Thèse soutenue

Structure et dynamique fonctionnelle du domaine transmembranaire de la protéine SNARE VAMP2 lors de l’exocytose

FR
Auteur / Autrice : Benoit Hastoy
Direction : Jochen Lang
Type : Thèse de doctorat
Discipline(s) : Biologie cellulaire et physiopathologie
Date : Soutenance le 20/12/2011
Etablissement(s) : Bordeaux 1
Ecole(s) doctorale(s) : École doctorale Sciences de la vie et de la santé (Bordeaux)
Partenaire(s) de recherche : Laboratoire : Chimie et Biologie des Membranes et des Nanoobjets (Bordeaux ; 2007-....)
Jury : Examinateurs / Examinatrices : Oliver Nusse, Marc Landry, Reiko Oda, Pier Scotti
Rapporteurs / Rapporteuses : Romano Regazzi, François Darchen

Résumé

FR  |  
EN

Le maintien de l’homéostasie passe notamment par la sécrétion d’hormones provenant des cellules neuro-endocrines ou endocrines telles que les cellules chromaffines ou les cellules b pancréatiques. Par exemple, la régulation de la glycémie nécessite l’exocytose de l’insuline depuis les cellules b pancréatiques des îlots de Langerhans. Une famille de protéines membranaires est au cœur de la machinerie de fusion d’une vésicule avec la membrane plasmique. Ce groupe appelé, la famille des protéines SNARE est composé de trois protéines. VAMP2 est localisée à la membrane vésiculaire alors que syntaxine 1A et SNAP25 sont localisées à la membrane plasmique. Syntaxine 1A et VAMP2 ont un domaine transmembranaire alors que SNAP25 est reliée à la membrane par prénylation de résidus cystéine. Cette famille forme le complexe cytosolique SNARE décrit comme essentiel à l’exocytose. La structure et la fonction du complexe cytosolique ont été étudiées en profondeur et ont mené au modèle du « zipper ». Celui-ci décrit un enroulement progressif des domaines cytosoliques SNARE permettant l’apposition des membranes puis la fusion. Le rôle des domaines transmembranaires reste encore peu décrit. Pourtant, leur étude est nécessaire afin d’établir un modèle complet de la fusion membranaire par les protéines SNARE. Nous avons donc mené une étude alliant une analyse structurale dynamique à une analyse biologique pour déterminer l’importance du domaine transmembranaire de VAMP2 dans la sécrétion. L’analyse biologique représente donc le centre de ma thèse. Le système biologique utilisé est basé sur l’extinction de l’expression de la protéine VAMP2 endogène et l’expression concomitante d’une protéine VAMP2 mutée dans son domaine transmembranaire. Deux lignées cellulaires considérées comme des modèles dans l’étude de la sécrétion hormonale et du trafic vésiculaire ont servi de support à notre étude. Par des approches de microscopies (confocal, TIRF) et d’analyses biochimiques, nous avons observé les conséquences fonctionnelles des mutations ponctuelles, établis par mutagénèse dirigée, sur le trafic vésiculaire et sur la capacité des cellules à sécréter.Les mutations induites présentent différents effets cellulaires. Certaines bloquent la sortie de VAMP2 du réseau golgien alors que d’autres ont un effet important sur la sécrétion hormonale et plus précisément sur l’exocytose. Les études structurales ont permis de corréler ces effets avec une diminution de la flexibilité structurale dans le cas de la diminution de l’exocytose, ou avec une restriction à la conformation hélice alpha dans le cas du sorting. Ce projet pluridisciplinaire a pu mettre en avant le rôle biologique du domaine transmembranaire de VAMP2 au cours de l’exocytose probablement soutenue par la dynamique conformationelle unique observée par le versant structural du projet.