher communication bandwidth than standard buses and more reusability.

1.3.6 Multi-layer software architecture

To deal with the rising complexity of control applications, the use of an operating system
allowing the management of tasks and hardware resources is becoming necessary [29]. As
far as the software part is concerned, di¤erent levels of abstraction between the application
and the hardware that runs it can be established. Figure 1.9 shows the di¤erent layers
between the physical system and the application.

Figure 1.9: Multi-layer software architecture.

� Software application: It integrates one or more functional tasks to be executed.
This part depends on the studied application.

� Application peripheral interface (API): It is also called middleware. It provides the
mapping between the RTOS services and the application. The advantage of using
common API is to provide the portability of the application to other standard-based
operating systems.

� Operating system: It includes all the RTOS initialization functions and services
(scheduler, semaphore_service, Mutex_service. . .) that allow the management of
the available resources. Using a single processor, the system can implement pseudo-
parallelism in the software part by multiplexing the resources.

� Hardware Abstraction Layer (HAL): This part was de�ned to overcome the dis-
advantages of dependency of the RTOS on the used hardware architecture. Using
the HAL (including ISR, Context switch, exception vectors..), the RTOS can be
used regardless the physical system on which it is executed. This can be provided
using a low level interface which is dependent on the used processor. Generally, it
is developed using assembly code.

11

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

� Physical system: It represents all the available hardware resources of the system. In
the case of SoC approach, it consists in one or several processors, memories blocks,
logic elements and so on.

1.4 FPGA-SoC design �ow

Designing SoCs requires the use of appropriate tools. Thus, FPGA companies provide de-
velopment tools for software and hardware parts. Figure 1.10 shows the standard design
�ow for SoC application development. This design �ow consists of two main procedures:
the hardware design �ow and the software design �ow. The �rst �ow includes hardware
design and veri�cation tools (VHDL/Verilog editor, synthesizer, place/route and imple-
mentation and simulation tools). The second �ow o¤ers a user-friendly interface that
allows the designer to customize the processor for a speci�c project. After its con�gu-
ration, the processor core is generated in the form of an HDL �le (in the case of Altera
and Actel tools) or a netlist �le (in the case of Xilinx tools) [73],[75],[76]. Then, this �le
can be associated to custom user logic and integrated within the hardware design �ow
to be synthesized, placed and routed. The FPGA can be con�gured with the resulting
bitstream �le. Then, the program which will be integrated on the soft processor core
can be compiled with the associated library �les and C header �les. A C/C++ compiler
targeted for this processor is also provided. For example, Xilinx provides the Embedded
Development Kit (EDK) platform, Altera provides the Embedded Design Suite (EDS)
platform and Actel/Microsemi provides the SoftConsole platform.

Figure 1.10: FPGA-SoC design �ow.

12

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

1.5 Interest of the SoC approach for AC drive appli-
cations

As shown in Figure 1.11.(b), designing embedded control systems based on a SoC ap-
proach involves three main �elds: feedback control, task scheduling and Co-design process.
Hence, the whole control performance is not only related to how control algorithm was
assessed, but it also relies on the scheduling policy and the Co-design procedure. Unfor-
tunately, the development of embedded control systems is generally done by separated
teams. Thus, control designers may consider that digital platforms are su¢ ciently de-
terministic to deal with the periodic treatment of control algorithms. These latter are
often associated to severe timing constraints which can a¤ect control performances once
violated. Therefore, the scheduling of these real-time control applications presents a key
issue since it is strongly related to the system performances.

Figure 1.11: (a) SoC-based multi-tasking control application, (b) digital control �elds:
feedback control, task scheduling and co-design process.

One solution is to combine Feedback control scheduling and Co-design processes.
Thus, the goal will be the optimal use of the digital platform resources and the max-
imization of the performances of the whole control system. Consequently, there is an
increasing need to consider simultaneously the control performances and the digital de-
sign in order to develop cost e¢ cient control application. This can be reached based on
HW-SW Co-design methodology for AC drive which promotes the cooperative develop-
ment of the control assessment and the task scheduling-design step in a single design
�ow.

13

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

Figure 1.11.(a) presents the use of SoC-based approaches for multitasking control
applications. The principle is to control several plants by adjusting the timing attributes
of controller tasks. This is a quite interesting approach because it allows the centralization
of the control process for multi drive applications. The control tasks can be implemented
indi¤erently in software or in hardware. All tasks can be scheduled using a RTOS.

Figure 1.12: Recon�gurable control architecture.

Furthermore, recon�gurable FPGA platforms o¤er an interesting potential for use
in the embedded control systems. It provides the possibility to be recon�gured or even
better to recon�gure itself totally or partially without a¤ecting the rest of the architecture.
Therefore, the �exibility is no longer restricted to software [30]. Hence, in the case of
control strategy change or monitoring process, the controller can be recon�gured in few
microseconds while the system is continuing to work properly [31],[32]. This could be
greatly appreciated especially for health monitoring control applications and robotics
applications.
The recon�guration can also improve FPGA fault tolerant in the case of SEU problems

(case of SRAM technology). An overwriting of the existing con�guration can be made
while keeping the board in active operation mode [33], [34]. Figure 1.12 shows an example
of FPGA partial recon�guration. Under faulty condition, a fault tolerant controller can
be downloaded in the recon�guration part. This will allow the continuity of control
function and avoid the system degradation. The recon�guration process is provided
using a RTOS and the Bitstream is saved in the memory. More than one Bitstream can
be used to perform several con�guration processes.
Now as the interest of SoC-based approach for embedded control systems is presented,

a full HW-SW Co-design methodology for AC drives applications will be presented in this
Ph.D. work. A brief description of the proposed Co-design methodology is now given.
Details will be given in chapter 3 and 5.

14

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

1.6 Co-design methodology

"Hardware-Software Concurrent Design" , also called "HW-SW Co-design", is generally
based on two important steps: modeling and partitioning that are strongly related.

1.6.1 Modeling

The modeling presents a key issue to handle the growing complexity of Co-design ap-
proaches. Thus, a variety of models has been developed to represent heterogeneous
systems. These models are related to the nature of application domains. For example,
real-time systems will be modeled on a timing basis while data base-systems will be
modeled on a data exchange �ow basis.
In the following, author presents brie�y the main representation models that were

used in the �eld of Co-design.

� Model based on data �ow graph : It is often used to model systems characterized
by strong data dependency. Thus, these models consist of nodes representing oper-
ations and edges representing data transfer between operations. The execution of
a node is possible only if all its input data are available [37].

� Model based on communication process competing : This model is characterized
by its ability to describe the parallelism of an application. Systems are modeled
as a set of processes that run independently. Thus, all the processes are strongly
decoupled to promote the parallelism and �exibility of system modeling. This type
of modeling is very suitable for applications in the �eld of telecommunication [38].

� Model based on Petri net : It is a graphical representation of system behavior
based on causal relationship between events a¤ecting the system (transition, data
transfer). Time is explicitly associated with these representations in order to build
realistic models [36].

� Model based on Finite state machines (FSM) : The classical FSM is considered the
best known model describing control systems. This model consists of a set of states,
a set of input / output. The main disadvantage of this approach is the signi�cant
growth of states depending on the complexity of the application [35].

� Reactive synchronous model : This model is able to describe complex control ap-
plications characterized by strong competition between tasks. Often, the timing
characteristics of these models allow the description of real-time systems using con-
current processes. This approach is based on parallel and asynchronous communi-
cations [39].

In the present work, the proposed Co-design methodology is based on the data �ow
graph model since it re�ects accurately the characteristics of the control algorithm to be
implemented (see chapter 4).

1.6.2 Partitioning

One of the main steps of Co-design methodologies is the HW-SWpartitioning. Indeed, the
goal is to �nd the optimal partitioning of application tasks between SW and HW in terms

15

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

of area allocation, time scheduling and memory use. The e¢ ciency of the partitioning
step depends on two main parts: the considered granularity level for tasks description
and the used optimization algorithm.
The granularity level deals generally with two level : �ne and coarse. The �rst one

considers basic arithmetic operators such as (subtraction, addition, multiplication. . .).
The second one presents more complex functions using several basic operators.
The optimization algorithm deals with the scheduling and the allocation of tasks.

The focus here is to achieve objectives considering constraints. Several optimization
algorithms were used to solve this kind of problem. These algorithms are genetic algo-
rithm [106]-[107], branch-and-bound algorithm [98], Integer Linear Programming (ILP)
algorithm [99]. More details will be given in section 4.7.

1.6.3 Modeling tools for Co-design

The literature concerning HW-SW Co-design methodologies is very rich and several ap-
proaches with di¤erent partitioning techniques were proposed. The main tools are brie�y
discussed below.

� SystemC : It consists on C ++class library. The integration of timing characteristics
of the system and the competition between tasks are possible. This language was
successfully used to model heterogeneous HW-SW systems. Tests based on the
modeling of operating systems were also performed [40].

� Polis : It consists in a complete development class C (modeling, veri�cation and
simulation tool). This tool deals with control oriented applications. Thus, it is
based on FSMs that are well suitable especially for the control applications. But,
the use of this tool is not adapted for applications dominated by data processing
[41].

� Ptolemy : It is a design environment developed at the University of Berkeley. It
provides modeling, simulation, and design of concurrent tasks. It is mainly based
on DFG and FSM modeling.[45].

� Syndex : This tool presents a system level CAD software based on the algorithm
architecture adequation (A3) methodology. It is generally used for rapid prototyping
and aims to optimize the allocation of the available resources [43].

1.7 Proposed Co-design methodology for electrical
drives

The proposed Co-design methodology aims to link the assessment of control performances
and the HW-SW partitioning of control modules, at early stage of the development. As
shown in Figure 1.13, this method is decomposed into four main steps: speci�cations,
algorithm development, architectural development and HW-SW integration.
This method has been illustrated using a speed sensorless controller based on an

Extended Kalman Filter (EKF) . The details of the proposed benchmark are presented
in the rest of this PhD report (Chapters 3, 4 and 5) .
A-Speci�cations

16

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

The development of an AC drive application begins always by the speci�cations of the
whole control application. This includes the de�nition of the used physical system and
of the control parameters. The speci�cation of the physical system consists in choosing
the AC motor, the digital control unit, the Analog to Digital (ADC) and the Digital
to Analog Conversion (DAC) interfaces. The environment conditions (high/low/ambient
temperature) should be also de�ned since it a¤ects the whole control performances.
In our case, a speed sensorless controller based on a EKF is considered. The EKF is

used to estimate the position and speed of the rotor. It is characterized by its high level
of complexity, including matrix multiplications and inversion. Two switching frequency
rates are also considered: 20 kHz (presenting an example of a constrained switching
frequency applications) and 100 kHz (presenting an example of an high demanding ap-
plication). This part is developed in chapter 3.
B-Algorithm development
The Algorithm development process aims to the design and the validation of the con-

trol algorithm. Firstly, a modular partitioning is adopted. It consists in dividing the
whole control algorithm into independent and reusable modules. In our cases, we con-
sider functional modules (transformation, regulator, acquisition. . .). Then, continuous-
time functional simulations are performed using Matlab-Simulink Tools. This allows the
veri�cation of the correct functionality of the considered control system.
Then, the time delay impact is quanti�ed. Its e¤ect on the control performances

is analyzed in time and frequency domains. Thus, the maximum allowable time delay
regarding the speci�ed phase margin and bandwidth is obtained. The maximum allow-
able time delay will be further considered as a timing constraint during the HW-SW
partitioning process.
Next step of the algorithm development consists in the discretization and the normal-

ization of the whole control algorithm. Here, a digital re-design approach is considered.
Firstly, the control is synthesized in continuous time domain. Then, a discrete version of
the control algorithm is derived using Euler transformation method. Then, a normaliza-
tion is applied and a �xed-point discrete equivalent control algorithm is obtained.
C-Architectural development
Once the control algorithm to be implemented has been validated, the designer can

undertake the architectural development phase. It consists in optimizing the HW and
SW resources allocation when implementing the control algorithm. This requires a proper
space exploration method based on two main steps: the performance estimation and the
HW-SW partitioning. The �rst step allows the estimation of area, time and memory size
for each control modules. In the favorite case where the application doesn�t violate the
architectural constraints especially the area one, designer can go directly to the partition-
ing step, otherwise designer must perform a Folding step. This latter is achieved based
on the A3 methodology [44].
Then, the HW-SW partitioning of the control algorithm is performed. The target is

to minimize area, time and memory size with respect to the functional constraints (TAlg
which is the maximum allowable execution time derived from the algorithm development
step) and to the architectural constraints (available resources). It is clear that it is a
multi-objectives optimization problem. To deal with, the Non-dominated Sorting Genetic
Algorithm (NSGA-II) was adopted. This optimization algorithm aims to �nd the Pareto-
optimal solutions satisfying both the functional and the architectural constraints. More
details are provided in chapter 4.

17

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

Figure 1.13: Co-design methodology for AC drive.

D-HW-SW integration
Once the HW-SW partitioning is performed, designer begins the HW-SW integration

step of the chosen optimal solution. It consists in the development of the VHDL code

18

Chapter 1: State of art of of FPGA-based System-on-Chip for embedded control
systems

of the control modules to be implemented in HW and the development of the C code of
the ones to be implemented on the SW. The communication between the two parts is
allowed using the HW-SW communication interfaces. The integration of all these parts
presents the next step. According to the design �ow given in Figure 1.10, the physical
implementation process can be performed and the Bitstream downloaded. Finally, the
experimental validation of the chosen solution can be realized.

1.8 Conclusion

In this chapter, author has presented the background of this thesis. The new trends and
the associated issues regarding embedded control systems have been given. A brief pre-
sentation of the available architectures (FPGAs, ASIPs, ASICs, SoCs) used in embedded
control systems was �rstly presented. Then, the interest of the SoC approach for AC
drive applications has been discussed. Finally, the proposed Co-design methodology for
electrical drives has been investigated. It consists on well-structured steps providing guid-
ance for the SoC-based control applications. This method covers the whole development
chain ranging from the speci�cations to the FPGA-based experimentation validation.

19

Chapter 2

Design and validation of
FPGA-based motor drive for
High-Temperature environment

20

Chapter 2

Design and validation of
FPGA-based motor drive for
High-Temperature environment

2.1 Introduction

Among embedded system trends, the one concerning More Electrical Aircraft (MEA) is
probably one of the most challenging for electrical engineers. Indeed, even if the expected
gains in terms of weight and volume due to the ever increasing part of electricity over
the other types of energy on board of an aircraft are really signi�cant, one cannot ignore
the technical issues that come along [1]. The search for ever more compact systems
and their location in harsh environment impacts seriously the reliability of the devices.
The SEFORA project on which the author has contributed during her PhD is a good
illustration of this problematic. The goal of the SEFORA project (Smart MEA For
Operations in Rough Atmospheres) is to build a demonstrator of a full synchronous drive
that is able to operate at 200 C� ambient. The corresponding actuator and its associated
electronics are intended to be located near the reactor. As can be seen, electronics able
to work at high temperature is of prime importance in this case [46]-[48].
More speci�cally, author has contributed to design and to test the digital controller of

this high temperature synchronous drive. The designed controller is based on the Field
Oriented Control (FOC) principle.
In this chapter, author proposes a design and a validation method for digital control

architecture working in high temperature environment. To this purpose, two control
boards were considered: an ASIC (CMOS 0.35�m) and a ProAsicPlus (AP1000) from
Actel-Microsemi Company. However, as �rst stage of validation, the proposed design
method was only tested on the ProAsicPlus board, knowing that the ASIC board will be
synthesized later by another partner of the project. The impact of the temperature on
the operating frequency was also studied. Then, the architecture has been implemented
at a frequency of 24 MHz with a junction temperature of 125 �C. Besides, a fault tolerant
design strategy was also provided using segregation scenarii. This allows segregating the
architecture of the controller in several operating zones. As a consequence, the risk of
design issues when synthesizing the ASIC is minimized. The segregation control signals
are controlled by a secure processor working at ambient temperature (soft processor core
"Cortex-M1" implemented in a Actel/Microsemi Fusion-1 FPGA).

21

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

Regarding validation, a modular approach was chosen for testing the di¤erent control
modules. As a �nal validation step, the whole controller was tested in real-time with an
FPGA-based emulator of the drive.
Finally, having in mind in the future a system-on-chip solution for embedded drive

control, this chapter ends by an evaluation of a full software implementation of a current
controller for AC drives in the Cortex-M1. Thus, the ability of a soft processor core to
implement a motor control is examined and its limits is given.

2.2 Application overview

The electrical control system considered in SEFORA project is presented Figure 2.1. It
consists of a Permanent Magnet Synchronous Machine (PMSM) associated to a load and
a resolver position sensor. This PMSM is supplied by a Voltage Source Inverter (VSI).
The switching signals of the VSI are provided by the control algorithm which ensures
two functions: the current control and the speed control of the PMSM. The position
is estimated via a resolver. The corresponding treatment is achieved using a Resolver
Processing Unit (RPU). The whole controller is based on the Field Oriented Control
(FOC) principle.

Figure 2.1: The synoptic of the actuator control board (SEFORA project).

Placed near the engine, the controller is faced to new constraints in link with high
temperature. Therefore, the control algorithm was implemented using two boards: an
ASIC and a FPGA. The ASIC, located in the high temperature zone (200 �C), contains the
modules of motor control (abc-dq transformation, dq-abc transformation, PI regulator,
SVM...) and the RPU module. In ambient temperature zone (25 �C), the SoC Fusion-1
from Actel family embedded the Cortex-M1 soft processor core was chosen. It implements
the initialization, the monitoring modules and the communication process between the
control boards and the Host PC.

22

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

The communication between the two boards is ensured by the use of Low Voltage
Di¤erentiate Signals (LVDS). This presents a safe method to transfer information for a
long distance (separation between harsh and ambient environment) which is the case of
our application.
For security reason, the control system was duplicated to ensure system redundancy

and more safe control in the case of faulty conditions. Thus, the �rst control system is
based on a FPGA Fusion-1 board associated to the ASIC one. The second control system
is based on FPGA Fusion-1 board associated to the ProAsicplus (APA1000) one.
In this chapter, two objectives are considered. The �rst one aims to the development

and the validation of control algorithm under high temperature environment. The CMOS-
ASIC technology 0.35�m presents an interesting solution. However, it is widely known
that ASICs are di¢ cult to design and require signi�cant costs and development e¤ort [49].
Therefore, all tests were �rst carried out using FPGA ProAsicplus APA1000 board. This
was performed based on a rigorous validation methodology. Thus, these development and
veri�cation steps present the �rst stage of validation of the �nal ASIC board. This latter
will be designed by IDMOS Company.
The second objective is the evaluation of SoC performances for real time control

applications. To this purpose, the FPGA-Fusion1 board was chosen. It is characterized
by mixed signal elements such hardware architecture (FPGA logic elements), internal
Analog Digital Converter (ADC) and soft processor core (Cortex-M1). As testbench,
a single current controller based on ON/OFF algorithm was considered. Such simple
algorithm allows a �rst evaluation of the chosen SoC performances .

2.3 Design and validation methodology

The proposed methodology to validate the control algorithm is presented in Figure 2.2.
This method is composed by three main steps [17].
A- Algorithm design and functional validation: It consists of designing and vali-

dating the control algorithm under Matlab-Simulink environment. The continuous-time,
the discrete-time and the �xed-point discrete-time simulations are respectively performed
[65].
B- Architectural design and modular veri�cation : This step deals with the ar-

chitecture development and its validation. Based on the A3 methodology, the folding
procedure is applied to the greediest operators in terms of consumed resources [44]. After
that, a design veri�cation �ow, similar to the ASIC one, is used. It includes synthesis,
place and route, timing analysis steps for each control block. Analysis regarding the
temperature environment is also carried out to determine its impact on the designed
architecture.
C- Real-time simulation : As global veri�cation procedure, a Real-Time Simula-

tion (RTS) of the electrical system, written in VHDL and implemented in FPGA, is used.
It allows the validation of the controller before its application to the actual system allow-
ing the analysis of the drive under several operating conditions [50], [51]. The developed
emulator consists of power elements (Voltage Source Inverter "VSI", Permanent Magnet
Synchronous Machine "PMSM") and AD interfaces (Analog Digital Converters "ADC",
Digital Analog Converters "DAC"). Each of the indicated steps will be described in more
details in the following sections.

23

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

Figure 2.2: Design and validation methodology.

2.3.1 Control algorithm design and functional validation

In this section, author deals with the algorithm development and its validation. Firstly,
the modular partitioning of the control algorithm into functional sub-blocks is provided to
ensure reusability and modularity of the control algorithm. The synoptic of the derived
modular control structure is presented in Figure 2.3. It consists on FOC using anti-
windup Proportional Integral (PI) regulators and Space Vector modulation (SVM). The
estimation of the speed and rotor position is provided via the RPU.

24

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

Figure 2.3: The synoptic of the control structure

� Resolver Processing Unit (RPU)

The resolver is a rotary transformer with one rotating reference excitation winding
and two stator windings. The two stator windings are placed in quadrature and generate
respectively the sine and cosine voltages [52]. The reference excitation winding is supplied
by a High Frequency "Excitation_HF" square or sinusoidal voltage signal (10 kHz). The
amplitude of these outputs is modulated respectively the sine and cosine of the electrical
shaft angle according to the following relations,

V sin = m:E(t): sin(�r)

V cos = m:E(t): cos(�r)
(2.1)

Where E(t) is the high frequency square or sinusoidal excitation signal, m is the
transformation ratio and �r the electrical rotor position.
Figure 2.4 presents the RPU principle. It is based on two steps: the synchronous

demodulation (DMD) and the Angle Tracking Observer (ATO) algorithm. The �rst step
consists in sampling the sine and cosine peaks and delivering the demodulated sineD and
cosineD signals. Then, the ATO extracts the rotor position. It consists in a closed-loop
which compares the actual position �r to the estimated position �est. The computation of
sine and cosine of the estimated position can be ensured by a CORDIC (COordinate Ro-
tation DIgital Computer) algorithm or via a sine table [53]. The objective is to minimize
the observation error "e" given by the relation

e = sin(�r): cos(�est)� cos(�r): sin(�est) (2.2)

25

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

Figure 2.4: RPU principle.

Thus, for small variations of the estimated phase from the actual angle, the observation
error can be linearized and be considered equal to �r � �est:

e = sin(�r � �est) = �r � �est (2.3)

The linearized transfer function of the ATO is then written as follow

H(s) =
�est(s)

�r(s)
=

K1: (1 +K2:s)

s2 +K1:K2:s+K1
(2.4)

It consists in a second order transfer function for which the dynamic of observation is
set by K1 and K2 coe¢ cients. These coe¢ cients are chosen depending on the required
estimation speed and on the observation error tolerance [24].

� Space Vector Modulation (SVM)

The SVM module consists in adding Zero-squence signal (VZSS) to the reference
voltage in order to increase the linearity range of the modulation. Then, a standard
Carrier Based Pulse Width Modulation (CB-PWM) is applied [54]. The aim of this
latter is to deliver at each switching period an average phase voltage, to the motor, which
is equal to its reference value. Figure 2.5 shows the SVM principle. The ZSS voltage is
computed using the 3-phase sinusoidal voltages references (V*sa, V*sb, V*sb) and added
at the same time so as to generate the corresponding voltages (V*ao, V*bo, V*co). This
allows a full use of the VSI 3-phase supply voltages [131].

26

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

Figure 2.5: SVM principle.

The design of the PI current regulators is performed using the pole compensation
method.
Once the control algorithm is designed, the continuous-time domain simulations are

performed using Matlab/Simulink permitting the functional veri�cation of the complete
control system. Next step is the discretization of the controller using convenient trans-
formation to the discrete-time domain (ZOH, Tustin and Euler). We used the �rst order
Forward Euler approximation method, given by 2.5

s =
z � 1
Ts

(2.5)

It consists on redesign approach: The sampling period was �xed to 33�s and the
control treatment was executed every sampling period "Ts" which corresponds to the
half of switching period.
Figure 2.6 presents the simulation results of RPU module, in discrete domain. It

presents the modulated and demodulation signals. The estimated speed and rotor posi-
tion are also provided. The obtained curves prove the proper functionality of the RPU
module. The validation of the current controller was also carried out. The reference of
q-axis current reference was �xed to 2A and changed to 1.2A at 0.3 s whereas the d-axis
current reference was maintain to zero. The simulation results are presented Figure 2.7
to Figure 2.9. The d� q axis current responses are presented showing that the measured
current follows correctly its reference. The three phase stator currents and the stationary
frame (�; �) based stator currents are also provided. Figure 2.9 presents the reference
stator voltage generated after the addition of the zero-sequence signal. The presented
results con�rm the good functionality of the developed current controller.

27

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

0 0.1 0.2 0.3 0.4
1

0.5

0

0.5

1

V
si

n A
M

Time [s]
0 0.1 0.2 0.3 0.4

1

0.5

0

0.5

1

V
co

s A
M

Time [s]

0 0.1 0.2 0.3 0.4
0.1

0.05

0

0.05

0.1

V
si

n DM

Time [s]
0 0.1 0.2 0.3 0.4

0.1

0.05

0

0.05

0.1

V
co

s DM

Time [s]

0 0.1 0.2 0.3 0.4
0

2

4

6

Te
ta

es
t

Time [s]
0 0.1 0.2 0.3 0.4

0

200

400

600

800

W
es

t(rp
m

)

Time [s]

Figure 2.6: RPU simulations results.

0 0.2 0.4 0.6
1

0.5

0

0.5

1

I d(A
)

Time [s]
0 0.2 0.4 0.6

0

0.5

1

1.5

2

I q(A
)

Time [s]

Reference

Measured

Reference
Measured

Figure 2.7: d-q axis stator currents.

28

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

0 0.2 0.4 0.6
3

2

1

0

1

2

3
i sa

bc
(A

)

Time [s]
4 2 0 2 4

3

2

1

0

1

2

3

i be
ta

 (A
)

ialpha(A)

Figure 2.8: Three phase stator currents and the alpha-beta stator current vector locus.

0 0.2 0.4 0.6
200

100

0

100

200

v sa
bc

(V
)

Time [s]
0.2 0.22 0.24 0.26 0.28 0.3

150

100

50

0

50

100

150

v sa
bc

(V
)

Time [s]

Figure 2.9: Three phase reference stator voltages.

The validation of the speed controller is presented in Figure 2.10 to Figure 2.12. Two
speed references are applied "800 rpm and -800 rpm". The three current waveforms and
the � � � axis currents vector locus are also presented in Figure 2.12. All these results
prove that the developed speed controller ensures the desired function at steady and
transient state.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1000

500

0

500

1000

M
ec

ha
ni

ca
l s

pe
ed

(rp
m

)

Time [s]

Reference

Measured

Figure 2.10: Mechanical speed of the speed controller.

29

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

R
ot

or
 p

os
iti

on
(rd

)

Time [s]

Figure 2.11: Rotor position.

0 0.5 1 1.5 2
2

1

0

1

2

i sa
bc

(A
)

Time [s]

0.95 1 1.05 1.1
2

1

0

1

2

i sa
bc

(A
)

Time [s]
2 0 2

2

1

0

1

2

i be
ta

(A
)

ialpha(A)

Figure 2.12: Three phase stator currents and the alpha-beta stator current vector locus.

Once the discrete time speed controller is validated, the development of the per-unit
and the �xed-point control algorithm is then achieved. The variables are normalized
using their base-values. These base values correspond to the rated values of each vari-
ables (current rated value "IB", voltage rated value "VB", speed rated value "!B"...).
The sensor/ ADC gains are also taken into account. The used base values are pre-
sented in Appendix-D. Then, the quanti�cation e¤ect, on the control performance, of the

30

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

�xed-point arithmetic is analyzed. Each variable is coded in two parts: integer "i" and
fractional "f" represented as a (i+f)Q f format. A trade-o¤between algorithm precision
and an optimized use of the FPGA resources must be achieved. The �xed-point format
was chosen after several �xed-point simulations tests. These simulations have been per-
formed taken into account the precision and stability criteria. The chosen �xed-point
formats for each variables and parameters are presented Figure 2.13.

2.3.2 Architectural design and modular veri�cation of the con-
trol architecture

After having validated the control algorithm, the architectural development can be carried
out. The �rst task consists of the development of a factorized hardware architecture
derived from the previous step with the help of the A3 methodology [44]. This folding
procedure is applied to the greediest operators in terms of hardware-consumed resources
(like multipliers, dividers. . .) to �nd out a factorized hardware architecture satisfying
the size constraint. This step is essential for aircraft applications where the consumed
resources must not exceed 60 % of the available FPGA resources (as stated by the DO-
254 standard "Design Assurance Guidance for Airborne Electronic Hardware"). The
modularity must be also preseved during this architectural step to guarantee the regularity
and reusability of control modules. Next step is the VHDL coding and the corresponding
modular veri�cation[55].
Figure 2.13 presents the control architecture that will be implemented using the ASIC

and the ProAsicPlus boards. The developed control architecture is composed by the
following modules:

� The control modules (SVM, dq-abc transformation, abc-dq transformation, DMD,
ATO, Proportional Integral (PI) current regulator and PI speed regulator).

� The ADC-SPI (Serial Peripheral Interface) modules.

� The DAC-SPI module used to send the High-Frequency excitation (Excitation_HF)
signal to the resolver.

� The SPI modules which communicate with the CPU board (used to con�gure the
parameters and the segregation paths).

For system reliability purpose, some segregation elements (segr1, segr2, segr3) were
added to the data path of the controller in order to keep the system working in the case
of any design problem, of one or more control modules. Thus, four control scenarii were
provided, shown Table 2.1. The most critical modules are the SVM and SPI modules.
Indeed, these 2 blocks must operate properly whatever the circonstances. Other blocks
can be bypass by the CPU.

Besides, the CPU board includes the same SPI modules used to con�gure the ASIC
and the ProAsicPlus boards. The decoder module allows the decoding of data sent from/to
the Cortex-M1. The communication between the processor and the decoder is ensured by
the AHB-Lite and APB buses. In the following, the modular veri�cation of each control
module based on the ProAsicPlus board is investigated. The impact of the temperature
environment is also taken into account. We note that this is a �rst validation stage to
prepare a �rst-time-right-silicon of the ASIC board. The hardware design of this latter
is ensured by another partner of the SEFORA project.

31

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

Figure 2.13: The ASIC and the ProAsicPluscontroller architecture.

Control

scenarii

criticity

Order
(segr1; segr2; segr3)

Data sent to

ASIC =ProAsicPlus

The whole

control architecture
1 (0, 0, 0)

Speed reference

(normal operation)

SPI + SVM +RPU

dq=abc+ abc=dq

Current PI + ADC

2 (0, 0, 1)
d� q axis

current references

SPI + SVM +RPU

dq=abc+ ADC
3 (0, 1, 0)

d� q axis
voltage references

SPI + SVM 4 (1, 0, 0)
Three voltage

references

Table 2.1: Segregation scenarii

32

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

2.3.2.1 ProAsicPlus features

The FPGA ProAsicPlus APA1000 family from Actel Company is a good candidate for
aircraft applications and can be considered as an alternative to the ASIC. It is a 0.22 �m
digital CMOS 4 Layer Metal Flash-Based CMOS Process. It consists on Non-volatile
Flash-based FPGA which allows keeping its con�guration even when power is o¤ and
requires no separate con�guration memory. This provides a highly secure feature needed
in typical aircraft applications. Furthermore, this technology o¤ers immunity to SEU
(Single Event Upset) radiations avoiding the loss of information leading to functional
problems. All the indicated features associated to low power consumption make such
FPGA device suitable for aircraft control applications [76].
The FPGA consists of a sea of Versatiles Each Versatile can be con�gured as a three-

input logic function (3-bit Look-Up Table LUT), a D-Fip-Fop. Table 2.2 presents the
features of the ProAsicPlus APA1000 (208 CQFP).

APA1000
System gates 1 Million

Versatiles (D Flip-Flops) 56320

RAM Kbits (1024 bits) 198

Max available clock frequency(Military temperature) 33MHz

Maximum user I/Os 712

Temperature range �55 �C to 125 �C

Table 2.2: ProAsicPlus APA1000 features

2.3.2.2 Modular veri�cation steps

An ASIC based design �ow is proposed aiming to decompose the veri�cation of large
design into sub-problems [56]. This choice o¤ers a more manageable complexity and
provides less di¢ cult veri�cation procedures. It involves several tasks illustrated as follow:

� RTL description: From the factorized architecture described previously, the mod-
ules are designed through the development of a data-path and a control unit for
each module. After that, the architecture is implemented using VHDL.

� Functional simulation: This step veri�es the functionality of the RTL design
using test vectors for each module. It is completed with a �presynthesis�simulation
to verify that the RTL abstraction fully provides the desired functionality. The test
vectors used during simulation should provide the coverage necessary to ensure that
the design will meet the expected performances.

� Synthesis: The design is synthesized and mapped generating the corresponding
netlist related to ProAsicPlus library. After that, an accurate �postsynthesis�sim-
ulation is performed using the generated netlist.

� Timing analysis: Timing constraints (the clock periods, clock uncertainty. . .)
can be �xed with an appropriate timing analysis tool. The most critical path for
this constraint and the corresponding �path slack�can thus be localized. The path
slack is the di¤erence between the �xed clock period and the actual path delay.

33

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

Thus a positive slack means that the design works with the desired clock frequency,
whereas a negative slack indicates a potential failure in the clock synchronization
of the corresponding signals.

� Place and route: This step implements all the desired netlist connections nec-
essary while following the rules and the limitations of the manufacturing process.
Additionally, a Standard Delay Format (SDF) �le is created which contains infor-
mation on the delay of the design elements and interconnects. Simulation of the
gate level design using SDF �les is performed as next step. This allows the func-
tional veri�cation of the developed architecture related to the considered timing
constraints.

Since the board is intended to work in high temperature environment, the impact of
temperature was also taken into account. Indeed, it in�uences the power consumption
and the operating frequency. Figure 2.14 shows the frequency variation depending on
the temperature values. We can note that the frequency decreases and has a maximum
achievable value equals to 27.5 MHz, at junction temperature of 125 �C. These results
were measured after the place and route process.

20 40 60 80 100 120 140
27.5

28

28.5

29

29.5

30

Fr
eq

ue
nc

y(
M

hz
)

Temperature(°C)

Figure 2.14: The variation of frequency over the temperature.

Clock Gating setup and hold violations, recovery and removal violations must be also
veri�ed. For more safety design, a �xed operating frequency equals to 24MHz has been
chosen. Figure 2.15 presents positive slack related with number of tested paths. This
proves that the architecture works properly and respects the timing constraints even for
the most critical paths. These paths include generally multiplications.

Figure 2.15:Positive slack for Clk=24MHz.

34

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

The veri�cation was made for each control module using its own testbench. As an
example, the simulation results of dq-abc transformation module are illustrated in Figure
2.16. It presents pre-synthesis, postsynthesis and place and route simulations. The same
test bench vectors were used and the following constraints were considered :

� Junction temperature: 125 �C.

� Operating frequency: 24 MHz.

� Clock uncertainty: +/- 2 ns.

The transformation operates properly and the results are the same in the three cases.
The glitches width, seen within the place and a route simulation results, are less than
one clock period. So, they haven�t any in�uence on the system functionality. These
simulation results were performed using Modelsim Tool.

Figure 2.16: Simulation results of: (a) pre-synthesis simulation, (b) post-synthesis
simulation, (c) place and route simulation.

2.3.2.3 Time and Area performances

Table 2.3 shows the FPGA time/area performances of the speed controller architecture.
The consumed resources rate is equal to 63.22% of the available FPGA ProAsicPlus re-
source (56320 Tiles). This result was obtained for a 13-bit �xed-point format for the

35

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

conversion module and transformation, 20-bit �xed-point format for PI current and speed
regulator and 19-bit �xed-point format for the RTU module.

Consumed resources

(Tiles)

Execution time

(Clock cycles)

Number

of modules

SVM 2127 4 1

ADC� SPI 1952 16 3

dq/abc 2352 27 1

abc/dq 2730 25 1

DAC=ADC� SPI
RPU(DMD+ATO)

6265 42 1

PI regulator

(speed=curent)
3718 14 3

SPI Acquisition 735 16 2

SPI Con�guration 1827 16 2

Table 2.3: FPGA Time/Area performances of the control architecture

The sequential timing diagram of the control architecture is shown Figure 2.17. The
sampling period "Ts" is �xed to 33�s which corresponds to half of the switching period.

Figure 2.17: Timing diagram of controller.

2.3.3 Real-time simulation

In this section, author proposes to validate the designed controller by testing it with an
emulator of the physical electrical system to be controlled. As shown in Figure 2.2, the

36

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

proposed emulator was written in VHDL and implemented also in the FPGA. Using this
emulator, many validations can be performed to guarantee a �rst successful experimental
test on the �nal system. The emulator is composed of the following parts:

2.3.3.1 Voltage Source Inverter (VSI) model

In order to represent the inverter in real-time, a model with high computational e¢ ciency
is of great interest. Indeed, models used for representing inverters can take various
forms (ideal, average or switching models) [50]. In our approach, the inverter model
is represented by switching function formulation taking into account the dead time. A
delay between the two switches of the same inverter leg is introduced in order to avoid
any short-circuit. Dead time is �xed here to 3 �s. The used model is described by the
following expressions

8>>>><>>>>:
VaN =

1

3
:
�
2:Va_o �

�
Vb_o + Vc_o

��
VbN =

1

3
:
�
2:Vb_o �

�
Va_o + Vc_o

��
VcN =

1

3
:
�
2:Vc_o �

�
Vb_o + Va_o

�� (2.6)

8>>>><>>>>:
Va_o =

E

2
:
�
S
0
a � S 00

a +
�
S
0
a � S 00

a � 1
�
:sign(isa)

�
Va_o =

E

2
:
�
S
0
b � S 00

b +
�
S
0
b � S 00

b � 1
�
:sign(isb)

�
Va_o =

E

2
:
�
S
0
c � S 00

c +
�
S
0
c � S 00

c � 1
�
:sign(isc)

� (2.7)

Vi_o , ViN , ii , E, S
0
i and S

00
i are respectively the pole voltage, the phase voltage,

the phase current (i = a; b; c), the DC link voltage and the switching functions of
IGBTs of the same inverter leg. The developed inverter module can be used for real-time
simulation and Hardware-In-Loop. It can be also integrated under veri�cation chains of
fault tolerant control algorithms or even to test new control strategies [10].

2.3.3.2 Machine model

The emulator of the synchronous actuator is based on the normalized state space model
according to the relation 2.8. This model is derived under the so-called �in�nite inertia�
hypothesis which means that the speed is constant regarding the dynamic of electrical
quantities. The discretization and the normalization are performed respectively using the
Euler approach (for Ts=33�s) and the base-values presented in Appendix-D.

xnk = f (xnk�1; unk�1)

ynk = H:xnk
(2.8)

Where xn is the normalized state space vector and un; yn are respectively the nor-
malized system input and output vectors. The f (x; u) is the non-linear function that
describes the model.

37

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

xn =

�
isd
IB

isq
IB

�e
IB

!e
IB

�T
; un =

�
Vsd
VB

Vsq
VB

�T
; yn =

�
isd
VB

isq
VB

�T

f(xn; un) =

266666664

� Rs
Lsd
:isd_n +

Lsq
Lsd
:!B:!e_n:isq_n

� Rs
Lsq
:isq_n � (

Lsd
Lsq
:isd_n +

Msr:Ird_n

Lsq
):!B:!e_n

0
!B
�B
:!e_n

377777775
+

26666664

VB
IB:Lsd

0

0
VB

IB:Lsq
0 0

0 0

37777775 :un

H =

26664
1 0

0 1

0 0

0 0

37775
T

2.3.3.3 Resolver model

The resolver model was provided according to relation 2.1. The reference excitation
winding is supplied by a high frequency square wave signal (10 kHz). The amplitude
of the outputs is modulated respectively with the sine and cosine of the electrical shaft
angle.

2.3.3.4 CAN model

The models of DAC/ADC were also developed. It consists of AD7466 (12bit, successive
approximation) and DA5624 which are well-adapted to high temperature environment
[57]. For the ADC, the conversion process and the corresponding data acquisition are
controlled using CS (Chip Select) and the serial clock. The input signal is sampled on
the falling edge of CS, and the conversion is also initiated at this point. This conversion
process is controlled using a Finite State Machines (FSM).

2.3.3.5 Real-time simulation results

To demonstrate the validity of the proposed approach, real-time simulations have been
performed. In Figure 2.18, curves show the modulated output signals of the resolver, the
demodulation signals and the extracted rotor position. The d� q axis current responses
and regulated three stator currents and the estimated rotor position are provided Figure
2.19. The static and dynamic performances are validated through the reference change
from 2 A to -2A. The SVM voltage references and the VSI voltage outputs are also
presented in Figure 2.20 and Figure 2.21. Real-time simulation results prove the good
functionality of the developed control architecture. It demonstrates also the interest of the
proposed methodology to test the controller associated to the emulator of the electrical
system to be controlled.

38

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

Figure 2.18: Modulated and demodulated resolver signals and the estimated rotor
position.

Figure 2.19: The stator currents.

Figure 2.20: The VSI output voltages.

Figure 2.21: The SVM reference voltages.

39

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

2.4 SoC performance evaluation

The performance evaluation of the SoC Fusion-1 solution, embedded a Cortex-M1, was
then investigated. An ON/OFF current control strategy was chosen [11]. This control
strategy is simpler than the implemented in hardware (see section 2.3.2). This choice
is due to the poor timing performances of the Cortex-M1. The current acquisition is
performed using the integrated ADC. Whereas, the control algorithm still implemented
on the Cortex-M1. Designing a SoC application requires the use of two main procedures:
Standard FPGA HWDevelopment Flow and Standard Embedded SWDevelopment Flow
Compiler. The �rst one consists of the traditional design �ow of an FPGA including the
design, synthesis, place and route steps. The second one includes the development and
the veri�cation of the software part (see chapter 1).
The Cortex-M1 is a 32-bit ARM processor designed for FPGA implementation. With

a balance between size and speed, this processor operates at up to 65MHz and can be
implemented in few tiles. A streamlined three-stage pipeline solution, the Cortex-M1
runs a subset of the classic Thumb

R�2 instruction set [76].
The proposed SoC-based architecture is presented Figure 2.22. It is divided into four

main parts :

Figure 2.22: Current controller Cortex-M1-based architecture.

� Con�guration part: This part ensures the con�guration of the soft processor
core and its peripherals including the following elements:

- The core interrupt is used to manage up to 32 external interruptions.

40

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

-The AMBA AHB-Lite and APB are bus interfaces of the processor that support a
single bus master and provide high-bandwidth operation. All AHB types support
transfer sizes of 8, 16 and 32-bits data.

- The core GPIO allows sending data from processor to external users FPGA pins.

-The core ADC guarantees a 12-bit programmable successive conversion of analog
measurement. Figure 2.23 shows the architecture of the used �ADC module�. The
conversion process is driven by a Finite State Machine (FSM).

Figure 2.23: Integrated ADC module.

� Decoder part: The communication between the processor and the FPGA ma-
trix is a critical point of the system, since the treatment e¢ ciency depends on it.
Therefore, a hardware/software interface was developed allowing the communica-
tion between the two parts. It is based on the 32-bit decoder mapping processor
address space where the di¤erent registers of the control modules are placed. It
must be consistent with the APB bus protocol in terms of bit width and corre-
sponding signals. Figure 2.24 presents the developed decoder for In/Out exchanges
between the processor and the FPGA programmable elements.

Figure 2.24: The architecture of the APB In/Out decoder (for 32-bit).

41

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

� Software part: This part includes the codes of the current control algorithm
and ADC con�guration written in C language. A �xed point format of 32Q30 was
chosen, with a word length of 32-bit. A Hardware Abstraction Layer (HAL) was
developed to provide an abstraction layer between the physical hardware and the
software that runs on the Cortex-M1.

� Synchronization part: The synchronization between the processor and the FPGA
matrix is made as follow. Initially, the FPGA and the processor are started in an
independent way. The FPGA begins to generate the start signal "Start-HW" with
a period Ts equal to 100�s, whereas the processor, after the initialization process,
remains in idle state waiting for external interruptions coming from the HW mod-
ules implemented in the FPGA matrix. In the next high level of start signal, the
processor activates the Global Sequencer (GS) that sends an active start "Start"
pulse to the excitation and the ADC modules. Once the measured signals are sam-
pled, an interruption signal (Acq-Int-HW) is transferred to the GS, which in turn
activates the core interruption module using signal Int-HW. This latter activates
the Interrupt Service Routine (ISR) in the processor, presented Figure 2.25. Then,
the program begins by the reading of data coming from the ADC and the execution
of the current control modules (ATO, dq-abc transformation and ON/OFF regu-
lator). When the computation time is over, the deleting of the interruption signal
indicates that the switching signals are ready and the processor is waiting for the
next interruption. The synchronization of all blocks is ensured by the general clock
signal (Clk).

Figure 2.25: SoC execution diagram using Cortex-M1.

Time and Area performances
The time and area performances of the SoC-based architecture are presented Table 2.4.

The algorithm was implemented with 32-bit �xed-point format for the current controller
and the ATO process. We note that the architecture consumes 82.9% of the Fusion-1
which includes 13824 Tiles and where the Cortex-M1 takes by itself 51.6%. The global
execution time is equal to 38.84 �s.

42

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

Execution time
ADC 5.44 �s

Hysteresis regulator 2 �s

DMD+ATO 17.5 �s

Core interrupt 2.32 �s

2x Core GPIO 5 �s

Interface 1.3 �s

dq/abc transformation 8 �s

Total execution time 38.84 �s.

Total consumed resources 82.9% (51.6% for Cortex-M1)

Table 2.4: Time and area performances (Fusion M1AF600, 13824 Tiles, 50MHZ)

The developed SoC-based architecture was tested experimentally using a laboratory
experimental set-up presented Figure 2.26.

Figure 2.26: Experimental set-up.

The experimental set up is composed by:

43

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

� Machine and load: It consists on a PMSM : 800W, 220V, 2.5Nm, 3000 tr/min,
resolver and mechanical Load (powder brake).

� Power stage: It includes a SEMIKRON inverter and an autotransformer.

� Interface boards: It consists on resolver interface boards and LEM LA-25NP sensor.

� Control board: It is composed by the Fusion-1 AFS600 including an integrated ADC
and soft processor core "Cortex-M1".

During experimentation, the DC-link voltage of the VSI and the hysteresis band-
width (Bw) were set to 200V and 0A respectively. The experimental validation of
the RPU is presented Figures 2.27 and 2.28. The demodulated signals have the
same frequency of the resolver signals and the rotor position is extracted. Figure
2.29 presents the regulated stator currents. The experimental current THD is equal
to 25.2%. This is due to the large value of the chosen sampling period, this choice
being the direct consequence of the poor timing performances of the Cortex-M1.

1 >
1 >

2 ↓
2 ↓

1) C h 1 : 2 V o l t 2 . 5 m s
2) C h 2 : 2 0 0 m V o l t 2 . 5 m s

Figure 2.27: Modulated and demodulated signals of the resolver.

1 >

2 >
2 >

1) C h 1 : 5 0 0 m V o l t 1 0 m s
2) C h 2 : 5 0 0 m V o l t 1 0 m s

Figure 2.28: Stator current and the estimated rotor position.

44

Chapter 2: Design and validation of FPGA-based motor drive for High-Temperature
environment

1 >

2 >
2 >

1) C h 1 : 5 0 0 m V o l t 1 0 m s
2) C h 2 : 5 0 0 m V o l t 1 0 m s

Figure 2.29: Regulated stator currents (I�sd=0A, I
�
sq=3A, Bw

�=0A) with 250mV
corresponds to 1A.

2.5 Conclusion

This chapter has dealt with the design and the validation of FPGA-based motor drives
working at high-temperature (200�C). It consists in a Field Oriented Controller for
a PMSM associated with a resolver. To this purpose, author has proposed a rigor-
ous methodology based on three steps: functional validation of control algorithm under
Matlab-Simulink, architectural design and its modular validation and �nally real-time
simulation. As �rst stage of validation, this method was performed using the ProAsicPlus

board from Actel/Microsemi Company. The temperature impact was also analyzed and
the maximum system clock frequency was limited to 27.5 MHz, for a junction tempera-
ture set to 125�C. These tests allow the preparation of the �rst-time-right silicon ASIC
board. The design of this latter is ensured by another partner of SEFORA project.
The evaluation of the SoC capability for control applications has been also focused

on. It has been decided to use the SoC Fusion-1 from Actel family. It is characterized
by a mixed signal elements such hardware architecture (FPGA matrix), internal Analog
Digital Converter (ADC) and soft processor core (Cortex-M1). A single control algorithm
was implemented. It consists in a current control algorithm based on ON/OFF regulator
and a Resolver Processing Unit (RPU) that ensures the estimation of the speed and rotor
position. Experimental results prove a correct functionality of the control. However, they
also demonstrate the limits of a such implementation.
One interesting solution will be the use of hardware accelerators to boost the soft-

ware treatment. This requires the use of a rigorous HW-SW partitioning method. The
Co-design approach has to take into account all functional (control performances) and
architectural (SoC available resources) constraints. Thus, the next chapters will deal with
HW-SW partitioning of control modules. As a benchmark, a sensorless controller using
Extended Kalman Filter (EKF) has been chosen. Although it is more complex, this kind
of controller is a realistic future alternative in avionic applications to cope with reliability
problems of the position sensor [114].

45

Chapter 3

Speci�cations and algorithm
development-Time delay impact

46

Chapter 3

Speci�cations and algorithm
development-Time delay impact

3.1 Introduction

Nowadays, the digital control presents a good alternative to the analog control. This
is due to their potential advantages such as high integration, the possibility to imple-
ment more sophisticated algorithm, re-programmability. . .However, the digital control
has some limitations, such as quantization error [58] and time delay. This time delay is
mainly composed by two elements: the computation time delay and the Sample and Hold
element caused by the PWM.
Many investigations have been under taken to analyze the time delay e¤ects on the

control performances [59]-[64]. It has been demonstrated that time delay a¤ects signi�-
cantly the quality of the transient response and the control performances. The majority
of these analysis was qualitative and not quantitative. Explicit relationships between
the time delay, the sampling period and the used digital platform to execute the control
algorithm were not well investigated up to now.
In this chapter, author is focusing on the quantitative analysis of the time delay im-

pact in the control performances. To this purpose, two AC drive systems (high and low
rated speed) and two switching frequencies (high and low rated frequency: 20 kHz and
100 kHz) were considered. As for control strategy, a sensorless speed controller based
on the Extended Kalman Filter (EKF) is adopted. Firstly, the source of time delay
and its relationship with the used digital platform (FPGA or DSP/�C) are highlighted.
The maximum control bandwidth was derived depending on the sampling period and the
speci�ed phase margin. Then, the time delay impact is analyzed in time and frequency do-
mains. Secondly, the EKF is proposed and its algorithm complexity is discussed. Finally,
the discretization and the �xed-point format setting of the sensorless speed controller are
presented.

3.2 Speci�cations

The considered control system is presented by Figure 3.1. It consists on the power stage,
the digital control unit, the sensors, the ADC boards and the Host-PC interface. The
adopted control strategy consists on a sensorless speed controller based on the Extended
Kalman Filter (EKF). This controller is composed by three main parts: the current

47

Chapter 3: Speci�cations and algorithm development- Time delay impact

control loop, the speed control loop and the speed and rotor position observer. The
development of all these parts will be discussed in the next sections.

Figure 3.1: Synoptic of the sensorless control system

3.2.1 Power stage

The considered power stage is based on two case studies. It consists on two AC drive
systems : low and high rated speed. The �rst one is a standard low rated speed syn-
chronous machine (Sl). The range of speed goes from 0 up to 1500 rpm. The second
motor is a high rated speed synchronous machine (Sh). It consists on Starter Generator
that is used in aircraft applications. Its range of speed varies from 0 up to 8000 rpm.
These systems were chosen to study their di¤erences of behavior with respect to control
performances, bandwidth and time delay e¤ects. The parameters of the two considered
systems are presented respectively in Table 3.1 and Table 3.2.

Stator resistance Rs = 10.5
 Rotor resistance Rr = 62.5

d axis stator inductance Lsd = 0.245 H Mutual inductance Msr = 0.86 H

q axis stator inductance Lsq = 0.229 H Nominal stator current Isn = 2.12 A

Table 3.1: Synchronous Machine Parameters - Low speed AC Drive 0.8 KVA, 220V,1.5A,
50 Hz, 3 Phases, Y connection, 2 pole pairs, 1500 rpm

Stator resistance Rs = 11 m
 Rotor resistance Rr = 0.34

d axis stator inductance Lsd = 0.7 mH Mutual inductance Msr = 5.8 mH

q axis stator inductance Lsq = 0.6 mH Nominal stator current Isn = 290 A

Table 3.2: Starter Generator Parameters - High speed AC Drive 200 KVA, 230V, 290A,
380 Hz, 3 Phases, Y connection, 3 pole pairs, 8000 rpm

48

Chapter 3: Speci�cations and algorithm development- Time delay impact

Additionally, two switching frequencies "Fsw" are considered. The choice of the fre-
quencies is based on the following classi�cation [65]:
- High demanding application: As shown in Table 3.2, the inductances of the Starter

Generator are very low which provide a fast current rise. This permits to operate with
high bandwidth. But, these systems are generally characterized by more current ripples.
To decrease these latter, high switching frequencies is a good solution. Unfortunately, the
switching losses are rather high. In our case, the sampling frequency was set to 100 kHz.
This requires the use of e¢ cient digital platforms to ensure the control of the system with
this severe timing constraint (Tsw=10�s).
-Constrained switching frequency application: It consists in application where sam-

pling is not critical due to switching frequency limitation. Here, the switching frequency
is set to 20 kHz . This is a typical switching frequency value found in laboratory. This
is the case of the low rated speed system presented in Table 3.1.

3.2.2 Measurement boards

To provide the feedback measurements to the digital control unit, two acquisition boards
are used. The �rst one includes sensors, it is based on the ARCTU3 board. It gives the
voltage signals that correspond to the stator currents and the DC-link voltage (2.5V/10A,
1V/100V). Once the measurements are achieved, the Analog-Digital (AD) conversion can
begin. The used AD converters are AD9221. They are 12-bit successive approximation
register components. The clock frequency and the control signal needed for these con-
versions are provided by the digital control unit. The total conversion time is equal to
2.4�s.

3.2.3 Digital Control Unit

The choice of the digital platform where the controller will be implemented is of prime
importance for digital control applications. Indeed, the control performances depend on
it. The used digital control unit is based on a FPGA platform from Xilinx Company.
It consists on the Virtex-5 (XC5VSX50T) embedding the "Microblaze" soft processor
core. The design architecture and the optimal partitioning of control modules will be
fully discussed in the next chapter.

3.3 Sources of time delay

3.3.1 Computation time delay

The computation time delay consists on the time needed by the controller to execute
the control algorithm. Depending on the used digital platform, this time delay takes
classically a sampling period �Ts�for a DSP/�C implementation and only a fraction of
Ts in the case of FPGA implementation. The Laplace transfer function of this time delay
is

Gcp(s) = e
�s:TA lg (3.1)

Where �TAlg�represents the computation time delay of the control algorithm.

49

Chapter 3: Speci�cations and algorithm development- Time delay impact

This time delay can be expressed quite accurately using a second order Pade approx-
imation yielding

e�s:TA lg =
1� TA lg

2
+
(TA lg)

2

8

1 +
TA lg
2
+
(TA lg)

2

8

(3.2)

Based on equation (3.2), the magnitude and the phase of di¤erent time delays are
shown Figure 3.2. The time delay implies a phase lag while no magnitude impact is
noted. Thus, the addition of a pure delay in the control loop will impact mainly the
stability of the controlled system.

1

0.5

0

0.5

1

M
ag

ni
tu

de
 (d

B)

10
2

10
3

10
4

10
5

360

270

180

90

0

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (Hz)

TAlg=0.5 Ts

TAlg=1.5 Ts

Figure 3.2: The magnitude and the phase responses of the time delay where Ts=50 �s.

3.3.2 Sample-and-Hold e¤ect of the PWM

As depicted in Figure 3.3, the sensorless speed controller is updated on the negative vertex
of the PWM carrier. Regular digital PWM modulation introduces an inherent time delay
which reproduces the Sample & Hold (S&H) mechanism. Therefore, the corresponding
Laplace transfer function is

GS&H(s) =
1� e�s:Ts
s:Ts

(3.3)

With s = j:! , equation (3.3) yields to

50

Chapter 3: Speci�cations and algorithm development- Time delay impact

GS&H(j:!) =
1� e�j:!:Ts
j:!:Ts

= e�j:!:Ts=2:
ej:!:Ts=2 � e�j:!:Ts=2

2:j
:

1

!:Ts=2
(3.4)

= e�j:!:Ts=2:
sin(!:Ts=2)

!:Ts=2
= e�j:!:Ts=2:sinc(!:Ts=2)

From equation(3.4), it is clear that S&H element introduces an inherent time delay
equal to Ts/2 into the control loop. It introduces also a gain equals to the magnitude of
sin c(!:Ts=2):

Figure 3.3: Timing diagram of the control implementation based on PWM strategy.

The bode plots of the S&H element due to the PWM, for Fs=100 kHz, are presented
Figure 3.4. It shows that the magnitude of the S&H element can be approximated by
a �rst order low-pass �lter magnitude. This is not the case of the phase since the S&H
element introduces a larger phase lag.

51

Chapter 3: Speci�cations and algorithm development- Time delay impact

102 103 104 105 106
100

50

0

m
ag

ni
tu

de
 [d

b]
ZeroOrder Hold magnitude and phase responses

102 103 104 105 106

150

100

50

0

frequency [Hz]

ph
as

e
[d

eg
]

SampleandHold

SampleandHold

First order pass filter

First order pass filter

Figure 3.4: Magnitude and phase diagrams of a Sample and Hold element for Fs=100
kHz.

Thus, the global time delay transfer function of the controller is equal to

GTotal(j:!) = e
�j:!:TA lg :e�j:!:Ts=2:

sin(!:Ts=2)

!:Ts=2
= e�j:!:Td :

sin(!:Ts=2)

!:Ts=2
(3.5)

Where Td represents the summation of the computation time delay and the time delay
due to the PWM. As indicated before, this time delay depends on the digital platform
and can be expressed as follow

Td =

8><>:
Ts
2
+ TA lg =

3:Ts
2

For DSP=�C implementation

Ts
2
+ TA lg =

Ts
2

For FPGA implementation
(3.6)

3.4 Stator current controller

3.4.1 Current controller synthesis

In the d-q reference frame, the voltage and �ux of synchronous machine can be expressed
by equations (3.7) to (3.10).

Vsd = Rs:isd +
d�sd
dt

� !dq:�sq (3.7)

52

Chapter 3: Speci�cations and algorithm development- Time delay impact

Vsq = Rs:isq +
d�sq
dt

+ !dq:�sd (3.8)

�sd = Lsd:isd +Msr:ird (3.9)

�sq = Lsq:isq (3.10)

In Laplace domain, the previous relations yield to the equations (3.11) and (3.12).We
suppose that the rotor current ird is set at its rated value (1A). Thus, the d-q stator
currents can be expressed

isd =
1

Rs + Lsd:s
(Vsd + !dq:�sq) (3.11)

isq =
1

Rs + Lsq:s
(Vsq � !dq:�sd) (3.12)

The regulation of the isd and isq components is ensured by PI regulators, given re-
spectively by the equations (3.13) and (3.14).

GPIid(s) = Kpid +
Kiid

s
(3.13)

GPIiq(s) = Kpiq +
Kiiq

s
(3.14)

Figure 3.5 (a) presents the synoptic of the current controller based on the PI regu-
lators. We remind that the principle of the PWM is to deliver at each switching period
an average voltage vector to the machine that is equal to its reference value. The S&H
element and the computation time delay are taken into account. This leads to the sim-
pli�ed closed loops depicted in Figures 3.5(b) and 3.5(c). Thus, the open loop transfer
functions of isd and isq are

Gisd(s) =
1

s
:
Kpid:(s+Kiid=Kpid)

Lsd(s+Rs=Lsd)
:e�s:TA lg :

1� e�s:Ts
s:Ts

(3.15)

Gisq(s) =
1

s
:
Kpiq:(s+Kiiq=Kpiq)

Lsq(s+Rs=Lsq)
:e�s:TA lg :

1� e�s:Ts
s:Ts

(3.16)

53

Chapter 3: Speci�cations and algorithm development- Time delay impact

Figure 3.5: (a) closed loop of the stator current controller, (b),(c) simpli�ed closed loops
of the stator current controller with time delay.

The PI regulators were synthesized based on two design criteria: the phase margin
��m�and the desired closed loop bandwidth �fc�. The pole cancellation method was
also considered. It consists on imposing Kiid=Kpid to be equal to Rs=Lsd and Kiiq=Kpiq to
be equal to Rs=Lsq. Considering all these criteria, the magnitude and the phase relations
are

d�axis

8>>>><>>>>:
jGisd(j:!c)j =

���� 1j:!c :Kpid

Lsd
:e�j:!c:Td :

sin(!c:Ts=2)

!c:Ts=2

���� = 1
Arg(

1

j:!c
:
Kpid

Lsd
:e�j:!c:Td :

sin(!c:Ts=2)

!c:Ts=2
) = �!c:Td �

�

2
>= �� + �m

(3.17)

q�axis

8>>>><>>>>:
��Gisq(j:!c)�� = ���� 1j:!c :Kpiq

Lsq
:e�j:!c:Td :

sin(!c:Ts=2)

!c:Ts=2

���� = 1
Arg(

1

j:!c
:
Kpiq

Lsq
:e�j:!c:Td :

sin(!c:Ts=2)

!c:Ts=2
) = �!c:Td �

�

2
>= �� + �m

(3.18)

where !c = 2:�:fc is the crossover pulsation.
For practical control system, the phase condition is usually more restrictive than the

magnitude condition. Thus and based on the phase relation (given by equations (3.17)
and (3.18)), the maximum bandwidth can be deduced. For a speci�ed phase margin

54

Chapter 3: Speci�cations and algorithm development- Time delay impact

��m� , a �xed sampling period and a given digital platform (FPGA or DSP/�C), the
maximum allowable bandwidth is

!cmax = 2:�:fcmax �

8><>:
2

3:Ts
:
h�
2
� �m

i
For DSP=�C implementation

2

Ts
:
h�
2
� �m

i
For FPGA implementation

(3.19)

In our case, the phase margin ��m�was set to 60 �. Thus, the maximum bandwidth
�fcmax�can be expressed as follows

fcmax �

8><>:
fs
18

For DSP=�C implementation

fs
6

For FPGA implementation
(3.20)

Based on equation (3.20), the maximum achievable bandwidths for the two considered
systems (Sh, Sl) are presented in Table 3.3.

Maximum achievable bandwidth rule of thumb
DSP/�C FPGA limits

Sh(100 kHz) 5.55 kHz 16.66 kHz 5 kHz

Sl(20 kHz) 1.11 kHz 3.33 kHz 1 kHz

Table 3.3: Bandwidth limits

Once the maximum bandwidth is determined, the PI regulator gains (Kpid; Kpiq;
Kiid and Kiiq) can be computed based on the magnitude relations of the open loop
transfer function, given by equations (3.17) and (3.18).
However, in practical control applications, the crossover frequency is generally �xed

to one-twentieth of the sampling period (equal to the switching period in our case). This
is a general "rule of thumb" in digital control. The principle is that the sampling rate,
"fs" should be higher that the closed loop bandwidth "fc" as de�ned in expression (3.21)
:

f
C
� fs
20

(3.21)

In Table 3.3, we present the maximum bandwidths for the two studied systems (Sl ; Sh)
according to this rule of thumb. In the following, these bandwidth values are used to
synthesize the d-q current PI regulators.
The time delay e¤ect was also analyzed in the time domain. For the two considered

AC drive systems, the step responses of the closed loop are given in Figures 3.6 and 3.7.
Comparing the system without any delay and the actual system (with time delay),

we note that the presence of the time delay implies an underdamped system response.
Thus, a longer settling time and higher overshoot are noted.

55

Chapter 3: Speci�cations and algorithm development- Time delay impact

0 0.5 1 1.5 2 2.5 3

x 103

0

0.5

1

1.5

2

2.5

t(s)

I sq
(A

)

Without delay
Td=0.5 Ts
Td=0.5 Ts

Figure 3.6: Isq step response of the low rated speed system and Ts=50�s.

0 1 2 3 4 5

x 104

0

20

40

60

80

100

120

t(s)

I sq
(A

)

Without delay
Td=0.5 Ts
Td=1.5 Ts

Figure 3.7: Isq step response of the high rated speed system and Ts=10�s.

The simulations in the frequency domain were also performed for the two considered
systems (Sl, Sh). Figure 3.8 and Figure 3.9 present the magnitude and the phase fre-
quency responses of the closed loop transfer functions. We can note that the phase lag,
due to the time delay and S&H element, increases linearly with the frequency impacting
the stability of the controlled system. On the other hand, the closed loop transfer func-
tion presents a maximum closed loop log modulus which means a poor damping factor.
This is con�rmed by the step responses in time domain (see Figures 3.6 and 3.7).

56

Chapter 3: Speci�cations and algorithm development- Time delay impact

Bode Diagram

Frequency (Hz)
10

2
10

3
10

4
360

315

270

225

180

135

90

45

0

Ph
as

e
(d

eg
)

60

50

40

30

20

10

0

10
Magnitude and phase responses of the current control closed loop

M
ag

ni
tu

de
 (d

B)

Without delay
Td=0.5 Ts
Td=1.5 Ts

Figure 3.8: The Bode plot of the current control closed loop for di¤erent time delays
(case of the low rated speed system).

Frequency (Hz)10
3

10
4

10
5

360

270

180

90

0

Ph
as

e
(d

eg
)

60

50

40

30

20

10

0

10
 Magnitude and phase responses of the current control closed loop

M
ag

ni
tu

de
 (d

B)

Without delay
Td=0.5 Ts
Td=1.5 Ts

Figure 3.9: The Bode plot of the current control closed loop for di¤erent time delays
(case of the high rated speed system).

57

Chapter 3: Speci�cations and algorithm development- Time delay impact

On the other hand, having �xed the desired bandwidth "fc" (�xed by the rule of
thumb) and the phase margin "�m" (set to 60 �), the maximum allowable time delay can
be easily derived

Td �
�=2� �m
2:�:fc

(3.22)

Figure 3.10 shows the set of time delay values respecting the stability condition given
by the equation (3.22) and for a phase margin "�m" �xed to 60 �.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5
x 104

fc (Hz)

T d (s
)

Sl

Sh

Figure 3.10 : The maximum time delay values respecting the stability condition (for
�m =60 �).

Table 3.4 presents the time delay limits with regard to the chosen stability condition.
The exceeding of these limits decreases the �xed phase margin and in some cases can
cause system instability. Thus, the maximum execution time devoted to the control
algorithm "TA lg" can be derived as follows

For Sl : TA lg � Td �
Ts
2
= 58:33�s

For Sh : TA lg � Td �
Ts
2
= 11:66�s

(3.23)

These maximum allowable execution times will be used as functional constraints dur-
ing the HW-SW Co-design procedure (see chapter 5).

System Bandwidth "fc" Ts Stability Condition

Sl, Fsw=20 kHz 1000 Hz 50 �s Td � 83.33 �s
Sh, Fsw=100 kHz 5000 Hz 10 �s Td � 16.66 �s

Table 3.4: The time delay limits regarding the stability condition

58

Chapter 3: Speci�cations and algorithm development- Time delay impact

3.4.2 Speed controller

The speed control loop is performed using P-PI regulator. It consists on two closed loops
(inner and outer loop). The �rst one uses a proportional regulator (P) which aims to
impose the system poles at the desired location. The second one is based on PI regulator
to provide the de�ned steady and transient speed responses. The principle of this speed
control strategy is shown by Figure 3.11.

Figure 3.11: The speed control block diagram.

Assuming that the dynamic of the current controller is much faster than the one of
speed controller, the expression in the Laplace domain between the electrical speed !r and
the stator current isd and isq can be expressed as follow:

!r(s) =
3

2
:p2:

1

fl + J:s
:

�
[Lsd � Lsq] :isq(s):isd(s) +Msr:isq(s):Ird(s)�

2

3:p2
:�L(s)

�
(3.24)

In this study, the direct current reference isd is set to zero. In addition, the e¤ect
of load torque "�L" and the friction coe¢ cient "fl" are neglected. Consequently, the
transfer function between !r and isq can be de�ned by

!r(s)

isq(s)
=
3

2
:p2:

Msr:Ird(s)

J:s
(3.25)

The regulation of the internal loop is provided using a proportional gain. The main
function of this gain is to impose the controlled system poles in the desired locations.
Based on the transfer function of the isq current closed loop (equation (3.26), the new
transfer function is expressed by equation (3.27)

Hisq(s) =
1

1 + s:
Kpiq

Lsq

(3.26)

!r(s)

!i(s)
=

1:5:K!:p
2:Msr:Ird

J:
Lsq
Kpiq

s2 + s:
1
Lsq
Kpiq

+
1:5:K!:p

2:Msr:Ird

J:
Lsq
Kpiq

(3.27)

59

Chapter 3: Speci�cations and algorithm development- Time delay impact

Assuming that Ird is �xed to its rated value, a new coe¢ cient K! is de�ned,

K! =
J

6:
Lsq
Kpiq

:p2:Msr:Ird

(3.28)

This yields to the �nal transfer function given by equation (3.29). It presents a second
order system with double-real poles

!r(s)

!i(s)
=

1

4:(
Lsq
Kpiq

)2

(s+
1

2:
Lsq
Kpiq

)2
(3.29)

From external control loop side, the PI regulator was used to provide a no steady
state speed error and to impose a given dynamic. Knowing that the transfer function of
the PI regulator is

G!(s) = Kp! +
Ki!

s
(3.30)

And imposing the ratio
Ki!

Kp!

equal to
Kpiq

Lsq
, the transfer function of the external speed

loop is

!r(s)

!�(s)
=

Kp!

4:(
Lsq
Kpiq

)2

s2 +
1

2:
Lsq
Kpiq

:s+
Kp!

4:(
Lsq
Kpiq

)2

(3.31)

The new transfer function corresponds to a second order system. The computation
of Kp! is based on the desired overshoot and settling time.

3.4.3 Rotor speed and position observer using EKF algorithm

Extended Kalman Filter (EKF) is known for its e¢ ciency of the online estimation of
speed and rotor position especially at medium and high motor speed range. A �rst
validation of the EKF algorithm was achieved in an associate work [8], [113]. These
results encourage the author to adapt the EKF algorithm for the considered AC drive
systems. Additionally, this algorithm presents an interesting benchmark for the HW-SW
partitioning that will be detailed in the next chapter.
The EKF algorithm allows estimating the speed and position of the rotor. As de-

picted Figure 3.16, this algorithm requires the current and the voltage quantities in order
to produce the states estimates. These quantities are provided by the voltage/current

60

Chapter 3: Speci�cations and algorithm development- Time delay impact

interfaces and the abc-dq transformations. The interface voltage aims to the generation
of the 3-phase stator voltages from the measured DC voltage and the 3-phase stator
reference voltages according to the following relation (see 2.3.1).

Vsi = E:V
�
si ; i = a; b; c (3.32)

Figure 3.16: The block diagram of the EKF algorithm

The EKF observer is based on system state model. It is optimal for stochastic envi-
ronment when noises can be considered as white Gaussian noises [66]-[68],[113],[8]. To
start with, the discrete-time model obtained using the �rst order forward Euler approx-
imation method is given equation (3.33). Ts represents the sampling period and k the
sampling index.

xk = xk�1 + Ts:f (xk�1; uk�1) + wk

yk = H:xk + vk
(3.33)

Where x is the state space vector, u and y are respectively the system input and
output vectors. w and v are respectively the model and the measurement disturbances.

x = [isd isq �e !e]
T ; u = [Vsd Vsq]

T ; y = [isd isq]
T (3.34)

f(x; u) =

26666664
� Rs
Lsd
:isd +

Lsq
Lsd
:!e:isq

� Rs
Lsq
:isq �

Lsd
Lsq
:isd:!e +

Msr

Lsq
:Ird:!e

0

!e

37777775+
26666664

1

Lsd
0

0
1

Lsq
0 0

0 0

37777775 :u ;H =

26664
1 0

0 1

0 0

0 0

37775
T

(3.35)

It consists on the state space model using rotating d-q reference frame. The adopted
model is derived under the so-called �in�nite inertia�hypothesis which means that the

61

Chapter 3: Speci�cations and algorithm development- Time delay impact

speed dynamic is neglected regarding the current dynamics. Namely, the state space
model has been �xed to 4.
The principle of EKF treatment is described in Figure 3.17. Firstly, the prediction of

the state vector bxk=k�1 of the system is performed. Next, the innovation step is executed.
It aims to compensate the predicted vector bxk=k�1 using the Kalman gain K and the
measurement vector yk yielding to the estimated state vector bxk=k.
In the following, we detail the equations of each steps of EKF algorithm.

Figure 3.17: Synoptic of the EKF algorithm

-Prediction step: The prediction step can be represented by the following equation

bxk = bxk�1 + Ts:f (bxk�1; uk�1) (3.36)

-EKF Compensator - Kalman gain calculation
As for the EKF compensator, it is computed using equations (3.37) to (3.40).
-The covariance matrix of the state error is expressed by

Pk=k�1 = Fdk:Pk�1=k�1:Fd
t
k +Q Initial value P0 (3.37)

where Fdk is de�ned from the Jacobian matrix :

Fdk =
@ (bxk�1 + Ts:f (bxk�1; uk�1))

@x

����
x=bxk�1=k�1 (3.38)

The Kalman matrix is computed by :

Kk = Pk�1=k�1 :H
t:
�
H:P

k�1=k�1 :H
t +R

��1
(3.39)

Where P0, Q and R are respectively the initial state error, the model noise and the
measurement noise covariance matrices. The tuning of these matrices has been done ac-
cording to the methodology proposed in [66],[113]. It consists of a trial-and-error method
presenting guidelines to set the EKF estimation behavior during the transient and steady
state. We note that it is a common practice to assume these covariance matrices to be
diagonal and invariant.
-The Updating of the covariance matrix of the error is expressed by:

Pk=k = Pk=k�1 �Kk:H:Pk=k�1 (3.40)

62

Chapter 3: Speci�cations and algorithm development- Time delay impact

-Innovation step: Finally, the innovation step is carried out using the measurement
update as described in equation (3.41) that ensures the update of the estimated state
vector.

bxk=k = bxk=k�1 +Kk:
�
yk �H:bxk=k�1� (3.41)

After some simulation tests, the covariance matrices were �xed as provided in(3.42).
This setting allows having satis�ed results in terms of steady and transient state performances.

Po =

26666664
10-1 0 0 0

0 10-1 0 0

0 0 10-2 0

0 0 0 10-3

37777775 ;Q =
26666664
10-3 0 0 0

0 10-3 0 0

0 0 10-4 0

0 0 0 10-4

37777775 ;

R =

24 1 0

0 1

35
(3.42)

As shown before, the EKF algorithm requires matrix computations such as multipli-
cation, subtraction, addition, and inversion. . .All these treatments need a high amount
of arithmetic operations. Table 3.5 gives an idea about the complexity of the EKF algo-
rithm.

x + - inversion
Prediction 10 6 0 0

Jacobian matrix 4 1 0 0

Kalman gain & covariance matrix 318 244 16 1

Innovation 8 8 8 0

External dq-abc transformation 12 12 0 0

Total 352 271 24 1

Table 3.5: The EKF complexity

The computation of the Kalman gain "K" is presented in Figure 3.18. It presents
the module of highest complexity degree since it requires up to 318 multiplications, 244
additions, 16 subtractions and 1 inversion. This module was split into four sub-modules
(compensator 1, 2, 3 and 4) which provide more manageable matrix treatment.

63

Chapter 3: Speci�cations and algorithm development- Time delay impact

Figure 3.18: The sub-modules of the Kalman gain.

3.4.4 Discretization and �xed-point data setting

To prepare the digital implementation, some further development steps are mandatory.
The �rst step is the discretization of the control algorithm. The approach based on the
�rst order Forward Euler approximation was adopted. The normalization is the next step.
It consists in the development of per-unit algorithm. Hence, the variables of the sensorless
speed controller are normalized according to their base-values (see Appendix-D).
Once this step is achieved, designer can begin the �xed-point data setting. This latter

must be chosen with respect to precision and dynamic requirements. This means that
the �xed data format and the real one (�oating-point data) must be closer as possible.
As depicted by Figure 3.19, the �xed point representation is divided into two main parts:
the integer part and the fractional part. The �rst part is related mainly to the dynamic
range of variables and coe¢ cients while the second one is related to the precision. This
representation is denoted (i+ f)Qf . The i is the number of bit of the integer part, f is
the number of fractional part and the (i+ f) is the total data size.

Figure 3.19: Fixed-point representation of the data

The chosen format has been set based on �xed-point simulation tests. These simulations
were repeated until �nding a low and acceptable error between the �xed-point data and
�oating-point data. Table 3.6 presents the chosen formats used for the digital imple-
mentation of the whole sensorless speed controller [113]. The corresponding simulation
results are presented Figure 3.20.

64

Chapter 3: Speci�cations and algorithm development- Time delay impact

Modules and �xed-point format
Current interface 13Q12 PI regulator 20Q18

Voltage interface 13Q12 P-PI regulator 20Q18

abc� dq transformation 13Q12 EKF observer 22Q20

dq � abc transformation 13Q12 SVM 13Q12

Table 3.6: Bit width of control modules

0 0.5 1 1.5
2

1

0

1

2

t(s)

i sa
bc

(A
)

0 0.5 1 1.5
2

1

0

1

2

t(s)

i sq
(A

)

2 1 0 1 2
2

1

0

1

2

ialpha(A)

i be
ta

(A
)

0 0.5 1 1.5
1000

500

0

500

1000

t(s)

sp
ee

d(
rp

m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

2

4

6

8

t(s)

R
ot

or
 p

os
iti

on

Actual speed

Estimated
 speed

Figure 3.20: Simulations results of the �xed-point sensorless control algorithm.

These results present the case of the low rated speed system. It proves the good func-
tionality of the developed �xed-point sensorless speed controller.

65

Chapter 3: Speci�cations and algorithm development- Time delay impact

3.5 Conclusion

Digital controllers are always characterized by an inherent time delay. In this chapter,
author has focused on the analysis of the time delay impact on the control performances.
This time delay has been identi�ed as the sum of the execution time needed for the control
algorithm computation and the PWM. This latter is caused by the PWM process.
The adopted control strategy consists on the sensorless speed controller based on the

Extended Kalman Filter (EKF). Two AC drive systems (high and low rated speed) and
two switching frequencies (20 kHz and 100 kHz) were considered. The analysis of time
delay impact has been performed in time and frequency domains. It proved that both
the bandwidth and the stability margin are a¤ected.
For a �xed bandwidth, a �xed phase margin and a �xed sampling period, the max-

imum allowable time delays have been determined for the two considered AC drive sys-
tems. These time delays will be considered as a constraint to the HW-SW partitioning
procedure that will be presented in the next chapter.

66

Chapter 4

Co-design methodology: HW-SW
partitioning

67

Chapter 4

Co-design methodology: HW-SW
partitioning

4.1 Introduction

In nowadays embedded control systems, the digital controllers are getting increasingly
sophisticated. The industrial demands in terms of control performances, reliability, in-
tegration and cost are all the more important that the implemented algorithms become
complex [69]-[72]. On the other side, this considerable progress has not only been limited
to the control theory, but relies also on the more and more mature digital electronic
technologies.
Staying with this last point, it is commonly accepted that the FPGA System on Chip

(SoC) devices are highly appropriate to reach an optimal solution, between the required
performances and the controller complexity. The combination of software treatment
(allowed by the on-chip processor cores) and the hardware treatment (ensured by the
FPGA hardware resources) allows the designer to enhance the performances of the design
and improves its �exibility.
In contrast, all these assets are hardly achievable without a rigorous and e¢ cient

Co-design methodology. Indeed, designer has to make an e¢ cient partitioning between
the software and the hardware parts. Thus, this partitioning must lean on quantitative
metrics that de�ne the objectives to achieve with regards to the constraints. To this
purpose, author has developed a speci�c HW/SW Co-design methodology adapted to AC
drive applications. For a given control algorithm, three main concepts have been de�ned:
the modular partitioning, the performances estimation and the HW/SW partitioning.
The �rst one aims to decompose the design into functional modules with di¤erent levels
of granularity. The performance estimation aims to characterize each module in terms of
computational time and FPGA resource use. Finally, the HW/SW partitioning is based
on these estimated performances and on the design constraints so as to be implemented in
hardware. This optimization is made with the help of the Non-Dominated sorting Genetic
Algorithm (NSGA-II). To illustrate this Co-design methodology, the chosen benchmark is
sensorless controller of a synchronous machine using an Extended Kalman Filter (EKF).
This choice corresponds to a major trend in embedded AC drive domain. Its direct
consequence is a signi�cant increase of the complexity of the algorithm to be implemented,
complexity mainly due to the EKF matrix computation.
In this chapter, author starts by presenting a full software implementation of this

sensorless controller and then its experimental validation. This �rst implementation

68

Chapter 4: Co-design methodology: HW-SW partitioning

is considered as a reference to the Co-design process that follows. The performance
estimation is then presented, followed by the optimized HW-SW partitioning.

4.2 First stage of experimental validation

As �rst stage of experimental validation, a pure SW implementation of the EKF sensor-
less current controller was investigated. Here, a simple current controller based on the
hysteresis regulator was considered. The chosen digital platform is the Virtex-5 from
Xilinx Company which include the soft processor core "Microblaze". In the following,
the focus is to evaluate the computing performances of the processor core to run the high
computation EKF algorithm [115]. The implemented architecture is depicted Figure 4.1.

Figure 4.1: Architecture of the Microblaze-based sensorless current controller.

The structure of the testbench is divided into two main parts: the hardware design
and the software design.

69

Chapter 4: Co-design methodology: HW-SW partitioning

� Hardware modules

For the designed architecture, the Processor Local Bus (PLB) is used to connect
peripherals. These peripherals are:
-The acquisition module of the stator current and the DC-link voltage. It is connected

to the AD converters.
-The phase voltage estimator module (detailed in section 2.3.3.1). These voltages are

used by the EKF sensorless treatment.
-The general Purpose Input Output (GPIO) peripheral.
-A timer, used to generate interruptions.
-The Interrupt controller peripheral, used to manage interrupts.
The sampling period is �xed to 100�s and the frequency of the system clock is

100MHz.

� Software design

The software design was carried out using assembly macros and C-coded functions.
A hardware multiplier and a divider were added to the ALU in order to boost its perfor-
mances. The control algorithm includes the initialization of the parameters of Microblaze,
of the EKF observer and of the current controller. Once the Interrupt Service Routine
(ISR) is activated, the Microblaze starts the data acquisition of the stator currents and
the DC-link voltage. After that, the execution of the EKF algorithm and the current
control algorithm is performed. When the execution of the control algorithm is �nished,
the interruption is deleted and the switching signals are ready to be send to the inverter.
The execution time of the whole control algorithm is equal to 85 �s: The code was

accommodated within embedded BRAM and takes 43 KByte. This value has to be
compared to the obtained execution time by a full hardware controller (Virtex-II Pro,
50Mhz) [113].

4.2.1 Digital platform

The used FPGA is based on SRAM technology from Xilinx Company. It consists in
Virtex-5 (XC5VSX50T). It includes 8,160 slices, each one contains four LUTs of 6 in-
put and four �ip-�ops. As showed in Figure 4.2, this FPGA integrates matrix of logic
elements, con�gurable I/O blocks, an interconnection network, DSP48E blocks (Digital
signal processing) and RAM blocks. The DSP48E block includes a 25 x 18 Hardware
Multiplier (HM) and an add/subtract accumulator. It provides also a pattern detector
and a pattern bar detector that can be used for convergent rounding, over�ow/under�ow
detection for saturation arithmetic, and auto-resetting counters/accumulators [73]. Ta-
ble4.1 presents the features of Virtex-5 FPGA.

Number of Slices
32640 FF

32640 6�Bit LUT
DSP48E 288

RAM blocks(Kb) 4,752

Maximum operating frequency(Mhz) 100 (without the use of DLL)

Table 4.1: Features of Virtex-5 (ML 506)

70

Chapter 4: Co-design methodology: HW-SW partitioning

Figure 4.2: Virtex-5 Features

Additionally to the previous indicated elements, this FPGA has also the possibility to
integrate a soft processor core �Microblaze�. This processor has a 32-bit RISC Harvard
architecture with an instruction set optimized for embedded applications. There are dif-
ferent processor versions: the three-stage Microblaze core which is ideal for cost-focused
applications and the �ve stages Microblaze core which is adapted for high performance
applications. Programs can be indi¤erently stored in external or internal SRAM blocks.
Moreover, the use of precompiled arithmetic macro (multiplication-division) are not fast
enough to deal with the studied real time control application. Thus, the acceleration of
the Microblaze ALU was made using full wired arithmetic component (hardware mul-
tiplier, hardware division and hardware barrel shifter). These operations are executed
automatically in the FPGA matrix and results can be retrieved by the processor. In the
following sections, we denote "HM�p" the hardware multiplier needed by Microblaze to
execute multiplication.
As can be seen Figure 4.3, the Microblaze processor is organized as Harvard architec-

ture with separate bus interface units for data and instruction.
Microblaze utilizes two Local Memory Buses for instruction (ILMB) and data (DLMB),

one to store the program and the other to store data. Peripheral Local Bus (PLB) inter-
face can be used to connect Microblaze to larger external memories. But, in this case,
lower timing performances are obtained compared to the use of the LMB interface.
Microblaze has also special purpose registers such as: Program Counter (PC), Machine

Status Register (MSR) to indicate the status of the processor and the enabling/disabling
of interrupts. Both instruction and data interfaces of Microblaze are 32-bit wide and uses
Big-Endian formats. It supports word (32 bits), half-word (16 bits), and byte accesses to
data memory. Table 4.2 presents the consumed resources of a Microblaze.

71

Chapter 4: Co-design methodology: HW-SW partitioning

6�Bit LUTs FFs HM�p

Microblaze area 1911 1531 4

Table 4.2: Microblaze(v7) area occupation

The communication of Microblaze with external peripherals is provided based on two
main links: Fast Simplex Link (FSL) and PLB bus. A brief description of two types of
buses is given below .

Figure 4.3: Microblaze architecture

4.2.1.1 Fast Simplex Link (FSL)

The FSL communication interface consists in an e¢ cient and fast communication IP
module provided by Xilinx. It allows a rapid communication between Microblaze and
a custom IP-user(3 clock cycles in reading and writing). It is an unidirectional FIFO
based communication link. For Microblaze, one can con�gure up to eight FSL dedicated
unidirectional point-to-point data streaming interfaces. The FSL link is implemented as
a 32-bit wide FIFO with con�gurable depth and width option. Basic software drivers are
generally provided to simplify the use of FSL connection. Its interface can reach up to
300 MB/sec [73].

4.2.1.2 Processor Local Bus (PLB)

It is a communication bus which is more slowly than the FSL ones. It presents bus
infrastructure for connecting PLB masters and PLB slaves within an overall PLB system.
It can provide the arbitration of up 16 masters. Using Intellectual-Property Interface
(IPIF) library, designer can connect safely custom IP to the PLB bus. Table 4.3 presents
the resources consumed by the two kinds of communication.

72

Chapter 4: Co-design methodology: HW-SW partitioning

FFs 6�Bit LUTs
FSL 7 44

PLB 168 462

Table 4.3: FSL and PLB consumed resources

4.2.2 Overview of the experimental set up

The experimental validation was performed using the set up shown in Figure 4.4. This
set up is composed of three main parts: the power system, the acquisition boards and
the digital controller.

Figure 4.4: Experimental set up.

1- The power system: It is divided into three sub-parts:

� The motor: it consists in a Synchronous Machine (SM) with the following charac-
teristics: 4 poles, 230/400V, 1.52/2.66A, 0.8 kW.

� The load: It consists in a powder brake (Maximum torque: 25 Nm, Maximum
speed: 6000 rpm).

� The power supply: It consists in a SEMIKRON VSI module (IGBT modules �
Emax=800V, Imax=30A).

� The rotor power supply: It is composed by an autotransformer (1-phase, 230V,
50Hz).

73

Chapter 4: Co-design methodology: HW-SW partitioning

2- The acquisition boards: To measure the voltage and the current data, a sensor-
based ARTU3I board (2.5V/10A and 1V/100V) was used. The measured quantities are
then sent to the ADC board which ensures the conversion from analog to digital. The
chosen ADCs are AD9221, with a resolution of 12 bits and a maximum conversion rate
of 1.5 Msps. The whole conversion time takes 2.4�s.
3- The digital controller: This controller is implemented on a FPGA development

board. It is based on a Virtex-5 (XC5VSX50T). The soft processor core "Microblaze"
was synthesized and downloaded in the Virtex-5. The change of the current reference
and the communication was ensured via a Host PC.
The experimental tests based on the EKF sensorless software controller were per-

formed. Figures 4.5 and 4.6 present the corresponding validation results. The two mea-
sured phase stator currents and the stator voltage are presented. We note that the
measured currents are well regulated and follow its reference (for I�sq= 1.5A):The current
sensors deliver voltage signals corresponding to the measured current (2.5V/10A).

Figure 4.5: The regulated stator currents for (I�sd=0A, I
�
sq=1.5A, Bw

�=0A) with 250mV
corresponds to 1A.

Figure 4.6: The phase voltages with 100mV corresponds to 100V.

74

Chapter 4: Co-design methodology: HW-SW partitioning

Figure 4.7 and 4.8 present the estimated and measured rotor position. We note that
the two rotor phases are identical which gives proof of the good functionality of the EKF
sensorless controller.

Figure 4.7: The estimated rotor position and regulated stator current with 250mV
corresponds to 1A.

Figure 4.8: The estimated (red curve) and the measured rotor position (black curve).

These �rst experimental results have permitted the validation of the EKF sensorless
software controller. But, the execution time is about 85�s. This important execution time
is needed to perform only a simple hysteresis regulator along with the EKF observer. To
implement the whole EKF sensorless speed controller based on PI regulator, a hardware
accelerator seem to be necessary to boost the Microblaze treatment.
In the following, author presents a HW-SW Co-design methodology aiming to �nd

an optimized partitioning of the control functional modules between SW and HW. The
constraints linked to this optimization problem are from one hand the limited internal
resources of the FPGA (Slices, DSP, memory blocks and maximum clock frequency)
and on the other hand the maximum allowable execution time of the control algorithm in
order to respect the speci�cations of the �nal application in terms of control performances
(bandwidth, stability margin).

75

Chapter 4: Co-design methodology: HW-SW partitioning

The proposed method is mainly composed of two steps : the estimation of occupied
resources and timing performances of the functional modules included in the control
algorithm and the HW-SW partitioning optimization process.

4.3 Performance estimation

An accurate performance estimation of the functional modules is a key step of the ar-
chitectural exploration �ow. Made at early stage of the design �ow, it gives area, time
and memory use estimates which allows the evaluation of di¤erent solutions. HW-SW
performance evaluation was addressed by several approaches. Depending on the esti-
mation goals, approaches were interested to power/ time/ area estimations [77]-[81] . . .
The performance analysis was carried out analytically or through experiments. To predict
software performances, some works were interested in the use of virtual target architecture
such Instruction Set Simulator (ISS) component [82]. Others propose a fast estimation
model using analytical methods. Generally, these methods are based on abstract models
and cost functions to predict performances. They are frequently used for high level design
exploration [83],[91].
For hardware performance estimation, many techniques have been explored at di¤er-

ent levels of design abstraction. Some approaches were based on gate-level description
providing good accuracy. Others use behavioral description which leads to a less accurate
estimation.
The proposed estimation method is presented Figure 4.9. It is composed of two �ows

: SW-estimation and HW-estimation.

Figure 4.9: Estimation method, (a) HW-estimation, (b) HW-SW library, (c)
SW-estimation.

The goal of the HW-estimation is to provide a generic �ow adapted to di¤erent levels of
granularity (�ne, medium and coarse), di¤erent architectures (factorized or parallel) and
variable bit-width of coding. The proposed �ow is based on a library of control modules
fully characterized in terms of area, time, memory and DSP blocks. These models were

76

Chapter 4: Co-design methodology: HW-SW partitioning

re�ned several times until getting satis�ed accuracy. This was performed by comparing
the di¤erence between the synthesized and the estimated value until this di¤erence was
under a low threshold value. As shown in Figure 4.9(b), the developed HW-library is
composed of four levels of granularity [93]. The �rst level corresponds to the scalar
arithmetic operators such as adder, multiplier, subtractor. The second level is related
to the matrix operators. The third level consists in the functional modules used by the
control (abc-dq transformation, PI-regulator, SVM...) and the functional modules used
by the EKF observer (prediction, innovation, compensator. . .). Finally, the fourth level
corresponds to functional modules of higher hierarchy level such as current controller,
speed controller or the whole sensorless controller.
For SW-estimation, only the levels 3 and 4 are considered. Indeed, there are several

parameters that in�uence the execution time of the software modules. These parameters
depend on the used option for the Microblaze con�guration (ex. hardware or precompiled
multiplier), the used compiler, the optimization degree �xed in the compiler, the use of
C or assembly code, the locality and the type of the used memory. . .
Therefore, by lack of precision in the development of the processor model, the SW-

estimation of execution time and memory usage were made using pro�ling method. This
method consists in the use of a timer that allows the measurement of the number of
clock cycles taken by each SW module. It is worth to be noted that all the proposed
measurements were made in the following conditions below:
-Custom instructions such as hardware multiplier, divider and barrel shift were con-

�gured to increase the processor timing performances.
-A Five-stages of pipeline was chosen.
-All the data and program were implemented in an embedded SRAM blocks (BRAM).
- The compiler was used without any optimization option.

4.4 Fine granularity library

As said before, the �ne granulated level or the level 1 of the proposed library is constituted
of the basic scalar arithmetic operators (adder, subtractor, multiplier. . .) and the logic
functions (register, shift register, comparator. . .). All these operations are used frequently
in control applications and digital signal processing. The focus of this estimation process
is to give the area and the time features of each operators.
For the studied control application, the power consumption model was not considered.

Indeed, the power consumption of digital platforms presents only a very low fraction of
the drive.
As for the area estimation, the proposed models have been derived using regression

approach and curve �tting. For each operator, the relationship between the consumed
resources and the bit-width "N" have been de�ned. The proposed model is generic. We
remind that all modules are coded with a �xed point-format denoted by (i+f)Qf . where
i and f present respectively the integer and fractional part.
The estimated area is divided into two main parts: LUTs and FFs. The �rst part

considers all combinatory logic needed for example in arithmetic treatment. The second
one is related to all sequential treatment. Table 4.4 presents the obtained results.

77

Chapter 4: Co-design methodology: HW-SW partitioning

Relationship Bit-width/ Consumed resources
6�Bit LUTs FFs

Multiplier Ceil(1:5 �N2 + 3:5 �N � 31:6) �

Addition N + 2 �

Substraction N �

Multiplexer N �

register � N

Shift � N

Table 4.4: Fine granularity library estimation results (area)

Since the multiplier is a greedy operator in terms of consumed resources, designers
prefer, generally, the use of hardware multipliers. In Virtex-5 family, the proposed multi-
pliers are 25x18 asymmetrical hardware multipliers. The relationship between bit-width
of coding and the consumed hardware multiplier "HM" is expressed as below

HM = Ceil(
N

17
) � Ceil(N

24
) (4.1)

Based on the relation (4.1), the estimation results were compared to those measured
after achievement from the synthesis process. Figures 4.10 and 4.11 show the measured
and the estimated consumed resources for the multiplier. It shows a good �tting between
the measured area and the estimated one. The results present an average and a maximum
error respectively equal to 4% and 6%. It is an acceptable error of low impact in the
accuracy of our estimation. We note that the small di¤erence between the measured and

the estimated values in the case of hardware multiplier is due to its asymmetric nature.
These estimation results were also compared to the system generator estimator results
and good accuracy was proved.
For the time estimation, only latency is considered. The time models for basic op-

erators and Xilinx LogiCores are provided Table 4.5. We should note that the designer
must choose carefully the operating frequency "ClkHW" regarding the most net delay.

TClkHW =Max(net(Opi)) (4.2)

Where Opi is the operator i.

Operators Latency(CLK)
Addition/substraction 1

saturation/count 1

Divider M+R+5

25x18 Multiplier 3+Ceil(
N

17
) + Ceil(

N

24
)

Table 4.5: Latency estimation for basic operators

78

Chapter 4: Co-design methodology: HW-SW partitioning

where M=dividend width, R=fractional remainder width.

10 20 30 40 50 60 70 80
0

2000

4000

6000

8000

10000

Bit width

C
on

su
m

ed
 re

so
ur

ce
s(

6
B

it
LU

T)

Measured
Estimated

Figure 4.10: Consumed resources for a synthesized multiplier.

10 20 30 40 50 60 70 80
0

5

10

15

20

25

Bit width

25
x1

8
H

ar
dw

ar
e

m
ul

tip
lie

r

Estimated
Measured

Figure 4.11: Consumed resources for a hardware multiplier

4.5 Medium granularity library

The medium granularity level 2 contains matrix operators and other modules such as
saturator, counter and comparator. The area and time estimation of these modules is
presented Table 4.6.

6�Bit LUTs FFs Latency(Clock cycle)

Saturator Ceil(3:7 �N � 1:5) � 1

Counter Ceil(12:5 �N � 8:1) N 1

Comparator� 3 Ceil(3:1 �N � 4:2) � 1

Table 4.6: Medium granularity library

These models were veri�ed by comparing the estimations to post-synthesis measure-
ments. The results given Figure 4.12 proves a good �tting.

79

Chapter 4: Co-design methodology: HW-SW partitioning

0 50 100 150
0

50

100

150

200

250

300

350

400

450

500

Bit width

C
on

su
m

ed
 re

so
ur

ce
s(

6
B

it
LU

Ts
)

Saturator

0 50 100 150
0

200

400

600

800

1000

1200

1400

1600

Bit width

C
on

su
m

ed
 re

so
ur

ce
s(

6
B

it
LU

Ts
)

Counter

Estimated
Measured

Figure 4.12: Consumed resources function of bit width.

Besides, the sensorless control algorithm based on Kalman �lter uses matrix treat-
ments. These later are often subject of optimization (area, energy, time). Table 4.7
presents a comparison between the factorized and the parallel architecture implementa-
tion of a matrix multiplication. The dimension of matrices was set to four. The factor-
ization was based on the A3 methodology [44]. One considers that after every operation,
the result is saved via a register. More details in the developed architecture are provided
in [113] and Appendix-B.

Number of Operators
Parallel architecture Factorized architecture

Multiplier 64 4

Addition 48 3

register 112 17

Multiplexer 0 10

Total

Consumed resources

64 HM

1152 6�Bit LUTs
2464 FFs

8 HM

292 6�Bit LUTs
374 FFs

Latency (Clock cycle) 6 48

Table 4.7: Architecture performance of matrix multiplier(dimension=4 and bit-
width=22)

80

Chapter 4: Co-design methodology: HW-SW partitioning

4.6 Coarse granularity library

The coarse granularity library (level 3) is composed of functional modules such as the
abc-dq and dq-abc transformations, the PI regulator...Based on the modularity principle,
each of these module was developed separately allowing to be re-used in other control
applications.
In the considered application, this grain level seems to be the most appropriate to

be used in the HW-SW partitioning optimization process. Indeed, partitioning depends
strongly on the chosen granularity level. The use of a �ne-grained population of functional
modules, typically the arithmetic modules, can give good results in terms of optimization
but at the cost of a higher complexity of the treatment since the considered population
is large. Another important issue concerns the loss of physical meaning of the functional
modules to be optimized. Thus, using the level 3 modules, the number of blocks to be
partitioned is signi�cantly reduced and their physical meaning preserved. For this reason,
the characterization of level 3 modules is of prime importance. Figure 3.13 presents the
related metrics used for characterizing each module "Mi", both in hardware and software.

Figure 4.13: Features of the level 3 functional module Mi

Where

� Ai represents the consumed resources of module i, in the case of hardware imple-
mentation. It is expressed in terms of LUTs and FFs.

� Hi represents the size of the memory used by module i, in the case of software
implementation.

� thi represents the execution time taken by the module i when executed in HW.

� tsi represents the execution time taken by the module i when executed in SW.

� HMi represents the number of hardware multipliers or DSP blocks of the module
i, in the case of hardware implementation.

� Ii=Oi represent the number of Inputs / Outputs of the module i.

� TCOMi represents the communication time between module i and the other modules.

Each of these metrics is detailed below.

81

Chapter 4: Co-design methodology: HW-SW partitioning

4.6.1 Area estimation

The area estimation of each functional module depends mainly on two parameters: the
bit-width of coding and the degree of parallelism. For the �rst parameter, the setting
of �xed-point format is performed using �xed-point simulations as explained in section
3.4.4. While the degree of parallelism can be �xed according to the Data Flow Graphs
(DFG) of the module. This degree of parallelism is directly linked to the data dependency
of the corresponding DFG.
Based on the DFG, the factorization of repetitive operations can be performed using

the A3 methodology [44]. This approach targets to factorize the greediest operators
(multipliers). This leads to locally serialize the treatment and then achieve a maximum
of arithmetic operations with a number of operators �xed by the designer. As for the
parallel approach focuses on the exploitation of all the potential parallelism contained in
the studied algorithm. This leads to a reduced execution time but much more consumed
resources. The data transfer within the DFGs is ensured by the Control Flow Graph
(CFG).
To estimate the whole consumed resources of a given module Mi, we must estimate

the area taken by the two parts: the DFG and the CFG. Thus, the number of FFs can
be estimated based on the number of data registers used in the DFG and the �nite state
machine used in the CFG. The estimation of the LUTs is equal to the sum of the number
of LUTs used in every elementary operator "j" that constitute the module Mi. A similar
procedure is used to count the number of HW multiplier blocks. The consumed resources
"Ai " and hardware multipliers are then evaluated using the following relations:

Ai(N) =

8>>>>>><>>>>>>:

CFG =

(
LUTs =

P
Combinatorial_part(CFG)

Flip� Flop =
P
FFs(FSM)

DFG =

(
LUTs =

Pn
j=1 LUTs(operatorj(N))

Flip� Flop =
Pn

j=1 FFs(register(N))

(4.3)

HMi(N) =
nX
j=1

HMj(N) (4.4)

Where n is the number of elementary operators used in the functional moduleMi and
N the number of bits of coding.
As an example, Figure 4.14 presents the parallel and factorized DFG and CFG of a

dot product of 2 vectors of dimension 3

S(t) = x1(t):y1(t) + x2(t):y2(t) + x3(t):y3(t) (4.5)

Thus, each functional module can be synthesized at least in two ways depending on
the chosen degree of parallelism (a full parallel architecture and factorized one). The
derived consumed resources metric Ai and HMi are

Ai(N) =

(
Aif (N) case of Factorized DFG

Aip(N) case of Parallel DFG
(4.6)

82

Chapter 4: Co-design methodology: HW-SW partitioning

HMi(N) =

(
HMif (N) case of Factorized DFG

HMip(N) case of Parallel DFG
(4.7)

The �rst estimated value �Aif� is based on a factorized architecture using the A3

factorization methodology. The second estimated value �Aip�is based on a full parallel
architecture. The �HMif�is estimated in the case of a factorized architecture, else this
metric is expressed by �HMip�.

Figure 4.14: Parallel and factorized DFG and CFG of the dot product example.

The proposed estimation method was validated using several benchmarks. Tables 4.8
and 4.9 present a good �tting between estimated and measured consumed resources (in

83

Chapter 4: Co-design methodology: HW-SW partitioning

terms of LUTs and FFs) for di¤erent level 3 functional modules. It consists on factorized
architectures. These results show a good accuracy of the estimation. The maximum
and average error are respectively equal to 9% and 6%. The used number of bits N is
presented section 3.4.4

LUTs estimated LUTs measured Error(%)

abc� dq transformation 207 204 +1.47

dq � abc transformation 230 212 +8.49

PI regulator 80 90 -11.11

SVM 390 422 -7.58

Table 4.8: Estimation results in terms of LUTs

FFs estimated FFs measured Error(%)

abc� dq transformation 184 204 -9.8

dq � abc transformation 155 165 -6.06

PI regulator 120 110 +9.16

SVM 143 131 +9.09

Table 4.9: Estimation results in terms of FFs

4.6.2 Time estimation

The time estimation of each functional module Mi was performed both in hardware and
software. As indicated before, the time taken by the processor to execute a module was
measured by pro�ling method. This choice was made due to the lack of precision of
processor estimator model. From the hardware side, the estimation is more accurate and
the whole execution time can be expressed by equation (4.8). Hence, the execution time
is the result of the multiplication of system clock period "TclkHW " by the sum of the
control states used in the CFG and the latency of each elementary operator "j" used in
the DFG of the functional module Mi.

thi =

nX
j=1

latencyj +
X

control_state

!
� TclkHW (4.8)

Here again, the degree of parallelism a¤ects the execution time depending on the con-
sidered hardware DFG (parallel or factorized). Indeed, the serialization of the treatment
induces an increase of the CFG number of cycles, and consequently, the increase of the
total execution time.
The execution time of a functional module can be then expressed as below

84

Chapter 4: Co-design methodology: HW-SW partitioning

8><>:
thif HW case (Factorized DFG)

thip HW case (Parallel DFG)

tsi SW case

(4.9)

The whole execution time of the controller depends also on the communication process
between all the used functional modules. In fact, the communication between software
and hardware parts is very crucial. But, generally, the modeling of communication in-
terface are frequently neglected. This can however produce an overhead on architectural
performances, especially in the case of real-time applications.
To overcome this problem, we propose a communication model, as depicted Figure

4.15. It consists on four categories of communications. It is worth to be noted that in the
case of hardware-software communication, all the data exchanged are extended to 32-bit.
The proposed communication model is given as follows
1-Communication « Chsi » is the communication time from a hardware module « Mi

» to a software module « Mi+1» . This latter will ensure the reading of outputs data
"Oi" of the module « Mi » . Thus the Chsi can be expressed as below

Chsi = Read_cycle �Oi (4.10)

Figure 4.15: Communication models

85

Chapter 4: Co-design methodology: HW-SW partitioning

2- Communication «Cshi » is the communication time from a software module « Mi

» to a hardware module «Mi+1» . The module « Mi» will write its data outputs on the
inputs registers of module «Mi+1» . The Cshi is expressed as below

Cshi = Write_cycle �Oi (4.11)

3-Communication «Chhi » is the communication time from a hardware module « Mi

» to a hardware module «Mi+1» . All data are transmitted simultaneously in one clock
cycle.
4-Communication «Cssi » is the communication time from the software module « Mi

» to the software module «Mi+1» . We consider that in every clock cycle a transfer of
data is performed. Then, the communication execution time is de�ned by

Cssi = Clock_cycle �Oi (4.12)

Read/write cycle has been �xed to 3 clock cycles. This choice is based on the timing
diagram of Microblaze PLB bus [73]. Author is aware that this communication model is
simple that can be improved in future work.

4.6.3 Memory use

The memory use "Hi" of each functional module Mi was measured based on a pro�ling
approach. We note that all modules were implemented using C language and with 32Q30
�xed-point format.

4.6.4 Parallelism parameter

The parallelism level is important for real time applications. The use of SoC system that
includes HW resources and a processor can provide simultaneous and parallel execution of
several functional modules. In this sense, we de�ne a parallelism parameter �y�for each
module. This parameter depends on the scheduling and the data dependency between
modules. It is also mainly based on the designer ability to de�ne which module «Mi» can
be executed simultaneously with module «Mi+1» . As shown in Figure 4.16, we de�ne this
parameter as a vector yi = [y1; y2:::yn�1], where yi 2 f1; 0g, with yi=1(respectively yi = 0)
indicates that «Mi» can be executed in parallel (respectively sequentially) of «Mi+1» . In
this case, the maximum execution time of the two modules is only considered. A parallel
execution of modules can be assigned to two modules both implemented in hardware or
one in software and the other one in hardware. The case of SW-SW modules was not
taken into account. Indeed, the studied control application does not requires the use of
MPSoCs approach because of its medium range complexity.

86

Chapter 4: Co-design methodology: HW-SW partitioning

Figure 4.16: Parallelism parameter.

Finally, it has to be mentioned that the power estimation is also an important metric,
especially for portable applications (with critical battery life time) and in some way for
applications functioning at high temperature. This metric was not investigated in this
work, but, it is a perspective.

4.6.5 Benchmark: EKF Sensorless speed controller

In order to validate the proposed methodology, a benchmark based on the EKF sensor-
less speed controller has been chosen. To e¢ ciently manage this partitioning problem,
the synoptic of the whole EKF-based sensorless speed controller was translated into an
intermediate representation based on the Data Flow graph (DFG) .
As shown in Figure 4.17, the DFG is denoted by a set of nodes and edges. The nodes

present the functional modules "Mi" while the edges denote the data dependencies be-
tween modules. Additionally, the potential parallelism between modules and the number
of the exchanged data are shown. Moreover, each of the modules has a number re�ecting
its natural scheduling order in the control process. The ADC interface module and the
SVMmodule are implemented in HW. Indeed, the resolution and functional performances
required by these modules cannot be provided by SW. Thus they are not considered in
the partitioning process.

87

Chapter 4: Co-design methodology: HW-SW partitioning

Figure 4.17: The DFG of the EKF-based sensorless speed controller.

Tables 4.10 and 4.11 present the set of the metrics of each functional module.

88

Chapter 4: Co-design methodology: HW-SW partitioning

Modules«Mi» Aif HMif AiP HMip

ADC

Interface

54LUT

75FF
0HM

Voltage

Interface (VI)

15LUT

41 FF
2HM

2LUT

44FF
6HM

abc_dq
207LUT

184FF
2HM

165LUT

92FF
12HM

Pr ediction
314LUT

198FF
2HM

144LUT

352FF
20HM

Jacobian

matrix

68LUT

110 FF
2HM

24LUT

110 FF
8HM

Compensator

P1

1336LUT

704FF
8HM

2688LUT

11880FF
256HM

Compensator

P2

1336 LUT

704FF
8HM

1632 LUT

3432FF
192HM

Compensator

P3

1443 LUT

1443FF
8HM

1259LUT

2169FF
100HM

Compensator

P4

1688LUT

1056FF
8HM

1912 LUT

2574FF
192HM

abc_dq
207LUT

184FF
2HM

165LUT

92FF
12HM

Innovation
208LUT

220FF
2HM

236LUT

396FF
16HM

P�PI
regulator

124 LUT

160FF
2HM

84LUT

160FF
6HM

abc_dq
207LUT

184FF
2HM

165LUT

92FF
12HM

q� PI

regulator

80 LUT

120FF
2HM

64LUT

120FF
4HM

d� PI

regulator

80 LUT

120FF
2HM

64LUT

120FF
4HM

dq_abc
230LUT

155FF
1HM

191LUT

65FF
8HM

SVM

390LUT

143FF

0HM

Table 4.10: Consumed resources of the EKF-based sensorless control algorithm

89

Chapter 4: Co-design methodology: HW-SW partitioning

Modules«Mi» yi thip thif tsi Ii=Oi Hi

ADC int erf ace 0 240(100Mhz) � 3/3 �

Voltage int erf ace(VI) 1 5 11 256 4/2 5

Jacobian

matrix
0 6 8 840 4/16 6

abc_dq 1 10 27 380 3/2 44

abc_dq 0 10 27 380 3/2 44

Prediction 1 8 23 327 6/4 9

Compensator

P1
0 15 101 1100 48/16 37

Compensator

P2
0 15 101 1310 24/4 31

Compensator

P3
0 89 183 1385 4/8 30

Compensator

P4
0 15 101 1514 32/16 42

Innovation 0 8 25 414 10/4 10

P�PI
regulator

0 12 21 276 2/1 5

abc_dq 0 10 27 380 3/2 43

q� PI

regulator
1 10 14 173 2/1 4

d� PI

regulator
0 10 14 173 2/1 4

dq_abc 0 9 25 380 3/3 44

SVM � 4 � 3/3 �

Table 4.11: Execution time of the EKF-based sensorless control algorithm

All the times in Table 4.11 are given in number of clock cycles.
Figures 4.18 to 4.21 provide comparison of the total consumed resources and exe-

cution time of the studied application (3 architectures are investigated (HW factorized
architecture, HW parallelized architecture and SW Microblaze architecture). Regarding
the two HW architecture, it is clear that the parallel solution consumes more in terms
of LUTs, FFs and hardware multipliers than the factorized one. But, the execution time
is twice as higher. On the other hand, the SW solution consumes less area but it takes
much more execution time to compute the studied algorithm. As a conclusion, each of
these extreme cases (pure software and pure hardware) have some advantages and some
limits. That is the reason why, in the case of area-constrained applications, an e¢ cient
HW-SW partitioning is necessary.
Thus, all the metrics of each functional module will be integrated to the partitioning

algorithm to �nd the optimal HW-SW solutions which respect the functional constraints

90

Chapter 4: Co-design methodology: HW-SW partitioning

(maximum execution time "TAlg") and architectural constraints (available area, hardware
multipliers, memory use).

HWFactorized HWParallel SW
0

2000

4000

6000

8000

10000

C
on

su
m

ed
 re

so
ur

ce
s(

6
B

it
LU

T)

Figure 4.18: Consumed resources in terms of 6-Bit LUTs of the EKF-based sensorless
speed controller.

HWFactorized HWParallel SW
0

0.5

1

1.5

2

2.5
x 104

Architecture

C
on

su
m

ed
 re

so
ur

ce
s(

FF
)

Figure 4.19: Consumed resources in terms of FFs of the EKF-based sensorless speed
controller.

HWFactorized HWParallel SW
0

200

400

600

800

1000

H
ar

dw
ar

e
m

ul
tip

lie
r (

D
S

P
 b

lo
ck

s)

Available DSP blocks
(V5 ML 506)

Figure 4.20: Consumed resources in terms of Hardware Multiplier (HM) of the
EKF-based sensorless speed controller.

91

Chapter 4: Co-design methodology: HW-SW partitioning

HWFactorized HWParallel SW
0

2000

4000

6000

8000

10000

E
xe

cu
tio

n
tim

e(
C

lo
ck

 c
yc

le
)

Figure 4.21: Execution time of the EKF-based sensorless speed controller.

4.7 HW-SW partitioning

The principle of HW-SW partitioning is to �nd optimal solutions among all the design
alternatives which satisfy the requirements and the constraints of the studied application.
The search for optimal partitioning is always guided by several constraints (performance,
area, time. . .).
The partitioning problem is not new. It has been explored by numerous approaches.

The most popular partitioning algorithms are heuristic [84],[88]. These approaches vary
depending on several criteria as indicated below

-Granularity level
The choice of the granularity level (�ne, medium and coarse grains) a¤ects the perfor-

mances of the partitioning algorithm. Indeed, the use of �ne-grain provides larger number
of feasible solutions. But in the same time, it presents high communication overheads
leading to less accurate solutions [89], [90]. In this present work, the coarse grain (func-
tional control modules such as PI-regulator, abc-dq transformation. . .) was adopted in
order to respect the modularity principle and to avoid communication overhead.

-Objectives and constraints
An optimization problem focuses generally to reach one or several objectives. Addi-

tionally, the application requirements must be ful�lled without any constraint violations.
The studied optimization problem consists on multi-objectives optimization problem.
[91]-[97]. The goal is to minimize multiple objectives (area, time, memory use, hardware
multiplier use). This optimization problem is also limited by architectural and functional
constraints:
-The architectural constraints include the area, memory and HW multiplier limits

inherent to the used digital platform (here the features of Virtex-5 (XC5VSX50T)).
-The functional constraints present the maximum execution time which must not be

exceeded in order to respect certain stability margin to the controlled system.
-Search optimization algorithm
Numerous optimization algorithms were used for HW-SW partitioning. They can be

divided into two main groups: the exact and the heuristic algorithms. As an example,
the �rst group integrates branch-and-bound technique and integer linear programming
[98],[99]. Most of the time, it deals with the resources-constrained scheduling. These
methods are quite e¤ective and suitable to solve simple problems. But, these methods

92

Chapter 4: Co-design methodology: HW-SW partitioning

are becoming inappropriate especially for NP-hard problems [84].
The second group integrates heuristic algorithms which are well adapted to complex

partitioning problem and many researchs were focused on these types of methods [100]-
[102]. Among them is the Simulated Annealing (SA), the tabu search and the Genetic
Algorithm (GA). In [96], simulated annealing was used to generate di¤erent partition-
ing solutions using �ne-grained basic block level. It is based on a generic probabilistic
metaheuristic for the global optimization problem of locating the global optimum. A
partitioning approach based on tabu search algorithm was studied in [103] and [104]. It
aims to avoid local optima by using memory structures. The aim was to �nd the best
trade-o¤ between the communications overhead between SW and HW parts and the re-
duction of the execution time. The GA has been also used widely in several HW-SW
partitioning scenarii [105]-[107]. The key idea of this algorithm is to use the evolutionary
genetic principle [108].
This algorithm is well-adapted to multi-objective optimization problems which is the

case of our study. Thus it will be used in the following to ensure the HW-SW partitioning
of control modules.

4.8 Formalization of the HW-SW partitioning prob-
lem

To handle HW-SW partitioning, a simple computing model was de�ned as an application
composed by a set of n functional modules, denoted as M = fM1;M2; :::Mng :
Figure 4.22 presents an implementation example for three functional modules. The

implementation of each module can be made either in HW or in SW. All communi-
cation models are provided to ensure the data exchange between modules. We as-
sume (x1; x2; :::xn) is an available solution of the HW-SW partitioning problem, where
xi 2 f1; 0g ; xi = 1 denotes a HW implementation of the module i and xi = 0 denotes a
SW implementation.

Figure 4.22: Computing model for HW-SW partitioning

93

Chapter 4: Co-design methodology: HW-SW partitioning

The consumed resources �Area� present the total consumed resources occupied by
each module implemented in HW. The use of the Microblaze soft processor core requires
the consideration of the consumed resources taken by the processor. It includes the area
occupied by the Microblaze itself which depends on the chosen con�guration options
(timer core, interrupt core, communication buses). The whole consumed resources by the
software platform (Microblaze, hardware divider, buses (PLB, FSL)) are expressed by
�A�p�. Thus the execution of only one module in SW requires the addition of processor
area. The consumption of hardware multiplier blocks "HMblocks" are also evaluated
based on the same principle of area evaluation. Con�guring hardware multiplier, in the
Microblaze, leads to the use of some hardware multiplier blocks expressed by �HM�p�.
The total consumed resources can be formalized as

Area =
nX
i=1

xi � Ai + [(1� xi) or (1� xi+1) ::: (1� xn)] � A�p (4.13)

HMblocks =
nX
i=1

xi �HMi + [(1� xi) or (1� xi+1) ::: (1� xn)] �HM�p (4.14)

The total memory occupation can be expressed by equation (4.15). It corresponds to
the sum of memory use for each module in the case of a software implementation. It is
expressed in Kilo bit (Kb).

Memory =
nX
i=1

(1� xi) �Hi (4.15)

The total execution time of the control algorithm to be implemented includes execu-
tion time of modules implemented in HW and SW along with their communication times.
Taken into account the parallelism parameter, the total execution time can be formalized
as follows

Tex =
Pn�1

i=1

2666666664

yi:xi:xi+1:max(thi; thi+1)

+yi:xi:(1� xi+1):max(thi; tsi+1)
+yi:(1� xi):xi+1:max(tsi; thi+1)
+yi:yi�1:(1� xi):(1� xi+1):(tsi + tsi+1)
+yi:yi�1:xi:thi

+yi:yi�1:(1� xi):tsi

3777777775
+ yn�1 [xn:thn + (1� xn):tsn] + TCom

(4.16)

where; TCom =
n�1X
i=1

yi:

26664
(1� xi):(1� xi+1):Cssi

+xi:xi+1:C
hh
i

+(1� xi):xi+1:Cshi
+xi:(1� xi+1):Chsi

37775 (4.17)

94

Chapter 4: Co-design methodology: HW-SW partitioning

For a given constraints in terms of available area, memory and maximum execution
time, the optimization problem of the resource allocation can be written as follows
-Objective functions :

Minimize

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

Area =
Pn

i=1 xi:Ai + (1� xi) or (1� xi+1) ::: (1� xn) :A�p

HMblocks =
Pn

i=1 xi:HMi + (1� xi) or (1� xi+1) ::: (1� xn) :HM�p

Memory =
Pn

i=1 (1� xi) :Hi

Tex =
Pn�1

i=1

2666666664

yi:xi:xi+1:max(thi; thi+1)

+yi:xi:(1� xi+1):max(thi; tsi+1)
+yi:(1� xi):xi+1:max(tsi; thi+1)
+yi:yi�1:(1� xi):(1� xi+1):(tsi + tsi+1)
+yi:yi�1:xi:thi

+yi:yi�1:(1� xi):tsi

3777777775
+yn�1 [xn:thn + (1� xn):tsn] + TCom

(4.18)

-Constraints :

Subject

8>>><>>>:
Area < %S

Memory < H

HMblocks < HM

Tex < TA lg

S, H andHM are, respectively, the area, memory size and Hardware Multiplier avail-
able on the digital platform (Virtex-5, XC5VSX50T). "TA lg" corresponds to the maximum
allowable execution time with regard to the desired control bandwidth, sampling period
and phase margin (see chapter 3).
In the following, the objective is to �nd the optimal HW-SW partitioning with lower

execution time, area, memory and hardware multiplier use with respect to the Virtex-5
available resources. To do this, the GA was chosen for its e¢ ciency and its recognized
performances.

4.9 Genetic Algorithm : NSGA-II

The use of Genetic Algorithms (GA) in solving optimization problems was introduced,
for the �rst time in 1975, by John Holland. This algorithm is inspired by Darwin�s
theory of evolution: natural selection of individual variations. Hence, it is based on
biological phenomena. Such heuristics are very well suited for problems with multi-
objective optimization goals. It has been successfully used for solving several problems
in the �eld of VLSI systems such as the placement / routing, the optimization code for
the DSP, the area-time optimization of FPGA design [109]-[111]. The GA is divided into
two main categories [112]:

95

Chapter 4: Co-design methodology: HW-SW partitioning

� Approaches that use aggregating functions: it is based on the reduction of the
multi-objective problem to mono-objective one, by the combination of the objective
functions. The main drawback of this approach is that it does not generate proper
Pareto-optimal solutions in the presence of non-convex search spaces.

� Pareto-based approaches: The main principle is to �nd the set of individuals
in the population that are Pareto non-dominated by the rest of the population of
higher rank. The process is repeated until the ranking of the whole population is
performed. In this sense, the Non-dominated Sorting Genetic Algorithm (NSGA-II)
is one of the most promising.

The Non-dominated Sorting Genetic Algorithm (NSGA-II) is used for HW-SW
partitioning under multiple objectives and constraints. It aims to �nd out the Pareto
optimal front of the studied problem. The NSGA-II is characterized by a new ranking
function. It classi�es the candidate solutions considering all the objectives. Comparison
between NSGA-II and Simple GA (SGA), which used the weight sum to convert the
multi-objectives problem to a single objective, shows that the NSGA-II provides faster
convergence. On the other hand, one important feature of the NSGA-II is the elitism.
This means that the best solutions within one population are conserved for the next
generation. After that, the population random selection (mutation) will guarantee the
diversity of the population. This procedure is iterated until �nding the Pareto-optimal
front. So, the principle of NSGA-II is to compare each solution with the others in order
to see whether it is dominated or not. Thus, it performs (m.N) comparison, where N is
the number of populations and m is the number of objectives.

4.9.1 Principle

Genetics have revealed the existence of several operations within organism resulting in
gene �ow. These operations occur during the reproductive phase when the chromosomes
of two organisms are merging. Figure 4.23 presents the di¤erent phases of the NSGA-II
algorithm, that are explained below

Figure 4.23: Genetic algorithm principle.

96

Chapter 4: Co-design methodology: HW-SW partitioning

� Initialization
At the beginning, the NSGA-II uses an initial population consisting of a set of
solutions randomly generated. These individuals (or chromosome) will be evaluated
during the evaluation step.

� Evaluation
It consists in the evaluation of the performance of each individual. Thus the solu-
tions are sorted according to the considered objectives and constraints. The aim
is that a ranking selection method can highlight best solutions. Then, the non-
dominated solutions present the Pareto- optimal front.

� Selection
The selection is made by the determination of individuals which are more likely to
get best results. This process is analogous to the process of natural selection, where
strongest individuals are best suited to win the competition of reproduction, while
less suitable die before breeding.

� Crossover
During this operation, two chromosomes exchange some parts of their genes, as
shown in Figure 4.24. There are several crossing points. The occurrence probability
"Pc"of crossover between two chromosomes is an algorithm parameter. It is often
applied to a high rate (90%).

Figure 4.24: Crossover operator.

� Mutation
In the same way as crossover, the mutation rate "Pm" is generally �xed between
0.1% and 1%. It aims to substitute randomly a gene, within a chromosome, by
another. It is necessary to choose the rate relatively low so as not to fall into a
random search and preserve the evolution principle.

4.9.2 NSGA-II con�guration

The con�guration parameters of the NSGA-II algorithm are presented in Table 4.12.
The number of individuals corresponds to the number of functional modules. In our case,
there are 15 modules (see Figure 4.17).

97

Chapter 4: Co-design methodology: HW-SW partitioning

Parameters value

Generations 200

Population size 200

Pc 1%

Pm 90%

Table 4.12: GA con�guration

The estimated performances of each functional module were introduced to the NSGA-
II optimization algorithm. This latter is running under Matlab workspace. The following
considerations were taken into account:

� From area optimization point of view, only the factorized DFGs of control module
were considered by the HW-SW partitioning process.

� To perform multiplication, the use of hardware multiplier was privileged leaving
FPGA logic elements to perform others functions.

� Because of the intensive computational nature of the studied algorithm, only the
area in terms of LUTs were considered for the HW-SW partitioning. In other
words, the LUT elements present the most meaningful statics for comparing logic
utilization between di¤erent technologies (Xilinx, Actel and Altera). More details
are provided in the Appendix-C.

4.10 HW-SW partitioning results

As �rst stage of validation, the sensibility of the partitioning results with regard to the
number of generations was studied. The NSGA-II algorithm was executed using the same
benchmark (EKF sensorless speed controller) with 200 and 600 generations. Figure 4.25
presents the partitioning results for unconstrained resources and time. It shows the best
trade-o¤ between the four considered objectives (area, time, hardware multiplier and
memory use). The dominate solutions constitute the Pareto-optimal front including all
the set of optimal solutions.
It can be noted also that the number of candidate solutions increases signi�cantly ac-

cording to the iteration numbers. This is a main characteristic of the heuristic algorithms
that are re�ned by sequential iterations. This provides more solutions but leads also to
the increase of the NSGA-II execution time. In our case, the number of generations was
set to 200 which ensures a good space exploration of feasible solutions and an acceptable
execution time of the NSGA-II algorithm.

98

Chapter 4: Co-design methodology: HW-SW partitioning

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

2000

4000

6000

8000

10000

Consumed resources(6Bit LUTs)

E
xe

cu
tio

n
tim

e(
C

lo
ck

 c
yc

le
)

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

20

40

60

Consumed resources(6Bit LUTs)

25
x1

8
H

ar
dw

ar
e

m
ul

tip
lie

r

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

100

200

300

400

Consumed resources(6Bit LUTs)

M
em

or
y

us
ag

e(
K

b)

600 Individuals
200 Individuals

Dominate solution

Indifferent solution

Figure 4.25: HW-SW partitioning results.

In the following, the trade-o¤ (area-time) is taken to evaluate solutions. The impact of
communication time and parallelism parameter has been presented in Figure 4.26. We
note that without the consideration of communication time, the HW-SW solutions have
less execution time. But, in actual embedded system, the overhead of communication is
present. Thus, it must be considered in the partitioning process.
The second test highlights the advantage of using parallelism parameter which permits

the reduction of execution time. This is due to the inherent parallelism of proposed SoC
architecture which provides the possibility to execute in parallel two HW-HW, SW-HW,
and HW-SW functional modules. We remind that SW-SW modules parallelism was not
taken into account in this work.

99

Chapter 4: Co-design methodology: HW-SW partitioning

2000 4000 6000 8000
0

2000

4000

6000

8000

10000

Consumed resources(6Bit LUT)

E
xe

cu
tio

n
tim

e
(C

lo
ck

 c
yc

le
)

2000 4000 6000 8000
0

2000

4000

6000

8000

10000

Consumed resources(6Bit LUT)
E

xe
cu

tio
n

tim
e

(C
lo

ck
 c

yc
le

)

w ith communication
w ithout communication

w ith parallel parameter
w ithout parallel parameter

Figure 4.26: Communication and parallelism parameter impact on the HW-SW
partitioning.

As far the HW-SW partitioning validation is concerned, the tests were performed
based on three constraints, described below and Figure 4.27.

� Technological constraints: The constraints related to the use of di¤erent technology
types (Altera, Xilinx and Actel) are considered. It permits the evaluation of the
partitioning results respecting di¤erent technologies such as low /high cost Xilinx
devices, Altera devices and Actel devices.

� Functional constraints: All the partitioning tests were performed for the two types
of systems (presented in section 3.2) : low sampling rate and high sampling rate
control systems. Thus, the maximum allowable execution time constraint varies
regarding to the acceptable stability margin limits for the studied control systems.
The high sampling rate control system concerns applications where time constraints
are severe. In our case, we have considered a high sampling rate control system using
switching frequency equal to 100 kHz. In the previous chapter, the study of time
delay impact in the control performance showed that time delay "TAlg" must not
exceed 11.66�s to get a stability margin higher than 60 �. For the low sampling rate
control system, a switching frequency equals to 20 kHz was chosen. The stability
constraints leads to maximum time delay equal to 58.33�s.

� Environmental constraints: The type and the environment of the studied appli-
cation have often an in�uence on the choice of the digital technologies and the
operating Clock frequency. In typical aircraft applications, the need to use a non-
volatile technology such as Actel ones is mandatory. The environment conditions
(high or low temperature) impact also the choice of operating frequency. For high
temperature condition which is often occurred in space and aircraft applications,
designers are obliged to reduce the operating clock frequency.

100

Chapter 4: Co-design methodology: HW-SW partitioning

Figure 4.27: Tests strategies.

Based on Xilinx FPGA "Virtex-5", the partitioning tests were performed for two
con�gurations : use of a soft processor core "Microblaze" and use of a hard processor
core "Power-PC440". We note that the Microblaze associated to its communication bus,
timer and interrupt cores consumes 2428 6-Bit LUTs. In the case of the hard core,
we consider only the consumed resources taken by the communication bus and the other
peripherals.
A speedup factor was also de�ned allowing the evaluation of the Pareto-front solutions.

This factor presents the ratio between the execution time of any HW-SW solution with
regard to the execution time of a full SW implementation, taken as baseline.
Figures 4.28 and 4.29 present the HW-SW partitioning results. They present all the

possible �nal architectures that can be realized, for the two con�gurations. We note that
the NSGA-II algorithm provides a space exploration covering a good number of feasible
solutions. Thus, designer can choose the appropriate allocation and the scheduling which
best corresponds to his application.
Using Microblaze and in the case of high sampling rate control system, only one feasi-

ble solution (the pure hardware one) is possible because of the severe timing constraints.
So in this case, it makes sense to use pure hardware architecture. For a less severe timing
constraint, a wider range of solutions is possible.
Using Power-PC440, the partitioning results show that for the same design and in the

case of high sampling rate, more results are provided. The candidate solutions are no
longer restricted to the full hardware solution and more solutions can be realized which
is not the case of Microblaze-based implementation.
In the following, we consider an area-constrained space exploration: the allowable

consumed resources are �xed to 7000 6-Bit LUTs. The rest of the SoC available
resources will be used to integrate other functions such as monitoring, communication
process that are not presented here. It is worth to be noted that this area constraint
corresponds to the resources o¤ered by a low cost Spartan-6 (XC6SLX16, 2278 Slices). In

101

Chapter 4: Co-design methodology: HW-SW partitioning

this case, a HW-SW optimization process is mandatory to implement the speed sensorless
control since a full hardware implementation can not be made by lack of area resources.

2000 3000 4000 5000 6000 7000 8000
0

5000

10000

E
xe

cu
tio

n
tim

e
(C

lo
ck

 c
yc

le
s)

Area (6Bit LUTs)
2000 3000 4000 5000 6000 7000 8000

0

10

20

S
pe

ed
up

 fa
ct

or

Sl: Stability limit=58.33µs

Area Constraint

Sh:Stability limit=11.66µs
S4m

Figure 4.28: Partitioning solutions using Virtex-5 embedded Microblaze
(XC5VSX50T,CLK=100MHz).

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5000

10000

E
xe

cu
tio

n
tim

e
(C

lo
ck

 c
yc

le
s)

Area (6Bit LUTs)
0 1000 2000 3000 4000 5000 6000 7000 8000

0

5

10
S

pe
ed

up
 fa

ct
or

Sl: Stability limit=58.33µs

Area Constraint

Sh:Stability limit=11.66µs

S4p

Figure 4.29: Partitioning solutions using Virtex-5 and PowerPC (XC5VFX30T,
CLK=100MHz).

Tables 4.13 and 4.14 present some candidate solutions based on, respectively, Microb-
laze and Power-PC440. These results show that hardware accelerators can provide a

102

Chapter 4: Co-design methodology: HW-SW partitioning

signi�cant speedup with respect to the software baseline. The scheduling diagrams of the
best solutions according to the area (7000 6-Bit LUTs) and time constraints (TAlg), for
low sampling rate control system, are presented Figures 4.30 and 4.31.

Binary

individual

A

(LUTs)

Tex

(Clock cycle)

Memory

(Kb)

25x18

HM

speedup

factor

S1m 11111100011111011 6220 4502 102 31 2.13

S2m 11111100011111111 6300 4341 98 33 2.21

S3m 11111011001111101 6740 4158 125 38 2.31

S4m 11111011001111111 6970 3800 32 39 2.52

Table 4.13: Some of the solutions in the case of Microblaze (Virtex-5, XC5VSX50T)

Binary

individual

A

(LUTs)

Tex

(Clock cycle)

Memory

(Kb)

25x18

HM

speedup

factor

S1p 11111011101111111 6491 1759 51 43 3.26

S2p 11111011011011111 6612 1721 45 41 3.33

S3p 11111111101111111 6805 1658 42 45 3.46

S4p 11111111011111011 6971 1557 35 43 3.68

Table 4.14: Some of the solutions in the case of Power-PC(Virtex-5, XC5VFX30T)

Figure 4.30: Scheduling diagram of the optimal solution "S4m" using Virtex-5
(XC5VSX50T) embedded the Microblaze.

103

Chapter 4: Co-design methodology: HW-SW partitioning

Figure 4.31: Scheduling diagrams of the optimal solution "S4p" using Virtex-5
(XC5VFX30T) and Power-PC440.

The evaluation of HW-SW partitioning algorithm was extended to other SoC plat-
forms: low cost Xilinx platforms (Spartan-3E), low and high cost Altera platforms
(Cyclone-II and Stratix-III) and Actel platforms (ProAsic-3). These tests provide to
the designer an idea of the di¤erent feasible solutions using these platforms. The corre-
sponding metrics of each functional module and the area constraints (7000 6-Bit LUTs)
were recalculated, for each platform, based on the following relation (see Appendix-C)

8>>><>>>:
For Spartan family Slice = 1:5 6�Bit LUT
For Altera Startix� III family ALM = 1:84 6�Bit LUT
For Altera Cyclone family (ALM = 2:5 LE) LE = 0:73 6�Bit LUT
For Actel ProAsic family V ersatile = 0:25 6�Bit LUT

(4.19)

Figure 4.32 presents the partitioning results using Spartan-3E 3S1600E (14752 slices,
36 (18x18) hardware multipliers). The presented results were performed using Microb-
laze. We note that there is no solution for the high sampling rate control system. For the
low sampling rate system, some solutions are provided. The number of hardware multi-
plier is limited to 36 which in�uences the number of the proposed partitioning results
and limits the speedup factor.
The candidate solutions are presented by Table 4.15. The scheduling diagram of best

solutions according to the area and time constraints is presented by Figure 4.33.

104

Chapter 4: Co-design methodology: HW-SW partitioning

1500 2000 2500 3000 3500 4000 4500 5000 5500
0

5000

10000
E

xe
cu

tio
n

tim
e

(C
lo

ck
 c

yc
le

s)

Area (Slices)
1500 2000 2500 3000 3500 4000 4500 5000 5500

0

2

4

S
pe

ed
up

 fa
ct

or

Area constraint

Sl:Stability limit=58.33µs

Sh:Stability limit=11.66µs

S4s

Figure 4.32: Partitioning solutions based on Spartan-3 embedded Microblaze
(CLK=100MHz).

Binary

individual

A

(Slices)

Tex

(Clock cycle)

Memory

(Kb)

18x18

HM

speedup

factor

S1s 11111100011111111 4280 4341 99 33 2.21

S2s 11111011001111001 4524 4317 130 36 2.22

S3s 11110011001111011 4542 4311 129 35 2.23

S4s 11111011001011011 4596 4230 91 35 2.27

Table 4.15: Some of the solutions using Microblaze with Spartan-3 FPGA

Figure 4.33: Scheduling diagram of the optimal solution "S4s" using Spartan-3
embedding the Microblaze.

105

Chapter 4: Co-design methodology: HW-SW partitioning

Figures 4.34 and 4.35 present the partitioning results using a low cost solution from
Altera company �Cyclone-II EP2C50 (50528 LEs, 86 (18x18) hardware multiplier)�and
a high cost Altera solution �Startix-III EP3SL50(19000 ALMs, 216 (18x18) hardware
multiplier)�. The soft processor core "Nios-II/f" is used in these partitioning tests. It
consumes up to 900 ALMs[75].

1000 1500 2000 2500 3000 3500 4000 4500
0

5000

10000

E
xe

cu
tio

n
tim

e
(C

lo
ck

 c
yc

le
s)

Area (ALMs)
1000 1500 2000 2500 3000 3500 4000 4500

0

10

20

S
pe

ed
up

 fa
ct

or

Area constraint

Sl:Stability limit=58.33µs

Sh:Stability limit=11.66µs
S4a

Figure 4.34: Partitioning solutions based on Stratix-III embedded Nios-II/f
(CLK=100MHz).

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

5000

10000

E
xe

cu
tio

n
tim

e
(C

lo
ck

 c
yc

le
s)

Area (LEs)
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

0

10

20

S
pe

ed
up

Area constraint

Sl:Stability limit=58.33 µs

Sl:Stability limit=11.66µs

S4c

Figure 4.35: Partitioning solutions based on Cyclone-II embedded Nios-II/f
(CLK=100MHz).

106

Chapter 4: Co-design methodology: HW-SW partitioning

Some potential solutions are presented Table 4.16 and 4.17. For the two cases (Low/High
digital platform), the scheduling diagrams of the best solutions according to the area and
time constraints are presented Figure 4.36 and 4.37.

Binary

individual

A

(ALMs)

Tex

(Clock cycle)

Memory

(Kb)

18x18

HM

speedup

factor

S1a 11111101011011111 3664 3440 72 41 2.79

S2a 11111101011111011 3687 3332 71 41 2.88

S3a 11111100111111011 3746 3285 71 41 2.92

S4a 11111001011010011 3790 3124 68 43 3.07

Table 4.16: Some of the solutions based on Stratix-III

Binary

individual

A

(LEs)

Tex

(Clock cycle)

Memory

(Kb)

18x18

HM

speedup

factor

S1c 11111000111111111 8848 3456 77 41 2.77

S2c 11111101011111011 9022 3333 71 41 2.88

S3c 11111101011111111 9131 3170 67 43 3

S4c 11111100111111111 9278 3124 68 43 3.07

Table 4.17: Some of the solutions based on Cyclone-II

Figure 4.36: Scheduling diagram of the optimal solution "S4a" using Stratix-III
embedded Nios-II/f.

107

Chapter 4: Co-design methodology: HW-SW partitioning

Figure 4.37: Scheduling diagram of the optimal solution "S4c" using Cyclone-II
enbedded Nios-II/f.

Based on the presented timing diagrams, it can be noticed that there are always one
or more extensive matrix computation modules executed in SW. These modules (Comp
P1, Comp P2, Comp P3, and Comp P4), used in the EKF algorithm, are characterized
by a high consumed resources in terms of area and hardware multipliers. As we deal with
a resources-constrained scheduling, the NSGA-II aims to �nd simultaneously the optimal
scheduling (minimizing the execution time) with regard to the area constraints. Placing
these greedy modules in SW allows respecting the considered area constraints while not
impacts too much the execution time.
Besides, the aircraft and aerospace applications need the use of Actel/Microsemi tech-

nology due to its suitable features (Non-volatile Flash technology, SEU immunity). But,
comparing to other technologies such as Xilinx and Altera, Actel/Microsemi technology
o¤ers less logic resources. In addition, it does not provide hardware multiplier and hard-
ware divider blocks. Thus, all multiplications are implemented using only logic elements
which presents a signi�cant increase of the area. This will implies also a long latency
because of critical path of multiplication.
In the following, the tests were made using ProASIC3 (A3P1000) platform embedded

the soft processor core "Cortex-M1". It is worth to be noted that during these tests, the
operating clock frequency was �xed to 65MHz which is the maximum allowable operating
frequency for the Cortex-M1. This latter can be implemented in the FPGA matrix using
4435 tiles.
In this case, the execution time constraints of the two studied systems can be expressed

as follow:
-For the �rst system (Sl): the stability constraint implies a maximum execution time

equal to 53.33�s which is equivalent to 3791 Clock cycles for a clock frequency of Fclk=
65MHz.
-For the second system (Sh): the stability constraints is equal to 11.66�s which is

equivalent to 758 Clock cycles for a clock frequency of Fclk= 65MHz.
The obtained results are presented in Figure 4.38 giving an idea of the possible so-

lutions. We note that for the same design, the EKF sensorless speed control, the archi-
tecture consumes much more logic resources using Actel technology than those used in
Xilinx and Altera technologies. For the two systems and using the ProAsic3 (A3P1000)

108

Chapter 4: Co-design methodology: HW-SW partitioning

board, the proposed candidate solutions do not respect the functional constraints (max-
imum execution time). To implement this kind of complex algorithm, we need to use a
board with higher density. The use of internal parallel architectures is also prefered to
increase the performances in terms of execution time.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

x 104

6000

7000

8000

9000

10000

E
xe

cu
tio

n
tim

e
(C

lo
ck

 c
yc

le
s)

Area (Tiles)
0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

x 104

0.8

1

1.2

1.4

1.6

S
pe

ed
up

 fa
ct

or

Figure 4.38: Partitioning solutions based on ProAsic3 with embedded Cortex-M1
(CLK=65MHz).

4.11 Conclusion

In this chapter, a HW-SW Co-design methodology for AC drives has been proposed. As
benchmark, the EKF-based speed sensorless controller was used. To optimally implement
the functional modules, a space exploration method was developed. It is composed by two
main steps: the performance estimation of each functional module and the HW-SW op-
timized partitioning. The �rst step deals with the estimation of area, time, memory and
hardware multiplier use for each functional module. Using the estimated performances,
the second step aims to �nd the optimal partitioning in terms of area, execution time and
memory of functional modules between HW and SW. This partitioning was performed
depending on the considered constraints in terms of maximum allowable execution time
and available FPGA resources. The execution time limit is based on the desired control
bandwidth and the expected stability margin. To deal with this multi-objective opti-
mization problem, the Non-dominated Sorting Genetic Algorithm (NSGA-II) was used.
The partitioning tests were performed for two control systems: low and high sampling
rate control systems. Besides, the proposed HW-SW partitioning algorithm was tested
on Altera and Actel technologies (Low/High cost).
In future works, the experimental validation of the optimal solutions for each tech-

nology will be performed. Making tests for high temperature conditions using Actel
technology is also important especially for aircraft applications.
On the other hand, the automation of the whole Co-design �ow (the association of

control performances estimation and the HW-SW partitioning) is a promising orientation,
which could allow a signi�cant reduction of the development time of control applications.

109

Chapter 5

Real-Time Operating System for
HW-SW controllers: Application to

the case of AC drives

110

Chapter 5

Real-Time Operating System for
HW-SW controllers: Application to
the case of AC drives

5.1 Introduction

In the previous chapter, author has demonstrated the interest of using heterogeneous
approaches to deal with the growing complexity of Embedded Control Systems (ECSs).
This trend is all the more relevant that the number of tasks implemented in an embedded
controller is always increasing (control tasks, communications tasks, health monitoring
tasks. . .). Thus, the use of HW-SW Co-design methodology provides an optimal HW-SW
partitioning of control modules in terms of area, time performances and memory use.
But, if the HW-SW approach is a proper answer to the controller architecture design,

another important issue remains to be solved to cope with this ever increasing complexity
of algorithms and their corresponding architectures: it concerns the management of the
designed embedded controllers.
In this context, the System-on-Chip architecture of the embedded controller can take

advantages to be managed by an e¢ cient Real-Time Operating System (RTOS) [Ref].
Indeed, RTOS is needed to ensure multi-task scheduling and services such as synchro-
nization, communications, memory management. . .
But the chosen RTOS must be portable and must adapt its scalability from one

platform to another, thus ensuring a maximum of �exibility to the designer. Besides the
use of RTOS may add signi�cant time overheads that can impact the execution time
of the controller and as a consequence it limits the expected �nal performances of the
controlled system. This point is critical in the case of AC drives where the dynamics are
fast.
To overcome this issue, an interesting solution is the development of an hardware Real-

Time Unit (RTU) in conjunction to the RTOS which provides a signi�cant acceleration
of the RTOS services and which reduces its memory use [116]-[119].
In this chapter, author deals with the design and the validation of a current controller

for AC drive using a deterministic RTOS associated to hardware RTU. Firstly, author
presents the related works, the problem statement and the main solutions to solve it.
After that, a brief description of the chosen RTOS (MicroC/OS-II) functionalities and
services are given. Thirdly, the designed RTU is presented and its time/area performances

111

Chapter 5: Real-Time Operating System for HW-SW controllers: Application to the
case of AC drives

are given. RTU validation was made on a Microblaze processor platform. Finally, the
RTOS and its associated RTU are tested experimentally in the context of the current
control of a synchronous drive.

5.2 Related works

Designing hardware RTU for RTOS was motivated mainly by the need of more deter-
ministic embedded systems. One of the �rst works dealing with this problem, called
FASTCHARD, was based on one processor associated to the RTU [120]-[121]. The focus
of this work was the design and the evaluation of the RTU deterministic performances.
The modi�cations of the RTOS due to the use of a RTU and its scalability were also stud-
ied. In [122], authors describe a hardware/software Co-design of a multithreaded RTOS
kernel on a Xilinx Virtex IIPro. Tests showed tighter bounds on scheduling precision and
signi�cant jitter reduction when compared to traditionally implemented RTOS kernels.
Other interesting works focused on the integration of the RTU within multiprocessor
systems. Several functionalities such as scheduling, time management, semaphores and
event �ags were added. Among these works, the Scalable Architecture for Real- Time
Applications (SARA) is a good example. It is a scalable unit which allows an easy tran-
sition from single to multiple processors. The �rst SARA system was used in a vision
system connected to an industrial robot (ABB Robot) [123]-[125].
In [126], authors show a performance comparison among three RTOSs: the RTU hard-

ware RTOS, the pure software Atalanta RTOS and a hardware/software RTOS composed
of part of Atalanta interfaced to the System-on-a-Chip Lock Cache (SoCLC) hardware.
The considered application integrates three-processor system running thirty tasks. RTU
and the same system implemented within SoCLC showed respectively 36% and 19%
overall speedup gain compared to the pure software RTOS implementation. Another
performance comparison between pure RTOS and RTU associated to the RTOS was pre-
sented in [127]. Acceleration of about 2.6 times was achieved using the RTU. The main
advantages of the RTU in this case is that the time overhead doesn�t increase when adding
new tasks.
The in�uence of RTU on the system energy consumption was also studied [128]. The

obtained results demonstrate that the power consumption is independent of RTU state
(running or idle). These results were provided using an energy characterization of the
RTU. It was also noted that the power optimization could be performed using gated
clocking techniques.
All the indicated works have shown the bene�ts of using a RTU over standard software

RTOS. However, the main disadvantage of this approach is the use of a single bus to
exchange data between the RTU and the processor. This can in�uence the determinism of
RTOS since the RTU treatment depends on it. A lack of benchmarking and experimental
validations were also noted especially in the �eld of stringent real time applications.

5.3 Problem statement and motivation

The introduction of the RTOS in the domain of ECSs has allowed designing more sophis-
ticated and �exible control systems. With the adoption of multi-tasking approach, the
new design presents a modularized solution which increases the code reuse, the porta-
bility and the scalability. It provides also an unrestricted access to shared memory and

112

Chapter 5: Real-Time Operating System for HW-SW controllers: Application to the
case of AC drives

CPU resources. However, the control systems are considered as time critical applications.
They are characterized by severe real time constraints since they have to be executed pe-
riodically at the sampling rate. So, the scheduling of such applications is crucial when
using RTOS.
As depicted Figure 5.1, the time overhead caused by the RTOS services can violate

the timing constraints of the application. The introduced time delay due to RTOS in
the closed loop of a control system can lead to a signi�cant degradation of the control
performances. So, the goal is to execute the control algorithm in a synchronous manner
at the sampling rate as shown in relation 5.1. This means that the sum of all the control
tasks associated to the RTOS services must not exceed the sampling period "Ts".

Tex_with_RTOS < Ts (5.1)

Figure 5.1: RTOS time overhead e¤ect.

To cope with this problem, the chosen approach targets to design a deterministic
RTOS associated to its corresponding hardware RTU. Thus, some RTOS services are
moved from SW to HW. The designed architecture is generic, modular, �exible based on
scalable modules. This will relief the processor and will increase the timing performances
since this hardware accelerator will be executed in parallel with the CPU. Furthermore,
the memory footprint will decrease which presents a convenient solution especially for
small ECSs limited in terms of memory resources.
Figure 5.2 presents a solution based on the RTU for mono-processor. This approach

presents great bene�ts for AC drives in terms of performances[130]. The RTU can en-
hance the exploitation of the FPGA recon�gurability. Indeed, the acceleration of the
RTOS services allows fast response to external events and consequently allows a faster
recon�guration time. In this case, an interesting con�guration using partial run-time
hardware recon�guration allows the implementation of several controllers without having
to realize them all on the FPGA concurrently [31], [32]. This kind of applications is of

113

Chapter 5: Real-Time Operating System for HW-SW controllers: Application to the
case of AC drives

great importance especially in the case of faulty conditions where a new control strategy
must be used.
In the present work, the communication between the CPU and the RTU is ensured by

the FSL bus from Xilinx Company. But, the generic RTU module can be associated to
other communication buses such as Avalon from Altera Company or AMBA from ARM
Company.

Figure 5.2 : AC drive controller based on the RTU.

5.4 Micrium: MicroC/OS-II

In this work, the chosen RTOS was the MicroC/OS-II Kernel. It is a simpli�ed real time
kernel developed by Jean Labrosse. It was certi�ed by rigorous standards, such as RTCA
DO-178B, which refers to the use of critical systems in aircraft domain. The features of
MicroC/OS-II can be summarized as follows [29]:

� Multitasking kernel : It can manage up to 64 tasks with only 56 user tasks
(unlimited task number in the new version of MicroC/OS-III). Each of the tasks
has its own priority which means that it does not support round-robin scheduling.
This latter is supported by the MicroC/OS-III.

114

Chapter 5: Real-Time Operating System for HW-SW controllers: Application to the
case of AC drives

� Preemptive : It means that the kernel executes the highest priority task that is
ready.

� RTOS services : It provides communication services (such message mailbox, mes-
sage queues..), synchronization services (semaphores, �ags. . .), time management
and memory management. Each of these services can be enabled or disabled using
con�guration parameters. They are written based on a systematic way and can be
parameterized via compiler directives.

� Free academic license: The license of MicroC/OS-II services is free for academic
purposes.

� Portable : The majority of the MicroC/OS-II code was written using highly
portable ANSI C associated with only few line of assembly code. Therefore, MicroC/OS-
II was already ported to a large panel of processors.

� Code size : It consists in a small RTOS since it takes less than 60 Kb. Its small
memory footprint makes it suitable for resource-constrained embedded systems.

In the following, some important concepts of the real-time Kernel are introduced. To
begin and by de�nition, a task is a program that considers it has all the CPU capacity for
its own purpose. For each task, the designer can attribute a priority, CPU registers and a
stack area. The creation and deleting of tasks is ensured respectively by OSTaskcreate()
and OSTaskdel() functions.
Figure 5.3 explains the multi-task management used by the MicroC/OS-II. To save the

status, the stack and the priority of a task, a data structure (Task Control Block (TCB))
is used. In the case of context switching or interruption, the TCB of the corresponding
task will be saved on CPU registers to be restored once these services are achieved.

Figure 5.3: The multi-task management.

115

Chapter 5: Real-Time Operating System for HW-SW controllers: Application to the
case of AC drives

After creating tasks, the multi-tasking can be performed using OSStart() function.
As shown in Figure 5.4, MicroC-OS/II uses the notion of state for each task, which can
be either running (running in the CPU), or waiting for an event (waiting), or ready (it
is ready to be executed but its priority level is less than the running task), dormant
(task saved in memory but it was not called by the Kernel), or interrupted when the
CPU executes an interrupt service. Some functions allowing the switching from a state
to another are also indicated.

Figure 5.4: Task states.

The scheduling of tasks is provided by the scheduler. The responsibility of the sched-
uler is to �nd the next task to be run. This depends mainly on the task priority �xed by
the designer when creating the tasks. MicroOS-II is a preemptive Kernel. The principle
is when a higher priority task is activated, the task is preempted, and the activated task
will take the control of the CPU. This is an important feature when system responsive-
ness is essential. To perform this multi-tasking process, the RTOS needs a periodic clock
signal, called Tick. It is generated by calling the OSTimeTick() functions from Tick ISR.
This later can be activated using a Timer.

5.5 Porting MicroC/OS-II

The development of an ECS using RTOS begins by the porting of MicroC/OS-II. This
requires C and assembler designer skills because the RTOS porting includes independent
and speci�c processor �les. Figure 5.5 presents the di¤erent layers to handle.

116

Chapter 5: Real-Time Operating System for HW-SW controllers: Application to the
case of AC drives

Figure 5.5: The MicroC/OS-II Porting.

� Application layer : It is composed by con�guration functions and the application
to be executed (app.c, app_vect.c, app_cfg.h, includes.h, os_cfg.h). In our case,
it consists on motor control application.

� Driver Layer: it includes three part:
-Board Support Package (BSP.c, BSP.h): It is a set of drivers permitting the generic
use of input/output, memory, timer and all the used peripherals.

-Port code source : It consists on portions of code written in assembly language
and depends on the used processor. It includes: os cpu.h, os cpu c.c, os cpu a.s
�les. These parts ensure the management of critical section. They execute the
mult-tasking process (OSStartHighRdy()), the context switching (OSCtxSw()), the
context switching in the case of interruption (OSIntCtxSw()) and the tick interrup-
tion (OSTickISR()).

-RTOS code source (os-_core.c, os_�ag.c, os_mbox.c, os_mem.c, os_mutex.c,
os_q.c, os_sem.c, os_task.c,os_time.c, os_tmr.c, ucos_ii.h) : It includes all the
independent RTOS code sources. They are written using ANSI C language.

� Physical layer : The port of MicroC/OS-II was made using two boards : The Fusion-
1 from Actel/Microsemi board and the Virtex-5 from Xilinx board. The �rst one
includes the soft processor �Cortex-M1�and the second one includes �Microblaze�.
Memory, timer, interrupt manager are also con�gured.

During this thesis, the porting was made using the two indicated boards and then
this porting has been compiled, linked and tested experimentally. In order to evaluate
the time taken by the RTOS services, some measurements were performed based on the
Cortex-M1. The obtained results are presented in the Appendix-E. However, the RTU
development and the corresponding experimental tests were made only using the Xilinx
FPGA. The same tests must be made using Actel FPGA with the adaptation of RTU
and CPU communication interface. The FSL bus can be replaced in this case by the
AMBA one.

117

Chapter 5: Real-Time Operating System for HW-SW controllers: Application to the
case of AC drives

5.6 Description of the RTU

The proposed RTU was implemented on the Xilinx FPGA (Virtex-5, ML506). This
FPGA allows the con�guration of the soft processor core �Microblaze�. SomeMicroC/OS-
II functionalities were mapped in hardware providing the parallel execution and the ac-
celeration of the RTOS[132]. It consists on the RTU. As shown in Figure 5.6, the RTU
includes the scheduler, the time manager and the semaphore modules. The communica-
tion between the Microblaze and the RTU modules is ensured by the FSL buses (FSL 0,
FSL 1), the FSL interface and the decoder. One of our main concerns was the preservation
of modularity principle and the scalability of the developed RTU. Therefore, these mod-
ules were designed having in mind the possibility to make extensions and recon�gurations
or to adapted it to other communication buses.
The RTU was used through a speci�c Application Program Interface (API). It is

set of functions and mapped memories that perform the message transactions between
Microblaze and the RTU. As an example, we indicate the following functions: HW-
SemCreate(), HW-SemPost(), HW-SemPend(). . . .

Figure 5.6: RTU architecture.

5.6.1 The FSL interface and the decoder

The FSL interface and the decoder modules ensure the synchronization and communi-
cation between the Microblaze and the RTU. The control of the FSL bus is provided
using a FSM. The state transitions depend on FSL control signals and the scheduler
signals. To decode the Microblaze-RTU exchanged informations, an instruction decoder
was developed. It determines the primitives which are called by the RTOS and transmits
informations to the scheduler and semaphore modules. The communication format for
FSL-Input and FSL-Output buses is shown respectively in Tables 5.1 and 5.2.

118

Chapter 5: Real-Time Operating System for HW-SW controllers: Application to the
case of AC drives

FSL-Inputs
Name Width Function

ID 8 Indicates the used primitive

Data 16 Arguments of the used primitive

Table 5.1: FSL-Input format

FSL-Outputs
Name Width Function

Status 8 Indicates the context switching or the status of the semaphore

Data 16 task priority

Table 5.2: FSL-Output format

5.6.2 Scheduler and Time manager Modules

The main goal of the RTOS is the task scheduling with regard to occurred events. Indeed,
the scheduler is executed when the task status is changed or an interruption has occurred.
Therefore, the implementation of this module in hardware can signi�cantly improve the
RTOS performances.
Having in mind this objective, the proposed hardware scheduler module includes the

scheduling algorithm, while the context switching is done in software part. The proposed
time manager replaces the time delay services and the system tick. This latter is used as
heartbeat of the pure software RTOS and generally set to 1 millisecond. For a stringent
real time application, reactivity is crucial. If we set a short RTOS tick , the processor
will be reactive but it will spend time in switching between tasks, and consequently the
time devoted to running tasks will be reduced. The proposed time manager can set the
period of the clock signal. This allows to have a reactive RTOS without time overhead.
The time delay service allows the calling task to delay itself for a user de�ned time. As
shown in Figure 5.7, the scheduler module is composed by a FSM and a Ready Tasks
Queue (RTQ). It is designed to support preemption. From the decoder, the scheduler can
determine the required primitives by using the �ID�. The received �Data�will be used
as next step to realize the requested function (Create task, delete task, delay task). On
the other hand, the RTQ is used to determine the highest priority task in the application
according to the scheduler policy: Priority (PR). When a task is inserted and depending
on its PR, the queue automatically re-orders in only one clock cycle. In the case of task
priority exchanges or interruptions, a context switching request is sent to the Microblaze
to perform the data saving of the suspended task. The FSM ensures the synchronization
between the RTQ signals and the decoder control signals. The Semaphore control signals
are also taken into account in the case of suspension of a task.

119

Chapter 5: Real-Time Operating System for HW-SW controllers: Application to the
case of AC drives

Figure 5.7: The architecture of the HW scheduler module and the clock manager.

5.6.3 Semaphore Manager

For resource access synchronization purpose, the RTU integrates a semaphore module
shown in Figure 5.8. Like the scheduler module, the semaphore module uses a FSM and
aWait Queue (WQ). The proposed module allows the management of several semaphores.
The FSM waits for control signals from Microblaze, indicating if a semaphore is locked
or unlocked. After that, the semaphore module can select a semaphore or not. Each
of these semaphores has its own WQ used to save the priority of task. Additionally, a
control signal is sent to the scheduler module to prevent it when a task is suspended on
a semaphore or a semaphore has released a task.

Figure 5.8: Architecture of the HW semaphore module.

120

Chapter 5: Real-Time Operating System for HW-SW controllers: Application to the
case of AC drives

5.6.4 Area and time performances

Tables 5.3 and 5.4 present respectively the area and time performances of the developed
RTU. These results were performed using the Xilinx "Virtex-5 (XC5VSX50T)" and the
synthesis process was performed for 16 tasks and 4 semaphores. As said before, this RTU
con�guration can easily be extended to integrate more tasks and semaphores. The devel-
oped RTU takes only 4.3% of the available FPGA resources which is very few compared
to the acceleration bene�ts. The operating frequency of the Microblaze and the RTU was
set to 100 MHz:

FFs 6-Bit LUTs
Scheduler Module (16 tasks) 290 692

Semaphore Module (4 semaphores) 321 685

FSL interface/ Decoder 9 4

Total RTU 620 1381

Table 5.3: RTU Consumed resources

Primitives Number of clock cycles
HW-Initialization 2

HW-TaskCreate 2

HW-TaskDelete 2

HW-SemCreate 2

HW-SemPost 6

HW-SemPend 6

Table 5.4: RTU Timing Evaluation

Table 5.5 presents the execution time of the developed RTU modules based on two
con�guration: external SRAM and BRAM (Block RAM inside the FPGA). In the case of
external SRAM con�guration, the comparison, between the service execution time using
RTOS and using RTOS associated to RTU, shows a 50% speed-up for the second case.
This is important especially in the case of complex and greedy applications that need the
use of larger SRAM.
In the case of BRAM con�guration, the advantages of the RTU is less visible in

terms of execution time of services. But, the RTU advantages are still ensured by two
manners: the elimination of the tick overhead and the reduction of memory use. Indeed,
the proposed time manager used by the scheduler is activated every clock cycle which
ensure high RTOS reactivity. This is not the case of classical RTOS sequenced by a tick
varying between 1ms to 10 ms.
As a conclusion, we can note that the proposed RTU o¤ers more determinism for

the studied application using MicroC/OS-II. This presents a good basis to test more
complex algorithms and to prove the interest of the proposed approach for controlling
power electronic systems.

121

Chapter 5: Real-Time Operating System for HW-SW controllers: Application to the
case of AC drives

Pure software RTOS RTOS associated to the RTU
SRAM SRAM BRAM

Context Switching 23.7 �s 23.7 �s 2.1 �s

SemCreate 26.92 �s 8.8 �s 3.59 �s

SemPend 25.99 �s 12,3 �s 2.2 �s

SemPost 23.11 �s 11,7 �s 2.4 �s

TaskCreate 85.23 �s 77.86 �s 3.23 �s

Table 5.5: Time overhead of the RTOS services

5.7 Benchmark: motor control

The synoptic of the implemented control system which includes the tested RTOS is given
Figure 5.9. It consists in the same experimental set-up presented in the chapter 4. The
control architecture was split in two parts: HW and SW. The HW part integrates the
ADC, position and DAC interfaces. The position and ADC interfaces provide respectively
the information of rotor position from the encoder and the stator current A/D conversion.
The DAC module is used to send digital information to an oscilloscope. The SW part
includes the reading of the acquisition registers, the dq-abc transformation and the 3-
phase ON/OFF regulators. The communication between HW and SWmodules is ensured
using the PLB bus and the IPIF (IP Interface). This latter is a basic infrastructure to
connect the PLB to HWmodule. It can be automatically generated using EDK tool. The
data exchanges were performed using read/write command in speci�c software registers.
The synchronization of the control parts is provided by MicroC/OS-II associated to the
RTU.

Figure 5.9: The synoptic of the control motor based on the RTU.

122

Chapter 5: Real-Time Operating System for HW-SW controllers: Application to the
case of AC drives

From the Microblaze side, the program code was divided into three tasks de�ned as
below:

� Task 1 (Reading of acquisition data and sending the switching controls): This
task provides the reading of the stator current and the rotor position data. These
informations are provided by the conversion interface ADC interface performed in
hardware. From other side, it send the switching signals to the Voltage Source
Inverter (VSI) using the GPIO (General Purpose Input/Output).

� Task 2 (Current controller): This task includes the dq-abc transformation and the
ON/OFF regulator. The hysteresis bandwidth was set to 0 A.

� Task 3 (Communication interface): It is considered as a background task. The
objective is to send and receive the required information to the supervisor connected
to the Host PC. This is performed by the UART module.

MicroC/OS-II is based on a �xed-priority scheduling. So, each task of the considered
application has a �xed static priority. The highest priority was a¤ected to the task 1.
The second priority was attributed to the task 2. The lowest priority was a¤ected to the
communication task. All these tasks are sequenced every sampling period "Ts" equals to
50�s.
The timing diagram of the proposed controller is presented Figure 5.10. It shows the

task scheduling, number of clock cycles of each task and RTOS services (context switch-
ing (Ctx), SemPend, SemPost, Time_delay). These latter ensure the synchronization
between the three tasks.

Figure 5.10: Timing diagram of the current controller using RTOS (BRAM
con�guration).

Figures 5.11 and 5.12 present the obtained experimental results of the ON/OFF cur-
rent controller. In order to compare the control performances, the tests were performed
using two memory con�gurations to save the program code: BRAM and external SRAM.

123

Chapter 5: Real-Time Operating System for HW-SW controllers: Application to the
case of AC drives

The minimum sampling period "Ts" of the current regulator is equal to 168 �s when
using the external SRAM con�guration and only 50 �s using the BRAM. As a conse-
quence, the experimental current THD is 11,3 % for the BRAM con�guration and 21,7%
for the external SRAM.

1 >

2 >
2 >

1) C h 1: 200 m V ol t 10 m s
2) C h 2: 200 m V ol t 10 m s

Figure 5.11: Regulated stator currents using the BRAM con�guration for (I�sd=0A,
I�sq=1.5A, Bw

�=0A) with 250mV corresponds to 1A.

1 >
1 >

2 >
2 >

1) C h 1: 200 m V ol t 10 m s
2) C h 2: 200 m V ol t 10 m s

Figure 5.11: Regulated stator currents using the external SRAM con�guration (I�sd=0A,
I�sq=1.5A, Bw

�=0A) with 250mV corresponds to 1A.

Figure 5.13 presents the measured latency time of HW-SemPost, HW-SemPend, com-
munication process and current controller. We note that these measurements were re-
peated many times to ensure the correctness of the measured values.

124

Chapter 5: Real-Time Operating System for HW-SW controllers: Application to the
case of AC drives

Figure 5.13: Timing chart of the current controller based on the RTOS and RTU
(BRAM con�guration).

5.8 Conclusion

In this chapter, a HW-SW RTOS for AC drives has been introduced. To have a more
deterministic RTOS, a hardware Real Time Unit (RTU) was developed using VHDL and
was associated to the RTOS. It allows the reduction of the time overhead related to the
RTOS services and the decrease of memory footprint. In this approach, only the scheduler
and the semaphore services were implemented in hardware. The proposed design was
carried out using a Xilinx Virtex-5 (XC5VSX50T) and the communication between the
"Microblaze" and the RTU was provided using the FSL bus. The evaluation of the
RTU in terms of area and time performances was also discussed. It demonstrates that
the proposed design takes only 4.3% of the FPGA available resources which is very few
compared to the obtained acceleration bene�ts. To show the interest of such approach
for AC drive applications, an experimental validation based on current controller was
carried out using a laboratory set-up. The obtained results give proof of the interest of
the proposed approach.

125

Chapter 6

General conclusion

This thesis has dealt with the contribution of FPGA System-on-Chip (SoC) con-
trollers for embedded AC drives applications. More speci�cally, author has been inter-
ested to embedded control systems for aircraft applications. These latter are characterized
by severe technical issues.
In this context and in the frame of SEFORA project (Smart MEA For Operations

in Rough Atmospheres), the author has started by the description of a rigorous design
and validation methodology for FPGA-based digital controller of a high temperature
synchronous drive. As �rst stage of validation, the proposed design method was tested
on the ProAsicplus board from Actel/Microsemi. The impact of the temperature on the
operating frequency was also studied.
Besides, a HW-SW Co-design methodology for electrical AC drive has been proposed.

This methodology aimed to link the assessment of control performances and the HW-SW
partitioning of control modules, at early stage of the development. It is ranging from the
early system speci�cations to the �nal experimental validation of the control application.
One of the main important steps of this method is the HW/SW partitioning. The goal
was to �nd an optimal combination between modules to be implemented in software and
those to be implemented in hardware. The Non-Dominated Sorting genetic Algorithm
(NSGA-II) was used to �nd the Pareto-Front of optimal solutions. As benchmark, the
speed sensorless controller using the Extended Kalman Filter (EKF) was used.
From another perspective, the management of SoC-based embedded controller can

take more advantages using an e¢ cient Real-Time Operating System (RTOS). This RTOS
is needed to ensure multi-task scheduling of the controller. But, the use of an RTOS may
add signi�cant time overheads that can impact the execution time of the controller. To
accelerate the treatment of this operating system, a Real-Time Unit (RTU) was devel-
oped in VHDL and associated to the RTOS. It consists in a hardware operating unit
that moves the scheduling and communication process from software RTOS to hardware.
Experimental results give proof of the good performances of the proposed approach.

Future work

The direct continuation of this work can be made exploring the following points:

� The experimental validation of optimal solutions proposed by the NSGA-II algo-
rithm.

� The evaluation of partitioning algorithm results using a more regular grain regarding
the functional modules.

126

CHAPTER 6. GENERAL CONCLUSION

� The comparison of the optimization results of the NSGA-II algorithm to other
optimization methods such as the tabu or the ILP methods.

� The validation of HW-SWCo-design methodology with other demanding algorithms
such as the predictive control.

� The integration of power consumption characterization for each functional module
in the HW-SW Co-design methodology �ow.

� The moving of other RTOS services to hardware such as priority inversion service,
mutex services, mailbox services. . .

� The implementation of another scheduling policy such as round-robin policy.

The Mid term perspectives are :

� The development of automatic high-level HW-SW Co-design methodology.

� The analysis of multi-processors interest for control applications.

� The use of RTOS for partial recon�guration control applications.

127

Appendix-A

128

Appendix-A

In the following, we deal with the detailed features of each functional module (PI
regulator, transformations...). It consists in the consumed resources in terms of Flip-
Flop and Look-Up-Table and hardware multiplier blocks. The execution time is also
provided. It is given in system clock cycle numbers. Thp is the execution time of a
parallel architecture and thf is the execution time of factorized architecture. Most of the
functional modules are declined in two versions (parallel and factorized). In Table 6.1,
the characteristics of each functional module are presented. Table 6.2 is devoted to the
EKF modules.

129

Appendix-A

Modules Operators Parallel Factorized

2 �PI
regulator

20�Bit mult
20�Bit add
20�Bit sub
20�Bit reg
20�Bit mux

4

4

2

12

0

9>>>>>>=>>>>>>;
128 LUT

240FF

8HM

Thp = 2 � 10

2

4

2

12

2

9>>>>>>=>>>>>>;
160LUT

240FF

4HM

Thf = 2 � 21

Current

control
dq_abc

13�Bit mult
13�Bit add
13�Bit sub
13�Bit mux
13�Bit reg
13�Bit sin

4

3

1

0

5

1

9>>>>>>>>=>>>>>>>>;

191LUT

65FF

8 HM

Thp = 9

1

3

1

3

10

1

9>>>>>>>>=>>>>>>>>;

230LUT

155FF

1HM

Thf = 25

abc_dq

20�Bit mult
14�Bit ad
13�Bit reg
20�Bit reg
14�Bit mux
13�Bit sin

6

2

4

2

0

1

9>>>>>>>>=>>>>>>>>;

165LUT

92FF

12HM

Thp = 10

1

2

9

2

3

1

9>>>>>>>>=>>>>>>>>;

207LUT

184FF

2HM

Thf = 27

SVM

13�Bit comp
13�Bit count
13�Bit sat
13�Bit reg
13�Bit mux
13�Bit add
1�Bit table

1

1

3

10

1

3

1

9>>>>>>>>>>>=>>>>>>>>>>>;

390LUT

143FF

0HM

Th = 4

Speed

control

P�PI
regulator

20�Bit mult
20�Bit add
20�Bit sub
20�Bit reg
20�Bit mux

3

2

2

8

0

9>>>>>>=>>>>>>;
84LUT

160FF

6HM

Thp = 12

1

2

3

8

2

9>>>>>>=>>>>>>;
124LUT

160FF

2HM

Thf = 21

Table 6.1: Consumed resources of the control functional modules

130

Appendix-A

Modules Operators Parallel Factorized

2x abc_dq

20�Bit mult
14�Bit add
13�Bit reg
20�Bit reg
14�Bit mux
13�Bit sin

12

4

8

4

0

2

9>>>>>>>>=>>>>>>>>;

330LUT

184FF

24HM

Thp = 2x10

2

4

18

4

6

2

9>>>>>>>>=>>>>>>>>;

414LUT

314FF

4HM

Thf = 2x27

Innovation

22�Bit mult
22�Bit add
22�Bit reg
22�Bit mux
22�Bit sub

8

8

18

0

2

9>>>>>>=>>>>>>;
236LUT

396 FF

16HM

Thp = 8

1

5

10

2

2

9>>>>>>=>>>>>>;
208LUT

220 FF

2 HM

Thf = 25

EKF

Estimator
Pr ediction

22�Bit mult
22�Bit add
22�Bit reg
22�Bit mux

10

6

16

0

9>>>=>>>;
144LUT

352FF

20HM

Thp = 8

1

3

9

11

9>>>=>>>;
314LUT

198FF

2HM

Thf = 23

Jacobian

matrix

22�Bit mult
22�Bit add
22�Bit reg
22�Bit mux

4

1

5

0

9>>>=>>>;
24LUT

110FF

8HM

Thp = 6

1

1

5

2

9>>>=>>>;
68LUT

110FF

2HM

Thf = 8

Compensator

P1

22�Bit mult
22�Bit add
22�Bit reg
22�Bit mux

128

112

540

0

9>>>=>>>;
2688LUT

11880FF

256HM

Thp = 15

4

19

32

40

9>>>=>>>;
1336LUT

704FF

8HM

Thf = 101

Compensator

P2

22�Bit mult
22�Bit add
22�Bit reg
22�Bit mux

96

68

154

0

9>>>=>>>;
1632LUT

3432FF

192HM

Thp = 15

4

19

32

40

9>>>=>>>;
1336LUT

704FF

8HM

Thf = 101

Compensator

P3

22�Bit mult
22�Bit add
22�Bit reg
22�Bit mux
22�Bit div

48

32

81

0

1

9>>>>>>=>>>>>>;
1259 LUT

2169FF

100HM

Thp = 89

4

3

48

40

1

9>>>>>>=>>>>>>;
1443LUT

1443FF

12HM

Thf = 183

Compensator

P4

22�Bit mult
22�Bit add
22�Bit reg
22�Bit mux
22�Bit sub

96

65

117

0

16

9>>>>>>=>>>>>>;
1912LUT

2574FF

192HM

Thp = 15

4

19

48

40

16

9>>>>>>=>>>>>>;
1688LUT

1056FF

8HM

Thf = 101

Table 6.2: Consumed resources of the EKF functional modules

131

Appendix-B

132

Appendix-B

1. FPGA-based matrix multiplier
In this section, the FPGA architecture of the implemented matrix multiplier is pre-

sented[113]. M1 and M2 are the two 4x4 matrices to be multiplied.
T is the resulting matrix after a set of 64 scalar multiplications and 48 additions.

In order to reduce the needed FPGA resources, it has been decided to factorize the
multiplications and the additions. Then, only four 22-bit multipliers and three 22-bit
adders are used. The corresponding latency is then equal to 48 instead of 4 without
factorization. Figure 6.1 presents the corresponding architecture.

Figure 6.1 : Matrix multiplier architecture.

2. FPGA-based 3-matrix multiplier
When it come the multiplication of three matrices, the development of the correspond-

ing FPGA architecture is based on the factorization of the previously discussed matrix
multiplier. Additional matrix multiplexers and a matrix register have been introduced.
Figure E.2 presents the designed FPGA architecture where A, B and C are the input
matrices and O is the output matrix. With this con�guration, the total latency of the
3-matrix multiplier is equal to 96 instead of 8 without factorization.

133

Appendix-B

Figure 6.2 : 3-matrix multiplier architecture.

3. Matrix inversion
The implemented 2x2 matrix inversion module is de�ned by equation below

[A]�1 =

"
a b

c d

#�1
=

1

ad� bc

"
d �b
�c a

#
(6.1)

In the case of having chosen the Xilinx FPGA solutions, the inversion of the ma-
trix determinant is made using the Pipelined-Divider IP [73]. Figure 6.3 presents the
corresponding con�guration wizard.

Figure 6.3: Xilinx pipelined divider IP

The latency of the divider and the consumed FPGA resources are all conditioned by
the chosen clock per division value (1, 2, 4 or 8). These values mean that the input

134

Appendix-B

data is sampled at each 1st, 2nd, 4th of 8th clock rising edge. Figure 6.3 presents the
relationship between the divider latency, consumed resources and the clock per division
value. In the case of the developed application, the time/area performances have been
analyzed in the case of clk/div set to 8.

135

Appendix-C

136

Appendix-C

FPGA logic cells comparison
In today�s market, FPGA internal architecture di¤ers from one company to another.

Having in mind the de�nition of a general metric, we provide an approximate relationship
between di¤erent FPGA internal architecture. These relations will be used to evaluate
partitioning results using di¤erent technologies. they were the results of an extensive
benchmarking to determine the logic usage comparison. The proposed approximation is
derived from [74]-[76]. Some validation tests were made also to con�rm the validity of
these coe¢ cients.

6�Bit LUTs
equivalent Virtex� 5

Spartan� 3E
(Slice)

1.5

Altera

(stratix� II; ALM)
1.84

Altera

(Cyclone; LE)
0.73

Actel

(Versatiles)
0.25

Table 6.3: FPGA logic cells comparison

The hardware multipliers di¤er also from one technology to another. Table6.3 presents
the model of hardware multiplier provided by each technology.

Multiplier Spartan-3A Virtex-5 Altera

18x18 Ceil(N
17
) � Ceil(N

17
) � Ceil(N

18
) � Ceil(N

18
)

25x18 � Ceil(N
17
) � Ceil(N

24
) �

Table 6.4: Relationship bit width-Hardware multiplier consumption

Processor performance comparison: Dhrystone 2.1 benchmark
The Dhrystone 2.1 benchmark was proposed in 1988. It is used to measure the per-

formance of computer systems. Dhrystone is a benchmark written in the C language
including a mix of mathematical and other operators. Based on Xilinx and Altera ref-
erences, Table6.5 presents a DMIPS (the number of iterations of the main code loop
per second) results of the Microblaze, Power-PC440 and Nios-II. This comparison shows
that, with a hard-core processor "Power-PC440", we can have a gain of 1.68 in terms of
DMIPS performance compared to Microblaze, for a clock frequency of 100 Mhz.

Virtex� 5
Microblaze

Virtex� 5
PowerPC440

Stratix� II
Nios� f=II

DMIPS

P erf ormance
119 200 117

Table 6.5: DMIPS performance comparison for CLK=100Mhz

137

Appendix-D

138

Appendix-D

Per unit algorithm development
In order to obtain normalized model, al the variables are replaced by their corre-

sponding per-unit values calculated using the following relation.

Vn =
V

VB
(6.2)

where V is the variable value, VB is the base value and Vn is normalized variable value.
Table6.6 presents the used base values.

value

Base value of the voltage "VB"
p
6:Vnom = 560V

Base value of the current "IB" Gsensor.GADC .
p
2:Inom = 20A

Base value of the speed "!B" 2.p.
�

30
:Nnom = 628 rd=s

Base value of the position "�B" 2*�(rd)

Table 6.6: Base values

where Vnom = 230 V .
Inom = 1:5 A:
Nnom = 1500 rpm:

139

Appendix-E

140

Appendix-E

Time overhead of RTOS services using soft processor core Cortex-M1:
To evaluate the time overhead added by the RTOS services, some measurements were

performed using the Cortex-M1. The program code was saved in an external SRAM. A
timer core was used to perform the timing measurement of each service. The con�guration
of this timer is provided by the prescale value and the clock frequency[76]. The obtained
results are provided Table 6.7.

Functions Measured clock cycles
Task Management

OSTaskCreateExt(. . .) 55

OSTaskChangePrio(. . .) 416

OSTaskDelReq(. . .) 110

OSTaskSuspend(. . .) 161

OSTaskDel(. . .) 483

OSTaskResume(. . .) 289

Semaphores
OSSemCreate(. . .) 152

OSSemAccept(. . .) 101

OSSemPost(. . .) 115

Message Mailboxes
OSMboxCreate(. . .) 154

OSMboxPost() 126

OSMboxAccept(. . .) 100

Time Management
OSTimeGet(. . .) 74

OSTimeSet(. . .) 76

Table 6.7: Time overhead of the RTOS services

141

Personal publications

142

Personal publications

International Journals

� E. Monmasson, L.Idkhajine, M. N. Cirstea, I.Bahri, A.Tisan, M.Naouar, �FPGAs
in Industrial Control Applications�, IEEE Trans. On Ind. Inf, vol 7, No 2, pp 224,
May 2011.

� H.Berriri, M-W.Naouar, I.Bahri, I. Slama-Belkhodja, E.Monmasson, "FPGA-Based
Fault Tolerant Hysteresis Current Control for AC Machine Drives", IET Electrical
Power Applications Journal, accepted for publication in 2011.

� I.Bahri, L.Idkhajine, E. Monmasson, M-A.Ben khelifa, "HW-SW partitioning of
SoC based Sensorless Controller for a Synchronous Machine using an Extended
Kalman Filter", submitted in MATCOM journal 2011.

National Journals

� M-W. Naouar, I. Bahri, M. Abdellatif, I. Slama-Belkhodja, E. Monmasson « Présen-
tation d�un bureau d�études destiné à l�apprentissage des techniques de contrôle de
courant usuelles d�un système électrique » , La revue 3EI-N�53, Juin 2008 �pp.
11-20

International Conference

� I.Bahri, L.Idkhajine, E.Monmasson, M-A.Ben Khelifa," FPGA SoPC based Sensor-
less Controller for a Synchronous Machine using an Extended Kalman�, Electrimacs
2011 , 6 June, Paris

� I.Bahri, A. Maalouf, L. Idkhajine, E. Monmasson, "FPGA-based implementation
of sensorless AC drive controllers for embedded Electrical Systemsapplications",
IEEE Sled 2011, September 1-2, Birmingham

� I.Bahri, E.Monmasson, F.Verdier, M-A.Ben khelifa,"SoPC-based current controller
for permanent magnet synchronous machine drives�, IEEE ISIE 2010, 4-7 July
2010-Bari, Italy.

� I.Bahri, E.Monmasson, F.Verdier, M-A.Ben khelifa, «Design and validation method-
ology of FPGA-based motor drive for High Temperature environment�, ESARS
2010, 19-21 October 2010-Bologna, Italy.

� E. Monmasson, L. Idkhajine, I. Bahri, M-W- Naouar, L. Charaabi - Design method-
ology and FPGA-based controllers for Power Electronics and drive applications.
The 5th IEEE Conference on Industrial Electronics and Applications (ICIEA�10),
Taichung, Taiwan, 2010

� I.Bahri, I.Slama Belkhodja, E.Monmasson "FPGA-based Real-Time Simulation of
Fault Tolerant Current Controllers for Power Electronics", IEEE ISIE 2009, 5-8
July 2009-Seoul, Korea

� I.Bahri, J.arbi, I.Slama-Belkhodja, E.Monmasson,"FPGA-based Fault Tolerant Cur-
rent Controllers for Induction Machine", In Conf.Electromotion, 1-3 July 2009 -
Lille, France

� M. Abdellatif, I.Bahri, I. Slama-Belkhodja « Comparative Study of Grid Voltage
Angle Calculation for a DFIG based Wind System » , SSD�07 - Conference on power
electrical system system, 19-22 March 2007, Hammamet, Tunisia

143

Bibliography

[1] OPEC, "Annual Statistical Bulletin", Rapport, Organization of the Petroleum Ex-
porting Countries, 2004a, pages : 1-140

[2] Cutts, S.J., �A collaborative approach to the more electric aircraft,�Proc. Power
Electronics, Machines and Drives International Conference, Bath, UK, April 16-18,
pp. 223-228 (2002).

[3] J. Munoz-Castaner, R. Asorey-Cacheda, F.J. Gil-Castineira, F.J. Gonzalez-
Castano, P.S. Rodriguez-Hernandez, �A Review of Aeronautical Electronics and
its Parallelism with Automotive Electronics�, IEEE Trans. On Ind. Electron., vol.
54, no. 99, April 2010

[4] Q. N. Le, J.W. Jeon, �Neural-Network-Based Low-Speed-Damping Controller for
Stepper Motor with an FPGA�, IEEE Transactions on Industrial Electronics, Vol.
57, Issue 9, pp. 3167�3180, September 2010.

[5] Ying-Shieh Kung, Ming-Shyan Wang, Tzu-Yao Chuang, �FPGA-based self-tuning
PID controller using RBF neural network and its application in X-Y table�, IEEE
International Symposium on Industrial Electronics, 2009. ISIE 2009, pp. 694 �699,
July 2009.

[6] D. Kim: �An implementation of fuzzy logic controller on the recon�gurable FPGA
system,� IEEE Trans. on Industrial Electronics, Vol. 47, no. 3, pp.703-715, Jun
2000.

[7] C. Cecati, F. Ciancetta, P. Siano, �A FPGA/fuzzy logic - Based multilevel inverter�,
IEEE International Symposium on Industrial Electronics, ISIE 2009, pp. 706-711.
July 2009.

[8] A. Maalouf, L. Idkhajine, S. Le Ballois, E. Monmasson, �FPGA-based Sensorless
Control of Brushless Synchronous Starter Generator for Aircraft Application�, IET
Electric Power Applications Journal, Accepted for publication in 2011.

[9] E. Monmasson, M. Cirstea, �Guest Editorial special section on �eld programmable
gate arrays (FPGAs) used in industrial control systems�, IEEE Trans. On Ind.
Electron., vol. 55, no. 4, pp. 1499�1500, April 2008

[10] I.Bahri, E.Monmasson, F.Verdier, M-A.Ben khelifa,"SoPC-based current controller
for permanent magnet synchronous machine drives�, IEEE ISIE 2010, 4-7 July
2010-Bari, Italy.

144

BIBLIOGRAPHY

[11] M.-W. Naouar, E. Monmasson, A. A. Naassani, I. Slama-Belkhodja and N. Patin,
�FPGA-based current controllers for AC machine drives� A review,�IEEE Trans.
Ind. Electron., vol. 54, no. 4, pp. 1907�1925, Aug. 2007

[12] K. Eshraghian, �SoC Emerging Technologies�, IEEE Proceedings, vol. 94, no. 6,
Jun. 2006, pp. 1197 �1213.

[13] F. Salewski, S. Kowalewski, �Hardware/Software Design Considerations for Auto-
motive Embedded Systems�, IEEE Trans. On Ind. Informatics, Vol. 4, n� 3, pp. 56,
August 2008

[14] J. A. Weimer, "High temperature Power Electronics for The More Electric Air-
craft", Air force Research Laboratory, Mai 2004.

[15] Air&Cosmos, "Le 787 une étape majeur vers l�avion électrique", Air and Cosmos,
Vol. N�2000, October 2005, pp 44-45

[16] Gong, G., Heldwein, M.L., Drofenik, U., and Kolar, J.W., �Comparative evaluation
of three-phase high power factor AC-DC converter concepts for application in fu-
ture more electric aircrafts,�IEEE Applied Power Electronics Conference, Anaheim
(CA), USA, Feb. 22-26 (2004).

[17] I.Bahri, E.Monmasson, F.Verdier, M-A.Ben Khelifa, "Design and validation
methodology of FPGA-based motor drive for High Temperature environment�,
ESARS 2010, 19-21 October 2010-Bologna, Italy.

[18] H. P. Schöner, P. Hille, "Automotive Power �New Challenges for Power Electron-
ics", IEEE, 2000.

[19] P. G. Neudeck, R. S. Okojie and al.; "High temperature Electronics �A rôle for
Wild Bandgap Semiconductors?", Proceedings IEE, Vol. 90, Issue 6, June 2002,
page : 1065- 1076

[20] O.Vermesan, R.John, M.Ottella, H.Gall and R.Bayerer,�High temperature nano-
electronics for electrical and hysbrid vehicles,� In.conf.IMAPS High Temperature
Electronics Network (HiTEN2009).

[21] Schlumberger, "Complete series of rotary steerable systems for reduced well con-
struction cost", Power Drive Xtra Series, 2002.

[22] ITRS. International Technology Roadmap for Semiconductors, 2009 update system
drivers.

[23] L.Adams�Choosing the right architecture for real �time signal processing designs�,
Texas Instruments white paper SPRA879-November 2002.

[24] L.Idkhajine, E. Monmasson, M-W. Naouar, A.Prata and K.Bouallaga, �Fully in-
tegrated FPGA-based controller for synchronous motor drives," IEEE Trans. Ind.
Electron., vol. 56, n�. 10, pp. 4006-4017, Oct. 2009.

[25] R. Obermaisser, P. Gutwenger,�Model-Based Development of MPSoCs with Sup-
port for Early Validation�, in Proc. IEEE IECON�09 Conf., 2009, CD-ROM.

145

BIBLIOGRAPHY

[26] G. Martin, �Overview of the MPSoC Design Challenge". in Proc. DAC�06 Conf.,
2006, CD-ROM.

[27] C. Zeferino, M. E. Kreutz, L. Carro, and A.Susin. �A study on communication
issues for systems-on-chip,�In Proc. SBCCI Conf., 2002, pp. 121�126.

[28] A. Brinkmann, J. Niemann, I. Hehemann, D. Langen, M. Porrmann, and U. Ruck-
ert. �On-chip interconnects for next generation systems-on-chips,� in Proc. IEEE
ASIC SOC Conf., 2002, pp. 212�215.

[29] J. J. Labrosse, MicroC/OS-II: The Real-Time Kernel. CMP Books, 2002.

[30] B. Earl Wells and S.Ming Loo,�On the Use of Distributed Recon�gurable Hardware
in Launch control Avionics�, Digital Avionics Systems Conference, 2001.

[31] C. Paiz, J. Hagemeyer, C. Pohl, M. Porrmann, U. Ruckert, B. Schulz, W. Peters, J.
B¨ ocker, �FPGA-Based Realization of Self-Optimizing Drive-Controllers�, In.Conf,
IECON, 3-5 November 2009 at Alfandega Congress Center, Porto, 2009.

[32] B. Schulz , C. Paiz, J. Hagemeyer, S. Mathapati, M. Porrmann, J. Bocker, �Run-
Time Recon�guration of FPGA-Based Drive Controllers�, In.Conf EPE, 2 - 5 Sep-
tember 2007, Aalborg- Denmark, 2007.

[33] Y.WANG, X.YIN, Z.ZHANG, « Monitor System for Protection Device Based on
Embedded RTOS » , J. Electromagnetic Analysis& Applications, 2009, 245-248.

[34] F. Berthelot, F. Nouvel, and D. Houzet, �Design methodology for dynamically
recon�gurable systems,�JFAAA , Dijon France, pp. 47�52, January 2005.

[35] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-
Vicentelli, �A Formal Speci�cation Model for Hardware/Software Codesign,�Tech-
nical Report UCB/ERL M93/48, Dept. EECS, University of California, Berkeley,
June 1993.

[36] E. Stoy, �A Petri Net Based Uni�ed Representation for Hardware/Software Co-
Design,�Licentiate Thesis, Dept. of Computer and Information Science, Linköping
University, Linköping, 1995.

[37] T. Parks, J. L. Pino, and E. A. Lee, �A Comparison of Synchronous and Cyclo-
Static Data�ow,�in Proc. 29th Asilomar Conference on Signals, Systems and Com-
puters, 1995, pp. 204-210.

[38] C. A. R. Hoare, Communicating Sequential Processes. Englewood Cli¤s, NJ:
Prentice-Hall, 1985.

[39] F. Boussinot and R. de Simone, �The ESTEREL Language,� in Proc. IEEE, vol.
79, pp. 1293-1304, Sept. 1991.

[40] SystemC on-line documentation. Available in : www.systemc.org

[41] on-line documentation. Available in :http://embedded.eecs.berkeley.edu/research/hsc

[42] on-line documentation. Available in :http://ptolemy.eecs.berkeley.edu/

146

BIBLIOGRAPHY

[43] Syndex on-line documentation. Available in: www.syndex.org

[44] Grandpierre, C Lavrenne, Y. Sorel, �Optimized rapid prototyping for real-time
embedded heterogeneous multiprocessor�, in Proceedings of CODES�99 7th Inter-
national Workshop on Hardware/ Software Co-Design conference, 1999, CD-ROM.

[45] Ptolemy on-line documentation. Available in:www.ptolemy.berkeley.edu

[46] R.W. Johnson, J.L. Evans, P.Jacobsen, J.R.Thompson, and M.Christopher, �The
Changing Automotive Environment: High-Temperature Electronics� in IEEE
Trans. On electronics packaging manufacturing, vol. VOL. 27, no. 3, July 2004

[47] R. Normann, �First High-Temperature Electronics Products Survey 2005�,
SAND2006, California

[48] S.Chiu, J.Chang, C.Neft, F.Morris, E.Dines, J.Hughes, "Design of motor drive for
high temperature enviroment," IECEC August 2-6, 1998

[49] Y.Yuan, G.Yong, C.Lijie,�Design and Test of Novel Programmable Digital Three
Phases SPWM Chip�, In.Conf.Power Electronics and Motion Control, 2006.
IPEMC 2006

[50] I.Bahri, I.slama Belkhodja, E.Monmasson "FPGA-based Real-Time Simulation of
Fault Tolerant Current Controllers for Power Electronics", IEEE ISIE 2009, 5-8
July 2009-Seoul, Korea

[51] G.G. Parma, V.Dinavahi, "Real time Digital Hardware simulation of power elec-
tronics and Drives" IEEE Transactions on Industrial Electronics, vol.22, no.2, April
2007.

[52] L. Ben-Brahim, M. Benammar, and M. A. Alhamadi, �A resolver angle estimator
based on its excitation signal,� IEEE Trans. Ind. Electron., vol. 56, no. 2, pp.
574�580, Feb. 2009.

[53] J. E. Volder "The CORDIC Trigonometric Computing Technique", IEE Transac-
tions on. Electronic Computers, Vol. EC-8, pp. 330-334, 1959.

[54] K. Zhou, D. Wang, "Relationship between space-vector modulation and three-phase
carrier-based PWM: A comprehensive analysis", IEEE Transactions on Industrial
Electronics, Vo. 49, no.1, pp. 186-196, February 2002.

[55] J-Y Midy, "Méthodologie de développement des tests pour une application
de contrôle d�un système électrique embarqué pour l�aéronautique", Enseigner
l�Electrotechnique et l�Electronique Industrielle, 3EI, Juin 2008.

[56] E.Salman, A.Dasdan, F.Taraporevala, K.Küçükçakar, and E.G.Friedman, Fel-
low, "Exploiting Setup�Hold-Time Interdependence in Static Timing Analysis,"
Ieee Transactions on computer �aided design of integrated circuits and systems,
vol.26,26,no.6,june 2007.

[57] ADC-DAC devices description, available at: http://www.analog.com

147

BIBLIOGRAPHY

[58] H.Hu, V.Yousef zadeh and D.Maksimovic,�No uniform A/D Quantization for Im-
proved Dynamic Responses of igitally Controlled DC�DC Converters,�IEEE Trans.
Ind. Electron., vol.. 23, no. 4, July.2008

[59] J.Böcker, S.Beineke, A.Bähr, �On the Control Bandwidth of Servo Drives�, in Proc.
IEEE, EPE 2009 - Barcelona

[60] C.Klarenbach, H.Schmirgel, J.Krah, "Design of Fast and Robust Current Con-
trollers for Servo Drives based on Space Vector Modulation", in Conf.PCIM Europe
2011, 17.-19. May 2011, Nuremberg, Germany

[61] D. G. Holmes, T. A. Lipo, B. P. McGrath, and W. Y. Kong, �Optimized Design
of Stationary Frame Three Phase AC Current Regulators,�IEEE Trans. On power
electronics., vol. 24, no. 11, Nov. 2009

[62] K. G. Shin and X. Z. Cui, �Computing time delay and its e¤ects on real-time
control systems ,�IEEE Trans. Control Syst. Technol., Vol. 3, No. 2, pp. 218-224,
Jun. 1995.

[63] D. Maksimovic and R. zane, �Small-signal discrete-time modeling of digitally con-
trolled DC-DC converters,�in Proc. COMPEL, pp.231-235, 2006.

[64] K.JI, W-J.Kime�Optimal bandwidth allocation and QoS-adaptive control Co-
design for networked control systems�in International journal of control, automa-
tion and system, vol.6, no.4, pp596-606, August 2008.

[65] E. Monmasson, L. Idkhajine, I. Bahri, M.W. Naouar, L. Charaabi, �Design method-
ology and FPGA-based controllers for Power Electronics and drive applications�,
In Proc. ICIEA�2010 Conf., pp. 2328-2338, Taichung, Taiwan.

[66] S. Bolognani, L. Tubiana, M. Zigliotto, �Extended Kalman Filter Tuning in Sen-
sorless PMSM Drives�, IEEE Trans. on Ind. Electron., vol. 39, no. 6, pp. 276 �281,
November 2003.

[67] A. Akrad, M. Hilairet, D. Diallo, �A Sensorless PMSM drive using a two stage Ex-
tended Kalman Estimator�, In Proc. IECON�2008 Conf., pp. 2776-2781, Orlando,
Florida, USA.

[68] Texas Instruments Europe, �Sensorless Control with Kalman Filter on TMS320
Fixed-Point DSP�, TI. Literature no. BPRA057, July 1997

[69] A.Ben Salem, S.Ben Othman and S.Ben Saoud �Field Programmable Gate Array
-Based System-on-Chip for Real-Time Power Process Control�, American Journal
of Applied Sciences, 127-139, 2010

[70] S.C. Huerta, A. de Castro, O. Garcia, J.A. Cobos, �FPGA-Based Digital
Pulsewidth Modulator With Time Resolution Under 2 ns�, IEEE Trans. on Power
Electron., vol. 23, n�6, pp. 3135-3141, Nov. 2008.

[71] B. K. Bose, �Neural Network Applications in Power Electronics and Motor Drives -
An Introduction and Perspective�, IEEE Transactions on Ind. Electronics, vol. 54,
no. 1, pp. 14-33, Feb. 2007.

148

BIBLIOGRAPHY

[72] F. Salewski, S. Kowalewski, �Hardware/Software Design Considerations for Auto-
motive Embedded Systems�, IEEE Trans. On Ind. Informatics, Vol. 4, n� 3, pp. 56,
August 2008

[73] Xilinx on-line documentation. Available in :www.xilinx.com

[74] Cores Technologies on-line documentation. Available: www.1-core.com

[75] Altera on-line documentation. Available in :www.altera.com

[76] Actel on-line documentation. Available in :www.actel.com

[77] J.Coburn, S.Ravi and A.Raghunathan � Hardware Accelerated Power Estimation�,
Proceedings of the Design, Automation and Test in Europe Conference and Exhi-
bition (DATE�05)

[78] Ravi, A. Raghunathan and S. Chakradhar, , �E¢ cient RTL power estimation for
large designs,�in Proc. Int. Conf. VLSI Design, Jan. 2003.

[79] E. Macii, M. Pedram, and F. Somenzi, �High-level power modeling, estimation,
and optimization,�in Proc. Design Automation Conf., pp. 504�511, June 1997.

[80] Bjuréus, P. Millberg, M. Jantsch, �FPGA resource and timing estimation from
Matlab execution traces�, Proceedings of the international symposium on hard-
ware/software codesign� (CODES), pp. 31�36,2002

[81] K.M. Buyuksahin and F.N. Najm. "High-Level Area Estimation",In ISLPED�02,
pages 271�274, August 2002.

[82] F. Fummi, G. Perbellini, M. Loghi, and M. Poncino. ISS-centric modular HW/SW
co-simulation. In Proc. of ACM GLSVLSI, pp. 31�36. 2006.

[83] Enzler, R. Jeger, T. Cottet, D. and Troster, �High-level area and performance
estimation of hardware building blocks on FPGAs. In Proceedings of international
workshop on �eld-programmable logic and applications (FPL), pp. 525�534,2000

[84] T. Wiangtong, P.Y.K. Cheung, and W. Luk. "Comparing Three Heuristic Search
Methods for Functional Partitioning in Hardware-Software Codesign". Design Au-
tomation for Embedded Systems, 6:425�449, 2002.

[85] B. Knerr, M. Holzer, and M. Rupp,"HW/SW Partitioning Using High Level Met-
rics",in the proceedings of the International Conference on Computing, Communi-
cations and Control Technologies (CCCT), pp. 33-38, Austin, 2004

[86] T.Wiangtong, "Hardware/Software partitioning and scheduling for Recon�gurable
Systems", Ph.D thesis, Imperial College, London, 2004.

[87] J. Harkin, T. M. McGinnity, and L. P. Maguire. "Partitioning methodology for
dynamically recon�gurable embedded systems". IEE Proceedings - Computers and
Digital Techniques, 147(6):391�396, November 2000.

[88] Y. Le Moullec, N. Ben Amor, J-Ph. Diguet, M. Abid, and JL. Philippe, �Multi-
Granularity Metrics for the Erea of Strongly Personalized SOCs,� pp. 674�679,
March 2003.

149

BIBLIOGRAPHY

[89] P.Knudsen and J.Madsen,�Integrating Communication Protocol Selection with
Hard-ware/Software Codesign�, Ieee.Transaction on computer-aided design of in-
tegrated circuits and systems, vol.18,no.8,August 1999

[90] Henkel, J., and Ernst, R.," An approach to automated hardware/software partition-
ing using a �exible granularity that is driven by high-level estimation techniques".
IEEE Transactions on Very Large Scale Integration Systems, Vol. 9, No. 2, 273 -
289. 2001

[91] G. Qu et al., �Power Minimization using System-Level Partitioning of Applications
with Quality of Services Requirements�, Proc of Int. conf. on CAD. pp. 343-346,
1999.

[92] F. Vahid and D. Gajski,"Incremental Hardware Estimation during Hard-
ware/Software Functional Partitioning ",IEEE Transactions on VLSI Systems, Vol.
3, No. 3, pp. 459-464, September 1995.

[93] L.Charaabi, E.Monmasson, I.S.Belkhodja, �Presentation of an e¢ cient design
methodology to develop IP-Core Functions for Control Systems: Application to
the Design of an Antiwindup PI Controller� in In Proc. IECON�02 Conf Proc,
Sevilla, Spain, 2002

[94] B. Knerr, M. Holzer and M. Rupp,"A Fast Rescheduling Heuristic of SDF Graphs
for HW/SW Partitioning Algorithms",in proceding of the 1rst.int.on communica-
tion system software, Middleware, Jan08, New delhi.India,2006.

[95] Binh, N. N., Imai, M., Shiomi, A., and Hikichi, N. . "A hardware/software partition-
ing algorithm for designing pipelined ASIPs with least gate counts". Proceedings
of 33rd Design Automation Conference (Las Vegas, NV, USA). 527 - 532,1996

[96] M. L.Vallejo and J. C. Lopez,�On the Hardware-Software Partitioning Problem:
System Modeling and Partitioning Techniques� ACM Transactions on Design
Automa-tion of Electronic Systems, Vol. 8, No. 3, July 2003, p 269�297.

[97] J. Henkel. "A Low Power Hardware/Software Partitioning Approach for Core-Based
Embedded Systems". Proceedings of the 36th ACM/IEEE Conference on Design
Automation (DAC), pp. 122�127, 1999.

[98] Walter H. Kohler and Kenneth Steiglitz, �Characterization and theoretical com-
parison of branch-and-bound algorithms for permutation problems,�J. ACM, vol.
21, no. 1, pp. 140�156, 1974.

[99] R. Niemann and P. Marewedel." An Algorithm for Hardware/ Software Partitioning
Using Mixed Integer Linear Programming". Design Automation for Embedded Sys-
tems, 2(2):125�63, March 1997.

[100] K. S. Chatha and R. Vemuri, �An Iterative Algorithm for Hardware- Software
Partitioning, Hardware Design Space Exploration and Scheduling,�, no. 5, pp. 281�
293, 2000

[101] S.Banerjee and N.Dutt,�E¢ cient Search Space Exploration for HW-SW Partition-
ing�, Stockholm, Sweden,September 8�10, 2004,

150

BIBLIOGRAPHY

[102] G.Stitt, R.Lysecky, F.Vahid ,�Dynamic Hardware/Software Partitioning: A First
Approach�, DAC 2003, Anaheim, California, USA,June 2-6, 2003,

[103] F. Vahid and T. Dm Le, �Extending the Kernighan/Lin Heuristic for Hardware and
Software Functional Partitioning,�Design Automation for Embedded Systems, pp.
237�261, 1997.

[104] T.wiangtong, P.Y.K.Cheumg, w.Luk �Comparing three heuristics methods for func-
tional partitioning in Hardware-Software co-design�, Design automation for embed-
ded systems, 2002

[105] P.Mudry, G.Zu¤erey and G.Tempesti � A Dynamically Constrained Genetic Algo-
rithm For Hardware-software Partitioning�, Seattle, Washington, USA,July 8�12,
2006,

[106] M.Jagadeeswari, M.C.Bhuvaneswari,�A Fast Multi-Objective Genetic Algorithm
for Hardware-Software Partitioning In Embedded System Design�, ICGST-AIML
Jour-nal, ISSN: 1687-4846, Volume 8, Issue II, September 2008

[107] Zou, Y. Zhuang, Z., and Cheng, H. HW-SW partitioning based on genetic algo-
rithm. . In Proceedings of Congress on Evolutionary Computation (Anhui, China).
628- 633,2004

[108] K.S.Chatha and R.Vemuri, �An iterative algorithm for hardware-software parti-
tioning, hardware design space exploration and Scheduling,� Journal of Design
Automa-tion for Embedded Systems, vol.5, pp. 281-293, 2000.

[109] M.Savage, Z.Salcic, G.Coghill, G.Covic ,� Genetic Algorithm for Codesign Opti-
mization of DSP Systems in FPGAs�, ICF�PT 2004.

[110] Q.Li and J.He,�A sophisticated architecture for evolutionary multiobjective opti-
mization utilizing high performance DSP�, ICES2007,LNCS 4684,pp.415-425,2007.

[111] L.Kaouane, M.Akil, Y.Sorel, T.grandpierre,�An automated design �ow for opti-
mized implementation of real-time image processing applications on FPGA�, EU-
ROCON 2003 International Conference on computer as a tool, Ljubljana, Slovenia,
22-24 September 2003.

[112] K.Deb, A.Pratap,S.Argarwal,T.Meyarivan,�A fast and elitist multiobjective genetic
algorithm:NSGA-II�, IEE transaction on evolutionary compution,182-197, 2002

[113] L.Idkhajine, �FPGA-based sensorless controller for AC drives", Phd the-
sis.University of Cergy-Pontoise, November 2010

[114] A.M. Haddad,"Sensorless Control of Brushless Synchronous Starter Generator In-
cluding Sandstill and Low Speed Region for Aircraft Application,"Phd thesis.Ecole
Normal de Cachan, March 2011

[115] I.Bahri, L.Idkhajine,E.Monmasson,M-A.Benkhelifa,"FPGA SoPC based sensorless
controller for synchronous machines using an Extended Kalman Filter," In.conf
Electrimacs 2011, Paris,6-8 June.

151

BIBLIOGRAPHY

[116] Z Jin, M Sindhwani and T Srikanthan : RTOS Acceleration on Soft-core Processors
Using Instruction Set Customization , 2004 IEEE International Conference on Field
Programmable Technology (FPT 2004), Australia. Brisbane, Australia, pp. 371-374,
Dec 2004

[117] Sindhwani, M., Oliver, T.F., Maskell, D.L. and Srikanthan, T., �RTOS Acceler-
ation Techniques - Review and Challenges�, Sixth Real-Time Linux Workshop,
Singapore, pp.123-128, Nov 2004

[118] Carlos Ferreira, Arnaldo S. R. Oliveira :RTOS Co-Processor Implementation in
VHDL, proceedings of IP-ESC�09 �Intellectual Property - Embedded Systems Con-
ference, Grenoble, France, December 2009

[119] Susanna Nordström : Con�gurable Hardware/Software Support for Single Proces-
sor Real-Time Kernels, Susanna Nordström (former), Lars Asplund, International
Symposium on System-on-Chip, p 4, IEEE, Tampere, Finland, November, 2007

[120] Lindh, L. and Stanischewski, F. �FASTCHART �A Fast Time Deterministic CPU
and Hardware Based Real-Time-Kernel�, 1991

[121] Lindh, L. �Utilization of Hardware Parallelism in Realizing Real Time Kernels�,
Doctoal Thesis, 1994.

[122] D.Andrews, W. Peck,J. Agron, K. Preston,E. Komp, M. Finley, R. Sass, �hthreads:
A Hardware/Software Co-Designed Multithreaded RTOS Kernel�In. IEEE Conf.
Emerging Technologies and Factory Automation, 19-22 Sept. 2005 5. ETFA 2005.

[123] Klevin, T. and Lindh, L. �Scalable Architecture for Real-Time Applications and
Use of bus-monitoring�, 1999.

[124] Lindh, L., Klevin, T. and Furunäs, J., �Scalable Architecture for Real-Time Appli-
cations �SARA�, 1999.

[125] Enblom, L. and Lindh, L. �Adding Flexibility and Real-Time Performance by
Adapting a Single Processor Industrial Application to a Multiprocessor Platform�,
2001.

[126] Lee, J., Mooney, V. J., Ingström, K., Daleby, A, Klevin, T. and Lindh, L. �A
Comparison of the RTU Hardware RTOS with a Hardware/Software RTOS�, 2003.

[127] T. Samuelsson, M. Åkerholm, P. Nygren, J. Stärner, and L. Lindh, �A Comparison
of Multiprocessor Real-Time Operating Systems Implemented in Hardware and
Software�, 2003.

[128] R Haukilahti. Energy Characterization of a RTOS Hardware Accelerator for SoCs.
In Swedish System-on-Chip Conference, Falkenberg, Sweden, March 2002.

[129] I.Bahri, A. Maalouf, L. Idkhajine, E. Monmasson, "FPGA-based implementation
of sensorless AC drive controllers for embedded electrical Systems applications",
IEEE Sled 2011, September 1-2, Birmingham

[130] H.V.Poussin,�Conception d�une architecture multiprocessor pour la commande des
systèmes électromécaniques » , Phd thesis, Univercity of Chatolique de louvain 2003.

152

BIBLIOGRAPHY

[131] M.W.Naouar, "Commande numérique à base de composants FPGA d�une machine
synchrone", PhD Thesis, UCP-ENIT, France-Tunisia, 2007

[132] M.Sadir,"Exécutif Temps Réel Embarqué : Partitionnement Matériel / Logiciel",
master project september 2011.

153

	Title.pdf
	Phd.pdf
	Nomenclature
	Abstract
	Résumé
	General Introduction
	State of art of FPGA-based System-on-Chip for embedded control systems
	Introduction
	 Aircraft application constraints
	Hardware architectures
	 ASICs
	ASIPs
	FPGAs
	System-on-Chip
	Multi-Processor System-on-Chip
	Multi-layer software architecture

	FPGA-SoC design flow
	Interest of the SoC approach for AC drive applications
	Co-design methodology
	Modeling
	Partitioning
	Modeling tools for Co-design

	Proposed Co-design methodology for electrical drives
	Conclusion

	Design and validation of FPGA-based motor drive for High-Temperature environment
	Introduction
	Application overview
	Design and validation methodology
	Control algorithm design and functional validation
	Architectural design and modular verification of the control architecture
	Real-time simulation

	SoC performance evaluation
	Conclusion

	Specifications and algorithm development-Time delay impact
	Introduction
	Specifications
	Power stage
	Measurement boards
	Digital Control Unit

	Sources of time delay
	Computation time delay
	Sample-and-Hold effect of the PWM

	Stator current controller
	Current controller synthesis
	Speed controller
	Rotor speed and position observer using EKF algorithm
	Discretization and fixed-point data setting

	Conclusion

	Co-design methodology: HW-SW partitioning
	Introduction
	First stage of experimental validation
	Digital platform
	Overview of the experimental set up

	Performance estimation
	Fine granularity library
	Medium granularity library
	Coarse granularity library
	Area estimation
	Time estimation
	Memory use
	Parallelism parameter
	Benchmark: EKF Sensorless speed controller

	HW-SW partitioning
	Formalization of the HW-SW partitioning problem
	Genetic Algorithm : NSGA-II
	Principle
	NSGA-II configuration

	HW-SW partitioning results
	Conclusion

	Real-Time Operating System for HW-SW controllers: Application to the case of AC drives
	Introduction
	Related works
	Problem statement and motivation
	Micrium: MicroC/OS-II
	Porting MicroC/OS-II
	Description of the RTU
	The FSL interface and the decoder
	Scheduler and Time manager Modules
	Semaphore Manager
	Area and time performances

	Benchmark: motor control
	Conclusion

	General conclusion

